Asymptotic inversion of the Erlang B formula
Leeuwaarden, van J.S.H.; Temme, N.M.
2008-01-01
The Erlang B formula represents the steady-state blocking probability in the Erlang loss model or M=M=s=s queue. We derive asymptotic expansions for the offered load that matches, for a given number of servers, a certain blocking probability. In addressing this inversion problem we make use of
An asymptotic formula of the divergent bilateral basic hypergeometric series
Morita, Takeshi
2012-01-01
We show an asymptotic formula of the divergent bilateral basic hypergeometric series ${}_1\\psi_0 (a;-;q,\\cdot)$ with using the $q$-Borel-Laplace method. We also give the limit $q\\to 1-0$ of our asymptotic formula.
An asymptotic formula for Weyl solutions of the dirac equations
International Nuclear Information System (INIS)
Misyura, T.V.
1995-01-01
In the spectral analysis of differential operators and its applications an important role is played by the investigation of the behavior of the Weyl solutions of the corresponding equations when the spectral parameter tends to infinity. Elsewhere an exact asymptotic formula for the Weyl solutions of a large class of Sturm-Liouville equations has been obtained. A decisve role in the proof of this formula has been the semiboundedness property of the corresponding Sturm-Liouville operators. In this paper an analogous formula is obtained for the Weyl solutions of the Dirac equations
Asymptotically optimal unsaturated lattice cubature formulae with bounded boundary layer
Energy Technology Data Exchange (ETDEWEB)
Ramazanov, M D [Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa (Russian Federation)
2013-07-31
This paper describes a new algorithm for constructing lattice cubature formulae with bounded boundary layer. These formulae are unsaturated (in the sense of Babenko) both with respect to the order and in regard to the property of asymptotic optimality on W{sub 2}{sup m}-spaces, m element of (n/2,∞). Most of the results obtained apply also to W{sub 2}{sup μ}(R{sup n})-spaces with a hypoelliptic multiplier of smoothness μ. Bibliography: 6 titles.
Asymptotic formulae for solutions of the two-group integral neutron-transport equation
International Nuclear Information System (INIS)
Duracz, T.
1976-01-01
The steady-state, two-group integral neutron-transport equation is considered for two cases. First, for plane geometry, formulae for the asymptotic flux are obtained, under assumptions of homogeneous medium with isotropic scattering, extended to infinity (whole space and half-space), with sources vanishing at infinity as 0(esup(-IXI)). Next, for spherical geometry, the Milne problem is considered and formulae for the asymptotic flux are obtained. These formulae have the form of asymptotic expansions for small and large radii of the black sphere. (orig.) [de
A Fast, Simple, and Stable Chebyshev--Legendre Transform Using an Asymptotic Formula
Hale, Nicholas; Townsend, Alex
2014-01-01
-known asymptotic formula for Legendre polynomials of large degree as a weighted linear combination of Chebyshev polynomials, which can then be evaluated by using the discrete cosine transform. Numerical results are provided to demonstrate the efficiency
Asymptotic formulae for implied volatility in the Heston model
Forde, Martin; Jacquier, Antoine; Mijatovic, Aleksandar
2009-01-01
In this paper we prove an approximate formula expressed in terms of elementary functions for the implied volatility in the Heston model. The formula consists of the constant and first order terms in the large maturity expansion of the implied volatility function. The proof is based on saddlepoint methods and classical properties of holomorphic functions.
Sharp Spectral Asymptotics and Weyl Formula for Elliptic Operators with Non-smooth Coefficients
Energy Technology Data Exchange (ETDEWEB)
Zielinski, Lech [Universite Paris 7 (D. Diderot), Institut de Mathematiques de Paris-Jussieu UMR9994 (France)
1999-09-15
The aim of this paper is to give the Weyl formula for eigenvalues of self-adjoint elliptic operators, assuming that first-order derivatives of the coefficients are Lipschitz continuous. The approach is based on the asymptotic formula of Hoermander''s type for the spectral function of pseudo differential operators having Lipschitz continuous Hamiltonian flow and obtained via a regularization procedure of nonsmooth coefficients.
Sharp Spectral Asymptotics and Weyl Formula for Elliptic Operators with Non-smooth Coefficients
International Nuclear Information System (INIS)
Zielinski, Lech
1999-01-01
The aim of this paper is to give the Weyl formula for eigenvalues of self-adjoint elliptic operators, assuming that first-order derivatives of the coefficients are Lipschitz continuous. The approach is based on the asymptotic formula of Hoermander''s type for the spectral function of pseudo differential operators having Lipschitz continuous Hamiltonian flow and obtained via a regularization procedure of nonsmooth coefficients
Global and local asymptotics for the busy period of an M/G/1 queue
Denisov, D.E.; Shneer, V.
2010-01-01
We consider an M/G/1 queue with subexponential service times. We give a simple derivation of the global and local asymptotics for the busy period. Our analysis relies on the explicit formula for the joint distribution for the number of customers and the length of the busy period of an M/G/1 queue.
Tunnel ionization of atoms and molecules: How accurate are the weak-field asymptotic formulas?
Labeye, Marie; Risoud, François; Maquet, Alfred; Caillat, Jérémie; Taïeb, Richard
2018-05-01
Weak-field asymptotic formulas for the tunnel ionization rate of atoms and molecules in strong laser fields are often used for the analysis of strong field recollision experiments. We investigate their accuracy and domain of validity for different model systems by confronting them to exact numerical results, obtained by solving the time dependent Schrödinger equation. We find that corrections that take the dc-Stark shift into account are a simple and efficient way to improve the formula. Furthermore, analyzing the different approximations used, we show that error compensation plays a crucial role in the fair agreement between exact and analytical results.
The local index formula in noncommutative geometry
International Nuclear Information System (INIS)
Higson, N.
2003-01-01
These notes present a partial account of the local index theorem in non-commutative geometry discovered by Alain Connes and Henri Moscovici. It includes Elliptic partial differential operators, cyclic homology theory, Chern characters, homotopy invariants and the index formulas
Large N Penner matrix model and a novel asymptotic formula for the generalized Laguerre polynomials
International Nuclear Information System (INIS)
Deo, N
2003-01-01
The Gaussian Penner matrix model is re-examined in the light of the results which have been found in double-well matrix models. The orthogonal polynomials for the Gaussian Penner model are shown to be the generalized Laguerre polynomials L (α) n (x) with α and x depending on N, the size of the matrix. An asymptotic formula for the orthogonal polynomials is derived following closely the orthogonal polynomial method of Deo (1997 Nucl. Phys. B 504 609). The universality found in the double-well matrix model is extended to include non-polynomial potentials. An asymptotic formula is also found for the Laguerre polynomial using the saddle-point method by rescaling α and x with N. Combining these results a novel asymptotic formula is found for the generalized Laguerre polynomials (different from that given in Szego's book) in a different asymptotic regime. This may have applications in mathematical and physical problems in the future. The density-density correlators are derived and are the same as those found for the double-well matrix models. These correlators in the smoothed large N limit are sensitive to odd and even N where N is the size of the matrix. These results for the two-point density-density correlation function may be useful in finding eigenvalue effects in experiments in mesoscopic systems or small metallic grains. There may be applications to string theory as well as the tunnelling of an eigenvalue from one valley to the other being an important quantity there
Quantum local asymptotic normality and other questions of quantum statistics
Kahn, Jonas
2008-01-01
This thesis is entitled Quantum Local Asymptotic Normality and other questions of Quantum Statistics ,. Quantum statistics are statistics on quantum objects. In classical statistics, we usually start from the data. Indeed, if we want to predict the weather, and can measure the wind or the
A Fast, Simple, and Stable Chebyshev--Legendre Transform Using an Asymptotic Formula
Hale, Nicholas
2014-02-06
A fast, simple, and numerically stable transform for converting between Legendre and Chebyshev coefficients of a degree N polynomial in O(N(log N)2/ log log N) operations is derived. The fundamental idea of the algorithm is to rewrite a well-known asymptotic formula for Legendre polynomials of large degree as a weighted linear combination of Chebyshev polynomials, which can then be evaluated by using the discrete cosine transform. Numerical results are provided to demonstrate the efficiency and numerical stability. Since the algorithm evaluates a Legendre expansion at an N +1 Chebyshev grid as an intermediate step, it also provides a fast transform between Legendre coefficients and values on a Chebyshev grid. © 2014 Society for Industrial and Applied Mathematics.
Cardy formula for 4d SUSY theories and localization
Energy Technology Data Exchange (ETDEWEB)
Pietro, Lorenzo Di [Perimeter Institute for Theoretical Physics,Caroline Street N 31, Waterloo (Canada); Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Herzl street 234, Rehovot (Israel); Honda, Masazumi [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Herzl street 234, Rehovot (Israel)
2017-04-11
We study 4d N=1 supersymmetric theories on a compact Euclidean manifold of the form S{sup 1}×M{sub 3}. Partition functions of gauge theories on this background can be computed using localization, and explicit formulas have been derived for different choices of the compact manifold M{sub 3}. Taking the limit of shrinking S{sup 1}, we present a general formula for the limit of the localization integrand, derived by simple effective theory considerations, generalizing the result of https://www.doi.org/10.1007/JHEP07(2016)025. The limit is given in terms of an effective potential for the holonomies around the S{sup 1}, whose minima determine the asymptotic behavior of the partition function. If the potential is minimized in the origin, where it vanishes, the partition function has a Cardy-like behavior fixed by Tr(R), while a nontrivial minimum gives a shift in the coefficient. In all the examples that we consider, the origin is a minimum if Tr(R)≤0.
Asymptotically exact solution of a local copper-oxide model
International Nuclear Information System (INIS)
Zhang Guangming; Yu Lu.
1994-03-01
We present an asymptotically exact solution of a local copper-oxide model abstracted from the multi-band models. The phase diagram is obtained through the renormalization-group analysis of the partition function. In the strong coupling regime, we find an exactly solved line, which crosses the quantum critical point of the mixed valence regime separating two different Fermi-liquid (FL) phases. At this critical point, a many-particle resonance is formed near the chemical potential, and a marginal-FL spectrum can be derived for the spin and charge susceptibilities. (author). 15 refs, 1 fig
Asymptotic behavior of local dipolar fields in thin films
Energy Technology Data Exchange (ETDEWEB)
Bowden, G.J., E-mail: gjb@phys.soton.ac.uk [School of Physics and Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Stenning, G.B.G., E-mail: Gerrit.vanderlaan@diamond.ac.uk [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Laan, G. van der, E-mail: gavin.stenning@stfc.ac.uk [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)
2016-10-15
A simple method, based on layer by layer direct summation, is used to determine the local dipolar fields in uniformly magnetized thin films. The results show that the dipolar constants converge ~1/m where the number of spins in a square film is given by (2m+1){sup 2}. Dipolar field results for sc, bcc, fcc, and hexagonal lattices are presented and discussed. The results can be used to calculate local dipolar fields in films with either ferromagnetic, antiferromagnetic, spiral, exponential decay behavior, provided the magnetic order only changes normal to the film. Differences between the atomistic (local fields) and macroscopic fields (Maxwellian) are also examined. For the latter, the macro B-field inside the film is uniform and falls to zero sharply outside, in accord with Maxwell boundary conditions. In contrast, the local field for the atomistic point dipole model is highly non-linear inside and falls to zero at about three lattice spacing outside the film. Finally, it is argued that the continuum field B (used by the micromagnetic community) and the local field B{sub loc}(r) (used by the FMR community) will lead to differing values for the overall demagnetization energy. - Highlights: • Point-dipolar fields in uniformly magnetized thin films are characterized by just three numbers. • Maxwell's boundary condition is partially violated in the point-dipole approximation. • Asymptotic values of point dipolar fields in circular monolayers scale as π/r.
Asymptotically optimal data analysis for rejecting local realism
International Nuclear Information System (INIS)
Zhang, Yanbao; Glancy, Scott; Knill, Emanuel
2011-01-01
Reliable experimental demonstrations of violations of local realism are highly desirable for fundamental tests of quantum mechanics. One can quantify the violation witnessed by an experiment in terms of a statistical p value, which can be defined as the maximum probability according to local realism of a violation at least as high as that witnessed. Thus, high violation corresponds to small p value. We propose a prediction-based-ratio (PBR) analysis protocol whose p values are valid even if the prepared quantum state varies arbitrarily and local realistic models can depend on previous measurement settings and outcomes. It is therefore not subject to the memory loophole [J. Barrett et al., Phys. Rev. A 66, 042111 (2002)]. If the prepared state does not vary in time, the p values are asymptotically optimal. For comparison, we consider protocols derived from the number of standard deviations of violation of a Bell inequality and from martingale theory [R. Gill, e-print arXiv:quant-ph/0110137]. We find that the p values of the former can be too small and are therefore not statistically valid, while those derived from the latter are suboptimal. PBR p values do not require a predetermined Bell inequality and can be used to compare results from different tests of local realism independent of experimental details.
An asymptotic formula for decreasing solutions to coupled nonlinear differential systems
Czech Academy of Sciences Publication Activity Database
Matucci, S.; Řehák, Pavel
2012-01-01
Roč. 22, č. 2 (2012), s. 67-75 ISSN 1064-9735 Institutional research plan: CEZ:AV0Z10190503 Keywords : system of quasilinear equations * strongly decreasing solutions * asymptotic equivalence Subject RIV: BA - General Mathematics
Local fields for asymptotic matching in multidimensional mode conversion
International Nuclear Information System (INIS)
Tracy, E. R.; Kaufman, A. N.; Jaun, A.
2007-01-01
The problem of resonant mode conversion in multiple spatial dimensions is considered. Using phase space methods, a complete theory is developed for constructing matched asymptotic expansions that fit incoming and outgoing WKB solutions. These results provide, for the first time, a complete and practical method for including multidimensional conversion in ray tracing algorithms. The paper provides a self-contained description of the following topics: (1) how to use eikonal (also known as ray tracing or WKB) methods to solve vector wave equations and how to detect conversion regions while following rays; (2) once conversion is detected, how to fit to a generic saddle structure in ray phase space associated with the most common type of conversion; (3) given the saddle structure, how to carry out a local projection of the full vector wave equation onto a local two-component normal form that governs the two resonantly interacting waves. This determines both the uncoupled dispersion functions and the coupling constant, which in turn determine the uncoupled WKB solutions; (4) given the normal form of the local two-component wave equation, how to find the particular solution that matches the amplitude, phase, and polarization of the incoming ray, to the amplitude, phase, and polarization of the two outgoing rays: the transmitted and converted rays
The Cardy-Verlinde formula and asymptotically de Sitter brane universe
International Nuclear Information System (INIS)
Youm, Donam
2001-11-01
We consider the brane universe in the bulk background of the topological AdS-Schwarzschild black holes, where the brane tension takes larger value than the fine-tuned value. The resulting universe is radiation dominated and has positive cosmological constant. We obtain the associated cosmological Cardy formula and the Cardy-Verlinde formula. We also derive the Hubble and the Bekenstein entropy bounds from the conjectured holography bound on the Casimir entropy. (author)
The mixed boundary value problem, Krein resolvent formulas and spectral asymptotic estimates
DEFF Research Database (Denmark)
Grubb, Gerd
2011-01-01
For a second-order symmetric strongly elliptic operator A on a smooth bounded open set in Rn, the mixed problem is defined by a Neumann-type condition on a part Σ+ of the boundary and a Dirichlet condition on the other part Σ−. We show a Kreĭn resolvent formula, where the difference between its...... to the area of Σ+, in the case where A is principally equal to the Laplacian...
High-frequency asymptotics of the local vertex function. Algorithmic implementations
Energy Technology Data Exchange (ETDEWEB)
Tagliavini, Agnese; Wentzell, Nils [Institut fuer Theoretische Physik, Eberhard Karls Universitaet, 72076 Tuebingen (Germany); Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna (Austria); Li, Gang; Rohringer, Georg; Held, Karsten; Toschi, Alessandro [Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna (Austria); Taranto, Ciro [Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna (Austria); Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Andergassen, Sabine [Institut fuer Theoretische Physik, Eberhard Karls Universitaet, 72076 Tuebingen (Germany)
2016-07-01
Local vertex functions are a crucial ingredient of several forefront many-body algorithms in condensed matter physics. However, the full treatment of their frequency dependence poses a huge limitation to the numerical performance. A significant advancement requires an efficient treatment of the high-frequency asymptotic behavior of the vertex functions. We here provide a detailed diagrammatic analysis of the high-frequency asymptotic structures and their physical interpretation. Based on these insights, we propose a frequency parametrization, which captures the whole high-frequency asymptotics for arbitrary values of the local Coulomb interaction and electronic density. We present its algorithmic implementation in many-body solvers based on parquet-equations as well as functional renormalization group schemes and assess its validity by comparing our results for the single impurity Anderson model with exact diagonalization calculations.
Lambert, A.; Simatos, F.
2015-01-01
Consider compound Poisson processes with negative drift and no negative jumps, which converge to some spectrally positive Lévy process with nonzero Lévy measure. In this paper, we study the asymptotic behavior of the local time process, in the spatial variable, of these processes killed at two
Lambert, A.; Simatos, F.
2012-01-01
Consider compound Poisson processes with negative drift and no negative jumps, which converge to some spectrally positive L\\'evy process with non-zero L\\'evy measure. In this paper we study the asymptotic behavior of the local time process, in the spatial variable, of these processes killed at two
Asymptotically perfect discrimination in the local-operation-and-classical-communication paradigm
International Nuclear Information System (INIS)
Kleinmann, M.; Kampermann, H.; Bruss, D.
2011-01-01
We revisit the problem of discriminating orthogonal quantum states within the local-quantum-operation-and-classical-communication (LOCC) paradigm. Our particular focus is on the asymptotic situation where the parties have infinite resources and the protocol may become arbitrarily long. Our main result is a necessary condition for perfect asymptotic LOCC discrimination. As an application, we prove that for complete product bases, unlimited resources are of no advantage. On the other hand, we identify an example for which it still remains undecided whether unlimited resources are superior.
International Nuclear Information System (INIS)
Pogosian, S.
1981-01-01
It is known that in the grand canonical ensemble (for the case of small density of particles) the fluctuations (approximately mod(Λ)sup(1/2)) in the particle number have an asymptotic normal distribution as Λ→infinity. A similar statement holds for the distribution of the particle number in a bounded domain evaluated with respect to the limiting Gibbs distribution. The author obtains an asymptotic expansion in the local limit theorem for the particle number in the grand canonical ensemble, by using the asymptotic expansion of the grand canonical partition function. The coefficients of this expansion are not constants but depend on the form of the domain Λ. More precisely, they are constant up to a correction which is small (for large Λ). The author obtains an explicit form for the second term of the asymptotic expansion in the local limit theorem for the particle number, and also gets the first correction terms for the coefficients of this expansion. (Auth.)
Asymptotics of relativistic spin networks
International Nuclear Information System (INIS)
Barrett, John W; Steele, Christopher M
2003-01-01
The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol
An asymptotic formula for polynomials orthonormal with respect to a varying weight. II
International Nuclear Information System (INIS)
Komlov, A V; Suetin, S P
2014-01-01
This paper gives a proof of the theorem announced by the authors in the preceding paper with the same title. The theorem states that asymptotically the behaviour of the polynomials which are orthonormal with respect to the varying weight e −2nQ(x) p g (x)/√(∏ j=1 2p (x−e j )) coincides with the asymptotic behaviour of the Nuttall psi-function, which solves a special boundary-value problem on the relevant hyperelliptic Riemann surface of genus g=p−1. Here e 1
Fadly Nurullah Rasedee, Ahmad; Ahmedov, Anvarjon; Sathar, Mohammad Hasan Abdul
2017-09-01
The mathematical models of the heat and mass transfer processes on the ball type solids can be solved using the theory of convergence of Fourier-Laplace series on unit sphere. Many interesting models have divergent Fourier-Laplace series, which can be made convergent by introducing Riesz and Cesaro means of the series. Partial sums of the Fourier-Laplace series summed by Riesz method are integral operators with the kernel known as Riesz means of the spectral function. In order to obtain the convergence results for the partial sums by Riesz means we need to know an asymptotic behavior of the latter kernel. In this work the estimations for Riesz means of spectral function of Laplace-Beltrami operator which guarantees the convergence of the Fourier-Laplace series by Riesz method are obtained.
Functorial Localization Formula on Mirror Principles | Tayo | Journal ...
African Journals Online (AJOL)
This paper focuses on function theory or representation theories in a very elegant and substantial way in geometry. It is very interesting to see how special functions enter into geometry. We like to point out that Symmetric, Trigonometric and Theta- functions are representation theoretic formula, equivariant Euler classes, and ...
The Green-Kubo formula for locally interacting fermionic open systems
Jaksic, V; Pillet, C A
2006-01-01
We consider a model describing finitely many free Fermi gas reservoirs coupled by local interactions and prove the Green-Kubo formulas and the Onsager reciprocity relations for heat and charge fluxes generated by temperature and chemical potential differentials.
Asymptotic analysis of the local potential approximation to the Wetterich equation
Bender, Carl M.; Sarkar, Sarben
2018-06-01
This paper reports a study of the nonlinear partial differential equation that arises in the local potential approximation to the Wetterich formulation of the functional renormalization group equation. A cut-off-dependent shift of the potential in this partial differential equation is performed. This shift allows a perturbative asymptotic treatment of the differential equation for large values of the infrared cut-off. To leading order in perturbation theory the differential equation becomes a heat equation, where the sign of the diffusion constant changes as the space-time dimension D passes through 2. When D 2 one obtains a backward heat equation whose initial-value problem is ill-posed. For the special case D = 1 the asymptotic series for cubic and quartic models is extrapolated to the small infrared-cut-off limit by using Padé techniques. The effective potential thus obtained from the partial differential equation is then used in a Schrödinger-equation setting to study the stability of the ground state. For cubic potentials it is found that this Padé procedure distinguishes between a -symmetric theory and a conventional Hermitian theory (g real). For an theory the effective potential is nonsingular and has a stable ground state but for a conventional theory the effective potential is singular. For a conventional Hermitian theory and a -symmetric theory (g > 0) the results are similar; the effective potentials in both cases are nonsingular and possess stable ground states.
Gontscharuk, Veronika; Landwehr, Sandra; Finner, Helmut
2015-01-01
The higher criticism (HC) statistic, which can be seen as a normalized version of the famous Kolmogorov-Smirnov statistic, has a long history, dating back to the mid seventies. Originally, HC statistics were used in connection with goodness of fit (GOF) tests but they recently gained some attention in the context of testing the global null hypothesis in high dimensional data. The continuing interest for HC seems to be inspired by a series of nice asymptotic properties related to this statistic. For example, unlike Kolmogorov-Smirnov tests, GOF tests based on the HC statistic are known to be asymptotically sensitive in the moderate tails, hence it is favorably applied for detecting the presence of signals in sparse mixture models. However, some questions around the asymptotic behavior of the HC statistic are still open. We focus on two of them, namely, why a specific intermediate range is crucial for GOF tests based on the HC statistic and why the convergence of the HC distribution to the limiting one is extremely slow. Moreover, the inconsistency in the asymptotic and finite behavior of the HC statistic prompts us to provide a new HC test that has better finite properties than the original HC test while showing the same asymptotics. This test is motivated by the asymptotic behavior of the so-called local levels related to the original HC test. By means of numerical calculations and simulations we show that the new HC test is typically more powerful than the original HC test in normal mixture models. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Schroer, Bert; Freie Universitaet, Berlin
2010-02-01
It is shown that there are significant conceptual differences between QM and QFT which make it difficult to view the latter as just a relativistic extension of the principles of QM. At the root of this is a fundamental distinction between Born localization in QM (which in the relativistic context changes its name to Newton- Wigner localization) and modular localization which is the localization underlying QFT, after one separates it from its standard presentation in terms of field coordinates. The first comes with a probability notion and projection operators, whereas the latter describes causal propagation in QFT and leads to thermal aspects of locally reduced finite energy states. The Born-Newton-Wigner localization in QFT is only applicable asymptotically and the covariant correlation between asymptotic in and out localization projectors is the basis of the existence of an invariant scattering matrix. In this first part of a two part essay the modular localization (the intrinsic content of field localization) and its philosophical consequences take the center stage. Important physical consequences of vacuum polarization will be the main topic of part II. The present division into two semi-autonomous essays is the result of a partition and extension of an originally one-part manuscript. (author)
International Nuclear Information System (INIS)
Schroer, Bert
2010-01-01
It is shown that there are significant conceptual differences between QM and QFT which make it difficult to view the latter as just a relativistic extension of the principles of QM. At the root of this is a fundamental distinction between Born-localization in QM (which in the relativistic context changes its name to Newton-Wigner localization) and modular localization which is the localization underlying QFT, after one separates it from its standard presentation in terms of field coordinates. The first comes with a probability notion and projection operators, whereas the latter describes causal propagation in QFT and leads to thermal aspects of locally reduced finite energy states. The Born-Newton-Wigner localization in QFT is only applicable asymptotically and the covariant correlation between asymptotic in and out localization projectors is the basis of the existence of an invariant scattering matrix. In this first part of a two part essay the modular localization (the intrinsic content of field localization) and its philosophical consequences take the center stage. Important physical consequences of vacuum polarization will be the main topic of part II. The present division into two semi-autonomous essays is the result of a partition and extension of an originally one-part manuscript. (author)
Energy Technology Data Exchange (ETDEWEB)
Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Freie Universitaet, Berlin (Germany). Inst. fuer Theoretische Physik
2010-02-15
It is shown that there are significant conceptual differences between QM and QFT which make it difficult to view the latter as just a relativistic extension of the principles of QM. At the root of this is a fundamental distinction between Born localization in QM (which in the relativistic context changes its name to Newton- Wigner localization) and modular localization which is the localization underlying QFT, after one separates it from its standard presentation in terms of field coordinates. The first comes with a probability notion and projection operators, whereas the latter describes causal propagation in QFT and leads to thermal aspects of locally reduced finite energy states. The Born-Newton-Wigner localization in QFT is only applicable asymptotically and the covariant correlation between asymptotic in and out localization projectors is the basis of the existence of an invariant scattering matrix. In this first part of a two part essay the modular localization (the intrinsic content of field localization) and its philosophical consequences take the center stage. Important physical consequences of vacuum polarization will be the main topic of part II. The present division into two semi-autonomous essays is the result of a partition and extension of an originally one-part manuscript. (author)
An explicit formula for the Hilbert symbol for Honda groups in a multidimensional local field
International Nuclear Information System (INIS)
Vostokov, S V; Lorenz, F
2003-01-01
Based on the pairing on Cartier curves explicitly constructed in the previous paper of the authors, an explicit formula for the Hilbert symbol is constructed in a multidimensional local field of characteristic zero with residue field of positive characteristic on the formal module of a one-dimensional Honda formal group. In the proof a Shafarevich basis on the formal module is constructed, and so-called integer μ-modules in two-dimensional local rings of a special form ( μ-rings) are studied
An asymptotic solution of large-N QCD
Directory of Open Access Journals (Sweden)
Bochicchio Marco
2014-01-01
Full Text Available We find an asymptotic solution for two-, three- and multi-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-N QCD, in terms of glueball and meson propagators, in such a way that the solution is asymptotic in the ultraviolet to renormalization-group improved perturbation theory, by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap, based on a recently-proved asymptotic structure theorem for two-point correlators. The asymptotically-free bootstrap provides as well asymptotic S-matrix amplitudes in terms of glueball and meson propagators. Remarkably, the asymptotic S-matrix depends only on the unknown particle spectrum, but not on the anomalous dimensions, as a consequence of the LS Z reduction formulae. Very many physics consequences follow, both practically and theoretically. In fact, the asymptotic solution sets the strongest constraints on any actual solution of large-N QCD, and in particular on any string solution.
Asymptotical representation of discrete groups
International Nuclear Information System (INIS)
Mishchenko, A.S.; Mohammad, N.
1995-08-01
If one has a unitary representation ρ: π → U(H) of the fundamental group π 1 (M) of the manifold M then one can do may useful things: 1. To construct a natural vector bundle over M; 2. To construct the cohomology groups with respect to the local system of coefficients; 3. To construct the signature of manifold M with respect to the local system of coefficients; and others. In particular, one can write the Hirzebruch formula which compares the signature with the characteristic classes of the manifold M, further based on this, find the homotopy invariant characteristic classes (i.e. the Novikov conjecture). Taking into account that the family of known representations is not sufficiently large, it would be interesting to extend this family to some larger one. Using the ideas of A.Connes, M.Gromov and H.Moscovici a proper notion of asymptotical representation is defined. (author). 7 refs
The asymptotic behavior of Frobenius-Perron operator with local lower-bound function
International Nuclear Information System (INIS)
Ding Yiming
2003-01-01
Let (X,Σ,μ) be a σ-finite measure space, S:X→X be a nonsingular transformation and P S :L 1 →L 1 be the Frobenius-Perron operator associated with S. It is proved that if P S satisfies the local lower-bound function condition then for every f is a subset of D the sequence {P S n f} converges strongly to a stationary density of P S as n→∞. The statistical stability of S is also concerned via the local lower-bound function method
Asymptotically exact localized expansions for signals in the time–frequency domain
International Nuclear Information System (INIS)
Muzhikyan, Aramazd H; Avanesyan, Gagik T
2012-01-01
Based on a unique waveform with strong exponential localization property, an exact mathematical method for solving problems in signal analysis in the time–frequency domain is presented. An analogue of the Gabor frame exposes the non-commutative geometry of the time–frequency plane. Signals are visualized using the constructed graphical representation. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)
Collins, William
1989-01-01
The magnetohydrodynamic wave emission from several localized, periodic, kinematically specified fluid velocity fields are calculated using Lighthill's method for finding the far-field wave forms. The waves propagate through an isothermal and uniform plasma with a constant B field. General properties of the energy flux are illustrated with models of pulsating flux tubes and convective rolls. Interference theory from geometrical optics is used to find the direction of minimum fast-wave emission from multipole sources and slow-wave emission from discontinuous sources. The distribution of total flux in fast and slow waves varies with the ratios of the source dimensions l to the acoustic and Alfven wavelengths.
Fu, Honghao; Leung, Debbie; Mančinska, Laura
2014-05-01
We consider bipartite LOCC, the class of operations implementable by local quantum operations and classical communication between two parties. Surprisingly, there are operations that can be approximated to arbitrary precision but are impossible to implement exactly if only a finite number of messages are exchanged. This significantly complicates the analysis of what can or cannot be approximated with LOCC. Toward alleviating this problem, we exhibit two scenarios in which allowing vanishing error does not help. The first scenario is implementation of projective measurements with product measurement operators. The second scenario is the discrimination of unextendable product bases on two three-dimensional systems.
Thompson, P. M.; Stein, G.
1980-01-01
The behavior of the closed loop eigenstructure of a linear system with output feedback is analyzed as a single parameter multiplying the feedback gain is varied. An algorithm is presented that computes the asymptotically infinite eigenstructure, and it is shown how a system with high gain, feedback decouples into single input, single output systems. Then a synthesis algorithm is presented which uses full state feedback to achieve a desired asymptotic eigenstructure.
Subexponential loss rate asymptotics for Lévy processes
DEFF Research Database (Denmark)
Andersen, Lars Nørvang
2011-01-01
We consider a Lévy process reflected in barriers at 0 and K > 0. The loss rate is the mean of the local time at K at time 1 when the process is started in stationarity, and is a natural continuous-time analogue of the stationary expected loss rate for a reflected random walk. We derive asymptotic...... for the loss rate when K tends to infinity, when the mean of the Lévy process is negative and the positive jumps are subexponential. In the course of this derivation, we achieve a formula, which is a generalization of the celebrated Pollaczeck-Khinchine formula....
Assessment of empirical formulae for local response of concrete structures to hard projectile impact
International Nuclear Information System (INIS)
Buzaud, E.; Cazaubon, Ch.; Chauvel, D.
2007-01-01
The outcome of the impact of a hard projectile on a reinforced concrete structure is affected by different parameters such as the configuration of the interaction, the projectile geometry, mass and velocity and the target geometry, reinforcement, and concrete mechanical properties. Those parameters have been investigated experimentally during the last 30 years, hence providing a basis of simplified mathematical models like empirical formulae. The aim of the authors is to assess the relative performances of classical and more recent empirical formulae. (authors)
Black hole thermodynamics from a variational principle: asymptotically conical backgrounds
Energy Technology Data Exchange (ETDEWEB)
An, Ok Song [SISSA and INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy); Department of Physics, Kim Il Sung University,Ryongnam Dong, TaeSong District, Pyongyang, D.P.R. (Korea, Republic of); ICTP,Strada Costiera 11, 34014 Trieste (Italy); Cvetič, Mirjam [Department of Physics and Astronomy, University of Pennsylvania,209 S 33rd St, Philadelphia, PA 19104 (United States); Center for Applied Mathematics and Theoretical Physics, University of Maribor,Mladinska 3, SI2000 Maribor (Slovenia); Papadimitriou, Ioannis [SISSA and INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy)
2016-03-14
The variational problem of gravity theories is directly related to black hole thermodynamics. For asymptotically locally AdS backgrounds it is known that holographic renormalization results in a variational principle in terms of equivalence classes of boundary data under the local asymptotic symmetries of the theory, which automatically leads to finite conserved charges satisfying the first law of thermodynamics. We show that this connection holds well beyond asymptotically AdS black holes. In particular, we formulate the variational problem for N=2 STU supergravity in four dimensions with boundary conditions corresponding to those obeyed by the so called ‘subtracted geometries’. We show that such boundary conditions can be imposed covariantly in terms of a set of asymptotic second class constraints, and we derive the appropriate boundary terms that render the variational problem well posed in two different duality frames of the STU model. This allows us to define finite conserved charges associated with any asymptotic Killing vector and to demonstrate that these charges satisfy the Smarr formula and the first law of thermodynamics. Moreover, by uplifting the theory to five dimensions and then reducing on a 2-sphere, we provide a precise map between the thermodynamic observables of the subtracted geometries and those of the BTZ black hole. Surface terms play a crucial role in this identification.
International Nuclear Information System (INIS)
Dewar, R. L.
1995-01-01
A large part of physics consists of learning which asymptotic methods to apply where, yet physicists are not always taught asymptotics in a systematic way. Asymptotology is given using an example from aerodynamics, and a rent Phys. Rev. Letter Comment is used as a case study of one subtle way things can go wrong. It is shown that the application of local analysis leads to erroneous conclusions regarding the existence of a continuous spectrum in a simple test problem, showing that a global analysis must be used. The final section presents results on a more sophisticated example, namely the WKBJ solution of Mathieu equation. 13 refs., 2 figs
Exponential asymptotics of homoclinic snaking
International Nuclear Information System (INIS)
Dean, A D; Matthews, P C; Cox, S M; King, J R
2011-01-01
We study homoclinic snaking in the cubic-quintic Swift–Hohenberg equation (SHE) close to the onset of a subcritical pattern-forming instability. Application of the usual multiple-scales method produces a leading-order stationary front solution, connecting the trivial solution to the patterned state. A localized pattern may therefore be constructed by matching between two distant fronts placed back-to-back. However, the asymptotic expansion of the front is divergent, and hence should be truncated. By truncating optimally, such that the resultant remainder is exponentially small, an exponentially small parameter range is derived within which stationary fronts exist. This is shown to be a direct result of the 'locking' between the phase of the underlying pattern and its slowly varying envelope. The locking mechanism remains unobservable at any algebraic order, and can only be derived by explicitly considering beyond-all-orders effects in the tail of the asymptotic expansion, following the method of Kozyreff and Chapman as applied to the quadratic-cubic SHE (Chapman and Kozyreff 2009 Physica D 238 319–54, Kozyreff and Chapman 2006 Phys. Rev. Lett. 97 44502). Exponentially small, but exponentially growing, contributions appear in the tail of the expansion, which must be included when constructing localized patterns in order to reproduce the full snaking diagram. Implicit within the bifurcation equations is an analytical formula for the width of the snaking region. Due to the linear nature of the beyond-all-orders calculation, the bifurcation equations contain an analytically indeterminable constant, estimated in the previous work by Chapman and Kozyreff using a best fit approximation. A more accurate estimate of the equivalent constant in the cubic-quintic case is calculated from the iteration of a recurrence relation, and the subsequent analytical bifurcation diagram compared with numerical simulations, with good agreement
International Nuclear Information System (INIS)
Meyer, P.
1978-01-01
After having established the renormalization group equations and the possibilities of fixed points for the effective coupling constants the non abelian gauge theories are shown to have the property of asymptotic freedom. These results are applied to the colour gauge group of the strong interactions of quarks and gluons. The behavior of the moments of the structure functions of the deep inelastic scattering of leptons on nucleons (scaling and its logarithmic violations) is then deduced with using the Wilson's operator product expansion [fr
International Nuclear Information System (INIS)
Hughes, B.D.; Frankel, N.E.; Ninham, B.W.
1990-01-01
An alternative view is presented of the Chen's generalization of a formula of classic algebraic number theory, based on the Mellin transformation and Reimann's zeta function. The advantages of the Mellin transform, as a method with a primary role in asymptotic analysis, are outlined. 10 refs
Directory of Open Access Journals (Sweden)
Marzena Majer
2013-01-01
Full Text Available This paper presents results regarding the analysis of activities of coal mining companies operating in Poland in terms of Corporate Social Responsibility (CSR, with a particular emphasis focused on the area of community involvement. This sphere is extremely important for entities operating in the sector due to the scale of the impact on the social environment and the potential threat of resistance from local communities. Mining companies have developed forms of action in this area and are subject to a number of legal regulations, especially in such critical points as mining damages or acquiring concessions for mining operations. Therefore, it is worth analysing these issues from the perspective of the CSR formula, and the way in which mining companies build a relationship with stakeholder groups which are undoubtedly the local communities. This represents a specific challenge for mining companies and requires a change in management approach based on the acceptance of responsibility for the impact they have and to seek solutions that will benefit both the companies themselves and their surroundings. It should also affect the change in approach for building relationships with local groups beyond just the legal requirements.
Asymptotic numbers, asymptotic functions and distributions
International Nuclear Information System (INIS)
Todorov, T.D.
1979-07-01
The asymptotic functions are a new type of generalized functions. But they are not functionals on some space of test-functions as the distributions of Schwartz. They are mappings of the set denoted by A into A, where A is the set of the asymptotic numbers introduced by Christov. On its part A is a totally-ordered set of generalized numbers including the system of real numbers R as well as infinitesimals and infinitely large numbers. Every two asymptotic functions can be multiplied. On the other hand, the distributions have realizations as asymptotic functions in a certain sense. (author)
Asymptotically Safe Dark Matter
DEFF Research Database (Denmark)
Sannino, Francesco; Shoemaker, Ian M.
2015-01-01
We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....
Exact asymptotic expansions for solutions of multi-dimensional renewal equations
International Nuclear Information System (INIS)
Sgibnev, M S
2006-01-01
We derive expansions with exact asymptotic expressions for the remainders for solutions of multi-dimensional renewal equations. The effect of the roots of the characteristic equation on the asymptotic representation of solutions is taken into account. The resulting formulae are used to investigate the asymptotic behaviour of the average number of particles in age-dependent branching processes having several types of particles
Large time asymptotics of solutions of the equations of principal chiral field
International Nuclear Information System (INIS)
Sukhanov, V.V.
1990-01-01
Asymptotic behaviour of solutions of the equations of principal chiral field when one of the arguments tends to infinity is investigated. Asymptotics of solutions of the corresponding spectral problem is investigated as well. explicit formulas are constructed which connect the coefficients of the asymptotic decomposition of the potential with the data of the corresponding inverse problem by means of a birational transformation
A new optical rotation dispersion formula
International Nuclear Information System (INIS)
Kimel, I.
1981-12-01
A new dispersion formula for the rotatory power is obtained in the framework of Kubo forlalism for transport coefficients. Unlike the well known Rosenfeld-Condon dispersion law, this formula is consistent with the free electron gas asymptotic behavior. (Author) [pt
Cookbook asymptotics for spiral and scroll waves in excitable media.
Margerit, Daniel; Barkley, Dwight
2002-09-01
Algebraic formulas predicting the frequencies and shapes of waves in a reaction-diffusion model of excitable media are presented in the form of four recipes. The formulas themselves are based on a detailed asymptotic analysis (published elsewhere) of the model equations at leading order and first order in the asymptotic parameter. The importance of the first order contribution is stressed throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are given for spiral waves and detailed comparisons are presented between the asymptotic predictions and the solutions of the full reaction-diffusion equations. Recipes for twisted scroll waves with straight filaments are given and again comparisons are shown. The connection between the asymptotic results and filament dynamics is discussed, and one of the previously unknown coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic expansion. (c) 2002 American Institute of Physics.
Asymptotic Estimates of Gerber-Shiu Functions in the Renewal Risk Model with Exponential Claims
Institute of Scientific and Technical Information of China (English)
Li WEI
2012-01-01
This paper continues to study the asymptotic behavior of Gerber-Shiu expected discounted penalty functions in the renewal risk model as the initial capital becomes large.Under the assumption that the claim-size distribution is exponential,we establish an explicit asymptotic formula.Some straightforward consequences of this formula match existing results in the field.
Asymptotic and geometrical quantization
International Nuclear Information System (INIS)
Karasev, M.V.; Maslov, V.P.
1984-01-01
The main ideas of geometric-, deformation- and asymptotic quantizations are compared. It is shown that, on the one hand, the asymptotic approach is a direct generalization of exact geometric quantization, on the other hand, it generates deformation in multiplication of symbols and Poisson brackets. Besides investigating the general quantization diagram, its applications to the calculation of asymptotics of a series of eigenvalues of operators possessing symmetry groups are considered
Asymptotics and Borel summability
Costin, Ovidiu
2008-01-01
Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, transseries, and exponential asymptotics. He provides complete mathematical rigor while supplementing it with heuristic material and examples, so that some proofs may be omitted by applications-oriented readers.To give a sense of how new methods are us
Asymptotics of bivariate generating functions with algebraic singularities
Greenwood, Torin
Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of uni- variate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate ana- lytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quan- tum walks. Bressler and Pemantle (2007) found a (d + 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Groebner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size the square root of n near the peaks, each amplitude is asymptotic to an Airy function.
Lectures on the asymptotic theory of ideals
Rees, D
1988-01-01
In this book Professor Rees introduces and proves some of the main results of the asymptotic theory of ideals. The author's aim is to prove his Valuation Theorem, Strong Valuation Theorem, and Degree Formula, and to develop their consequences. The last part of the book is devoted to mixed multiplicities. Here the author develops his theory of general elements of ideals and gives a proof of a generalised degree formula. The reader is assumed to be familiar with basic commutative algebra, as covered in the standard texts, but the presentation is suitable for advanced graduate students. The work
Lattimore, Tor; Hutter, Marcus
2011-01-01
Artificial general intelligence aims to create agents capable of learning to solve arbitrary interesting problems. We define two versions of asymptotic optimality and prove that no agent can satisfy the strong version while in some cases, depending on discounting, there does exist a non-computable weak asymptotically optimal agent.
Asymptotic analysis to the effect of temperature gradient on the propagation of triple flames
Al-Malki, Faisal
2018-05-01
We study asymptotically in this paper the influence of the temperature gradient across the mixing layer on the propagation triple flames formed inside a porous wall channel. The study begins by formulating the problem mathematically using the thermo-diffusive model and then presents a thorough asymptotic analysis of the problem in the limit of large activation energy and thin flames. Analytical formulae for the local burning speed, the flame shape and the propagation speed in terms of the temperature gradient parameter have been derived. It was shown that varying the feed temperatures can significantly enhance the burning of the reactants up to a critical threshold, beyond which no solutions can be obtained. In addition, the study showed that increasing the temperature at the boundaries will modify the usual triple structure of the flame by inverting the upper premixed branch and extending it to the boundary, which may have great implications on the safety of the adopted combustion chambers.
Asymptotic Expansions for Higher-Order Scalar Difference Equations
Directory of Open Access Journals (Sweden)
Ravi P. Agarwal
2007-04-01
Full Text Available We give an asymptotic expansion of the solutions of higher-order PoincarÃƒÂ© difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.
Asymptotic Expansions for Higher-Order Scalar Difference Equations
Directory of Open Access Journals (Sweden)
Pituk Mihály
2007-01-01
Full Text Available We give an asymptotic expansion of the solutions of higher-order Poincaré difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.
Asymptotical behaviour of pion electromagnetic form factor in QCD
International Nuclear Information System (INIS)
Efremov, A.V.; Radyushkin, A.V.
1978-01-01
In the framework of the renormalizable quantum field theory a new approach is developed to the investigation of asymptotical behaviour of two-particle bound state electromagnetic form factor. It is shown that the behaviour of the pion EM form factor in quantum chromodynamics at sufficiently large momentum transfers is controlled by the short-distance dynamics only. The formula is obtained which expresses the asymptotical behaviour of the pion form factor in terms of the fundamental constants of the theory
Lq-perturbations of leading coefficients of elliptic operators: Asymptotics of eigenvalues
Directory of Open Access Journals (Sweden)
Vladimir Kozlov
2006-01-01
Full Text Available We consider eigenvalues of elliptic boundary value problems, written in variational form, when the leading coefficients are perturbed by terms which are small in some integral sense. We obtain asymptotic formulae. The main specific of these formulae is that the leading term is different from that in the corresponding formulae when the perturbation is small in L∞-norm.
International Nuclear Information System (INIS)
Todorov, T.D.
1980-01-01
The set of asymptotic numbers A as a system of generalized numbers including the system of real numbers R, as well as infinitely small (infinitesimals) and infinitely large numbers, is introduced. The detailed algebraic properties of A, which are unusual as compared with the known algebraic structures, are studied. It is proved that the set of asymptotic numbers A cannot be isomorphically embedded as a subspace in any group, ring or field, but some particular subsets of asymptotic numbers are shown to be groups, rings, and fields. The algebraic operation, additive and multiplicative forms, and the algebraic properties are constructed in an appropriate way. It is shown that the asymptotic numbers give rise to a new type of generalized functions quite analogous to the distributions of Schwartz allowing, however, the operation multiplication. A possible application of these functions to quantum theory is discussed
Asymptotic freedom without guilt
International Nuclear Information System (INIS)
Ma, E.
1979-01-01
The notion of asymptotic freedom in quantum chromodynamics is explained on general physical grounds, without invoking the formal arguments of renormalizable quantum field theory. The related concept of quark confinement is also discussed along the same line. 5 references
On asymptotic analysis of spectral problems in elasticity
Directory of Open Access Journals (Sweden)
S.A. Nazarov
Full Text Available The three-dimensional spectral elasticity problem is studied in an anisotropic and inhomogeneous solid with small defects, i.e., inclusions, voids, and microcracks. Asymptotics of eigenfrequencies and the corresponding elastic eigenmodes are constructed and justified. New technicalities of the asymptotic analysis are related to variable coefficients of differential operators, vectorial setting of the problem, and usage of intrinsic integral characteristics of defects. The asymptotic formulae are developed in a form convenient for application in shape optimization and inverse problems.
Large Deviations and Asymptotic Methods in Finance
Gatheral, Jim; Gulisashvili, Archil; Jacquier, Antoine; Teichmann, Josef
2015-01-01
Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find th...
20 CFR 667.130 - How are WIA title I formula funds allocated to local workforce investment areas?
2010-04-01
... section) relating to: (A) Excess poverty in urban, rural and suburban local areas; and (B) Excess... the factors described in paragraph (c)(1) of this section) relating to: (A) Excess youth poverty in urban, rural and suburban local areas; and (B) Excess unemployment above the State average in urban...
Quasi-extended asymptotic functions
International Nuclear Information System (INIS)
Todorov, T.D.
1979-01-01
The class F of ''quasi-extended asymptotic functions'' is introduced. It contains all extended asymptotic functions as well as some new asymptotic functions very similar to the Schwartz distributions. On the other hand, every two quasiextended asymptotic functions can be multiplied as opposed to the Schwartz distributions; in particular, the square delta 2 of an asymptotic function delta similar to Dirac's delta-function, is constructed as an example
Behavior of asymptotically electro-Λ spacetimes
Saw, Vee-Liem
2017-04-01
We present the asymptotic solutions for spacetimes with nonzero cosmological constant Λ coupled to Maxwell fields, using the Newman-Penrose formalism. This extends a recent work that dealt with the vacuum Einstein (Newman-Penrose) equations with Λ ≠0 . The results are given in two different null tetrads: the Newman-Unti and Szabados-Tod null tetrads, where the peeling property is exhibited in the former but not the latter. Using these asymptotic solutions, we discuss the mass loss of an isolated electrogravitating system with cosmological constant. In a universe with Λ >0 , the physics of electromagnetic (EM) radiation is relatively straightforward compared to those of gravitational radiation: (1) It is clear that outgoing EM radiation results in a decrease to the Bondi mass of the isolated system. (2) It is also perspicuous that if any incoming EM radiation from elsewhere is present, those beyond the isolated system's cosmological horizon would eventually arrive at the spacelike I and increase the Bondi mass of the isolated system. Hence, the (outgoing and incoming) EM radiation fields do not couple with Λ in the Bondi mass-loss formula in an unusual manner, unlike the gravitational counterpart where outgoing gravitational radiation induces nonconformal flatness of I . These asymptotic solutions to the Einstein-Maxwell-de Sitter equations presented here may be used to extend a raft of existing results based on Newman-Unti's asymptotic solutions to the Einstein-Maxwell equations where Λ =0 , to now incorporate the cosmological constant Λ .
Semiclassical structure of trace formulas
International Nuclear Information System (INIS)
Littlejohn, R.G.
1990-01-01
Trace formulas provide the only general relations known connecting quantum mechanics with classical mechanics in the case that the classical motion is chaotic. In particular, they connect quantal objects such as the density of states with classical periodic orbits. In this paper, several trace formulas, including those of Gutzwiller, Balian and Bloch, Tabor, and Berry, are examined from a geometrical standpoint. New forms of the amplitude determinant in asymptotic theory are developed as tools for this examination. The meaning of caustics in these formulas is revealed in terms of intersections of Lagrangian manifolds in phase space. The periodic orbits themselves appear as caustics of an unstable kind, lying on the intersection of two Lagrangian manifolds in the appropriate phase space. New insight is obtained into the Weyl correspondence and the Wigner function, especially their caustic structures
Directory of Open Access Journals (Sweden)
Antipov Valerij Ivanovich
2015-10-01
Full Text Available The article gives a modern interpretation of the Fisher formula, the calculated velocity of circulation of money supply M2 in the interval 1995-2013 and forecast of its changes until 2030 when hypotheses about the rate of inflation and GDP. Points to the fallacy of its direct use to control inflation and money supply. For a more detailed understanding of the inflationary process proposes a new frequency formula and the explanation of the situation with the regulation of prices in the economy.
DEFF Research Database (Denmark)
Astrup Jensen, Bjarne
analysis. We use Makeham's formula to decompose the return on a bond investment into interest payments, realized capital gains and accrued capital gains for a variety of accounting rules for measuring accruals in order to study the theoretical properties of these accounting rules, their taxation...... consequences and their implications for the relation between the yield before tax and the yield after tax. We also show how Makeham's formula produces short-cut expressions for the duration and convexity of a bond and facilitates the analytical calculation of the yield in certain cases....
DEFF Research Database (Denmark)
Astrup Jensen, Bjarne
analysis. We use Makeham's formula to decompose the return on a bond investment into interest payments, realized capital gains and accrued capital gains for a variety of accounting rules for measuring accruals in order to study the theoretical properties of these accounting rules, their taxation...
Samter, Eugene C.
It is often suggested that measuring local fiscal ability by full valuation of property per public school pupil is inaccurate and inequitable. One substitute measure proposed is district income per pupil or a combination of district income and property value per pupil. However, using this measure would result in a rise in the aid ratios in only…
Composition formulas in the Weyl calculus
DEFF Research Database (Denmark)
Kobayashi, Toshiyuki; Ørsted, Bent; Pevzner, Michael
2009-01-01
In pseudodifferential analysis, the usual composition formula, which has asymptotic value, extends that valid for differential operators. The one developed here is based instead on the decomposition of symbols (functions in Rn×Rn ) as integral superpositions of homogeneous ones, of degrees lying ...
International Nuclear Information System (INIS)
Trubnikov, S.V.
1984-01-01
The relativistic rotation of nucleon spin in addition to deuteron spin leads to the appearance of the new term in the deuteron charge form factor (DCFF). This term is absent in the traditional approaches and essentially influences the asymptotic behaviour of DCFF. General formulae are obtained for the DCFF asymptotics in the relativistic and nonrelativistic impulse approximation
Small Bandwidth Asymptotics for Density-Weighted Average Derivatives
DEFF Research Database (Denmark)
Cattaneo, Matias D.; Crump, Richard K.; Jansson, Michael
This paper proposes (apparently) novel standard error formulas for the density-weighted average derivative estimator of Powell, Stock, and Stoker (1989). Asymptotic validity of the standard errors developed in this paper does not require the use of higher-order kernels and the standard errors...
Asymptotics and Numerics for Laminar Flow over Finite Flat Plate
Dijkstra, D.; Kuerten, J.G.M.; Kaper, Hans G.; Garbey, Mare; Pieper, Gail W.
1992-01-01
A compilation of theoretical results from the literature on the finite flat-plate flow at zero incidence is presented. This includes the Blasius solution, the Triple Deck at the trailing edge, asymptotics in the wake, and properties near the edges of the plate. In addition, new formulas for skin
DEFF Research Database (Denmark)
Litim, Daniel F.; Sannino, Francesco
2014-01-01
We study the ultraviolet behaviour of four-dimensional quantum field theories involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. In a regime where asymptotic freedom is lost, we explain how the three types of fields cooperate to develop fully interacting ultraviolet ...
Cristallini, Achille
2016-07-01
A new and intriguing machine may be obtained replacing the moving pulley of a gun tackle with a fixed point in the rope. Its most important feature is the asymptotic efficiency. Here we obtain a satisfactory description of this machine by means of vector calculus and elementary trigonometry. The mathematical model has been compared with experimental data and briefly discussed.
Asymptotic variance of grey-scale surface area estimators
DEFF Research Database (Denmark)
Svane, Anne Marie
Grey-scale local algorithms have been suggested as a fast way of estimating surface area from grey-scale digital images. Their asymptotic mean has already been described. In this paper, the asymptotic behaviour of the variance is studied in isotropic and sufficiently smooth settings, resulting...... in a general asymptotic bound. For compact convex sets with nowhere vanishing Gaussian curvature, the asymptotics can be described more explicitly. As in the case of volume estimators, the variance is decomposed into a lattice sum and an oscillating term of at most the same magnitude....
Asymptotic formulae for solutions of half-linear differential equations
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
2017-01-01
Roč. 292, January (2017), s. 165-177 ISSN 0096-3003 Institutional support: RVO:67985840 Keywords : half-linear differential equation * nonoscillatory solution * regular variation Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www.sciencedirect.com/science/article/pii/S0096300316304581
Asymptotics with a positive cosmological constant II
Kesavan, Aruna; Ashtekar, Abhay; Bonga, Beatrice
2015-04-01
The study of isolated systems has been vastly successful in the context of vanishing cosmological constant, Λ = 0 . However, there is no physically useful notion of asymptotics for the universe we inhabit with Λ > 0 . This means that presently there is no fundamental understanding of gravitational waves in our own universe. The full non-linear framework is still under development, but some interesting results at the linearized level have been obtained. In particular, I will discuss the quadrupole formula for gravitational radiation and its implications.
Renormalization and asymptotic freedom in quantum gravity
International Nuclear Information System (INIS)
Tomboulis, E.T.
1984-01-01
The article reviews some recent attempts to construct satisfactory theories of quantum gravity within the framework of local, continuum field theory. Quantum gravity; the renormalization group and its fixed points; fixed points and dimensional continuation in gravity; and quantum gravity at d=4-the 1/N expansion-asymptotic freedom; are all discussed. (U.K.)
Quantum defect theory and asymptotic methods
International Nuclear Information System (INIS)
Seaton, M.J.
1982-01-01
It is shown that quantum defect theory provides a basis for the development of various analytical methods for the examination of electron-ion collision phenomena, including di-electronic recombination. Its use in conjuction with ab initio calculations is shown to be restricted by problems which arise from the presence of long-range non-Coulomb potentials. Empirical fitting to some formulae can be efficient in the use of computer time but extravagant in the use of person time. Calculations at a large number of energy points which make no use of analytical formulae for resonance structures may be made less extravagant in computer time by the development of more efficient asymptotic methods. (U.K.)
Variationally Asymptotically Stable Difference Systems
Directory of Open Access Journals (Sweden)
Goo YoonHoe
2007-01-01
Full Text Available We characterize the h-stability in variation and asymptotic equilibrium in variation for nonlinear difference systems via n∞-summable similarity and comparison principle. Furthermore we study the asymptotic equivalence between nonlinear difference systems and their variational difference systems by means of asymptotic equilibria of two systems.
Asymptotic matching of the solar-system gravitational yields
International Nuclear Information System (INIS)
Kopejkin, S.M.
1989-01-01
In the framework of the general relativity, the structure of the Solar-system gravitational fields is investigated and the relativistic formulae of transformation between nonrotating in the dynamical sense harmonic reference systems - barycentric, planetocentric and topocentric (satelite) ones - are derived by the method of the asymptotic mathing of components of the metric tensor. The derived formulae generalize the linear Poincare transformation in the case of curved space-time. With the help of the asymptotic matching formulae, the relationships between relativistic time scales inside the Solar system have been established, the equations of relativistic precession of the space axis of one reference system with respect to another one have been derived, the equations of translational motion of the center-of-mass of planets (the Sun) and their satellites have been obtained
Perturbed asymptotically linear problems
Bartolo, R.; Candela, A. M.; Salvatore, A.
2012-01-01
The aim of this paper is investigating the existence of solutions of some semilinear elliptic problems on open bounded domains when the nonlinearity is subcritical and asymptotically linear at infinity and there is a perturbation term which is just continuous. Also in the case when the problem has not a variational structure, suitable procedures and estimates allow us to prove that the number of distinct crtitical levels of the functional associated to the unperturbed problem is "stable" unde...
Model Hadron asymptotic behaviour
International Nuclear Information System (INIS)
Kralchevsky, P.; Nikolov, A.
1983-01-01
The work is devoted to the problem of solving a set of asymptotic equations describing the model hardon interaction. More specifically an interactive procedure consisting of two stages is proposed and the first stage is exhaustively studied here. The principle of contracting transformations has been applied for this purpose. Under rather general and natural assumptions, solutions in a series of metric spaces suitable for physical applications have been found. For each of these spaces a solution with unique definiteness is found. (authors)
International Nuclear Information System (INIS)
Gulisashvili, Archil; Stein, Elias M.
2010-01-01
We study the asymptotic behavior of distribution densities arising in stock price models with stochastic volatility. The main objects of our interest in the present paper are the density of time averages of the squared volatility process and the density of the stock price process in the Stein-Stein and the Heston model. We find explicit formulas for leading terms in asymptotic expansions of these densities and give error estimates. As an application of our results, sharp asymptotic formulas for the implied volatility in the Stein-Stein and the Heston model are obtained.
Extended asymptotic functions - some examples
International Nuclear Information System (INIS)
Todorov, T.D.
1981-01-01
Several examples of extended asymptotic functions of two variables are given. This type of asymptotic functions has been introduced as an extension of continuous ordinary functions. The presented examples are realizations of some Schwartz distributions delta(x), THETA(x), P(1/xsup(n)) and can be multiplied in the class of the asymptotic functions as opposed to the theory of Schwartz distributions. The examples illustrate the method of construction of extended asymptotic functions similar to the distributions. The set formed by the extended asymptotic functions is also considered. It is shown, that this set is not closed with respect to addition and multiplication
Energy Technology Data Exchange (ETDEWEB)
Sukhanov, V V [Leningradskij Gosudarstvennyj Univ., Leningrad (USSR)
1990-07-01
Asymptotic behaviour of solutions of the equations of principal chiral field when one of the arguments tends to infinity is investigated. Asymptotics of solutions of the corresponding spectral problem is investigated as well. explicit formulas are constructed which connect the coefficients of the asymptotic decomposition of the potential with the data of the corresponding inverse problem by means of a birational transformation.
Breastfeeding vs. Formula Feeding
... for Educators Search English Español Breastfeeding vs. Formula Feeding KidsHealth / For Parents / Breastfeeding vs. Formula Feeding What's ... work with a lactation specialist. All About Formula Feeding Commercially prepared infant formulas are a nutritious alternative ...
ADM Mass for Asymptotically de Sitter Space-Time
International Nuclear Information System (INIS)
Huang Shiming; Yue Ruihong; Jia Dongyan
2010-01-01
In this paper, an ADM mass formula for asymptotically de Sitter(dS) space-time is derived from the energy-momentum tensor. We take the vacuum dS space as the background and investigate the ADM mass of the (d + 3)-dimensional sphere-symmetric space with a positive cosmological constant, and find that the ADM mass of asymptotically dS space is based on the ADM mass of Schwarzschild field and the cosmological background brings some small mass contribution as well. (general)
Directory of Open Access Journals (Sweden)
Cristinel Mortici
2015-01-01
Full Text Available In this survey we present our recent results on analysis of gamma function and related functions. The results obtained are in the theory of asymptotic analysis, approximation of gamma and polygamma functions, or in the theory of completely monotonic functions. The motivation of this first part is the work of C. Mortici [Product Approximations via Asymptotic Integration Amer. Math. Monthly 117 (2010 434-441] where a simple strategy for constructing asymptotic series is presented. The classical asymptotic series associated to Stirling, Wallis, Glaisher-Kinkelin are rediscovered. In the second section we discuss some new inequalities related to Landau constants and we establish some asymptotic formulas.
International Nuclear Information System (INIS)
Bailin, D.
1974-01-01
It is proved that the characteristic power deviations from scaling of the theories which are not asymptotically free should be detectable in the N.A.L. muon experiments. The Yukawa theories here considered have SU(3) non-singlet structure function moments varying as a power of -q 2 , namely (-q 2 ) at power -p. The maximum value of p is determined to be 2/3:SU3 and 1:SU2. The outstanding question is whether the Yukawa theories considered do in fact have fixed points satisfying the inequalities, and thus simultaneous (non-trivial) zeroes of β(g) and β(lambda) have to be found
High frequency asymptotic methods
International Nuclear Information System (INIS)
Bouche, D.; Dessarce, R.; Gay, J.; Vermersch, S.
1991-01-01
The asymptotic methods allow us to compute the interaction of high frequency electromagnetic waves with structures. After an outline of their foundations with emphasis on the geometrical theory of diffraction, it is shown how to use these methods to evaluate the radar cross section (RCS) of complex tri-dimensional objects of great size compared to the wave-length. The different stages in simulating phenomena which contribute to the RCS are reviewed: physical theory of diffraction, multiple interactions computed by shooting rays, research for creeping rays. (author). 7 refs., 6 figs., 3 insets
Asymptotic Safety Guaranteed in Supersymmetry
Bond, Andrew D.; Litim, Daniel F.
2017-11-01
We explain how asymptotic safety arises in four-dimensional supersymmetric gauge theories. We provide asymptotically safe supersymmetric gauge theories together with their superconformal fixed points, R charges, phase diagrams, and UV-IR connecting trajectories. Strict perturbative control is achieved in a Veneziano limit. Consistency with unitarity and the a theorem is established. We find that supersymmetry enhances the predictivity of asymptotically safe theories.
A cardy formula for three-point coefficients or how the black hole got its spots
Energy Technology Data Exchange (ETDEWEB)
Kraus, Per [Department of Physics and Astronomy, University of California,Los Angeles, CA 90095 (United States); Maloney, Alexander [Physics Department, McGill University,Montréal, QC H3A 2T8 (Canada)
2017-05-31
Modular covariance of torus one-point functions constrains the three point function coefficients of a two dimensional CFT. This leads to an asymptotic formula for the average value of light-heavy-heavy three point coefficients, generalizing Cardy’s formula for the high energy density of states. The derivation uses certain asymptotic properties of one-point conformal blocks on the torus. Our asymptotic formula matches a dual AdS{sub 3} computation of one point functions in a black hole background. This is evidence that the BTZ black hole geometry emerges upon course-graining over a suitable family of heavy microstates.
More asymptotic safety guaranteed
Bond, Andrew D.; Litim, Daniel F.
2018-04-01
We study interacting fixed points and phase diagrams of simple and semisimple quantum field theories in four dimensions involving non-Abelian gauge fields, fermions and scalars in the Veneziano limit. Particular emphasis is put on new phenomena which arise due to the semisimple nature of the theory. Using matter field multiplicities as free parameters, we find a large variety of interacting conformal fixed points with stable vacua and crossovers inbetween. Highlights include semisimple gauge theories with exact asymptotic safety, theories with one or several interacting fixed points in the IR, theories where one of the gauge sectors is both UV free and IR free, and theories with weakly interacting fixed points in the UV and the IR limits. The phase diagrams for various simple and semisimple settings are also given. Further aspects such as perturbativity beyond the Veneziano limit, conformal windows, and implications for model building are discussed.
Asymptotically safe grand unification
Energy Technology Data Exchange (ETDEWEB)
Bajc, Borut [J. Stefan Institute,1000 Ljubljana (Slovenia); Sannino, Francesco [CP-Origins & the Danish IAS, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark); Université de Lyon, France, Université Lyon 1, CNRS/IN2P3, UMR5822 IPNL,F-69622 Villeurbanne Cedex (France)
2016-12-28
Phenomenologically appealing supersymmetric grand unified theories have large gauge representations and thus are not asymptotically free. Their ultraviolet validity is limited by the appearance of a Landau pole well before the Planck scale. One could hope that these theories save themselves, before the inclusion of gravity, by generating an interacting ultraviolet fixed point, similar to the one recently discovered in non-supersymmetric gauge-Yukawa theories. Employing a-maximization, a-theorem, unitarity bounds, as well as positivity of other central charges we nonperturbatively rule out this possibility for a broad class of prime candidates of phenomenologically relevant supersymmetric grand unified theories. We also uncover candidates passing these tests, which have either exotic matter or contain one field decoupled from the superpotential. The latter class of theories contains a model with the minimal matter content required by phenomenology.
Asymptotic angular dependences of exclusive hadron large-angle scattering
International Nuclear Information System (INIS)
Goloskokov, S.V.; Kudinov, A.V.; Kuleshov, S.P.
1979-01-01
Asymptotic approach to the description of the large-angle scattering amplitudes of the meson-nucleon and nucleon-nucleon scattering is studied. The paper is based on the Mandelstam representation and quark counting rules. The crossing summetry, SU-3 symmetry and spin effects are taken into account. Formulae obtained are used for the description of the differential cross sections of πsup(+-)p, pp and pn scattering. The predictions about ksup(+-)p and p anti p scattering are made. It is shown that formulae provide quantitative description of experimental data for the considered reactions
Renormalization group and asymptotic freedom
International Nuclear Information System (INIS)
Morris, J.R.
1978-01-01
Several field theoretic models are presented which allow exact expressions of the renormalization constants and renormalized coupling constants. These models are analyzed as to their content of asymptotic free field behavior through the use of the Callan-Symanzik renormalization group equation. It is found that none of these models possesses asymptotic freedom in four dimensions
Asymptotic structure of space-time with a positive cosmological constant
Kesavan, Aruna
In general relativity a satisfactory framework for describing isolated systems exists when the cosmological constant Lambda is zero. The detailed analysis of the asymptotic structure of the gravitational field, which constitutes the framework of asymptotic flatness, lays the foundation for research in diverse areas in gravitational science. However, the framework is incomplete in two respects. First, asymptotic flatness provides well-defined expressions for physical observables such as energy and momentum as 'charges' of asymptotic symmetries at null infinity, [special character omitted] +. But the asymptotic symmetry group, called the Bondi-Metzner-Sachs group is infinite-dimensional and a tensorial expression for the 'charge' integral of an arbitrary BMS element is missing. We address this issue by providing a charge formula which is a 2-sphere integral over fields local to the 2-sphere and refers to no extraneous structure. The second, and more significant shortcoming is that observations have established that Lambda is not zero but positive in our universe. Can the framework describing isolated systems and their gravitational radiation be extended to incorporate this fact? In this dissertation we show that, unfortunately, the standard framework does not extend from the Lambda = 0 case to the Lambda > 0 case in a physically useful manner. In particular, we do not have an invariant notion of gravitational waves in the non-linear regime, nor an analog of the Bondi 'news tensor', nor positive energy theorems. In addition, we argue that the stronger boundary condition of conformal flatness of intrinsic metric on [special character omitted]+, which reduces the asymptotic symmetry group from Diff([special character omitted]) to the de Sitter group, is insufficient to characterize gravitational fluxes and is physically unreasonable. To obtain guidance for the full non-linear theory with Lambda > 0, linearized gravitational waves in de Sitter space-time are analyzed in
Asymptotic behaviour of Feynman integrals
International Nuclear Information System (INIS)
Bergere, M.C.
1980-01-01
In these lecture notes, we describe how to obtain the asymptotic behaviour of Feynman amplitudes; this technique has been already applied in several cases, but the general solution for any kind of asymptotic behaviour has not yet been found. From the mathematical point of view, the problem to solve is close to the following problem: find the asymptotic expansion at large lambda of the integral ∫...∫ [dx] esup(-LambdaP[x]) where P[x] is a polynomial of several variables. (orig.)
Asymptotic Parachute Performance Sensitivity
Way, David W.; Powell, Richard W.; Chen, Allen; Steltzner, Adam D.
2006-01-01
In 2010, the Mars Science Laboratory mission will pioneer the next generation of robotic Entry, Descent, and Landing systems by delivering the largest and most capable rover to date to the surface of Mars. In addition to landing more mass than any other mission to Mars, Mars Science Laboratory will also provide scientists with unprecedented access to regions of Mars that have been previously unreachable. By providing an Entry, Descent, and Landing system capable of landing at altitudes as high as 2 km above the reference gravitational equipotential surface, or areoid, as defined by the Mars Orbiting Laser Altimeter program, Mars Science Laboratory will demonstrate sufficient performance to land on 83% of the planet s surface. By contrast, the highest altitude landing to date on Mars has been the Mars Exploration Rover at 1.3 km below the areoid. The coupling of this improved altitude performance with latitude limits as large as 60 degrees off of the equator and a precise delivery to within 10 km of a surface target, will allow the science community to select the Mars Science Laboratory landing site from thousands of scientifically interesting possibilities. In meeting these requirements, Mars Science Laboratory is extending the limits of the Entry, Descent, and Landing technologies qualified by the Mars Viking, Mars Pathfinder, and Mars Exploration Rover missions. Specifically, the drag deceleration provided by a Viking-heritage 16.15 m supersonic Disk-Gap-Band parachute in the thin atmosphere of Mars is insufficient, at the altitudes and ballistic coefficients under consideration by the Mars Science Laboratory project, to maintain necessary altitude performance and timeline margin. This paper defines and discusses the asymptotic parachute performance observed in Monte Carlo simulation and performance analysis and its effect on the Mars Science Laboratory Entry, Descent, and Landing architecture.
Cultivation of Agaricus bisporus on some compost formulas and ...
African Journals Online (AJOL)
Three compost formulas (formula I, formula II, and formula III) based waste tea leaves and using some activator materials such as wheat bran, chicken manure and pigeon manure were studied for Agaricus bisporus cultivation. Some locally available peats such as peat of Bolu, peat of Agacbasi, peat of Caykara and theirs ...
Asymptotic structure of isolated systems
International Nuclear Information System (INIS)
Schmidt, B.G.
1979-01-01
The main methods to formulate asymptotic flatness conditions are introduced and motivation and basic ideas are emphasized. Any asymptotic flatness condition proposed up to now describes space-times which behave somehow like Minkowski space, and a very explicit exposition of the structure at infinity of Minkowski space is given. This structure is used to describe the asymptotic behaviour of fields on Minkowski space in a frame-dependent way. The definition of null infinity for curved space-time according to Penrose is given and attempts to define spacelike infinity are outlined. The conformal bundle approach to the formulation of asymptotic behaviour is described and its relation to null and spacelike infinity is given, as far as known. (Auth.)
Nonminimal hints for asymptotic safety
Eichhorn, Astrid; Lippoldt, Stefan; Skrinjar, Vedran
2018-01-01
In the asymptotic-safety scenario for gravity, nonzero interactions are present in the ultraviolet. This property should also percolate into the matter sector. Symmetry-based arguments suggest that nonminimal derivative interactions of scalars with curvature tensors should therefore be present in the ultraviolet regime. We perform a nonminimal test of the viability of the asymptotic-safety scenario by working in a truncation of the renormalization group flow, where we discover the existence of an interacting fixed point for a corresponding nonminimal coupling. The back-coupling of such nonminimal interactions could in turn destroy the asymptotically safe fixed point in the gravity sector. As a key finding, we observe nontrivial indications of stability of the fixed-point properties under the impact of nonminimal derivative interactions, further strengthening the case for asymptotic safety in gravity-matter systems.
Generating asymptotically plane wave spacetimes
International Nuclear Information System (INIS)
Hubeny, Veronika E.; Rangamani, Mukund
2003-01-01
In an attempt to study asymptotically plane wave spacetimes which admit an event horizon, we find solutions to vacuum Einstein's equations in arbitrary dimension which have a globally null Killing field and rotational symmetry. We show that while such solutions can be deformed to include ones which are asymptotically plane wave, they do not posses a regular event horizon. If we allow for additional matter, such as in supergravity theories, we show that it is possible to have extremal solutions with globally null Killing field, a regular horizon, and which, in addition, are asymptotically plane wave. In particular, we deform the extremal M2-brane solution in 11-dimensional supergravity so that it behaves asymptotically as a 10-dimensional vacuum plane wave times a real line. (author)
On optimal quadrature formulae
Directory of Open Access Journals (Sweden)
Lanzara Flavia
2000-01-01
Full Text Available A procedure to construct quadrature formulae which are exact for solutions of linear differential equations and are optimal in the sense of Sard is discussed. We give necessary and sufficient conditions under which such formulae do exist. Several formulae obtained by applying this method are considered and compared with well known formulae.
Polynomial Asymptotes of the Second Kind
Dobbs, David E.
2011-01-01
This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and…
Remarks on interior transmission eigenvalues, Weyl formula and branching billiards
International Nuclear Information System (INIS)
Lakshtanov, E; Vainberg, B
2012-01-01
This paper contains the Weyl formula for the counting function of the interior transmission problem when the latter is parameter elliptic. Branching billiard trajectories are constructed, and the second term of the Weyl asymptotics is estimated from above under some conditions on the set of periodic billiard trajectories. (paper)
Asymptotics of Wigner 3nj-symbols with small and large angular momenta: an elementary method
International Nuclear Information System (INIS)
Bonzom, Valentin; Fleury, Pierre
2012-01-01
Yu and Littlejohn recently studied in (2011 Phys. Rev. A 83 052114 (arXiv:1104.1499)) some asymptotics of Wigner symbols with some small and large angular momenta. They found that in this regime the essential information is captured by the geometry of a tetrahedron, and gave new formulae for 9j-, 12j- and 15j-symbols. We present here an alternative derivation which leads to a simpler formula, based on the use of the Ponzano–Regge formula for the relevant tetrahedron. The approach is generalized to Wigner 3nj-symbols with some large and small angular momenta, where more than one tetrahedron are needed, leading to new asymptotics for Wigner 3nj-symbols. As an illustration, we present 15j-symbols with one, two and four small angular momenta, and give an alternative formula to Yu’s recent 15j-symbol with three small spins. (paper)
Asymptotic conditions and conserved quantities
International Nuclear Information System (INIS)
Koul, R.K.
1990-01-01
Two problems have been investigated in this dissertation. The first one deals with the relationship between stationary space-times which are flat at null infinity and stationary space-times which are asymptotic flat at space-like infinity. It is shown that the stationary space-times which are asymptotically flat, in the Penrose sense, at null infinity, are asymptotically flat at space-like infinity in the Geroch sense and metric at space like infinity is at least C 1 . In the converse it is shown that the stationary space-times which are asymptotically flat at space like infinity, in the Beig sense, are asymptotically flat at null infinity in the Penrose sense. The second problem addressed deals with the theories of arbitrary dimensions. The theories treated are the ones which have fiber bundle structure, outside some compact region. For these theories the criterion for the choice of the background metric is specified, and the boundary condition for the initial data set (q ab , P ab ) is given in terms of the background metric. Having these boundary conditions it is shown that the symplectic structure and the constraint functionals are well defined. The conserved quantities associated with internal Killing vector fields are specified. Lastly the energy relative to a fixed background and the total energy of the theory have been given. It is also shown that the total energy of the theory is independent of the choice of the background
International Nuclear Information System (INIS)
Tashiro, Tohru
2009-01-01
A parametric oscillator with damping driven by white noise is studied. The mean square displacement (MSD) in the long-time limit is derived analytically for the case that the static force vanishes, which was not treated in the past work (Tashiro and Morita 2007 Physica A 377 401). The formula is asymptotic but is applicable to a general periodic function. On the basis of this formula, some periodic functions reducing MSD remarkably are proposed
Twisting formula of epsilon factors
Indian Academy of Sciences (India)
Sazzad Ali Biswas
2017-08-07
Aug 7, 2017 ... In this article, we give a generalized twisting formula for ϵ(χ1χ2,ψ), when both χ1 and χ2 are ramified via the following local Jacobi sums. Let UF be the group of units in OF (ring of integers of F). For characters χ1, χ2 of F. × and a positive integer n, we define the local Jacobi sum. Jt(χ1,χ2, n) = ∑ x∈UF. Un.
Walkenbach, John
2013-01-01
Maximize the power of Excel 2013 formulas with this must-have Excel reference John Walkenbach, known as ""Mr. Spreadsheet,"" is a master at deciphering complex technical topics and Excel formulas are no exception. This fully updated book delivers more than 800 pages of Excel 2013 tips, tricks, and techniques for creating formulas that calculate, developing custom worksheet functions with VBA, debugging formulas, and much more. Demonstrates how to use all the latest features in Excel 2013 Shows how to create financial formulas and tap into the power of array formulas
Global asymptotic behavior in a Lotka–Volterra competition system with spatio-temporal delays
International Nuclear Information System (INIS)
Zhang, Jia-Fang; Chen, Heshan
2014-01-01
This paper is concerned with a Lotka–Volterra competition system with spatio-temporal delays. By using the linearization method, we show the local asymptotic behavior of the nonnegative steady-state solutions. Especially, the global asymptotic stability of the positive steady-state solution is investigated by the method of upper and lower solutions. The result of global asymptotic stability implies that the system has no nonconstant positive steady-state solution
Asymptotic analysis and boundary layers
Cousteix, Jean
2007-01-01
This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...
Asymptotic geometric analysis, part I
Artstein-Avidan, Shiri
2015-01-01
The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomen
Asymptotically free SU(5) models
International Nuclear Information System (INIS)
Kogan, Ya.I.; Ter-Martirosyan, K.A.; Zhelonkin, A.V.
1981-01-01
The behaviour of Yukawa and Higgs effective charges of the minimal SU(5) unification model is investigated. The model includes ν=3 (or more, up to ν=7) generations of quarks and leptons and, in addition, the 24-plet of heavy fermions. A number of solutions of the renorm-group equations are found, which reproduce the known data about quarks and leptons and, due to a special choice of the coupling constants at the unification point are asymptotically free in all charges. The requirement of the asymptotical freedom leads to some restrictions on the masses of particles and on their mixing angles [ru
Dingle’s self-resurgence formula
Berry, M. V.
2017-06-01
If a nonlinear function F(S) depends on a function S(x) that is represented by a factorially divergent asymptotic power series in a small parameter x, each late coefficient of the power series for F(S(x)) can be represented explicitly as an asymptotic series whose terms involve balanced combinations of the late and early coefficients of the series for S(x). The formula for the late terms was first described by R B Dingle but not published by him. Numerics for a variety of functions F(S) demonstrate this ‘self-resurgence’ and the accuracy of the representation. Dedicated to the memory of R B Dingle, FRSE.
Higher Education Funding Formulas.
McKeown-Moak, Mary P.
1999-01-01
One of the most critical components of the college or university chief financial officer's job is budget planning, especially using formulas. A discussion of funding formulas looks at advantages, disadvantages, and types of formulas used by states in budgeting for higher education, and examines how chief financial officers can position the campus…
Ruin problems and tail asymptotics
DEFF Research Database (Denmark)
Rønn-Nielsen, Anders
The thesis Ruin Problems and Tail Asymptotics provides results on ruin problems for several classes of Markov processes. For a class of diffusion processes with jumps an explicit expression for the joint Laplace transform of the first passage time and the corresponding undershoot is derived...
Asymptotic Expansions - Methods and Applications
International Nuclear Information System (INIS)
Harlander, R.
1999-01-01
Different viewpoints on the asymptotic expansion of Feynman diagrams are reviewed. The relations between the field theoretic and diagrammatic approaches are sketched. The focus is on problems with large masses or large external momenta. Several recent applications also for other limiting cases are touched upon. Finally, the pros and cons of the different approaches are briefly discussed. (author)
Naturalness of asymptotically safe Higgs
DEFF Research Database (Denmark)
Pelaggi, Giulio M.; Sannino, Francesco; Strumia, Alessandro
2017-01-01
that the scalars can be lighter than Λ. Although we do not have an answer to whether the Standard Model hypercharge coupling growth toward a Landau pole at around Λ ~ 1040GeV can be tamed by non-perturbative asymptotic safety, our results indicate that such a possibility is worth exploring. In fact, if successful...
Thermodynamics of asymptotically safe theories
DEFF Research Database (Denmark)
Rischke, Dirk H.; Sannino, Francesco
2015-01-01
We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have recently been shown to be completely asymptotically safe, because their short-distance behaviour is determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze...
Walkenbach, John
2011-01-01
Everything you need to know about* Mastering operators, error values, naming techniques, and absolute versus relative references* Debugging formulas and using the auditing tools* Importing and exporting XML files and mapping the data to specific cells* Using Excel 2003's rights management feature* Working magic with array formulas* Developing custom formulas to produce the results you needHere's the formula for Excel excellenceFormulas are the lifeblood of spreadsheets, and no one can bring a spreadsheet to life like John Walkenbach. In this detailed reference guide, he delves deeply into unde
Asymptotic shape of solutions to the perturbed simple pendulum problems
Directory of Open Access Journals (Sweden)
Tetsutaro Shibata
2007-05-01
Full Text Available We consider the positive solution of the perturbed simple pendulum problem $$ u''(r + frac{N-1}{r}u'(r - g(u(t + lambda sin u(r = 0, $$ with $0 < r < R$, $ u'(0 = u(R = 0$. To understand well the shape of the solution $u_lambda$ when $lambda gg 1$, we establish the leading and second terms of $Vert u_lambdaVert_q$ ($1 le q < infty$ with the estimate of third term as $lambda o infty$. We also obtain the asymptotic formula for $u_lambda'(R$ as $lambda o infty$.
Systematic assignment of Feshbach resonances via an asymptotic bound state model
Goosen, M.; Kokkelmans, SJ.J.M.F.
2008-01-01
We present an Asymptotic Bound state Model (ABM), which is useful to predict Feshbach resonances. The model utilizes asymptotic properties of the interaction potentials to represent coupled molecular wavefunctions. The bound states of this system give rise to Feshbach resonances, localized at the
International Nuclear Information System (INIS)
Ammari, Zied
2000-01-01
Scattering theory for the Nelson model is studied. We show Rosen estimates and we prove the existence of a ground state for the Nelson Hamiltonian. Also we prove that it has a locally finite pure point spectrum outside its thresholds. We study the asymptotic fields and the existence of the wave operators. Finally we show asymptotic completeness for the Nelson Hamiltonian
Asymptotic inference for jump diffusions with state-dependent intensity
Becheri, Gaia; Drost, Feico; Werker, Bas
2016-01-01
We establish the local asymptotic normality property for a class of ergodic parametric jump-diffusion processes with state-dependent intensity and known volatility function sampled at high frequency. We prove that the inference problem about the drift and jump parameters is adaptive with respect to
Penrose inequality for asymptotically AdS spaces
International Nuclear Information System (INIS)
Itkin, Igor; Oz, Yaron
2012-01-01
In general relativity, the Penrose inequality relates the mass and the entropy associated with a gravitational background. If the inequality is violated by an initial Cauchy data, it suggests a creation of a naked singularity, thus providing means to consider the cosmic censorship hypothesis. We propose a general form of Penrose inequality for asymptotically locally AdS spaces.
Penrose inequality for asymptotically AdS spaces
Energy Technology Data Exchange (ETDEWEB)
Itkin, Igor [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Oz, Yaron, E-mail: yaronoz@post.tau.ac.il [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel)
2012-02-28
In general relativity, the Penrose inequality relates the mass and the entropy associated with a gravitational background. If the inequality is violated by an initial Cauchy data, it suggests a creation of a naked singularity, thus providing means to consider the cosmic censorship hypothesis. We propose a general form of Penrose inequality for asymptotically locally AdS spaces.
New rigorous asymptotic theorems for inverse scattering amplitudes
International Nuclear Information System (INIS)
Lomsadze, Sh.Yu.; Lomsadze, Yu.M.
1984-01-01
The rigorous asymptotic theorems both of integral and local types obtained earlier and establishing logarithmic and in some cases even power correlations aetdeen the real and imaginary parts of scattering amplitudes Fsub(+-) are extended to the inverse amplitudes 1/Fsub(+-). One also succeeds in establishing power correlations of a new type between the real and imaginary parts, both for the amplitudes themselves and for the inverse ones. All the obtained assertions are convenient to be tested in high energy experiments when the amplitudes show asymptotic behaviour
Asymptotic functions and multiplication of distributions
International Nuclear Information System (INIS)
Todorov, T.D.
1979-01-01
Considered is a new type of generalized asymptotic functions, which are not functionals on some space of test functions as the Schwartz distributions. The definition of the generalized asymptotic functions is given. It is pointed out that in future the particular asymptotic functions will be used for solving some topics of quantum mechanics and quantum theory
International Nuclear Information System (INIS)
Kowalenko, V.; Rawlinson, A.A.
1998-01-01
We introduce the numerical technique of Mellin-Barnes regularization, which can be used to evaluate both convergent and divergent series. The technique is shown to be numerically equivalent to the corresponding results obtained by Borel summation. Both techniques are then applied to the Bender-Wu formula, which represents an asymptotic expansion for the energy levels of the anharmonic oscillator. We find that this formula is unable to give accurate values for the ground state energy, particularly when the coupling is greater than 0.1. As a consequence, the inability of the Bender-Wu formula to yield exact values for the energy level of the anharmonic oscillator cannot be attributed to its asymptotic nature. (authors)
Scalar hairy black holes and solitons in asymptotically flat spacetimes
International Nuclear Information System (INIS)
Nucamendi, Ulises; Salgado, Marcelo
2003-01-01
A numerical analysis shows that the Einstein field equations allow static and spherically symmetric black hole solutions with scalar-field hair in asymptotically flat spacetimes. When regularity at the origin is imposed (i.e., in the absence of a horizon) globally regular scalar solitons are found. The asymptotically flat solutions are obtained provided that the scalar potential V(φ) of the theory is not positive semidefinite and such that its local minimum is also a zero of the potential, the scalar field settling asymptotically at that minimum. The configurations, although unstable under spherically symmetric linear perturbations, are regular and thus can serve as counterexamples to the no-scalar-hair conjecture
Asymptotic structure of isolated systems
International Nuclear Information System (INIS)
Beig, R.
1988-01-01
I discuss the general ideas underlying the subject of ''asymptotics'' in general relativity and describe the current status of the concepts resulting from these ideas. My main concern will be the problem of consistency. By this I mean the question as to whether the geometric assumptions inherent in these concepts are compatible with the dynamics of the theory, as determined by Einstein's equations. This rather strong bias forces me to leave untouched several issues related to asymptotics, discussed in the recent literature, some of which are perhaps thought equally, or more important, by other workers in the field. In addition I shall, for coherence of presentation, mainly consider Einstein's equations in vacuo. When attention is confined to small neighbourhoods of null and spacelike infinity, this restriction is not important, but is surely relevant for more global issues. (author)
Asymptotic freedom and Zweig's rule
International Nuclear Information System (INIS)
Appelquist, Th.
1977-01-01
Some theoretical aspects of applying short distance physics (asymptotic freedom) are discussed to prove the correctness of the quantum chromodynamics. Properties of new particles that depend only on short distance physics can be dealt with perturbatively. The new mesons are assumed to be CantiC bound states, where C is a new heavy quark. With this in mind some comments are made on the calculation of total widths for the direct decay of different CantiC states into ordinary hadrons
Energy Technology Data Exchange (ETDEWEB)
Yennie, D. R.
1963-06-15
The Rosenbluth formula, defined as the theoretical expression for the differential cross section for electronproton scattering under one-photon- exchange, is discussed. Electron-proton amd positron-proton scattering are compared using the formula. Some possible corrections to the Rosenbluth formula are discussed. The effects of nonelectromagnetic interactions and two-photon- exchange, with the possibility of Regge pole behavior, are also discussed. (R.E.U.)
Asymptotic integration of differential and difference equations
Bodine, Sigrun
2015-01-01
This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers i...
An asymptotic model of seismic reflection from a permeable layer
Energy Technology Data Exchange (ETDEWEB)
Silin, D.; Goloshubin, G.
2009-10-15
Analysis of compression wave propagation in a poroelastic medium predicts a peak of reflection from a high-permeability layer in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of Biot's model of poroelasticity. A review of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and Darcy's law suggests an alternative new physical interpretation of some coefficients of the classical poroelasticity. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The absolute value of this parameter is equal to the product of the kinematic reservoir fluid mobility and the wave frequency. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). Practical applications of the obtained asymptotic formulae are seismic modeling, inversion, and at-tribute analysis.
Bogdany, Melvin
This manual is designed to help baking students learn to use formulas in the preparation of baking products. Tested and proven formulas are, for the most part, standard ones with only slight modifications. The recipes are taken mainly from bakery product manufacturers and are presented in quantities suitable for school-shop use. Each recipe…
Vandenplas, Yvan; Greef, Elisabeth De; Veereman, Gigi
2014-01-01
The gastrointestinal microbiota of breast-fed babies differ from classic standard formula fed infants. While mother's milk is rich in prebiotic oligosaccharides and contains small amounts of probiotics, standard infant formula doesn’t. Different prebiotic oligosaccharides are added to infant formula: galacto-oligosaccharides, fructo-oligosaccharide, polydextrose, and mixtures of these. There is evidence that addition of prebiotics in infant formula alters the gastrointestinal (GI) microbiota resembling that of breastfed infants. They are added to infant formula because of their presence in breast milk. Infants on these supplemented formula have a lower stool pH, a better stool consistency and frequency and a higher concentration of bifidobacteria in their intestine compared to infants on a non-supplemented standard formula. Since most studies suggest a trend for beneficial clinical effects, and since these ingredients are very safe, prebiotics bring infant formula one step closer to breastmilk, the golden standard. However, despite the fact that adverse events are rare, the evidence on prebiotics of a significant health benefit throughout the alteration of the gut microbiota is limited. PMID:25535999
Formula misasi?! / Sten Soomlais
Soomlais, Sten
2008-01-01
Formula Student on kõrgkoolide masinaehituse ja/või autotehnika tudengite meeskondade vaheline iga-aastane tootearendusvõistlus, mis kujutab endast väikese vormelauto projekteerimist, ehitamist ja võidusõitmist ringrajal. Lisa: Formula Student Eestis
A multiscale extension of the Margrabe formula under stochastic volatility
International Nuclear Information System (INIS)
Kim, Jeong-Hoon; Park, Chang-Rae
2017-01-01
Highlights: • Fast-mean-reverting stochastic volatility model is chosen to extend the classical Margrabe formula. • The resultant formula is explicitly given by the greeks of Margrabe price itself. • We show how the stochastic volatility corrects the Margrabe price behavior. - Abstract: The pricing of financial derivatives based on stochastic volatility models has been a popular subject in computational finance. Although exact or approximate closed form formulas of the prices of many options under stochastic volatility have been obtained so that the option prices can be easily computed, such formulas for exchange options leave much to be desired. In this paper, we consider two different risky assets with two different scales of mean-reversion rate of volatility and use asymptotic analysis to extend the classical Margrabe formula, which corresponds to a geometric Brownian motion model, and obtain a pricing formula under a stochastic volatility. The resultant formula can be computed easily, simply by taking derivatives of the Margrabe price itself. Based on the formula, we show how the stochastic volatility corrects the Margrabe price behavior depending on the moneyness and the correlation coefficient between the two asset prices.
Non-asymptotic fractional order differentiators via an algebraic parametric method
Liu, Dayan
2012-08-01
Recently, Mboup, Join and Fliess [27], [28] introduced non-asymptotic integer order differentiators by using an algebraic parametric estimation method [7], [8]. In this paper, in order to obtain non-asymptotic fractional order differentiators we apply this algebraic parametric method to truncated expansions of fractional Taylor series based on the Jumarie\\'s modified Riemann-Liouville derivative [14]. Exact and simple formulae for these differentiators are given where a sliding integration window of a noisy signal involving Jacobi polynomials is used without complex mathematical deduction. The efficiency and the stability with respect to corrupting noises of the proposed fractional order differentiators are shown in numerical simulations. © 2012 IEEE.
Non-asymptotic fractional order differentiators via an algebraic parametric method
Liu, Dayan; Gibaru, O.; Perruquetti, Wilfrid
2012-01-01
Recently, Mboup, Join and Fliess [27], [28] introduced non-asymptotic integer order differentiators by using an algebraic parametric estimation method [7], [8]. In this paper, in order to obtain non-asymptotic fractional order differentiators we apply this algebraic parametric method to truncated expansions of fractional Taylor series based on the Jumarie's modified Riemann-Liouville derivative [14]. Exact and simple formulae for these differentiators are given where a sliding integration window of a noisy signal involving Jacobi polynomials is used without complex mathematical deduction. The efficiency and the stability with respect to corrupting noises of the proposed fractional order differentiators are shown in numerical simulations. © 2012 IEEE.
Asymptotics of the quantum invariants for surgeries on the figure 8 knot
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Hansen, Søren Kold
2006-01-01
a formula for the leading asymptotics of the invariants in the limit of large quantum level. We analyze this expression using the saddle point method. We construct a certain surjection from the set of stationary points for the relevant phase functions onto the space of conjugacy classes of nonabelian SL(2......, ℂ)-representations of the fundamental group of M and prove that the values of these phase functions at the relevant stationary points equals the classical Chern–Simons invariants of the corresponding flat SU(2)-connections. Our findings are in agreement with the asymptotic expansion conjecture...
International Nuclear Information System (INIS)
Iagolnitzer, D.
1983-11-01
Recent axiomatic results on the (non holonomic) analytic structure of the multiparticle S matrix and Green functions are reviewed and related general conjectures are described: (i) formal expansions of Green functions in terms of (holonomic) Feynman-type integrals in which each vertex represents an irreducible kernel, and (ii) ''graph by graph unitarity'' and other discontinuity formulae of the latter. These conjectures are closely linked with unitarity or asymptotic completeness equations, which they yield in a formal sense. In constructive field theory, a direct proof of the first conjecture (together with an independent proof of the second) would thus imply, as a first step, asymptotic completeness in that sense
On the Asymptotic Capacity of Dual-Aperture FSO Systems with a Generalized Pointing Error Model
Al-Quwaiee, Hessa
2016-06-28
Free-space optical (FSO) communication systems are negatively affected by two physical phenomenon, namely, scintillation due to atmospheric turbulence and pointing errors. To quantify the effect of these two factors on FSO system performance, we need an effective mathematical model for them. In this paper, we propose and study a generalized pointing error model based on the Beckmann distribution. We then derive a generic expression of the asymptotic capacity of FSO systems under the joint impact of turbulence and generalized pointing error impairments. Finally, the asymptotic channel capacity formula are extended to quantify the FSO systems performance with selection and switched-and-stay diversity.
Asymptotics for Associated Random Variables
Oliveira, Paulo Eduardo
2012-01-01
The book concerns the notion of association in probability and statistics. Association and some other positive dependence notions were introduced in 1966 and 1967 but received little attention from the probabilistic and statistics community. The interest in these dependence notions increased in the last 15 to 20 years, and many asymptotic results were proved and improved. Despite this increased interest, characterizations and results remained essentially scattered in the literature published in different journals. The goal of this book is to bring together the bulk of these results, presenting
Supertrace formulae for nonlinearly realized supersymmetry
Murli, Divyanshu; Yamada, Yusuke
2018-04-01
We derive the general supertrace formula for a system with N chiral superfields and one nilpotent chiral superfield in global and local supersymmetry. The nilpotent multiplet is realized by taking the scalar-decoupling limit of a chiral superfield breaking supersymmetry spontaneously. As we show, however, the modified formula is not simply related to the scalar-decoupling limit of the supertrace in linearly-realized supersymmetry. We also show that the supertrace formula reduces to that of a linearly realized supersymmetric theory with a decoupled sGoldstino if the Goldstino is the fermion in the nilpotent multiplet.
Radiosurgery and the double logistic product formula
International Nuclear Information System (INIS)
Flickinger, J.C.; Steiner, L.
1990-01-01
The double logistic product formula is proposed as a method for predicting the probability of developing brain necrosis after high dose irradiation of small target volumes as used in stereotactic radiosurgery. Dose-response data observed for the production of localized radiation necreosis for treating intractable pain with the original Leksell gamma unit were used to choose the best fitting parameters for the double logistic product formula. This model can be used with either exponential or linear quadratic formulas to account for the effects of dose, fractionation and time in addition to volume. Dose-response predictions for stereotactic radiosurgery with different sized collimators are presented. (author). 41 refs.; 5 figs.; 1 tab
Gravitational radiation quadrupole formula is valid for gravitationally interacting systems
International Nuclear Information System (INIS)
Walker, M.; Will, C.M.
1980-01-01
An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluate the appropriate asymptotic quantities by matching along the correct space-time light cones
More on asymptotically anti-de Sitter spaces in topologically massive gravity
International Nuclear Information System (INIS)
Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo
2010-01-01
Recently, the asymptotic behavior of three-dimensional anti-de Sitter (AdS) gravity with a topological mass term was investigated. Boundary conditions were given that were asymptotically invariant under the two dimensional conformal group and that included a falloff of the metric sufficiently slow to consistently allow pp-wave type of solutions. Now, pp waves can have two different chiralities. Above the chiral point and at the chiral point, however, only one chirality can be considered, namely, the chirality that has the milder behavior at infinity. The other chirality blows up faster than AdS and does not define an asymptotically AdS spacetime. By contrast, both chiralities are subdominant with respect to the asymptotic behavior of AdS spacetime below the chiral point. Nevertheless, the boundary conditions given in the earlier treatment only included one of the two chiralities (which could be either one) at a time. We investigate in this paper whether one can generalize these boundary conditions in order to consider simultaneously both chiralities below the chiral point. We show that this is not possible if one wants to keep the two-dimensional conformal group as asymptotic symmetry group. Hence, the boundary conditions given in the earlier treatment appear to be the best possible ones compatible with conformal symmetry. In the course of our investigations, we provide general formulas controlling the asymptotic charges for all values of the topological mass (not just below the chiral point).
Approximate formulas for elasticity of the Tornquist functions and some their advantages
Issin, Meyram
2017-09-01
In this article functions of demand for prime necessity, second necessity and luxury goods depending on the income are considered. These functions are called Tornquist functions. By means of the return model the demand for prime necessity goods and second necessity goods are approximately described. Then on the basis of a method of the smallest squares approximate formulas for elasticity of these Tornquist functions are received. To receive an approximate formula for elasticity of function of demand for luxury goods, the linear asymptotic formula is constructed for this function. Some benefits of approximate formulas for elasticity of Tornquist functions are specified.
Numerical relativity and asymptotic flatness
International Nuclear Information System (INIS)
Deadman, E; Stewart, J M
2009-01-01
It is highly plausible that the region of spacetime far from an isolated gravitating body is, in some sense, asymptotically Minkowskian. However theoretical studies of the full nonlinear theory, initiated by Bondi et al (1962 Proc. R. Soc. A 269 21-51), Sachs (1962 Proc. R. Soc. A 270 103-26) and Newman and Unti (1962 J. Math. Phys. 3 891-901), rely on careful, clever, a priori choices of a chart (and tetrad) and so are not readily accessible to the numerical relativist, who chooses her/his chart on the basis of quite different grounds. This paper seeks to close this gap. Starting from data available in a typical numerical evolution, we construct a chart and tetrad which are, asymptotically, sufficiently close to the theoretical ones, so that the key concepts of the Bondi news function, Bondi mass and its rate of decrease can be estimated. In particular, these estimates can be expressed in the numerical relativist's chart as numerical relativity recipes.
Asymptotic twistor theory and the Kerr theorem
International Nuclear Information System (INIS)
Newman, Ezra T
2006-01-01
We first review asymptotic twistor theory with its real subspace of null asymptotic twistors: a five-dimensional CR manifold. This is followed by a description of the Kerr theorem (the identification of shear-free null congruences, in Minkowski space, with the zeros of holomorphic functions of three variables) and an asymptotic version of the Kerr theorem that produces regular asymptotically shear-free null geodesic congruences in arbitrary asymptotically flat Einstein or Einstein-Maxwell spacetimes. A surprising aspect of this work is the role played by analytic curves in H-space, each curve generating an asymptotically flat null geodesic congruence. Also there is a discussion of the physical space realizations of the two associated five- and three-dimensional CR manifolds
Fundamental formulas of physics
1960-01-01
The republication of this book, unabridged and corrected, fills the need for a comprehensive work on fundamental formulas of mathematical physics. It ranges from simple operations to highly sophisticated ones, all presented most lucidly with terms carefully defined and formulas given completely. In addition to basic physics, pertinent areas of chemistry, astronomy, meteorology, biology, and electronics are also included.This is no mere listing of formulas, however. Mathematics is integrated into text, for the most part, so that each chapter stands as a brief summary or even short textbook of
Asymptotic density and effective negligibility
Astor, Eric P.
In this thesis, we join the study of asymptotic computability, a project attempting to capture the idea that an algorithm might work correctly in all but a vanishing fraction of cases. In collaboration with Hirschfeldt and Jockusch, broadening the original investigation of Jockusch and Schupp, we introduce dense computation, the weakest notion of asymptotic computability (requiring only that the correct answer is produced on a set of density 1), and effective dense computation, where every computation halts with either the correct answer or (on a set of density 0) a symbol denoting uncertainty. A few results make more precise the relationship between these notions and work already done with Jockusch and Schupp's original definitions of coarse and generic computability. For all four types of asymptotic computation, including generic computation, we demonstrate that non-trivial upper cones have measure 0, building on recent work of Hirschfeldt, Jockusch, Kuyper, and Schupp in which they establish this for coarse computation. Their result transfers to yield a minimal pair for relative coarse computation; we generalize their method and extract a similar result for relative dense computation (and thus for its corresponding reducibility). However, all of these notions of near-computation treat a set as negligible iff it has asymptotic density 0. Noting that this definition is not computably invariant, this produces some failures of intuition and a break with standard expectations in computability theory. For instance, as shown by Hamkins and Miasnikov, the halting problem is (in some formulations) effectively densely computable, even in polynomial time---yet this result appears fragile, as indicated by Rybalov. In independent work, we respond to this by strengthening the approach of Jockusch and Schupp to avoid such phenomena; specifically, we introduce a new notion of intrinsic asymptotic density, invariant under computable permutation, with rich relations to both
Asymptotic safety, emergence and minimal length
International Nuclear Information System (INIS)
Percacci, Roberto; Vacca, Gian Paolo
2010-01-01
There seems to be a common prejudice that asymptotic safety is either incompatible with, or at best unrelated to, the other topics in the title. This is not the case. In fact, we show that (1) the existence of a fixed point with suitable properties is a promising way of deriving emergent properties of gravity, and (2) there is a sense in which asymptotic safety implies a minimal length. In doing so we also discuss possible signatures of asymptotic safety in scattering experiments.
Lattice quantum gravity and asymptotic safety
Laiho, J.; Bassler, S.; Coumbe, D.; Du, D.; Neelakanta, J. T.
2017-09-01
We study the nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) in an attempt to make contact with Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary in order to recover semiclassical behavior. Such a fine-tuning is generally associated with the breaking of a target symmetry by the lattice regulator; in this case we argue that the target symmetry is the general coordinate invariance of the theory. After introducing and fine-tuning a nontrivial local measure term, we find no barrier to taking a continuum limit, and we find evidence that four-dimensional, semiclassical geometries are recovered at long distance scales in the continuum limit. We also find that the spectral dimension at short distance scales is consistent with 3 /2 , a value that could resolve the tension between asymptotic safety and the holographic entropy scaling of black holes. We argue that the number of relevant couplings in the continuum theory is one, once symmetry breaking by the lattice regulator is accounted for. Such a theory is maximally predictive, with no adjustable parameters. The cosmological constant in Planck units is the only relevant parameter, which serves to set the lattice scale. The cosmological constant in Planck units is of order 1 in the ultraviolet and undergoes renormalization group running to small values in the infrared. If these findings hold up under further scrutiny, the lattice may provide a nonperturbative definition of a renormalizable quantum field theory of general relativity with no adjustable parameters and a cosmological constant that is naturally small in the infrared.
Numerical Asymptotic Solutions Of Differential Equations
Thurston, Gaylen A.
1992-01-01
Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.
... Private Wells Infant Formula Fluorosis Public Health Service Recommendation Water Operators & Engineers Water Fluoridation Additives Shortages of Fluoridation Additives Drinking Water Pipe Systems CDC-Sponsored Water Fluoridation Training Links to Other ...
Formulae as Scientific Stories
Horsewell, Ian
2017-01-01
In science lessons many students struggle to apply the principles of rearranging formulae, even after coverage in maths. A structured approach is suggested that focuses on describing a narrative linking cause and effect before explicit mathematical terms are introduced.
U.S. Department of Health & Human Services — This list includes products subject to recall since September 2010 related to infant formula distributed by Abbott. This list will be updated with publicly available...
Null Geodesic Congruences, Asymptotically-Flat Spacetimes and Their Physical Interpretation.
Adamo, Timothy M; Newman, Ezra T; Kozameh, Carlos
2012-01-01
A priori, there is nothing very special about shear-free or asymptotically shear-free null geodesic congruences. Surprisingly, however, they turn out to possess a large number of fascinating geometric properties and to be closely related, in the context of general relativity, to a variety of physically significant effects. It is the purpose of this paper to try to fully develop these issues. This work starts with a detailed exposition of the theory of shear-free and asymptotically shear-free null geodesic congruences, i.e., congruences with shear that vanishes at future conformal null infinity. A major portion of the exposition lies in the analysis of the space of regular shear-free and asymptotically shear-free null geodesic congruences. This analysis leads to the space of complex analytic curves in an auxiliary four-complex dimensional space, [Formula: see text]-space. They in turn play a dominant role in the applications. The applications center around the problem of extracting interior physical properties of an asymptotically-flat spacetime directly from the asymptotic gravitational (and Maxwell) field itself, in analogy with the determination of total charge by an integral over the Maxwell field at infinity or the identification of the interior mass (and its loss) by (Bondi's) integrals of the Weyl tensor, also at infinity. More specifically, we will see that the asymptotically shear-free congruences lead us to an asymptotic definition of the center-of-mass and its equations of motion. This includes a kinematic meaning, in terms of the center-of-mass motion, for the Bondi three-momentum. In addition, we obtain insights into intrinsic spin and, in general, angular momentum, including an angular-momentum-conservation law with well-defined flux terms. When a Maxwell field is present, the asymptotically shear-free congruences allow us to determine/define at infinity a center-of-charge world line and intrinsic magnetic dipole moment.
Asymptotic behaviour in field theory
Energy Technology Data Exchange (ETDEWEB)
Banerjee, H.
1980-07-01
Asymptotic behaviour in field theory has been studied and the anomalies are pointed out in two specific cases, (i) the infrared and fixed angle high energy behaviour in the non-trivial case of the 'box' amplitude in a scalar-scalar theory and (ii) high energy behaviour of a sixth order Yang-Mills diagram. A set of rules are presented for writing down the precise leading infrared behaviour of an arbitrary generalised ladder diagram (GLD) in QED. These rules are the final result of a detailed analysis of the relevant amplitudes in the Feynman parameter space. The connection between the infrared and fixed angle high energy limits of generalised ladder diagrams is explained. It is argued that the same set of rules yield the fixed angle high energy limit.
Contributions to multidimensional quadrature formulas
International Nuclear Information System (INIS)
Guenther, C.
1976-11-01
The general objective of this paper is to construct multidimensional quadrature formulas similar to the Gaussian Quadrature Formulas in one dimension. The correspondence between these formulas and orthogonal and nonnegative polynomials is established. One part of the paper considers the construction of multidimensional quadrature formulas using only methods of algebraic geometry, on the other part it is tried to obtain results on quadrature formulas with real nodes and, if possible, with positive weights. The results include the existence of quadrature formulas, information on the number resp. on the maximum possible number of points in the formulas for given polynomial degree N and the construction of formulas. (orig.) [de
Directory of Open Access Journals (Sweden)
Nicholas Scott Cardell
2013-05-01
Full Text Available Maximum entropy methods of parameter estimation are appealing because they impose no additional structure on the data, other than that explicitly assumed by the analyst. In this paper we prove that the data constrained GME estimator of the general linear model is consistent and asymptotically normal. The approach we take in establishing the asymptotic properties concomitantly identifies a new computationally efficient method for calculating GME estimates. Formulae are developed to compute asymptotic variances and to perform Wald, likelihood ratio, and Lagrangian multiplier statistical tests on model parameters. Monte Carlo simulations are provided to assess the performance of the GME estimator in both large and small sample situations. Furthermore, we extend our results to maximum cross-entropy estimators and indicate a variant of the GME estimator that is unbiased. Finally, we discuss the relationship of GME estimators to Bayesian estimators, pointing out the conditions under which an unbiased GME estimator would be efficient.
To quantum averages through asymptotic expansion of classical averages on infinite-dimensional space
International Nuclear Information System (INIS)
Khrennikov, Andrei
2007-01-01
We study asymptotic expansions of Gaussian integrals of analytic functionals on infinite-dimensional spaces (Hilbert and nuclear Frechet). We obtain an asymptotic equality coupling the Gaussian integral and the trace of the composition of scaling of the covariation operator of a Gaussian measure and the second (Frechet) derivative of a functional. In this way we couple classical average (given by an infinite-dimensional Gaussian integral) and quantum average (given by the von Neumann trace formula). We can interpret this mathematical construction as a procedure of 'dequantization' of quantum mechanics. We represent quantum mechanics as an asymptotic projection of classical statistical mechanics with infinite-dimensional phase space. This space can be represented as the space of classical fields, so quantum mechanics is represented as a projection of 'prequantum classical statistical field theory'
Local digital algorithms for estimating the mean integrated curvature of r-regular sets
DEFF Research Database (Denmark)
Svane, Anne Marie
, no asymptotically unbiased estimator of this type exists in dimension greater than or equal to three, while for stationary isotropic lattices, asymptotically unbiased estimators are plenty. Both results follow from a general formula that we state and prove, describing the asymptotic behavior of hit...
International Nuclear Information System (INIS)
Grant, I.P.
1982-01-01
Possible relativistic effects in low energy electron scattering from atoms or positive ions has been investigated using the Dirac hamiltonian. Single channel formula and many channel expressions indicate that asymptotic estimation of radial wavefunctions can be carried out satisfactorily for most purposes using non-relativistic methods. (U.K.)
Stark resonances: asymptotics and distributional Borel sum
International Nuclear Information System (INIS)
Caliceti, E.; Grecchi, V.; Maioli, M.
1993-01-01
We prove that the Stark effect perturbation theory of a class of bound states uniquely determines the position and the width of the resonances by Distributional Borel Sum. In particular the small field asymptotics of the width is uniquely related to the large order asymptotics of the perturbation coefficients. Similar results apply to all the ''resonances'' of the anharmonic and double well oscillators. (orig.)
Asymptotics of Laplace-Dirichlet integrals
International Nuclear Information System (INIS)
Kozlov, S.M.
1990-01-01
Here we consider the problem of the asymptotic expansion of the Laplace-Dirichlet integral. In homogenization theory such an integral represents the energy, and in general depends on the cohomology class. Here the asymptotic behaviour of this integral is found. The full text will appear in Functional Analysis and Applications, 1990, No.2. (author). 3 refs
A method for summing nonalternating asymptotic series
International Nuclear Information System (INIS)
Kazakov, D.I.
1980-01-01
A method for reconstructing a function from its nonalternating asymptotic series is proposed. It can also be applied when only a limited number of coefficients and their high order asymptotic behaviour are known. The method is illustrated by examples of the ordinary simple integral simulating a functional integral in a theory with degenerate minimum and of the double-well unharmonic oscillator
Wijsman Orlicz Asymptotically Ideal -Statistical Equivalent Sequences
Directory of Open Access Journals (Sweden)
Bipan Hazarika
2013-01-01
in Wijsman sense and present some definitions which are the natural combination of the definition of asymptotic equivalence, statistical equivalent, -statistical equivalent sequences in Wijsman sense. Finally, we introduce the notion of Cesaro Orlicz asymptotically -equivalent sequences in Wijsman sense and establish their relationship with other classes.
8. Asymptotically Flat and Regular Cauchy Data
Dain, Sergio
I describe the construction of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate. I emphasize the motivations and the main ideas behind the proofs.
Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results
Leif Andersen; Alexander Lipton
2012-01-01
Exponential L\\'evy processes can be used to model the evolution of various financial variables such as FX rates, stock prices, etc. Considerable efforts have been devoted to pricing derivatives written on underliers governed by such processes, and the corresponding implied volatility surfaces have been analyzed in some detail. In the non-asymptotic regimes, option prices are described by the Lewis-Lipton formula which allows one to represent them as Fourier integrals; the prices can be trivia...
ASYMPTOTICS FOR EXPONENTIAL LÉVY PROCESSES AND THEIR VOLATILITY SMILE: SURVEY AND NEW RESULTS
LEIF ANDERSEN; ALEXANDER LIPTON
2013-01-01
Exponential Lévy processes can be used to model the evolution of various financial variables such as FX rates, stock prices, and so on. Considerable efforts have been devoted to pricing derivatives written on underliers governed by such processes, and the corresponding implied volatility surfaces have been analyzed in some detail. In the non-asymptotic regimes, option prices are described by the Lewis-Lipton formula, which allows one to represent them as Fourier integrals, and the prices can ...
Energy Technology Data Exchange (ETDEWEB)
Iwayama, I.; Iwayama, A.
1982-04-10
A fuel formula that includes a homogenous mixture of benzine, aromatic ether oils, perfume and other perfuming agents, as well as the lowest possible aliphatic alcohol as a component solvent, surfactant, and possibly, a soluble pigment that colors the formula an appropriate color. This formula is used as an aromatic fuel for cigarette lights. The ether oils can be musk, amber, camomille, lavender, mint, anise, rose, camphor, and other aromatic oils; the perfuming agents are: geraniol, linalool, menthol, camphor, benzyl or phenetyl alcohols, phenylacetaldehyde, vanillin, coumarin, and so forth; the pigments are: beta-carotene, sudan dyes, etc.; the low aliphatic alcohols are EtOH, iso-PrOH. Example: 70 parts benzine, 10 parts EtOH, 15 parts oxide mezithylene and 5 parts borneol form a clear liquid that has a camphor aroma when it is lit.
DEFF Research Database (Denmark)
Hojsak, Iva; Bronsky, Jiri; Campoy, Cristina
2018-01-01
Young child formulae (YCF) are milk-based drinks or plant protein-based formulae intended to partially satisfy the nutritional requirements of young children ages 1 to 3 years. Although widely available on the market, their composition is, however, not strictly regulated and health effects have...... not been systematically studied. Therefore, the European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) Committee on Nutrition (CoN) performed a systematic review of the literature to review the composition of YCF and consider their role in the diet of young children...... for the routine use of YCF in children from 1 to 3 years of life, but they can be used as part of a strategy to increase the intake of iron, vitamin D, and n-3 PUFA and decrease the intake of protein compared with unfortified cow's milk. Follow-on formulae can be used for the same purpose. Other strategies...
Semiclassical asymptotic behavior and the rearrangement mechanisms for Coulomb particles
International Nuclear Information System (INIS)
Bogdanov, A.V.; Gevorkyan, A.S.; Dubrovskii, G.V.
1986-01-01
The semiclassical asymptotic behavior of the eikonal amplitude of the resonance rearrangement in a system of three Coulomb particles is studied. It is shown that the general formula for the amplitude correctly describes two classical mechanisms (pickup and knockout) and one nonclassical mechanism (stripping). The classical mechanisms predominate at high energies, while the stripping mechanism predominates at lower energies. In the region of medium energies the dominant mechanism is the pickup (or Thomas) mechanism, which is realized by nonclassical means. For such transitions the classical cross section diverges, and the amplitude must be computed on a complex trajectory. The physical reasons for introducing the approximate complex trajectories are discussed. The contributions of all the mechanisms to the rearrangement cross section are found in their analytic forms
Electromagnetic shielding formulae
International Nuclear Information System (INIS)
Dahlberg, E.
1979-02-01
This addendum to an earlier collection of electromagnetic shielding formulae (TRITA-EPP-75-27) contains simple transfer matrices suitable for calculating the quasistatic shielding efficiency for multiple transverse-field and axial-field cylindrical and spherical shields, as well as for estimating leakage fields from long coaxial cables and the normal-incidence transmission of a plane wave through a multiple plane shield. The differences and similarities between these cases are illustrated by means of equivalent circuits and transmission line analogies. The addendum also includes a discussion of a possible heuristic improvement of some shielding formulae. (author)
Lüscher formula for GKP string
International Nuclear Information System (INIS)
Basso, B.; Belitsky, A.V.
2012-01-01
We investigate finite-size corrections to anomalous dimensions of large-spin twist-two operators in the planar maximally supersymmetric Yang-Mills theory. We develop a framework for analysis of these corrections, that is complementary to the conventional spin-chain approach, by making use of the hole rather than the magnon picture. From the dual string theory perspective where the large-spin operator is identified with the Gubser-Klebanov-Polyakov (GKP) string, our approach is equivalent to constructing the first Lüscher correction to the energy of the GKP string by incorporating the contribution of virtual excitations propagating on it. It allows us to propose a formula that controls a particular class of large-spin corrections to the twist-two anomalous dimension and holds at any value of the coupling constant. Compared to wrapping corrections computed with magnons propagating on the spin chain, the finite-size corrections that are encoded in our formalism start at a lower-loop level. Our formalism thus calls for modification of the asymptotic contributions which are conventionally incorporated within the Asymptotic Bethe Ansatz. An educated guess allows us to remedy this pitfall and successfully confront our predictions with known results up to five-loop accuracy at weak coupling. Finally, our formula sheds light on the weak-to-strong coupling transition for the subleading large-spin corrections under study and confirms stringy expectations at strong coupling where they are found to be identical to the first Lüscher correction to the vacuum energy of the O(6) sigma model.
Journal Afrika Statistika ISSN 0852-0305 Asymptotic representation ...
African Journals Online (AJOL)
Asymptotic representation theorems for poverty indices ... Statistical asymptotic laws for these indices, particularly asymptotic normality, on which statistical inference on the ... population of individuals, each of which having a random income or ...
Directory of Open Access Journals (Sweden)
Masato Shinjo
2015-12-01
Full Text Available The Hankel determinant appears in representations of solutions to several integrable systems. An asymptotic expansion of the Hankel determinant thus plays a key role in the investigation of asymptotic analysis of such integrable systems. This paper presents an asymptotic expansion formula of a certain Casorati determinant as an extension of the Hankel case. This Casorati determinant is then shown to be associated with the solution to the discrete hungry Lotka–Volterra (dhLV system, which is an integrable variant of the famous prey–predator model in mathematical biology. Finally, the asymptotic behavior of the dhLV system is clarified using the expansion formula for the Casorati determinant.
The unitary conformal field theory behind 2D Asymptotic Safety
Energy Technology Data Exchange (ETDEWEB)
Nink, Andreas; Reuter, Martin [Institute of Physics, PRISMA & MITP, Johannes Gutenberg University Mainz,Staudingerweg 7, D-55099 Mainz (Germany)
2016-02-25
Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d>2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c=25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d>2 dimensions and Polyakov’s induced gravity action in two dimensions.
Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations
International Nuclear Information System (INIS)
Kaikina, Elena I; Naumkin, Pavel I; Shishmarev, Il'ya A
2009-01-01
The large-time asymptotic behaviour of solutions of the Cauchy problem is investigated for a non-linear Sobolev-type equation with dissipation. For small initial data the approach taken is based on a detailed analysis of the Green's function of the linear problem and the use of the contraction mapping method. The case of large initial data is also closely considered. In the supercritical case the asymptotic formulae are quasi-linear. The asymptotic behaviour of solutions of a non-linear Sobolev-type equation with a critical non-linearity of the non-convective kind differs by a logarithmic correction term from the behaviour of solutions of the corresponding linear equation. For a critical convective non-linearity, as well as for a subcritical non-convective non-linearity it is proved that the leading term of the asymptotic expression for large times is a self-similar solution. For Sobolev equations with convective non-linearity the asymptotic behaviour of solutions in the subcritical case is the product of a rarefaction wave and a shock wave. Bibliography: 84 titles.
Coordinate asymptotics of the (3→3) wave functions for a three charged particle system
International Nuclear Information System (INIS)
Merkur'ev, S.P.
1977-01-01
Coordinate asymptotics of the (3 → 3) wave functions for three particles system with Coulomb interaction in the scattering problem is plotted. (3 → 3) and (3 → 2) process cases are considered, when the particles are not connected at the initial state. For coordinate asymptotics plotting the basis functions are used which meet Schroedinger equation in the eikonal approximation. The wave functions coordinate asymptotics plotting method is described far from special directions. Wave function asymptotical form is studied in the range of special directions and (3 → 3) scattering amplitude singularities are described. All data are given in accordance with the system with 2 charged particles only. The model in question is of special interest because of the described ppn system the studying of which is of great importance in nuclear physics. Final formulae are discussed for the most general case of three charged particles. Boundary problems for Schroedinger equation are shown to give the only way of definition for the (3 → 3) wave functions. It is pointed out that in special directions wave function coordinate asymptotics is presented with accuracy that gives the possibility to set such a boundary problem
Local formulae for combinatorial Pontryagin classes
International Nuclear Information System (INIS)
Gaifullin, Alexander A
2004-01-01
Let p(|K|) be the characteristic class of a combinatorial manifold K given by a polynomial p in the rational Pontryagin classes of K. We prove that for any polynomial p there is a function taking each combinatorial manifold K to a cycle z p (K) in its rational simplicial chains such that: 1) the Poincare dual of z p (K) represents the cohomology class p(|K|); 2) the coefficient of each simplex Δ in the cycle z p (K) is determined solely by the combinatorial type of linkΔ. We explicitly describe all such functions for the first Pontryagin class. We obtain estimates for the denominators of the coefficients of the simplices in the cycles z p (K)
Experimental tests of asymptotic freedom
International Nuclear Information System (INIS)
Bethke, S.
1996-09-01
Measurements which probe the energy dependence of α s , the coupling strength of the strong interaction, are reviewed. Jet counting in e + e - annihilation, combining results obtained in the centre of mass energy range from 22 to 133 GeV, provides direct evidence for an asymptotically free coupling, without the need to determine explicit values of α s . Recent results from jet production in e p and in p p collisions, obtained in single experiments spanning large ranges of momentum transfer, Q 2 , are in good agreement with the running of α s as predicted by QCD. Mass spectra of hadronic decays of τ-leptons are analysed to probe the running α s in the very low energy domain, 0.7 GeV 2 2 2 τ . An update of the world summary of measurements of α s (Q 2 ) consistently proves the energy dependence of α s and results in a combined average of α s (M Z 0 =0.118±0.006). (orig.)
Asymptotic state discrimination and a strict hierarchy in distinguishability norms
Energy Technology Data Exchange (ETDEWEB)
Chitambar, Eric [Department of Physics and Astronomy, Southern Illinois University, Carbondale, Illinois 62901 (United States); Hsieh, Min-Hsiu [Centre for Quantum Computation and Intelligent Systems (QCIS), Faculty of Engineering and Information Technology (FEIT), University of Technology Sydney - UTS, NSW 2007 (Australia)
2014-11-15
In this paper, we consider the problem of discriminating quantum states by local operations and classical communication (LOCC) when an arbitrarily small amount of error is permitted. This paradigm is known as asymptotic state discrimination, and we derive necessary conditions for when two multipartite states of any size can be discriminated perfectly by asymptotic LOCC. We use this new criterion to prove a gap in the LOCC and separable distinguishability norms. We then turn to the operational advantage of using two-way classical communication over one-way communication in LOCC processing. With a simple two-qubit product state ensemble, we demonstrate a strict majorization of the two-way LOCC norm over the one-way norm.
Asymptotic inference in system identification for the atom maser.
Catana, Catalin; van Horssen, Merlijn; Guta, Madalin
2012-11-28
System identification is closely related to control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However, for quantum dynamical systems such as quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input that may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators, and the connection to large deviations is briefly discussed.
A mutually profitable alliance - Asymptotic expansions and numerical computations
Euvrard, D.
Problems including the flow past a wing airfoil at Mach 1, and the two-dimensional flow past a partially immersed body are used to show the advantages of coupling a standard numerical method for the whole domain where everything is of the order of 1, with an appropriate asymptotic expansion in the vicinity of some singular point. Cases more closely linking the two approaches are then considered. In the localized finite element method, the asymptotic expansion at infinity becomes a convergent series and the problem reduces to a variational form. Combined analytical and numerical methods are used in the singularity distribution method and in the various couplings of finite elements and a Green integral representation to design a subroutine to compute the Green function and its derivatives.
Asymptotic boundary conditions for dissipative waves: General theory
Hagstrom, Thomas
1990-01-01
An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.
Asymptotic boundary conditions for dissipative waves - General theory
Hagstrom, Thomas
1991-01-01
An outstanding issue in computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.
Indian Academy of Sciences (India)
N. Centre for Advanced Scientific Research, Bangalore 560 064, India. 2Indian Institute of ... for rational functions φ with poles off R. In [5,16], Koplienko's trace formula was derived ... be a sequence of complex numbers such that ..... Again if we set the sum of the second and fourth term inside the integral in (2.3) to be. I2 ≡.
Koekoek, J.; Koekoek, R.
1999-01-01
We look for differential equations satisfied by the generalized Jacobi polynomials which are orthogonal on the interval [-1,1] with respect to the weight function [Enlarge Image] where >-1, ß>-1M=0 and N=0. In order to find explicit formulas for the coefficients of these differential equations we
Akihiko Takahashi; Kohta Takehara
2007-01-01
This paper proposes an asymptotic expansion scheme of currency options with a libor market model of interest rates and stochastic volatility models of spot exchange rates. In particular, we derive closed-form approximation formulas for the density functions of the underlying assets and for pricing currency options based on the third order asymptotic expansion scheme; we do not model a foreign exchange rate's variance such as in Heston[1993], but its volatility that follows a general time-inho...
Asymptotic Conservation Laws in Classical Field Theory
International Nuclear Information System (INIS)
Anderson, I.M.; Torre, C.G.
1996-01-01
A new, general, field theoretic approach to the derivation of asymptotic conservation laws is presented. In this approach asymptotic conservation laws are constructed directly from the field equations according to a universal prescription which does not rely upon the existence of Noether identities or any Lagrangian or Hamiltonian formalisms. The resulting general expressions of the conservation laws enjoy important invariance properties and synthesize all known asymptotic conservation laws, such as the Arnowitt-Deser-Misner energy in general relativity. copyright 1996 The American Physical Society
Asymptotic work distributions in driven bistable systems
International Nuclear Information System (INIS)
Nickelsen, D; Engel, A
2012-01-01
The asymptotic tails of the probability distributions of thermodynamic quantities convey important information about the physics of nanoscopic systems driven out of equilibrium. We apply a recently proposed method to analytically determine the asymptotics of work distributions in Langevin systems to an one-dimensional model of single-molecule force spectroscopy. The results are in excellent agreement with numerical simulations, even in the centre of the distributions. We compare our findings with a recent proposal for an universal form of the asymptotics of work distributions in single-molecule experiments.
Sun, Leping
2016-01-01
This paper is concerned with the backward differential formula or BDF methods for a class of nonlinear 2-delay differential algebraic equations. We obtain two sufficient conditions under which the methods are stable and asymptotically stable. At last, examples show that our methods are true.
A derivation of the Derbenev-Kondratenko formula using semi-classical electrodynamics
International Nuclear Information System (INIS)
Mane, S.R.
1985-11-01
We present a detailed exposition of the mechanism for the build-up of polarization in electron storage rings. A semi-classical approach is used to derive the rate of growth and asymptotic degree of polarization in an electron storage ring (the Derbenev-Kondratenko formula). Statistical mechanical concepts used to obtain as classical an understanding as possible of this phenomenon. (orig.)
Semiclassical Weyl Formula for a Class of Weakly Regular Elliptic Operators
Energy Technology Data Exchange (ETDEWEB)
Zielinski, Lech [Universite du Littoral, LMPA, Centre Mi-Voix (France)], E-mail: Lech.Zielinski@lmpa.univ-littoral.fr
2006-02-15
We investigate the semiclassical Weyl formula describing the asymptotic behaviour of the counting function for the number of eigenvalues in the case of self-adjoint elliptic differential operators satisfying weak regularity hypotheses. We consider symbols with possible critical points and with coefficients which have Hoelder continuous derivatives of first order.
Semiclassical Weyl Formula for a Class of Weakly Regular Elliptic Operators
International Nuclear Information System (INIS)
Zielinski, Lech
2006-01-01
We investigate the semiclassical Weyl formula describing the asymptotic behaviour of the counting function for the number of eigenvalues in the case of self-adjoint elliptic differential operators satisfying weak regularity hypotheses. We consider symbols with possible critical points and with coefficients which have Hoelder continuous derivatives of first order
Observation of [Formula: see text] and [Formula: see text] decays.
Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, H; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kosmyntseva, A; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhu, X; Zhukov, V; Zucchelli, S
2017-01-01
The decays [Formula: see text] and [Formula: see text] are observed for the first time using a data sample corresponding to an integrated luminosity of 3.0 fb[Formula: see text], collected by the LHCb experiment in proton-proton collisions at the centre-of-mass energies of 7 and 8[Formula: see text]. The branching fractions relative to that of [Formula: see text] are measured to be [Formula: see text]where the first uncertainties are statistical and the second are systematic.
The Economic Vitality Formula of Success
Konopnicki, Patrick M.
2012-01-01
An economic vitality formula of success can be accomplished by creating partnerships between local career and technical education (CTE), and workforce development and economic development entities. Student industry certifications; dynamic partnerships; programs and projects focused on science, technology, engineering, and mathematics (STEM); and…
The theory of asymptotic behaviour
International Nuclear Information System (INIS)
Ward, B.F.L.; Purdue Univ., Lafayette, IN
1978-01-01
The Green's functions of renormalizable quantum field theory are shown to violate, in general, Euler's theorem on homogeneous functions, that is to say, to violate naive dimensional analysis. The respective violations are established by explicit calculation with Feynman diagrams. These violations, when incorporated into the renormalization group, then provide the basis for an entirely new approach to asymptotic behaviour in renormalizable field theory. Specifically, the violations add new delta-function sources to the usual partial differential equations of the group when these equations are written in terms of the external momenta of the respective Green's functions. The effect of these sources is illustrated by studying the real part, Re GAMMA 6 (lambda p), of the six-point 1PI vertex of the massless scalar field with quartic self-coupling - the simplest of ranormalizable situations. Here, lambda p is symbolic for the six-momenta of GAMMA 6 . Briefly, it is found that the usual theory of characteristics is unable to satisfy the boundary condition attendant to the respective dimensional-analysis-violating sources. Thus, the method of characteristics is completely abandonded in favour of the method of separation of variables. A complete solution which satisfies the inhomogeneous group equation and all boundary conditions is then explicitly constructed. This solution possesses Laurent expansions in the scale lambda of its momentum arguments for all real values of lambda 2 except lambda 2 = 0. For |lambda 2 |→ infinity and |lambda 2 |→ 0, the solution's leading term in its respective Laurent series is proportional to lambda -2 . The limits lambda 2 →0sub(+) and lambda 2 →0sup(-) of lambda 2 ReGAMMA 6 are both nonzero and unequal. The value of the solution at lambda 2 = 0 is not simply related to the value of either of these limits. The new approach would appear to be operationally established
Asymptotically spacelike warped anti-de Sitter spacetimes in generalized minimal massive gravity
International Nuclear Information System (INIS)
Setare, M R; Adami, H
2017-01-01
In this paper we show that warped AdS 3 black hole spacetime is a solution of the generalized minimal massive gravity (GMMG) and introduce suitable boundary conditions for asymptotically warped AdS 3 spacetimes. Then we find the Killing vector fields such that transformations generated by them preserve the considered boundary conditions. We calculate the conserved charges which correspond to the obtained Killing vector fields and show that the algebra of the asymptotic conserved charges is given as the semi direct product of the Virasoro algebra with U (1) current algebra. We use a particular Sugawara construction to reconstruct the conformal algebra. Thus, we are allowed to use the Cardy formula to calculate the entropy of the warped black hole. We demonstrate that the gravitational entropy of the warped black hole exactly coincides with what we obtain via Cardy’s formula. As we expect, the warped Cardy formula also gives us exactly the same result as we obtain from the usual Cardy’s formula. We calculate mass and angular momentum of the warped black hole and then check that obtained mass, angular momentum and entropy to satisfy the first law of the black hole mechanics. According to the results of this paper we believe that the dual theory of the warped AdS 3 black hole solution of GMMG is a warped CFT. (paper)
Asymptotic Likelihood Distribution for Correlated & Constrained Systems
Agarwal, Ujjwal
2016-01-01
It describes my work as summer student at CERN. The report discusses the asymptotic distribution of the likelihood ratio for total no. of parameters being h and 2 out of these being are constrained and correlated.
Asymptotic Poincare lemma and its applications
International Nuclear Information System (INIS)
Ziolkowski, R.W.; Deschamps, G.A.
1984-01-01
An asymptotic version of Poincare's lemma is defined and solutions are obtained with the calculus of exterior differential forms. They are used to construct the asymptotic approximations of multidimensional oscillatory integrals whose forms are commonly encountered, for example, in electromagnetic problems. In particular, the boundary and stationary point evaluations of these integrals are considered. The former is applied to the Kirchhoff representation of a scalar field diffracted through an aperture and simply recovers the Maggi-Rubinowicz-Miyamoto-Wolf results. Asymptotic approximations in the presence of other (standard) critical points are also discussed. Techniques developed for the asymptotic Poincare lemma are used to generate a general representation of the Leray form. All of the (differential form) expressions presented are generalizations of known (vector calculus) results. 14 references, 4 figures
EMC effect: asymptotic freedom with nuclear targets
International Nuclear Information System (INIS)
West, G.B.
1984-01-01
General features of the EMC effect are discussed within the framework of quantum chromodynamics as expressed via the operator product expansion and asymptotic freedom. These techniques are reviewed with emphasis on the target dependence. 22 references
Spectral asymptotic in the large coupling limit
Bruneau, V
2002-01-01
In this paper, we study a singular perturbation of an eigenvalues problem related to supra-conductor wave guides. Using boundary layer tools we perform a complete asymptotic expansion of the eigenvalues as the conductivity tends to $+\\infty$.
Asymptotic expansion of the Keesom integral
International Nuclear Information System (INIS)
Abbott, Paul C
2007-01-01
The asymptotic evaluation and expansion of the Keesom integral, K(a), is discussed at some length in Battezzati and Magnasco (2004 J. Phys. A: Math. Gen. 37 9677; 2005 J. Phys. A: Math. Gen. 38 6715). Here, using standard identities, it is shown that this triple integral can be reduced to a single integral from which the asymptotic behaviour is readily obtained using Laplace's method. (comment)
Composite asymptotic expansions and scaling wall turbulence.
Panton, Ronald L
2007-03-15
In this article, the assumptions and reasoning that yield composite asymptotic expansions for wall turbulence are discussed. Particular attention is paid to the scaling quantities that are used to render the variables non-dimensional and of order one. An asymptotic expansion is proposed for the streamwise Reynolds stress that accounts for the active and inactive turbulence by using different scalings. The idea is tested with the data from the channel flows and appears to have merit.
AGB [asymptotic giant branch]: Star evolution
International Nuclear Information System (INIS)
Becker, S.A.
1987-01-01
Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs
Asymptotic distribution of ∆AUC, NRIs, and IDI based on theory of U-statistics.
Demler, Olga V; Pencina, Michael J; Cook, Nancy R; D'Agostino, Ralph B
2017-09-20
The change in area under the curve (∆AUC), the integrated discrimination improvement (IDI), and net reclassification index (NRI) are commonly used measures of risk prediction model performance. Some authors have reported good validity of associated methods of estimating their standard errors (SE) and construction of confidence intervals, whereas others have questioned their performance. To address these issues, we unite the ∆AUC, IDI, and three versions of the NRI under the umbrella of the U-statistics family. We rigorously show that the asymptotic behavior of ∆AUC, NRIs, and IDI fits the asymptotic distribution theory developed for U-statistics. We prove that the ∆AUC, NRIs, and IDI are asymptotically normal, unless they compare nested models under the null hypothesis. In the latter case, asymptotic normality and existing SE estimates cannot be applied to ∆AUC, NRIs, or IDI. In the former case, SE formulas proposed in the literature are equivalent to SE formulas obtained from U-statistics theory if we ignore adjustment for estimated parameters. We use Sukhatme-Randles-deWet condition to determine when adjustment for estimated parameters is necessary. We show that adjustment is not necessary for SEs of the ∆AUC and two versions of the NRI when added predictor variables are significant and normally distributed. The SEs of the IDI and three-category NRI should always be adjusted for estimated parameters. These results allow us to define when existing formulas for SE estimates can be used and when resampling methods such as the bootstrap should be used instead when comparing nested models. We also use the U-statistic theory to develop a new SE estimate of ∆AUC. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Trinucleon asymptotic normalization constants including Coulomb effects
International Nuclear Information System (INIS)
Friar, J.L.; Gibson, B.F.; Lehman, D.R.; Payne, G.L.
1982-01-01
Exact theoretical expressions for calculating the trinucleon S- and D-wave asymptotic normalization constants, with and without Coulomb effects, are presented. Coordinate-space Faddeev-type equations are used to generate the trinucleon wave functions, and integral relations for the asymptotic norms are derived within this framework. The definition of the asymptotic norms in the presence of the Coulomb interaction is emphasized. Numerical calculations are carried out for the s-wave NN interaction models of Malfliet and Tjon and the tensor force model of Reid. Comparison with previously published results is made. The first estimate of Coulomb effects for the D-wave asymptotic norm is given. All theoretical values are carefully compared with experiment and suggestions are made for improving the experimental situation. We find that Coulomb effects increase the 3 He S-wave asymptotic norm by less than 1% relative to that of 3 H, that Coulomb effects decrease the 3 He D-wave asymptotic norm by approximately 8% relative to that of 3 H, and that the distorted-wave Born approximation D-state parameter, D 2 , is only 1% smaller in magnitude for 3 He than for 3 H due to compensating Coulomb effects
Density of states, Poisson's formula of summation and Walfisz's formula
International Nuclear Information System (INIS)
Fucho, P.
1980-06-01
Using Poisson's formula for summation, we obtain an expression for density of states of d-dimensional scalar Helmoholtz's equation under various boundary conditions. Likewise, we also obtain formulas of Walfisz's type. It becomes evident that the formulas obtained by Pathria et al. in connection with ideal bosons in a finite system are exactly the same as those obtained by utilizing the formulas for density of states. (author)
Asymptotic Value Distribution for Solutions of the Schroedinger Equation
International Nuclear Information System (INIS)
Breimesser, S. V.; Pearson, D. B.
2000-01-01
We consider the Dirichlet Schroedinger operator T=-(d 2 /d x 2 )+V, acting in L 2 (0,∞), where Vis an arbitrary locally integrable potential which gives rise to absolutely continuous spectrum. Without any other restrictive assumptions on the potential V, the description of asymptotics for solutions of the Schroedinger equation is carried out within the context of the theory of value distribution for boundary values of analytic functions. The large x asymptotic behaviour of the solution v(x,λ) of the equation Tf(x,λ)=λf(x,λ), for λ in the support of the absolutely continuous part μ a.c. of the spectral measure μ, is linked to the spectral properties of this measure which are determined by the boundary value of the Weyl-Titchmarsh m-function. Our main result (Theorem 1) shows that the value distribution for v'(N,λ)/v(N,λ) approaches the associated value distribution of the Herglotz function m N (z) in the limit N → ∞, where m N (z) is the Weyl-Titchmarsh m-function for the Schroedinger operator -(d 2 /d x 2 )+Vacting in L 2 (N,∞), with Dirichlet boundary condition at x=N. We will relate the analysis of spectral asymptotics for the absolutely continuous component of Schroedinger operators to geometrical properties of the upper half-plane, viewed as a hyperbolic space
Asymptotic theory of two-dimensional trailing-edge flows
Melnik, R. E.; Chow, R.
1975-01-01
Problems of laminar and turbulent viscous interaction near trailing edges of streamlined bodies are considered. Asymptotic expansions of the Navier-Stokes equations in the limit of large Reynolds numbers are used to describe the local solution near the trailing edge of cusped or nearly cusped airfoils at small angles of attack in compressible flow. A complicated inverse iterative procedure, involving finite-difference solutions of the triple-deck equations coupled with asymptotic solutions of the boundary values, is used to accurately solve the viscous interaction problem. Results are given for the correction to the boundary-layer solution for drag of a finite flat plate at zero angle of attack and for the viscous correction to the lift of an airfoil at incidence. A rational asymptotic theory is developed for treating turbulent interactions near trailing edges and is shown to lead to a multilayer structure of turbulent boundary layers. The flow over most of the boundary layer is described by a Lighthill model of inviscid rotational flow. The main features of the model are discussed and a sample solution for the skin friction is obtained and compared with the data of Schubauer and Klebanoff for a turbulent flow in a moderately large adverse pressure gradient.
Directory of Open Access Journals (Sweden)
Alfredo Bregni
2013-04-01
innovation to the main process functioning. As a result, the proposed algorithm copes better with demand uncertainty, lowers the system nervousness and also removes the need for continuous forecast adjustments, thereby improving the ease in managing the material flow, allowing the development of new forms of collaboration among different supply chain partners and the creation of new business networks. The algorithm is presented in formulas to describe in detail each procedure step and calculations.
Partial transpose of random quantum states: Exact formulas and meanders
Energy Technology Data Exchange (ETDEWEB)
Fukuda, Motohisa [Zentrum Mathematik, M5, Technische Universitaet Muenchen, Boltzmannstrasse 3, 85748 Garching (Germany); Sniady, Piotr [Zentrum Mathematik, M5, Technische Universitaet Muenchen, Boltzmannstrasse 3, 85748 Garching (Germany); Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, 00-956 Warszawa (Poland); Institute of Mathematics, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384 Wroclaw (Poland)
2013-04-15
We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.
Partial transpose of random quantum states: Exact formulas and meanders
Fukuda, Motohisa; Śniady, Piotr
2013-04-01
We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.
On the asymptotic evolution of finite energy Airy wave functions.
Chamorro-Posada, P; Sánchez-Curto, J; Aceves, A B; McDonald, G S
2015-06-15
In general, there is an inverse relation between the degree of localization of a wave function of a certain class and its transform representation dictated by the scaling property of the Fourier transform. We report that in the case of finite energy Airy wave packets a simultaneous increase in their localization in the direct and transform domains can be obtained as the apodization parameter is varied. One consequence of this is that the far-field diffraction rate of a finite energy Airy beam decreases as the beam localization at the launch plane increases. We analyze the asymptotic properties of finite energy Airy wave functions using the stationary phase method. We obtain one dominant contribution to the long-term evolution that admits a Gaussian-like approximation, which displays the expected reduction of its broadening rate as the input localization is increased.
Kant's universal law formula revisited
Nyholm, S.
2015-01-01
Kantians are increasingly deserting the universal law formula in favor of the humanity formula. The former, they argue, is open to various decisive objections; the two are not equivalent; and it is only by appealing to the human- ity formula that Kant can reliably generate substantive implications
Asymptotic convergence for iterative optimization in electronic structure
International Nuclear Information System (INIS)
Lippert, Ross A.; Sears, Mark P.
2000-01-01
There have recently been a number of proposals for solving large electronic structure problems (local-density approximation, Hartree-Fock, and tight-binding methods) iteratively with a computational effort proportional to the size of the system. The effort needed to perform a single iteration in these schemes is well understood but the convergence rate has been an empirical matter. This paper will show that many of the proposed methods have a single underlying geometrical structure, which has a specific asymptotic convergence behavior, and that behavior can be understood in terms of some simple condition numbers based on the spectrum of the Hamiltonian. (c) 2000 The American Physical Society
Directory of Open Access Journals (Sweden)
G. M. N’Guérékata
2018-01-01
Full Text Available The main aim of this paper is to investigate generalized asymptotical almost periodicity and generalized asymptotical almost automorphy of solutions to a class of abstract (semilinear multiterm fractional differential inclusions with Caputo derivatives. We illustrate our abstract results with several examples and possible applications.
Analysis of straightening formula
Directory of Open Access Journals (Sweden)
Devadatta M. Kulkarni
1988-01-01
standard bitableaux (or the set of standard monomials in minors gives a free basis for a polynomial ring in a matrix of indeterminates over a field. The straightening formula expresses a nonstandard bitableau as an integral linear cobmbination of standard bitableaux. In this paper we analyse the exchanges in the process of straightening a nonstandard pure tableau of depth two. We give precisely the number of steps required to straighten a given violation of a nonstandard tableau. We also characterise the violation which is eliminated in a single step.
International Nuclear Information System (INIS)
Tejera R, A.; Cortes P, A.; Becerril V, A.
1990-03-01
For the practical application of the method proposed by J. Bryant, the authors carried out a series of small corrections, related with the bottom, the dead time of the detectors and channels, with the resolution time of the coincidences, with the accidental coincidences, with the decay scheme and with the gamma efficiency of the beta detector beta and the beta efficiency beta of the gamma detector. The calculation of the correction formula is presented in the development of the present report, being presented 25 combinations of the probability of the first existent state at once of one disintegration and the second state at once of the following disintegration. (Author)
Energy Technology Data Exchange (ETDEWEB)
Borzenko, V.A.; Koltovskiy, L.V.; Koshelyov, Yu.I.; Kuzovlyev, G.F.; Lebedyev, S.I.; Sitnikov, S.A.; Telegin, V.D.
1979-12-30
To improve operation of scrubbers that operate in crystallizers for deparaffinization of oil products, a formula is being suggested which contains siliceous fibers, and a type of thermoactive resin - phenol-formaldehyde laquer, with the following component ration (% weight): carbon fiber 20-25, siliceous fibers 20-30, dry lubricant 10-15, phenolformaldehyde laquer up to 100. Phys.-mech. characteristics are flexure, compression, Ak of the suggested and known compositions (kgs/cm/sup 2/) 2150-2450 and 2550-2700, 32-37 and 1750, 2150 and 27 operation resource 2100:2500 and 1400.
ASYMPTOTICS OF a PARTICLES TRANSPORT PROBLEM
Directory of Open Access Journals (Sweden)
Kuzmina Ludmila Ivanovna
2017-11-01
Full Text Available Subject: a groundwater filtration affects the strength and stability of underground and hydro-technical constructions. Research objectives: the study of one-dimensional problem of displacement of suspension by the flow of pure water in a porous medium. Materials and methods: when filtering a suspension some particles pass through the porous medium, and some of them are stuck in the pores. It is assumed that size distributions of the solid particles and the pores overlap. In this case, the main mechanism of particle retention is a size-exclusion: the particles pass freely through the large pores and get stuck at the inlet of the tiny pores that are smaller than the particle diameter. The concentrations of suspended and retained particles satisfy two quasi-linear differential equations of the first order. To solve the filtration problem, methods of nonlinear asymptotic analysis are used. Results: in a mathematical model of filtration of suspensions, which takes into account the dependence of the porosity and permeability of the porous medium on concentration of retained particles, the boundary between two phases is moving with variable velocity. The asymptotic solution to the problem is constructed for a small filtration coefficient. The theorem of existence of the asymptotics is proved. Analytical expressions for the principal asymptotic terms are presented for the case of linear coefficients and initial conditions. The asymptotics of the boundary of two phases is given in explicit form. Conclusions: the filtration problem under study can be solved analytically.
Directory of Open Access Journals (Sweden)
Abílio Amiguinho
2005-01-01
Full Text Available The process of socio-educational territorialisation in rural contexts is the topic of this text. The theme corresponds to a challenge to address it having as main axis of discussion either the problem of social exclusion or that of local development. The reasons to locate the discussion in this last field of analysis are discussed in the first part of the text. Theoretical and political reasons are there articulated because the question is about projects whose intentions and practices call for the political both in the theoretical debate and in the choices that anticipate intervention. From research conducted for several years, I use contributions that aim at discuss and enlighten how school can be a potential locus of local development. Its identification and recognition as local institution (either because of those that work and live in it or because of those that act in the surrounding context are crucial steps to progressively constitute school as a partner for development. The promotion of the local values and roots, the reconstruction of socio-personal and local identities, the production of sociabilities and the equation and solution of shared problems were the dimensions of a socio-educative intervention, markedly globalising. This scenario, as it is argued, was also, intentionally, one of transformation and of deliberate change of school and of the administration of the educative territoires.
Asymptotic formulae for the Lommel and Bessel functions and their derivatives.
Aleksandrova, N I
2014-10-01
We derive new approximate representations of the Lommel functions in terms of the Scorer function and approximate representations of the first derivative of the Lommel functions in terms of the derivative of the Scorer function. Using the same method, we obtain previously known approximate representations of the Nicholson type for Bessel functions and their first derivatives. We study also for what values of the parameters our representations have reasonable accuracy.
An asymptotic formula for the free energy density of ideal quantum gases
International Nuclear Information System (INIS)
Mackowiak, J.
1988-01-01
It is shown that the expressions for the free energy density of ideal quantum gases in the canonical and grand canonical ensembles, are identical up to additive terms which vanish in the thermodynamic limit. (orig.)
Asymptotic integration of a linear fourth order differential equation of Poincaré type
Directory of Open Access Journals (Sweden)
Anibal Coronel
2015-11-01
Full Text Available This article deals with the asymptotic behavior of nonoscillatory solutions of fourth order linear differential equation where the coefficients are perturbations of constants. We define a change of variable and deduce that the new variable satisfies a third order nonlinear differential equation. We assume three hypotheses. The first hypothesis is related to the constant coefficients and set up that the characteristic polynomial associated with the fourth order linear equation has simple and real roots. The other two hypotheses are related to the behavior of the perturbation functions and establish asymptotic integral smallness conditions of the perturbations. Under these general hypotheses, we obtain four main results. The first two results are related to the application of a fixed point argument to prove that the nonlinear third order equation has a unique solution. The next result concerns with the asymptotic behavior of the solutions of the nonlinear third order equation. The fourth main theorem is introduced to establish the existence of a fundamental system of solutions and to precise the formulas for the asymptotic behavior of the linear fourth order differential equation. In addition, we present an example to show that the results introduced in this paper can be applied in situations where the assumptions of some classical theorems are not satisfied.
A quantum kinematics for asymptotically flat gravity
Campiglia, Miguel; Varadarajan, Madhavan
2015-07-01
We construct a quantum kinematics for asymptotically flat gravity based on the Koslowski-Sahlmann (KS) representation. The KS representation is a generalization of the representation underlying loop quantum gravity (LQG) which supports, in addition to the usual LQG operators, the action of ‘background exponential operators’, which are connection dependent operators labelled by ‘background’ su(2) electric fields. KS states have, in addition to the LQG state label corresponding to one dimensional excitations of the triad, a label corresponding to a ‘background’ electric field that describes three dimensional excitations of the triad. Asymptotic behaviour in quantum theory is controlled through asymptotic conditions on the background electric fields that label the states and the background electric fields that label the operators. Asymptotic conditions on the triad are imposed as conditions on the background electric field state label while confining the LQG spin net graph labels to compact sets. We show that KS states can be realised as wave functions on a quantum configuration space of generalized connections and that the asymptotic behaviour of each such generalized connection is determined by that of the background electric fields which label the background exponential operators. Similar to the spatially compact case, the Gauss law and diffeomorphism constraints are then imposed through group averaging techniques to obtain a large sector of gauge invariant states. It is shown that this sector supports a unitary action of the group of asymptotic rotations and translations and that, as anticipated by Friedman and Sorkin, for appropriate spatial topology, this sector contains states that display fermionic behaviour under 2π rotations.
Asymptotic stability of a catalyst particle
DEFF Research Database (Denmark)
Wedel, Stig; Michelsen, Michael L.; Villadsen, John
1977-01-01
The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0. These a......The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0...
Directions for model building from asymptotic safety
Bond, Andrew D.; Hiller, Gudrun; Kowalska, Kamila; Litim, Daniel F.
2017-08-01
Building on recent advances in the understanding of gauge-Yukawa theories we explore possibilities to UV-complete the Standard Model in an asymptotically safe manner. Minimal extensions are based on a large flavor sector of additional fermions coupled to a scalar singlet matrix field. We find that asymptotic safety requires fermions in higher representations of SU(3) C × SU(2) L . Possible signatures at colliders are worked out and include R-hadron searches, diboson signatures and the evolution of the strong and weak coupling constants.
On the asymptotics of dimers on tori
Kenyon, Richard W.; Sun, Nike; Wilson, David B.
2013-01-01
We study asymptotics of the dimer model on large toric graphs. Let $\\mathbb L$ be a weighted $\\mathbb{Z}^2$-periodic planar graph, and let $\\mathbb{Z}^2 E$ be a large-index sublattice of $\\mathbb{Z}^2$. For $\\mathbb L$ bipartite we show that the dimer partition function on the quotient $\\mathbb{L}/(\\mathbb{Z}^2 E)$ has the asymptotic expansion $\\exp[A f_0 + \\text{fsc} + o(1)]$, where $A$ is the area of $\\mathbb{L}/(\\mathbb{Z}^2 E)$, $f_0$ is the free energy density in the bulk, and $\\text{fsc...
Smarr formula and an extended first law for Lovelock gravity
Energy Technology Data Exchange (ETDEWEB)
Kastor, David; Traschen, Jennie [Department of Physics, University of Massachusetts, Amherst, MA 01003 (United States); Ray, Sourya, E-mail: kastor@physics.umass.ed, E-mail: ray@cecs.c, E-mail: traschen@physics.umass.ed [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile)
2010-12-07
We study properties of static, asymptotically AdS black holes in Lovelock gravity. Our main result is a Smarr formula that gives the mass in terms of geometrical quantities together with the parameters of the Lovelock theory. As in Einstein gravity, the Smarr formula follows from applying the first law to an infinitesimal change in the overall length scale. However, because the Lovelock couplings are dimensionful, we must first prove an extension of the first law that includes their variations. Key ingredients in this construction are the Killing-Lovelock potentials associated with each of the higher curvature Lovelock interactions. Geometric expressions are obtained for the new thermodynamic potentials conjugate to the variation of the Lovelock couplings.
International Nuclear Information System (INIS)
Trinh, Vinh H; Morishita, Toru; Tolstikhin, Oleg I
2015-01-01
The recently developed many-electron weak-field asymptotic theory of tunneling ionization of atoms and molecules in an external static electric field (Tolstikhin et al 2014, Phys. Rev. A 89, 013421) is extended to the first-order terms in the asymptotic expansion in field. To highlight the results, here we present a simple analytical formula giving the rate of tunneling ionization of two-electron atoms H − and He. Comparison with fully-correlated ab initio calculations available for these systems shows that the first-order theory works quantitatively in a wide range of fields up to the onset of over-the-barrier ionization and hence is expected to find numerous applications in strong-field physics. (fast track communication)
Semiclassical asymptotics for the scattering amplitude in the presence of focal points at infinity
Energy Technology Data Exchange (ETDEWEB)
Hohberger, H.
2006-10-16
We consider scattering in R{sup n}, n{>=}2, described by the Schroedinger operator P(h)=-h{sup 2}{delta}+V, where V is a short-range potential. With the aid of Maslov theory, we give a geometrical formula for the semiclassical asymptotics as h{yields}0 of the scattering amplitude f({omega}{sub -},{omega}{sub +};{lambda},h) ({omega}{sub +}{ne}{omega}{sub -}) which remains valid in the presence of focal points at infinity (caustics). Crucial for this analysis are precise estimates on the asymptotics of the classical phase trajectories and the relationship between caustics in euclidean phase space and caustics at infinity. (orig.)
Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions
Energy Technology Data Exchange (ETDEWEB)
Kamiński, Wojciech, E-mail: wkaminsk@fuw.edu.pl [Wydział Fizyki, Uniwersytet Warszawski, Hoża 69, 00-681, Warsaw (Poland); Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Max Planck Institute for Gravitational Physics, Am Mühlenberg 1, D-14476 Potsdam (Germany); Steinhaus, Sebastian, E-mail: steinhaus.sebastian@gmail.com [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Max Planck Institute for Gravitational Physics, Am Mühlenberg 1, D-14476 Potsdam (Germany)
2013-12-15
We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol.
Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions
International Nuclear Information System (INIS)
Kamiński, Wojciech; Steinhaus, Sebastian
2013-01-01
We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol
Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions
Kamiński, Wojciech; Steinhaus, Sebastian
2013-12-01
We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol.
Theory of tunneling ionization of molecules: Weak-field asymptotics including dipole effects
DEFF Research Database (Denmark)
Tolstikhin, Oleg I.; Morishita, Toru; Madsen, Lars Bojer
2011-01-01
The formulation of the parabolic adiabatic expansion approach to the problem of ionization of atomic systems in a static electric field, originally developed for the axially symmetric case [ Phys. Rev. A 82 023416 (2010)], is generalized to arbitrary potentials. This approach is used to rederive...... the asymptotic theory of tunneling ionization in the weak-field limit. In the atomic case, the resulting formulas for the ionization rate coincide with previously known results. In addition, the present theory accounts for the possible existence of a permanent dipole moment of the unperturbed system and, hence......, applies to polar molecules. Accounting for dipole effects constitutes an important difference of the present theory from the so-called molecular Ammosov-Delone-Krainov theory. The theory is illustrated by comparing exact and asymptotic results for a set of model polar molecules and a realistic molecular...
International Nuclear Information System (INIS)
Il'in, Arlen M; Suleimanov, Bulat I
2007-01-01
An asymptotic formula as t→∞ for the solution of the ordinary differential Abel's equation of the first kind u' x +u 3 -tu-x=0, which is uniform in the x-variable, is constructed and substantiated. Bibliography: 13 titles.
Derivative analyticity relations and asymptotic energies
International Nuclear Information System (INIS)
Fischer, J.
1976-01-01
On the basis of general principles of the S-matrix theory theorems are derived showing that derivative analyticity relations analogous to those of Bronzen, Kane and Sukhatme hold at asymptotic energies if the high-energy limits of certain physical quantities exist
Stationary solutions and asymptotic flatness I
International Nuclear Information System (INIS)
Reiris, Martin
2014-01-01
In general relativity, a stationary isolated system is defined as an asymptotically flat (AF) stationary spacetime with compact material sources. Other definitions that are less restrictive on the type of asymptotic could in principle be possible. Between this article and its sequel, we show that under basic assumptions, asymptotic flatness indeed follows as a consequence of Einstein's theory. In particular, it is proved that any vacuum stationary spacetime-end whose (quotient) manifold is diffeomorphic to R 3 minus a ball and whose Killing field has its norm bounded away from zero, is necessarily AF with Schwarzschildian fall off. The ‘excised’ ball would contain (if any) the actual material body, but this information is unnecessary to reach the conclusion. In this first article, we work with weakly asymptotically flat (WAF) stationary ends, a notion that generalizes as much as possible that of the AF end, and prove that WAF ends are AF with Schwarzschildian fall off. Physical and mathematical implications are also discussed. (paper)
Supersymmetric asymptotic safety is not guaranteed
DEFF Research Database (Denmark)
Intriligator, Kenneth; Sannino, Francesco
2015-01-01
in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those...
The asymptotic expansion method via symbolic computation
Navarro, Juan F.
2012-01-01
This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.
The Asymptotic Expansion Method via Symbolic Computation
Directory of Open Access Journals (Sweden)
Juan F. Navarro
2012-01-01
Full Text Available This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.
Large degree asymptotics of generalized Bessel polynomials
J.L. López; N.M. Temme (Nico)
2011-01-01
textabstractAsymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the
Asymptotic expansions for the Gaussian unitary ensemble
DEFF Research Database (Denmark)
Haagerup, Uffe; Thorbjørnsen, Steen
2012-01-01
Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian U...
Asymptotic Translation Length in the Curve Complex
Valdivia, Aaron D.
2013-01-01
We show that when the genus and punctures of a surface are directly proportional by some rational number the minimal asymptotic translation length in the curve complex has behavior inverse to the square of the Euler characteristic. We also show that when the genus is fixed and the number of punctures varies the behavior is inverse to the Euler characteristic.
Asymptotic analysis of the Forward Search
DEFF Research Database (Denmark)
Johansen, Søren; Nielsen, Bent
The Forward Search is an iterative algorithm concerned with detection of outliers and other unsuspected structures in data. This approach has been suggested, analysed and applied for regression models in the monograph Atkinson and Riani (2000). An asymptotic analysis of the Forward Search is made...
On iterative procedures of asymptotic inference
K.O. Dzhaparidze (Kacha)
1983-01-01
textabstractAbstract An informal discussion is given on performing an unconstrained maximization or solving non‐linear equations of statistics by iterative methods with the quadratic termination property. It is shown that if a miximized function, e.g. likelihood, is asymptotically quadratic, then
Asymptotic evolution of quantum Markov chains
Energy Technology Data Exchange (ETDEWEB)
Novotny, Jaroslav [FNSPE, CTU in Prague, 115 19 Praha 1 - Stare Mesto (Czech Republic); Alber, Gernot [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)
2012-07-01
The iterated quantum operations, so called quantum Markov chains, play an important role in various branches of physics. They constitute basis for many discrete models capable to explore fundamental physical problems, such as the approach to thermal equilibrium, or the asymptotic dynamics of macroscopic physical systems far from thermal equilibrium. On the other hand, in the more applied area of quantum technology they also describe general characteristic properties of quantum networks or they can describe different quantum protocols in the presence of decoherence. A particularly, an interesting aspect of these quantum Markov chains is their asymptotic dynamics and its characteristic features. We demonstrate there is always a vector subspace (typically low-dimensional) of so-called attractors on which the resulting superoperator governing the iterative time evolution of quantum states can be diagonalized and in which the asymptotic quantum dynamics takes place. As the main result interesting algebraic relations are presented for this set of attractors which allow to specify their dual basis and to determine them in a convenient way. Based on this general theory we show some generalizations concerning the theory of fixed points or asymptotic evolution of random quantum operations.
Infrared studies of asymptotic giant branch stars
International Nuclear Information System (INIS)
Willems, F.J.
1987-01-01
In this thesis studies are presented of asymptotic giant branch stars, which are thought to be an important link in the evolution of the galaxy. The studies were performed on the basis of data collected by the IRAS, the infrared astronomical satelite. 233 refs.; 33 figs.; 16 tabs
Asymptotic behaviour of firmly non expansive sequences
International Nuclear Information System (INIS)
Rouhani, B.D.
1993-04-01
We introduce the notion of firmly non expansive sequences in a Banach space and present several results concerning their asymptotic behaviour extending previous results and giving an affirmative answer to an open question raised by S. Reich and I. Shafir. Applications to averaged mappings are also given. (author). 16 refs
An asymptotic problem in renewal theory
Klamkin, M.S.; van Lint, J.H.
1972-01-01
A special problem in renewal theory is considered. The asymptotic behavior of the renewal function was studied by W. L. Smith. Here we show that his result with an exponentially small remainder term follows from a theorem of De Bruijn on Volterra integral equations.
Asymptotics for the minimum covariance determinant estimator
Butler, R.W.; Davies, P.L.; Jhun, M.
1993-01-01
Consistency is shown for the minimum covariance determinant (MCD) estimators of multivariate location and scale and asymptotic normality is shown for the former. The proofs are made possible by showing a separating ellipsoid property for the MCD subset of observations. An analogous property is shown
Asymptotically Safe Standard Model via Vectorlike Fermions
Mann, R. B.; Meffe, J. R.; Sannino, F.; Steele, T. G.; Wang, Z. W.; Zhang, C.
2017-12-01
We construct asymptotically safe extensions of the standard model by adding gauged vectorlike fermions. Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and, under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet fixed point.
Quadrature formulas for Fourier coefficients
Bojanov, Borislav
2009-09-01
We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives. © 2009 Elsevier B.V. All rights reserved.
Transfer maps and projection formulas
Tabuada, Goncalo
2010-01-01
Transfer maps and projection formulas are undoubtedly one of the key tools in the development and computation of (co)homology theories. In this note we develop an unified treatment of transfer maps and projection formulas in the non-commutative setting of dg categories. As an application, we obtain transfer maps and projection formulas in algebraic K-theory, cyclic homology, topological cyclic homology, and other scheme invariants.
Asymptotic symmetries, holography and topological hair
Mishra, Rashmish K.; Sundrum, Raman
2018-01-01
Asymptotic symmetries of AdS4 quantum gravity and gauge theory are derived by coupling the holographically dual CFT3 to Chern-Simons gauge theory and 3D gravity in a "probe" (large-level) limit. Despite the fact that the three-dimensional AdS4 boundary as a whole is consistent with only finite-dimensional asymptotic symmetries, given by AdS isometries, infinite-dimensional symmetries are shown to arise in circumstances where one is restricted to boundary subspaces with effectively two-dimensional geometry. A canonical example of such a restriction occurs within the 4D subregion described by a Wheeler-DeWitt wavefunctional of AdS4 quantum gravity. An AdS4 analog of Minkowski "super-rotation" asymptotic symmetry is probed by 3D Einstein gravity, yielding CFT2 structure (in a large central charge limit), via AdS3 foliation of AdS4 and the AdS3/CFT2 correspondence. The maximal asymptotic symmetry is however probed by 3D conformal gravity. Both 3D gravities have Chern-Simons formulation, manifesting their topological character. Chern-Simons structure is also shown to be emergent in the Poincare patch of AdS4, as soft/boundary limits of 4D gauge theory, rather than "put in by hand" as an external probe. This results in a finite effective Chern-Simons level. Several of the considerations of asymptotic symmetry structure are found to be simpler for AdS4 than for Mink4, such as non-zero 4D particle masses, 4D non-perturbative "hard" effects, and consistency with unitarity. The last of these in particular is greatly simplified because in some set-ups the time dimension is explicitly shared by each level of description: Lorentzian AdS4, CFT3 and CFT2. Relatedly, the CFT2 structure clarifies the sense in which the infinite asymptotic charges constitute a useful form of "hair" for black holes and other complex 4D states. An AdS4 analog of Minkowski "memory" effects is derived, but with late-time memory of earlier events being replaced by (holographic) "shadow" effects. Lessons
On Δβ and the search for asymptotic scaling in lattice gauge theory
International Nuclear Information System (INIS)
Petcher, D.
1986-01-01
An ansatz for the β-function of SU(3) lattice gauge theory in four dimensions whose parameters are determined by Monte Carlo data is used both to compare different sets of data for Δβ and to study systematic errors. The data for Δβ obtained from different values of the block spin renormalization group scaling factor are shown to be compatible within statistical errors. However the data is easily consistent with sizeable deviations (ca. 30% or more) from the two loop approximation to the renormalization group scaling formula for physical quantities in the region of coupling for which Δβ essentially takes on its asymptotic value. (orig.)
Asymptotic equivalence of neutron diffusion and transport in time-independent reactor systems
International Nuclear Information System (INIS)
Borysiewicz, M.; Mika, J.; Spiga, G.
1982-01-01
Presented in this paper is the asymptotic analysis of the time-independent neutron transport equation in the second-order variational formulation. The small parameter introduced into the equation is an estimate of the ratio of absorption and leakage to scattering in the system considered. When the ratio tends to zero, the weak solution to the transport problem tends to the weak solution of the diffusion problem, including properly defined boundary conditions. A formula for the diffusion coefficient different from that based on averaging the transport mean-free-path is derived
Local asymptotic stability of a modified mathematical defense model ...
African Journals Online (AJOL)
The Runge–Kutta–Fehlberg order 4 and 5 numerical method is employed using MATLAB to solve the system ofordinary differential equations and to simulate the system. The issues and concerns about security in the cyber-world make it overly necessary to invest research efforts so as to provide countermeasures for virus ...
On asymptotics and resurgent structures of enumerative Gromov-Witten invariants
Energy Technology Data Exchange (ETDEWEB)
Couso-Santamaria, Ricardo [Lisboa Univ. (Portugal). Inst. Superior Tecnico (IST); Schiappa, Ricardo [Lisboa Univ. (Portugal). Inst. Superior Tecnico (IST); Geneve Univ. (Switzerland). Dept. de Physique Theoretique et Section de Mathematiques; Vaz, Ricardo [Lisboa Univ. (Portugal). Inst. Superior Tecnico (IST); DESY Hamburg (Germany). Theory Group
2016-05-15
Making use of large-order techniques in asymptotics and resurgent analysis, this work addresses the growth of enumerative Gromov-Witten invariants - in their dependence upon genus and degree of the embedded curve - for several different threefold Calabi-Yau toric-varieties. In particular, while the leading asymptotics of these invariants at large genus or at large degree is exponential, at combined large genus and degree it turns out to be factorial. This factorial growth has a resurgent nature, originating via mirror symmetry from the resurgent-transseries description of the B-model free energy. This implies the existence of nonperturbative sectors controlling the asymptotics of the Gromov-Witten invariants, which could themselves have an enumerative-geometry interpretation. The examples addressed include: the resolved conifold; the local surfaces local P{sup 2} and local P{sup 1} x P{sup 1}; the local curves and Hurwitz theory; and the compact quintic. All examples suggest very rich interplays between resurgent asymptotics and enumerative problems in algebraic geometry.
Uniform asymptotics for compound Poisson processes with regularly varying jumps and vanishing drift
Kamphorst, B.; Zwart, B.
2015-01-01
This paper addresses heavy-tailed asymptotics of functionals of a class of spectrally one-sided L\\'evy process that remain valid in a near-critical regime. This complements recent similar results that have been obtained for the all-time supremum of such processes. Specifically, we consider local
On asymptotics and resurgent structures of enumerative Gromov-Witten invariants
International Nuclear Information System (INIS)
Couso-Santamaria, Ricardo; Schiappa, Ricardo; Geneve Univ.; Vaz, Ricardo; DESY Hamburg
2016-05-01
Making use of large-order techniques in asymptotics and resurgent analysis, this work addresses the growth of enumerative Gromov-Witten invariants - in their dependence upon genus and degree of the embedded curve - for several different threefold Calabi-Yau toric-varieties. In particular, while the leading asymptotics of these invariants at large genus or at large degree is exponential, at combined large genus and degree it turns out to be factorial. This factorial growth has a resurgent nature, originating via mirror symmetry from the resurgent-transseries description of the B-model free energy. This implies the existence of nonperturbative sectors controlling the asymptotics of the Gromov-Witten invariants, which could themselves have an enumerative-geometry interpretation. The examples addressed include: the resolved conifold; the local surfaces local P 2 and local P 1 x P 1 ; the local curves and Hurwitz theory; and the compact quintic. All examples suggest very rich interplays between resurgent asymptotics and enumerative problems in algebraic geometry.
Cosmic censorship, persistent curvature and asymptotic causal pathology
International Nuclear Information System (INIS)
Newman, R.P.A.C.
1984-01-01
The paper examines cosmic censorship in general relativity theory. Conformally flat space-times; persistent curvature; weakly asymptotically simple and empty asymptotes; censorship conditions; and the censorship theorem; are all discussed. (U.K.)
Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence
International Nuclear Information System (INIS)
Zhang Tailei; Teng Zhidong
2008-01-01
In this paper, the asymptotic behavior of solutions of an autonomous SEIRS epidemic model with the saturation incidence is studied. Using the method of Liapunov-LaSalle invariance principle, we obtain the disease-free equilibrium is globally stable if the basic reproduction number is not greater than one. Moreover, we show that the disease is permanent if the basic reproduction number is greater than one. Furthermore, the sufficient conditions of locally and globally asymptotically stable convergence to an endemic equilibrium are obtained base on the permanence
Grouping Minerals by Their Formulas
Mulvey, Bridget
2018-01-01
Minerals are commonly taught in ways that emphasize mineral identification for its own sake or maybe to help identify rocks. But how do minerals fit in with other science content taught? The author uses mineral formulas to help Earth science students wonder about the connection between elements, compounds, mixtures, minerals, and mineral formulas.…
Statistics Using Just One Formula
Rosenthal, Jeffrey S.
2018-01-01
This article advocates that introductory statistics be taught by basing all calculations on a single simple margin-of-error formula and deriving all of the standard introductory statistical concepts (confidence intervals, significance tests, comparisons of means and proportions, etc) from that one formula. It is argued that this approach will…
Discontinuity formulas for multiparticle amplitudes
International Nuclear Information System (INIS)
Stapp, H.P.
1976-03-01
It is shown how discontinuity formulas for multiparticle scattering amplitudes are derived from unitarity and analyticity. The assumed analyticity property is the normal analytic structure, which was shown to be equivalent to the space-time macrocausality condition. The discontinuity formulas to be derived are the basis of multi-particle fixed-t dispersion relations
Dahlqvist, Per
1999-10-01
We estimate the error in the semiclassical trace formula for the Sinai billiard under the assumption that the largest source of error is due to penumbra diffraction: namely, diffraction effects for trajectories passing within a distance Ricons/Journals/Common/cdot" ALT="cdot" ALIGN="TOP"/>O((kR)-2/3) to the disc and trajectories being scattered in very forward directions. Here k is the momentum and R the radius of the scatterer. The semiclassical error is estimated by perturbing the Berry-Keating formula. The analysis necessitates an asymptotic analysis of very long periodic orbits. This is obtained within an approximation originally due to Baladi, Eckmann and Ruelle. We find that the average error, for sufficiently large values of kR, will exceed the mean level spacing.
Criteria for exponential asymptotic stability in the large of ...
African Journals Online (AJOL)
The purpose of this study is to provide necessary and sufficient conditions for exponential asymptotic stability in the large and uniform asymptotic stability of perturbations of linear systems with unbounded delays. A strong relationship is established between the two types of asymptotic stability. It is found that if the ...
Asymptotically anti-de Sitter spacetimes and scalar fields with a logarithmic branch
International Nuclear Information System (INIS)
Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge
2004-01-01
We consider a self-interacting scalar field whose mass saturates the Breitenlohner-Freedman bound, minimally coupled to Einstein gravity with a negative cosmological constant in D≥3 dimensions. It is shown that the asymptotic behavior of the metric has a slower fall-off than that of pure gravity with a localized distribution of matter, due to the back-reaction of the scalar field, which has a logarithmic branch decreasing as r -(D-1)/2 ln r for large radius r. We find the asymptotic conditions on the fields which are invariant under the same symmetry group as pure gravity with negative cosmological constant (conformal group in D-1 dimensions). The generators of the asymptotic symmetries are finite even when the logarithmic branch is considered but acquire, however, a contribution from the scalar field
Globally asymptotically stable analysis in a discrete time eco-epidemiological system
International Nuclear Information System (INIS)
Hu, Zengyun; Teng, Zhidong; Zhang, Tailei; Zhou, Qiming; Chen, Xi
2017-01-01
Highlights: • Dynamical behaviors of a discrete time eco-epidemiological system are discussed. • Global asymptotical stability of this system is obtained by an iteration scheme which can be expended to general dimensional discrete system. • More complex dynamical behaviors are obtained by numerical simulations. - Abstract: In this study, the dynamical behaviors of a discrete time eco-epidemiological system are discussed. The local stability, bifurcation and chaos are obtained. Moreover, the global asymptotical stability of this system is explored by an iteration scheme. The numerical simulations illustrate the theoretical results and exhibit the complex dynamical behaviors such as flip bifurcation, Hopf bifurcation and chaotic dynamical behaviors. Our main results provide an efficient method to analyze the global asymptotical stability for general three dimensional discrete systems.
Asymptotic sequences over ideals and projectively equivalent ideals with respect to modules
International Nuclear Information System (INIS)
Naghipour, R.; Sedghi, M.
2007-09-01
Let R be a commutative Noetherian ring, and let N be a non-zero finitely generated R-module. The purpose of this paper is to show that if I and J are projectively equivalent ideals w.r.t. N, then a sequence x := x 1 , . . . , x n of elements of R is an asymptotic sequence over I w.r.t. N if and only if it is an asymptotic sequence over J w.r.t. N. Also, it is shown that if R is local, then the lengths of all maximal asymptotic sequences over an ideal I w.r.t. N are the same. As a consequence we derive a generalization of Rees' theorem. (author)
Fisher information and asymptotic normality in system identification for quantum Markov chains
International Nuclear Information System (INIS)
Guta, Madalin
2011-01-01
This paper deals with the problem of estimating the coupling constant θ of a mixing quantum Markov chain. For a repeated measurement on the chain's output we show that the outcomes' time average has an asymptotically normal (Gaussian) distribution, and we give the explicit expressions of its mean and variance. In particular, we obtain a simple estimator of θ whose classical Fisher information can be optimized over different choices of measured observables. We then show that the quantum state of the output together with the system is itself asymptotically Gaussian and compute its quantum Fisher information, which sets an absolute bound to the estimation error. The classical and quantum Fisher information are compared in a simple example. In the vicinity of θ=0 we find that the quantum Fisher information has a quadratic rather than linear scaling in output size, and asymptotically the Fisher information is localized in the system, while the output is independent of the parameter.
Asymptotic symmetries in de Sitter and inflationary spacetimes
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Ricardo Z.; Sandora, McCullen; Sloth, Martin S., E-mail: ferreira@cp3.sdu.dk, E-mail: sandora@cp3.sdu.dk, E-mail: sloth@cp3.sdu.dk [CP3-Origins, Center for Cosmology and Particle Physics Phenomenology, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark)
2017-04-01
Soft gravitons produced by the expansion of de Sitter can be viewed as the Nambu-Goldstone bosons of spontaneously broken asymptotic symmetries of the de Sitter spacetime. We explicitly construct the associated charges, and show that acting with the charges on the vacuum creates a new state equivalent to a change in the local coordinates induced by the soft graviton. While the effect remains unobservable within the domain of a single observer where the symmetry is unbroken, this change is physical when comparing different asymptotic observers, or between a transformed and un-transformed initial state, consistent with the scale-dependent statistical anisotropies previously derived using semiclassical relations. We then compute the overlap, (0| 0'), between the unperturbed de Sitter vacuum |0), and the state | 0') obtained by acting N times with the charge. We show that when N→ M {sub p} {sup 2}/ H {sup 2} this overlap receives order one corrections and 0(0| 0')→ , which corresponds to an infrared perturbative breakdown after a time t {sub dS} ∼ M {sub p} {sup 2}/ H {sup 3} has elapsed, consistent with earlier arguments in the literature arguing for a perturbative breakdown on this timescale. We also discuss the generalization to inflation, and rederive the 3-point and one-loop consistency relations.
The Asymptotic Safety Scenario in Quantum Gravity.
Niedermaier, Max; Reuter, Martin
2006-01-01
The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.
Asymptotic properties of a simple random motion
International Nuclear Information System (INIS)
Ravishankar, K.
1988-01-01
A random walker in R/sup N/ is considered. At each step the walker picks a point in R/sup N/ from a fixed finite set of destination points. Having chosen the point, the walker moves a fraction r (r < 1) of the distance toward the point along a straight line. Assuming that the successive destination points are chosen independently, it is shown that the asymptotic distribution of the walker's position has the same mean as the destination point distribution. An estimate is obtained for the fraction of time the walker stays within a ball centered at the mean value for almost every destination sequence. Examples show that the asymptotic distribution could have intricate structure
Asymptotic mass degeneracies in conformal field theories
International Nuclear Information System (INIS)
Kani, I.; Vafa, C.
1990-01-01
By applying a method of Hardy and Ramanujan to characters of rational conformal field theories, we find an asymptotic expansion for degeneracy of states in the limit of large mass which is exact for strings propagating in more than two uncompactified space-time dimensions. Moreover we explore how the rationality of the conformal theory is reflected in the degeneracy of states. We also consider the one loop partition function for strings, restricted to physical states, for arbitrary (irrational) conformal theories, and obtain an asymptotic expansion for it in the limit that the torus degenerates. This expansion depends only on the spectrum of (physical and unphysical) relevant operators in the theory. We see how rationality is consistent with the smoothness of mass degeneracies as a function of moduli. (orig.)
Asymptotic normalization coefficients and astrophysical factors
International Nuclear Information System (INIS)
Mukhamedzhanov, A.M.; Azhari, A.; Clark, H.L.; Gagliardi, C.A.; Lui, Y.-W.; Sattarov, A.; Trache, L.; Tribble, R.E.; Burjan, V.; Kroha, V.; Carstoiu, F.
2000-01-01
The S factor for the direct capture reaction 7 Be(p,γ) 8 B can be found at astrophysical energies from the asymptotic normalization coefficients (ANC's) which provide the normalization of the tails of the overlap functions for 8 B → 7 Be + p. Peripheral transfer reactions offer a technique to determine these ANC's. Using this technique, the 10 B( 7 Be, 8 B) 9 Be and 14 N( 7 Be, 8 B) 13 C reactions have been used to measure the asymptotic normalization coefficient for 7 Be(p, γ) 8 B. These results provide an indirect determination of S 17 (0). Analysis of the existing 9 Be(p, γ) 10 B experimental data within the framework of the R-matrix method demonstrates that experimentally measured ANC's can provide a reasonable determination of direct radiative capture rates. (author)
The Asymptotic Safety Scenario in Quantum Gravity
Directory of Open Access Journals (Sweden)
Niedermaier Max
2006-12-01
Full Text Available The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.
Asymptotic adaptive bipartite entanglement-distillation protocol
International Nuclear Information System (INIS)
Hostens, Erik; Dehaene, Jeroen; De Moor, Bart
2006-01-01
We present an asymptotic bipartite entanglement-distillation protocol that outperforms all existing asymptotic schemes. This protocol is based on the breeding protocol with the incorporation of two-way classical communication. Like breeding, the protocol starts with an infinite number of copies of a Bell-diagonal mixed state. Breeding can be carried out as successive stages of partial information extraction, yielding the same result: one bit of information is gained at the cost (measurement) of one pure Bell state pair (ebit). The basic principle of our protocol is at every stage to replace measurements on ebits by measurements on a finite number of copies, whenever there are two equiprobable outcomes. In that case, the entropy of the global state is reduced by more than one bit. Therefore, every such replacement results in an improvement of the protocol. We explain how our protocol is organized as to have as many replacements as possible. The yield is then calculated for Werner states
The positive action conjecture and asymptotically euclidean metrics in quantum gravity
International Nuclear Information System (INIS)
Gibbons, G.W.; Pope, C.N.
1979-01-01
The positive action conjecture requires that the action of any asymptotically Euclidean 4-dimensional Riemannian metric be positive, vanishing if and only if the space is flat. Because any Ricci flat, asymptotically Euclidean metric has zero action and is local extremum of the action which is a local minimum at flat space, the conjecture requires that there are no Ricci flat asymptotically Euclidean metrics other than flat space, which would establish that flat space is the only local minimum. We prove this for metrics on R 4 and a large class of more complicated topologies and for self-dual metrics. We show that if Rsupμsubμ >= 0 there are no bound states of the Dirac equation and discuss the relevance to possible baryon non-conserving processes mediated by gravitational instantons. We conclude that these are forbidden in the lowest stationary phase approximation. We give a detailed discussion of instantons invariant under an SU(2) or SO(3) isometry group. We find all regular solutions, none of which is asymptotically Euclidean and all of which possess a further Killing vector. In an appendix we construct an approximate self-dual metric on K3 - the only simply connected compact manifold which admits a self-dual metric. (orig.) [de
Optimization of Parameters of Asymptotically Stable Systems
Directory of Open Access Journals (Sweden)
Anna Guerman
2011-01-01
Full Text Available This work deals with numerical methods of parameter optimization for asymptotically stable systems. We formulate a special mathematical programming problem that allows us to determine optimal parameters of a stabilizer. This problem involves solutions to a differential equation. We show how to chose the mesh in order to obtain discrete problem guaranteeing the necessary accuracy. The developed methodology is illustrated by an example concerning optimization of parameters for a satellite stabilization system.
Theorems for asymptotic safety of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Bond, Andrew D.; Litim, Daniel F. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)
2017-06-15
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated. (orig.)
Mass loss on the Asymptotic Giant Branch
Zijlstra, Albert
2006-01-01
Mass loss on the Asymptotic Giant Branch provides the origin of planetary nebulae. This paper reviews several relevant aspects of AGB evolution: pulsation properties, mass loss formalisms and time variable mass loss, evidence for asymmetries on the AGB, binarity, ISM interaction, and mass loss at low metallicity. There is growing evidence that mass loss on the AGB is already asymmetric, but with spherically symmetric velocity fields. The origin of the rings may be in pulsational instabilities...
Asymptotic elastic energy in simple metals
International Nuclear Information System (INIS)
Khalifeh, J.M.
1983-07-01
The asymptotic form of the elastic binding energy ΔEsup(as)(R) between two Mg atoms in Al is expressed as a product of a lattice Green function and the dipole force tensor P. The quantity P is obtained by a nearly free electron model in which the impurity effect is introduced by a screened Ashcroft pseudopotential characterized by an excess charge ΔZ and a core radius rsub(j). (author)
Superlocalization formulas and supersymmetric Yang-Mills theories
International Nuclear Information System (INIS)
Bruzzo, U.; Fucito, F.
2004-01-01
By using supermanifolds techniques we prove a generalization of the localization formula in equivariant cohomology which is suitable for studying supersymmetric Yang-Mills theories in terms of ADHM data. With these techniques one can compute the reduced partition functions of topological super-Yang-Mills theory with 4, 8 or 16 supercharges. More generally, the superlocalization formula can be applied to any topological field theory in any number of dimensions
Asymptotic safety of gravity with matter
Christiansen, Nicolai; Litim, Daniel F.; Pawlowski, Jan M.; Reichert, Manuel
2018-05-01
We study the asymptotic safety conjecture for quantum gravity in the presence of matter fields. A general line of reasoning is put forward explaining why gravitons dominate the high-energy behavior, largely independently of the matter fields as long as these remain sufficiently weakly coupled. Our considerations are put to work for gravity coupled to Yang-Mills theories with the help of the functional renormalization group. In an expansion about flat backgrounds, explicit results for beta functions, fixed points, universal exponents, and scaling solutions are given in systematic approximations exploiting running propagators, vertices, and background couplings. Invariably, we find that the gauge coupling becomes asymptotically free while the gravitational sector becomes asymptotically safe. The dependence on matter field multiplicities is weak. We also explain how the scheme dependence, which is more pronounced, can be handled without changing the physics. Our findings offer a new interpretation of many earlier results, which is explained in detail. The results generalize to theories with minimally coupled scalar and fermionic matter. Some implications for the ultraviolet closure of the Standard Model or its extensions are given.
Trace formulae for arithmetical systems
International Nuclear Information System (INIS)
Bogomolny, E.B.; Georgeot, B.; Giannoni, M.J.; Schmit, C.
1992-09-01
For quantum problems on the pseudo-sphere generated by arithmetic groups there exist special trace formulae, called trace formulae for Hecke operators, which permit the reconstruction of wave functions from the knowledge of periodic orbits. After a short discussion of this subject, the Hecke operators trace formulae are presented for the Dirichlet problem on the modular billiard, which is a prototype of arithmetical systems. The results of numerical computations for these semiclassical type relations are in good agreement with the directly computed eigenfunctions. (author) 23 refs.; 2 figs
Energy Technology Data Exchange (ETDEWEB)
Tachibana, Takahiro [Waseda Univ., Tokyo (Japan). Advanced Research Center for Science and Engineering
1997-07-01
Wapstra and Audi`s Table is famous for evaluation of experimental data of atomic nuclear masses (1993/1995 version) which estimated about 2000 kinds of nuclei. The error of atomic mass of formula is 0.3 MeV-0.8 MeV. Four kinds of atomic mass formula: JM (Jaenecke and Masson), TUYY (Tachibana, Uno, Yamada and Yamada), FRDM (Moeller, Nix, Myers and Swiatecki) and ETFSI (Aboussir, Pearson, Dutta and Tondeur) and their properties (number of parameter and error etc.) were explained. An estimation method of theoretical error of mass formula was presented. It was estimated by the theoretical error of other surrounding nuclei. (S.Y.)
Directory of Open Access Journals (Sweden)
Daniele Ribeiro de Araújo
2003-09-01
Full Text Available JUSTIFICATIVA E OBJETIVOS: O desenvolvimento de sistemas de liberação controlada tem sido alvo de pesquisas há pelo menos quatro décadas. Desde que foi sugerida sua aplicação na indústria farmacêutica, muitos resultados foram obtidos, especialmente na manipulação molecular de carreadores e no estudo de suas interações com as drogas encapsuladas. Esses novos carreadores têm a vantagem de contornar propriedades físico-químicas limitantes (como a solubilidade aquosa ou em membranas das drogas encapsuladas, melhorando assim a farmacodinâmica (potencialização do efeito terapêutico, farmacocinética (controle da absorção e distribuição tecidual e os efeitos toxicológicos (redução da toxicidade local e sistêmica das mesmas. Entre os principais carreadores, destacam-se os lipossomas e as ciclodextrinas, que vêm trazendo inúmeras vantagens no desenvolvimento de formulações para liberação controlada de anestésicos locais. Este trabalho de revisão objetiva descrever a interação de anestésicos locais com lipossomas ou ciclodextrinas, o desenvolvimento das pesquisas básica e clínica nessa área, além da aplicabilidade terapêutica dessas formulações. CONTEÚDO: Lipossomas têm a capacidade de veicular drogas em órgãos-alvo, disponibilizando apenas uma fração - liberação controlada - para o sítio de ação. Já as ciclodextrinas alteram a intensidade e a duração do efeitos das drogas através da baixa absorção sistêmica do complexo. Pesquisas básicas e clínicas apontam como vantagens do uso de anestésicos locais encapsulados em lipossomas ou complexados com ciclodextrinas a liberação lenta da droga que prolonga a duração da anestesia e reduz a toxicidade para os sistemas cardiovascular e nervoso central. CONCLUSÕES: Embora várias pesquisas ainda estejam em andamento, os sistemas de liberação controlada de anestésicos locais indicam uma nova direção no desenvolvimento de formulações anest
Asymptotic Co- and Post-seismic displacements in a homogeneous Maxwell sphere
Tang, He; Sun, Wenke
2018-05-01
The deformations of the Earth caused by internal and external forces are usually expressed through Green's functions or the superposition of normal modes, i.e. via numerical methods, which are applicable for computing both co- and post-seismic deformations. It is difficult to express these deformations in an analytical form, even for a uniform viscoelastic sphere. In this study, we present a set of asymptotic solutions for computing co- and post-seismic displacements; these solutions can be further applied to solving co- and post-seismic geoid, gravity, and strain changes. Expressions are derived for a uniform Maxwell Earth by combining the reciprocity theorem, which links earthquake, tidal, shear and loading deformations, with the asymptotic solutions of these three external forces (tidal, shear and loading) and analytical inverse Laplace transformation formulae. Since the asymptotic solutions are given in a purely analytical form without series summations or extra convergence skills, they can be practically applied in an efficient way, especially when computing post-seismic deformations and glacial isotactic adjustments of the Earth over long timescales.
International Nuclear Information System (INIS)
Mueller, J.W.
1975-01-01
The purpose of the present study is twofold. On the one hand, it should provide us with a deeper insight into the mechanism of these processes. On the other hand, we shall arrive at some new forms of asymptotic results not commonly known, in particular those pertaining to an extended dead time. In addition, the novel approach permits independent checking of earlier results (some of which had been at variance with previous claims). In view of the usually quite cumbersome arithmetic involved, such controls are certainly most welcome. In this first part all the relations concerning the asymptotic expectation values will be discussed; the second part will do the same for the variances. A more elegant treatment of these problems, based on some general asymptotic results for renewal processes of the type first derived by Smith must be postponed for the moment since the corresponding formulae for a modified process are not yet readily available. We hope to be able to fill this gap in a near future
Asymptotic solutions for flow in microchannels with ridged walls and arbitrary meniscus protrusion
Kirk, Toby
2017-11-01
Flow over structured surfaces exhibiting apparent slip, such as parallel ridges, have received much attention experimentally and numerically, but analytical and asymptotic solutions that account for the microstructure have so far been limited to unbounded geometries such as shear-driven flows. Analysis for channel flows has been limited to (close to) flat interfaces spanning the grooves between ridges, but in applications the interfaces (menisci) can highly protrude and have a significant impact on the apparent slip. In this presentation, we consider pressure-driven flow through a microchannel with longitudinal ridges patterning one or both walls. With no restriction on the meniscus protrusion, we develop explicit formulae for the slip length using a formal matched asymptotic expansion. Assuming the ratio of channel height to ridge period is large, the periodicity is confined to an inner layer close to the ridges, and the expansion is found to all algebraic orders. As a result, the error is exponentially small and, under a further ``diluteness'' assumption, the explicit formulae are compared to finite element solutions. They are found to have a very wide range of validity in channel height (even when the menisci can touch the opposing wall) and so are useful for practitioners.
Asymptotic Effectiveness of the Event-Based Sampling According to the Integral Criterion
Directory of Open Access Journals (Sweden)
Marek Miskowicz
2007-01-01
Full Text Available A rapid progress in intelligent sensing technology creates new interest in a development of analysis and design of non-conventional sampling schemes. The investigation of the event-based sampling according to the integral criterion is presented in this paper. The investigated sampling scheme is an extension of the pure linear send-on- delta/level-crossing algorithm utilized for reporting the state of objects monitored by intelligent sensors. The motivation of using the event-based integral sampling is outlined. The related works in adaptive sampling are summarized. The analytical closed-form formulas for the evaluation of the mean rate of event-based traffic, and the asymptotic integral sampling effectiveness, are derived. The simulation results verifying the analytical formulas are reported. The effectiveness of the integral sampling is compared with the related linear send-on-delta/level-crossing scheme. The calculation of the asymptotic effectiveness for common signals, which model the state evolution of dynamic systems in time, is exemplified.
FDA Abbott Infant Formula Recall
U.S. Department of Health & Human Services — On September 22, 2010, Abbott issued a voluntary recall of certain Similac powdered infant formula after identifying a common warehouse beetle (both larvae and...
Quadrature formulas for Fourier coefficients
Bojanov, Borislav; Petrova, Guergana
2009-01-01
We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node
Tsukamoto, Naoki
2018-03-01
The shadow of a black hole can be one of the strong observational evidences for stationary black holes. If we see shadows at the center of galaxies, we would say whether the observed compact objects are black holes. In this paper, we consider a formula for the contour of a shadow in an asymptotically-flat, stationary, and axisymmetric black hole spacetime. We show that the formula is useful for obtaining the contour of the shadow of several black holes such as the Kerr-Newman black hole and rotating regular black holes. Using the formula, we can obtain new examples of the contour of the shadow of rotating black holes if assumptions are satisfied.
Chiral symmetry breaking in asymptotically free and non-asymptotically free gauge theories
International Nuclear Information System (INIS)
Gusynin, V.P.; Miranskij, V.A.
1986-01-01
An essential distinction in the realization of the PCAC-dynamics in vector-like asymptotically free and non-asymptotically free (with a non-trival ultraviolet stable fixed point) gauge theories is revealed. For the latter theories an analytical expression for the condensate is obtained in the two-loop approximation and the arguments in support of a soft behaviour at small distances of composite operators are given. The problem of factorizing the low-energy region for the Wess-Zumino-Witten action is discussed
Asymptotic problems for stochastic partial differential equations
Salins, Michael
Stochastic partial differential equations (SPDEs) can be used to model systems in a wide variety of fields including physics, chemistry, and engineering. The main SPDEs of interest in this dissertation are the semilinear stochastic wave equations which model the movement of a material with constant mass density that is exposed to both determinstic and random forcing. Cerrai and Freidlin have shown that on fixed time intervals, as the mass density of the material approaches zero, the solutions of the stochastic wave equation converge uniformly to the solutions of a stochastic heat equation, in probability. This is called the Smoluchowski-Kramers approximation. In Chapter 2, we investigate some of the multi-scale behaviors that these wave equations exhibit. In particular, we show that the Freidlin-Wentzell exit place and exit time asymptotics for the stochastic wave equation in the small noise regime can be approximated by the exit place and exit time asymptotics for the stochastic heat equation. We prove that the exit time and exit place asymptotics are characterized by quantities called quasipotentials and we prove that the quasipotentials converge. We then investigate the special case where the equation has a gradient structure and show that we can explicitly solve for the quasipotentials, and that the quasipotentials for the heat equation and wave equation are equal. In Chapter 3, we study the Smoluchowski-Kramers approximation in the case where the material is electrically charged and exposed to a magnetic field. Interestingly, if the system is frictionless, then the Smoluchowski-Kramers approximation does not hold. We prove that the Smoluchowski-Kramers approximation is valid for systems exposed to both a magnetic field and friction. Notably, we prove that the solutions to the second-order equations converge to the solutions of the first-order equation in an Lp sense. This strengthens previous results where convergence was proved in probability.
Asymptotic density and the Ershov hierarchy
Downey, Rod; Jockusch, Carl; McNicholl, Timothy H.; Schupp, Paul
2013-01-01
We classify the asymptotic densities of the $\\Delta^0_2$ sets according to their level in the Ershov hierarchy. In particular, it is shown that for $n \\geq 2$, a real $r \\in [0,1]$ is the density of an $n$-c.e.\\ set if and only if it is a difference of left-$\\Pi_2^0$ reals. Further, we show that the densities of the $\\omega$-c.e.\\ sets coincide with the densities of the $\\Delta^0_2$ sets, and there are $\\omega$-c.e.\\ sets whose density is not the density of an $n$-c.e. set for any $n \\in \\ome...
Asymptotic freedom in extended conformal supergravities
International Nuclear Information System (INIS)
Fradkin, E.S.; Tseytlin, A.A.
1982-01-01
We present the calculation of the one-loop β-function in extended conformal supergravities. N = 1, 2, 3 theories (free or coupled to the Einstein supergravities) are found to the asymptotically free (like the N = 0 Weyl theory) while the N = 4 theory becomes finite under some plausible hypothesis. The results support the possibility to solve the problem of ghosts in these theories. The obtained sequence of SU(N) β-functions appears to be in remarkable correspondence with that for gauged O(N) supergravity theories. (orig.)
Asymptotically Free Natural Supersymmetric Twin Higgs Model
Badziak, Marcin; Harigaya, Keisuke
2018-05-01
Twin Higgs (TH) models explain the absence of new colored particles responsible for natural electroweak symmetry breaking (EWSB). All known ultraviolet completions of TH models require some nonperturbative dynamics below the Planck scale. We propose a supersymmetric model in which the TH mechanism is introduced by a new asymptotically free gauge interaction. The model features natural EWSB for squarks and gluino heavier than 2 TeV even if supersymmetry breaking is mediated around the Planck scale, and has interesting flavor phenomenology including the top quark decay into the Higgs boson and the up quark which may be discovered at the LHC.
Integrable theories that are asymptotically CFT
Evans, J M; Jonathan M Evans; Timothy J Hollowood
1995-01-01
A series of sigma models with torsion are analysed which generate their mass dynamically but whose ultra-violet fixed points are non-trivial conformal field theories -- in fact SU(2) WZW models at level k. In contrast to the more familiar situation of asymptotically free theories in which the fixed points are trivial, the sigma models considered here may be termed ``asymptotically CFT''. These theories have previously been conjectured to be quantum integrable; we confirm this by proposing a factorizable S-matrix to describe their infra-red behaviour and then carrying out a stringent test of this proposal. The test involves coupling the theory to a conserved charge and evaluating the response of the free-energy both in perturbation theory to one loop and directly from the S-matrix via the Thermodynamic Bethe Ansatz with a chemical potential at zero temperature. Comparison of these results provides convincing evidence in favour of the proposed S-matrix; it also yields the universal coefficients of the beta-func...
Asymptotic expansions for high-contrast elliptic equations
Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan
2014-01-01
In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.
Asymptotic expansions for high-contrast elliptic equations
Calo, Victor M.
2014-03-01
In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.
Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Esen, S; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jezabek, M; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, G; Lohn, S; Longstaff, I; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Manzali, M; Maratas, J; Marchand, J F; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Mountain, R; Muheim, F; Müller, K; Muresan, R; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spinella, F; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A
The polarisation of prompt [Formula: see text] mesons is measured by performing an angular analysis of [Formula: see text] decays using proton-proton collision data, corresponding to an integrated luminosity of 1.0[Formula: see text], collected by the LHCb detector at a centre-of-mass energy of 7 TeV. The polarisation is measured in bins of transverse momentum [Formula: see text] and rapidity [Formula: see text] in the kinematic region [Formula: see text] and [Formula: see text], and is compared to theoretical models. No significant polarisation is observed.
Coulomb string tension, asymptotic string tension, and the gluon chain
Greensite, Jeff; Szczepaniak, Adam P.
2014-01-01
We compute, via numerical simulations, the non-perturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.
Numerical integration of asymptotic solutions of ordinary differential equations
Thurston, Gaylen A.
1989-01-01
Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.
Asymptotic Theory for Regressions with Smoothly Changing Parameters
DEFF Research Database (Denmark)
Hillebrand, Eric Tobias; Medeiros, Marcelo C.; Xu, Junyue
We derive asymptotic properties of the quasi maximum likelihood estimator of smooth transition regressions when time is the transition variable. The consistency of the estimator and its asymptotic distribution are examined. It is shown that the estimator converges at the usual square-root-of-T rate...... and has an asymptotically normal distribution. Finite sample properties of the estimator are explored in simulations. We illustrate with an application to US inflation and output data....
Asymptotic theory for regressions with smoothly changing parameters
DEFF Research Database (Denmark)
Hillebrand, Eric; Medeiros, Marcelo; Xu, Junyue
2013-01-01
We derive asymptotic properties of the quasi maximum likelihood estimator of smooth transition regressions when time is the transition variable. The consistency of the estimator and its asymptotic distribution are examined. It is shown that the estimator converges at the usual pT-rate and has...... an asymptotically normal distribution. Finite sample properties of the estimator are explored in simulations. We illustrate with an application to US inflation and output data....
Energy Technology Data Exchange (ETDEWEB)
Bolotin, Sergey V [Steklov Mathematical Institute, Russian Academy of Sciences, Moscow (Russian Federation); Treschev, Dmitrii V [M. V. Lomonosov Moscow State University, Moscow (Russian Federation)
2010-07-27
In his study of periodic orbits of the three-body problem, Hill obtained a formula connecting the characteristic polynomial of the monodromy matrix of a periodic orbit with the infinite determinant of the Hessian of the action functional. A mathematically rigorous definition of the Hill determinant and a proof of Hill's formula were obtained later by Poincare. Here two multidimensional generalizations of Hill's formula are given: for discrete Lagrangian systems (symplectic twist maps) and for continuous Lagrangian systems. Additional aspects appearing in the presence of symmetries or reversibility are discussed. Also studied is the change of the Morse index of a periodic trajectory upon reduction of order in a system with symmetries. Applications are given to the problem of stability of periodic orbits. Bibliography: 34 titles.
On maximal surfaces in asymptotically flat space-times
International Nuclear Information System (INIS)
Bartnik, R.; Chrusciel, P.T.; O Murchadha, N.
1990-01-01
Existence of maximal and 'almost maximal' hypersurfaces in asymptotically flat space-times is established under boundary conditions weaker than those considered previously. We show in particular that every vacuum evolution of asymptotically flat data for Einstein equations can be foliated by slices maximal outside a spatially compact set and that every (strictly) stationary asymptotically flat space-time can be foliated by maximal hypersurfaces. Amongst other uniqueness results, we show that maximal hypersurface can be used to 'partially fix' an asymptotic Poincare group. (orig.)
Evaluating four readability formulas for Afrikaans.
Jansen, C. J. M.; Richards, Rose; Van Zyl, Liezl
2017-01-01
For almost a hundred years now, readability formulas have been used to measure how difficult it is to comprehend a given text. To date, four readability formulas have been developed for Afrikaans. Two such formulas were published by Van Rooyen (1986), one formula by McDermid Heyns (2007) and one
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Formulas. 5.27 Section 5.27 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LABELING AND ADVERTISING OF DISTILLED SPIRITS Formulas § 5.27 Formulas. Formulas are...
Asymptotic theory of double layer and shielding of electric field at the edge of illuminated plasma
Energy Technology Data Exchange (ETDEWEB)
Benilov, M. S. [Departamento de Física, CCCEE, Universidade da Madeira, Largo do Município, 9000 Funchal (Portugal); Thomas, D. M. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom)
2014-04-15
The method of matched asymptotic expansions is applied to the problem of a collisionless plasma generated by UV illumination localized in a central part of the plasma in the limiting case of small Debye length λ{sub D}. A second-approximation asymptotic solution is found for the double layer positioned at the boundary of the illuminated region and for the un-illuminated plasma for the plane geometry. Numerical calculations for different values of λ{sub D} are reported and found to confirm the asymptotic results. The net integral space charge of the double layer is asymptotically small, although in the plane geometry it is just sufficient to shield the ambipolar electric field existing in the illuminated region and thus to prevent it from penetrating into the un-illuminated region. The double layer has the same mathematical nature as the intermediate transition layer separating an active plasma and a collisionless sheath, and the underlying physics is also the same. In essence, the two layers represent the same physical object: a transonic layer.
Hall, Cameron L.
2010-10-14
In 1965, Armstrong and Head explored the problem of a pile-up of screw dislocations against a grain boundary. They used numerical methods to determine the positions of the dislocations in the pile-up and they were able to fit approximate formulae for the locations of the first and last dislocations. These formulae were used to gain insights into the Hall-Petch relationship. More recently, Voskoboinikov et al. used asymptotic techniques to study the equivalent problem of a pile-up of a large number of screw dislocations against a bimetallic interface. In this paper, we extend the work of Voskoboinikov et al. to construct systematic asymptotic expressions for the formulae proposed by Armstrong and Head. The further extension of these techniques to more general pile-ups is also outlined. As a result of this work, we show that a pile-up against a grain boundary can become equivalent to a pile-up against a locked dislocation in the case where the mismatch across the boundary is small. © 2010 Taylor & Francis.
Hall, Cameron L.
2010-01-01
In 1965, Armstrong and Head explored the problem of a pile-up of screw dislocations against a grain boundary. They used numerical methods to determine the positions of the dislocations in the pile-up and they were able to fit approximate formulae for the locations of the first and last dislocations. These formulae were used to gain insights into the Hall-Petch relationship. More recently, Voskoboinikov et al. used asymptotic techniques to study the equivalent problem of a pile-up of a large number of screw dislocations against a bimetallic interface. In this paper, we extend the work of Voskoboinikov et al. to construct systematic asymptotic expressions for the formulae proposed by Armstrong and Head. The further extension of these techniques to more general pile-ups is also outlined. As a result of this work, we show that a pile-up against a grain boundary can become equivalent to a pile-up against a locked dislocation in the case where the mismatch across the boundary is small. © 2010 Taylor & Francis.
Verma, Ram U; Seol, Youngsoo
2016-01-01
First a new notion of the random exponential Hanson-Antczak type [Formula: see text]-V-invexity is introduced, which generalizes most of the existing notions in the literature, second a random function [Formula: see text] of the second order is defined, and finally a class of asymptotically sufficient efficiency conditions in semi-infinite multi-objective fractional programming is established. Furthermore, several sets of asymptotic sufficiency results in which various generalized exponential type [Formula: see text]-V-invexity assumptions are imposed on certain vector functions whose components are the individual as well as some combinations of the problem functions are examined and proved. To the best of our knowledge, all the established results on the semi-infinite aspects of the multi-objective fractional programming are new, which is a significantly new emerging field of the interdisciplinary research in nature. We also observed that the investigated results can be modified and applied to several special classes of nonlinear programming problems.
Energy Technology Data Exchange (ETDEWEB)
Matsuoka, Leo, E-mail: leo-matsuoka@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, 739-8527 (Japan); Segawa, Etsuo [Graduate School of Information Sciences, Tohoku University, Aoba, Sendai 980-8579 (Japan); Yuki, Kenta [Graduate School of Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, 739-8527 (Japan); Konno, Norio [Department of Applied Mathematics, Faculty of Engineering, Yokohama National University, Hodogaya, Yokohama 240-8501 (Japan); Obata, Nobuaki [Graduate School of Information Sciences, Tohoku University, Aoba, Sendai 980-8579 (Japan)
2017-06-09
We performed a mathematical analysis of the time-dependent dynamics of a quantum-kicked rotor implemented in a diatomic molecule under the condition of ideal quantum resonance. We examined a model system featuring a diatomic molecule in a periodic train of terahertz pulses, regarding the molecule as a rigid rotor with the state-dependent transition moment and including the effect of the magnetic quantum number M. We derived the explicit expression for the asymptotic distribution of a rotational population by making the transition matrix correspondent with a sequence of ultraspherical polynomials. The mathematical results obtained were validated by numerical simulations. - Highlights: • The behavior of the molecular quantum-kicked rotor was mathematically investigated. • The matrix elements were made correspondent with the ultraspherical polynomials. • The explicit formula for asymptotic distribution was obtained. • Complete agreement with the numerical simulation was verified.
Delay-dependent asymptotic stability of a two-neuron system with different time delays
International Nuclear Information System (INIS)
Tu Fenghua; Liao Xiaofeng; Zhang Wei
2006-01-01
In this paper, we consider a two-neuron system with time-delayed connections between neurons. Based on the construction of Lyapunov functionals, we obtain sufficient criteria to ensure local and global asymptotic stability of the equilibrium of the neural network. The obtained conditions are shown to be less conservative and restrictive than those reported in the literature. Some examples are included to illustrate our results
Delay-Dependent Asymptotic Stability of Cohen-Grossberg Models with Multiple Time-Varying Delays
Directory of Open Access Journals (Sweden)
Xiaofeng Liao
2007-01-01
Full Text Available Dynamical behavior of a class of Cohen-Grossberg models with multiple time-varying delays is studied in detail. Sufficient delay-dependent criteria to ensure local and global asymptotic stabilities of the equilibrium of this network are derived by constructing suitable Lyapunov functionals. The obtained conditions are shown to be less conservative and restrictive than those reported in the known literature. Some numerical examples are included to demonstrate our results.
On the asymptotic form of the recursion method basis vectors for periodic Hamiltonians
International Nuclear Information System (INIS)
O'Reilly, E.P.; Weaire, D.
1984-01-01
The authors present the first detailed study of the recursion method basis vectors for the case of a periodic Hamiltonian. In the examples chosen, the probability density scales linearly with n as n → infinity, whenever the local density of states is bounded. Whenever it is unbounded and the recursion coefficients diverge, different scaling behaviour is found. These findings are explained and a scaling relationship between the asymptotic forms of the recursion coefficients and basis vectors is proposed. (author)
From asymptotic safety to dark energy
International Nuclear Information System (INIS)
Ahn, Changrim; Kim, Chanju; Linder, Eric V.
2011-01-01
We consider renormalization group flow applied to the cosmological dynamical equations. A consistency condition arising from energy-momentum conservation links the flow parameters to the cosmological evolution, restricting possible behaviors. Three classes of cosmological fixed points for dark energy plus a barotropic fluid are found: a dark energy dominated universe, which can be either accelerating or decelerating depending on the RG flow parameters, a barotropic dominated universe where dark energy fades away, and solutions where the gravitational and potential couplings cease to flow. If the IR fixed point coincides with the asymptotically safe UV fixed point then the dark energy pressure vanishes in the first class, while (only) in the de Sitter limit of the third class the RG cutoff scale becomes the Hubble scale.
Asymptotic theory of weakly dependent random processes
Rio, Emmanuel
2017-01-01
Presenting tools to aid understanding of asymptotic theory and weakly dependent processes, this book is devoted to inequalities and limit theorems for sequences of random variables that are strongly mixing in the sense of Rosenblatt, or absolutely regular. The first chapter introduces covariance inequalities under strong mixing or absolute regularity. These covariance inequalities are applied in Chapters 2, 3 and 4 to moment inequalities, rates of convergence in the strong law, and central limit theorems. Chapter 5 concerns coupling. In Chapter 6 new deviation inequalities and new moment inequalities for partial sums via the coupling lemmas of Chapter 5 are derived and applied to the bounded law of the iterated logarithm. Chapters 7 and 8 deal with the theory of empirical processes under weak dependence. Lastly, Chapter 9 describes links between ergodicity, return times and rates of mixing in the case of irreducible Markov chains. Each chapter ends with a set of exercises. The book is an updated and extended ...
Chiral fermions in asymptotically safe quantum gravity.
Meibohm, J; Pawlowski, J M
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Asymptotic stability of steady compressible fluids
Padula, Mariarosaria
2011-01-01
This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A h...
Asymptotic representation of relaxation oscillations in lasers
Grigorieva, Elena V
2017-01-01
In this book we analyze relaxation oscillations in models of lasers with nonlinear elements controlling light dynamics. The models are based on rate equations taking into account periodic modulation of parameters, optoelectronic delayed feedback, mutual coupling between lasers, intermodal interaction and other factors. With the aim to study relaxation oscillations we present the special asymptotic method of integration for ordinary differential equations and differential-difference equations. As a result, they are reduced to discrete maps. Analyzing the maps we describe analytically such nonlinear phenomena in lasers as multistability of large-amplitude relaxation cycles, bifurcations of cycles, controlled switching of regimes, phase synchronization in an ensemble of coupled systems and others. The book can be fruitful for students and technicians in nonlinear laser dynamics and in differential equations.
Asymptotically safe non-minimal inflation
Energy Technology Data Exchange (ETDEWEB)
Tronconi, Alessandro, E-mail: Alessandro.Tronconi@bo.infn.it [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46,40126 Bologna (Italy)
2017-07-01
We study the constraints imposed by the requirement of Asymptotic Safety on a class of inflationary models with an inflaton field non-minimally coupled to the Ricci scalar. The critical surface in the space of theories is determined by the improved renormalization group flow which takes into account quantum corrections beyond the one loop approximation. The combination of constraints deriving from Planck observations and those from theory puts severe bounds on the values of the parameters of the model and predicts a quite large tensor to scalar ratio. We finally comment on the dependence of the results on the definition of the infrared energy scale which parametrises the running on the critical surface.
UV conformal window for asymptotic safety
Bond, Andrew D.; Litim, Daniel F.; Vazquez, Gustavo Medina; Steudtner, Tom
2018-02-01
Interacting fixed points in four-dimensional gauge theories coupled to matter are investigated using perturbation theory up to three loop order. It is shown how fixed points, scaling exponents, and anomalous dimensions are obtained as a systematic power series in a small parameter. The underlying ordering principle is explained and contrasted with conventional perturbation theory and Weyl consistency conditions. We then determine the conformal window with asymptotic safety from the complete next-to-next-to-leading order in perturbation theory. Limits for the conformal window arise due to fixed point mergers, the onset of strong coupling, or vacuum instability. A consistent picture is uncovered by comparing various levels of approximation. The theory remains perturbative in the entire conformal window, with vacuum stability dictating the tightest constraints. We also speculate about a secondary conformal window at strong coupling and estimate its lower limit. Implications for model building and cosmology are indicated.
Grassmann scalar fields and asymptotic freedom
Energy Technology Data Exchange (ETDEWEB)
Palumbo, F [INFN, Laboratori Nazionali di Frascati, Rome (Italy)
1996-03-01
The authors extend previous results about scalar fields whose Fourier components are even elements of a Grassmann algebra with given index of nilpotency. Their main interest in particle physics is related to the possibility that they describe fermionic composites analogous to the Copper pairs of superconductivity. The authors evaluate the free propagators for arbitrary index of nilpotency and they investigate a {phi}{sup 4} model to one loop. Due to the nature of the integral over even Grassmann fields such as a model exists for repulsive as well as attractive self interaction. In the first case the {beta}-function is equal to that of the ordinary theory, while in the second one the model is asymptotically free. The bare mass has a peculiar dependence on the cutoff, being quadratically decreasing/increasing for attractive/repulsive self interaction.
Asymptotic methods in mechanics of solids
Bauer, Svetlana M; Smirnov, Andrei L; Tovstik, Petr E; Vaillancourt, Rémi
2015-01-01
The construction of solutions of singularly perturbed systems of equations and boundary value problems that are characteristic for the mechanics of thin-walled structures are the main focus of the book. The theoretical results are supplemented by the analysis of problems and exercises. Some of the topics are rarely discussed in the textbooks, for example, the Newton polyhedron, which is a generalization of the Newton polygon for equations with two or more parameters. After introducing the important concept of the index of variation for functions special attention is devoted to eigenvalue problems containing a small parameter. The main part of the book deals with methods of asymptotic solutions of linear singularly perturbed boundary and boundary value problems without or with turning points, respectively. As examples, one-dimensional equilibrium, dynamics and stability problems for rigid bodies and solids are presented in detail. Numerous exercises and examples as well as vast references to the relevant Russi...
Asymptotic Sharpness of Bounds on Hypertrees
Directory of Open Access Journals (Sweden)
Lin Yi
2017-08-01
Full Text Available The hypertree can be defined in many different ways. Katona and Szabó introduced a new, natural definition of hypertrees in uniform hypergraphs and investigated bounds on the number of edges of the hypertrees. They showed that a k-uniform hypertree on n vertices has at most (nk−1$\\left( {\\matrix{n \\cr {k - 1} } } \\right$ edges and they conjectured that the upper bound is asymptotically sharp. Recently, Szabó verified that the conjecture holds by recursively constructing an infinite sequence of k-uniform hypertrees and making complicated analyses for it. In this note we give a short proof of the conjecture by directly constructing a sequence of k-uniform k-hypertrees.
Asymptotic safety, singularities, and gravitational collapse
International Nuclear Information System (INIS)
Casadio, Roberto; Hsu, Stephen D.H.; Mirza, Behrouz
2011-01-01
Asymptotic safety (an ultraviolet fixed point with finite-dimensional critical surface) offers the possibility that a predictive theory of quantum gravity can be obtained from the quantization of classical general relativity. However, it is unclear what becomes of the singularities of classical general relativity, which, it is hoped, might be resolved by quantum effects. We study dust collapse with a running gravitational coupling and find that a future singularity can be avoided if the coupling becomes exactly zero at some finite energy scale. The singularity can also be avoided (pushed off to infinite proper time) if the coupling approaches zero sufficiently rapidly at high energies. However, the evolution deduced from perturbation theory still implies a singularity at finite proper time.
Asymptotic limits of a statistical transport description
International Nuclear Information System (INIS)
Malvagi, F.; Levermore, C.D.; Pomraning, G.C.; Department of Mathematics, University of Arizona, Tucson, AZ 85721)
1989-01-01
We consider three different asymptotic limits of a model describing linear particle transport in a stochastic medium consisting of two randomly mixed immiscible fluids. These three limits are: (1) the fluid packets are small compared to the particle mean free path in the packet; (2) a small amount of large cross section fluid is admixed with a large amount of small cross section fluid; and (3) the angular dependence of the intensity (angular flux) is nearly isotropic. The first two limits reduce the underlying model, which consists of two coupled transport equations, to a single transport equation of the usual form. The third limit yields a two-equation diffusion approximation, and a boundary layer analysis gives boundary conditions for these two coupled diffusion equations
Charge exchange with ion excitation: asymptotic theory
International Nuclear Information System (INIS)
Ivakin, I.A.; Karbovanets, M.I.; Ostrovskii, V.N.
1987-01-01
There is developed an asymptotic (with respect to the large internuclear separation R) theory for computing the matrix element of the exchange interaction between states of quasimolecules, which is responsible for charge transfer with ion excitation: B + +A→B+A + *. A semiclassical approximation is used, which enables one to apply the theory to processes with the participation of multiply charged ions. The case of s--s transitions for excitation of the ion A + →A + *, where it is appropriate to take into account the distortion of the wave functions of the ion A + by the particle B, is treated separately. Calculations of cross sections and comparison with the results of experiments for He + --Cd and Ne + --Mg collisions at thermal energies are given. It is shown that it is impossible to explain the experimental data by the interaction of terms of the quasimolecules at large R only, and a possible mechanism for populating at small R is proposed
Methods in half-linear asymptotic theory
Directory of Open Access Journals (Sweden)
Pavel Rehak
2016-10-01
Full Text Available We study the asymptotic behavior of eventually positive solutions of the second-order half-linear differential equation $$ (r(t|y'|^{\\alpha-1}\\hbox{sgn} y''=p(t|y|^{\\alpha-1}\\hbox{sgn} y, $$ where r(t and p(t are positive continuous functions on $[a,\\infty$, $\\alpha\\in(1,\\infty$. The aim of this article is twofold. On the one hand, we show applications of a wide variety of tools, like the Karamata theory of regular variation, the de Haan theory, the Riccati technique, comparison theorems, the reciprocity principle, a certain transformation of dependent variable, and principal solutions. On the other hand, we solve open problems posed in the literature and generalize existing results. Most of our observations are new also in the linear case.
Effective potentials in nonlinear polycrystals and quadrature formulae
Michel, Jean-Claude; Suquet, Pierre
2017-08-01
This study presents a family of estimates for effective potentials in nonlinear polycrystals. Noting that these potentials are given as averages, several quadrature formulae are investigated to express these integrals of nonlinear functions of local fields in terms of the moments of these fields. Two of these quadrature formulae reduce to known schemes, including a recent proposition (Ponte Castañeda 2015 Proc. R. Soc. A 471, 20150665 (doi:10.1098/rspa.2015.0665)) obtained by completely different means. Other formulae are also reviewed that make use of statistical information on the fields beyond their first and second moments. These quadrature formulae are applied to the estimation of effective potentials in polycrystals governed by two potentials, by means of a reduced-order model proposed by the authors (non-uniform transformation field analysis). It is shown how the quadrature formulae improve on the tangent second-order approximation in porous crystals at high stress triaxiality. It is found that, in order to retrieve a satisfactory accuracy for highly nonlinear porous crystals under high stress triaxiality, a quadrature formula of higher order is required.
3D face recognition with asymptotic cones based principal curvatures
Tang, Yinhang; Sun, Xiang; Huang, Di; Morvan, Jean-Marie; Wang, Yunhong; Chen, Liming
2015-01-01
The classical curvatures of smooth surfaces (Gaussian, mean and principal curvatures) have been widely used in 3D face recognition (FR). However, facial surfaces resulting from 3D sensors are discrete meshes. In this paper, we present a general framework and define three principal curvatures on discrete surfaces for the purpose of 3D FR. These principal curvatures are derived from the construction of asymptotic cones associated to any Borel subset of the discrete surface. They describe the local geometry of the underlying mesh. First two of them correspond to the classical principal curvatures in the smooth case. We isolate the third principal curvature that carries out meaningful geometric shape information. The three principal curvatures in different Borel subsets scales give multi-scale local facial surface descriptors. We combine the proposed principal curvatures with the LNP-based facial descriptor and SRC for recognition. The identification and verification experiments demonstrate the practicability and accuracy of the third principal curvature and the fusion of multi-scale Borel subset descriptors on 3D face from FRGC v2.0.
3D face recognition with asymptotic cones based principal curvatures
Tang, Yinhang
2015-05-01
The classical curvatures of smooth surfaces (Gaussian, mean and principal curvatures) have been widely used in 3D face recognition (FR). However, facial surfaces resulting from 3D sensors are discrete meshes. In this paper, we present a general framework and define three principal curvatures on discrete surfaces for the purpose of 3D FR. These principal curvatures are derived from the construction of asymptotic cones associated to any Borel subset of the discrete surface. They describe the local geometry of the underlying mesh. First two of them correspond to the classical principal curvatures in the smooth case. We isolate the third principal curvature that carries out meaningful geometric shape information. The three principal curvatures in different Borel subsets scales give multi-scale local facial surface descriptors. We combine the proposed principal curvatures with the LNP-based facial descriptor and SRC for recognition. The identification and verification experiments demonstrate the practicability and accuracy of the third principal curvature and the fusion of multi-scale Borel subset descriptors on 3D face from FRGC v2.0.
Combinatorial Quantum Field Theory and Gluing Formula for Determinants
Reshetikhin, N.; Vertman, B.
2015-01-01
We define the combinatorial Dirichlet-to-Neumann operator and establish a gluing formula for determinants of discrete Laplacians using a combinatorial Gaussian quantum field theory. In case of a diagonal inner product on cochains we provide an explicit local expression for the discrete
Cultivation of Agaricus bisporus on some compost formulas and ...
African Journals Online (AJOL)
Three compost formulas; wheat straw based and using different activator materials such as wheat brain, chicken manure, and pigeon manure were used for Agaricus bisporus cultivation. Locally available casing materials such as peat of Bolu, peat of Agacbasi, peat of Caykara, and their mixture (80:20; v:v) with perlite were ...
A quantum formulation of the Feynman-Kac formula
International Nuclear Information System (INIS)
Accardi, L.
1981-01-01
The author discusses a formulation, in the general setting of W*- (or C*)-algebras, of the classical Feynman-Kac formula. The equivalence, in the commutative case, of the present formulation and the usual one is based on the identification between stochastic processes and local algebras. (Auth.)
Numerical algorithms for uniform Airy-type asymptotic expansions
N.M. Temme (Nico)
1997-01-01
textabstractAiry-type asymptotic representations of a class of special functions are considered from a numerical point of view. It is well known that the evaluation of the coefficients of the asymptotic series near the transition point is a difficult problem. We discuss two methods for computing
H. David Politzer, Asymptotic Freedom, and Strong Interaction
dropdown arrow Site Map A-Z Index Menu Synopsis H. David Politzer, Asymptotic Freedom, and Strong Interaction Resources with Additional Information H. David Politzer Photo Credit: California Institute of Technology H. David Politzer has won the 2004 Nobel Prize in Physics 'for the discovery of asymptotic freedom
Conformal Phase Diagram of Complete Asymptotically Free Theories
DEFF Research Database (Denmark)
Pica, Claudio; Ryttov, Thomas A.; Sannino, Francesco
2017-01-01
function. We provide the general conditions that the beta function coefficients must abide for the theory to be completely asymptotically free while simultaneously possessing an infrared stable fixed point. We also uncover special trajectories in coupling space along which some couplings are both...... asymptotically safe and infrared conformal....
Regge asymptotics of scattering with flavour exchange in QCD
International Nuclear Information System (INIS)
Kirschner, R.
1994-06-01
The contribution to the perturbative Regge asymptotics of the exchange of two reggeized fermions with opposite helicity is investigated. The methods of conformal symmetry known for the case of gluon exchange are extended to this case where double-logarithmic contributions dominate the asymptotics. The Regge trajectories at large momentum transfer are calculated. (orig.)
Asymptotic expansions for high-contrast linear elasticity
Poveda, Leonardo A.; Huepo, Sebastian; Calo, Victor M.; Galvis, Juan
2015-01-01
We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.
Error estimates in horocycle averages asymptotics: challenges from string theory
Cardella, M.A.
2010-01-01
For modular functions of rapid decay, a classical result connects the error estimate in their long horocycle average asymptotic to the Riemann hypothesis. We study similar asymptotics, for modular functions with not that mild growing conditions, such as of polynomial growth and of exponential growth
Asymptotic representation theorems for poverty indices | Lo | Afrika ...
African Journals Online (AJOL)
Abstract. We set general conditions under which the general poverty index, which summarizes all the available indices, is asymptotically represented with some empirical processes. This representation theorem offers a general key, in most directions, for the asymptotic of the bulk of poverty indices and issues in poverty ...
Some asymptotic properties of functions holomorphic in tubular domains
International Nuclear Information System (INIS)
Zavialov, B.I.
1988-10-01
For the function holomorphic in curved tubular domain the connection between asymptotic behaviour of real part of its boundary value at a given point of base manifold and asymptotic behaviour of the whole function from the inside of this domain is studied. (author). 3 refs
Asymptotic expansions for high-contrast linear elasticity
Poveda, Leonardo A.
2015-03-01
We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.
Asymptotic time dependent neutron transport in multidimensional systems
International Nuclear Information System (INIS)
Nagy, M.E.; Sawan, M.E.; Wassef, W.A.; El-Gueraly, L.A.
1983-01-01
A model which predicts the asymptotic time behavior of the neutron distribution in multi-dimensional systems is presented. The model is based on the kernel factorization method used for stationary neutron transport in a rectangular parallelepiped. The accuracy of diffusion theory in predicting the asymptotic time dependence is assessed. The use of neutron pulse experiments for predicting the diffusion parameters is also investigated
Inverted hierarchy and asymptotic freedom in grand unified supersymmetric theories
International Nuclear Information System (INIS)
Aratyn, H.
1983-01-01
The interrelation between an inverted hierarchy mechanism and asymptotic freedom in supersymmetric theories is analyzed in two models for which we performed a detailed analysis of the effective potentials and effective couplings. We find it difficult to accommodate an inverted hierarchy together with asymptotic freedom for the matter-Yukawa couplings. (orig.)
Szegö Kernels and Asymptotic Expansions for Legendre Polynomials
Directory of Open Access Journals (Sweden)
Roberto Paoletti
2017-01-01
Full Text Available We present a geometric approach to the asymptotics of the Legendre polynomials Pk,n+1, based on the Szegö kernel of the Fermat quadric hypersurface, leading to complete asymptotic expansions holding on expanding subintervals of [-1,1].
On asymptotic continuity of functions of quantum states
International Nuclear Information System (INIS)
Synak-Radtke, Barbara; Horodecki, Michal
2006-01-01
A useful kind of continuity of quantum states functions in asymptotic regime is so-called asymptotic continuity. In this letter, we provide general tools for checking if a function possesses this property. First we prove equivalence of asymptotic continuity with so-called robustness under admixture. This allows us to show that relative entropy distance from a convex set including a maximally mixed state is asymptotically continuous. Subsequently, we consider arrowing-a way of building a new function out of a given one. The procedure originates from constructions of intrinsic information and entanglement of formation. We show that arrowing preserves asymptotic continuity for a class of functions (so-called subextensive ones). The result is illustrated by means of several examples. (letter to the editor)
Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices
Böttcher, A.; Bogoya, J. M.; Grudsky, S. M.; Maximenko, E. A.
2017-11-01
Analysis of the asymptotic behaviour of the spectral characteristics of Toeplitz matrices as the dimension of the matrix tends to infinity has a history of over 100 years. For instance, quite a number of versions of Szegő's theorem on the asymptotic behaviour of eigenvalues and of the so-called strong Szegő theorem on the asymptotic behaviour of the determinants of Toeplitz matrices are known. Starting in the 1950s, the asymptotics of the maximum and minimum eigenvalues were actively investigated. However, investigation of the individual asymptotics of all the eigenvalues and eigenvectors of Toeplitz matrices started only quite recently: the first papers on this subject were published in 2009-2010. A survey of this new field is presented here. Bibliography: 55 titles.
Asymptotic analysis of a von Koch beam
International Nuclear Information System (INIS)
Carpinteri, Alberto; Pugno, Nicola; Sapora, Alberto
2009-01-01
Fractal geometry is used in diverse research areas, being an useful tool in describing the mechanical behaviour of natural and man-made structures. In this paper, the structural behaviour of a von Koch cantilever beam is analyzed in the small deformations regime. Analytical recursive formulae for the strain energy scaling are derived, which have been found in good agreement with numerical simulations. Energy considerations suggest a peculiar scaling for the beam rigidity in order to prevent compliance divergence. The results are then extended to evaluate the stiffness matrix of a von Koch beam.
Proof of the holographic formula for entanglement entropy
International Nuclear Information System (INIS)
Fursaev, Dmitri V.
2006-01-01
Entanglement entropy for a spatial partition of a quantum system is studied in theories which admit a dual description in terms of the anti-de Sitter (AdS) gravity one dimension higher. A general proof of the holographic formula which relates the entropy to the area of a codimension 2 minimal hypersurface embedded in the bulk AdS space is given. The entanglement entropy is determined by a partition function which is defined as a path integral over Riemannian AdS geometries with non-trivial boundary conditions. The topology of the Riemannian spaces puts restrictions on the choice of the minimal hypersurface for a given boundary conditions. The entanglement entropy is also considered in Randall-Sundrum braneworld models where its asymptotic expansion is derived when the curvature radius of the brane is much larger than the AdS radius. Special attention is paid to the geometrical structure of anomalous terms in the entropy in four dimensions. Modification of the holographic formula by the higher curvature terms in the bulk is briefly discussed
Asymptotic functions of many variables and singular operations with Schwartz distributions
International Nuclear Information System (INIS)
Damyanov, B.P.
1987-11-01
A theory of the asymptotic functions for the case of many variables is presented. It is shown that the class F(R N ) of these generalized functions is closed in respect to the linear algebraic and analytic operations, multiplication as well as a set of linear and polynomial changes of the variables. The existence in F(R N ) of analogues (consistent with the linear operations) of the Schwartz distributions with point support is proved. In terms of these analogues, some formulae for singular products and changes of variables of the Dirac δ-function and its derivatives δ (i) (x), x is an element of R N , are given. (author). 14 refs
On Δβ and the search for asymptotic scaling in lattice gauge theory
International Nuclear Information System (INIS)
Petcher, D.
1986-01-01
An ansatz for the β-function of SU(3) lattice gauge theory in four dimensions whose parameters are determined by Monte Carlo data is used both to compare different sets of data for Δβ and to study systematic errors. The data for Δβ obtained from different values of the block-spin renormalization group scaling factor are shown to be compatible within statistical errors. However the data is easily consistent with sizeable deviations (ca. 30% or more) from the two-loop approximation to the renormalization group scaling formula for physical quantities in the region of coupling for which Δβ essentially takes on its asymptotic value. (orig.)
International Nuclear Information System (INIS)
Anderson, Roger W.; Aquilanti, Vincenzo; Silva Ferreira, Cristiane da
2008-01-01
Spin networks, namely, the 3nj symbols of quantum angular momentum theory and their generalizations to groups other than SU(2) and to quantum groups, permeate many areas of pure and applied science. The issues of their computation and characterization for large values of their entries are a challenge for diverse fields, such as spectroscopy and quantum chemistry, molecular and condensed matter physics, quantum computing, and the geometry of space time. Here we record progress both in their efficient calculation and in the study of the large j asymptotics. For the 9j symbol, a prototypical entangled network, we present and extensively check numerically formulas that illustrate the passage to the semiclassical limit, manifesting both the occurrence of disentangling and the discrete-continuum transition.
Asymptotic results for the semi-Markovian random walk with delay
International Nuclear Information System (INIS)
Khaniyev, T.A.; Aliyev, R.T.
2006-12-01
In this study, the semi-Markovian random walk with a discrete interference of chance (X(t) ) is considered and under some weak assumptions the ergodicity of this process is discussed. Characteristic function of the ergodic distribution of X(t) is expressed by means of the probability characteristics of the boundary functionals (N,S N ). Some exact formulas for first and second moments of ergodic distribution of the process X(t) are obtained when the random variable ζ 1 - s, which is describing a discrete interference of chance, has Gamma distribution on the interval [0, ∞) with parameter (α,λ) . Based on these results, the asymptotic expansions with three terms for the first two moments of the ergodic distribution of the process X(t) are obtained, as λ → 0. (author)
On the gravitational radiation formula
International Nuclear Information System (INIS)
Schaefer, G.; Dehnen, H.
1980-01-01
For electromagnetically as well as gravitationally bound quantum mechanical many-body systems the coefficients of absorption and induced emission of gravitational radiation are calculated in the first-order approximation. The results are extended subsequently to systems with arbitrary non-Coulomb-like two-particle interaction potentials;it is shown explicitly that in all cases the perturbation of the binding potentials of the bound systems by the incident gravitational wave field itself must be taken into account. With the help of the thermodynamic equilibrium of gravitational radiation and quantised matter, the coefficients for spontaneous emission of gravitational radiation are derived and the gravitational radiation formula for emission of gravitational quadrupole radiation by bound quantum mechanical many-body systems is given. According to the correspondence principle the present result is completely identical with the well known classical radiation formula, by which recent criticism against this formula is refuted. Finally the quantum mechanical absorption cross section for gravitational quadrupole radiation is deduced and compared with the corresponding classical expressions. As a special example the vibrating two-mass quadrupole is treated explicitly. (author)
Multiloop stringlike formulas for QED
International Nuclear Information System (INIS)
Lam, C.S.
1993-01-01
Multiloop gauge-theory amplitudes written in the Feynman-parameter representation are poised to take advantage of two important developments of the past decade: the spinor-helicity technique and the superstring reorganization. The former has been considered in a previous paper; the latter will be elaborated in this paper. We show here how to write multiloop stringlike formulas in the Feynman-parameter representation for any diagram in QED, including those involving other nonelectromagnetic interactions, provided the internal photon lines are not adjacent to any external photon line. The general connection between the Feynman-parameter approach and the superstring and/or first-quantized approach is discussed. In the special case of a one-loop multiphoton amplitude, these formulas reduce to the ones obtained by the superstring and the first-quantized methods. The stringlike formulas exhibit a simple gauge structure which makes the Ward-Takahashi identity apparent, and enables the integration-by-parts technique of Bern and Kosower to be applied, so that gauge-invariant parts can be extracted diagram by diagram with the seagull vertex neglected
Ren, Tao; Zhang, Chuan; Lin, Lin; Guo, Meiting; Xie, Xionghang
2014-01-01
We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms.
Directory of Open Access Journals (Sweden)
Tao Ren
2014-01-01
Full Text Available We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms.
Directory of Open Access Journals (Sweden)
V. P. Gribkova
2014-01-01
Full Text Available The paper offers a new method for approximate solution of one type of singular integral equations for elasticity theory which have been studied by other authors. The approximate solution is found in the form of asymptotic polynomial function of a low degree (first approximation based on the Chebyshev second order polynomial. Other authors have obtained a solution (only in separate points using a method of mechanical quadrature and though they used also the Chebyshev polynomial of the second order they applied another system of junctures which were used for the creation of the required formulas.The suggested method allows not only to find an approximate solution for the whole interval in the form of polynomial, but it also makes it possible to obtain a remainder term in the form of infinite expansion where coefficients are linear functional of the given integral equation and basis functions are the Chebyshev polynomial of the second order. Such presentation of the remainder term of the first approximation permits to find a summand of the infinite series, which will serve as a start for fulfilling the given solution accuracy. This number is a degree of the asymptotic polynomial (second approximation, which will give the approximation to the exact solution with the given accuracy. The examined polynomial functions tend asymptotically to the polynomial of the best uniform approximation in the space C, created for the given operator.The paper demonstrates a convergence of the approximate solution to the exact one and provides an error estimation. The proposed algorithm for obtaining of the approximate solution and error estimation is easily realized with the help of computing technique and does not require considerable preliminary preparation during programming.
Asymptotic states and the definition of the S-matrix in quantum gravity
International Nuclear Information System (INIS)
Wiesendanger, C
2013-01-01
Viewing gravitational energy–momentum p G μ as equal by observation, but different in essence from inertial energy–momentum p I μ naturally leads to the gauge theory of volume-preserving diffeomorphisms of an inner Minkowski space M 4 . The generalized asymptotic free scalar, Dirac and gauge fields in that theory are canonically quantized, the Fock spaces of stationary states are constructed and the gravitational limit—mapping the gravitational energy–momentum onto the inertial energy–momentum to account for their observed equality—is introduced. Next the S-matrix in quantum gravity is defined as the gravitational limit of the transition amplitudes of asymptotic in- to out-states in the gauge theory of volume-preserving diffeomorphisms. The so-defined S-matrix relates in- and out-states of observable particles carrying gravitational equal to inertial energy–momentum. Finally, generalized Lehmann–Symanzik–Zimmermann reduction formulae for scalar, Dirac and gauge fields are established which allow us to express S-matrix elements as the gravitational limit of truncated Fourier-transformed vacuum expectation values of time-ordered products of field operators of the interacting theory. Together with the generating functional of the latter established in Wiesendanger (2011 arXiv:1103.1012) any transition amplitude can in principle be computed consistently to any order in perturbative quantum gravity. (paper)
Hybrid resonance and long-time asymptotic of the solution to Maxwell's equations
Energy Technology Data Exchange (ETDEWEB)
Després, Bruno, E-mail: despres@ann.jussieu.fr [Laboratory Jacques Louis Lions, University Pierre et Marie Curie, Paris VI, Boîte courrier 187, 75252 Paris Cedex 05 (France); Weder, Ricardo, E-mail: weder@unam.mx [Departamento de Física Matemática, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Apartado Postal 20-126, DF 01000 (Mexico)
2016-03-22
We study the long-time asymptotic of the solutions to Maxwell's equation in the case of an upper-hybrid resonance in the cold plasma model. We base our analysis in the transfer to the time domain of the recent results of B. Després, L.M. Imbert-Gérard and R. Weder (2014) [15], where the singular solutions to Maxwell's equations in the frequency domain were constructed by means of a limiting absorption principle and a formula for the heating of the plasma in the limit of vanishing collision frequency was obtained. Currently there is considerable interest in these problems, in particular, because upper-hybrid resonances are a possible scenario for the heating of plasmas, and since they can be a model for the diagnostics involving wave scattering in plasmas. - Highlights: • The upper-hybrid resonance in the cold plasma model is considered. • The long-time asymptotic of the solutions to Maxwell's equations is studied. • A method based in a singular limiting absorption principle is proposed.
International Nuclear Information System (INIS)
Scott, Tony C; Aubert-Frecon, Monique; Hadinger, Gisele; Andrae, Dirk; Grotendorst, Johannes; III, John D Morgan
2004-01-01
We present a general procedure, based on the Holstein-Herring method, for calculating exactly the leading term in the exponentially small exchange energy splitting between two asymptotically degenerate states of a diatomic molecule or molecular ion. The general formulae we have derived are shown to reduce correctly to the previously known exact results for the specific cases of the lowest Σ and Π states of H + 2 . We then apply our general formulae to calculate the exchange energy splittings between the lowest states of the diatomic alkali cations K + 2 , Rb + 2 and Cs + 2 , which are isovalent to H + 2 . Our results are found to be in very good agreement with the best available experimental data and ab initio calculations
Asymptotics of quantum weighted Hurwitz numbers
Harnad, J.; Ortmann, Janosch
2018-06-01
This work concerns both the semiclassical and zero temperature asymptotics of quantum weighted double Hurwitz numbers. The partition function for quantum weighted double Hurwitz numbers can be interpreted in terms of the energy distribution of a quantum Bose gas with vanishing fugacity. We compute the leading semiclassical term of the partition function for three versions of the quantum weighted Hurwitz numbers, as well as lower order semiclassical corrections. The classical limit is shown to reproduce the simple single and double Hurwitz numbers studied by Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74). The KP-Toda τ-function that serves as generating function for the quantum Hurwitz numbers is shown to have the τ-function of Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74) as its leading term in the classical limit, and, with suitable scaling, the same holds for the partition function, the weights and expectations of Hurwitz numbers. We also compute the zero temperature limit of the partition function and quantum weighted Hurwitz numbers. The KP or Toda τ-function serving as generating function for the quantum Hurwitz numbers are shown to give the one for Belyi curves in the zero temperature limit and, with suitable scaling, the same holds true for the partition function, the weights and the expectations of Hurwitz numbers.
Asymptotic Solutions of Serial Radial Fuel Shuffling
Directory of Open Access Journals (Sweden)
Xue-Nong Chen
2015-12-01
Full Text Available In this paper, the mechanism of traveling wave reactors (TWRs is investigated from the mathematical physics point of view, in which a stationary fission wave is formed by radial fuel drifting. A two dimensional cylindrically symmetric core is considered and the fuel is assumed to drift radially according to a continuous fuel shuffling scheme. A one-group diffusion equation with burn-up dependent macroscopic coefficients is set up. The burn-up dependent macroscopic coefficients were assumed to be known as functions of neutron fluence. By introducing the effective multiplication factor keff, a nonlinear eigenvalue problem is formulated. The 1-D stationary cylindrical coordinate problem can be solved successively by analytical and numerical integrations for associated eigenvalues keff. Two representative 1-D examples are shown for inward and outward fuel drifting motions, respectively. The inward fuel drifting has a higher keff than the outward one. The 2-D eigenvalue problem has to be solved by a more complicated method, namely a pseudo time stepping iteration scheme. Its 2-D asymptotic solutions are obtained together with certain eigenvalues keff for several fuel inward drifting speeds. Distributions of the neutron flux, the neutron fluence, the infinity multiplication factor kinf and the normalized power are presented for two different drifting speeds.
ASYMPTOTIC STRUCTURE OF POYNTING-DOMINATED JETS
International Nuclear Information System (INIS)
Lyubarsky, Yuri
2009-01-01
In relativistic, Poynting-dominated outflows, acceleration and collimation are intimately connected. An important point is that the Lorentz force is nearly compensated by the electric force; therefore the acceleration zone spans a large range of scales. We derived the asymptotic equations describing relativistic, axisymmetric magnetohydrodynamic flows far beyond the light cylinder. These equations do not contain either intrinsic small scales (like the light cylinder radius) or terms that nearly cancel each other (like the electric and magnetic forces); therefore they could be easily solved numerically. They also suit well for qualitative analysis of the flow and, in many cases, they could even be solved analytically or semianalytically. We show that there are generally two collimation regimes. In the first regime, the residual of the hoop stress and the electric force is counterbalanced by the pressure of the poloidal magnetic field so that, at any distance from the source, the structure of the flow is the same as the structure of an appropriate cylindrical equilibrium configuration. In the second regime, the pressure of the poloidal magnetic field is negligibly small so that the flow could be conceived as composed from coaxial magnetic loops. In the two collimation regimes, the flow is accelerated in different ways. We study in detail the structure of jets confined by the external pressure with a power-law profile. In particular, we obtained simple scalings for the extent of the acceleration zone, for the terminal Lorentz factor, and for the collimation angle.
Asymptotic laws for random knot diagrams
Chapman, Harrison
2017-06-01
We study random knotting by considering knot and link diagrams as decorated, (rooted) topological maps on spheres and pulling them uniformly from among sets of a given number of vertices n, as first established in recent work with Cantarella and Mastin. The knot diagram model is an exciting new model which captures both the random geometry of space curve models of knotting as well as the ease of computing invariants from diagrams. We prove that unknot diagrams are asymptotically exponentially rare, an analogue of Sumners and Whittington’s landmark result for self-avoiding polygons. Our proof uses the same key idea: we first show that knot diagrams obey a pattern theorem, which describes their fractal structure. We examine how quickly this behavior occurs in practice. As a consequence, almost all diagrams are asymmetric, simplifying sampling from this model. We conclude with experimental data on knotting in this model. This model of random knotting is similar to those studied by Diao et al, and Dunfield et al.
Asymptotic estimation of reactor fueling optimal strategy
International Nuclear Information System (INIS)
Simonov, V.D.
1985-01-01
The problem of improving the technical-economic factors of operating. and designed nuclear power plant blocks by developino. internal fuel cycle strategy (reactor fueling regime optimization), taking into account energy system structural peculiarities altogether, is considered. It is shown, that in search of asymptotic solutions of reactor fueling planning tasks the model of fuel energy potential (FEP) is the most ssuitable and effective. FEP represents energy which may be produced from the fuel in a reactor with real dimensions and power, but with hypothetical fresh fuel supply, regime, providing smilar burnup of all the fuel, passing through the reactor, and continuous overloading of infinitely small fuel portion under fule power, and infinitely rapid mixing of fuel in the reactor core volume. Reactor fuel run with such a standard fuel cycle may serve as FEP quantitative measure. Assessment results of optimal WWER-440 reactor fresh fuel supply periodicity are given as an example. The conclusion is drawn that with fuel enrichment x=3.3% the run which is 300 days, is economically justified, taking into account that the cost of one energy unit production is > 3 cop/KW/h
Wall roughness induces asymptotic ultimate turbulence
Zhu, Xiaojue; Verschoof, Ruben A.; Bakhuis, Dennis; Huisman, Sander G.; Verzicco, Roberto; Sun, Chao; Lohse, Detlef
2018-04-01
Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor-Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.
Qualitative and Asymptotic Theory of Detonations
Faria, Luiz
2014-11-09
Shock waves in reactive media possess very rich dynamics: from formation of cells in multiple dimensions to oscillating shock fronts in one-dimension. Because of the extreme complexity of the equations of combustion theory, most of the current understanding of unstable detonation waves relies on extensive numerical simulations of the reactive compressible Euler/Navier-Stokes equations. Attempts at a simplified theory have been made in the past, most of which are very successful in describing steady detonation waves. In this work we focus on obtaining simplified theories capable of capturing not only the steady, but also the unsteady behavior of detonation waves. The first part of this thesis is focused on qualitative theories of detonation, where ad hoc models are proposed and analyzed. We show that equations as simple as a forced Burgers equation can capture most of the complex phenomena observed in detonations. In the second part of this thesis we focus on rational theories, and derive a weakly nonlinear model of multi-dimensional detonations. We also show, by analysis and numerical simulations, that the asymptotic equations provide good quantitative predictions.
Asymptotics of Heavy-Meson Form Factors
Grozin, A.G.; Grozin, Andrey G.; Neubert, Matthias
1997-01-01
Using methods developed for hard exclusive QCD processes, we calculate the asymptotic behaviour of heavy-meson form factors at large recoil. It is determined by the leading- and subleading-twist meson wave functions. For $1\\ll |v\\cdot v'|\\ll m_Q/\\Lambda$, the form factors are dominated by the Isgur--Wise function, which is determined by the interference between the wave functions of leading and subleading twist. At $|v\\cdot v'|\\gg m_Q/\\Lambda$, they are dominated by two functions arising at order $1/m_Q$ in the heavy-quark expansion, which are determined by the leading-twist wave function alone. The sum of these contributions describes the form factors in the whole region $|v\\cdot v'|\\gg 1$. As a consequence, there is an exact zero in the form factor for the scattering of longitudinally polarized $B^*$ mesons at some value $v\\cdot v'\\sim m_b/\\Lambda$, and an approximate zero in the form factor of $B$ mesons in the timelike region ($v\\cdot v'\\sim -m_b/\\Lambda$). We obtain the evolution equations and sum rules ...
Asymptotic scalings of developing curved pipe flow
Ault, Jesse; Chen, Kevin; Stone, Howard
2015-11-01
Asymptotic velocity and pressure scalings are identified for the developing curved pipe flow problem in the limit of small pipe curvature and high Reynolds numbers. The continuity and Navier-Stokes equations in toroidal coordinates are linearized about Dean's analytical curved pipe flow solution (Dean 1927). Applying appropriate scaling arguments to the perturbation pressure and velocity components and taking the limits of small curvature and large Reynolds number yields a set of governing equations and boundary conditions for the perturbations, independent of any Reynolds number and pipe curvature dependence. Direct numerical simulations are used to confirm these scaling arguments. Fully developed straight pipe flow is simulated entering a curved pipe section for a range of Reynolds numbers and pipe-to-curvature radius ratios. The maximum values of the axial and secondary velocity perturbation components along with the maximum value of the pressure perturbation are plotted along the curved pipe section. The results collapse when the scaling arguments are applied. The numerically solved decay of the velocity perturbation is also used to determine the entrance/development lengths for the curved pipe flows, which are shown to scale linearly with the Reynolds number.
Asymptotic conformal invariance in a non-Abelian Chern-Simons-matter model
Energy Technology Data Exchange (ETDEWEB)
Acebal, J.L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Campos e Particulas]. E-mail: acebal@cbpf.br
2002-08-01
One shows here the existence of solutions to the Callan-Symanzik equation for the non-Abelian SU(2) Chern-Simons-matter model which exhibits asymptotic conformal invariance to every order in perturbative theory. The conformal symmetry in the classical domain is shown to hold by means of a local criteria based on the trace of the energy-momentum tensor. By using recently exhibited regimes for the dependence between the several couplings in which the set of {beta}-functions vanish, the asymptotic conformal invariance of the model appears to be valid in the quantum domain. By considering the SU (n) case the possible non validity of the proof for a particular {eta} would be merely accidental. (author)
Black holes and asymptotics of 2+1 gravity coupled to a scalar field
International Nuclear Information System (INIS)
Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge
2002-01-01
We consider 2+1 gravity minimally coupled to a self-interacting scalar field. The case in which the fall-off of the fields at infinity is slower than that of a localized distribution of matter is analyzed. It is found that the asymptotic symmetry group remains the same as in pure gravity (i.e., the conformal group). The generators of the asymptotic symmetries, however, acquire a contribution from the scalar field, but the algebra of the canonical generators possesses the standard central extension. In this context, new massive black hole solutions with a regular scalar field are found for a one-parameter family of potentials. These black holes are continuously connected to the standard zero mass black hole
Asymptotically warped anti-de Sitter spacetimes in topologically massive gravity
International Nuclear Information System (INIS)
Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo
2011-01-01
Asymptotically warped AdS spacetimes in topologically massive gravity with negative cosmological constant are considered in the case of spacelike stretched warping, where black holes have been shown to exist. We provide a set of asymptotic conditions that accommodate solutions in which the local degree of freedom (the ''massive graviton'') is switched on. An exact solution with this property is explicitly exhibited and possesses a slower falloff than the warped AdS black hole. The boundary conditions are invariant under the semidirect product of the Virasoro algebra with a u(1) current algebra. We show that the canonical generators are integrable and finite. When the graviton is not excited, our analysis is compared and contrasted with earlier results obtained through the covariant approach to conserved charges. In particular, we find agreement with the conserved charges of the warped AdS black holes as well as with the central charges in the algebra.
Symmetry breaking and asymptotic freedom in colour SU(3) gauge models
International Nuclear Information System (INIS)
Ma, E.
1976-01-01
A class of quark models based on the colour gauge group SU(3) is shown to be asymptotically free despite the complete breakdown of local symmetry to guarantee infrared stability. The symmetry breakdown is achieved by the presence of elementary scalar fields either through the Higgs mechanism or dynamically as first proposed by Coleman and Weinberg. Asymptotic freedom is preserved by imposing eigenvalue conditions on the coupling constants as first proposed by Chang. New quark species must be present, but below their production threshold, colour can still be a global symmetry which is approximate under SU(3), but exact under SU(2). Among the many implications of this class of models is the possibility of producing isolated quarks and gluons of non-zero mass without altering the short-distance behaviour of the superstrong interaction which binds them. (Auth.)
Formulaic speech in disorders of language
Directory of Open Access Journals (Sweden)
Diana Sidtis
2014-04-01
Formulaic language studies remain less well recognized in language disorders. Profiles of differential formulaic language abilities in neurological disease have implications for cerebral models of language and for clinical evaluation and treatment of neurogenic language disorders.
Explicit formulas for Clebsch-Gordan coefficients
International Nuclear Information System (INIS)
Rudnicki-Bujnowski, G.
1975-01-01
The problem is to obtain explicit algebraic formulas of Clebsch-Gordan coefficients for high values of angular momentum. The method of solution is an algebraic method based on the Racah formula using the FORMAC programming language. (Auth.)
Talking from d'Alembert formula
International Nuclear Information System (INIS)
Liu Ruxun.
1989-11-01
In the paper, two new approaches to prove the famous d'Alembert formula are proposed, and some further extensions of the formula also advanced. Many interesting results and application prospects are discussed. (author). 2 refs, 3 figs
Infant Formula - Buying, Preparing, Storing, and Feeding
... 000806.htm Infant Formula - buying, preparing, storing, and feeding To use the sharing features on this page, ... brush to get at hard-to-reach places. Feeding Formula to Baby Here is a guide to ...
Simple and Clear Proofs of Stirling's Formula
Niizeki, Shozo; Araki, Makoto
2010-01-01
The purpose of our article is to show two simpler and clearer methods of proving Stirling's formula than the traditional and conventional ones. The distinction of our method is to use the simple trapezoidal formula.
Thickened infant formula: What to know
Salvatore, Silvia; Savino, Francesco; Singendonk, Maartje; Tabbers, Merit; Benninga, Marc A.; Staiano, Annamaria; Vandenplas, Yvan
2018-01-01
This study aimed to provide an overview of the characteristics of thickened formulas to aid health care providers manage infants with regurgitations. The indications, properties, and efficacy of different thickening agents and thickened formulas on regurgitation and gastroesophageal reflux in
Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, S; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alexandre, D; Alfaro Molina, R; Alici, A; Alkin, A; Alme, J; Alt, T; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; An, M; Andrei, C; Andrews, H A; Andronic, A; Anguelov, V; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Anwar, R; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Ball, M; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barioglio, L; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batista Camejo, A; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Beltran, L G E; Belyaev, V; Bencedi, G; Beole, S; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Blair, J T; Blau, D; Blume, C; Boca, G; Bock, F; Bogdanov, A; Boldizsár, L; Bombara, M; Bonomi, G; Bonora, M; Book, J; Borel, H; Borissov, A; Borri, M; Botta, E; Bourjau, C; Braun-Munzinger, P; Bregant, M; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buhler, P; Buitron, S A I; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Capon, A A; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Cerello, P; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Costanza, S; Crkovská, J; Crochet, P; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Souza, R D; Degenhardt, H F; Deisting, A; Deloff, A; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Di Ruzza, B; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Drozhzhova, T; Dubey, A K; Dubla, A; Ducroux, L; Duggal, A K; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erhardt, F; Espagnon, B; Esumi, S; Eulisse, G; Eum, J; Evans, D; Evdokimov, S; Fabbietti, L; Fabris, D; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Francisco, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gajdosova, K; Gallio, M; Galvan, C D; Gangadharan, D R; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Garg, K; Garg, P; Gargiulo, C; Gasik, P; Gauger, E F; Gay Ducati, M B; Germain, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Graczykowski, L K; Graham, K L; Greiner, L; Grelli, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grion, N; Gronefeld, J M; Grosa, F; Grosse-Oetringhaus, J F; Grosso, R; Gruber, L; Grull, F R; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Guzman, I B; Haake, R; Hadjidakis, C; Hamagaki, H; Hamar, G; Hamon, J C; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, F; Hess, B A; Hetland, K F; Hillemanns, H; Hippolyte, B; Hladky, J; Horak, D; Hosokawa, R; Hristov, P; Hughes, C; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Inaba, M; Ippolitov, M; Irfan, M; Isakov, V; Islam, M S; Ivanov, M; Ivanov, V; Izucheev, V; Jacak, B; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jahnke, C; Jakubowska, M J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jercic, M; Jimenez Bustamante, R T; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Ketzer, B; Mohisin Khan, M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Khatun, A; Khuntia, A; Kielbowicz, M M; Kileng, B; Kim, D W; Kim, D J; Kim, D; Kim, H; Kim, J S; Kim, J; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kundu, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lapidus, K; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lavicka, R; Lazaridis, L; Lea, R; Leardini, L; Lee, S; Lehas, F; Lehner, S; Lehrbach, J; Lemmon, R C; Lenti, V; Leogrande, E; León Monzón, I; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Litichevskyi, V; Ljunggren, H M; Llope, W J; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Loncar, P; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Lunardon, M; Luparello, G; Lupi, M; Lutz, T H; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martinengo, P; Martinez, J A L; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastroserio, A; Mathis, A M; Matyja, A; Mayer, C; Mazer, J; Mazzilli, M; Mazzoni, M A; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Mhlanga, S; Miake, Y; Mieskolainen, M M; Mihaylov, D; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Münning, K; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Myers, C J; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Naru, M U; Natal da Luz, H; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Nedosekin, A; Negrao De Oliveira, R A; Nellen, L; Nesbo, S V; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Ohlson, A; Okubo, T; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Ozdemir, M; Pachmayer, Y; Pacik, V; Pagano, D; Pagano, P; Paić, G; Pal, S K; Palni, P; Pan, J; Pandey, A K; Panebianco, S; Papikyan, V; Pappalardo, G S; Pareek, P; Park, J; Park, W J; Parmar, S; Passfeld, A; Pathak, S P; Paticchio, V; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Peng, X; Pereira, L G; Pereira Da Costa, H; Peresunko, D; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Pezzi, R P; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Poppenborg, H; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Pozdniakov, V; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Rana, D B; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Ratza, V; Ravasenga, I; Read, K F; Redlich, K; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rodríguez Cahuantzi, M; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Rokita, P S; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Rotondi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Rustamov, A; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Saha, S K; Sahlmuller, B; Sahoo, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Sandoval, A; Sarkar, D; Sarkar, N; Sarma, P; Sas, M H P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Scheid, H S; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schmidt, M O; Schmidt, M; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sett, P; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shangaraev, A; Sharma, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Soramel, F; Sorensen, S; Sozzi, F; Spiriti, E; Sputowska, I; Srivastava, B K; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Suzuki, K; Swain, S; Szabo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thakur, D; Thakur, S; Thomas, D; Tieulent, R; Tikhonov, A; Timmins, A R; Toia, A; Tripathy, S; Trogolo, S; Trombetta, G; Trubnikov, V; Trzaska, W H; Trzeciak, B A; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Umaka, E N; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vázquez Doce, O; Vechernin, V; Veen, A M; Velure, A; Vercellin, E; Vergara Limón, S; Vernet, R; Vértesi, R; Vickovic, L; Vigolo, S; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Virgili, T; Vislavicius, V; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Voscek, D; Vranic, D; Vrláková, J; Wagner, B; Wagner, J; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Willems, G A; Williams, M C S; Windelband, B; Witt, W E; Yalcin, S; Yang, P; Yano, S; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zaporozhets, S; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zimmermann, S; Zinovjev, G; Zmeskal, J
2017-01-01
The transverse momentum distributions of the strange and double-strange hyperon resonances ([Formula: see text], [Formula: see text]) produced in p-Pb collisions at [Formula: see text] TeV were measured in the rapidity range [Formula: see text] for event classes corresponding to different charged-particle multiplicity densities, [Formula: see text]d[Formula: see text]/d[Formula: see text]. The mean transverse momentum values are presented as a function of [Formula: see text]d[Formula: see text]/d[Formula: see text], as well as a function of the particle masses and compared with previous results on hyperon production. The integrated yield ratios of excited to ground-state hyperons are constant as a function of [Formula: see text]d[Formula: see text]/d[Formula: see text]. The equivalent ratios to pions exhibit an increase with [Formula: see text]d[Formula: see text]/d[Formula: see text], depending on their strangeness content.
Families of automorphic forms and the trace formula
Shin, Sug; Templier, Nicolas
2016-01-01
Featuring the work of twenty-three internationally-recognized experts, this volume explores the trace formula, spectra of locally symmetric spaces, p-adic families, and other recent techniques from harmonic analysis and representation theory. Each peer-reviewed submission in this volume, based on the Simons Foundation symposium on families of automorphic forms and the trace formula held in Puerto Rico in January-February 2014, is the product of intensive research collaboration by the participants over the course of the seven-day workshop. The goal of each session in the symposium was to bring together researchers with diverse specialties in order to identify key difficulties as well as fruitful approaches being explored in the field. The respective themes were counting cohomological forms, p-adic trace formulas, Hecke fields, slopes of modular forms, and orbital integrals.
FLUORINE IN ASYMPTOTIC GIANT BRANCH CARBON STARS REVISITED
International Nuclear Information System (INIS)
Abia, C.; Dominguez, I.; Recio-Blanco, A.; De Laverny, P.; Cristallo, S.; Straniero, O.
2009-01-01
A re-analysis of the fluorine abundance in three Galactic asymptotic giant branch (AGB) carbon stars (TX Psc, AQ Sgr, and R Scl) has been performed from the molecular HF (1-0) R9 line at 2.3358 μm. High resolution (R ∼ 50,000) and high signal-to-noise spectra obtained with the CRIRES spectrograph and the VLT telescope or from the NOAO archive (for TX Psc) have been used. Our abundance analysis uses the latest generation of MARCS model atmospheres for cool carbon-rich stars. Using spectral synthesis in local thermodynamic equilibrium, we derive for these stars fluorine abundances that are systematically lower by ∼0.8 dex in average with respect to the sole previous estimates by Jorissen et al. The possible reasons of this discrepancy are explored. We conclude that the difference may rely on the blending with C-bearing molecules (CN and C 2 ) that were not properly taken into account in the former study. The new F abundances are in better agreement with the prediction of full network stellar models of low-mass AGB stars. These models also reproduce the s-process elements distribution in the sampled stars. This result, if confirmed in a larger sample of AGB stars, might alleviate the current difficulty to explain the largest [F/O] ratios found by Jorissen et al. In particular, it may not be necessary to search for alternative nuclear chains affecting the production of F in AGB stars.
Bulk viscous matter-dominated Universes: asymptotic properties
Energy Technology Data Exchange (ETDEWEB)
Avelino, Arturo [Departamento de Física, Campus León, Universidad de Guanajuato, León, Guanajuato (Mexico); García-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Legaria del IPN, México D.F. (Mexico); Gonzalez, Tame [Departamento de Ingeniería Civil, División de Ingeniería, Universidad de Guanajuato, Guanajuato (Mexico); Nucamendi, Ulises [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040 Morelia, Michoacán (Mexico); Quiros, Israel, E-mail: avelino@fisica.ugto.mx, E-mail: rigarcias@ipn.mx, E-mail: tamegc72@gmail.com, E-mail: ulises@ifm.umich.mx, E-mail: iquiros6403@gmail.com [Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Corregidora 500 S.R., Universidad de Guadalajara, 44420 Guadalajara, Jalisco (Mexico)
2013-08-01
By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space — through the use of the dynamical systems tools — we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.
Asymptotic Solution of the Theory of Shells Boundary Value Problem
Directory of Open Access Journals (Sweden)
I. V. Andrianov
2007-01-01
Full Text Available This paper provides a state-of-the-art review of asymptotic methods in the theory of plates and shells. Asymptotic methods of solving problems related to theory of plates and shells have been developed by many authors. The main features of our paper are: (i it is devoted to the fundamental principles of asymptotic approaches, and (ii it deals with both traditional approaches, and less widely used, new approaches. The authors have paid special attention to examples and discussion of results rather than to burying the ideas in formalism, notation, and technical details.
Global asymptotic stability of density dependent integral population projection models.
Rebarber, Richard; Tenhumberg, Brigitte; Townley, Stuart
2012-02-01
Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.
Asymptotically double lacunry equivalent sequences defined by Orlicz functions
Directory of Open Access Journals (Sweden)
Ayhan Esi
2014-04-01
Full Text Available This paper presents the following definition which is natural combition of the definition for asymptotically equivalent and Orlicz function. The two nonnegative double sequences x=(x_{k,l} and y=(y_{k,l} are said to be M-asymptotically double equivalent to multiple L provided that for every ε>0, P-lim_{k,l}M(((|((x_{k,l}/(y_{k,l}-L|/ρ=0, for some ρ>0, (denoted by x∽y and simply M-asymptotically double equivalent if L=1. Also we give some new concepts related to this definition and some inclusion theorems.
Asymptotic failure rate of a continuously monitored system
International Nuclear Information System (INIS)
Grall, A.; Dieulle, L.; Berenguer, C.; Roussignol, M.
2006-01-01
This paper deals with a perfectly continuously monitored system which gradually and stochastically deteriorates. The system is renewed by a delayed maintenance operation, which is triggered when the measured deterioration level exceeds an alarm threshold. A mathematical model is developed to study the asymptotic behavior of the reliability function. A procedure is proposed which allows us to identify the asymptotic failure rate of the maintained system. Numerical experiments illustrate the efficiency of the proposed procedure and emphasize the relevance of the asymptotic failure rate as an interesting indicator for the evaluation of the control-limit preventive replacement policy
Asymptotic failure rate of a continuously monitored system
Energy Technology Data Exchange (ETDEWEB)
Grall, A. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: antoine.grall@utt.fr; Dieulle, L. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: laurence.dieulle@utt.fr; Berenguer, C. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: christophe.berenguer@utt.fr; Roussignol, M. [Laboratoire d' Analyse et de Mathematiques Appliquees, Universite de Marne la Vallee, 5 bd Descartes, Champs sur Marne, 77454 Marne la Vallee, Cedex 2 (France)]. E-mail: michel.roussignol@univ-mlv.fr
2006-02-01
This paper deals with a perfectly continuously monitored system which gradually and stochastically deteriorates. The system is renewed by a delayed maintenance operation, which is triggered when the measured deterioration level exceeds an alarm threshold. A mathematical model is developed to study the asymptotic behavior of the reliability function. A procedure is proposed which allows us to identify the asymptotic failure rate of the maintained system. Numerical experiments illustrate the efficiency of the proposed procedure and emphasize the relevance of the asymptotic failure rate as an interesting indicator for the evaluation of the control-limit preventive replacement policy.
Asymptotics for the Kummer function of Bose plasmas
International Nuclear Information System (INIS)
Kowalenko, V.; Frankel, N.E.
1993-01-01
The asymptotic expansions for the Kummer function obtained in the study of the linear response of magnetised Bose plasmas at T = 0 K are presented for large and small values of its parameter, thereby displaying the function's asymptotic non-uniformity. The large parameter expansion plays a determining role in the behaviour of these Bose systems in the limit that the external magnetic field B →0. This particular expansion is generalised herein and its validity tested by determining the asymptotic expansion for the Hurwitz zeta function. 18 refs., 1 tab., 2 figs
Relations Among Some Fuzzy Entropy Formulae
Institute of Scientific and Technical Information of China (English)
卿铭
2004-01-01
Fuzzy entropy has been widely used to analyze and design fuzzy systems, and many fuzzy entropy formulae have been proposed. For further in-deepth analysis of fuzzy entropy, the axioms and some important formulae of fuzzy entropy are introduced. Some equivalence results among these fuzzy entropy formulae are proved, and it is shown that fuzzy entropy is a special distance measurement.
27 CFR 25.57 - Formula information.
2010-04-01
... OF THE TREASURY LIQUORS BEER Miscellaneous Provisions Formulas § 25.57 Formula information. (a..., or after fermentation). (3) For formulas that include the use of flavors and other nonbeverage ingredients containing alcohol, you must explicitly indicate: (i) The volume and alcohol content of the beer...
Analogues of Euler and Poisson Summation Formulae
Indian Academy of Sciences (India)
... f ( n ) have been obtained in a unified manner, where (()) is a periodic complex sequence; () is the divisor function and () is a sufficiently smooth function on [, ]. We also state a generalised Abel's summation formula, generalised Euler's summation formula and Euler's summation formula in several variables.
27 CFR 5.26 - Formula requirements.
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Formula requirements. 5.26 Section 5.26 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LABELING AND ADVERTISING OF DISTILLED SPIRITS Formulas § 5.26 Formula...
Well-Tempered Metadynamics Converges Asymptotically
Dama, James F.; Parrinello, Michele; Voth, Gregory A.
2014-06-01
Metadynamics is a versatile and capable enhanced sampling method for the computational study of soft matter materials and biomolecular systems. However, over a decade of application and several attempts to give this adaptive umbrella sampling method a firm theoretical grounding prove that a rigorous convergence analysis is elusive. This Letter describes such an analysis, demonstrating that well-tempered metadynamics converges to the final state it was designed to reach and, therefore, that the simple formulas currently used to interpret the final converged state of tempered metadynamics are correct and exact. The results do not rely on any assumption that the collective variable dynamics are effectively Brownian or any idealizations of the hill deposition function; instead, they suggest new, more permissive criteria for the method to be well behaved. The results apply to tempered metadynamics with or without adaptive Gaussians or boundary corrections and whether the bias is stored approximately on a grid or exactly.
Asymptotic theory of circular polarization memory.
Dark, Julia P; Kim, Arnold D
2017-09-01
We establish a quantitative theory of circular polarization memory, which is the unexpected persistence of the incident circular polarization state in a strongly scattering medium. Using an asymptotic analysis of the three-dimensional vector radiative transfer equation (VRTE) in the limit of strong scattering, we find that circular polarization memory must occur in a boundary layer near the portion of the boundary on which polarized light is incident. The boundary layer solution satisfies a one-dimensional conservative scattering VRTE. Through a spectral analysis of this boundary layer problem, we introduce the dominant mode, which is the slowest-decaying mode in the boundary layer. To observe circular polarization memory for a particular set of optical parameters, we find that this dominant mode must pass three tests: (1) this dominant mode is given by the largest, discrete eigenvalue of a reduced problem that corresponds to Fourier mode k=0 in the azimuthal angle, and depends only on Stokes parameters U and V; (2) the polarization state of this dominant mode is largely circular polarized so that |V|≫|U|; and (3) the circular polarization of this dominant mode is maintained for all directions so that V is sign-definite. By applying these three tests to numerical calculations for monodisperse distributions of Mie scatterers, we determine the values of the size and relative refractive index when circular polarization memory occurs. In addition, we identify a reduced, scalar-like problem that provides an accurate approximation for the dominant mode when circular polarization memory occurs.
Atomic mass formula with linear shell terms
International Nuclear Information System (INIS)
Uno, Masahiro; Yamada, Masami; Ando, Yoshihira; Tachibana, Takahiro.
1981-01-01
An atomic mass formula is constructed in the form of a sum of gross terms and empirical linear shell terms. Values of the shell parameters are determined after the statistical method of Uno and Yamada, Which is characterized by inclusion of the error inherent in the mass formula. The resulting formula reproduces the input masses with the standard deviation of 393 keV. A prescription is given for estimating errors of calculated masses. The mass formula is compared with recent experimental data of Rb, Cs and Fr isotopes, which are not included in the input data, and also with the constant-shell-term formula of Uno and Yamada. (author)
On approach to double asymptotic scaling at low x
International Nuclear Information System (INIS)
Choudhury, D.K.
1994-10-01
We obtain the finite x correlations to the gluon structure function which exhibits double asymptotic scaling at low x. The technique used is the GLAP equation for gluon approximated at low x by a Taylor expansion. (author). 27 refs
Asymptotically anti-de Sitter spacetimes in topologically massive gravity
International Nuclear Information System (INIS)
Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo
2009-01-01
We consider asymptotically anti-de Sitter spacetimes in three-dimensional topologically massive gravity with a negative cosmological constant, for all values of the mass parameter μ (μ≠0). We provide consistent boundary conditions that accommodate the recent solutions considered in the literature, which may have a slower falloff than the one relevant for general relativity. These conditions are such that the asymptotic symmetry is in all cases the conformal group, in the sense that they are invariant under asymptotic conformal transformations and that the corresponding Virasoro generators are finite. It is found that, at the chiral point |μl|=1 (where l is the anti-de Sitter radius), allowing for logarithmic terms (absent for general relativity) in the asymptotic behavior of the metric makes both sets of Virasoro generators nonzero even though one of the central charges vanishes.
Confinement and asymptotic freedom seen with a golden eye
International Nuclear Information System (INIS)
Elokaby, A.
2009-01-01
The present short note is an attempt to reconcile the current conventional understanding of quarks confinement and asymptotic freedom with the results found by El Naschie using the exact renormalization equation of his quantum golden field theory.
Asymptotic distribution of products of sums of independent random ...
Indian Academy of Sciences (India)
integrable random variables (r.v.) are asymptotically log-normal. This fact ... the product of the partial sums of i.i.d. positive random variables as follows. .... Now define ..... by Henan Province Foundation and Frontier Technology Research Plan.
Preheating in an asymptotically safe quantum field theory
DEFF Research Database (Denmark)
Svendsen, Ole; Moghaddam, Hossein Bazrafshan; Brandenberger, Robert
2016-01-01
. High Energy Phys. 01 (2016) 081]. These theories allow for an inflationary phase in the very early universe. Inflation ends with a period of reheating. Since the models contain many scalar fields which are intrinsically coupled to the inflaton there is the possibility of parametric resonance...... fluctuations induced by the parametrically amplified entropy modes do not exceed the upper observational bounds puts a lower bound on the number of fields which the model followed in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F......We consider reheating in a class of asymptotically safe quantum field theories recently studied in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, J...
Pseudo-random number generator based on asymptotic deterministic randomness
Wang, Kai; Pei, Wenjiang; Xia, Haishan; Cheung, Yiu-ming
2008-06-01
A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks.
Pseudo-random number generator based on asymptotic deterministic randomness
International Nuclear Information System (INIS)
Wang Kai; Pei Wenjiang; Xia Haishan; Cheung Yiuming
2008-01-01
A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks
Asymptotic series and functional integrals in quantum field theory
International Nuclear Information System (INIS)
Shirkov, D.V.
1979-01-01
Investigations of the methods for analyzing ultra-violet and infrared asymptotics in the quantum field theory (QFT) have been reviewed. A powerful method of the QFT analysis connected with the group property of renormalized transformations has been created at the first stage. The result of the studies of the second period is the constructive solution of the problem of outgoing the framework of weak coupling. At the third stage of studies essential are the asymptotic series and functional integrals in the QFT, which are used for obtaining the asymptotic type of the power expansion coefficients in the coupling constant at high values of the exponents for a number of simple models. Further advance to higher values of the coupling constant requires surmounting the difficulties resulting from the asymptotic character of expansions and a constructive application in the region of strong coupling (g >> 1)
Asymptotically Almost Periodic Solutions of Evolution Equations in Banach Spaces
Ruess, W. M.; Phong, V. Q.
Tile linear abstract evolution equation (∗) u'( t) = Au( t) + ƒ( t), t ∈ R, is considered, where A: D( A) ⊂ E → E is the generator of a strongly continuous semigroup of operators in the Banach space E. Starting from analogs of Kadets' and Loomis' Theorems for vector valued almost periodic Functions, we show that if σ( A) ∩ iR is countable and ƒ: R → E is [asymptotically] almost periodic, then every bounded and uniformly continuous solution u to (∗) is [asymptotically] almost periodic, provided e-λ tu( t) has uniformly convergent means for all λ ∈ σ( A) ∩ iR. Related results on Eberlein-weakly asymptotically almost periodic, periodic, asymptotically periodic and C 0-solutions of (∗), as well as on the discrete case of solutions of difference equations are included.
Asymptotic behavior of quark masses induced by instantons
International Nuclear Information System (INIS)
Carneiro, C.E.I.; Frenkel, J.
1984-02-01
A simple argument which shows that the dynamical mass induced by interactions of massless quarks with pseudo-particle configurations, behaves like p -6 for asymptotically large quark momenta is presented. (Author) [pt
Robust methods and asymptotic theory in nonlinear econometrics
Bierens, Herman J
1981-01-01
This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate ...
International Nuclear Information System (INIS)
Timofeyuk, N.K.; Johnson, R.C.; Descouvemont, P.
2006-01-01
It has been realised recently that charge symmetry of the nucleon-nucleon interaction leads to a certain relation between Asymptotic Normalization Coefficients (ANCs) in mirror-conjugated one-nucleon overlap integrals. This relation can be approximated by a simple analytical formula that involves mirror neutron and proton separation energies, the core charge and the range of the strong nucleon-core interaction. We perform detailed microscopic multi-channel cluster model calculations and compare their predictions to the simple analytical formula as well as to calculations within a single-particle model in which mirror symmetry in potential wells and spectroscopic factors are assumed. The validity of the latter assumptions is verified on the basis of microscopic cluster model calculations. For mirror pairs in which one of the states is above the proton decay threshold, a link exists between the proton partial width and the ANC of the mirror neutron. This link is given by an approximate analytical formula similar to that for a bound-bound mirror pair. We compare predictions of this formula to the results of microscopic cluster model calculations. Mirror symmetry in ANCs can be used to predict cross sections for proton capture at stellar energies using neutron ANCs measured with stable or ''less radioactive'' beams. (orig.)
Explicit formulas for Neumann coefficients in the plane-wave geometry
International Nuclear Information System (INIS)
He Yanghui; Schwarz, John H.; Spradlin, Marcus; Volovich, Anastasia
2003-01-01
We obtain explicit formulas for the Neumann coefficients and associated quantities that appear in the three-string vertex for type IIB string theory in a plane-wave background, for any value of the mass parameter μ. The derivation involves constructing the inverse of a certain infinite-dimensional matrix, in terms of which the Neumann coefficients previously had been written only implicitly. We derive asymptotic expansions for large μ and find unexpectedly simple results, which are valid to all orders in 1/μ. Using BMN duality, these give predictions for certain gauge theory quantities to all orders in the modified 't Hooft coupling λ ' . A specific example is presented
Quadrupole formula for Kaluza-Klein modes in the braneworld
International Nuclear Information System (INIS)
Kinoshita, Shunichiro; Kudoh, Hideaki; Sendouda, Yuuiti; Sato, Katsuhiko
2005-01-01
The quadrupole formula in four-dimensional Einstein gravity is a useful tool to describe gravitational wave radiation. We derive the quadrupole formula for the Kaluza-Klein (KK) modes in the Randall-Sundrum braneworld model. The quadrupole formula provides a transparent representation of the exterior weak gravitational field induced by localized sources. We find that a general isolated dynamical source gives rise to the 1/r 2 correction to the leading 1/r gravitational field. We apply the formula to an evaluation of the effective energy carried by the KK modes from the viewpoint of an observer on the brane. Contrary to the ordinary gravitational waves (zero mode), the flux of the induced KK modes by the non-spherical part of the quadrupole moment vanishes at infinity and only the spherical part contributes to the flux. Since the effect of the KK modes appears in the linear order of the metric perturbations, the effective energy flux observed on the brane is not always positive, but can become negative depending on the motion of the localized sources
Asymptotically Safe Standard Model Extensions arXiv
Pelaggi, Giulio Maria; Salvio, Alberto; Sannino, Francesco; Smirnov, Juri; Strumia, Alessandro
We consider theories with a large number NF of charged fermions and compute the renormalisation group equations for the gauge, Yukawa and quartic couplings resummed at leading order in NF. We construct extensions of the Standard Model where SU(2) and/or SU(3) are asymptotically safe. When the same procedure is applied to the Abelian U(1) factor, we find that the Higgs quartic can not be made asymptotically safe and stay perturbative at the same time.
Non-Asymptotic Confidence Sets for Circular Means
Directory of Open Access Journals (Sweden)
Thomas Hotz
2016-10-01
Full Text Available The mean of data on the unit circle is defined as the minimizer of the average squared Euclidean distance to the data. Based on Hoeffding’s mass concentration inequalities, non-asymptotic confidence sets for circular means are constructed which are universal in the sense that they require no distributional assumptions. These are then compared with asymptotic confidence sets in simulations and for a real data set.
Global asymptotic stability of delayed Cohen-Grossberg neural networks
International Nuclear Information System (INIS)
Wu Wei; Cui Baotong; Huang Min
2007-01-01
In this letter, the global asymptotic stability of a class of Cohen-Grossberg neural networks with time-varying delays is discussed. A new set of sufficient conditions for the neural networks are proposed to guarantee the global asymptotic convergence. Our criteria represent an extension of the existing results in literatures. An example is also presented to compare our results with the previous results
Asymptotic freedom and the symplectic and G2 groups
International Nuclear Information System (INIS)
Chaichian, M; Kolmakov, Yu. N.; Nelipa, N. F.
1978-01-01
It is shown that the symplectic Sp(4), Sp(6) and the exceptional G 2 gauge field theories with complete Spontaneous symmetry breaking through the Higgs mechanism are not asymptotically free. This, together with earlier results for other groups, hints at the existence of a general theorem according to which it would no longer be possible for asymptotic freedom to coexist with the absence of infrared divergences. (author)
Discrete Weighted Pseudo Asymptotic Periodicity of Second Order Difference Equations
Directory of Open Access Journals (Sweden)
Zhinan Xia
2014-01-01
Full Text Available We define the concept of discrete weighted pseudo-S-asymptotically periodic function and prove some basic results including composition theorem. We investigate the existence, and uniqueness of discrete weighted pseudo-S-asymptotically periodic solution to nonautonomous semilinear difference equations. Furthermore, an application to scalar second order difference equations is given. The working tools are based on the exponential dichotomy theory and fixed point theorem.
Asymptotic stability of a genetic network under impulsive control
International Nuclear Information System (INIS)
Li Fangfei; Sun Jitao
2010-01-01
The study of the stability of genetic network is an important motif for the understanding of the living organism at both molecular and cellular levels. In this Letter, we provide a theoretical method for analyzing the asymptotic stability of a genetic network under impulsive control. And the sufficient conditions of its asymptotic stability under impulsive control are obtained. Finally, an example is given to illustrate the effectiveness of the obtained method.
Ratio asymptotics of Hermite-Pade polynomials for Nikishin systems
International Nuclear Information System (INIS)
Aptekarev, A I; Lopez, Guillermo L; Rocha, I A
2005-01-01
The existence of ratio asymptotics is proved for a sequence of multiple orthogonal polynomials with orthogonality relations distributed among a system of m finite Borel measures with support on a bounded interval of the real line which form a so-called Nikishin system. For m=1 this result reduces to Rakhmanov's celebrated theorem on the ratio asymptotics for orthogonal polynomials on the real line.
arXiv Asymptotically Safe Standard Model Extensions?
Pelaggi, Giulio Maria; Salvio, Alberto; Sannino, Francesco; Smirnov, Juri; Strumia, Alessandro
2018-05-15
We consider theories with a large number NF of charged fermions and compute the renormalization group equations for the gauge, Yukawa and quartic couplings resummed at leading order in 1/NF. We construct extensions of the standard model where SU(2) and/or SU(3) are asymptotically safe. When the same procedure is applied to the Abelian U(1) factor, we find that the Higgs quartic can not be made asymptotically safe and stay perturbative at the same time.
The asymptotic variance of departures in critically loaded queues
Al Hanbali, Ahmad; Mandjes, M.R.H.; Nazarathy, Y.; Whitt, W.
2011-01-01
We consider the asymptotic variance of the departure counting process D(t) of the GI/G/1 queue; D(t) denotes the number of departures up to time t. We focus on the case where the system load ϱ equals 1, and prove that the asymptotic variance rate satisfies limt→∞varD(t) / t = λ(1 - 2 / π)(ca2 +
Measurement of the [Formula: see text] meson lifetime using [Formula: see text] decays.
Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Cartelle, P Alvarez; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Gutierrez, O Aquines; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dorosz, P; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Hafkenscheid, T W; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Manzali, M; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spinella, F; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A
The lifetime of the [Formula: see text] meson is measured using semileptonic decays having a [Formula: see text] meson and a muon in the final state. The data, corresponding to an integrated luminosity of [Formula: see text], are collected by the LHCb detector in [Formula: see text] collisions at a centre-of-mass energy of 8 TeV. The measured lifetime is [Formula: see text]where the first uncertainty is statistical and the second is systematic.
Asymptotic theory of time varying networks with burstiness and heterogeneous activation patterns
Burioni, Raffaella; Ubaldi, Enrico; Vezzani, Alessandro
2017-05-01
The recent availability of large-scale, time-resolved and high quality digital datasets has allowed for a deeper understanding of the structure and properties of many real-world networks. The empirical evidence of a temporal dimension prompted the switch of paradigm from a static representation of networks to a time varying one. In this work we briefly review the framework of time-varying-networks in real world social systems, especially focusing on the activity-driven paradigm. We develop a framework that allows for the encoding of three generative mechanisms that seem to play a central role in the social networks’ evolution: the individual’s propensity to engage in social interactions, its strategy in allocate these interactions among its alters and the burstiness of interactions amongst social actors. The functional forms and probability distributions encoding these mechanisms are typically data driven. A natural question arises if different classes of strategies and burstiness distributions, with different local scale behavior and analogous asymptotics can lead to the same long time and large scale structure of the evolving networks. We consider the problem in its full generality, by investigating and solving the system dynamics in the asymptotic limit, for general classes of ties allocation mechanisms and waiting time probability distributions. We show that the asymptotic network evolution is driven by a few characteristics of these functional forms, that can be extracted from direct measurements on large datasets.
STARDUST FROM ASYMPTOTIC GIANT BRANCH STARS
International Nuclear Information System (INIS)
Gail, H.-P.; Zhukovska, S. V.; Hoppe, P.; Trieloff, M.
2009-01-01
The formation of dust in the outflows of low- and intermediate-mass stars on the first giant branch and asymptotic giant branch (AGB) is studied and the relative contributions of stars of different initial masses and metallicities to the interstellar medium (ISM) at the instant of solar system formation are derived. These predictions are compared with the characteristics of the parent stars of presolar dust grains found in primitive meteorites and interplanetary dust particles (IDPs) inferred from their isotopic compositions. For this purpose, model calculations for dust condensation in stellar outflows are combined with synthetic models of stellar evolution on the first giant branch and AGB and an evolution model of the Milky Way for the solar neighborhood. The dust components considered are olivine, pyroxene, carbon, SiC, and iron. The corresponding dust production rates are derived for the solar vicinity. From these rates and taking into account dust destruction by supernova shocks in the ISM, the contributions to the inventory of presolar dust grains in the solar system are derived for stars of different initial masses and metallicities. It is shown that stars on the first giant branch and the early AGB are not expected to form dust, in accord with astronomical observations. Dust formation is concentrated in the last phase of evolution, the thermally pulsing AGB. Due to the limited lifetime of dust grains in the ISM only parent stars from a narrow range of metallicities are expected to contribute to the population of presolar dust grains. Silicate and silicon carbide dust grains are predicted to come from parent stars with metallicities not less than about Z ∼ 0.008 (0.6 x solar). This metallicity limit is higher than that inferred from presolar SiC grain isotope data. The population of presolar carbon dust grains is predicted to originate from a wider range of metallicities, down to Z ∼ 0.004. Masses of AGB stars that produce C-rich dust are in the range
Loop quantum gravity in asymptotically flat spaces
International Nuclear Information System (INIS)
Arnsdorf, M.
2000-01-01
This thesis describes applications and extensions of the loop variable approach to non-perturbative quantum gravity. The common theme of the work presented, is the need to generalise loop quantum gravity to be applicable in cases where space is asymptotically flat, and no longer compact as is usually assumed. This is important for the study of isolated gravitational systems. It also presents a natural context in which to search for the semi-classical limit, one of the main outstanding problems in loop quantum gravity. In the first part of the thesis we study how isolated gravitational systems can be attributed particle-like properties. In particular, we show how spinorial states can arise in pure loop quantum gravity if spatial topology is non-trivial, thus confirming an old conjecture of Friedman and Sorkin. Heuristically, this corresponds to the idea that we can rotate isolated regions of spatial topology relative to the environment at infinity, and that only a 4π-rotation will take us back to the original configuration. To do this we extend the standard loop quantum gravity formalism by introducing a compactification of our non-compact spatial manifold, and study the knotting of embedded graphs. The second part of the thesis takes a more systematic approach to the study of loop quantum gravity on non-compact spaces. We look for new representations of the loop algebra, which give rise to quantum theories that are inequivalent to the standard one. These theories naturally describe excitations of a fiducial background state, which is specified via the choice of its vacuum expectation values. In particular, we can choose background states that describe the geometries of non-compact manifolds. We also discuss how suitable background states can be constructed that can approximate classical phase space data, in our case holonomies along embedded paths and geometrical quantities related to areas and volumes. These states extend the notion of the weave and provide a
Directory of Open Access Journals (Sweden)
Marunycz John D
2009-06-01
Full Text Available Abstract Background Parents who perceive common infant behaviors as formula intolerance-related often switch formulas without consulting a health professional. Up to one-half of formula-fed infants experience a formula change during the first six months of life. Methods The objective of this study was to assess discontinuance due to study physician-assessed formula intolerance in healthy, term infants. Infants (335 were randomized to receive either a standard intact cow milk protein formula (INTACT or a partially hydrolyzed cow milk protein formula (PH in a 60 day non-inferiority trial. Discontinuance due to study physician-assessed formula intolerance was the primary outcome. Secondary outcomes included number of infants who discontinued for any reason, including parent-assessed. Results Formula intolerance between groups (INTACT, 12.3% vs. PH, 13.7% was similar for infants who completed the study or discontinued due to study physician-assessed formula intolerance. Overall study discontinuance based on parent- vs. study physician-assessed intolerance for all infants (14.4 vs.11.1% was significantly different (P = 0.001. Conclusion This study demonstrated no difference in infant tolerance of intact vs. partially hydrolyzed cow milk protein formulas for healthy, term infants over a 60-day feeding trial, suggesting nonstandard partially hydrolyzed formulas are not necessary as a first-choice for healthy infants. Parents frequently perceived infant behavior as formula intolerance, paralleling previous reports of unnecessary formula changes. Trial Registration clinicaltrials.gov: NCT00666120
Magical Formulae for Market Futures
DEFF Research Database (Denmark)
Garsten, Christina; Sörbom, Adrienne
2016-01-01
Markets are often portrayed as being organized by way of rationalized knowledge, objective reasoning, and the fluctuations of demand and supply. In parallel, and often mixed with this modality of knowledge, magical beliefs and practices are prevalent. Business leaders, management consultants......, and financial advisors are often savvy in the art of creatively blending the ‘objective facts’ of markets with magical formulae, rites, and imaginaries of the future. This article looks at the World Economic Forum's yearly Davos meeting as a large-scale ritual that engages senior executives of global...... corporations, top-level politicians, and civil society leaders to contribute to the overall aim of ‘improving the world’. The Davos gathering has become a vital part of the business calendar, just as much for the intensity of its networking as for the declarations of action from the speakers’ podiums...
International Nuclear Information System (INIS)
Suhl, H.
1994-01-01
Much of condensed matter theory makes copious use of linear response theory, often not in the sense of macroscopically based regression relations of Onsager type, but in the sense of the Kubo formulation, which is formally based on microscopic equations of motion. Van Kampen has cast doubt on the validity of the latter approach, noting that the extreme sensitivity of the orbits of many-particle systems to small deviations invalidates a microscopically derived linear theory. Here I show that its validity can be reestablished by treating real time as a stochastic function of collision number, and deferring the return to real time to the end of the calculation. However, the constants in the final formula do change. ((orig.))
Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size.
Directory of Open Access Journals (Sweden)
Richard B King
Full Text Available Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females and annual growth increments of individuals of unknown age (1,152 males, 730 females. We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631-820 mm snout-vent length in males and from 835-1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further
Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size
King, Richard B.
2016-01-01
Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631–820 mm snout-vent length in males and from 835–1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation. PMID
Penggunaan Formula Mineral Lokal dalam Ransum Ayam Petelur
Directory of Open Access Journals (Sweden)
Khalil
2010-08-01
Full Text Available A mineral formula composed of three locally available materials: limestone originated from Bukit Kamang of West Sumatra, freshwater oyster shell and bone meal and fortified with micro minerals of Cu, Zn and I was investigated as mineral supplement for diet of laying hens. The experimental diets were: P0 (diet contained of 6% commercial mineral, P1 (diet contained of 6% local mineral, P2 (diet contained of 6% Bukit Kamangs’ limestone and P3 (diet contained of 6% fresh water oyster shell meal. The total of four experimental diets was then fed to 120 laying hens. The hens were divided into 3 groups based on body weight: heavy, medium and light. Each group was subdivided into 4 subgroups in accordance with number of treatments, so that each treatment consisted of 3 replicates containing of 10 hens. Parameters measured included: feed intake, hen-day egg production, feed conversion ratio (FCR, eggshell quality, mineral retention and mineral composition of tibia bone. Data were subjected to statistical analysis using variance analysis in a completely block design with 4 treatments and 3 blocks as replicates The results showed that the egg weight and eggshell qualities were found not significantly difference, but different mineral sources gave significant effect on egg production and bone mineralization. The laying performances and tibia bone weight of chickens fed diet mixed with the local mineral formula were found not significantly different with those fed diet mixed with commercial formula, but significantly better (P<0.05 than those of fed diet mixed with only limestone or oyster shell. Hens fed with diet mixed with Bukit Kamangs’ limestone showed better performances and heavier tibia bone than those fed with diet mixed with oyster shell. It was concluded that the local mineral formula could be used as sole mineral source for laying hens. The nutritive value of Bukit Kamangs’ limestone was better than that of fresh water oyster shell.
Mathematical Formula Search using Natural Language Queries
Directory of Open Access Journals (Sweden)
YANG, S.
2014-11-01
Full Text Available This paper presents how to search mathematical formulae written in MathML when given plain words as a query. Since the proposed method allows natural language queries like the traditional Information Retrieval for the mathematical formula search, users do not need to enter any complicated math symbols and to use any formula input tool. For this, formula data is converted into plain texts, and features are extracted from the converted texts. In our experiments, we achieve an outstanding performance, a MRR of 0.659. In addition, we introduce how to utilize formula classification for formula search. By using class information, we finally achieve an improved performance, a MRR of 0.690.
International Nuclear Information System (INIS)
Schubert, R.
1995-05-01
We investigate the behaviour of the remainder term R(E) in the Weyl formula {nvertical stroke E n ≤E}=Vol(M).E d/2 /[(4π) d/2 Γ(d/2+1)]+R(E) for the eigenvalues E n of a Schroedinger operator on a d-dimensional compact Riemannian manifold all of whose geodesics are closed. We show that R(E) is of the form E (d-1)/2 Θ(√E), where Θ(x) is an almost periodic function of Besicovitch class B 2 which has a limit distribution whose density is a box-shaped function. Furthermore we derive a trace formula and study higher order terms in the asymptotics of the coefficients related to the periodic orbits. The periodicity of the geodesic flow leads to a very simple structure of the trace formula which is the reason why the limit distribution can be computed explicitly. (orig.)
The Cardy-Verlinde formula and entropy of topological Kerr-Newman black holes in de Sitter spaces
International Nuclear Information System (INIS)
Setare, M.R.; Altaie, M.B.
2003-01-01
In this paper we show that the entropy of a cosmological horizon in 4-dimensional topological Kerr-Newman-de Sitter spaces can be described by the Cardy-Verlinde formula, which is supposed to be an entropy formula of conformal field theory in any number of dimensions. Furthermore, we find that the entropy of a black hole horizon can also be rewritten in terms of the Cardy-Verlinde formula for these black holes in de Sitter spaces, if we use the definition due to Abbott and Deser for conserved charges in asymptotically de Sitter spaces. Such results presume a well-defined dS/CFT correspondence, which has not yet attained the credibility of its AdS analogue. (orig.)
Gaspard, Pierre; Gilbert, Thomas
2017-04-01
We present a systematic computation of the heat conductivity of the Markov jump process modeling the energy exchanges in an array of locally confined hard spheres at the conduction threshold. Based on a variational formula (Sasada 2016 (arXiv:1611.08866)), explicit upper bounds on the conductivity are derived, which exhibit a rapid power-law convergence towards an asymptotic value. We thereby conclude that the ratio of the heat conductivity to the energy exchange frequency deviates from its static contribution by a small negative correction, its dynamic contribution, evaluated to be -0.000 373 in dimensionless units. This prediction is corroborated by kinetic Monte Carlo simulations which were substantially improved compared to earlier results.
Welfare Effects of Tariff Reduction Formulas
DEFF Research Database (Denmark)
Guldager, Jan G.; Schröder, Philipp J.H.
WTO negotiations rely on tariff reduction formulas. It has been argued that formula approaches are of increasing importance in trade talks, because of the large number of countries involved, the wider dispersion in initial tariffs (e.g. tariff peaks) and gaps between bound and applied tariff rate....... No single formula dominates for all conditions. The ranking of the three tools depends on the degree of product differentiation in the industry, and the achieved reduction in the average tariff....
A General Framework for Probabilistic Characterizing Formulae
DEFF Research Database (Denmark)
Sack, Joshua; Zhang, Lijun
2012-01-01
Recently, a general framework on characteristic formulae was proposed by Aceto et al. It offers a simple theory that allows one to easily obtain characteristic formulae of many non-probabilistic behavioral relations. Our paper studies their techniques in a probabilistic setting. We provide...... a general method for determining characteristic formulae of behavioral relations for probabilistic automata using fixed-point probability logics. We consider such behavioral relations as simulations and bisimulations, probabilistic bisimulations, probabilistic weak simulations, and probabilistic forward...
Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes
Cortazar, C.; Elgueta, M.; Quiros, F.; Wolanski, N.
2011-01-01
The paper deals with the asymptotic behavior of solutions to a non-local diffusion equation, $u_t=J*u-u:=Lu$, in an exterior domain, $\\Omega$, which excludes one or several holes, and with zero Dirichlet data on $\\mathbb{R}^N\\setminus\\Omega$. When the space dimension is three or more this behavior is given by a multiple of the fundamental solution of the heat equation away from the holes. On the other hand, if the solution is scaled according to its decay factor, close to the holes it behaves...
Jiao, Yong; Wakakuwa, Eyuri; Ogawa, Tomohiro
2018-02-01
We consider asymptotic convertibility of an arbitrary sequence of bipartite pure states into another by local operations and classical communication (LOCC). We adopt an information-spectrum approach to address cases where each element of the sequences is not necessarily a tensor power of a bipartite pure state. We derive necessary and sufficient conditions for the LOCC convertibility of one sequence to another in terms of spectral entropy rates of entanglement of the sequences. Based on these results, we also provide simple proofs for previously known results on the optimal rates of entanglement concentration and dilution of general sequences of bipartite pure states.
Girvin, Mike
2013-01-01
Designed with Excel gurus in mind, this handbook outlines how to create formulas that can be used to solve everyday problems with a series of data values that standard Excel formulas cannot or would be too arduous to attempt. Beginning with an introduction to array formulas, this manual examines topics such as how they differ from ordinary formulas, the benefits and drawbacks of their use, functions that can and cannot handle array calculations, and array constants and functions. Among the practical applications surveyed include how to extract data from tables and unique lists, how to get resu
Comparison of various HFB overlap formulae
International Nuclear Information System (INIS)
Oi, M.
2015-01-01
The nuclear many-body approach beyond the mean-field approximation demands overlap calculations of different many-body states. Norm overlaps between two different Hartree-Fock-Bogoliubov states can be calculated by means of the Onishi formula. However, the formula leaves the sign of the norm overlap undetermined. Several approaches have been proposed by Hara-Hayashi-Ring, Neergård-Wüst, and Robledo. In the present paper, the Neergård-Wüst formula is examined whether it is applicable to practical numerical calculations, although the formula was dismissed by many nuclear theoreticians so far for unknown reasons
Design Formula for Breakage of Tetrapods
DEFF Research Database (Denmark)
Burcharth, H. F.; Jensen, Jacob Birk; Liu, Z.
1995-01-01
The paper presents a design formula for Tetrapod armour on a 1:1.5 slope exposed to head-on random wave attack. The formula predicts the relative number of broken Tetrapods as function of: the mass of the Tetrapods, the concrete tensile strength and the wave height in front of the structure. Thus......, the formula addresses the observed problem of ensuring structural integrity of the slender types of non-reinforced armour units. The formula is based on results from small scale model tests with load-cell instrumented Tetrapods in which both the static, the quasi-static and the impact proportions of the loads...
Superfluid Kubo formulas from partition function
International Nuclear Information System (INIS)
Chapman, Shira; Hoyos, Carlos; Oz, Yaron
2014-01-01
Linear response theory relates hydrodynamic transport coefficients to equilibrium retarded correlation functions of the stress-energy tensor and global symmetry currents in terms of Kubo formulas. Some of these transport coefficients are non-dissipative and affect the fluid dynamics at equilibrium. We present an algebraic framework for deriving Kubo formulas for such thermal transport coefficients by using the equilibrium partition function. We use the framework to derive Kubo formulas for all such transport coefficients of superfluids, as well as to rederive Kubo formulas for various normal fluid systems
Large gauge symmetries and asymptotic states in QED
Energy Technology Data Exchange (ETDEWEB)
Gabai, Barak; Sever, Amit [School of Physics and Astronomy, Tel Aviv University,Ramat Aviv 69978 (Israel)
2016-12-19
Large Gauge Transformations (LGT) are gauge transformations that do not vanish at infinity. Instead, they asymptotically approach arbitrary functions on the conformal sphere at infinity. Recently, it was argued that the LGT should be treated as an infinite set of global symmetries which are spontaneously broken by the vacuum. It was established that in QED, the Ward identities of their induced symmetries are equivalent to the Soft Photon Theorem. In this paper we study the implications of LGT on the S-matrix between physical asymptotic states in massive QED. In appose to the naively free scattering states, physical asymptotic states incorporate the long range electric field between asymptotic charged particles and were already constructed in 1970 by Kulish and Faddeev. We find that the LGT charge is independent of the particles’ momenta and may be associated to the vacuum. The soft theorem’s manifestation as a Ward identity turns out to be an outcome of not working with the physical asymptotic states.
Asymptotic strength of thermal pulses in the helium shell burning
Energy Technology Data Exchange (ETDEWEB)
Fujimoto, M Y [Niigata Univ. (Japan); Sugimoto, D
1979-03-01
Secular growth in the strength of the recurrent thermal pulses of helium shell burning is discussed for the purpose of determining its asymptotic strength. It is shown that the pulse grows stronger if the helium zone has been cooled more before the initiation of the pulse. The secular growth of the pulse is related with the increasing degree of cooling. Thermal pulses are computed for an initial model corresponding to the maximum possible cooling, i.e., for a model in which the steady-state entropy distribution was realized in the helium zone. Such thermal pulses are shown to give an upper bound to the asymptotic strength, which is close enough to the asymptotic strength itself for relatively large core masses. Numerical results are given for the core mass of 1.07 M sub(sun), for which the asymptotic strength is found to be 9 x 10/sup 6/ L sub(sun). Thermal pulses are also computed for an initial model which has been cooled artificially more than the steady-state model. The first pulse results in a much greater strength than in the normal model, but a later pulse approaches the normal asymptotic value. Such models are also discussed in relation to the shell flashes on accreting white dwarfs.
Development of stress correction formulae for heat formed steel plates
Directory of Open Access Journals (Sweden)
Hyung Kyun Lim
2018-03-01
Full Text Available The heating process such as line heating, triangular heating and so on is widely used in plate forming of shell plates found in bow and stern area of outer shell in a ship. Local shrinkage during heating process is main physical phenomenon used in plate forming process. As it is well appreciated, the heated plate undergoes the change in material and mechanical properties around heated area due to the harsh thermal process. It is, therefore, important to investigate the changes of physical and mechanical properties due to heating process in order to use them plate the design stage of shell plates. This study is concerned with the development of formula of plastic hardening constitutive equation for steel plate on which line heating is applied. In this study the stress correction formula for the heated plate has been developed based on the numerical simulation of tension test with varying plate thickness and heating speed through the regression analysis of multiple variable case. It has been seen the developed formula shows very good agreement with results of numerical simulation. This paper ends with usefulness of the present formula in examining the structural characteristic of ship's hull. Keywords: Heat input, Heat transfer analysis, Line heating, Shell plate, Stress correction, Thermo-elasto-plastic analysis
Distribution of energy levels of quantum free particle on the Liouville surface and trace formulae
International Nuclear Information System (INIS)
Bleher, P.M.; Kosygin, D.V.; Sinai, Y.G.
1995-01-01
We consider the Weyl asymptotic formula [{E n ≤R 2 }=Area Q.R 2 /(4π)+n(R), for eigenvalues of the Laplace-Beltrami operator on a two-dimensional torus Q with a Liouville metric which is in a sense the most general case of an integrable metric. We prove that if the surface Q is non-degenerate then the remainder term n(R) has the form n(R)=R 1/2 θ(R), where θ(R) is an almost periodic function of the Besicovitch class B 1 , and the Fourier amplitudes and the Fourier frequencies of θ(R) can be expressed via lengths of closed geodesics on Q and other simple geometric characteristics of these geodesics. We prove then that if the surface Q is generic then the limit distribution of θ(R) has a density p(t), which is an entire function of t possessing an asymptotics on a real line, logp(t)∝-C ± t 4 as t→±∞. An explicit expression for the Fourier transform of p(t) via Fourier amplitudes of θ(R) is also given. We obtain the analogue of the Guillemin-Duistermaat trace formula for the Liouville surfaces and discuss its accuracy. (orig.)
Applications of Asymptotic Sampling on High Dimensional Structural Dynamic Problems
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Bucher, Christian
2011-01-01
The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has consid...... dimensional reliability problems in structural dynamics.......The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has...... is minimized. Next, the method is applied on different cases of linear and nonlinear systems with a large number of random variables representing the dynamic excitation. The results show that asymptotic sampling is capable of providing good approximations of low failure probability events for very high...
Contact mechanics of articular cartilage layers asymptotic models
Argatov, Ivan
2015-01-01
This book presents a comprehensive and unifying approach to articular contact mechanics with an emphasis on frictionless contact interaction of thin cartilage layers. The first part of the book (Chapters 1–4) reviews the results of asymptotic analysis of the deformational behavior of thin elastic and viscoelastic layers. A comprehensive review of the literature is combined with the authors’ original contributions. The compressible and incompressible cases are treated separately with a focus on exact solutions for asymptotic models of frictionless contact for thin transversely isotropic layers bonded to rigid substrates shaped like elliptic paraboloids. The second part (Chapters 5, 6, and 7) deals with the non-axisymmetric contact of thin transversely isotropic biphasic layers and presents the asymptotic modelling methodology for tibio-femoral contact. The third part of the book consists of Chapter 8, which covers contact problems for thin bonded inhomogeneous transversely isotropic elastic layers, and Cha...
Heat Kernel Asymptotics of Zaremba Boundary Value Problem
Energy Technology Data Exchange (ETDEWEB)
Avramidi, Ivan G. [Department of Mathematics, New Mexico Institute of Mining and Technology (United States)], E-mail: iavramid@nmt.edu
2004-03-15
The Zaremba boundary-value problem is a boundary value problem for Laplace-type second-order partial differential operators acting on smooth sections of a vector bundle over a smooth compact Riemannian manifold with smooth boundary but with discontinuous boundary conditions, which include Dirichlet boundary conditions on one part of the boundary and Neumann boundary conditions on another part of the boundary. We study the heat kernel asymptotics of Zaremba boundary value problem. The construction of the asymptotic solution of the heat equation is described in detail and the heat kernel is computed explicitly in the leading approximation. Some of the first nontrivial coefficients of the heat kernel asymptotic expansion are computed explicitly.
Asymptotic chaos expansions in finance theory and practice
Nicolay, David
2014-01-01
Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for risk management. In practice however, most SV models lack a closed form valuation for European options. This book presents the recently developed Asymptotic Chaos Expansions methodology (ACE) which addresses that issue. Indeed its generic algorithm provides, for any regular SV model, the pure asymptotes at any order for both the static and dynamic maps of the implied volatility surface. Furthermore, ACE is programmable and can complement other approximation methods. Hence it allows a systematic approach to designing, parameterising, calibrating and exploiting SV models, typically for Vega hedging or American Monte-Carlo. Asymptotic Chaos Expansions in Finance illustrates the ACE approach for single underlyings (suc...
Asymptotic Analysis in MIMO MRT/MRC Systems
Directory of Open Access Journals (Sweden)
Zhou Quan
2006-01-01
Full Text Available Through the analysis of the probability density function of the squared largest singular value of a complex Gaussian matrix at the origin and tail, we obtain two asymptotic results related to the multi-input multi-output (MIMO maximum-ratio-transmission/maximum-ratio-combining (MRT/MRC systems. One is the asymptotic error performance (in terms of SNR in a single-user system, and the other is the asymptotic system capacity (in terms of the number of users in the multiuser scenario when multiuser diversity is exploited. Similar results are also obtained for two other MIMO diversity schemes, space-time block coding and selection combining. Our results reveal a simple connection with system parameters, providing good insights for the design of MIMO diversity systems.
Watermelon configurations with wall interaction: exact and asymptotic results
Energy Technology Data Exchange (ETDEWEB)
Krattenthaler, C [Institut Camille Jordan, Universite Claude Bernard Lyon-I, 21, avenue Claude Bernard, F-69622 Villeurbanne Cedex (France)
2006-06-15
We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.
Watermelon configurations with wall interaction: exact and asymptotic results
International Nuclear Information System (INIS)
Krattenthaler, C
2006-01-01
We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature
Watermelon configurations with wall interaction: exact and asymptotic results
Krattenthaler, C.
2006-06-01
We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.
On the asymptotic stability of nonlinear mechanical switched systems
Platonov, A. V.
2018-05-01
Some classes of switched mechanical systems with dissipative and potential forces are considered. The case, where either dissipative or potential forces are essentially nonlinear, is studied. It is assumed that the zero equilibrium position of the system is asymptotically stable at least for one operating mode. We will look for sufficient conditions which guarantee the preservation of asymptotic stability of the equilibrium position under the switching of modes. The Lyapunov direct method is used. A Lyapunov function for considered system is constructed, which satisfies the differential inequality of special form for every operating mode. This inequality is nonlinear for the chosen mode with asymptotically stable equilibrium position, and it is linear for the rest modes. The correlations between the intervals of activity of the pointed mode and the intervals of activity of the rest modes are obtained which guarantee the required properties.
The unusual asymptotics of three-sided prudent polygons
International Nuclear Information System (INIS)
Beaton, Nicholas R; Guttmann, Anthony J; Flajolet, Philippe
2010-01-01
We have studied the area-generating function of prudent polygons on the square lattice. Exact solutions are obtained for the generating function of two-sided and three-sided prudent polygons, and a functional equation is found for four-sided prudent polygons. This is used to generate series coefficients in polynomial time, and these are analysed to determine the asymptotics numerically. A careful asymptotic analysis of the three-sided polygons produces a most surprising result. A transcendental critical exponent is found, and the leading amplitude is not quite a constant, but is a constant plus a small oscillatory component with an amplitude approximately 10 -8 times that of the leading amplitude. This effect cannot be seen by any standard numerical analysis, but it may be present in other models. If so, it changes our whole view of the asymptotic behaviour of lattice models. (fast track communication)
Polymers and Random graphs: Asymptotic equivalence to branching processes
International Nuclear Information System (INIS)
Spouge, J.L.
1985-01-01
In 1974, Falk and Thomas did a computer simulation of Flory's Equireactive RA/sub f/ Polymer model, rings forbidden and rings allowed. Asymptotically, the Rings Forbidden model tended to Stockmayer's RA/sub f/ distribution (in which the sol distribution ''sticks'' after gelation), while the Rings Allowed model tended to the Flory version of the RA/sub f/ distribution. In 1965, Whittle introduced the Tree and Pseudomultigraph models. We show that these random graphs generalize the Falk and Thomas models by incorporating first-shell substitution effects. Moreover, asymptotically the Tree model displays postgelation ''sticking.'' Hence this phenomenon results from the absence of rings and occurs independently of equireactivity. We also show that the Pseudomultigraph model is asymptotically identical to the Branching Process model introduced by Gordon in 1962. This provides a possible basis for the Branching Process model in standard statistical mechanics
International Nuclear Information System (INIS)
Thapliyal, Ashish V.; Smolin, John A.
2003-01-01
Reversible state transformations under entanglement nonincreasing operations give rise to entanglement measures. It is well known that asymptotic local operations and classical communication (LOCC) are required to get a simple operational measure of bipartite pure state entanglement. For bipartite mixed states and multipartite pure states it is likely that a more powerful class of operations will be needed. To this end more powerful versions of state transformations (or reducibilities), namely, LOCCq (asymptotic LOCC with a sublinear amount of quantum communication) and CLOCC (asymptotic LOCC with catalysis) have been considered in the literature. In this paper we show that LOCCq state transformations are only as powerful as asymptotic LOCC state transformations for multipartite pure states. The basic tool we use is multipartite entanglement gambling: Any pure multipartite entangled state can be transformed to an Einstein-Podolsky-Rosen pair shared by some pair of parties and any irreducible m-party pure state (m≥2) can be used to create any other state (pure or mixed) using LOCC. We consider applications of multipartite entanglement gambling to multipartite distillability and to characterizations of multipartite minimal entanglement generating sets. We briefly consider generalizations of this result to mixed states by defining the class of cat-distillable states, i.e., states from which cat states (vertical bar 0 xm >+vertical bar 1 xm >) may be distilled
Selected asymptotic methods with applications to electromagnetics and antennas
Fikioris, George; Bakas, Odysseas N
2013-01-01
This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include som
Asymptotic solutions of diffusion models for risk reserves
Directory of Open Access Journals (Sweden)
S. Shao
2003-01-01
Full Text Available We study a family of diffusion models for risk reserves which account for the investment income earned and for the inflation experienced on claim amounts. After we defined the process of the conditional probability of ruin over finite time and imposed the appropriate boundary conditions, classical results from the theory of diffusion processes turn the stochastic differential equation to a special class of initial and boundary value problems defined by a linear diffusion equation. Armed with asymptotic analysis and perturbation theory, we obtain the asymptotic solutions of the diffusion models (possibly degenerate governing the conditional probability of ruin over a finite time in terms of interest rate.
Convergence Theorem for Finite Family of Total Asymptotically Nonexpansive Mappings
Directory of Open Access Journals (Sweden)
E.U. Ofoedu
2015-11-01
Full Text Available In this paper we introduce an explicit iteration process and prove strong convergence of the scheme in a real Hilbert space $H$ to the common fixed point of finite family of total asymptotically nonexpansive mappings which is nearest to the point $u \\in H$. Our results improve previously known ones obtained for the class of asymptotically nonexpansive mappings. As application, iterative method for: approximation of solution of variational Inequality problem, finite family of continuous pseudocontractive mappings, approximation of solutions of classical equilibrium problems and approximation of solutions of convex minimization problems are proposed. Our theorems unify and complement many recently announced results.
Centrally extended symmetry algebra of asymptotically Goedel spacetimes
International Nuclear Information System (INIS)
Compere, Geoffrey; Detournay, Stephane
2007-01-01
We define an asymptotic symmetry algebra for three-dimensional Goedel spacetimes supported by a gauge field which turns out to be the semi-direct sum of the diffeomorphisms on the circle with two loop algebras. A class of fields admitting this asymptotic symmetry algebra and leading to well-defined conserved charges is found. The covariant Poisson bracket of the conserved charges is then shown to be centrally extended to the semi-direct sum of a Virasoro algebra and two affine algebras. The subsequent analysis of three-dimensional Goedel black holes indicates that the Virasoro central charge is negative
Asymptotic inverse periods of reflected reactors above prompt critical
International Nuclear Information System (INIS)
Spriggs, G.D.; Busch, R.D.
1995-01-01
It is commonly assumed that the kinetic behavior of reflected and unreflected reactors is identical. In particular, it is often accepted that a given reactivity change in either type of system will result in an identical asymptotic inverse period. This is generally true for reactivities below prompt critical. For reactivities above prompt critical, however, the asymptotic inverse period can vary in a highly nonlinear fashion with system reactivity depending on the reflector return fraction, the neutron lifetime in the core, and the neutron lifetime in the reflector
Self similar asymptotics of the drift ion acoustic waves
International Nuclear Information System (INIS)
Taranov, V.B.
2004-01-01
A 3D model for the coupled drift and ion acoustic waves is considered. It is shown that self-similar solutions can exist due to the symmetry extension in asymptotic regimes. The form of these solutions is determined in the presence of the magnetic shear as well as in the shear less case. Some of the most symmetric exact solutions are obtained explicitly. In particular, solutions describing asymptotics of zonal flow interaction with monochromatic waves are presented and corresponding frequency shifts are determined
Gravitational charges of transverse asymptotically AdS spacetimes
International Nuclear Information System (INIS)
Cebeci, Hakan; Sarioglu, Oezguer; Tekin, Bayram
2006-01-01
Using Killing-Yano symmetries, we construct conserved charges of spacetimes that asymptotically approach to the flat or anti-de Sitter spaces only in certain directions. In D dimensions, this allows one to define gravitational charges (such as mass and angular momenta densities) of p-dimensional branes/solitons or any other extended objects that curve the transverse space into an asymptotically flat or AdS one. Our construction answers the question of what kind of charges the antisymmetric Killing-Yano tensors lead to
Generalized heat kernel coefficients for a new asymptotic expansion
International Nuclear Information System (INIS)
Osipov, Alexander A.; Hiller, Brigitte
2003-01-01
The method which allows for asymptotic expansion of the one-loop effective action W = lndetA is formulated. The positively defined elliptic operator A = U + M2 depends on the external classical fields taking values in the Lie algebra of the internal symmetry group G. Unlike the standard method of Schwinger - DeWitt, the more general case with the nongenerate mass matrix M = diag(m1, m2, ...) is considered. The first coefficients of the new asymptotic series are calculated and their relationship with the Seeley - DeWitt coefficients is clarified
Global Asymptotic Stability of Switched Neural Networks with Delays
Directory of Open Access Journals (Sweden)
Zhenyu Lu
2015-01-01
Full Text Available This paper investigates the global asymptotic stability of a class of switched neural networks with delays. Several new criteria ensuring global asymptotic stability in terms of linear matrix inequalities (LMIs are obtained via Lyapunov-Krasovskii functional. And here, we adopt the quadratic convex approach, which is different from the linear and reciprocal convex combinations that are extensively used in recent literature. In addition, the proposed results here are very easy to be verified and complemented. Finally, a numerical example is provided to illustrate the effectiveness of the results.