WorldWideScience

Sample records for lobe connectivity correlates

  1. Visual interhemispheric communication and callosal connections of the occipital lobes.

    Science.gov (United States)

    Berlucchi, Giovanni

    2014-07-01

    Callosal connections of the occipital lobes, coursing in the splenium of the corpus callosum, have long been thought to be crucial for interactions between the cerebral hemispheres in vision in both experimental animals and humans. Yet the callosal connections of the temporal and parietal lobes appear to have more important roles than those of the occipital callosal connections in at least some high-order interhemispheric visual functions. The partial intermixing and overlap of temporal, parietal and occipital callosal connections within the splenium has made it difficult to attribute the effects of splenial pathological lesions or experimental sections to splenial components specifically related to select cortical areas. The present review describes some current contributions from the modern techniques for the tracking of commissural fibers within the living human brain to the tentative assignation of specific visual functions to specific callosal tracts, either occipital or extraoccipital. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Functional connectivity evidence of cortico-cortico inhibition in temporal lobe epilepsy.

    Science.gov (United States)

    Tracy, Joseph I; Osipowicz, Karol; Spechler, Philip; Sharan, Ashwini; Skidmore, Christopher; Doucet, Gaelle; Sperling, Michael R

    2014-01-01

    Epileptic seizures can initiate a neural circuit and lead to aberrant neural communication with brain areas outside the epileptogenic region. We focus on interictal activity in focal temporal lobe epilepsy and evaluate functional connectivity (FC) differences that emerge as function of bilateral versus strictly unilateral epileptiform activity. We assess the strength of FC at rest between the ictal and non-ictal temporal lobes, in addition to whole brain connectivity with the ictal temporal lobe. Results revealed strong connectivity between the temporal lobes for both patient groups, but this did not vary as a function of unilateral versus bilateral interictal status. Both the left and right unilateral temporal lobe groups showed significant anti-correlated activity in regions outside the epileptogenic temporal lobe, primarily involving the contralateral (non-ictal/non-pathologic) hemisphere, with precuneus involvement prominent. The bilateral groups did not show this contralateral anti-correlated activity. This anti-correlated connectivity may represent a form of protective and adaptive inhibition, helping to constrain epileptiform activity to the pathologic temporal lobe. The absence of this activity in the bilateral groups may be indicative of flawed inhibitory mechanisms, helping to explain their more widespread epileptiform activity. Our data suggest that the location and build up of epilepsy networks in the brain are not truly random, and are not limited to the formation of strictly epileptogenic networks. Functional networks may develop to take advantage of the regulatory function of structures such as the precuneus to instantiate an anti-correlated network, generating protective cortico-cortico inhibition for the purpose of limiting seizure spread or epileptogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  3. Default network connectivity in medial temporal lobe amnesia.

    Science.gov (United States)

    Hayes, Scott M; Salat, David H; Verfaellie, Mieke

    2012-10-17

    There is substantial overlap between the brain regions supporting episodic memory and the default network. However, in humans, the impact of bilateral medial temporal lobe (MTL) damage on a large-scale neural network such as the default mode network is unknown. To examine this issue, resting fMRI was performed with amnesic patients and control participants. Seed-based functional connectivity analyses revealed robust default network connectivity in amnesia in cortical default network regions such as medial prefrontal cortex, posterior medial cortex, and lateral parietal cortex, as well as evidence of connectivity to residual MTL tissue. Relative to control participants, decreased posterior cingulate cortex connectivity to MTL and increased connectivity to cortical default network regions including lateral parietal and medial prefrontal cortex were observed in amnesic patients. In contrast, somatomotor network connectivity was intact in amnesic patients, indicating that bilateral MTL lesions may selectively impact the default network. Changes in default network connectivity in amnesia were largely restricted to the MTL subsystem, providing preliminary support from MTL amnesic patients that the default network can be fractionated into functionally and structurally distinct components. To our knowledge, this is the first examination of the default network in amnesia.

  4. Thalamotemporal impairment in temporal lobe epilepsy: a combined MRI analysis of structure, integrity, and connectivity.

    Science.gov (United States)

    Keller, Simon S; O'Muircheartaigh, Jonathan; Traynor, Catherine; Towgood, Karren; Barker, Gareth J; Richardson, Mark P

    2014-02-01

    Thalamic abnormality in temporal lobe epilepsy (TLE) is well known from imaging studies, but evidence is lacking regarding connectivity profiles of the thalamus and their involvement in the disease process. We used a novel multisequence magnetic resonance imaging (MRI) protocol to elucidate the relationship between mesial temporal and thalamic pathology in TLE. For 23 patients with TLE and 23 healthy controls, we performed T1 -weighted (for analysis of tissue structure), diffusion tensor imaging (tissue connectivity), and T1 and T2 relaxation (tissue integrity) MRI across the whole brain. We used connectivity-based segmentation to determine connectivity patterns of thalamus to ipsilateral cortical regions (occipital, parietal, prefrontal, postcentral, precentral, and temporal). We subsequently determined volumes, mean tractography streamlines, and mean T1 and T2 relaxometry values for each thalamic segment preferentially connecting to a given cortical region, and of the hippocampus and entorhinal cortex. As expected, patients had significant volume reduction and increased T2 relaxation time in ipsilateral hippocampus and entorhinal cortex. There was bilateral volume loss, mean streamline reduction, and T2 increase of the thalamic segment preferentially connected to temporal lobe, corresponding to anterior, dorsomedial, and pulvinar thalamic regions, with no evidence of significant change in any other thalamic segments. Left and right thalamotemporal segment volume and T2 were significantly correlated with volume and T2 of ipsilateral (epileptogenic), but not contralateral (nonepileptogenic), mesial temporal structures. These convergent and robust data indicate that thalamic abnormality in TLE is restricted to the area of the thalamus that is preferentially connected to the epileptogenic temporal lobe. The degree of thalamic pathology is related to the extent of mesial temporal lobe damage in TLE. © 2014 The Authors. Epilepsia published by Wiley Periodicals, Inc

  5. Mesial temporal lobe epilepsy diminishes functional connectivity during emotion perception.

    Science.gov (United States)

    Steiger, Bettina K; Muller, Angela M; Spirig, Esther; Toller, Gianina; Jokeit, Hennric

    2017-08-01

    Unilateral mesial temporal lobe epilepsy (MTLE) has been associated with impaired recognition of emotional facial expressions. Correspondingly, imaging studies showed decreased activity of the amygdala and cortical face processing regions in response to emotional faces. However, functional connectivity among regions involved in emotion perception has not been studied so far. To address this, we examined intrinsic functional connectivity (FC) modulated by the perception of dynamic fearful faces among the amygdala and limbic, frontal, temporal and brainstem regions. Regions of interest were identified in an activation analysis by presenting a block-design with dynamic fearful faces and dynamic landscapes to 15 healthy individuals. This led to 10 predominately right-hemispheric regions. Functional connectivity between these regions during the perception of fearful faces was examined in drug-refractory patients with left- (n=16) or right-sided (n=17) MTLE, epilepsy patients with extratemporal seizure onset (n=15) and a second group of 15 healthy controls. Healthy controls showed a widespread functional network modulated by the perception of fearful faces that encompassed bilateral amygdalae, limbic, cortical, subcortical and brainstem regions. In patients with left MTLE, a downsized network of frontal and temporal regions centered on the right amygdala was present. Patients with right MTLE showed almost no significant functional connectivity. A maintained network in the epilepsy control group indicates that findings in mesial temporal lobe epilepsy could not be explained by clinical factors such as seizures and antiepileptic medication. Functional networks underlying facial emotion perception are considerably changed in left and right MTLE. Alterations are present for both hemispheres in either MTLE group, but are more pronounced in right MTLE. Disruption of the functional network architecture possibly contributes to deficits in facial emotion recognition frequently

  6. Connectivity and tissue microstructural alterations in right and left temporal lobe epilepsy revealed by diffusion spectrum imaging

    Directory of Open Access Journals (Sweden)

    Alia Lemkaddem

    2014-01-01

    Global connectivity, hub architecture and regional connectivity patterns were altered in TLE patients and showed different characteristics in RTLE vs LTLE with stronger abnormalities in RTLE. The microstructural analysis suggested that disturbed axonal density contributed more than fiber orientation to the connectivity changes affecting the temporal lobes whereas fiber orientation changes were more involved in extratemporal lobe changes. Our study provides further structural evidence that RTLE and LTLE are not symmetrical entities and DSI-based imaging could help investigate the microstructural correlate of these imaging abnormalities.

  7. Differences in the neural correlates of frontal lobe tests.

    Science.gov (United States)

    Matsuoka, Teruyuki; Kato, Yuka; Imai, Ayu; Fujimoto, Hiroshi; Shibata, Keisuke; Nakamura, Kaeko; Yamada, Kei; Narumoto, Jin

    2018-01-01

    The Executive Interview (EXIT25), the executive clock-drawing task (CLOX1), and the Frontal Assessment Battery (FAB) are used to assess executive function at the bedside. These tests assess distinct psychometric properties. The aim of this study was to examine differences in the neural correlates of the EXIT25, CLOX1, and FAB based on magnetic resonance imaging. Fifty-eight subjects (30 with Alzheimer's disease, 10 with mild cognitive impairment, and 18 healthy controls) participated in this study. Multiple regression analyses were performed to examine the brain regions correlated with the EXIT25, CLOX1, and FAB scores. Age, gender, and years of education were included as covariates. Statistical thresholds were set to uncorrected P-values of 0.001 at the voxel level and 0.05 at the cluster level. The EXIT25 score correlated inversely with the regional grey matter volume in the left lateral frontal lobe (Brodmann areas 6, 9, 44, and 45). The CLOX1 score correlated positively with the regional grey matter volume in the right orbitofrontal cortex (Brodmann area 11) and the left supramarginal gyrus (Brodmann area 40). The FAB score correlated positively with the regional grey matter volume in the right precentral gyrus (Brodmann area 6). The left lateral frontal lobe (Brodmann area 9) and the right lateral frontal lobe (Brodmann area 46) were identified as common brain regions that showed association with EXIT25, CLOX1, and FAB based only a voxel-level threshold. The results of this study suggest that the EXIT25, CLOX1, and FAB may be associated with the distinct neural correlates of the frontal cortex. © 2018 Japanese Psychogeriatric Society.

  8. Hippocampal Atrophy Is Associated with Altered Hippocampus-Posterior Cingulate Cortex Connectivity in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis.

    Science.gov (United States)

    Shih, Y C; Tseng, C E; Lin, F-H; Liou, H H; Tseng, W Y I

    2017-03-01

    Unilateral mesial temporal lobe epilepsy and hippocampal sclerosis have structural and functional abnormalities in the mesial temporal regions. To gain insight into the pathophysiology of the epileptic network in mesial temporal lobe epilepsy with hippocampal sclerosis, we aimed to clarify the relationships between hippocampal atrophy and the altered connection between the hippocampus and the posterior cingulate cortex in patients with mesial temporal lobe epilepsy with hippocampal sclerosis. Fifteen patients with left mesial temporal lobe epilepsy with hippocampal sclerosis and 15 healthy controls were included in the study. Multicontrast MR imaging, including high-resolution T1WI, diffusion spectrum imaging, and resting-state fMRI, was performed to measure the hippocampal volume, structural connectivity of the inferior cingulum bundle, and intrinsic functional connectivity between the hippocampus and the posterior cingulate cortex, respectively. Compared with controls, patients had decreased left hippocampal volume (volume ratio of the hippocampus and controls, 0.366% ± 0.029%; patients, 0.277% ± 0.063%, corrected P = .002), structural connectivity of the bilateral inferior cingulum bundle (generalized fractional anisotropy, left: controls, 0.234 ± 0.020; patients, 0.193 ± 0.022, corrected P = .0001, right: controls, 0.226 ± 0.022; patients, 0.208 ± 0.017, corrected P = .047), and intrinsic functional connectivity between the left hippocampus and the left posterior cingulate cortex (averaged z-value: controls, 0.314 ± 0.152; patients, 0.166 ± 0.062). The left hippocampal volume correlated with structural connectivity positively (standardized β = 0.864, P = .001), but it had little correlation with intrinsic functional connectivity (standardized β = -0.329, P = .113). On the contralesional side, the hippocampal volume did not show any significant correlation with structural connectivity or intrinsic functional connectivity ( F 2,12 = 0.284, P = .757, R 2

  9. Alteration of functional connectivity within visuospatial working memory-related brain network in patients with right temporal lobe epilepsy: a resting-state fMRI study.

    Science.gov (United States)

    Lv, Zong-xia; Huang, Dong-Hong; Ye, Wei; Chen, Zi-rong; Huang, Wen-li; Zheng, Jin-ou

    2014-06-01

    This study aimed to investigate the resting-state brain network related to visuospatial working memory (VSWM) in patients with right temporal lobe epilepsy (rTLE). The functional mechanism underlying the cognitive impairment in VSWM was also determined. Fifteen patients with rTLE and 16 healthy controls matched for age, gender, and handedness underwent a 6-min resting-state functional MRI session and a neuropsychological test using VSWM_Nback. The VSWM-related brain network at rest was extracted using multiple independent component analysis; the spatial distribution and the functional connectivity (FC) parameters of the cerebral network were compared between groups. Behavioral data were subsequently correlated with the mean Z-value in voxels showing significant FC difference during intergroup comparison. The distribution of the VSWM-related resting-state network (RSN) in the group with rTLE was virtually consistent with that in the healthy controls. The distribution involved the dorsolateral prefrontal lobe and parietal lobe in the right hemisphere and the partial inferior parietal lobe and posterior lobe of the cerebellum in the left hemisphere (pright superior frontal lobe (BA8), right middle frontal lobe, and right ventromedial prefrontal lobe compared with the controls (pright superior frontal lobe (BA11), right superior parietal lobe, and left posterior lobe of the cerebellum (prights reserved.

  10. Decreased functional connectivity and structural deficit in alertness network with right-sided temporal lobe epilepsy.

    Science.gov (United States)

    Gao, Yujun; Zheng, Jinou; Li, Yaping; Guo, Danni; Wang, Mingli; Cui, Xiangxiang; Ye, Wei

    2018-04-01

    Patients with temporal lobe epilepsy (TLE) often suffer from alertness alterations. However, specific regions connected with alertness remain controversial, and whether these regions have structural impairment is also elusive. This study aimed to investigate the characteristics and neural mechanisms underlying the functions and structures of alertness network in patients with right-sided temporal lobe epilepsy (rTLE) by performing the attentional network test (ANT), resting-state functional magnetic resonance imaging (R-SfMRI), and diffusion tensor imaging (DTI).A total of 47 patients with rTLE and 34 healthy controls underwent ANT, R-SfMRI, and DTI scan. The seed-based functional connectivity (FC) method and deterministic tractography were used to analyze the data.Patients with rTLE had longer reaction times in the no-cue and double-cue conditions. However, no differences were noted in the alertness effect between the 2 groups. The patient group had lower FC compared with the control group in the right inferior parietal lobe (IPL), amygdala, and insula. Structural deficits were found in the right parahippocampal gyrus, superior temporal pole, insula, and amygdala in the patient group compared with the control group. Also significantly negative correlations were observed between abnormal fractional anisotropy (between the right insula and the superior temporal pole) and illness duration in the patients with rTLE.The findings of this study suggested abnormal intrinsic and phasic alertness, decreased FC, and structural deficits within the alerting network in the rTLE. This study provided new insights into the mechanisms of alertness alterations in rTLE.

  11. Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy: evidence from resting state fMRI

    Directory of Open Access Journals (Sweden)

    Castellano Gabriela

    2010-06-01

    Full Text Available Abstract Background Mesial temporal lobe epilepsy (MTLE, the most common type of focal epilepsy in adults, is often caused by hippocampal sclerosis (HS. Patients with HS usually present memory dysfunction, which is material-specific according to the hemisphere involved and has been correlated to the degree of HS as measured by postoperative histopathology as well as by the degree of hippocampal atrophy on magnetic resonance imaging (MRI. Verbal memory is mostly affected by left-sided HS, whereas visuo-spatial memory is more affected by right HS. Some of these impairments may be related to abnormalities of the network in which individual hippocampus takes part. Functional connectivity can play an important role to understand how the hippocampi interact with other brain areas. It can be estimated via functional Magnetic Resonance Imaging (fMRI resting state experiments by evaluating patterns of functional networks. In this study, we investigated the functional connectivity patterns of 9 control subjects, 9 patients with right MTLE and 9 patients with left MTLE. Results We detected differences in functional connectivity within and between hippocampi in patients with unilateral MTLE associated with ipsilateral HS by resting state fMRI. Functional connectivity resulted to be more impaired ipsilateral to the seizure focus in both patient groups when compared to control subjects. This effect was even more pronounced for the left MTLE group. Conclusions The findings presented here suggest that left HS causes more reduction of functional connectivity than right HS in subjects with left hemisphere dominance for language.

  12. Abnormalities of hippocampal-cortical connectivity in temporal lobe epilepsy patients with hippocampal sclerosis

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Wang, Chunheng; Li, Meng; Lv, Bin; Jin, Zhengyu

    2011-03-01

    Hippocampal sclerosis (HS) is the most common damage seen in the patients with temporal lobe epilepsy (TLE). In the present study, the hippocampal-cortical connectivity was defined as the correlation between the hippocampal volume and cortical thickness at each vertex throughout the whole brain. We aimed to investigate the differences of ipsilateral hippocampal-cortical connectivity between the unilateral TLE-HS patients and the normal controls. In our study, the bilateral hippocampal volumes were first measured in each subject, and we found that the ipsilateral hippocampal volume significantly decreased in the left TLE-HS patients. Then, group analysis showed significant thinner average cortical thickness of the whole brain in the left TLE-HS patients compared with the normal controls. We found significantly increased ipsilateral hippocampal-cortical connectivity in the bilateral superior temporal gyrus, the right cingulate gyrus and the left parahippocampal gyrus of the left TLE-HS patients, which indicated structural vulnerability related to the hippocampus atrophy in the patient group. However, for the right TLE-HS patients, no significant differences were found between the patients and the normal controls, regardless of the ipsilateral hippocampal volume, the average cortical thickness or the patterns of hippocampal-cortical connectivity, which might be related to less atrophies observed in the MRI scans. Our study provided more evidence for the structural abnormalities in the unilateral TLE-HS patients.

  13. Short parietal lobe connections of the human and monkey brain

    DEFF Research Database (Denmark)

    Catani, Marco; Robertsson, Naianna; Beyh, Ahmad

    2017-01-01

    projections were reconstructed for both species and results compared to identify similarities or differences in tract anatomy (i.e., trajectories and cortical projections). In addition, post-mortem dissections were performed in a human brain. The largest tract identified in both human and monkey brains...... and angular gyri of the inferior parietal lobule in humans but only to the supramarginal gyrus in the monkey brain. The third tract connects the postcentral gyrus to the anterior region of the superior parietal lobule and is more prominent in monkeys compared to humans. Finally, short U-shaped fibres...... and monkeys with some differences for those areas that have cytoarchitectonically distinct features in humans. The overall pattern of intraparietal connectivity supports the special role of the inferior parietal lobule in cognitive functions characteristic of humans....

  14. Nontraumatic frontal lobe hemorrhages: Clinical-computed tomographic correlations

    International Nuclear Information System (INIS)

    Weisberg, L.A.; Stazio, A.; Veterans Administration Hospital, New Orleans, LA; Charity Hospital, New Orleans, LA

    1988-01-01

    Correlation of lesion location and appearance with clinical sequelae in 25 patients with CT-proven frontal lobe hematomas reveals 10 of 25 hematomas were located above the frontal horns of the lateral ventricles. Nine of the 10 patients were normotensive. All presented with contralateral motor and sensory deficits. Four of 25 hematomas were situated inferior to the frontal horns. All these patients were hypertensive, rapidly became comatose and exhibited hemiplegia, hemianestesia and gaze preference contralateral to the hemiplegia. Five patients had frontal hematomas which extended inward from the interhemispheric fissure or caval-septal region. All were normotensive. All had anterior cerebral-anterior communicating artery aneurysms on angiography. Four patients had hematomas involving both the frontal and temporal region. All were normotensive with no known cause for hemorrhage. Two patients had bifrontal hematomas; one had butterfly appearance extending across the interhemispheric fissure and the other was midline but had no interhemispheric blood. Both were normotensive. One had an anterior cerebral-anterior communicating artery aneurysm. (orig.)

  15. Altered intrinsic functional connectivity in the latent period of epileptogenesis in a temporal lobe epilepsy model.

    Science.gov (United States)

    Lee, Hyoin; Jung, Seungmoon; Lee, Peter; Jeong, Yong

    2017-10-01

    The latent period, a seizure-free phase, is the duration between brain injury and the onset of spontaneous recurrent seizures (SRSs) during epileptogenesis. The latent period is thought to involve several progressive pathophysiological events that lead to the evolution of the chronic epilepsy phase. Hence, it is vital to investigate the changes in the latent period during epileptogenesis in order to better understand temporal lobe epilepsy (TLE), and to achieve early diagnosis and appropriate management of the condition. Accordingly, recent studies with patients with TLE using resting-state functional magnetic resonance imaging (rs-fMRI) have reported that alterations of resting-state functional connectivity (rsFC) during the chronic period are associated with some clinical manifestations, including learning and memory impairments, emotional instability, and social behavior deficits, in addition to repetitive seizure episodes. In contrast, the changes in the intrinsic rsFC during epileptogenesis, particularly during the latent period, remain unclear. In this study, we investigated the alterations in intrinsic rsFC during the latent and chronic periods in a pilocarpine-induced TLE mouse model using intrinsic optical signal imaging (IOSI). This technique can monitor the changes in the local hemoglobin concentration according to neuronal activity and can help investigate large-scale brain intrinsic networks. After seeding on the anatomical regions of interest (ROIs) and calculating the correlation coefficients between each ROI, we established and compared functional correlation matrices and functional connectivity maps during the latent and chronic periods of epilepsy. We found a decrease in the interhemispheric rsFC at the frontal and temporal regions during both the latent and chronic periods. Furthermore, a significant decrease in the interhemispheric rsFC was observed in the somatosensory area during the chronic period. Changes in network configurations during

  16. Disparity in Frontal Lobe Connectivity on a Complex Bimanual Motor Task Aids in Classification of Operator Skill Level.

    Science.gov (United States)

    Andreu-Perez, Javier; Leff, Daniel Richard; Shetty, Kunal; Darzi, Ara; Yang, Guang-Zhong

    2016-06-01

    Objective metrics of technical performance (e.g., dexterity, time, and path length) are insufficient to fully characterize operator skill level, which may be encoded deep within neural function. Unlike reports that capture plasticity across days or weeks, this articles studies long-term plasticity in functional connectivity that occurs over years of professional task practice. Optical neuroimaging data are acquired from professional surgeons of varying experience on a complex bimanual coordination task with the aim of investigating learning-related disparity in frontal lobe functional connectivity that arises as a consequence of motor skill level. The results suggest that prefrontal and premotor seed connectivity is more critical during naïve versus expert performance. Given learning-related differences in connectivity, a least-squares support vector machine with a radial basis function kernel is employed to evaluate skill level using connectivity data. The results demonstrate discrimination of operator skill level with accuracy ≥0.82 and Multiclass Matthew's Correlation Coefficient ≥0.70. Furthermore, these indices are improved when local (i.e., within-region) rather than inter-regional (i.e., between-region) frontal connectivity is considered (p = 0.002). The results suggest that it is possible to classify operator skill level with good accuracy from functional connectivity data, upon which objective assessment and neurofeedback may be used to improve operator performance during technical skill training.

  17. Connectivity and tissue microstructural alterations in right and left temporal lobe epilepsy revealed by diffusion spectrum imaging.

    Science.gov (United States)

    Lemkaddem, Alia; Daducci, Alessandro; Kunz, Nicolas; Lazeyras, François; Seeck, Margitta; Thiran, Jean-Philippe; Vulliémoz, Serge

    2014-01-01

    Focal epilepsy is increasingly recognized as the result of an altered brain network, both on the structural and functional levels and the characterization of these widespread brain alterations is crucial for our understanding of the clinical manifestation of seizure and cognitive deficits as well as for the management of candidates to epilepsy surgery. Tractography based on Diffusion Tensor Imaging allows non-invasive mapping of white matter tracts in vivo. Recently, diffusion spectrum imaging (DSI), based on an increased number of diffusion directions and intensities, has improved the sensitivity of tractography, notably with respect to the problem of fiber crossing and recent developments allow acquisition times compatible with clinical application. We used DSI and parcellation of the gray matter in regions of interest to build whole-brain connectivity matrices describing the mutual connections between cortical and subcortical regions in patients with focal epilepsy and healthy controls. In addition, the high angular and radial resolution of DSI allowed us to evaluate also some of the biophysical compartment models, to better understand the cause of the changes in diffusion anisotropy. Global connectivity, hub architecture and regional connectivity patterns were altered in TLE patients and showed different characteristics in RTLE vs LTLE with stronger abnormalities in RTLE. The microstructural analysis suggested that disturbed axonal density contributed more than fiber orientation to the connectivity changes affecting the temporal lobes whereas fiber orientation changes were more involved in extratemporal lobe changes. Our study provides further structural evidence that RTLE and LTLE are not symmetrical entities and DSI-based imaging could help investigate the microstructural correlate of these imaging abnormalities.

  18. Differences in graph theory functional connectivity in left and right temporal lobe epilepsy.

    Science.gov (United States)

    Chiang, Sharon; Stern, John M; Engel, Jerome; Levin, Harvey S; Haneef, Zulfi

    2014-12-01

    To investigate lateralized differences in limbic system functional connectivity between left and right temporal lobe epilepsy (TLE) using graph theory. Interictal resting state fMRI was performed in 14 left TLE patients, 11 right TLE patients, and 12 controls. Graph theory analysis of 10 bilateral limbic regions of interest was conducted. Changes in edgewise functional connectivity, network topology, and regional topology were quantified, and then left and right TLE were compared. Limbic edgewise functional connectivity was predominantly reduced in both left and right TLE. More regional connections were reduced in right TLE, most prominently involving reduced interhemispheric connectivity between the bilateral insula and bilateral hippocampi. A smaller number of limbic connections were increased in TLE, more so in left than in right TLE. Topologically, the most pronounced change was a reduction in average network betweenness centrality and concurrent increase in left hippocampal betweenness centrality in right TLE. In contrast, left TLE exhibited a weak trend toward increased right hippocampal betweenness centrality, with no change in average network betweenness centrality. Limbic functional connectivity is predominantly reduced in both left and right TLE, with more pronounced reductions in right TLE. In contrast, left TLE exhibits both edgewise and topological changes that suggest a tendency toward reorganization. Network changes in TLE and lateralized differences thereof may have important diagnostic and prognostic implications. Published by Elsevier B.V.

  19. The Medial Temporal Lobe – Conduit of Parallel Connectivity: A model for Attention, Memory, and Perception.

    Directory of Open Access Journals (Sweden)

    Brian B. Mozaffari

    2014-11-01

    Full Text Available Based on the notion that the brain is equipped with a hierarchical organization, which embodies environmental contingencies across many time scales, this paper suggests that the medial temporal lobe (MTL – located deep in the hierarchy – serves as a bridge connecting supra to infra – MTL levels. Bridging the upper and lower regions of the hierarchy provides a parallel architecture that optimizes information flow between upper and lower regions to aid attention, encoding, and processing of quick complex visual phenomenon. Bypassing intermediate hierarchy levels, information conveyed through the MTL ‘bridge’ allows upper levels to make educated predictions about the prevailing context and accordingly select lower representations to increase the efficiency of predictive coding throughout the hierarchy. This selection or activation/deactivation is associated with endogenous attention. In the event that these ‘bridge’ predictions are inaccurate, this architecture enables the rapid encoding of novel contingencies. A review of hierarchical models in relation to memory is provided along with a new theory, Medial-temporal-lobe Conduit for Parallel Connectivity (MCPC. In this scheme, consolidation is considered as a secondary process, occurring after a MTL-bridged connection, which eventually allows upper and lower levels to access each other directly. With repeated reactivations, as contingencies become consolidated, less MTL activity is predicted. Finally, MTL bridging may aid processing transient but structured perceptual events, by allowing communication between upper and lower levels without calling on intermediate levels of representation.

  20. Task activation and functional connectivity show concordant memory laterality in temporal lobe epilepsy.

    Science.gov (United States)

    Sideman, Noah; Chaitanya, Ganne; He, Xiaosong; Doucet, Gaelle; Kim, Na Young; Sperling, Michael R; Sharan, Ashwini D; Tracy, Joseph I

    2018-04-01

    In epilepsy, asymmetries in the organization of mesial temporal lobe (MTL) functions help determine the cognitive risk associated with procedures such as anterior temporal lobectomy. Past studies have investigated the change/shift in a visual episodic memory laterality index (LI) in mesial temporal lobe structures through functional magnetic resonance imaging (fMRI) task activations. Here, we examine whether underlying task-related functional connectivity (FC) is concordant with such standard fMRI laterality measures. A total of 56 patients with temporal lobe epilepsy (TLE) (Left TLE [LTLE]: 31; Right TLE [RTLE]: 25) and 34 matched healthy controls (HC) underwent fMRI scanning during performance of a scene encoding task (SET). We assessed an activation-based LI of the hippocampal gyrus (HG) and parahippocampal gyrus (PHG) during the SET and its correspondence with task-related FC measures. Analyses involving the HG and PHG showed that the patients with LTLE had a consistently higher LI (right-lateralized) than that of the HC and group with RTLE, indicating functional reorganization. The patients with RTLE did not display a reliable contralateral shift away from the pathology, with the mesial structures showing quite distinct laterality patterns (HG, no laterality bias; PHG, no evidence of LI shift). The FC data for the group with LTLE provided confirmation of reorganization effects, revealing that a rightward task LI may be based on underlying connections between several left-sided regions (middle/superior occipital and left medial frontal gyri) and the right PHG. The FCs between the right HG and left anterior cingulate/medial frontal gyri were also observed in LTLE. Importantly, the data demonstrate that the areas involved in the LTLE task activation shift to the right hemisphere showed a corresponding increase in task-related FCs between the hemispheres. Altered laterality patterns based on mesial temporal lobe epilepsy (MTLE) pathology manifest as several

  1. Gray, White Matter Concentration Changes and Their Correlation with Heterotopic Neurons in Temporal Lobe Epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Woo Suk; Joo, Eun Yun; Kim, Sung Tae; Hong, Seung Bong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2010-02-15

    To identify changes in gray and white matter concentrations (GMC, WMC), and their relation to heterotopic neuron numbers in mesial temporal lobe epilepsy (mTLE). The gray matter or white matter concentrations of 16 left and 15 right mTLE patients who achieved an excellent surgical outcome were compared with those of 24 healthy volunteers for the left group and with 23 healthy volunteers for the right group, by optimized voxel-based morphometry using unmodulated and modulated images. A histologic count of heterotopic neurons was obtained in the white matter of the anterior temporal lobe originating from the patients' surgical specimens. In addition, the number of heterotopic neurons were tested to determine if there was a correlation with the GMC or WMC. The GMCs of the left and right mTLE groups were reduced in the ipsilateral hippocampi, bilateral thalami, precentral gyri, and in the cerebellum. The WMCs were reduced in the ipsilateral white matter of the anterior temporal lobe, bilateral parahippocampal gyri, and internal capsules, but increased in the pons and bilateral precentral gyri. The heterotopic neuron counts in the left mTLE group showed a positive correlation (r = 0.819, p < 0.0001) with GMCs and a negative correlation (r = - 0.839, p < 0.0001) with WMCs in the white matter of the anterior temporal lobe. The present study shows the abnormalities of the cortico-thalamo- hippocampal network including a gray matter volume reduction in the anterior frontal lobes and an abnormality of brain tissue concentration in the pontine area. Furthermore, heterotopic neuron numbers were significantly correlated with GMC or WMC in the left white matter of anterior temporal lobe.

  2. Neuroimaging correlates of language network impairment and reorganization in temporal lobe epilepsy

    Science.gov (United States)

    Balter, S.; Lin, G.; Leyden, K.M.; Paul, B.M.; McDonald, C.R.

    2016-01-01

    Advanced, noninvasive imaging has revolutionized our understanding of language networks in the brain and is reshaping our approach to the presurgical evaluation of patients with epilepsy. Functional magnetic resonance imaging (fMRI) has had the greatest impact, unveiling the complexity of language organization and reorganization in patients with epilepsy both pre- and postoperatively, while volumetric MRI and diffusion tensor imaging have led to a greater appreciation of structural and microstructural correlates of language dysfunction in different epilepsy syndromes. In this article, we review recent literature describing how unimodal and multimodal imaging has advanced our knowledge of language networks and their plasticity in epilepsy, with a focus on the most frequently studied epilepsy syndrome in adults, temporal lobe epilepsy (TLE). We also describe how new analytic techniques (i.e., graph theory) are leading to a refined characterization of abnormal brain connectivity, and how subject-specific imaging profiles combined with clinical data may enhance the prediction of both seizure and language outcomes following surgical interventions. PMID:27393391

  3. Decreased prefrontal lobe interhemispheric functional connectivity in adolescents with internet gaming disorder: a primary study using resting-state FMRI.

    Directory of Open Access Journals (Sweden)

    Yao Wang

    Full Text Available Recent neuroimaging studies have shown that people with Internet gaming disorder (IGD have structural and functional abnormalities in specific brain areas and connections. However, little is known about the alterations of the interhemispheric resting-state functional connectivity (rsFC in participants with IGD. In the present study, we used a newly developed voxel-mirrored homotopic connectivity (VMHC method to investigate the interhemispheric rsFC of the whole brain in participants with IGD.We compared interhemispheric rsFC between 17 participants with IGD and 24 healthy controls, group-matched on age, gender, and education status. All participants were provided written informed consent. Resting-state functional and structural magnetic resonance images were acquired for all participants. The rsFC between bilateral homotopic voxels was calculated. Regions showing abnormal VMHC in IGD participants were adopted as regions of interest for correlation analyses.Compared to healthy controls, IGD participants showed decreased VMHC between the left and right superior frontal gyrus (orbital part, inferior frontal gyrus (orbital part, middle frontal gyrus and superior frontal gyrus. Further analyses showed Chen Internet Addiction Scale (CIAS-related VMHC in superior frontal gyrus (orbital part and CIAS (r = -0.55, p = 0.02, uncorrected.Our findings implicate the important role of altered interhemispheric rsFC in the bilateral prefrontal lobe in the neuropathological mechanism of IGD, and provide further supportive evidence for the reclassification of IGD as a behavioral addiction.

  4. Neural correlates of temporal credit assignment in the parietal lobe.

    Directory of Open Access Journals (Sweden)

    Timothy M Gersch

    Full Text Available Empirical studies of decision making have typically assumed that value learning is governed by time, such that a reward prediction error arising at a specific time triggers temporally-discounted learning for all preceding actions. However, in natural behavior, goals must be acquired through multiple actions, and each action can have different significance for the final outcome. As is recognized in computational research, carrying out multi-step actions requires the use of credit assignment mechanisms that focus learning on specific steps, but little is known about the neural correlates of these mechanisms. To investigate this question we recorded neurons in the monkey lateral intraparietal area (LIP during a serial decision task where two consecutive eye movement decisions led to a final reward. The underlying decision trees were structured such that the two decisions had different relationships with the final reward, and the optimal strategy was to learn based on the final reward at one of the steps (the "F" step but ignore changes in this reward at the remaining step (the "I" step. In two distinct contexts, the F step was either the first or the second in the sequence, controlling for effects of temporal discounting. We show that LIP neurons had the strongest value learning and strongest post-decision responses during the transition after the F step regardless of the serial position of this step. Thus, the neurons encode correlates of temporal credit assignment mechanisms that allocate learning to specific steps independently of temporal discounting.

  5. Multivariate pattern analysis reveals anatomical connectivity differences between the left and right mesial temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Peng Fang

    2015-01-01

    Full Text Available Previous studies have demonstrated differences of clinical signs and functional brain network organizations between the left and right mesial temporal lobe epilepsy (mTLE, but the anatomical connectivity differences underlying functional variance between the left and right mTLE remain uncharacterized. We examined 43 (22 left, 21 right mTLE patients with hippocampal sclerosis and 39 healthy controls using diffusion tensor imaging. After the whole-brain anatomical networks were constructed for each subject, multivariate pattern analysis was applied to classify the left mTLE from the right mTLE and extract the anatomical connectivity differences between the left and right mTLE patients. The classification results reveal 93.0% accuracy for the left mTLE versus the right mTLE, 93.4% accuracy for the left mTLE versus controls and 90.0% accuracy for the right mTLE versus controls. Compared with the right mTLE, the left mTLE exhibited a different connectivity pattern in the cortical-limbic network and cerebellum. The majority of the most discriminating anatomical connections were located within or across the cortical-limbic network and cerebellum, thereby indicating that these disease-related anatomical network alterations may give rise to a portion of the complex of emotional and memory deficit between the left and right mTLE. Moreover, the orbitofrontal gyrus, cingulate cortex, hippocampus and parahippocampal gyrus, which exhibit high discriminative power in classification, may play critical roles in the pathophysiology of mTLE. The current study demonstrated that anatomical connectivity differences between the left mTLE and the right mTLE may have the potential to serve as a neuroimaging biomarker to guide personalized diagnosis of the left and right mTLE.

  6. Postoperative seizure freedom does not normalize altered connectivity in temporal lobe epilepsy.

    Science.gov (United States)

    Maccotta, Luigi; Lopez, Mayra A; Adeyemo, Babatunde; Ances, Beau M; Day, Brian K; Eisenman, Lawrence N; Dowling, Joshua L; Leuthardt, Eric C; Schlaggar, Bradley L; Hogan, Robert Edward

    2017-11-01

    Specific changes in the functional connectivity of brain networks occur in patients with epilepsy. Yet whether such changes reflect a stable disease effect or one that is a function of active seizure burden remains unclear. Here, we longitudinally assessed the connectivity of canonical cognitive functional networks in patients with intractable temporal lobe epilepsy (TLE), both before and after patients underwent epilepsy surgery and achieved seizure freedom. Seventeen patients with intractable TLE who underwent epilepsy surgery with Engel class I outcome and 17 matched healthy controls took part in the study. The functional connectivity of a set of cognitive functional networks derived from typical cognitive tasks was assessed in patients, preoperatively and postoperatively, as well as in controls, using stringent methods of artifact reduction. Preoperatively, functional networks in TLE patients differed significantly from healthy controls, with differences that largely, but not exclusively, involved the default mode and temporal/auditory subnetworks. However, undergoing epilepsy surgery and achieving seizure freedom did not lead to significant changes in network connectivity, with postoperative functional network abnormalities closely mirroring the preoperative state. This result argues for a stable chronic effect of the disease on brain connectivity, with changes that are largely "burned in" by the time a patient with intractable TLE undergoes epilepsy surgery, which typically occurs years after the initial diagnosis. The result has potential implications for the treatment of intractable epilepsy, suggesting that delaying surgical intervention that may achieve seizure freedom may lead to functional network changes that are no longer reversible by the time of epilepsy surgery. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  7. Multivariate pattern analysis reveals anatomical connectivity differences between the left and right mesial temporal lobe epilepsy.

    Science.gov (United States)

    Fang, Peng; An, Jie; Zeng, Ling-Li; Shen, Hui; Chen, Fanglin; Wang, Wensheng; Qiu, Shijun; Hu, Dewen

    2015-01-01

    Previous studies have demonstrated differences of clinical signs and functional brain network organizations between the left and right mesial temporal lobe epilepsy (mTLE), but the anatomical connectivity differences underlying functional variance between the left and right mTLE remain uncharacterized. We examined 43 (22 left, 21 right) mTLE patients with hippocampal sclerosis and 39 healthy controls using diffusion tensor imaging. After the whole-brain anatomical networks were constructed for each subject, multivariate pattern analysis was applied to classify the left mTLE from the right mTLE and extract the anatomical connectivity differences between the left and right mTLE patients. The classification results reveal 93.0% accuracy for the left mTLE versus the right mTLE, 93.4% accuracy for the left mTLE versus controls and 90.0% accuracy for the right mTLE versus controls. Compared with the right mTLE, the left mTLE exhibited a different connectivity pattern in the cortical-limbic network and cerebellum. The majority of the most discriminating anatomical connections were located within or across the cortical-limbic network and cerebellum, thereby indicating that these disease-related anatomical network alterations may give rise to a portion of the complex of emotional and memory deficit between the left and right mTLE. Moreover, the orbitofrontal gyrus, cingulate cortex, hippocampus and parahippocampal gyrus, which exhibit high discriminative power in classification, may play critical roles in the pathophysiology of mTLE. The current study demonstrated that anatomical connectivity differences between the left mTLE and the right mTLE may have the potential to serve as a neuroimaging biomarker to guide personalized diagnosis of the left and right mTLE.

  8. Resting-state functional connectivity predicts the strength of hemispheric lateralization for language processing in temporal lobe epilepsy and normals.

    Science.gov (United States)

    Doucet, Gaëlle E; Pustina, Dorian; Skidmore, Christopher; Sharan, Ashwini; Sperling, Michael R; Tracy, Joseph I

    2015-01-01

    In temporal lobe epilepsy (TLE), determining the hemispheric specialization for language before surgery is critical to preserving a patient's cognitive abilities post-surgery. To date, the major techniques utilized are limited by the capacity of patients to efficiently realize the task. We determined whether resting-state functional connectivity (rsFC) is a reliable predictor of language hemispheric dominance in right and left TLE patients, relative to controls. We chose three subregions of the inferior frontal cortex (pars orbitalis, pars triangularis, and pars opercularis) as the seed regions. All participants performed both a verb generation task and a resting-state fMRI procedure. Based on the language task, we computed a laterality index (LI) for the resulting network. This revealed that 96% of the participants were left-hemisphere dominant, although there remained a large degree of variability in the strength of left lateralization. We tested whether LI correlated with rsFC values emerging from each seed. We revealed a set of regions that was specific to each group. Unique correlations involving the epileptic mesial temporal lobe were revealed for the right and left TLE patients, but not for the controls. Importantly, for both TLE groups, the rsFC emerging from a contralateral seed was the most predictive of LI. Overall, our data depict the broad patterns of rsFC that support strong versus weak left hemisphere language laterality. This project provides the first evidence that rsFC data may potentially be used on its own to verify the strength of hemispheric dominance for language in impaired or pathologic populations. © 2014 Wiley Periodicals, Inc.

  9. More consistently altered connectivity patterns for cerebellum and medial temporal lobes than for amygdala and striatum in schizophrenia

    Directory of Open Access Journals (Sweden)

    Henning ePeters

    2016-02-01

    Full Text Available Background: Brain architecture can be divided into a cortico-thalamic system and modulatory ‘subcortical-cerebellar’ systems containing key structures such as striatum, medial temporal lobes (MTLs, amygdala, and cerebellum. Subcortical-cerebellar systems are known to be altered in schizophrenia. In particular, intrinsic functional brain connectivity (iFC between these systems has been consistently demonstrated in patients. While altered connectivity is known for each subcortical-cerebellar system separately, it is unknown whether subcortical-cerebellar systems’ connectivity patterns with the cortico-thalamic system are comparably altered across systems, i.e., if separate subcortical-cerebellar systems’ connectivity patterns are consistent across patients. Methods: To investigate this question, 18 patients with schizophrenia (3 unmedicated, 15 medicated with atypical antipsychotics and 18 healthy controls were assessed by resting-state functional magnetic resonance imaging (fMRI. Independent component analysis of fMRI data revealed cortical intrinsic brain networks (NWs with time courses representing proxies for cortico-thalamic system activity. Subcortical-cerebellar systems’ activity was represented by fMRI-based time courses of selected regions-of-interest (ROIs (i.e., striatum, MTL, amygdala, cerebellum. Correlation analysis among ROI- and NWs-time courses yielded individual connectivity matrices (i.e. connectivity between NW and ROIs (allROIs-NW, separateROI-NW, only NWs (NWs-NWs, and only ROIs (allROIs-allROIs as main outcome measures, which were classified by support-vector-machine-based leave-one-out cross-validation. Differences in classification accuracy were statistically evaluated for consistency across subjects and systems. Results: Correlation matrices based on allROIs-NWs yielded 91% classification accuracy, which was significantly superior to allROIs-allROIs and NWs-NWs (56% and 74%, respectively. Considering separate

  10. White Matter Tracts Connected to the Medial Temporal Lobe Support the Development of Mnemonic Control.

    Science.gov (United States)

    Wendelken, Carter; Lee, Joshua K; Pospisil, Jacqueline; Sastre, Marcos; Ross, Julia M; Bunge, Silvia A; Ghetti, Simona

    2015-09-01

    One of the most important factors driving the development of memory during childhood is mnemonic control, or the capacity to initiate and maintain the processes that guide encoding and retrieval operations. The ability to selectively attend to and encode relevant stimuli is a particularly useful form of mnemonic control, and is one that undergoes marked improvement over childhood. We hypothesized that structural integrity of white matter tracts, in particular those connecting medial temporal lobe memory regions to other cortical areas, and/or those connecting frontal and parietal control regions, should contribute to successful mnemonic control. To test this hypothesis, we examined the relationship between structural integrity of selected white matter tracts and an experimental measure of mnemonic control, involving enhancement of memory by attention at encoding, in 116 children aged 7-11 and 25 young adults. We observed a positive relationship between integrity of uncinate fasciculus and mnemonic enhancement across age groups. In adults, but not in children, we also observed an association between mnemonic enhancement and integrity of ventral cingulum bundle and ventral fornix/fimbria. Integrity of fronto-parietal tracts, including dorsal cingulum and superior longitudinal fasciculus, was unrelated to mnemonic enhancement. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Linking DMN connectivity to episodic memory capacity: What can we learn from patients with medial temporal lobe damage?

    Directory of Open Access Journals (Sweden)

    Cornelia McCormick

    2014-01-01

    Full Text Available Computational models predict that focal damage to the Default Mode Network (DMN causes widespread decreases and increases of functional DMN connectivity. How such alterations impact functioning in a specific cognitive domain such as episodic memory remains relatively unexplored. Here, we show in patients with unilateral medial temporal lobe epilepsy (mTLE that focal structural damage leads indeed to specific patterns of DMN functional connectivity alterations, specifically decreased connectivity between both medial temporal lobes (MTLs and the posterior part of the DMN and increased intrahemispheric anterior–posterior connectivity. Importantly, these patterns were associated with better and worse episodic memory capacity, respectively. These distinct patterns, shown here for the first time, suggest that a close dialogue between both MTLs and the posterior components of the DMN is required to fully express the extensive repertoire of episodic memory abilities.

  12. High correlation of the response of upper and lower lobe small airway epithelium to smoking.

    Directory of Open Access Journals (Sweden)

    Ben-Gary Harvey

    Full Text Available The distribution of lung disease induced by inhaled cigarette smoke is complex, depending on many factors. With the knowledge that the small airway epithelium (SAE is the earliest site of smoking-induced lung disease, and that the SAE gene expression is likely sensitive to inhaled cigarette smoke, we compared upper vs. lower lobe gene expression in the SAE within the same cigarette smokers to determine if the gene expression patterns were similar or different. Active smokers (n = 11 with early evidence of smoking-induced lung disease (normal spirometry but low diffusing capacity underwent bronchoscopy and brushing of the upper and lower lobe SAE in order to compare upper vs lower lobe genome-wide and smoking-responsive gene expression by microarray. Cluster and principal component analysis demonstrated that, for each individual, the expression of the known SAE smoking-responsive genes were highly correlated in upper and lower lobe pairs, although, as expected, there were differences in the smoking-induced changes in gene expression from individual to individual. These observations support the concept that the heterogeneity observed among smokers in the anatomic distribution of smoking-induced disease are not secondary to the topographic differences in the effects of cigarette smoke on the airway epithelium.

  13. Correlation between hippocampal volumes and medial temporal lobe atrophy in patients with Alzheimer's disease

    OpenAIRE

    Dhikav, Vikas; Duraiswamy, Sharmila; Anand, Kuljeet Singh

    2017-01-01

    Introduction: Hippocampus undergoes atrophy in patients with Alzheimer's disease (AD). Calculation of hippocampal volumes can be done by a variety of methods using T1-weighted images of magnetic resonance imaging (MRI) of the brain. Medial temporal lobes atrophy (MTL) can be rated visually using T1-weighted MRI brain images. The present study was done to see if any correlation existed between hippocampal volumes and visual rating scores of the MTL using Scheltens Visual Rating Method. Materia...

  14. Quantum correlations in connected multipartite Bell experiments

    International Nuclear Information System (INIS)

    Tavakoli, Armin

    2016-01-01

    Bell experiments measure correlations between outcomes of a number of observers measuring on a shared physical state emitted from a single source. Quantum correlations arising in such Bell experiments have been intensively studied over the last decades. Much less is known about the nature of quantum correlations arising in network structures beyond Bell experiments. Such networks can involve many independent sources emitting states to observers in accordance with the network configuration. Here, we will study classical and quantum correlations in a family of networks which can be regarded as compositions of several independent multipartite Bell experiments connected together through a central node. For such networks we present tight Bell-type inequalities which are satisfied by all classical correlations. We study properties of the violations of our inequalities by probability distributions arising in quantum theory. (paper)

  15. Experimentally induced thyrotoxicosis leads to increased connectivity in temporal lobe structures: a resting state fMRI study.

    Science.gov (United States)

    Göttlich, Martin; Heldmann, Marcus; Göbel, Anna; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F

    2015-06-01

    Adult onset hyperthyroidism may impact on different cognitive domains, including attention and concentration, memory, perceptual function, language and executive function. Previous PET studies implicated changed functionality of limbic regions, the temporal and frontal lobes in hyperthyroidism, whereas it is unknown whether cognitive effects of hyperthyroidism may be due to changed brain connectivity. This study aimed to investigate the effect of experimentally induced short-term hyperthyroidism thyrotoxicosis on resting-state functional connectivity using functional magnetic resonance imaging. Twenty-nine healthy male right-handed subjects were examined twice, once prior and once after 8 weeks of oral administration of 250 μg levothyroxine per day. Resting-state fMRI was subjected to graph-theory based analysis methods to investigate whole-brain intrinsic functional connectivity. Despite a lack of subjective changes noticed by the subjects significant thyrotoxicosis was confirmed in all subjects. This induced a significant increase in resting-state functional connectivity specifically in the rostral temporal lobes (0.05 FDR corrected at the cluster level), which is caused by an increased connectivity to the cognitive control network. The increased connectivity between temporal poles and the cognitive control network shown here under experimental conditions supports an important function of thyroid hormones in the regulation of paralimbic structures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy.

    Science.gov (United States)

    Wirsich, Jonathan; Perry, Alistair; Ridley, Ben; Proix, Timothée; Golos, Mathieu; Bénar, Christian; Ranjeva, Jean-Philippe; Bartolomei, Fabrice; Breakspear, Michael; Jirsa, Viktor; Guye, Maxime

    2016-01-01

    The in vivo structure-function relationship is key to understanding brain network reorganization due to pathologies. This relationship is likely to be particularly complex in brain network diseases such as temporal lobe epilepsy, in which disturbed large-scale systems are involved in both transient electrical events and long-lasting functional and structural impairments. Herein, we estimated this relationship by analyzing the correlation between structural connectivity and functional connectivity in terms of analytical network communication parameters. As such, we targeted the gradual topological structure-function reorganization caused by the pathology not only at the whole brain scale but also both in core and peripheral regions of the brain. We acquired diffusion (dMRI) and resting-state fMRI (rsfMRI) data in seven right-lateralized TLE (rTLE) patients and fourteen healthy controls and analyzed the structure-function relationship by using analytical network communication metrics derived from the structural connectome. In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information) in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.

  17. Distinctive Structural and Effective Connectivity Changes of Semantic Cognition Network across Left and Right Mesial Temporal Lobe Epilepsy Patients

    Directory of Open Access Journals (Sweden)

    Xiaotong Fan

    2016-01-01

    Full Text Available Occurrence of language impairment in mesial temporal lobe epilepsy (mTLE patients is common and left mTLE patients always exhibit a primary problem with access to names. To explore different neuropsychological profiles between left and right mTLE patients, the study investigated both structural and effective functional connectivity changes within the semantic cognition network between these two groups and those from normal controls. We found that gray matter atrophy of left mTLE patients was more severe than that of right mTLE patients in the whole brain and especially within the semantic cognition network in their contralateral hemisphere. It suggested that seizure attacks were rather targeted than random for patients with hippocampal sclerosis (HS in the dominant hemisphere. Functional connectivity analysis during resting state fMRI revealed that subregions of the anterior temporal lobe (ATL in the left HS patients were no longer effectively connected. Further, we found that, unlike in right HS patients, increased causal linking between ipsilateral regions in the left HS epilepsy patients cannot make up for their decreased contralateral interaction. It suggested that weakened contralateral connection and disrupted effective interaction between subregions of the unitary, transmodal hub of the ATL may be the primary cause of anomia in the left HS patients.

  18. Distinctive Structural and Effective Connectivity Changes of Semantic Cognition Network across Left and Right Mesial Temporal Lobe Epilepsy Patients

    Science.gov (United States)

    Fan, Xiaotong; Shang, Kun; Wang, Xiaocui; Wang, Peipei; Shan, Yongzhi; Lu, Jie

    2016-01-01

    Occurrence of language impairment in mesial temporal lobe epilepsy (mTLE) patients is common and left mTLE patients always exhibit a primary problem with access to names. To explore different neuropsychological profiles between left and right mTLE patients, the study investigated both structural and effective functional connectivity changes within the semantic cognition network between these two groups and those from normal controls. We found that gray matter atrophy of left mTLE patients was more severe than that of right mTLE patients in the whole brain and especially within the semantic cognition network in their contralateral hemisphere. It suggested that seizure attacks were rather targeted than random for patients with hippocampal sclerosis (HS) in the dominant hemisphere. Functional connectivity analysis during resting state fMRI revealed that subregions of the anterior temporal lobe (ATL) in the left HS patients were no longer effectively connected. Further, we found that, unlike in right HS patients, increased causal linking between ipsilateral regions in the left HS epilepsy patients cannot make up for their decreased contralateral interaction. It suggested that weakened contralateral connection and disrupted effective interaction between subregions of the unitary, transmodal hub of the ATL may be the primary cause of anomia in the left HS patients. PMID:28018680

  19. Correlation of neuropsychological and metabolic changes after epilepsy surgery in patients with left mesial temporal lobe epilepsy with hippocampal sclerosis.

    Science.gov (United States)

    Güvenç, Canan; Dupont, Patrick; Van den Stock, Jan; Seynaeve, Laura; Porke, Kathleen; Dries, Eva; Van Bouwel, Karen; van Loon, Johannes; Theys, Tom; Goffin, Karolien E; Van Paesschen, Wim

    2018-04-12

    Epilepsy surgery often causes changes in cognition and cerebral glucose metabolism. Our aim was to explore relationships between pre- and postoperative cerebral metabolism as measured with 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) and neuropsychological test scores in patients with left mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS), who were rendered seizure-free after epilepsy surgery. Thirteen patients were included. All had neuropsychological testing and an interictal FDG-PET scan of the brain pre- and postoperative. Correlations between changes in neuropsychological test scores and metabolism were examined using statistical parametric mapping (SPM). There were no significant changes in the neuropsychological test scores pre- and postoperatively at the group level. Decreased metabolism was observed in the left mesial temporal regions and occipital lobe. Increased metabolism was observed in the bi-frontal and right parietal lobes, temporal lobes, occipital lobes, thalamus, cerebellum, and vermis. In these regions, we did not find a correlation between changes in metabolism and neuropsychological test scores. A significant negative correlation, however, was found between metabolic changes in the precuneus and Boston Naming Test (BNT) scores. There are significant metabolic decreases in the left mesial temporal regions and increases in the bi-frontal lobes; right parietal, temporal, and occipital lobes; right thalamus; cerebellum; and vermis in patients with left MTLE-HS who were rendered seizure-free after epilepsy surgery. We could not confirm that these changes translate into significant cognitive changes. A significant negative correlation was found between changes in confrontation naming and changes in metabolism in the precuneus. We speculate that the precuneus may play a compensatory role in patients with postoperative naming difficulties after left TLE surgery. Understanding of these neural mechanisms may aid in

  20. Evidence for intact local connectivity but disrupted regional function in the occipital lobe in children and adolescents with schizophrenia.

    Science.gov (United States)

    White, Tonya; Moeller, Steen; Schmidt, Marcus; Pardo, Jose V; Olman, Cheryl

    2012-08-01

    It has long been known that specific visual frequencies result in greater blood flow to the striate cortex. These peaks are thought to reflect synchrony of local neuronal firing that is reflective of local cortical networks. Since disrupted neural connectivity is a possible etiology for schizophrenia, our goal was to investigate whether localized connectivity, as measured by aberrant synchrony, is abnormal in children and adolescents with schizophrenia. Subjects included 25 children and adolescents with schizophrenia and 39 controls matched for age and gender. Subjects were scanned on a Siemens 3 Tesla Trio scanner while observing flashing checkerboard presented at either 1, 4, 8, or 12 Hz. Image processing included both a standard GLM model and a Fourier transform analysis. Patients had significantly smaller volume of activation in the occipital lobe compared to controls. There were no differences in the integral or percent signal change of the hemodynamic response function for each of the four frequencies. Occipital activation was stable during development between childhood and late adolescence. Finally, both patients and controls demonstrated an increased response between 4 and 8 Hz consistent with synchrony or entrainment in the neuronal response. Children and adolescents with schizophrenia had a significantly lower volume of activation in the occipital lobe in response to the flashing checkerboard task. However, features of intact local connectivity in patients, such as the hemodynamic response function and maximal response at 8 Hz, were normal. These results are consistent with abnormalities in regional connectivity with preserved local connectivity in early-onset schizophrenia. Copyright © 2011 Wiley Periodicals, Inc.

  1. Temporal lobe epileptic signs and correlative behaviors displayed by normal populations.

    Science.gov (United States)

    Persinger, M A; Makarec, K

    1987-04-01

    With regard to epileptic signs and correlative behaviors, one hypothesis is that the experiences and nonconvulsive behaviors of patients with electrical foci within the temporal lobe are also displayed, but with less intensity, by normal people. If this is correct, then there should be quantitative relationships between the numbers of major complex partial epileptic signs (CPES) and the occurrence of other frequent clinical experiences and behaviors. An inventory to answer this question was developed. Over a 3-year period, 414 (6 groups) university students were administered an inventory that included themes of CPES as well as control and information items. Strong correlations were consistently found between CPES scores and reports of paranormal (mystical, with religious overtones) experiences and "a sense of presence." Results from three personality (CPI, MMPI, and IPAT anxiety) inventories clearly demonstrated similar profiles. In addition to being more anxious, people who displayed higher CPES scores were more suspicious, aloof, stereotyped in their behavior, ruminative (overthinking), intellectually inefficient, and overly judgmental. CPES scores were significantly (p less than .001) correlated with the schizophrenia and mania subscales of the MMPI. The results suggest that functional hyperconnectionism of cortical-limbic systems within the brain may be more prevalent in the normal population than previously suspected.

  2. Childhood temporal lobe epilepsy: correlation between electroencephalography and magnetic resonance spectroscopy: a case-control study.

    Science.gov (United States)

    Azab, Seham Fa; Sherief, Laila M; Saleh, Safaa H; Elshafeiy, Mona M; Siam, Ahmed G; Elsaeed, Wafaa F; Arafa, Mohamed A; Bendary, Eman A; Sherbiny, Hanan S; Elbehedy, Rabab M; Aziz, Khalid A

    2015-04-18

    The diagnosis of epilepsy should be made as early as possible to give a child the best chance for treatment success and also to decrease complications such as learning difficulties and social and behavioral problems. In this study, we aimed to assess the ability of magnetic resonance spectroscopy (MRS) in detecting the lateralization side in patients with Temporal lobe epilepsy (TLE) in correlation with EEG and MRI findings. This was a case-control study including 40 patients diagnosed (clinically and by EEG) as having temporal lobe epilepsy aged 8 to 14 years (mean, 10.4 years) and 20 healthy children with comparable age and gender as the control group. All patients were subjected to clinical examination, interictal electroencephalography and magnetic resonance imaging (MRI). Proton magnetic resonance spectroscopic examination (MRS) was performed to the patients and the controls. According to the findings of electroencephalography, our patients were classified to three groups: Group 1 included 20 patients with unitemporal (lateralized) epileptic focus, group 2 included 12 patients with bitemporal (non-lateralized) epileptic focus and group 3 included 8 patients with normal electroencephalography. Magnetic resonance spectroscopy could lateralize the epileptic focus in 19 patients in group 1, nine patients in group2 and five patients in group 3 with overall lateralization of (82.5%), while electroencephalography was able to lateralize the focus in (50%) of patients and magnetic resonance imaging detected lateralization of mesial temporal sclerosis in (57.5%) of patients. Magnetic resonance spectroscopy is a promising tool in evaluating patients with epilepsy and offers increased sensitivity to detect temporal pathology that is not obvious on structural MRI imaging.

  3. Cognitive and functional correlates of accelerated long-term forgetting in temporal lobe epilepsy.

    Science.gov (United States)

    Audrain, Samantha; McAndrews, Mary P

    2018-03-30

    While we know that hippocampal dysfunction is responsible for the memory deficits that patients with temporal lobe epilepsy exhibit at relatively short study-test delays, the role of this region in accelerated long-term forgetting (ALF) is not yet clear. In the present study, we probed the role of the hippocampus in ALF by directly comparing memory for associations to memory that could be supported by item recognition during a forced choice recognition task over delays ranging from 15-min to 72-h. We additionally examined resting-state functional connectivity between the hippocampus and cortical regions known to be involved in processing these types of stimuli, as well as the relationship between ALF and various clinical variables including structural abnormality in the hippocampus, lateralization of epileptic focus, presence of seizures across the retention period, and standardized composite memory scores. We found evidence of accelerated forgetting for item stimuli (but not associative stimuli) by 6 h post-learning, which became statistically reliable by 72-h. This finding suggests that unlike controls, patients were unable to utilize novelty to reject the incorrect object-scene pair. While none of the examined clinical variables were related to long-term forgetting, reduced resting-state functional connectivity between the affected anterior hippocampus and unaffected lateral temporal cortex predicted forgetting of item stimuli over the 72-h delay. Implications for the role of the hippocampus in accelerated long-term forgetting, and existing theories of systems consolidation in this context are discussed. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  4. MRI in temporal lobe epilepsy. Correlation between EEG, SPECT and clinical features

    International Nuclear Information System (INIS)

    Uesugi, Hideji; Onuma, Teiichi; Matsuda, Hiroshi; Ishida, Shiro

    1996-01-01

    The relationship between MRI, SPECT, EEG and clinical features in temporal lobe epilepsy was investigated. Subjects were 162 patients (84 males, 78 females) whose average age was 38.1±12.1 years. SPECT was carried out in 45 patients. The results were as follows: abnormal MR images were obtained in 36% of the group without epileptic discharge, and in 42% of the group with temporal spikes. There was no correlation between epileptic discharge in EEG and MRI abnormality. The lateralities of epileptic discharge and MRI were in disagreement in 9 of 39 patients (23%), indicating that determining the epileptic focus from scalp EEG was difficult. There was no correlation between the basic activity in EEG and abnormality in MRI. The rate of abnormal SPECT (89%) was higher than that of abnormal MRI (40%). The rate of the group with ictal automatism (52%) was higher than that of the group without ictal automatism (35%). The rate of abnormal MR images was high in the group with encephalitis (73%). The rate was higher in the group with febrile convulsion (62%) than in the group without it (28%). The rate of the abnormal MR images was higher in the group with a seizure frequency of at least several mal/month (48%) than in the group with a seizure frequency of less than several mal/year (29%). (author)

  5. Hippocampal CA3 transcriptome signature correlates with initial precipitating injury in refractory mesial temporal lobe epilepsy.

    Directory of Open Access Journals (Sweden)

    Silvia Y Bando

    Full Text Available BACKGROUND: Prolonged febrile seizures constitute an initial precipitating injury (IPI commonly associated with refractory mesial temporal lobe epilepsy (RMTLE. In order to investigate IPI influence on the transcriptional phenotype underlying RMTLE we comparatively analyzed the transcriptomic signatures of CA3 explants surgically obtained from RMTLE patients with (FS or without (NFS febrile seizure history. Texture analyses on MRI images of dentate gyrus were conducted in a subset of surgically removed sclerotic hippocampi for identifying IPI-associated histo-radiological alterations. METHODOLOGY/PRINCIPAL FINDINGS: DNA microarray analysis revealed that CA3 global gene expression differed significantly between FS and NFS subgroups. An integrative functional genomics methodology was used for characterizing the relations between GO biological processes themes and constructing transcriptional interaction networks defining the FS and NFS transcriptomic signatures and its major gene-gene links (hubs. Co-expression network analysis showed that: i CA3 transcriptomic profiles differ according to the IPI; ii FS distinctive hubs are mostly linked to glutamatergic signalization while NFS hubs predominantly involve GABAergic pathways and neurotransmission modulation. Both networks have relevant hubs related to nervous system development, what is consistent with cell genesis activity in the hippocampus of RMTLE patients. Moreover, two candidate genes for therapeutic targeting came out from this analysis: SSTR1, a relevant common hub in febrile and afebrile transcriptomes, and CHRM3, due to its putative role in epilepsy susceptibility development. MRI texture analysis allowed an overall accuracy of 90% for pixels correctly classified as belonging to FS or NFS groups. Histological examination revealed that granule cell loss was significantly higher in FS hippocampi. CONCLUSIONS/SIGNIFICANCE: CA3 transcriptional signatures and dentate gyrus morphology fairly

  6. Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections.

    Science.gov (United States)

    Tai, Xin You; Koepp, Matthias; Duncan, John S; Fox, Nick; Thompson, Pamela; Baxendale, Sallie; Liu, Joan Y W; Reeves, Cheryl; Michalak, Zuzanna; Thom, Maria

    2016-09-01

    SEE BERNASCONI DOI101093/AWW202 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Temporal lobe epilepsy, the most prevalent form of chronic focal epilepsy, is associated with a high prevalence of cognitive impairment but the responsible underlying pathological mechanisms are unknown. Tau, the microtubule-associated protein, is a hallmark of several neurodegenerative diseases including Alzheimer's disease and chronic traumatic encephalopathy. We hypothesized that hyperphosphorylated tau pathology is associated with cognitive decline in temporal lobe epilepsy and explored this through clinico-pathological study. We first performed pathological examination on tissue from 33 patients who had undergone temporal lobe resection between ages 50 and 65 years to treat drug-refractory temporal lobe epilepsy. We identified hyperphosphorylated tau protein using AT8 immunohistochemistry and compared this distribution to Braak patterns of Alzheimer's disease and patterns of chronic traumatic encephalopathy. We quantified tau pathology using a modified tau score created specifically for analysis of temporal lobectomy tissue and the Braak staging, which was limited without extra-temporal brain areas available. Next, we correlated tau pathology with pre- and postoperative cognitive test scores and clinical risk factors including age at time of surgery, duration of epilepsy, history of secondary generalized seizures, history of head injury, handedness and side of surgery. Thirty-one of 33 cases (94%) showed hyperphosphorylated tau pathology in the form of neuropil threads and neurofibrillary tangles and pre-tangles. Braak stage analysis showed 12% of our epilepsy cohort had a Braak staging III-IV compared to an age-matched non-epilepsy control group from the literature (8%). We identified a mixture of tau pathology patterns characteristic of Alzheimer's disease and chronic traumatic encephalopathy. We also found unusual patterns of subpial tau deposition, sparing of the hippocampus and

  7. Auditory training changes temporal lobe connectivity in 'Wernicke's aphasia': a randomised trial.

    Science.gov (United States)

    Woodhead, Zoe Vj; Crinion, Jennifer; Teki, Sundeep; Penny, Will; Price, Cathy J; Leff, Alexander P

    2017-07-01

    Aphasia is one of the most disabling sequelae after stroke, occurring in 25%-40% of stroke survivors. However, there remains a lack of good evidence for the efficacy or mechanisms of speech comprehension rehabilitation. This within-subjects trial tested two concurrent interventions in 20 patients with chronic aphasia with speech comprehension impairment following left hemisphere stroke: (1) phonological training using 'Earobics' software and (2) a pharmacological intervention using donepezil, an acetylcholinesterase inhibitor. Donepezil was tested in a double-blind, placebo-controlled, cross-over design using block randomisation with bias minimisation. The primary outcome measure was speech comprehension score on the comprehensive aphasia test. Magnetoencephalography (MEG) with an established index of auditory perception, the mismatch negativity response, tested whether the therapies altered effective connectivity at the lower (primary) or higher (secondary) level of the auditory network. Phonological training improved speech comprehension abilities and was particularly effective for patients with severe deficits. No major adverse effects of donepezil were observed, but it had an unpredicted negative effect on speech comprehension. The MEG analysis demonstrated that phonological training increased synaptic gain in the left superior temporal gyrus (STG). Patients with more severe speech comprehension impairments also showed strengthening of bidirectional connections between the left and right STG. Phonological training resulted in a small but significant improvement in speech comprehension, whereas donepezil had a negative effect. The connectivity results indicated that training reshaped higher order phonological representations in the left STG and (in more severe patients) induced stronger interhemispheric transfer of information between higher levels of auditory cortex.Clinical trial registrationThis trial was registered with EudraCT (2005-004215-30, https

  8. Non-primary motor areas in the human frontal lobe are connected directly to hand muscles.

    Science.gov (United States)

    Teitti, S; Määttä, S; Säisänen, L; Könönen, M; Vanninen, R; Hannula, H; Mervaala, E; Karhu, J

    2008-04-15

    Structural studies in primates have shown that, in addition to the primary motor cortex (M1), premotor areas are a source of corticospinal tracts. The function of these putative corticospinal neuronal tracts in humans is still unclear. We found frontal non-primary motor areas (NPMAs), which react to targeted non-invasive magnetic pulses and activate peripheral muscles as fast as or even faster than those in M1. Hand muscle movements were observed in all our subjects about 20 ms after transcranial stimulation of the superior frontal gyrus (Brodmann areas 6 and 8). Stimulation of NPMA could activate both proximal and distal upper limb muscles with the same delay as a stimulation of the M1, indicating converging motor representations with direct functional connections to the hand. We suggest that these non-primary cortical motor representations provide additional capacity for the fast execution of movements. Such a capacity may play a role in motor learning and in recovery from motor deficits.

  9. Connectivity pattern differences bilaterally in the cerebellum posterior lobe in healthy subjects after normal sleep and sleep deprivation: a resting-state functional MRI study

    Directory of Open Access Journals (Sweden)

    Liu XM

    2015-05-01

    Full Text Available Xuming Liu,1 Zhihan Yan,2 Tingyu Wang,1 Xiaokai Yang,1 Feng Feng,3 Luping Fan,1 Jian Jiang4 1Department of Radiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, 2Department of Radiology, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, 3Peking Union Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 4Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China Objective: The aim of this study was to use functional magnetic resonance imaging (fMRI technique to explore the resting-state functional connectivity (rsFC differences of the bilaterial cerebellum posterior lobe (CPL after normal sleep (NS and after sleep deprivation (SD. Methods: A total of 16 healthy subjects (eight males, eight females underwent an fMRI scan twice at random: once following NS and the other following 24 hours’ SD, with an interval of 1 month between the two scans. The fMRI scanning included resting state and acupuncture stimulation. The special activated regions located during the acupuncture stimulation were selected as regions of interest for rsFC analysis. Results: Bilateral CPLs were positively activated by acupuncture stimulation. In the NS group, the left CPL showed rsFC with the bilateral CPL, bilateral frontal lobe (BFL, left precuneus and right inferior parietal lobule, while the right CPL showed rsFC with the bilateral temporal lobe, right cerebellum anterior lobe, right CPL, left frontal lobe, left anterior cingulate, right posterior cingulate, and bilateral inferior parietal lobule. In the SD group, the left CPL showed rsFC with the left posterior cingulate gyrus bilateral CPL, left precuneus, left precentral gyrus, BFL, and the left parietal lobe, while the right CPL showed rsFC with bilateral cerebellum anterior lobe, bilateral CPL, left frontal lobe and left temporal lobe. Compared with the NS group, the

  10. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy

    Science.gov (United States)

    Buckmaster, Paul S.; Abrams, Emily; Wen, Xiling

    2018-01-01

    Epilepsy occurs in one of 26 people. Temporal lobe epilepsy is common and can be difficult to treat effectively. It can develop after brain injuries that damage the hippocampus. Multiple pathophysiological mechanisms involving the hippocampal dentate gyrus have been proposed. This study evaluated a mouse model of temporal lobe epilepsy to test which pathological changes in the dentate gyrus correlate with seizure frequency and help prioritize potential mechanisms for further study. FVB mice (n = 127) that had experienced status epilepticus after systemic treatment with pilocarpine 31–61 days earlier were video-monitored for spontaneous, convulsive seizures 9 hr/day every day for 24–36 days. Over 4,060 seizures were observed. Seizure frequency ranged from an average of one every 3.6 days to one every 2.1 hr. Hippocampal sections were processed for Nissl stain, Prox1-immunocytochemistry, GluR2-immunocytochemistry, Timm stain, glial fibrillary acidic protein-immunocytochemistry, glutamic acid decarboxylase in situ hybridization, and parvalbumin-immunocytochemistry. Stereological methods were used to measure hilar ectopic granule cells, mossy cells, mossy fiber sprouting, astrogliosis, and GABAergic interneurons. Seizure frequency was not significantly correlated with the generation of hilar ectopic granule cells, the number of mossy cells, the extent of mossy fiber sprouting, the extent of astrogliosis, or the number of GABAergic interneurons in the molecular layer or hilus. Seizure frequency significantly correlated with the loss of GABAergic interneurons in or adjacent to the granule cell layer, but not with the loss of parvalbumin-positive interneurons. These findings prioritize the loss of granule cell layer interneurons for further testing as a potential cause of temporal lobe epilepsy. PMID:28425097

  11. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Buckmaster, Paul S; Abrams, Emily; Wen, Xiling

    2017-08-01

    Epilepsy occurs in one of 26 people. Temporal lobe epilepsy is common and can be difficult to treat effectively. It can develop after brain injuries that damage the hippocampus. Multiple pathophysiological mechanisms involving the hippocampal dentate gyrus have been proposed. This study evaluated a mouse model of temporal lobe epilepsy to test which pathological changes in the dentate gyrus correlate with seizure frequency and help prioritize potential mechanisms for further study. FVB mice (n = 127) that had experienced status epilepticus after systemic treatment with pilocarpine 31-61 days earlier were video-monitored for spontaneous, convulsive seizures 9 hr/day every day for 24-36 days. Over 4,060 seizures were observed. Seizure frequency ranged from an average of one every 3.6 days to one every 2.1 hr. Hippocampal sections were processed for Nissl stain, Prox1-immunocytochemistry, GluR2-immunocytochemistry, Timm stain, glial fibrillary acidic protein-immunocytochemistry, glutamic acid decarboxylase in situ hybridization, and parvalbumin-immunocytochemistry. Stereological methods were used to measure hilar ectopic granule cells, mossy cells, mossy fiber sprouting, astrogliosis, and GABAergic interneurons. Seizure frequency was not significantly correlated with the generation of hilar ectopic granule cells, the number of mossy cells, the extent of mossy fiber sprouting, the extent of astrogliosis, or the number of GABAergic interneurons in the molecular layer or hilus. Seizure frequency significantly correlated with the loss of GABAergic interneurons in or adjacent to the granule cell layer, but not with the loss of parvalbumin-positive interneurons. These findings prioritize the loss of granule cell layer interneurons for further testing as a potential cause of temporal lobe epilepsy. © 2017 Wiley Periodicals, Inc.

  12. Development of thalamocortical connectivity during infancy and its cognitive correlations.

    Science.gov (United States)

    Alcauter, Sarael; Lin, Weili; Smith, J Keith; Short, Sarah J; Goldman, Barbara D; Reznick, J Steven; Gilmore, John H; Gao, Wei

    2014-07-02

    Although commonly viewed as a sensory information relay center, the thalamus has been increasingly recognized as an essential node in various higher-order cognitive circuits, and the underlying thalamocortical interaction mechanism has attracted increasing scientific interest. However, the development of thalamocortical connections and how such development relates to cognitive processes during the earliest stages of life remain largely unknown. Leveraging a large human pediatric sample (N = 143) with longitudinal resting-state fMRI scans and cognitive data collected during the first 2 years of life, we aimed to characterize the age-dependent development of thalamocortical connectivity patterns by examining the functional relationship between the thalamus and nine cortical functional networks and determine the correlation between thalamocortical connectivity and cognitive performance at ages 1 and 2 years. Our results revealed that the thalamus-sensorimotor and thalamus-salience connectivity networks were already present in neonates, whereas the thalamus-medial visual and thalamus-default mode network connectivity emerged later, at 1 year of age. More importantly, brain-behavior analyses based on the Mullen Early Learning Composite Score and visual-spatial working memory performance measured at 1 and 2 years of age highlighted significant correlations with the thalamus-salience network connectivity. These results provide new insights into the understudied early functional brain development process and shed light on the behavioral importance of the emerging thalamocortical connectivity during infancy. Copyright © 2014 the authors 0270-6474/14/349067-09$15.00/0.

  13. MRI segmentation in the diagnosis and clinical correlations of temporal lobe epilepsy

    International Nuclear Information System (INIS)

    He Huijin; Shen Tianzhen; Chen Xingrong; Feng Xiaoyuan; Jiang Chengchuan

    2004-01-01

    Objective: To study the different patterns of hippocampal atrophy by MRI segmental analysis and to investigate the etiology and pathogenesis of temporal lobe epilepsy. Methods: GE 1.5 T Signa Horizon LX MRI scanner was used. Oblique coronal T 1 weighted images perpendicular to the long axis of the hippocampus were obtained. The mesial temporal structures were divided into four parts: the amygdala, hippocampal head, body and tail. MRI patterns of atrophy in 50 patients with histologically confirmed hippocampal sclerosis were investigated by MRI volumetric measurement and segmental analysis, and the differences of clinical features and surgical outcome in different groups were compared. Results: Diffuse hippocampal atrophy was found in 22 of 50 patients (44%), 5 of the 50 patients (10%) showed diffuse atrophy involving both the amygdala and hippocampus. 20 of the 50 patients (40%) had hippocampal focal atrophy and 8 of 50 patients (16%) had no obvious atrophy. 38 of 50 (76%) hippocampal sclerosis had atrophy in the hippocampal body, 29 of 50 (58%) had hippocampal head atrophy, 24 of 50 (48%) had hippocampal tail atrophy, and the least involved part was the amygdala (16%, 8/50). 10 patients who had normal hippocampal volume showed focal hippocampal atrophy by segmental analysis. Various patterns of hippocampal atrophy were found to be statistically related to the duration of epilepsy, the frequency of seizure and the outcome of surgery, respectively (P 0.05). Conclusion: MRI segmental analysis can improve the diagnostic sensitivity of temporal lobe epilepsy and help to investigate its etiology and pathogenesis. (author)

  14. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions

    Science.gov (United States)

    Pernal, Katarzyna

    2018-01-01

    An adiabatic connection (AC) formula for the electron correlation energy is derived for a broad class of multireference wave functions. The AC expression recovers dynamic correlation energy and assures a balanced treatment of the correlation energy. Coupling the AC formalism with the extended random phase approximation allows one to find the correlation energy only from reference one- and two-electron reduced density matrices. If the generalized valence bond perfect pairing model is employed a simple closed-form expression for the approximate AC formula is obtained. This results in the overall M5 scaling of the computation cost making the method one of the most efficient multireference approaches accounting for dynamic electron correlation also for the strongly correlated systems.

  15. Analysis of occipital lobe activation during functional MRI in patients with open-angle glaucoma and correlation with clinical results

    International Nuclear Information System (INIS)

    Dai Hui; Liu Yunlian; Hu Chunhong; Li Yonggang; Guo Liang; Qi Jianpin; Xia Liming

    2013-01-01

    Objective: To evaluate the activation of the visual cortex in patients with primary open angle glaucoma (POAG) and to explore whether the neuronal activity corresponds with retinal nerve fiber layer (RNFL) and cup-to-disc (C/D) values. Methods: Twenty-five patients and 25 gender-and age matched healthy volunteers were studied. Blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) and three-dimensional brain volume imaging (3D BRAVO) sequences were obtained using 3 T MR imaging system. A full-screen black-white shift checkerboard was used for visual stimulus during the fMRI experiment and was performed on each eye of all subjects using a visual-acoustical system. All acquired data were postprocessed and analyzed by statistical parametric mapping (SPM). After analysis, individual activated mapping, intra-group mean activated mapping, and inter-group variant mapping were observed. The voxel number, intensity, and Montreal Neurological Institute (MNI) coordinate of the activated clusters were recorded. The Xjviewer software was utilized to obtain activated voxel numbers in occipital lobe. A Pearson correlated test was performed to test the correlation between the number of activated voxels and RNFL, C/D and Hodapp-Anderson-Parrish (HAP) clinical stage. Results: Intra-group mean activated mappings of both patients and volunteers showed obvious activation in bilateral occipital lobes. As compared with healthy volunteers, the POAG patients exhibited statistically significantly decreased activation in bilateral occipital lobes, left hippocampus, and left cerebellum, along with lower mean RNFL [(71.56 ± 21.54) μm versus (111.88 ± 9.96) μm] and higher C/D values (0.71 ± 0.18 versus 0.36 ± 0.08 ; t value was respectively -10.901 and 11.643, P 0.05). Conclusions: fMRI demonstrated differences in visual cortex activation in POAG patients relative to healthy volunteers, suggesting it might be a promising complementary method for diagnosing

  16. Functional and structural correlates of motor speed in the cerebellar anterior lobe.

    Directory of Open Access Journals (Sweden)

    Uwe Wenzel

    Full Text Available In athletics, motor performance is determined by different abilities such as technique, endurance, strength and speed. Based on animal studies, motor speed is thought to be encoded in the basal ganglia, sensorimotor cortex and the cerebellum. The question arises whether there is a unique structural feature in the human brain, which allows "power athletes" to perform a simple foot movement significantly faster than "endurance athletes". We acquired structural and functional brain imaging data from 32 track-and-field athletes. The study comprised of 16 "power athletes" requiring high speed foot movements (sprinters, jumpers, throwers and 16 endurance athletes (distance runners which in contrast do not require as high speed foot movements. Functional magnetic resonance imaging (fMRI was used to identify speed specific regions of interest in the brain during fast and slow foot movements. Anatomical MRI scans were performed to assess structural grey matter volume differences between athletes groups (voxel based morphometry. We tested maximum movement velocity of plantarflexion (PF-Vmax and acquired electromyographical activity of the lateral and medial gastrocnemius muscle. Behaviourally, a significant difference between the two groups of athletes was noted in PF-Vmax and fMRI indicates that fast plantarflexions are accompanied by increased activity in the cerebellar anterior lobe. The same region indicates increased grey matter volume for the power athletes compared to the endurance counterparts. Our results suggest that speed-specific neuro-functional and -structural differences exist between power and endurance athletes in the peripheral and central nervous system.

  17. Clinical-physiologic correlates of Alzheimer's disease and frontal lobe dementia

    International Nuclear Information System (INIS)

    Jagust, W.J.; Reed, B.R.; Seab, J.P.; Kramer, J.H.; Budinger, T.F.

    1989-01-01

    Thirty patients with degenerative dementia underwent clinical evaluation, neuropsychological testing, and single photon emission computed tomography (SPECT) with the blood flow tracer [ 123 I]-N-isopropyl-p-iodoamphetamine. Five of these patients were clinically and psychologically different from the others, demonstrating predominant behavioral disturbances with relative preservation of memory function. These five patients, who were felt to have a frontal lobe dementia (FLD), showed SPECT perfusion patterns which differed from the remaining 25 patients, who were diagnosed as having Alzheimer's disease (AD), and from 16 healthy control subjects. The FLD patients showed diminished perfusion in orbitofrontal, dorsolateral frontal, and temporal cortex relative to controls, while the AD patients showed lower perfusion in temporal and parietal cortex than controls. The FLD patients also showed hypoperfusion in both frontal cortical regions relative to AD patients. The pattern of performance on neuropsychological testing paralleled these differences in regional perfusion. These results suggest that clinical evaluation and physiological imaging may enable the differentiation of groups of degenerative dementia patients during life

  18. For early detection of ''potential patients with depression''. Correlation of sleep disorder with frontal lobe dysfunction and depression symptoms

    International Nuclear Information System (INIS)

    Koyama, Fumihiko; Kubuki, Yukiko; Uragami, Ikuko

    2011-01-01

    In Phase I of the research field of ''mental health of workers'' among the 13 research fields for work-related injuries/illness etc. promoted by the Japan Labour Health and Welfare Organization, a statistical image analysis of cerebral blood flow single photon emission computed tomography (SPECT) ( 99 mTc-ECD) was performed for 45 workers (a group of 25 patients with depression and a control group of 20 healthy workers) to perform objective assessment of the features of depression. In the depression and remission periods, we obtained findings regarding characteristic changes in cerebral blood flow, and local decreases in cerebral blood flow that correlated with the level of cumulative fatigue and subjective feelings of fatigue. Based on these image analysis results, it was suggested that for the prevention and early detection of depression, we should focus on the fact that patients with more severe sleep disorder(s) might show a decrease in blood flow in the dorsal frontal lobe, and that a close relationship between sleep disorder and depression was suggested in the images of cerebral function. Among 17 items of the Structured Interview Guide for the Hamilton Depression Rating Scale (SIGH-D) for the general evaluation of depression state, the patients with higher scores of sleep disorder, Insomnia Score (IS), showed a significant decrease in blood flow in the dorsal frontal lobe, suggesting a decrease in attentiveness/concentration. Focusing on the biological finding that showed a correlation between sleep disorder (IS) and frontal lobe dysfunction, we further examined the correlation between the level of sleep disorder, shown in IS, and the data related to depression (total SIGH-D score and the points of individual items; total score of the self-rating depressive scale [SDS] and points of individual items) in 108 workers (57 in the depression undergoing follow-up observation group and 51 in the healthy control group). As a result, IS in 57 subjects in the

  19. Correlation between memory, proton magnetic resonance spectroscopy, and interictal epileptiform discharges in temporal lobe epilepsy related to mesial temporal sclerosis.

    Science.gov (United States)

    Mantoan, Marcele Araújo Silva; Caboclo, Luís Otávio Sales Ferreira; de Figueiredo Ferreira Guilhoto, Laura Maria; Lin, Katia; da Silva Noffs, Maria Helena; de Souza Silva Tudesco, Ivanda; Belzunces, Erich; Carrete, Henrique; Bussoletti, Renato Tavares; Centeno, Ricardo Silva; Sakamoto, Américo Ceiki; Yacubian, Elza Márcia Targas

    2009-11-01

    The aim of the study described here was to examine the relationship between memory function, proton magnetic resonance spectroscopy ((1)H-MRS) abnormalities, and interictal epileptiform discharge (IED) lateralization in patients with temporal lobe epilepsy (TLE) related to unilateral mesial temporal sclerosis. We assessed performance on tests of memory function and intelligence quotient (IQ) in 29 right-handed outpatients and 24 controls. IEDs were assessed on 30-minute-awake and 30-minute-sleep EEG samples. Patients had (1)H-MRS at 1.5 T. There was a negative correlation between IQ (P=0.031) and Rey Auditory Verbal Learning Test results (P=0.022) and epilepsy duration; between(1)H-MRS findings and epilepsy duration (P=0.027); and between N-acetylaspartate (NAA) levels and IEDs (P=0.006) in contralateral mesial temporal structures in the left MTS group. (1)H-MRS findings, IEDs, and verbal function were correlated. These findings suggest that IEDs and NAA/(Cho+Cr) ratios reflecting neural metabolism are closely related to verbal memory function in mesial temporal sclerosis. Higher interictal activity on the EEG was associated with a decline in total NAA in contralateral mesial temporal structures.

  20. Correlation between temporal pole MRI abnormalities and surface ictal EEG patterns in patients with unilateral mesial temporal lobe epilepsy.

    Science.gov (United States)

    Caboclo, Luís Otávio S F; Garzon, Eliana; Oliveira, Pedro A L; Carrete, Henrique; Centeno, Ricardo S; Bianchin, Marino M; Yacubian, Elza Márcia T; Sakamoto, Américo C

    2007-01-01

    The objective of this retrospective study is to analyze ictal patterns observed during continuous Video-EEG monitoring in patients with temporal lobe epilepsy (TLE) due to unilateral hippocampal sclerosis (HS), and to correlate these EEG patterns to temporal pole abnormalities observed on magnetic resonance imaging exams. We analyzed 147 seizures from 35 patients with TLE and unilateral HS. Ictal patterns were classified and correlated to signal abnormalities and volumetric measures of the temporal poles. Volume differences over 10% were considered abnormal. The most frequent type of ictal pattern was rhythmic theta activity (RTA), encountered in 65.5% of the seizures. Rhythmic beta activity (RBA) was observed in 11% of the seizures, localized attenuation in 8%, interruption of epileptiform discharges in 6%, repetitive discharges in 5.5%, and rhythmic delta activity (RDA) in 4%. Sixty-six percent of the patients presented signal abnormalities in the temporal pole that were always ipsilateral to the HS. Sixty percent presented significant asymmetry of the temporal poles consisting of reduced volume that was also always ipsilateral to HS. Although patients with RTA as the predominant ictal pattern tended to present asymmetry of temporal poles (p=0.305), the ictal EEG pattern did not correlate with temporal pole asymmetry or signal abnormalities. RTA is the most frequent initial ictal pattern in patients with TLE due to unilateral HS. Temporal pole signal changes and volumetric reduction were commonly found in this group of patients, both abnormalities appearing always ipsilateral to the HS. However, neither temporal pole volume reduction nor signal abnormalities correlated with the predominant ictal pattern, suggesting that the temporal poles are not crucially involved in the process of epileptogenesis.

  1. γ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe.

    Science.gov (United States)

    Donahue, Manus J; Rane, Swati; Hussey, Erin; Mason, Emily; Pradhan, Subechhya; Waddell, Kevin W; Ally, Brandon A

    2014-03-01

    Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA(+)]/[NAA-NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years). Regression analyses reveal an inverse correlation between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.46; P=0.037), yet no relationship between AAT and [GABA(+)]/[NAA-NAAG] (R=-0.12; P=0.33). Perfusion measurements that do not control for AAT variations reveal reduced correlations between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.13; P=0.32). These findings largely reconcile contradictory reports between perfusion and inhibitory tone, and underscore the physiologic origins of the growing literature relating functional imaging signals, hemodynamics, and neurotransmission.

  2. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Jonathan Wirsich

    2016-01-01

    In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.

  3. Summability of Connected Correlation Functions of Coupled Lattice Fields

    Science.gov (United States)

    Lukkarinen, Jani; Marcozzi, Matteo; Nota, Alessia

    2018-04-01

    We consider two nonindependent random fields ψ and φ defined on a countable set Z. For instance, Z=Z^d or Z=Z^d× I, where I denotes a finite set of possible "internal degrees of freedom" such as spin. We prove that, if the cumulants of ψ and φ enjoy a certain decay property, then all joint cumulants between ψ and φ are ℓ _2-summable in the precise sense described in the text. The decay assumption for the cumulants of ψ and φ is a restricted ℓ _1 summability condition called ℓ _1-clustering property. One immediate application of the results is given by a stochastic process ψ _t(x) whose state is ℓ _1-clustering at any time t: then the above estimates can be applied with ψ =ψ _t and φ =ψ _0 and we obtain uniform in t estimates for the summability of time-correlations of the field. The above clustering assumption is obviously satisfied by any ℓ _1-clustering stationary state of the process, and our original motivation for the control of the summability of time-correlations comes from a quest for a rigorous control of the Green-Kubo correlation function in such a system. A key role in the proof is played by the properties of non-Gaussian Wick polynomials and their connection to cumulants

  4. Dynamic Correlations between Intrinsic Connectivity and Extrinsic Connectivity of the Auditory Cortex in Humans.

    Science.gov (United States)

    Cui, Zhuang; Wang, Qian; Gao, Yayue; Wang, Jing; Wang, Mengyang; Teng, Pengfei; Guan, Yuguang; Zhou, Jian; Li, Tianfu; Luan, Guoming; Li, Liang

    2017-01-01

    The arrival of sound signals in the auditory cortex (AC) triggers both local and inter-regional signal propagations over time up to hundreds of milliseconds and builds up both intrinsic functional connectivity (iFC) and extrinsic functional connectivity (eFC) of the AC. However, interactions between iFC and eFC are largely unknown. Using intracranial stereo-electroencephalographic recordings in people with drug-refractory epilepsy, this study mainly investigated the temporal dynamic of the relationships between iFC and eFC of the AC. The results showed that a Gaussian wideband-noise burst markedly elicited potentials in both the AC and numerous higher-order cortical regions outside the AC (non-auditory cortices). Granger causality analyses revealed that in the earlier time window, iFC of the AC was positively correlated with both eFC from the AC to the inferior temporal gyrus and that to the inferior parietal lobule. While in later periods, the iFC of the AC was positively correlated with eFC from the precentral gyrus to the AC and that from the insula to the AC. In conclusion, dual-directional interactions occur between iFC and eFC of the AC at different time windows following the sound stimulation and may form the foundation underlying various central auditory processes, including auditory sensory memory, object formation, integrations between sensory, perceptional, attentional, motor, emotional, and executive processes.

  5. Dynamic Correlations between Intrinsic Connectivity and Extrinsic Connectivity of the Auditory Cortex in Humans

    Directory of Open Access Journals (Sweden)

    Zhuang Cui

    2017-08-01

    Full Text Available The arrival of sound signals in the auditory cortex (AC triggers both local and inter-regional signal propagations over time up to hundreds of milliseconds and builds up both intrinsic functional connectivity (iFC and extrinsic functional connectivity (eFC of the AC. However, interactions between iFC and eFC are largely unknown. Using intracranial stereo-electroencephalographic recordings in people with drug-refractory epilepsy, this study mainly investigated the temporal dynamic of the relationships between iFC and eFC of the AC. The results showed that a Gaussian wideband-noise burst markedly elicited potentials in both the AC and numerous higher-order cortical regions outside the AC (non-auditory cortices. Granger causality analyses revealed that in the earlier time window, iFC of the AC was positively correlated with both eFC from the AC to the inferior temporal gyrus and that to the inferior parietal lobule. While in later periods, the iFC of the AC was positively correlated with eFC from the precentral gyrus to the AC and that from the insula to the AC. In conclusion, dual-directional interactions occur between iFC and eFC of the AC at different time windows following the sound stimulation and may form the foundation underlying various central auditory processes, including auditory sensory memory, object formation, integrations between sensory, perceptional, attentional, motor, emotional, and executive processes.

  6. Correlation between IL-10 and microRNA-187 expression in epileptic rat hippocampus and patients with temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Walid A. Alsharafi

    2015-12-01

    Full Text Available Accumulating evidence is emerging that microRNAs (miRs are key regulators controlling neuroinflammatory processes, which are known to play a potential role in the pathogenesis of temporal lobe epilepsy (TLE. The aim of the present study was to investigate the dynamic expression pattern of interleukin (IL–10 as an anti-inflammatory cytokine and miR-187 and post-transcriptional inflammation-related miRNA in the hippocampus of a rat model of status epilepticus (SE and patients with TLE. We performed a real-time quantitative PCR and western blot on rat hippocampus (2 hours, 7 days, 21 days and 60 days following pilocarpine-induced SE, and on hippocampus obtained from TLE patients and normal controls. To detect the relationship between IL-10 and miR-187 on neurons, lipopolysaccharide (LPS and IL-10-stimulated neurons were prepared. Furthermore, we identified the effect of antagonizing of miR-187 by its antagomir on IL-10 secretion. Here we reported that that IL-10 secretion and miR-187 expression levels are inversely correlated after SE.. In patients with TLE, the expression levels of IL-10 was also significantly upregulated, whereas miR-187 expression was significantly downregulated. Moreover, miR-187 expression was significantly reduced following IL-10 stimulation in an IL-10–dependent manner. On the other hand, antagonizing miR-187 reduced the production of IL-10 in hippocampal tissues of rat model of SE. Our findings demonstrate a critical role of miR-187 in the physiological regulation of IL-10 anti-inflammatory responses and elucidate the role of neuro-inflammation in the pathogenesis of TLE. Therefore, modulation of the IL-10 / miR-187 axis may be a new therapeutic approach for TLE.

  7. Evidence for intact local connectivity but disrupted regional function in the occipital lobe in children and adolescents with schizophrenia

    NARCIS (Netherlands)

    T.J.H. White (Tonya); S. Moeller (Steen); M. Schmidt (Marcus); J.V. Pardo (Jose); C. Olman (Cheryl)

    2012-01-01

    textabstractIt has long been known that specific visual frequencies result in greater blood flow to the striate cortex. These peaks are thought to reflect synchrony of local neuronal firing that is reflective of local cortical networks. Since disrupted neural connectivity is a possible etiology for

  8. Advanced correlation grid: Analysis and visualisation of functional connectivity among multiple spike trains.

    Science.gov (United States)

    Masud, Mohammad Shahed; Borisyuk, Roman; Stuart, Liz

    2017-07-15

    This study analyses multiple spike trains (MST) data, defines its functional connectivity and subsequently visualises an accurate diagram of connections. This is a challenging problem. For example, it is difficult to distinguish the common input and the direct functional connection of two spike trains. The new method presented in this paper is based on the traditional pairwise cross-correlation function (CCF) and a new combination of statistical techniques. First, the CCF is used to create the Advanced Correlation Grid (ACG) correlation where both the significant peak of the CCF and the corresponding time delay are used for detailed analysis of connectivity. Second, these two features of functional connectivity are used to classify connections. Finally, the visualization technique is used to represent the topology of functional connections. Examples are presented in the paper to demonstrate the new Advanced Correlation Grid method and to show how it enables discrimination between (i) influence from one spike train to another through an intermediate spike train and (ii) influence from one common spike train to another pair of analysed spike trains. The ACG method enables scientists to automatically distinguish between direct connections from spurious connections such as common source connection and indirect connection whereas existing methods require in-depth analysis to identify such connections. The ACG is a new and effective method for studying functional connectivity of multiple spike trains. This method can identify accurately all the direct connections and can distinguish common source and indirect connections automatically. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cluster pair correlation function of simple fluids: energetic connectivity criteria

    OpenAIRE

    Pugnaloni, Luis A.; Zarragoicoechea, Guillermo J.; Vericat, Fernando

    2006-01-01

    We consider the clustering of Lennard-Jones particles by using an energetic connectivity criterion proposed long ago by T.L. Hill [J. Chem. Phys. 32, 617 (1955)] for the bond between pairs of particles. The criterion establishes that two particles are bonded (directly connected) if their relative kinetic energy is less than minus their relative potential energy. Thus, in general, it depends on the direction as well as on the magnitude of the velocities and positions of the particles. An integ...

  10. Impact of endobronchial coiling on segmental bronchial lumen in treated and untreated lung lobes: Correlation with changes in lung volume, clinical and pulmonary function tests.

    Science.gov (United States)

    Kloth, C; Thaiss, W M; Hetzel, J; Ditt, H; Grosse, U; Nikolaou, K; Horger, M

    2016-07-01

    To assess the impact of endobronchial coiling on the segment bronchus cross-sectional area and volumes in patients with lung emphysema using quantitative chest-CT measurements. Thirty patients (female = 15; median age = 65.36 years) received chest-CT before and after endobronchial coiling for lung volume reduction (LVR) between January 2010 and December 2014. Thin-slice (0.6 mm) non-enhanced image data sets were acquired both at end-inspiration and end-expiration using helical technique and 120 kV/100-150 mAs. Clinical response was defined as an increase in the walking distance (Six-minute walk test; 6MWT) after LVR-therapy. Additionally, pulmonary function test (PFT) measurements were used for clinical correlation. In the treated segmental bronchia, the cross-sectional lumen area showed significant reduction (p  0.05). In the ipsilateral lobes, the lumina showed no significant changes. In the contralateral lung, we found tendency towards increased cross-sectional area in inspiration (p = 0.06). Volumes of the treated segments correlated with the treated segmental bronchial lumina in expiration (r = 0.80, p volume of the treated lobe in responders only. Endobronchial coiling causes significant decrease in the cross-sectional area of treated segment bronchi in inspiration and a slight increase in expiration accompanied by a volume reduction. • Endobronchial coiling has indirect impact on cross-sectional area of treated segment bronchi • Volume changes of treated lobes correlate with changes in bronchial cross-sectional area • Coil-induced effects reflect their stabilizing and stiffening impact on lung parenchyma • Endobronchial coiling reduces bronchial collapsing compensating the loss of elasticity.

  11. Connecting single-stock assessment models through correlated survival

    DEFF Research Database (Denmark)

    Albertsen, Christoffer Moesgaard; Nielsen, Anders; Thygesen, Uffe Høgsbro

    2017-01-01

    times. We propose a simple alternative. In three case studies each with two stocks, we improve the single-stock models, as measured by Akaike information criterion, by adding correlation in the cohort survival. To limit the number of parameters, the correlations are parameterized through...... the corresponding partial correlations. We consider six models where the partial correlation matrix between stocks follows a band structure ranging from independent assessments to complex correlation structures. Further, a simulation study illustrates the importance of handling correlated data sufficiently...... by investigating the coverage of confidence intervals for estimated fishing mortality. The results presented will allow managers to evaluate stock statuses based on a more accurate evaluation of model output uncertainty. The methods are directly implementable for stocks with an analytical assessment and do...

  12. Value of Proton-MR-Spectroscopy in the Diagnosis of Temporal Lobe Epilepsy; Correlation of Metabolite Alterations With Electroencephalography

    International Nuclear Information System (INIS)

    Aydin, Hasan; Oktay, Nilay Aydin; Kizilgoz, Volkan; Altin, Elif; Tatar, Idil Gunes; Hekimoglu, Baki

    2012-01-01

    Epilepsy, a well-known mostly idiopathic neurologic disorder, has to be correctly diagnosed and properly treated. Up to now, several diagnostic approaches have been processed to determine the epileptic focus. The aim of this study was to discover whether proton-MR-spectroscopic imaging (MRSI) aids in the diagnosis of temporal lobe epilepsy in conjunction with classical electroencephalography (EEG) findings. Totally, 70 mesial temporal zones consisting of 39 right hippocampi and 31 left hippocampi of 46 patients (25 male, 21 female) were analyzed by proton MRSI. All patients underwent a clinical neurologic examination, scalp EEG recording and prolonged video EEG monitoring. Partial seizures on the right, left or both sides were recorded in all patients. All patients were under medical treatment and none of the patients underwent amygdalohippocampectomy and similar surgical procedures. The normal average lactate (Lac), phosphocreatine, N-acetyl aspartate (NAA), creatine (Cr), choline (Cho), myo-inositol, glutamate and glutamine (Glx) peaks and Nacetyl aspartate/Cr, NAA/ Cho + Cr, Cho/Cr ratios were measured from the healthy opposite hippocampi or from the control subjects. The Lac, glutamate and glutamine (Glx), myo-inositol, phosphocreatine and NAA metabolites plus Cho/Cr ratio showed statistical difference between the normal and the epileptic hippocampi. Cho, Cr metabolites plus NAA/Cr, NAA/ Cho + Cr ratios were almost the same between the groups. The sensitivity of Proton-MR-Spectroscopy for lateralization of the epileptic foci in all patients was 96% and the specificity was 50%. Proton-MRSI can easily be considered as an alternative modality of choice in the diagnosis of temporal lobe epilepsy and in the future; Proton-MR-Spectroscopy may become the most important technique used in epilepsy centers

  13. Longitudinal functional connectivity changes correlate with mood improvement after regular exercise in a dose-dependent fashion.

    Science.gov (United States)

    Tozzi, Leonardo; Carballedo, Angela; Lavelle, Grace; Doolin, Kelly; Doyle, Myles; Amico, Francesco; McCarthy, Hazel; Gormley, John; Lord, Anton; O'Keane, Veronica; Frodl, Thomas

    2016-04-01

    Exercise increases wellbeing and improves mood. It is however unclear how these mood changes relate to brain function. We conducted a randomized controlled trial investigating resting-state modifications in healthy adults after an extended period of aerobic physical exercise and their relationship with mood improvements. We aimed to identify novel functional networks whose activity could provide a physiological counterpart to the mood-related benefits of exercise. Thirty-eight healthy sedentary volunteers were randomised to either the aerobic exercise group of the study or a control group. Participants in the exercise group attended aerobic sessions with a physiotherapist twice a week for 16 weeks. Resting-state modifications using magnetic resonance imaging were assessed before and after the programme and related to mood changes. An unbiased approach using graph metrics and network-based statistics was adopted. Exercise reduced mood disturbance and improved emotional wellbeing. It also induced a decrease in local efficiency in the parahippocampal lobe through strengthening of the functional connections from this structure to the supramarginal gyrus, precentral area, superior temporal gyrus and temporal pole. Changes in mood disturbance following exercise were correlated with those in connectivity between parahippocampal gyrus and superior temporal gyrus as well as with the amount of training. No changes were detected in the control group. In conclusion, connectivity from the parahippocampal gyrus to motor, sensory integration and mood regulation areas was strengthened through exercise. These functional changes might be related to the benefits of regular physical activity on mood. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. A fully connected network of Bernoulli units with correlation learning

    Science.gov (United States)

    Dente, J. A.; Vilela Mendes, R.

    1996-02-01

    Biological evidence suggests that pattern recognition and associative memory in the mammalian nervous system operates through the establishment of spatio-temporal patterns of activity and not by the evolution towards an equilibrium point as in attractor neural networks. Information is carried by the space-time correlation of the activity intensities rather than by the details of individual neuron signals. Furthermore the fast recognition times that are achieved with relatively slow biological neurons seem to be associated to the chaotic nature of the basal nervous activity. To copy the biology hardware may not be technologically sound, but to look for inspiration in the efficient biological information processing methods is an idea that deserves consideration. Inspired by the mechanisms at work in the mammalian olfactory system we study a network where, in the absence of external inputs, the units have a dynamics of the Bernoulli shift type. When an external signal is presented, the pattern of excitation bursts depends on the learning history of the network. Association and pattern identification in the network operates by the selection, by the external stimulus, of distinct invariant measures in the chaotic system. The simplicity of the node dynamics, that is chosen, allows a reasonable analytical control of the network behavior.

  15. A High-Resolution Study of Hippocampal and Medial Temporal Lobe Correlates of Spatial Context and Prospective Overlapping Route Memory

    Science.gov (United States)

    Brown, Thackery I.; Hasselmo, Michael E.; Stern, Chantal E.

    2015-01-01

    When navigating our world we often first plan or retrieve an ideal route to our goal, avoiding alternative paths that lead to other destinations. The medial temporal lobe (MTL) has been implicated in processing contextual information, sequence memory, and uniquely retrieving routes that overlap or “cross paths.” However, the identity of subregions of the hippocampus and neighboring cortex that support these functions in humans remains unclear. The present study used high-resolution functional magnetic resonance imaging (hr-fMRI) in humans to test whether the CA3/DG hippocampal subfield and para-hippocampal cortex are important for processing spatial context and route retrieval, and whether the CA1 subfield facilitates prospective planning of mazes that must be distinguished from alternative overlapping routes. During hr-fMRI scanning, participants navigated virtual mazes that were well-learned from prior training while also learning new mazes. Some routes learned during scanning shared hallways with those learned during pre-scan training, requiring participants to select between alternative paths. Critically, each maze began with a distinct spatial contextual Cue period. Our analysis targeted activity from the Cue period, during which participants identified the current navigational episode, facilitating retrieval of upcoming route components and distinguishing mazes that overlap. Results demonstrated that multiple MTL regions were predominantly active for the contextual Cue period of the task, with specific regions of CA3/DG, parahippocampal cortex, and perirhinal cortex being consistently recruited across trials for Cue periods of both novel and familiar mazes. During early trials of the task, both CA3/DG and CA1 were more active for overlapping than non-overlapping Cue periods. Trial-by-trial Cue period responses in CA1 tracked subsequent overlapping maze performance across runs. Together, our findings provide novel insight into the contributions of MTL

  16. Accounting for connectivity and spatial correlation in the optimal placement of wildlife habitat

    Science.gov (United States)

    John Hof; Curtis H. Flather

    1996-01-01

    This paper investigates optimization approaches to simultaneously modelling habitat fragmentation and spatial correlation between patch populations. The problem is formulated with habitat connectivity affecting population means and variances, with spatial correlations accounted for in covariance calculations. Population with a pre-specifled confidence level is then...

  17. The correlation between the connection and the metric as the ultraviolet finiteness condition

    International Nuclear Information System (INIS)

    Belokurov, V.V.

    1990-07-01

    Calculation of the ultraviolet counterterms of the bosonic affine-metric non-linear two-dimensional sigma-model are undertaken in order to illustrate a new type of the correlation between the metric and the connection. The peculiarity of the background field method and the normal coordinate expansion for affine-metric manifolds is discussed. (author). 18 refs, 9 figs

  18. White Matter Structural Connectivity Is Not Correlated to Cortical Resting-State Functional Connectivity over the Healthy Adult Lifespan

    Directory of Open Access Journals (Sweden)

    Adrian Tsang

    2017-05-01

    Full Text Available Structural connectivity (SC of white matter (WM and functional connectivity (FC of cortical regions undergo changes in normal aging. As WM tracts form the underlying anatomical architecture that connects regions within resting state networks (RSNs, it is intuitive to expect that SC and FC changes with age are correlated. Studies that investigated the relationship between SC and FC in normal aging are rare, and have mainly compared between groups of elderly and younger subjects. The objectives of this work were to investigate linear SC and FC changes across the healthy adult lifespan, and to define relationships between SC and FC measures within seven whole-brain large scale RSNs. Diffusion tensor imaging (DTI and resting-state functional MRI (rs-fMRI data were acquired from 177 healthy participants (male/female = 69/108; aged 18–87 years. Forty cortical regions across both hemispheres belonging to seven template-defined RSNs were considered. Mean diffusivity (MD, fractional anisotropy (FA, mean tract length, and number of streamlines derived from DTI data were used as SC measures, delineated using deterministic tractography, within each RSN. Pearson correlation coefficients of rs-fMRI-obtained BOLD signal time courses between cortical regions were used as FC measure. SC demonstrated significant age-related changes in all RSNs (decreased FA, mean tract length, number of streamlines; and increased MD, and significant FC decrease was observed in five out of seven networks. Among the networks that showed both significant age related changes in SC and FC, however, SC was not in general significantly correlated with FC, whether controlling for age or not. The lack of observed relationship between SC and FC suggests that measures derived from DTI data that are commonly used to infer the integrity of WM microstructure are not related to the corresponding changes in FC within RSNs. The possible temporal lag between SC and FC will need to be addressed

  19. Ictal 99mTc-ECD brain SPECT imaging: localization of seizure foci and correlation with semiology in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Kang, Do Young; Ryu, Jin Sook; Lee, Hee Kyung; Ma, Hyeo Il; Lee, Sang Ahm; Lee, Jung Kyo; Kang, Joong Koo

    1997-01-01

    The purpose of this study was to evaluate the usefulness of ictal 99m Tc-ECD brain SPECT in temporal lobe epilepsy (TLE) patients for presurgical localization of seizure foci, and to correlate ictal SPECT patterns with the semiology of seizure. ictal 99m Tc-ECD Brain SPECT was performed in 23 TLE patients whose MRI showed unilateral hippocampal atrophy (18 patients), other focal temporal lesions (4 patients) and normal finding (1 patient). Under CCTV monitoring, injection was done during ictal period in all patients with the mean delay of 38.5±17.3 sec (mean seizure duration : 90.5±35.9 sec). Ictal 99m Tc-ECD Brain SPECT was visually analysed by three blinded observers. All patients underwent temporal lobectomy with a minimum 3 months follow-up (range 3-29 months) ; all had good post-surgical seizure control (Engel's calssification class I). Ictal 99m Tc-ECD Brain SPECT showed unilateral temporal hyperperfusion concordant with epileptic foci in 22/23 (95.7%), whereas non-lateralization in 1/23 (4.3%). The hyperperfusion of the ipsilateral basal ganglia was present in 72.7% (16/22) of patients with dystonic/tonic posture of the contralateral hand. The contralateral cerebellar hyperperfusion was observed in the 7/22 (32%). The group with secondary generalized tonic clonic seizure (GTC) had brain stem and bilateral thalamic hyperperfusion in 4/7 (57.1%) while the group without secondary GTC had the same hyperperfusion in 1/16 (6.3%). There was statistically significant difference in brain stem and bilateral thalamic perfusion between two groups. Ictal 99m Tc-ECD Brain SPECT is a useful modality in pre-surgical localization of the epileptic foci and well correlated with the semiology of seizure

  20. Anti-correlated cortical networks of intrinsic connectivity in the rat brain.

    Science.gov (United States)

    Schwarz, Adam J; Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang

    2013-01-01

    In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline "DMN-like" network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans.

  1. Correlation Networks for Identifying Changes in Brain Connectivity during Epileptiform Discharges and Transcranial Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Elsa Siggiridou

    2014-07-01

    Full Text Available The occurrence of epileptiform discharges (ED in electroencephalographic (EEG recordings of patients with epilepsy signifies a change in brain dynamics and particularly brain connectivity. Transcranial magnetic stimulation (TMS has been recently acknowledged as a non-invasive brain stimulation technique that can be used in focal epilepsy for therapeutic purposes. In this case study, it is investigated whether simple time-domain connectivity measures, namely cross-correlation and partial cross-correlation, can detect alterations in the connectivity structure estimated from selected EEG channels before and during ED, as well as how this changes with the application of TMS. The correlation for each channel pair is computed on non-overlapping windows of 1 s duration forming weighted networks. Further, binary networks are derived by thresholding or statistical significance tests (parametric and randomization tests. The information for the binary networks is summarized by statistical network measures, such as the average degree and the average path length. Alterations of brain connectivity before, during and after ED with or without TMS are identified by statistical analysis of the network measures at each state.

  2. Functional connectivity within and between intrinsic brain networks correlates with trait mind wandering.

    Science.gov (United States)

    Godwin, Christine A; Hunter, Michael A; Bezdek, Matthew A; Lieberman, Gregory; Elkin-Frankston, Seth; Romero, Victoria L; Witkiewitz, Katie; Clark, Vincent P; Schumacher, Eric H

    2017-08-01

    Individual differences across a variety of cognitive processes are functionally associated with individual differences in intrinsic networks such as the default mode network (DMN). The extent to which these networks correlate or anticorrelate has been associated with performance in a variety of circumstances. Despite the established role of the DMN in mind wandering processes, little research has investigated how large-scale brain networks at rest relate to mind wandering tendencies outside the laboratory. Here we examine the extent to which the DMN, along with the dorsal attention network (DAN) and frontoparietal control network (FPCN) correlate with the tendency to mind wander in daily life. Participants completed the Mind Wandering Questionnaire and a 5-min resting state fMRI scan. In addition, participants completed measures of executive function, fluid intelligence, and creativity. We observed significant positive correlations between trait mind wandering and 1) increased DMN connectivity at rest and 2) increased connectivity between the DMN and FPCN at rest. Lastly, we found significant positive correlations between trait mind wandering and fluid intelligence (Ravens) and creativity (Remote Associates Task). We interpret these findings within the context of current theories of mind wandering and executive function and discuss the possibility that certain instances of mind wandering may not be inherently harmful. Due to the controversial nature of global signal regression (GSReg) in functional connectivity analyses, we performed our analyses with and without GSReg and contrast the results from each set of analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Changes in Hippocampal Volume are Correlated with Cell Loss but Not with Seizure Frequency in Two Chronic Models of Temporal Lobe Epilepsy

    Science.gov (United States)

    Polli, Roberson S.; Malheiros, Jackeline M.; dos Santos, Renan; Hamani, Clement; Longo, Beatriz M.; Tannús, Alberto; Mello, Luiz E.; Covolan, Luciene

    2014-01-01

    Kainic acid (KA) or pilocarpine (PILO) have been used in rats to model human temporal lobe epilepsy (TLE) but the distribution and severity of structural lesions between these two models may differ. Magnetic resonance imaging (MRI) studies have used quantitative measurements of hippocampal T2 (T2HP) relaxation time and volume, but simultaneous comparative results have not been reported yet. The aim of this study was to compare the MRI T2HP and volume with histological data and frequency of seizures in both models. KA- and PILO-treated rats were imaged with a 2 T MRI scanner. T2HP and volume values were correlated with the number of cells, mossy fiber sprouting, and spontaneous recurrent seizures (SRS) frequency over the 9 months following status epilepticus (SE). Compared to controls, KA-treated rats had unaltered T2HP, pronounced reduction in hippocampal volume and concomitant cell reduction in granule cell layer, CA1 and CA3 at 3 months post SE. In contrast, hippocampal volume was unchanged in PILO-treated animals despite detectable increased T2HP and cell loss in granule cell layer, CA1 and CA3. In the following 6 months, MRI hippocampal volume remained stable with increase of T2HP signal in the KA-treated group. The number of CA1 and CA3 cells was smaller than age-matched CTL group. In contrast, PILO group had MRI volumetric reduction accompanied by reduction in the number of CA1 and CA3 cells. In this group, T2HP signal was unaltered at 6 or 9 months after status. Reductions in the number of cells were not progressive in both models. Notably, the SRS frequency was higher in PILO than in the KA model. The volumetry data correlated well with tissue damage in the epileptic brain, suggesting that MRI may be useful for tracking longitudinal hippocampal changes, allowing the assessment of individual variability and disease progression. Our results indicate that the temporal changes in hippocampal morphology are distinct for both models of TLE and that

  4. Functional connectivity in resting-state fMRI: Is linear correlation sufficient?

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jaroslav; Paluš, Milan; Vejmelka, Martin; Mantini, D.; Corbetta, M.

    2011-01-01

    Roč. 54, č. 3 (2011), s. 2218-2225 ISSN 1053-8119 R&D Projects: GA MŠk 7E08027 EU Projects: European Commission(XE) 200728 - BRAINSYNC Institutional research plan: CEZ:AV0Z10300504 Keywords : fMRI * functional connectivity * Gaussianity * nonlinearity * correlation * mutual information Subject RIV: FH - Neurology Impact factor: 5.895, year: 2011

  5. Data for default network reduced functional connectivity in meditators, negatively correlated with meditation expertise

    Directory of Open Access Journals (Sweden)

    Aviva Berkovich-Ohana

    2016-09-01

    Full Text Available FMRI data described here was recorded during resting-state in Mindfulness Meditators (MM and control participants (see “Task-induced activity and resting-state fluctuations undergo similar alterations in visual and DMN areas of long-term meditators” Berkovich-Ohana et al. (2016 [1] for details. MM participants were also scanned during meditation. Analyses focused on functional connectivity within and between the default mode network (DMN and visual network (Vis. Here we show data demonstrating that: 1 Functional connectivity within the DMN and the Visual networks were higher in the control group than in the meditators; 2 Data show an increase for the functional connectivity between the DMN and the Visual networks in the meditators compared to controls; 3 Data demonstrate that functional connectivity both within and between networks reduces during meditation, compared to the resting-state; and 4 A significant negative correlation was found between DMN functional connectivity and meditation expertise. The reader is referred to Berkovich-Ohana et al. (2016 [1] for further interpretation and discussion.

  6. Connective tissue injury in calf muscle tears and return to play: MRI correlation.

    Science.gov (United States)

    Prakash, Ashutosh; Entwisle, Tom; Schneider, Michal; Brukner, Peter; Connell, David

    2017-10-26

    The aim of our study was to assess a group of patients with calf muscle tears and evaluate the integrity of the connective tissue boundaries and interfaces. Further, we propose a novel MRI grading system based on integrity of the connective tissue and assess any correlation between the grading score and time to return to play. We have also reviewed the anatomy of the calf muscles. We retrospectively evaluated 100 consecutive patients with clinical suspicion and MRI confirmation of calf muscle injury. We evaluated each calf muscle tear with MRI for the particular muscle injured, location of injury within the muscle and integrity of the connective tissue structure at the interface. The muscle tears were graded 0-3 depending on the degree of muscle and connective tissue injury. The time to return to play for each patient and each injury was found from the injury records and respective sports doctors. In 100 patients, 114 injuries were detected. Connective tissue involvement was observed in 63 out of 100 patients and failure (grade 3 injury) in 18. Mean time to return to play with grade 0 injuries was 8 days, grade 1 tears was 17 days, grade 2 tears was 25 days and grade 3 tears was 48 days (pmuscle tears. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Variation in habitat connectivity generates positive correlations between species and genetic diversity in a metacommunity.

    Science.gov (United States)

    Lamy, T; Jarne, P; Laroche, F; Pointier, J-P; Huth, G; Segard, A; David, P

    2013-09-01

    An increasing number of studies are simultaneously investigating species diversity (SD) and genetic diversity (GD) in the same systems, looking for 'species- genetic diversity correlations' (SGDCs). From negative to positive SGDCs have been reported, but studies have generally not quantified the processes underlying these correlations. They were also mostly conducted at large biogeographical scales or in recently degraded habitats. Such correlations have not been looked for in natural networks of connected habitat fragments (metacommunities), and the underlying processes remain elusive in most systems. We investigated these issues by studying freshwater snails in a pond network in Guadeloupe (Lesser Antilles). We recorded SD and habitat characteristics in 232 ponds and assessed GD in 75 populations of two species. Strongly significant and positive SGDCs were detected in both species. Based on a decomposition of SGDC as a function of variance-covariance of habitat characteristics, we showed that connectivity (opportunity of water flow between a site and the nearest watershed during the rainy season) has the strongest contribution on SGDCs. More connective sites received both more alleles and more species through immigration resulting in both higher GD and higher SD. Other habitat characteristics did not contribute, or contributed negatively, to SGDCs. This is true of the desiccation frequency of ponds during the dry season, presumably because species markedly differ in their ability to tolerate desiccation. Our study shows that variation in environmental characteristics of habitat patches can promote SGDCs at metacommunity scale when the studied species respond homogeneously to these environmental characteristics. © 2013 John Wiley & Sons Ltd.

  8. [Correlation of abnormal topological properties of the white matter fibers connecting the left amygdale with psychogenic erectile dysfunction].

    Science.gov (United States)

    Chen, Jian-Huai; Chen, Guo-Tao; Chen, Yun; Yao, Zhi-Jian; Lu, Qing; Dai, Yu-Tian

    2017-04-01

    To explore the topological properties of the degree and strength of nodes in the binary and weighted brain white matter networks of the patients with psychogenic erectile dysfunction (pED) and analyze the changes of myelin integrity, number and length of the white matter fibers in the topological space. Diffusion tensor imaging data were obtained from 21 patients with pED and 24 healthy controls matched in sex, age, and years of education and subjected to preprocessing. The whole cerebral cortex was divided into 90 regions, followed by fiber tracking, construction of the binary and weighted white matter networks, and calculation of the node degrees and connectivity strengths in different brain regions. The property values were compared between the two groups using the two-sample t-test, the results were corrected by multiple testing correction, and the correlation of the property values with the erectile function of the patients was subjected to Pearson's correlation analysis. Compared with the healthy controls, the pED patients showed significantly decreased node degree of the left triangular part of inferior frontal gyrus (IFG) (7.54±1.44 vs 5.95±1.28, t = -3.88, corrected P = 0.02), medial orbital part of superior frontal gyrus (SFG) (10.08±3.60 vs 6.29±3.30, t = -3.67, corrected P = 0.02), and amygdala (6.50±2.11 vs 4.29±1.31, t = -4.16, corrected P = 0.01) in the binary networks, as well as the connectivity strength of the left triangular part of IFG (2.50±0.68 vs 1.72±0.50, t = -4.35, corrected P = 0.01), medial orbital part of SFG (3.17±0.97 vs 2.08±1.10, t = -3.53, corrected P = 0.03), and amygdala (1.80±0.69 vs 1.11±0.39, t = -4.03, corrected P = 0.01) in the fractional anisotropy (FA) weighted networks. The node degree of the left amygdala was negatively correlated with the total score (r = -0.47,P = 0.04), second item score (r = -0.46, P = 0.03), and third item score of IIEF-5 (r = -0.45, P = 0.04) in the pED patients. The

  9. Frontal Lobe Seizures

    Science.gov (United States)

    ... cause of frontal lobe epilepsy remains unknown. Complications Status epilepticus. Frontal lobe seizures tend to occur in clusters and may provoke a dangerous condition called status epilepticus — in which seizure activity lasts much longer than ...

  10. Contributions of Feature Binding During Encoding and Functional Connectivity of the Medial Temporal Lobe Structures to Episodic Memory Deficits Across the Prodromal and First-Episode Phases of Schizophrenia.

    Science.gov (United States)

    Haut, Kristen M; van Erp, Theo G M; Knowlton, Barbara; Bearden, Carrie E; Subotnik, Kenneth; Ventura, Joseph; Nuechterlein, Keith H; Cannon, Tyrone D

    2015-03-01

    Patients with and at risk for psychosis may have difficulty using associative strategies to facilitate episodic memory encoding and recall. In parallel studies, patients with first-episode schizophrenia ( n = 27) and high psychosis risk ( n = 28) compared with control participants ( n = 22 and n = 20, respectively) underwent functional MRI during a remember-know memory task. Psychophysiological interaction analyses, using medial temporal lobe (MTL) structures as regions of interest, were conducted to measure functional connectivity patterns supporting successful episodic memory. During encoding, patients with first-episode schizophrenia demonstrated reduced functional coupling between MTL regions and regions involved in stimulus representations, stimulus selection, and cognitive control. Relative to control participants and patients with high psychosis risk who did not convert to psychosis, patients with high psychosis risk who later converted to psychosis also demonstrated reduced connectivity between MTL regions and auditory-verbal and visual-association regions. These results suggest that episodic memory deficits in schizophrenia are related to inefficient recruitment of cortical connections involved in associative memory formation; such deficits precede the onset of psychosis among those individuals at high clinical risk.

  11. Metabolic connectivity by interregional correlation analysis using statistical parametric mapping (SPM) and FDG brain PET; methodological development and patterns of metabolic connectivity in adults

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Soo; Oh, Jungsu S.; Lee, Jae Sung; Lee, Myung Chul [Seoul National University, College of Medicine, Department of Nuclear Medicine, Jongno-gu, Seoul (Korea); Kang, Hyejin [Seoul National University, College of Medicine, Department of Nuclear Medicine, Jongno-gu, Seoul (Korea); Seoul National University, Programs in Brain and Neuroscience, Seoul (Korea); Kim, Heejung; Park, Hyojin [Seoul National University, College of Medicine, Department of Nuclear Medicine, Jongno-gu, Seoul (Korea); Seoul National University, Interdisciplinary Program in Cognitive Science, Seoul (Korea)

    2008-09-15

    Regionally connected areas of the resting brain can be detected by fluorodeoxyglucose-positron emission tomography (FDG-PET). Voxel-wise metabolic connectivity was examined, and normative data were established by performing interregional correlation analysis on statistical parametric mapping of FDG-PET data. Characteristics of seed volumes of interest (VOIs) as functional brain units were represented by their locations, sizes, and the independent methods of their determination. Seed brain areas were identified as population-based gyral VOIs (n=70) or as population-based cytoarchitectonic Brodmann areas (BA; n=28). FDG uptakes in these areas were used as independent variables in a general linear model to search for voxels correlated with average seed VOI counts. Positive correlations were searched in entire brain areas. In normal adults, one third of gyral VOIs yielded correlations that were confined to themselves, but in the others, correlated voxels extended to adjacent areas and/or contralateral homologous regions. In tens of these latter areas with extensive connectivity, correlated voxels were found across midline, and asymmetry was observed in the patterns of connectivity of left and right homologous seed VOIs. Most of the available BAs yielded correlations reaching contralateral homologous regions and/or neighboring areas. Extents of metabolic connectivity were not found to be related to seed VOI size or to the methods used to define seed VOIs. These findings indicate that patterns of metabolic connectivity of functional brain units depend on their regional locations. We propose that interregional correlation analysis of FDG-PET data offers a means of examining voxel-wise regional metabolic connectivity of the resting human brain. (orig.)

  12. Metabolic connectivity by interregional correlation analysis using statistical parametric mapping (SPM) and FDG brain PET; methodological development and patterns of metabolic connectivity in adults

    International Nuclear Information System (INIS)

    Lee, Dong Soo; Oh, Jungsu S.; Lee, Jae Sung; Lee, Myung Chul; Kang, Hyejin; Kim, Heejung; Park, Hyojin

    2008-01-01

    Regionally connected areas of the resting brain can be detected by fluorodeoxyglucose-positron emission tomography (FDG-PET). Voxel-wise metabolic connectivity was examined, and normative data were established by performing interregional correlation analysis on statistical parametric mapping of FDG-PET data. Characteristics of seed volumes of interest (VOIs) as functional brain units were represented by their locations, sizes, and the independent methods of their determination. Seed brain areas were identified as population-based gyral VOIs (n=70) or as population-based cytoarchitectonic Brodmann areas (BA; n=28). FDG uptakes in these areas were used as independent variables in a general linear model to search for voxels correlated with average seed VOI counts. Positive correlations were searched in entire brain areas. In normal adults, one third of gyral VOIs yielded correlations that were confined to themselves, but in the others, correlated voxels extended to adjacent areas and/or contralateral homologous regions. In tens of these latter areas with extensive connectivity, correlated voxels were found across midline, and asymmetry was observed in the patterns of connectivity of left and right homologous seed VOIs. Most of the available BAs yielded correlations reaching contralateral homologous regions and/or neighboring areas. Extents of metabolic connectivity were not found to be related to seed VOI size or to the methods used to define seed VOIs. These findings indicate that patterns of metabolic connectivity of functional brain units depend on their regional locations. We propose that interregional correlation analysis of FDG-PET data offers a means of examining voxel-wise regional metabolic connectivity of the resting human brain. (orig.)

  13. Antidepressant Effects of Electroconvulsive Therapy Correlate With Subgenual Anterior Cingulate Activity and Connectivity in Depression

    Science.gov (United States)

    Liu, Yi; Du, Lian; Li, Yongmei; Liu, Haixia; Zhao, Wenjing; Liu, Dan; Zeng, Jinkun; Li, Xingbao; Fu, Yixiao; Qiu, Haitang; Li, Xirong; Qiu, Tian; Hu, Hua; Meng, Huaqing; Luo, Qinghua

    2015-01-01

    Abstract The mechanisms underlying the effects of electroconvulsive therapy (ECT) in major depressive disorder (MDD) are not fully understood. Resting-state functional magnetic resonance imaging (rs-fMRI) is a new tool to study the effects of brain stimulation interventions, particularly ECT. The authors aim to investigate the mechanisms of ECT in MDD by rs-fMRI. They used rs-fMRI to measure functional changes in the brain of first-episode, treatment-naive MDD patients (n = 23) immediately before and then following 8 ECT sessions (brief-pulse square-wave apparatus, bitemporal). They also computed voxel-wise amplitude of low-frequency fluctuation (ALFF) as a measure of regional brain activity and selected the left subgenual anterior cingulate cortex (sgACC) to evaluate functional connectivity between the sgACC and other brain regions. Increased regional brain activity measured by ALFF mainly in the left sgACC following ECT. Functional connectivity of the left sgACC increased in the ipsilateral parahippocampal gyrus, pregenual ACC, contralateral middle temporal pole, and orbitofrontal cortex. Importantly, reduction in depressive symptoms were negatively correlated with increased ALFF in the left sgACC and left hippocampus, and with distant functional connectivity between the left sgACC and contralateral middle temporal pole. That is, across subjects, as depression improved, regional brain activity in sgACC and its functional connectivity increased in the brain. Eight ECT sessions in MDD patients modulated activity in the sgACC and its networks. The antidepressant effects of ECT were negatively correlated with sgACC brain activity and connectivity. These findings suggest that sgACC-associated prefrontal-limbic structures are associated with the therapeutic effects of ECT in MDD. PMID:26559309

  14. A Curious Lobe

    Directory of Open Access Journals (Sweden)

    Andréa Chabot-Naud

    2011-01-01

    Full Text Available A case of azygos lobe is presented. An azygos lobe is an accessory lobe of the lung that may occasionally be confused with a pathological process such as a bulla, lung abscess or neoplasm. Its pathogenesis is discussed, as are the characteristic x-ray features that enable an accurate diagnosis.

  15. Thalamo-Sensorimotor Functional Connectivity Correlates with World Ranking of Olympic, Elite, and High Performance Athletes

    Directory of Open Access Journals (Sweden)

    Zirui Huang

    2017-01-01

    Full Text Available Brain plasticity studies have shown functional reorganization in participants with outstanding motor expertise. Little is known about neural plasticity associated with exceptionally long motor training or of its predictive value for motor performance excellence. The present study utilised resting-state functional magnetic resonance imaging (rs-fMRI in a unique sample of world-class athletes: Olympic, elite, and internationally ranked swimmers (n=30. Their world ranking ranged from 1st to 250th: each had prepared for participation in the Olympic Games. Combining rs-fMRI graph-theoretical and seed-based functional connectivity analyses, it was discovered that the thalamus has its strongest connections with the sensorimotor network in elite swimmers with the highest world rankings (career best rank: 1–35. Strikingly, thalamo-sensorimotor functional connections were highly correlated with the swimmers’ motor performance excellence, that is, accounting for 41% of the individual variance in best world ranking. Our findings shed light on neural correlates of long-term athletic performance involving thalamo-sensorimotor functional circuits.

  16. The anatomy of the human medial forebrain bundle: Ventral tegmental area connections to reward-associated subcortical and frontal lobe regions

    Directory of Open Access Journals (Sweden)

    Volker Arnd Coenen

    Full Text Available Introduction: Despite their importance in reward, motivation, and learning there is only sparse anatomical knowledge about the human medial forebrain bundle (MFB and the connectivity of the ventral tegmental area (VTA. A thorough anatomical and microstructural description of the reward related PFC/OFC regions and their connection to the VTA - the superolateral branch of the MFB (slMFB - is however mandatory to enable an interpretation of distinct therapeutic effects from different interventional treatment modalities in neuropsychiatric disorders (DBS, TMS etc.. This work aims at a normative description of the human MFB (and more detailed the slMFB anatomy with respect to distant prefrontal connections and microstructural features. Methods and material: Healthy subjects (n = 55; mean age ± SD, 40 ± 10 years; 32 females underwent high resolution anatomical magnetic resonance imaging including diffusion tensor imaging. Connectivity of the VTA and the resulting slMFB were investigated on the group level using a global tractography approach. The Desikan/Killiany parceling (8 segments of the prefrontal cortex was used to describe sub-segments of the MFB. A qualitative overlap with Brodmann areas was additionally described. Additionally, a pure visual analysis was performed comparing local and global tracking approaches for their ability to fully visualize the slMFB. Results: The MFB could be robustly described both in the present sample as well as in additional control analyses in data from the human connectome project. Most VTA- connections reached the superior frontal gyrus, the middel frontal gyrus and the lateral orbitofrontal region corresponding to Brodmann areas 10, 9, 8, 11, and 11m. The projections to these regions comprised 97% (right and 98% (left of the total relative fiber counts of the slMFB. Discussion: The anatomical description of the human MFB shows far reaching connectivity of VTA to reward-related subcortical and

  17. Decreased cerebellar-orbitofrontal connectivity correlates with stuttering severity: Whole-brain functional and structural connectivity associations with persistent developmental stuttering

    Directory of Open Access Journals (Sweden)

    Kevin Richard Sitek

    2016-05-01

    Full Text Available Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here, we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex. Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and orbitofrontal cortex may underlie successful compensatory mechanisms by more fluent stutterers.

  18. Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering.

    Science.gov (United States)

    Sitek, Kevin R; Cai, Shanqing; Beal, Deryk S; Perkell, Joseph S; Guenther, Frank H; Ghosh, Satrajit S

    2016-01-01

    Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex (OFC). Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and OFC may underlie successful compensatory mechanisms by more fluent stutterers.

  19. Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering

    Science.gov (United States)

    Sitek, Kevin R.; Cai, Shanqing; Beal, Deryk S.; Perkell, Joseph S.; Guenther, Frank H.; Ghosh, Satrajit S.

    2016-01-01

    Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex (OFC). Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and OFC may underlie successful compensatory mechanisms by more fluent stutterers. PMID:27199712

  20. Increased Global Functional Connectivity Correlates with LSD-Induced Ego Dissolution.

    Science.gov (United States)

    Tagliazucchi, Enzo; Roseman, Leor; Kaelen, Mendel; Orban, Csaba; Muthukumaraswamy, Suresh D; Murphy, Kevin; Laufs, Helmut; Leech, Robert; McGonigle, John; Crossley, Nicolas; Bullmore, Edward; Williams, Tim; Bolstridge, Mark; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin

    2016-04-25

    Lysergic acid diethylamide (LSD) is a non-selective serotonin-receptor agonist that was first synthesized in 1938 and identified as (potently) psychoactive in 1943. Psychedelics have been used by indigenous cultures for millennia [1]; however, because of LSD's unique potency and the timing of its discovery (coinciding with a period of major discovery in psychopharmacology), it is generally regarded as the quintessential contemporary psychedelic [2]. LSD has profound modulatory effects on consciousness and was used extensively in psychological research and psychiatric practice in the 1950s and 1960s [3]. In spite of this, however, there have been no modern human imaging studies of its acute effects on the brain. Here we studied the effects of LSD on intrinsic functional connectivity within the human brain using fMRI. High-level association cortices (partially overlapping with the default-mode, salience, and frontoparietal attention networks) and the thalamus showed increased global connectivity under the drug. The cortical areas showing increased global connectivity overlapped significantly with a map of serotonin 2A (5-HT2A) receptor densities (the key site of action of psychedelic drugs [4]). LSD also increased global integration by inflating the level of communication between normally distinct brain networks. The increase in global connectivity observed under LSD correlated with subjective reports of "ego dissolution." The present results provide the first evidence that LSD selectively expands global connectivity in the brain, compromising the brain's modular and "rich-club" organization and, simultaneously, the perceptual boundaries between the self and the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Functional connectivity and structural covariance between regions of interest can be measured more accurately using multivariate distance correlation.

    Science.gov (United States)

    Geerligs, Linda; Cam-Can; Henson, Richard N

    2016-07-15

    Studies of brain-wide functional connectivity or structural covariance typically use measures like the Pearson correlation coefficient, applied to data that have been averaged across voxels within regions of interest (ROIs). However, averaging across voxels may result in biased connectivity estimates when there is inhomogeneity within those ROIs, e.g., sub-regions that exhibit different patterns of functional connectivity or structural covariance. Here, we propose a new measure based on "distance correlation"; a test of multivariate dependence of high dimensional vectors, which allows for both linear and non-linear dependencies. We used simulations to show how distance correlation out-performs Pearson correlation in the face of inhomogeneous ROIs. To evaluate this new measure on real data, we use resting-state fMRI scans and T1 structural scans from 2 sessions on each of 214 participants from the Cambridge Centre for Ageing & Neuroscience (Cam-CAN) project. Pearson correlation and distance correlation showed similar average connectivity patterns, for both functional connectivity and structural covariance. Nevertheless, distance correlation was shown to be 1) more reliable across sessions, 2) more similar across participants, and 3) more robust to different sets of ROIs. Moreover, we found that the similarity between functional connectivity and structural covariance estimates was higher for distance correlation compared to Pearson correlation. We also explored the relative effects of different preprocessing options and motion artefacts on functional connectivity. Because distance correlation is easy to implement and fast to compute, it is a promising alternative to Pearson correlations for investigating ROI-based brain-wide connectivity patterns, for functional as well as structural data. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Neural correlate of resting-state functional connectivity under α2 adrenergic receptor agonist, medetomidine.

    Science.gov (United States)

    Nasrallah, Fatima A; Lew, Si Kang; Low, Amanda Si-Min; Chuang, Kai-Hsiang

    2014-01-01

    Correlative fluctuations in functional MRI (fMRI) signals across the brain at rest have been taken as a measure of functional connectivity, but the neural basis of this resting-state MRI (rsMRI) signal is not clear. Previously, we found that the α2 adrenergic agonist, medetomidine, suppressed the rsMRI correlation dose-dependently but not the stimulus evoked activation. To understand the underlying electrophysiology and neurovascular coupling, which might be altered due to the vasoconstrictive nature of medetomidine, somatosensory evoked potential (SEP) and resting electroencephalography (EEG) were measured and correlated with corresponding BOLD signals in rat brains under three dosages of medetomidine. The SEP elicited by electrical stimulation to both forepaws was unchanged regardless of medetomidine dosage, which was consistent with the BOLD activation. Identical relationship between the SEP and BOLD signal under different medetomidine dosages indicates that the neurovascular coupling was not affected. Under resting state, EEG power was the same but a depression of inter-hemispheric EEG coherence in the gamma band was observed at higher medetomidine dosage. Different from medetomidine, both resting EEG power and BOLD power and coherence were significantly suppressed with increased isoflurane level. Such reduction was likely due to suppressed neural activity as shown by diminished SEP and BOLD activation under isoflurane, suggesting different mechanisms of losing synchrony at resting-state. Even though, similarity between electrophysiology and BOLD under stimulation and resting-state implicates a tight neurovascular coupling in both medetomidine and isoflurane. Our results confirm that medetomidine does not suppress neural activity but dissociates connectivity in the somatosensory cortex. The differential effect of medetomidine and its receptor specific action supports the neuronal origin of functional connectivity and implicates the mechanism of its sedative

  3. The secondary lobe as anatomic landmark for different pulmonary diseases

    International Nuclear Information System (INIS)

    Spina, Juan C.; Spina, Juan C. h; Rolnik, Maria C.; Lema, Carlos; Venditi, Julio; Magarinos, Gabriel

    2002-01-01

    The objective of this paper is to present the spectrum of pathological findings in the pulmonary parenchyma, based on the knowledge of the secondary lobe and its components. The evaluation was made using high-resolution computed tomography (HRCT) and compared with the histopathological findings. By definition, the secondary lobe is the small portion of pulmonary tissue separated by septa of connective tissue and supplied by 2-5 or more terminal bronchioles according to their central or peripheral location. Different disorders may become evident as a consequence of : 1) Bronchiolar obstruction (transient or definitive); 2) Intra-alveolar or wall involvement; 3) Involvement of the support tissue; 4) Involvement of the vascular or lymphatic structures. The etiology may be idiopathic, infectious, due to inhalation, neoplastic, allergic, due to collagen diseases, secondary to drug administration and/or post-transplantation. The evaluation of the secondary lobe components, with fine section HRCT, is the dynamic method of choice for the characterisation of pulmonary diseases, and allows to perform earlier and more precise differential diagnoses, when correlated with the clinical findings. The addition of sections during expiration to the routine study is paramount to underscore perfusion disturbances, which may remain undiagnosed during deep inspiration. The goal of this study is to review some of these disorders in which HRCT may be very useful and to correlate our observations with the histopathological findings. (author)

  4. OCCIPITAL LOBE SYNDROME

    OpenAIRE

    Shahdevi Nandar Kurniawan

    2016-01-01

    The ability to recognize objects and words is not just depend on the integrity of visual pathway and primary vision area on cerebral cortex (Brodmann area 17), but also secondary vision area 18 and tertiary vision area 19 on occipital lobe. Lesion in occipital lobe could disturb of human visual function such as visual field defects, inability to recognize colors, inability to recognize words, visual hallucinations and illusions, occipital lobe epilepsy, and Anton’s syndrome. Some causes of oc...

  5. Frontal lobe function in temporal lobe epilepsy

    Science.gov (United States)

    Stretton, J.; Thompson, P.J.

    2012-01-01

    Summary Temporal lobe epilepsy (TLE) is typically associated with long-term memory dysfunction. The frontal lobes support high-level cognition comprising executive skills and working memory that is vital for daily life functioning. Deficits in these functions have been increasingly reported in TLE. Evidence from both the neuropsychological and neuroimaging literature suggests both executive function and working memory are compromised in the presence of TLE. In relation to executive impairment, particular focus has been paid to set shifting as measured by the Wisconsin Card Sorting Task. Other discrete executive functions such as decision-making and theory of mind also appear vulnerable but have received little attention. With regard to working memory, the medial temporal lobe structures appear have a more critical role, but with emerging evidence of hippocampal dependent and independent processes. The relative role of underlying pathology and seizure spread is likely to have considerable bearing upon the cognitive phenotype and trajectory in TLE. The identification of the nature of frontal lobe dysfunction in TLE thus has important clinical implications for prognosis and surgical management. Longitudinal neuropsychological and neuroimaging studies assessing frontal lobe function in TLE patients pre- and postoperatively will improve our understanding further. PMID:22100147

  6. Periodic fluctuations in correlation-based connectivity density time series: Application to wind speed-monitoring network in Switzerland

    Science.gov (United States)

    Laib, Mohamed; Telesca, Luciano; Kanevski, Mikhail

    2018-02-01

    In this paper, we study the periodic fluctuations of connectivity density time series of a wind speed-monitoring network in Switzerland. By using the correlogram-based robust periodogram annual periodic oscillations were found in the correlation-based network. The intensity of such annual periodic oscillations is larger for lower correlation thresholds and smaller for higher. The annual periodicity in the connectivity density seems reasonably consistent with the seasonal meteo-climatic cycle.

  7. Expression of connective tissue growth factor in male breast cancer: clinicopathologic correlations and prognostic value.

    Science.gov (United States)

    Lacle, Miangela M; van Diest, Paul J; Goldschmeding, Roel; van der Wall, Elsken; Nguyen, Tri Q

    2015-01-01

    Connective tissue growth factor (CTGF/CCN2) is a member of the CCN family of secreted proteins that are believed to play an important role in the development of neoplasia. In particular, CTGF has been reported to play an important role in mammary tumorigenesis and to have prognostic value in female breast cancer (FBC). The aim of the present study was to investigate clinicopathologic correlations and prognostic value of CTGF in male breast cancer (MBC) and to compare these findings with FBC. For this, we studied CTGF protein expression by immunohistochemistry in 109 MBC cases and 75 FBC cases. In MBC, stromal CTGF expression was seen in the majority of the cases 78% (85/109) with high expression in 31/109 cases (28.4%), but expression in tumor cells was only seen in 9.2% (10/109) of cases. High stromal CTGF expression correlated with high grade and high proliferation index (>15%) assessed by MIB-1 immunohistochemical staining. CTGF expression in tumor epithelial cells did not correlate with any of the clinicopathologic features. In FBC, stromal CTGF expression positively correlated with mitotic count and tumor CTGF expression was associated with triple negative status of the tumor (p = 0.002). Neither stromal nor tumor epithelial cell CTGF expression had prognostic value in MBC and FBC. In conclusion, stromal CTGF expression was seen in a high percentage of MBC and was correlated with high grade and high proliferation index. In view of the important role of the microenvironment in cancer progression, this might suggest that stromal CTGF could be an interesting target for novel therapies and molecular imaging. However, the lack of association with prognosis warrants caution. The potential role of CTGF as a therapeutic target for triple negative FBC deserves to be further studied.

  8. Financial liberalization and stock market cross-correlation: MF-DCCA analysis based on Shanghai-Hong Kong Stock Connect

    Science.gov (United States)

    Ruan, Qingsong; Zhang, Shuhua; Lv, Dayong; Lu, Xinsheng

    2018-02-01

    Based on the implementation of Shanghai-Hong Kong Stock Connect in China, this paper examines the effects of financial liberalization on stock market comovement using both multifractal detrended fluctuation analysis (MF-DFA) and multifractal detrended cross-correlation analysis (MF-DCCA) methods. Results based on MF-DFA confirm the multifractality of Shanghai and Hong Kong stock markets, and the market efficiency of Shanghai stock market increased after the implementation of this connect program. Besides, analysis based on MF-DCCA has verified the existence of persistent cross-correlation between Shanghai and Hong Kong stock markets, and the cross-correlation gets stronger after the launch of this liberalization program. Finally, we find that fat-tail distribution is the main source of multifractality in the cross-correlations before the stock connect program, while long-range correlation contributes to the multifractality after this program.

  9. Functional Connectivity of Child and Adolescent Attention Deficit Hyperactivity Disorder Patients: Correlation with IQ.

    Science.gov (United States)

    Park, Bo-Yong; Hong, Jisu; Lee, Seung-Hak; Park, Hyunjin

    2016-01-01

    Attention deficit hyperactivity disorder (ADHD) is a pervasive neuropsychological disorder that affects both children and adolescents. Child and adolescent ADHD patients exhibit different behavioral symptoms such as hyperactivity and impulsivity, but not much connectivity research exists to help explain these differences. We analyzed openly accessible resting-state functional magnetic resonance imaging (rs-fMRI) data on 112 patients (28 child ADHD, 28 adolescent ADHD, 28 child normal control (NC), and 28 adolescent NC). We used group independent component analysis (ICA) and weighted degree values to identify interaction effects of age (child and adolescent) and symptom (ADHD and NC) in brain networks. The frontoparietal network showed significant interaction effects ( p = 0.0068). The frontoparietal network is known to be related to hyperactive and impulsive behaviors. Intelligence quotient (IQ) is an important factor in ADHD, and we predicted IQ scores using the results of our connectivity analysis. IQ was predicted using degree centrality values of networks with significant interaction effects of age and symptom. Actual and predicted IQ scores demonstrated significant correlation values, with an error of about 10%. Our study might provide imaging biomarkers for future ADHD and intelligence studies.

  10. Functional connectivity of child and adolescent attention deficit hyperactivity disorder patients: correlation with IQ

    Directory of Open Access Journals (Sweden)

    Bo-yong Park

    2016-11-01

    Full Text Available Attention deficit hyperactivity disorder (ADHD is a pervasive neuropsychological disorder that affects both children and adolescents. Child and adolescent ADHD patients exhibit different behavioral symptoms such as hyperactivity and impulsivity, but not much connectivity research exists to help explain these differences. We analyzed openly accessible resting-state functional magnetic resonance imaging (rs-fMRI data on 112 patients (28 child ADHD, 28 adolescent ADHD, 28 child normal control, and 28 adolescent normal control. We used group independent component analysis (ICA and weighted degree values to identify interaction effects of age (child and adolescent and symptom (ADHD and NC in brain networks. The frontoparietal network showed significant interaction effects (p = 0.0068. The frontoparietal network is known to be related to hyperactive and impulsive behaviors. Intelligence quotient (IQ is an important factor in ADHD, and we predicted IQ scores using the results of our connectivity analysis. IQ was predicted using degree centrality values of networks with significant interaction effects of age and symptom. Actual and predicted IQ scores demonstrated significant correlation values, with an error of about 10%. Our study might provide imaging biomarkers for future ADHD and intelligence studies.

  11. An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation.

    Science.gov (United States)

    Wang, Yikai; Kang, Jian; Kemmer, Phebe B; Guo, Ying

    2016-01-01

    Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant

  12. Characterization of the spatial structure of local functional connectivity using multi-distance average correlation measures.

    Science.gov (United States)

    Macia, Didac; Pujol, Jesus; Blanco-Hinojo, Laura; Martínez-Vilavella, Gerard; Martín-Santos, Rocío; Deus, Joan

    2018-04-24

    There is ample evidence from basic research in neuroscience of the importance of local cortico-cortical networks. Millimetric resolution is achievable with current functional MRI (fMRI) scanners and sequences, and consequently a number of "local" activity similarity measures have been defined to describe patterns of segregation and integration at this spatial scale. We have introduced the use of Iso-Distant local Average Correlation (IDAC), easily defined as the average fMRI temporal correlation of a given voxel with other voxels placed at increasingly separated iso-distant intervals, to characterize the curve of local fMRI signal similarities. IDAC curves can be statistically compared using parametric multivariate statistics. Furthermore, by using RGB color-coding to display jointly IDAC values belonging to three different distance lags, IDAC curves can also be displayed as multi-distance IDAC maps. We applied IDAC analysis to a sample of 41 subjects scanned under two different conditions, a resting state and an auditory-visual continuous stimulation. Multi-distance IDAC mapping was able to discriminate between gross anatomo-functional cortical areas and, moreover, was sensitive to modulation between the two brain conditions in areas known to activate and de-activate during audio-visual tasks. Unlike previous fMRI local similarity measures already in use, our approach draws special attention to the continuous smooth pattern of local functional connectivity.

  13. Correlation of Stress Concentration Factors for T-Welded Connections – Finite Element Simulations and Fatigue Behavior

    Directory of Open Access Journals (Sweden)

    Gerardo Terán Méndez

    Full Text Available Abstract The stress concentration factors (SCFs in welded connections usually occur at zones with high stress levels. Stress concentrations reduce the fatigue behavior of welded connections in offshore structures and cracking can develop. By using the grinding technique, cracking can be eliminated. Stress concentration factors are defined as a ratio of maximum stress at the intersection to nominal stress on the brace. Defining the stress concentration factor is an important stage in the fatigue behavior of welded connections. Several approaches have evolved for designing structures with the classical S-N approach for estimating total life. This work correlates to the stress concentration factors of T-welded connections and the fatigue behavior. Stress concentration factors were computed with the finite element employing 3D T-welded connections with intact and grinding depth conditions. Then, T-welded connections were constructed with A36 plate steel and welded with E6013 electrodes to obtain the stress-life (S-N approach. The methodology from previous works was used to compute the SCF and fabricate the T-welded connections. The results indicated that the grinding process could restore the fatigue life of the T-welded connections for SCFs values in the range of 1.29. This value can be considered to be a low SCF value in T-welded connection. However, for higher SCF values, the fatigue life decreased, compromising and reducing the structural integrity of the T-welded connections.

  14. Markov models for fMRI correlation structure: Is brain functional connectivity small world, or decomposable into networks?

    Science.gov (United States)

    Varoquaux, G; Gramfort, A; Poline, J B; Thirion, B

    2012-01-01

    Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Craniopharyngioma in the temporal lobe: a case report

    International Nuclear Information System (INIS)

    Sohn, Chul-Ho; Baik, Seung-Kug; Kim, Sang-Pyo; Kim, Il-Man; Sevick, Robert J.

    2004-01-01

    Herein, we report on an unusual case of craniopharyngioma arising in the temporal lobe with no prior history of surgery and with no connection to the craniopharyngeal duct. MR images showed cystic tumor with a small solid portion. To the best of our knowledge, this is the first case of a craniopharyngioma occurring in the temporal lobe

  16. Craniopharyngioma in the temporal lobe: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Chul-Ho; Baik, Seung-Kug; Kim, Sang-Pyo; Kim, Il-Man; Sevick, Robert J. [University of Calgary, Calgary (Canada)

    2004-03-15

    Herein, we report on an unusual case of craniopharyngioma arising in the temporal lobe with no prior history of surgery and with no connection to the craniopharyngeal duct. MR images showed cystic tumor with a small solid portion. To the best of our knowledge, this is the first case of a craniopharyngioma occurring in the temporal lobe.

  17. Craniopharyngioma in the Temporal Lobe: A Case Report

    Science.gov (United States)

    Baik, Seung Kug; Kim, Sang-Pyo; Kim, Il-Man; Sevick, Robert J.

    2004-01-01

    Herein, we report on an unusual case of craniopharyngioma arising in the temporal lobe with no prior history of surgery and with no connection to the craniopharyngeal duct. MR images showed a cystic tumor with a small solid portion. To the best of our knowledge, this is the first case of a craniopharyngioma occurring in the temporal lobe. PMID:15064562

  18. Temporal Lobe Seizure

    Science.gov (United States)

    ... functions, including having odd feelings — such as euphoria, deja vu or fear. Temporal lobe seizures are sometimes called ... sudden sense of unprovoked fear or joy A deja vu experience — a feeling that what's happening has happened ...

  19. Interindividual variability in functional connectivity as long-term correlate of temporal discounting.

    Directory of Open Access Journals (Sweden)

    Cinzia Calluso

    Full Text Available During intertemporal choice (IT future outcomes are usually devaluated as a function of the delay, a phenomenon known as temporal discounting (TD. Based on task-evoked activity, previous neuroimaging studies have described several networks associated with TD. However, given its relevance for several disorders, a critical challenge is to define a specific neural marker able to predict TD independently of task execution. To this aim, we used resting-state functional connectivity MRI (fcMRI and measured TD during economic choices several months apart in 25 human subjects. We further explored the relationship between TD, impulsivity and decision uncertainty by collecting standard questionnaires on individual trait/state differences. Our findings indicate that fcMRI within and between critical nodes of task-evoked neural networks associated with TD correlates with discounting behavior measured a long time afterwards, independently of impulsivity. Importantly, the nodes form an intrinsic circuit that might support all the mechanisms underlying TD, from the representation of subjective value to choice selection through modulatory effects of cognitive control and episodic prospection.

  20. Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage.

    Science.gov (United States)

    Mejia, Amanda F; Nebel, Mary Beth; Barber, Anita D; Choe, Ann S; Pekar, James J; Caffo, Brian S; Lindquist, Martin A

    2018-05-15

    Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICC MSE ) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully

  1. Mirror focus in a patient with intractable occipital lobe epilepsy.

    Science.gov (United States)

    Kim, Jiyoung; Shin, Hae Kyung; Hwang, Kyoung Jin; Choi, Su Jung; Joo, Eun Yeon; Hong, Seung Bong; Hong, Seung Chul; Seo, Dae-Won

    2014-06-01

    Mirror focus is one of the evidence of progression in epilepsy, and also has practical points for curative resective epilepsy surgery. The mirror foci are related to the kindling phenomena that occur through interhemispheric callosal or commissural connections. A mirror focus means the secondary epileptogenic foci develop in the contralateral hemispheric homotopic area. Thus mirror foci are mostly reported in patients with temporal or frontal lobe epilepsy, but not in occipital lobe epilepsy. We have observed occipital lobe epilepsy with mirror focus. Before epilepsy surgery, the subject's seizure onset zone was observed in the left occipital area by ictal studies. Her seizures abated for 10 months after the resection of left occipital epileptogenic focus, but recurred then. The recurred seizures were originated from the right occipital area which was in the homotopic contralateral area. This case can be an evidence that occipital lobe epilepsy may have mirror foci, even though each occipital lobe has any direct interhemispheric callosal connections between them.

  2. Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI–fMRI connectivity correlations in children with and without dysgraphia or dyslexia

    Science.gov (United States)

    Richards, T.L.; Grabowski, T.J.; Boord, P.; Yagle, K.; Askren, M.; Mestre, Z.; Robinson, P.; Welker, O.; Gulliford, D.; Nagy, W.; Berninger, V.

    2015-01-01

    Based on comprehensive testing and educational history, children in grades 4–9 (on average 12 years) were diagnosed with dysgraphia (persisting handwriting impairment) or dyslexia (persisting word spelling/reading impairment) or as typical writers and readers (controls). The dysgraphia group (n = 14) and dyslexia group (n = 17) were each compared to the control group (n = 9) and to each other in separate analyses. Four brain region seed points (left occipital temporal gyrus, supramarginal gyrus, precuneus, and inferior frontal gyrus) were used in these analyses which were shown in a metaanalysis to be related to written word production on four indicators of white matter integrity and fMRI functional connectivity for four tasks (self-guided mind wandering during resting state, writing letter that follows a visually displayed letter in alphabet, writing missing letter to create a correctly spelled real word, and planning for composing after scanning on topic specified by researcher). For those DTI indicators on which the dysgraphic group or dyslexic group differed from the control group (fractional anisotropy, relative anisotropy, axial diffusivity but not radial diffusivity), correlations were computed between the DTI parameter and fMRI functional connectivity for the two writing tasks (alphabet and spelling) by seed points. Analyses, controlled for multiple comparisons, showed that (a) the control group exhibited more white matter integrity than either the dysgraphic or dyslexic group; (b) the dysgraphic and dyslexic groups showed more functional connectivity than the control group but differed in patterns of functional connectivity for task and seed point; and (c) the dysgraphic and dyslexic groups showed different patterns of significant DTI–fMRI connectivity correlations for specific seed points and written language tasks. Thus, dysgraphia and dyslexia differ in white matter integrity, fMRI functional connectivity, and white matter–gray matter

  3. Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI–fMRI connectivity correlations in children with and without dysgraphia or dyslexia

    Directory of Open Access Journals (Sweden)

    T.L. Richards

    2015-01-01

    Full Text Available Based on comprehensive testing and educational history, children in grades 4–9 (on average 12 years were diagnosed with dysgraphia (persisting handwriting impairment or dyslexia (persisting word spelling/reading impairment or as typical writers and readers (controls. The dysgraphia group (n = 14 and dyslexia group (n = 17 were each compared to the control group (n = 9 and to each other in separate analyses. Four brain region seed points (left occipital temporal gyrus, supramarginal gyrus, precuneus, and inferior frontal gyrus were used in these analyses which were shown in a metaanalysis to be related to written word production on four indicators of white matter integrity and fMRI functional connectivity for four tasks (self-guided mind wandering during resting state, writing letter that follows a visually displayed letter in alphabet, writing missing letter to create a correctly spelled real word, and planning for composing after scanning on topic specified by researcher. For those DTI indicators on which the dysgraphic group or dyslexic group differed from the control group (fractional anisotropy, relative anisotropy, axial diffusivity but not radial diffusivity, correlations were computed between the DTI parameter and fMRI functional connectivity for the two writing tasks (alphabet and spelling by seed points. Analyses, controlled for multiple comparisons, showed that (a the control group exhibited more white matter integrity than either the dysgraphic or dyslexic group; (b the dysgraphic and dyslexic groups showed more functional connectivity than the control group but differed in patterns of functional connectivity for task and seed point; and (c the dysgraphic and dyslexic groups showed different patterns of significant DTI–fMRI connectivity correlations for specific seed points and written language tasks. Thus, dysgraphia and dyslexia differ in white matter integrity, fMRI functional connectivity, and white matter–gray matter

  4. White matter microstructural abnormalities in the frontal lobe of adults with antisocial personality disorder.

    Science.gov (United States)

    Sundram, Frederick; Deeley, Quinton; Sarkar, Sagari; Daly, Eileen; Latham, Richard; Craig, Michael; Raczek, Malgorzata; Fahy, Tom; Picchioni, Marco; Barker, Gareth J; Murphy, Declan G M

    2012-02-01

    Antisocial personality disorder (ASPD) and psychopathy involve significant interpersonal and behavioural impairments. However, little is known about their underlying neurobiology and in particular, abnormalities in white matter (WM) microstructure. A preliminary diffusion tensor magnetic resonance imaging (DT-MRI) study of adult psychopaths employing tractography revealed abnormalities in the right uncinate fasciculus (UF) (Craig et al., 2009), indicating fronto-limbic disconnectivity. However, it is not clear whether WM abnormalities are restricted to this tract or are or more widespread, including other tracts which are involved in connectivity with the frontal lobe. We performed whole brain voxel-based analyses on WM fractional anisotropy (FA) and mean diffusivity (MD) maps acquired with DT-MRI to compare 15 adults with ASPD and healthy age, handedness and IQ-matched controls. Also, within ASPD subjects we related differences in FA and MD to measures of psychopathy. Significant WM FA reduction and MD increases were found respectively in ASPD subjects relative to controls. FA was bilaterally reduced in the genu of corpus callosum while in the right frontal lobe FA reduction was found in the UF, inferior fronto-occipital fasciculus (IFOF), anterior corona radiata and anterior limb and genu of the internal capsule. These differences negatively correlated with measures of psychopathy. Also in the right frontal lobe, increased MD was found in the IFOF and UF, and the corpus callosum and anterior corona radiata. There was a significant positive correlation between MD and psychopathy scores. The present study confirms a previous report of reduced FA in the UF. Additionally, we report for the first time, FA deficits in tracts involved in interhemispheric as well as frontal lobe connectivity in conjunction with MD increases in the frontal lobe. Hence, we provide evidence of significant WM microstructural abnormalities in frontal brain regions in ASPD and psychopathy

  5. Statistical analysis of simulation-generated time series : Systolic vs. semi-systolic correlation on the Connection Machine

    NARCIS (Netherlands)

    Dontje, T.; Lippert, Th.; Petkov, N.; Schilling, K.

    1992-01-01

    Autocorrelation becomes an increasingly important tool to verify improvements in the state of the simulational art in Latice Gauge Theory. Semi-systolic and full-systolic algorithms are presented which are intensively used for correlation computations on the Connection Machine CM-2. The

  6. Insights into Intrinsic Brain Networks based on Graph Theory and PET in right- compared to left-sided Temporal Lobe Epilepsy

    OpenAIRE

    Thomas Vanicek; Andreas Hahn; Tatjana Traub-Weidinger; Eva Hilger; Marie Spies; Wolfgang Wadsak; Rupert Lanzenberger; Ekaterina Pataraia; Susanne Asenbaum-Nan

    2016-01-01

    The human brain exhibits marked hemispheric differences, though it is not fully understood to what extent lateralization of the epileptic focus is relevant. Preoperative [18F]FDG-PET depicts lateralization of seizure focus in patients with temporal lobe epilepsy and reveals dysfunctional metabolic brain connectivity. The aim of the present study was to compare metabolic connectivity, inferred from inter-regional [18F]FDG PET uptake correlations, in right-sided (RTLE; n?=?30) and left-sided TL...

  7. From correlation to causation: Estimating effective connectivity from zero-lag covariances of brain signals.

    Science.gov (United States)

    Schiefer, Jonathan; Niederbühl, Alexander; Pernice, Volker; Lennartz, Carolin; Hennig, Jürgen; LeVan, Pierre; Rotter, Stefan

    2018-03-01

    Knowing brain connectivity is of great importance both in basic research and for clinical applications. We are proposing a method to infer directed connectivity from zero-lag covariances of neuronal activity recorded at multiple sites. This allows us to identify causal relations that are reflected in neuronal population activity. To derive our strategy, we assume a generic linear model of interacting continuous variables, the components of which represent the activity of local neuronal populations. The suggested method for inferring connectivity from recorded signals exploits the fact that the covariance matrix derived from the observed activity contains information about the existence, the direction and the sign of connections. Assuming a sparsely coupled network, we disambiguate the underlying causal structure via L1-minimization, which is known to prefer sparse solutions. In general, this method is suited to infer effective connectivity from resting state data of various types. We show that our method is applicable over a broad range of structural parameters regarding network size and connection probability of the network. We also explored parameters affecting its activity dynamics, like the eigenvalue spectrum. Also, based on the simulation of suitable Ornstein-Uhlenbeck processes to model BOLD dynamics, we show that with our method it is possible to estimate directed connectivity from zero-lag covariances derived from such signals. In this study, we consider measurement noise and unobserved nodes as additional confounding factors. Furthermore, we investigate the amount of data required for a reliable estimate. Additionally, we apply the proposed method on full-brain resting-state fast fMRI datasets. The resulting network exhibits a tendency for close-by areas being connected as well as inter-hemispheric connections between corresponding areas. In addition, we found that a surprisingly large fraction of more than one third of all identified connections were of

  8. The occipital lobe convexity sulci and gyri.

    Science.gov (United States)

    Alves, Raphael V; Ribas, Guilherme C; Párraga, Richard G; de Oliveira, Evandro

    2012-05-01

    The anatomy of the occipital lobe convexity is so intricate and variable that its precise description is not found in the classic anatomy textbooks, and the occipital sulci and gyri are described with different nomenclatures according to different authors. The aim of this study was to investigate and describe the anatomy of the occipital lobe convexity and clarify its nomenclature. The configurations of sulci and gyri on the lateral surface of the occipital lobe of 20 cerebral hemispheres were examined in order to identify the most characteristic and consistent patterns. The most characteristic and consistent occipital sulci identified in this study were the intraoccipital, transverse occipital, and lateral occipital sulci. The morphology of the transverse occipital sulcus and the intraoccipital sulcus connection was identified as the most important aspect to define the gyral pattern of the occipital lobe convexity. Knowledge of the main features of the occipital sulci and gyri permits the recognition of a basic configuration of the occipital lobe and the identification of its sulcal and gyral variations.

  9. Alzheimer’s Biomarkers are Correlated with Brain Connectivity in Older Adults Differentially during Resting and Task States

    Directory of Open Access Journals (Sweden)

    Yang eJiang

    2016-02-01

    Full Text Available ß-amyloid (Aß plaques and tau-related neurodegeneration are pathologic hallmarks of Alzheimer’s disease (AD. The utility of AD biomarkers, including those measured in cerebrospinal fluid (CSF, in predicting future AD risk and cognitive decline is still being refined. Here we explored potential relationships between functional connectivity patterns within the default-mode network (DMN, age, CSF biomarkers (Aß42 and pTau181 and cognitive status in older adults. Multiple measures of functional connectivity were explored including a novel time series based measure (Total Interdependence; TI. In our sample of 27 cognitively normal older adults, no significant associations were found between levels of Aß42 or pTau181 and cognitive scores or regional brain volumes. However, we observed several novel relationships between these biomarkers and measures of functional connectivity in DMN during both resting-state and a short-term memory task. First, increased connectivity between bilateral anterior middle temporal gyri was associated with higher levels of CSF Aβ42 and Aβ42/pTau181 ratio (reflecting lower AD risk during both rest and task. Second, increased bilateral parietal connectivity during the short-term memory task, but not during rest, was associated with higher levels of CSF pTau181 (reflecting higher AD risk. Third, increased connectivity between left middle temporal and left parietal cortices during the active task was associated with decreased global cognitive status but not CSF biomarkers. Lastly, we found that our new TI method was more sensitive to the CSF Aβ42-connectivity relationship whereas the traditional cross-correlation method was more sensitive to levels of CSF pTau181 and cognitive status. With further refinement, resting-state connectivity and task-driven connectivity measures hold promise as non-invasive neuroimaging markers of Aβ and pTau burden in cognitively normal older adults.

  10. Abnormal rich club organization and impaired correlation between structural and functional connectivity in migraine sufferers.

    Science.gov (United States)

    Li, Kang; Liu, Lijun; Yin, Qin; Dun, Wanghuan; Xu, Xiaolin; Liu, Jixin; Zhang, Ming

    2017-04-01

    Because of the unique position of the topologically central role of densely interconnected brain hubs, our study aimed to investigate whether these regions and their related connections would be particularly vulnerable to migraine. In our study, we explored the rich club structure and its role in global functional dynamics in 30 patients with migraine without aura and 30 healthy controls. DTI and resting fMRI were used to construct structural connectivity (SC) and functional connectivity (FC) networks. An independent replication data set of 26 patients and 26 controls was included to replicate and validate significant findings. As compared with the controls, the structural networks of patients exhibited altered rich club organization with higher level of feeder connection density, abnormal small-world organization with increased global efficiency and decreased strength of SC-FC coupling. As these abnormal topological properties and headache attack duration exhibited a significant association with increased density of feeder connections, our results indicated that migraine may be characterized by a selective alteration of the structural connectivity of the rich club regions, tending to have higher 'bridgeness' with non-rich club regions, which may increase the integration among pain-related brain circuits with more excitability but less inhibition for the modulation of migraine.

  11. Alpha band functional connectivity correlates with the performance of brain-machine interfaces to decode real and imagined movements

    Directory of Open Access Journals (Sweden)

    Hisato eSugata

    2014-08-01

    Full Text Available Brain signals recorded from the primary motor cortex (M1 are known to serve a significant role in coding the information brain-machine interfaces (BMIs need to perform real and imagined movements, and also to form several functional networks with motor association areas. However, whether functional networks between M1 and other brain regions, such as these motor association areas, are related to performance of BMIs is unclear. To examine the relationship between functional connectivity and performance of BMIs, we analyzed the correlation coefficient between performance of neural decoding and functional connectivity over the whole brain using magnetoencephalography. Ten healthy participants were instructed to execute or imagine three simple right upper limb movements. To decode the movement type, we extracted 40 virtual channels in the left M1 via the beamforming approach, and used them as a decoding feature. In addition, seed-based functional connectivities of activities in the alpha band during real and imagined movements were calculated using imaginary coherence. Seed voxels were set as the same virtual channels in M1. After calculating the imaginary coherence in individuals, the correlation coefficient between decoding accuracy and strength of imaginary coherence was calculated over the whole brain. The significant correlations were distributed mainly to motor association areas for both real and imagined movements. These regions largely overlapped with brain regions that had significant connectivity to M1. Our results suggest that use of the strength of functional connectivity between M1 and motor association areas has the potential to improve the performance of BMIs to perform real and imagined movements.

  12. MRI in patients with temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Kodama, Kazuhiro

    1992-01-01

    The present study investigated magnetic resonance imaging (MRI) features in temporal lobe epilepsy and correlated them with clinical variables, such as age, illness duration, past history, and the frequency of seizure. Cerebral MRI was performed in 45 patients with temporal lobe epilepsy of unknown etiology, using a 0.5 T and/or a 1.5 T MRI systems. The temporal lobe was seen as high signal intensity on T2-weighted images and/or proton density-weighted images in 6 patients, although it was missed on CT and T1-weighted images. The high intensity area seemed to reflect sclerosis of the temporal lobe. This finding was significantly associated with partial seizure. Of these patients, 3 had a history of febrile convulsions. Ten patients had slight dilatation of the inferior horn of the lateral ventricle. They were significantly old at the time of onset and examination, as compared with those without dilatation. Furthermore, 6 patients with unilateral dilatation were significantly younger than the other 4 with bilateral dilatation. Nine patients had small multiple high signal areas in white matter, mainly in the parietal lobe, which suggested vascular origin. These patients were significantly old at the time of onset and examination, as compared with those having no such findings. In depicting high signal intensity areas, a 1.5 T MRI system was not always superior to a 0.5 T MRI system. Proton density-weighted images were better than T2-weighted images in some patients. (N.K.)

  13. Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data.

    Science.gov (United States)

    Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Altavilla, Riccardo; Scrascia, Federica; Giambattistelli, Federica; Quattrocchi, Carlo Cosimo; Bramanti, Placido; Vernieri, Fabrizio; Rossini, Paolo Maria

    2015-01-01

    A relatively new approach to brain function in neuroscience is the "functional connectivity", namely the synchrony in time of activity in anatomically-distinct but functionally-collaborating brain regions. On the other hand, diffusion tensor imaging (DTI) is a recently developed magnetic resonance imaging (MRI)-based technique with the capability to detect brain structural connection with fractional anisotropy (FA) identification. FA decrease has been observed in the corpus callosum of subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI, an AD prodromal stage). Corpus callosum splenium DTI abnormalities are thought to be associated with functional disconnections among cortical areas. This study aimed to investigate possible correlations between structural damage, measured by MRI-DTI, and functional abnormalities of brain integration, measured by characteristic path length detected in resting state EEG source activity (40 participants: 9 healthy controls, 10 MCI, 10 mild AD, 11 moderate AD). For each subject, undirected and weighted brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity values were used as weight of the edges of the network. Results showed that callosal FA reduction is associated to a loss of brain interhemispheric functional connectivity characterized by increased delta and decreased alpha path length. These findings suggest that "global" (average network shortest path length representing an index of how efficient is the information transfer between two parts of the network) functional measure can reflect the reduction of fiber connecting the two hemispheres as revealed by DTI analysis and also anticipate in time this structural loss.

  14. Expression of Connective Tissue Growth Factor in Male Breast Cancer : Clinicopathologic Correlations and Prognostic Value

    NARCIS (Netherlands)

    Lacle, Miangela M.; van Diest, Paul J.; Goldschmeding, Roel; van der Wall, Elsken; Nguyen, Tri Q.

    2015-01-01

    Connective tissue growth factor (CTGF/CCN2) is a member of the CCN family of secreted proteins that are believed to play an important role in the development of neoplasia. In particular, CTGF has been reported to play an important role in mammary tumorigenesis and to have prognostic value in female

  15. Correlating subcortical interhemispheric connectivity and cortical hemispheric dominance in brain tumor patients: A repetitive navigated transcranial magnetic stimulation study.

    Science.gov (United States)

    Sollmann, Nico; Ille, Sebastian; Tussis, Lorena; Maurer, Stefanie; Hauck, Theresa; Negwer, Chiara; Bauer, Jan S; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-02-01

    The present study aims to investigate the relationship between transcallosal interhemispheric connectivity (IC) and hemispheric language lateralization by using a novel approach including repetitive navigated transcranial magnetic stimulation (rTMS), hemispheric dominance ratio (HDR) calculation, and rTMS-based diffusion tensor imaging fiber tracking (DTI FT). 31 patients with left-sided perisylvian brain lesions underwent diffusion tensor imaging (DTI) and rTMS language mapping. Cortical language-positive rTMS spots were used to calculate HDRs (HDR: quotient of the left-sided divided by right-sided naming error rates for corresponding left- and right-sided cortical regions) and to create regions of interest (ROIs) for DTI FT. Then, fibers connecting the rTMS-based ROIs of both hemispheres were tracked, and the correlation of IC to HDRs was calculated via Spearman's rank correlation coefficient (rs). Fibers connecting rTMS-based ROIs of both hemispheres were detected in 12 patients (38.7%). Within the patients in which IC was detected, the mean number of subcortical IC fibers ± standard deviation (SD) was 138.0 ± 346.5 (median: 7.5; range: 1-1,217 fibers). Regarding rs for the correlation of HDRs and fiber numbers of patients that showed IC, only moderate correlation was revealed. Our approach might be beneficial and technically feasible for further investigation of the relationship between IC and language lateralization. However, only moderate correlation was revealed in the present study. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Occurrence of the lobe plasma at lunar distance

    International Nuclear Information System (INIS)

    Hardy, D.A.; Hills, H.K.; Freeman, J.W.

    1979-01-01

    Recent analysis has confirmed and expanded the characterization of the lobe plasma, the extension of the 'boundary layer' and 'plasma mantle' to lunar distances. Careful statistical analysis has verified that Magnetic Field (1MF). When the moon is in the dawnside of the northern lobe or duskside of the southern lobe, the probability for observation of the lobe plasma is greatly increased when, in the hour preceding, the IMF has had a positive y component. Conversely, when the moon is in the duskside of the northern lobe or dawnside of the southern lobe, the probability for observation is much increased when the IMF has a negative y component. Analysis of lobe plasma data in conjunction with high time resolution IMF data has shown the probability of observation also is greater with a southward pointing IMF. The observed correlations with the y and z components the IMF reflect the fact that the asymmetry and changes in magnitude of the polar cap electric field induced by the IMF extends to lunar distances and determines the depth into the tail to which the ions can drift. Generally, the lobe plasma is observed sporadically for a full day after the moon has entered the tail and a full day before the last magnetopause crossing as it exits the tail. An average extent of approx.8--10R/sub e/ inward from the magnetopause is inferred; however, the lobe plasma has been seen all across the tail

  17. Changes in functional connectivity correlate with behavioral gains in stroke patients after therapy using a brain-computer interface device

    Directory of Open Access Journals (Sweden)

    Brittany Mei Young

    2014-07-01

    Full Text Available Brain-computer interface (BCI technology is being incorporated into new stroke rehabilitation devices, but little is known about brain changes associated with its use. We collected anatomical and functional MRI of 9 stroke patients with persistent upper extremity motor impairment before, during, and after therapy using a BCI system. Subjects were asked to perform finger tapping of the impaired hand during fMRI. Action Research Arm Test (ARAT, 9-Hole Peg Test (9-HPT, and Stroke Impact Scale (SIS domains of Hand Function (HF and Activities of Daily Living (ADL were also assessed. Group-level analyses examined changes in whole-brain task-based functional connectivity (FC to seed regions in the motor network observed during and after BCI therapy. Whole-brain FC analyses seeded in each thalamus showed FC increases from baseline at mid-therapy and post-therapy (p< 0.05. Changes in FC between seeds at both the network and the connection levels were examined for correlations with changes in behavioral measures. Average motor network FC was increased post-therapy, and changes in average network FC correlated (p < 0.05 with changes in performance on ARAT (R2=0.21, 9-HPT (R2=0.41, SIS HF (R2=0.27, and SIS ADL (R2=0.40. Multiple individual connections within the motor network were found to correlate in change from baseline with changes in behavioral measures. Many of these connections involved the thalamus, with change in each of four behavioral measures significantly correlating with change from baseline FC of at least one thalamic connection. These preliminary results show changes in FC that occur with the administration of rehabilitative therapy using a BCI system. The correlations noted between changes in FC measures and changes in behavioral outcomes indicate that both adaptive and maladaptive changes in FC may develop with this therapy and also suggest a brain-behavior relationship that may be stimulated by the neuromodulatory component of BCI therapy.

  18. Effects of post-traumatic stress disorder on occipital lobe function and structure.

    Science.gov (United States)

    Chao, Linda L; Lenoci, Maryann; Neylan, Thomas C

    2012-05-09

    Although there is evidence for strong connectivity between the amygdala and the visual cortex and some evidence for reduced occipital lobe gray matter volume in patients with post-traumatic stress disorder (PTSD), few studies have directly examined the effects of PTSD on occipital function. The current study used functional and structural MRI to examine occipital cortex function and structure in male combat veterans with and without PTSD. Left occipital gray matter volume was reduced in PTSD patients relative to the controls and correlated negatively with the severity of PTSD symptoms. Functional activity in the lateral occipital complex to aversive and nonaversive pictures presented in novel and repeated presentations was not altered by PTSD. These findings suggest that PTSD adversely affects occipital lobe volume but not the reactivity of the lateral occipital complex to generally aversive, trauma nonspecific stimuli.

  19. Mirror Focus in a Patient with Intractable Occipital Lobe Epilepsy

    OpenAIRE

    Kim, Jiyoung; Shin, Hae kyung; Hwang, Kyoung Jin; Choi, Su Jung; Joo, Eun Yeon; Hong, Seung Bong; Hong, Seung Chul; Seo, Dae-Won

    2014-01-01

    Mirror focus is one of the evidence of progression in epilepsy, and also has practical points for curative resective epilepsy surgery. The mirror foci are related to the kindling phenomena that occur through interhemispheric callosal or commissural connections. A mirror focus means the secondary epileptogenic foci develop in the contralateral hemispheric homotopic area. Thus mirror foci are mostly reported in patients with temporal or frontal lobe epilepsy, but not in occipital lobe epilepsy....

  20. Accessory hepatic lobe simulating a left hemidiaphragmatic tumor

    International Nuclear Information System (INIS)

    Kuroiwa, Toshiro; Hirata, Hitoshi; Iwashita, Akinori; Yasumori, Kotaro; Mogami, Hiroshi; Teraoka, Hiroaki

    1984-01-01

    A 72-year-old woman with a 20-year history of neuralgia was confirmed at surgery to have a tumor in the left hemidiaphragmatic region which was connected with the left lobe of the liver. Reassessment of radiological diagnosis after surgery revealed that hepatobiliary scintigraphy and computed tomography using left anterior oblique scanning are useful in differentiating the accessory hepatic lobe of the liver from a tumor and in confirming the diagnosis, respectively. (Namekawa, K.)

  1. Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks

    NARCIS (Netherlands)

    Waaijenborg, S.; Zwinderman, A.H.

    2009-01-01

    ABSTRACT: BACKGROUND: We generalized penalized canonical correlation analysis for analyzing microarray gene-expression measurements for checking completeness of known metabolic pathways and identifying candidate genes for incorporation in the pathway. We used Wold's method for calculation of the

  2. Neural correlates and network connectivity underlying narrative production and comprehension: a combined fMRI and PET study.

    Science.gov (United States)

    AbdulSabur, Nuria Y; Xu, Yisheng; Liu, Siyuan; Chow, Ho Ming; Baxter, Miranda; Carson, Jessica; Braun, Allen R

    2014-08-01

    The neural correlates of narrative production and comprehension remain poorly understood. Here, using positron emission tomography (PET), functional magnetic resonance imaging (fMRI), contrast and functional network connectivity analyses we comprehensively characterize the neural mechanisms underlying these complex behaviors. Eighteen healthy subjects told and listened to fictional stories during scanning. In addition to traditional language areas (e.g., left inferior frontal and posterior middle temporal gyri), both narrative production and comprehension engaged regions associated with mentalizing and situation model construction (e.g., dorsomedial prefrontal cortex, precuneus and inferior parietal lobules) as well as neocortical premotor areas, such as the pre-supplementary motor area and left dorsal premotor cortex. Narrative comprehension alone showed marked bilaterality, activating right hemisphere homologs of perisylvian language areas. Narrative production remained predominantly left lateralized, uniquely activating executive and motor-related regions essential to language formulation and articulation. Connectivity analyses revealed strong associations between language areas and the superior and middle temporal gyri during both tasks. However, only during storytelling were these same language-related regions connected to cortical and subcortical motor regions. In contrast, during story comprehension alone, they were strongly linked to regions supporting mentalizing. Thus, when employed in a more complex, ecologically-valid context, language production and comprehension show both overlapping and idiosyncratic patterns of activation and functional connectivity. Importantly, in each case the language system is integrated with regions that support other cognitive and sensorimotor domains. Copyright © 2014. Published by Elsevier Ltd.

  3. Evaluation of epileptogenic focus in temporal lobe: correlation between ictal brain SPECT, magnetic resonance imaging and magnetic resonance spectroscopy; Avaliacao de foco epileptogenico do lobo temporal: correlacao entre SPECT ictal, ressonancia magnetica e ressonancia magnetica com espectroscopia de protons

    Energy Technology Data Exchange (ETDEWEB)

    Diegues, Maria Elena Martins [Hospital Universitario Clementino Fraga Filho, Rio de Janeiro, RJ (Brazil). Servico de Medicina Nuclear]. E-mail: emartyns@terra.com.br; Pellini, Marcos Pinto; Alves-Leon, Soniza Vieira [Universidade Federal, Rio de Janeiro, RJ (Brazil). Faculdade de Medicina; Domingues, Romeu Cortes [Clinica de Diagnostico por Imagem (CDPI), Rio de Janeiro, RJ (Brazil)

    2004-02-01

    The purpose of this study was to determine the degree of concordance between radiological and radioisotopic methods and, if positive, to evaluate the usefulness of ictal SPECT in the localization of the epileptogenic focus. Ictal brain SPECT, magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) were performed on six patients with refractory temporal lobe epilepsy. Ictal SPECT was performed after withdrawal of the anti-epileptogenic drugs during video-EEG monitoring, using {sup 99m}Tc-ECD, administered to patients at the time of the ictus. MRI was performed in T1, T2 and FLAIR sequences and MRS was obtained using the PRESS technique, with a single voxel positioned in both hippocampi. The statistical analysis included the determination of the values of Kappa (k), standard error (se) and significance level (p) for the lateralization of the ictal focus. The analysis of all findings was based on EEG localization of the ictal discharge, seizure duration (109-280 s; 152 s average) and time of radiotracer injection (30-262 s; 96 s average). We obtained correlated data in four patients (67 per cent) and values of k = 0.67, se = 0.38, and p 0.041. We concluded that there is a concordance between ictal SPECT, MRI and MRS data and the usefulness of the radioisotopic procedure is related to a non diagnostic EEG and when there is a discordant or misleading diagnosis after a comparative analysis of EEG and MRS. (author)

  4. CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation

    Science.gov (United States)

    Jones, Trevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente J.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is SCAN Testbed, and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.

  5. Dynamic Functional Connectivity States Between the Dorsal and Ventral Sensorimotor Networks Revealed by Dynamic Conditional Correlation Analysis of Resting-State Functional Magnetic Resonance Imaging.

    Science.gov (United States)

    Syed, Maleeha F; Lindquist, Martin A; Pillai, Jay J; Agarwal, Shruti; Gujar, Sachin K; Choe, Ann S; Caffo, Brian; Sair, Haris I

    2017-12-01

    Functional connectivity in resting-state functional magnetic resonance imaging (rs-fMRI) has received substantial attention since the initial findings of Biswal et al. Traditional network correlation metrics assume that the functional connectivity in the brain remains stationary over time. However, recent studies have shown that robust temporal fluctuations of functional connectivity among as well as within functional networks exist, challenging this assumption. In this study, these dynamic correlation differences were investigated between the dorsal and ventral sensorimotor networks by applying the dynamic conditional correlation model to rs-fMRI data of 20 healthy subjects. k-Means clustering was used to determine an optimal number of discrete connectivity states (k = 10) of the sensorimotor system across all subjects. Our analysis confirms the existence of differences in dynamic correlation between the dorsal and ventral networks, with highest connectivity found within the ventral motor network.

  6. Windowed correlation: a suitable tool for providing dynamic fMRI-based functional connectivity neurofeedback on task difficulty.

    Directory of Open Access Journals (Sweden)

    Anna Zilverstand

    Full Text Available The goal of neurofeedback training is to provide participants with relevant information on their ongoing brain processes in order to enable them to change these processes in a meaningful way. Under the assumption of an intrinsic brain-behavior link, neurofeedback can be a tool to guide a participant towards a desired behavioral state, such as a healthier state in the case of patients. Current research in clinical neuroscience regarding the most robust indicators of pathological brain processes in psychiatric and neurological disorders indicates that fMRI-based functional connectivity measures may be among the most important biomarkers of disease. The present study therefore investigated the general potential of providing fMRI neurofeedback based on functional correlations, computed from short-window time course data at the level of single task periods. The ability to detect subtle changes in task performance with block-wise functional connectivity measures was evaluated based on imaging data from healthy participants performing a simple motor task, which was systematically varied along two task dimensions representing two different aspects of task difficulty. The results demonstrate that fMRI-based functional connectivity measures may provide a better indicator for an increase in overall (motor task difficulty than activation level-based measures. Windowed functional correlations thus seem to provide relevant and unique information regarding ongoing brain processes, which is not captured equally well by standard activation level-based neurofeedback measures. Functional connectivity markers, therefore, may indeed provide a valuable tool to enhance and monitor learning within an fMRI neurofeedback setup.

  7. Connection between noise and quantum correlations in a double quantum dot

    NARCIS (Netherlands)

    Bodoky, F.; Belzig, W.; Bruder, C.

    We investigate the current and noise characteristics of a double quantum dot system. The strong correlations induced by the Coulomb interaction and the Pauli principle create entangled two-electron states and lead to signatures in the transport properties. We show that the interaction parameter Ø,

  8. Medial temporal lobe

    International Nuclear Information System (INIS)

    Silver, A.J.; Cross, D.T.; Friedman, D.P.; Bello, J.A.; Hilal, S.K.

    1989-01-01

    To better define the MR appearance of hippocampal sclerosis, the authors have reviewed over 500 MR coronal images of the temporal lobes. Many cysts were noted that analysis showed were of choroid-fissure (arachnoid) origin. Their association with seizures was low. A few nontumorous, static, medial temporal lesions, noted on T2-weighted coronal images, were poorly visualized on T1-weighted images and did not enhance with gadolinium. The margins were irregular, involved the hippocampus, and were often associated with focal atrophy. The lesions usually were associated with seizure disorders and specific electroencephalographic changes, and the authors believe they represented hippocampal sclerosis

  9. A Combined Reliability Model of VSC-HVDC Connected Offshore Wind Farms Considering Wind Speed Correlation

    DEFF Research Database (Denmark)

    Guo, Yifei; Gao, Houlei; Wu, Qiuwei

    2017-01-01

    and WTGs outage. The wind speed correlation between different WFs is included in the two-dimensional multistate WF model by using an improved k-means clustering method. Then, the entire system with two WFs and a threeterminal VSC-HVDC system is modeled as a multi-state generation unit. The proposed model...... is applied to the Roy Billinton test system (RBTS) for adequacy studies. Both the probability and frequency indices are calculated. The effectiveness and accuracy of the combined model is validated by comparing results with the sequential Monte Carlo simulation (MCS) method. The effects of the outage of VSC-HVDC...... system and wind speed correlation on the system reliability were analyzed. Sensitivity analyses were conducted to investigate the impact of repair time of the offshore VSC-HVDC system on system reliability....

  10. Neural correlates of verbal creativity: Differences in resting-state functional connectivity associated with expertise in creative writing

    Directory of Open Access Journals (Sweden)

    Martin eLotze

    2014-07-01

    Full Text Available Neural characteristics of verbal creativity as assessed by word generation tasks have been recently identified, but differences in resting-state functional connectivity (rFC between experts and non-experts in creative writing have not been reported yet. Previous electroencephalography (EEG coherence measures during rest demonstrated a decreased cooperation between brain areas in association with creative thinking ability. Here, we used resting-state functional magnetic resonance imaging to compare 20 experts in creative writing and 23 age-matched non-experts with respect to rFC strengths within a brain network previously found to be associated with creative writing. Decreased rFC for experts was found between areas 44 of both hemispheres. Increased rFC for experts was observed between right hemispheric caudate and intraparietal sulcus. Correlation analysis of verbal creativity indices with rFC values in the expert group revealed predominantly negative associations, particularly of rFC between left area 44 and left temporal pole. Overall, our data support previous findings on reduced connectivity between interhemispheric areas and increased right-hemispheric connectivity during rest in highly verbally creative individuals.

  11. Integrated Analysis and Visualization of Group Differences in Structural and Functional Brain Connectivity: Applications in Typical Ageing and Schizophrenia.

    Directory of Open Access Journals (Sweden)

    Carolyn D Langen

    Full Text Available Structural and functional brain connectivity are increasingly used to identify and analyze group differences in studies of brain disease. This study presents methods to analyze uni- and bi-modal brain connectivity and evaluate their ability to identify differences. Novel visualizations of significantly different connections comparing multiple metrics are presented. On the global level, "bi-modal comparison plots" show the distribution of uni- and bi-modal group differences and the relationship between structure and function. Differences between brain lobes are visualized using "worm plots". Group differences in connections are examined with an existing visualization, the "connectogram". These visualizations were evaluated in two proof-of-concept studies: (1 middle-aged versus elderly subjects; and (2 patients with schizophrenia versus controls. Each included two measures derived from diffusion weighted images and two from functional magnetic resonance images. The structural measures were minimum cost path between two anatomical regions according to the "Statistical Analysis of Minimum cost path based Structural Connectivity" method and the average fractional anisotropy along the fiber. The functional measures were Pearson's correlation and partial correlation of mean regional time series. The relationship between structure and function was similar in both studies. Uni-modal group differences varied greatly between connectivity types. Group differences were identified in both studies globally, within brain lobes and between regions. In the aging study, minimum cost path was highly effective in identifying group differences on all levels; fractional anisotropy and mean correlation showed smaller differences on the brain lobe and regional levels. In the schizophrenia study, minimum cost path and fractional anisotropy showed differences on the global level and within brain lobes; mean correlation showed small differences on the lobe level. Only

  12. Altered organization of face processing networks in temporal lobe epilepsy

    Science.gov (United States)

    Riley, Jeffrey D.; Fling, Brett W.; Cramer, Steven C.; Lin, Jack J.

    2015-01-01

    SUMMARY Objective Deficits in social cognition are common and significant in people with temporal lobe epilepsy (TLE), but the functional and structural underpinnings remain unclear. The present study investigated how the side of seizure focus impacts face processing networks in temporal lobe epilepsy. Methods We used functional magnetic resonance imaging (fMRI) of a face processing paradigm to identify face responsive regions in 24 individuals with unilateral temporal lobe epilepsy (Left = 15; Right = 9) and 19 healthy controls. fMRI signals of face responsive regions ispilateral and contralateral to the side of seizure onset were delineated in TLE and compared to the healthy controls with right and left side combined. Diffusion tensor images were acquired to investigate structural connectivity between face regions that differed in fMRI signals between the two groups. Results In temporal lobe epilepsy, activation of the cortical face processing networks varied according to side of seizure onset. In temporal lobe epilepsy, the laterality of amygdala activation was shifted to the side contralateral to the seizure focus while controls showed no significant asymmetry. Furthermore, compared to controls, patients with TLE showed decreased activation of the occipital face responsive region in the ipsilateral side and an increased activity of the anterior temporal lobe in the contralateral side to the seizure focus. Probabilistic tractography revealed that the occipital face area and anterior temporal lobe are connected via the inferior longitudinal fasciculus, which in individuals with temporal lobe epilepsy showed reduced integrity. Significance Taken together, these findings suggest that brain function and white matter integrity of networks subserving face processing are impaired on the side of seizure onset, accompanied by altered responses on the side contralateral to the seizure. PMID:25823855

  13. Physics of the Kitaev Model: Fractionalization, Dynamic Correlations, and Material Connections

    Science.gov (United States)

    Hermanns, M.; Kimchi, I.; Knolle, J.

    2018-03-01

    Quantum spin liquids have fascinated condensed matter physicists for decades because of their unusual properties such as spin fractionalization and long-range entanglement. Unlike conventional symmetry breaking, the topological order underlying quantum spin liquids is hard to detect experimentally. Even theoretical models are scarce for which the ground state is established to be a quantum spin liquid. The Kitaev honeycomb model and its generalizations to other tricoordinated lattices are chief counterexamples - they are exactly solvable, harbor a variety of quantum spin liquid phases, and are also relevant for certain transition metal compounds including the polymorphs of (Na,Li)2IrO3 iridates and RuCl3. In this review, we give an overview of the rich physics of the Kitaev model, including two-dimensional and three-dimensional fractionalization as well as dynamic correlations and behavior at finite temperatures. We discuss the different materials and argue how the Kitaev model physics can be relevant even though most materials show magnetic ordering at low temperatures.

  14. Hepatocellular carcinoma in Riedel's lobe.

    Science.gov (United States)

    Zamfir, R; Braşoveanu, V; Boroş, M; Herlea, V; Popescu, I

    2008-01-01

    We present a rare case of 65-year female with right abdominal mass and abdominal discomfort; a combination of Doppler ultrasonography, computed tomography and laparotomy was utilized to make a diagnosis of tumoral Riedel's lobe. In our case, laparotomy with resection of Riedel's lobe was the proper therapeutical solution.

  15. Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance.

    Science.gov (United States)

    Dawson, Debra Ann; Lam, Jack; Lewis, Lindsay B; Carbonell, Felix; Mendola, Janine D; Shmuel, Amir

    2016-02-01

    Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased

  16. Short-term memory deficits correlate with hippocampal-thalamic functional connectivity alterations following acute sleep restriction.

    Science.gov (United States)

    Chengyang, Li; Daqing, Huang; Jianlin, Qi; Haisheng, Chang; Qingqing, Meng; Jin, Wang; Jiajia, Liu; Enmao, Ye; Yongcong, Shao; Xi, Zhang

    2017-08-01

    Acute sleep restriction heavily influences cognitive function, affecting executive processes such as attention, response inhibition, and memory. Previous neuroimaging studies have suggested a link between hippocampal activity and short-term memory function. However, the specific contribution of the hippocampus to the decline of short-term memory following sleep restriction has yet to be established. In the current study, we utilized resting-state functional magnetic resonance imaging (fMRI) to examine the association between hippocampal functional connectivity (FC) and the decline of short-term memory following total sleep deprivation (TSD). Twenty healthy adult males aged 20.9 ± 2.3 years (age range, 18-24 years) were enrolled in a within-subject crossover study. Short-term memory and FC were assessed using a Delay-matching short-term memory test and a resting-state fMRI scan before and after TSD. Seed-based correlation analysis was performed using fMRI data for the left and right hippocampus to identify differences in hippocampal FC following TSD. Subjects demonstrated reduced alertness and a decline in short-term memory performance following TSD. Moreover, fMRI analysis identified reduced hippocampal FC with the superior frontal gyrus (SFG), temporal regions, and supplementary motor area. In addition, an increase in FC between the hippocampus and bilateral thalamus was observed, the extent of which correlated with short-term memory performance following TSD. Our findings indicate that the disruption of hippocampal-cortical connectivity is linked to the decline in short-term memory observed after acute sleep restriction. Such results provide further evidence that support the cognitive impairment model of sleep deprivation.

  17. Initial Validation for the Estimation of Resting-State fMRI Effective Connectivity by a Generalization of the Correlation Approach

    Directory of Open Access Journals (Sweden)

    Nan Xu

    2017-05-01

    Full Text Available Resting-state functional MRI (rs-fMRI is widely used to noninvasively study human brain networks. Network functional connectivity is often estimated by calculating the timeseries correlation between blood-oxygen-level dependent (BOLD signal from different regions of interest (ROIs. However, standard correlation cannot characterize the direction of information flow between regions. In this paper, we introduce and test a new concept, prediction correlation, to estimate effective connectivity in functional brain networks from rs-fMRI. In this approach, the correlation between two BOLD signals is replaced by a correlation between one BOLD signal and a prediction of this signal via a causal system driven by another BOLD signal. Three validations are described: (1 Prediction correlation performed well on simulated data where the ground truth was known, and outperformed four other methods. (2 On simulated data designed to display the “common driver” problem, prediction correlation did not introduce false connections between non-interacting driven ROIs. (3 On experimental data, prediction correlation recovered the previously identified network organization of human brain. Prediction correlation scales well to work with hundreds of ROIs, enabling it to assess whole brain interregional connectivity at the single subject level. These results provide an initial validation that prediction correlation can capture the direction of information flow and estimate the duration of extended temporal delays in information flow between regions of interest ROIs based on BOLD signal. This approach not only maintains the high sensitivity to network connectivity provided by the correlation analysis, but also performs well in the estimation of causal information flow in the brain.

  18. Internal fracture heterogeneity in discrete fracture network modelling: Effect of correlation length and textures with connected and disconnected permeability field

    Science.gov (United States)

    Frampton, A.; Hyman, J.; Zou, L.

    2017-12-01

    Analysing flow and transport in sparsely fractured media is important for understanding how crystalline bedrock environments function as barriers to transport of contaminants, with important applications towards subsurface repositories for storage of spent nuclear fuel. Crystalline bedrocks are particularly favourable due to their geological stability, low advective flow and strong hydrogeochemical retention properties, which can delay transport of radionuclides, allowing decay to limit release to the biosphere. There are however many challenges involved in quantifying and modelling subsurface flow and transport in fractured media, largely due to geological complexity and heterogeneity, where the interplay between advective and dispersive flow strongly impacts both inert and reactive transport. A key to modelling transport in a Lagrangian framework involves quantifying pathway travel times and the hydrodynamic control of retention, and both these quantities strongly depend on heterogeneity of the fracture network at different scales. In this contribution, we present recent analysis of flow and transport considering fracture networks with single-fracture heterogeneity described by different multivariate normal distributions. A coherent triad of fields with identical correlation length and variance are created but which greatly differ in structure, corresponding to textures with well-connected low, medium and high permeability structures. Through numerical modelling of multiple scales in a stochastic setting we quantify the relative impact of texture type and correlation length against network topological measures, and identify key thresholds for cases where flow dispersion is controlled by single-fracture heterogeneity versus network-scale heterogeneity. This is achieved by using a recently developed novel numerical discrete fracture network model. Furthermore, we highlight enhanced flow channelling for cases where correlation structure continues across

  19. Resting-state connectivity of the sustained attention network correlates with disease duration in idiopathic generalized epilepsy.

    Directory of Open Access Journals (Sweden)

    Mona Maneshi

    Full Text Available INTRODUCTION: In idiopathic generalized epilepsy (IGE, a normal electroencephalogram between generalized spike and wave (GSW discharges is believed to reflect normal brain function. However, some studies indicate that even excluding GSW-related errors, IGE patients perform poorly on sustained attention task, the deficit being worse as a function of disease duration. We hypothesized that at least in a subset of structures which are normally involved in sustained attention, resting-state functional connectivity (FC is different in IGE patients compared to controls and that some of the changes are related to disease duration. METHOD: Seeds were selected based on a sustained attention study in controls. Resting-state functional magnetic resonance imaging (fMRI data was obtained from 14 IGE patients and 14 matched controls. After physiological noise removal, the mean time-series of each seed was used as a regressor in a general linear model to detect regions that showed correlation with the seed. In patients, duration factor was defined based on epilepsy duration. Between-group differences weighted by the duration factor were evaluated with mixed-effects model. Correlation was then evaluated in IGE patients between the FC, averaged over each significant cluster, and the duration factor. RESULTS: Eight of 18 seeds showed significant difference in FC across groups. However, only for seeds in the medial superior frontal and precentral gyri and in the medial prefrontal area, average FC taken over significant clusters showed high correlation with the duration factor. These 3 seeds showed changes in FC respectively with the premotor and superior frontal gyrus, the dorsal premotor, and the supplementary motor area plus precentral gyrus. CONCLUSION: Alterations of FC in IGE patients are not limited to the frontal areas. However, as indicated by specificity analysis, patients with long history of disease show changes in FC mainly within the frontal areas.

  20. Occipital lobe infarction and positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tagawa, Koichi; Nagata, Ken; Shishido, Fumio (Research Inst. of Brain and Blood Vessels, Akita (Japan))

    1990-08-01

    Even though the PET study revealed a total infarct in the territory of the left PCA in our 3 cases of pure alesia, it is still obscure which part of the left occipital lobe is most closely associated with the occurrence of the pure alexia. In order to elucidate the intralobar localization of the pure alexia, it is needed to have an ideal case who shows an pure alexia due to the localized lesion within the left occipital lobe. Furthermore, high-resolution PET scanner will circumvent the problem in detecting the metabolism and blood flow in the corpus callosum which plays an important role in the pathogenesis. We have shown that the occlusion of the right PCA also produced a left unilateral agnosia which is one of the common neurological signs in the right MCA infarction. To tell whether the responsible lesion for the unilateral spatial agnosia differs between the PCA occlusion and the MCA occlusion, the correlation study should be carried out in a greater number of the subjects. Two distinctive neuropsychological manifestations, cerebral color blidness and prosopagnosia, have been considered to be produced by the bilateral occipital lesion. The PET studies disclosed reduction of blood flow and oxygen metabolism in both occipital lobes in our particular patient who exibited cerebral color blindness and posopagnosia. (author).

  1. Occipital lobe infarction and positron emission tomography

    International Nuclear Information System (INIS)

    Tagawa, Koichi; Nagata, Ken; Shishido, Fumio

    1990-01-01

    Even though the PET study revealed a total infarct in the territory of the left PCA in our 3 cases of pure alesia, it is still obscure which part of the left occipital lobe is most closely associated with the occurrence of the pure alexia. In order to elucidate the intralobar localization of the pure alexia, it is needed to have an ideal case who shows an pure alexia due to the localized lesion within the left occipital lobe. Furthermore, high-resolution PET scanner will circumvent the problem in detecting the metabolism and blood flow in the corpus callosum which plays an important role in the pathogenesis. We have shown that the occlusion of the right PCA also produced a left unilateral agnosia which is one of the common neurological signs in the right MCA infarction. To tell whether the responsible lesion for the unilateral spatial agnosia differs between the PCA occlusion and the MCA occlusion, the correlation study should be carried out in a greater number of the subjects. Two distinctive neuropsychological manifestations, cerebral color blidness and prosopagnosia, have been considered to be produced by the bilateral occipital lesion. The PET studies disclosed reduction of blood flow and oxygen metabolism in both occipital lobes in our particular patient who exibited cerebral color blindness and posopagnosia. (author)

  2. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.

    Science.gov (United States)

    Carbonell, F; Bellec, P; Shmuel, A

    2014-02-01

    The effect of regressing out the global average signal (GAS) in resting state fMRI data has become a concern for interpreting functional connectivity analyses. It is not clear whether the reported anti-correlations between the Default Mode and the Dorsal Attention Networks are intrinsic to the brain, or are artificially created by regressing out the GAS. Here we introduce a concept, Impact of the Global Average on Functional Connectivity (IGAFC), for quantifying the sensitivity of seed-based correlation analyses to the regression of the GAS. This voxel-wise IGAFC index is defined as the product of two correlation coefficients: the correlation between the GAS and the fMRI time course of a voxel, times the correlation between the GAS and the seed time course. This definition enables the calculation of a threshold at which the impact of regressing-out the GAS would be large enough to introduce spurious negative correlations. It also yields a post-hoc impact correction procedure via thresholding, which eliminates spurious correlations introduced by regressing out the GAS. In addition, we introduce an Artificial Negative Correlation Index (ANCI), defined as the absolute difference between the IGAFC index and the impact threshold. The ANCI allows a graded confidence scale for ranking voxels according to their likelihood of showing artificial correlations. By applying this method, we observed regions in the Default Mode and Dorsal Attention Networks that were anti-correlated. These findings confirm that the previously reported negative correlations between the Dorsal Attention and Default Mode Networks are intrinsic to the brain and not the result of statistical manipulations. Our proposed quantification of the impact that a confound may have on functional connectivity can be generalized to global effect estimators other than the GAS. It can be readily applied to other confounds, such as systemic physiological or head movement interferences, in order to quantify their

  3. Alcoholism, Korsakoff’s Syndrome and the Frontal Lobes

    Directory of Open Access Journals (Sweden)

    R. R. Jacobson

    1989-01-01

    Full Text Available A subset of the diffuse cerebral changes and psychometric deficits found in chronic alcoholics is similar to that seen in the frontal lobe syndrome. Certain features of alcoholic Korsakoff's syndrome (AKS also point to cortical involvement, and this may have a basis in alcohol neurotoxicity. Twenty-five patients with AKS and 24 non-Korsakoff alcoholic controls were compared using an automated CT brain scan program. In addition to evidence of their diencephalic lesions (wide third ventricles, AKS patients revealed widespread cerebral damage with greater Sylvian and interhemispheric fissure (IHF size than alcoholics. Korsakoffs were also inferior to alcoholics in performance on a category sorting test, in which non-perseverative error scores correlated significantly with IHF size. The principle of distinguishing between selective memory decline and global intellectual decline (GID was applied to 38 patients with AKS. Indices were developed for each type of deficit and much variation found in their distributions. The degree of GID correlated significantly with IHF size, showing similar trends with other cortical measures. These results suggest a cortical substrate for the degree of GID and a frontal substrate for category sorting deficits; with a probable basis in alcohol neurotoxicity rather than thiamine deficiency, which is not known to impair cortical structure. A new model is proposed of the pathophysiology of alcoholic brain damage and AKS which includes recent work on neurotransmitter sources and thalamo-frontal connections.

  4. Altered structural and functional thalamocortical networks in secondarily generalized extratemporal lobe seizures

    Directory of Open Access Journals (Sweden)

    Syu-Jyun Peng

    2017-01-01

    Full Text Available Structural and functional abnormalities in the thalamocortical network in primary generalized epilepsies or mesial temporal lobe epilepsy have recently been identified by voxel-wise analyses of neuroimaging. However, evidence is needed regarding the profiles of the thalamocortical network in patients with secondarily generalized seizures from focal neocortical sources. We used high-resolution T1-weighted, diffusion-tensor and resting-state functional MR imaging (rs-fMRI to examine 16 patients with secondarily generalized extratemporal lobe seizures and 16 healthy controls. All the patients were medically effective and MRI-negative. Using whole brain voxel-based morphometry (VBM to compare the patients with the normal controls, we observed significantly decreased gray matter (GM density in the thalamus and 3 frontal gyri and significantly reduced white matter (WM fractional anisotropy (FA in the bilateral anterior corona radiata of the patients. Alterations in the thalamocortical functional connectivity with different cortices were identified by the rs-fMRI analysis seeding of the whole thalamus. The prefrontal gyri with the greatest functional connectivity were also traced by seeding a sub-thalamic region that is demarcated in an atlas, in which the thalamic parcellation is based on the WM connectivity to the cortices. This sub-thalamic region anatomically contains the mediodorsal thalamic nucleus where, concordantly, there was a significant decrease in thalamic GM density in the VBM study. In contrast to the negative correlation between the disease duration and reduced thalamic densities and subcortical FA values, the strength of the functional thalamocortical connectivity had a paradoxical correlation. Our results conclusively indicate that generalized seizures with a focal cortical source are associated with structural and functional alterations in the thalamocortical network.

  5. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder.

    Science.gov (United States)

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-04-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC-vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder.

  6. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder

    Science.gov (United States)

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-01-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC–vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder. PMID:28944772

  7. Anhedonia correlates with abnormal functional connectivity of the superior temporal gyrus and the caudate nucleus in patients with first-episode drug-naive major depressive disorder.

    Science.gov (United States)

    Yang, Xin-Hua; Tian, Kai; Wang, Dong-Fang; Wang, Yi; Cheung, Eric F C; Xie, Guang-Rong; Chan, Raymond C K

    2017-08-15

    Recent empirical findings have suggested that imbalanced neural networks may underlie the pathophysiology of major depressive disorder (MDD). However, the contribution of the superior temporal gyrus (STG) and the caudate nucleus to its pathophysiology remains unclear. Functional magnetic resonance imaging (MRI) date were acquired from 40 patients with first-episode drug-naive MDD and 36 matched healthy controls during wakeful rest. We used whole-brain voxel-wise statistical maps to quantify within-group resting state functional connectivity (RSFC) and between-group differences of bilateral caudate and STG seeds. Compared with healthy controls, first-episode MDD patients were found to have reduced connectivity between the ventral caudate and several brain regions including the superior frontal gyrus (SFG), the superior parietal lobule (SPL) and the middle temporal gyrus (MTG), as well as increased connectivity with the cuneus. We also found increased connectivity between the left STG and the precuneus, the angular gyrus and the cuneus. Moreover, we found that increased anhedonia severity was correlated with the magnitude of ventral caudate functional connectivity with the cuneus and the MTG in MDD patients. Due to our small sample size, we did not correct the statistical threshold in the correlation analyses between clinical variables and connectivity abnormalities. The present study suggests that anhedonia is mainly associated with altered ventral caudate-cortical connectivity and highlights the importance of the ventral caudate in the neurobiology of MDD. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Determinants of brain metabolism changes in mesial temporal lobe epilepsy.

    Science.gov (United States)

    Chassoux, Francine; Artiges, Eric; Semah, Franck; Desarnaud, Serge; Laurent, Agathe; Landre, Elisabeth; Gervais, Philippe; Devaux, Bertrand; Helal, Ourkia Badia

    2016-06-01

    To determine the main factors influencing metabolic changes in mesial temporal lobe epilepsy (MTLE) due to hippocampal sclerosis (HS). We prospectively studied 114 patients with MTLE (62 female; 60 left HS; 15- to 56-year-olds) with (18) F-fluorodeoxyglucose-positron emission tomography and correlated the results with the side of HS, structural atrophy, electroclinical features, gender, age at onset, epilepsy duration, and seizure frequency. Imaging processing was performed using statistical parametric mapping. Ipsilateral hypometabolism involved temporal (mesial structures, pole, and lateral cortex) and extratemporal areas including the insula, frontal lobe, perisylvian regions, and thalamus, more extensively in right HS (RHS). A relative increase of metabolism (hypermetabolism) was found in the nonepileptic temporal lobe and in posterior areas bilaterally. Voxel-based morphometry detected unilateral hippocampus atrophy and gray matter concentration decrease in both frontal lobes, more extensively in left HS (LHS). Regardless of the structural alterations, the topography of hypometabolism correlated strongly with the extent of epileptic networks (mesial, anterior-mesiolateral, widespread mesiolateral, and bitemporal according to the ictal spread), which were larger in RHS. Notably, widespread perisylvian and bitemporal hypometabolism was found only in RHS. Mirror hypermetabolism was grossly proportional to the hypometabolic areas, coinciding partly with the default mode network. Gender-related effect was significant mainly in the contralateral frontal lobe, in which metabolism was higher in female patients. Epilepsy duration correlated with the contralateral temporal metabolism, positively in LHS and negatively in RHS. Opposite results were found with age at onset. High seizure frequency correlated negatively with the contralateral metabolism in LHS. Epileptic networks, as assessed by electroclinical correlations, appear to be the main determinant of

  9. Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering

    OpenAIRE

    Sitek, Kevin R.; Cai, Shanqing; Beal, Deryk S.; Perkell, Joseph S.; Guenther, Frank H.; Ghosh, Satrajit S.

    2016-01-01

    Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had st...

  10. Decreased cerebellar-orbitofrontal connectivity correlates with stuttering severity: Whole-brain functional and structural connectivity associations with persistent developmental stuttering

    OpenAIRE

    Kevin Richard Sitek; Kevin Richard Sitek; Shanqing eCai; Shanqing eCai; Deryk Scott Beal; Deryk Scott Beal; Deryk Scott Beal; Deryk Scott Beal; Deryk Scott Beal; Joseph S Perkell; Joseph S Perkell; Frank eGuenther; Satrajit S Ghosh; Satrajit S Ghosh

    2016-01-01

    Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here, we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had ...

  11. Altered cortical anatomical networks in temporal lobe epilepsy

    Science.gov (United States)

    Lv, Bin; He, Huiguang; Lu, Jingjing; Li, Wenjing; Dai, Dai; Li, Meng; Jin, Zhengyu

    2011-03-01

    Temporal lobe epilepsy (TLE) is one of the most common epilepsy syndromes with focal seizures generated in the left or right temporal lobes. With the magnetic resonance imaging (MRI), many evidences have demonstrated that the abnormalities in hippocampal volume and the distributed atrophies in cortical cortex. However, few studies have investigated if TLE patients have the alternation in the structural networks. In the present study, we used the cortical thickness to establish the morphological connectivity networks, and investigated the network properties using the graph theoretical methods. We found that all the morphological networks exhibited the small-world efficiency in left TLE, right TLE and normal groups. And the betweenness centrality analysis revealed that there were statistical inter-group differences in the right uncus region. Since the right uncus located at the right temporal lobe, these preliminary evidences may suggest that there are topological alternations of the cortical anatomical networks in TLE, especially for the right TLE.

  12. Abnormal activation of the occipital lobes during emotion picture processing in major depressive disorder patients

    Science.gov (United States)

    Li, Jianying; Xu, Cheng; Cao, Xiaohua; Gao, Qiang; Wang, Yan; Wang, Yanfang; Peng, Juyi; Zhang, Kerang

    2013-01-01

    A large number of studies have demonstrated that depression patients have cognitive dysfunction. With recently developed brain functional imaging, studies have focused on changes in brain function to investigate cognitive changes. However, there is still controversy regarding abnormalities in brain functions or correlation between cognitive impairment and brain function changes. Thus, it is important to design an emotion-related task for research into brain function changes. We selected positive, neutral, and negative pictures from the International Affective Picture System. Patients with major depressive disorder were asked to judge emotion pictures. In addition, functional MRI was performed to synchronously record behavior data and imaging data. Results showed that the total correct rate for recognizing pictures was lower in patients compared with normal controls. Moreover, the consistency for recognizing pictures for depressed patients was worse than normal controls, and they frequently recognized positive pictures as negative pictures. The consistency for recognizing pictures was negatively correlated with the Hamilton Depression Rating Scale. Functional MRI suggested that the activation of some areas in the frontal lobe, temporal lobe, parietal lobe, limbic lobe, and cerebellum was enhanced, but that the activation of some areas in the frontal lobe, parietal lobe and occipital lobe was weakened while the patients were watching positive and neutral pictures compared with normal controls. The activation of some areas in the frontal lobe, temporal lobe, parietal lobe, and limbic lobe was enhanced, but the activation of some areas in the occipital lobe were weakened while the patients were watching the negative pictures compared with normal controls. These findings indicate that patients with major depressive disorder have negative cognitive disorder and extensive brain dysfunction. Thus, reduced activation of the occipital lobe may be an initiating factor for

  13. Atypical language representation in children with intractable temporal lobe epilepsy.

    Science.gov (United States)

    Maulisova, Alice; Korman, Brandon; Rey, Gustavo; Bernal, Byron; Duchowny, Michael; Niederlova, Marketa; Krsek, Pavel; Novak, Vilem

    2016-05-01

    This study evaluated language organization in children with intractable epilepsy caused by temporal lobe focal cortical dysplasia (FCD) alone or dual pathology (temporal lobe FCD and hippocampal sclerosis, HS). We analyzed clinical, neurological, fMRI, neuropsychological, and histopathologic data in 46 pediatric patients with temporal lobe lesions who underwent excisional epilepsy surgery. The frequency of atypical language representation was similar in both groups, but children with dual pathology were more likely to be left-handed. Atypical receptive language cortex correlated with lower intellectual capacity, verbal abstract conceptualization, receptive language abilities, verbal working memory, and a history of status epilepticus but did not correlate with higher seizure frequency or early seizure onset. Histopathologic substrate had only a minor influence on neuropsychological status. Greater verbal comprehension deficits were noted in children with atypical receptive language representation, a risk factor for cognitive morbidity. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Constraining the sedimentology and stratigraphy of submarine intraslope lobe deposits using exhumed examples from the Karoo Basin, South Africa

    Science.gov (United States)

    Spychala, Y. T.; Hodgson, D. M.; Flint, S. S.; Mountney, N. P.

    2015-06-01

    Intraslope lobe deposits provide a process record of the infill of accommodation on submarine slopes and their recognition enables the accurate reconstruction of the stratigraphic evolution of submarine slope systems. Extensive exposures of discrete sand-prone packages in Units D/E and E, Fort Brown Formation, Karoo Basin, South Africa, permit analysis of the sedimentology and stacking patterns of three intraslope lobe complexes and their palaeogeographic reconstruction via bed-scale analysis and physical correlation of key stratal surfaces. The sand-prone packages comprise tabular, aggradationally to slightly compensationally stacked lobe deposits with constituent facies associations that can be attributed to lobe axis, lobe off-axis, lobe-fringe and distal lobe-fringe environments. Locally, intraslope lobe deposits are incised by low aspect ratio channels that mark basinward progradation of the deepwater system. The origin of accommodation on the slope for lobe deposition is interpreted to be due to differential compaction or healing of scars from mass wasting processes. The stacking patterns and sedimentary facies arrangement identified in this study are distinct from those of more commonly recognized basin-floor lobe deposits, thereby enabling the establishment of recognition criteria for intraslope lobe deposits in other less well exposed and studied fine-grained systems. Compared to basin floor lobes, intraslope lobes are smaller in volume, influenced by higher degrees of confinement, and tend to show aggradational stacking patterns.

  15. Lesser sac hematoma as a sign of rupture of hepatocellular carcinoma in the caudate lobe

    International Nuclear Information System (INIS)

    Iwasaki, Yoshie; Tani, Ichiro; Nakajima, Yasuo; Ishikawa, Tohru; Umeda, Satoshi; Kusano, Shoichi

    2001-01-01

    The purpose of this study was to evaluate the CT findings of rupture of hepatocellular carcinoma (HCC) in the caudate lobe of the liver. The CT scans of five cases of rupture of HCC in the caudate lobe of the liver were retrospectively reviewed and correlated with clinical records. All cases showed exophytic tumors in the caudate lobe of the liver and high-attenuation hematomas in the lesser sac on CT. A lesser sac hematoma may be a sentinel clot sign of rupture of HCC in the caudate lobe. (orig.)

  16. Perfusion deficits and functional connectivity alterations in patients with post-traumatic stress disorder

    Science.gov (United States)

    Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing

    2016-03-01

    To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.

  17. Long-term functional outcomes and correlation with regional brain connectivity by MRI diffusion tractography metrics in a near-term rabbit model of intrauterine growth restriction.

    Directory of Open Access Journals (Sweden)

    Miriam Illa

    Full Text Available BACKGROUND: Intrauterine growth restriction (IUGR affects 5-10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI parameters and connectivity. METHODOLOGY: At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. PRINCIPAL FINDINGS: The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. CONCLUSIONS: The rabbit model used reproduced long-term functional impairments and their

  18. Long-term functional outcomes and correlation with regional brain connectivity by MRI diffusion tractography metrics in a near-term rabbit model of intrauterine growth restriction.

    Science.gov (United States)

    Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard

    2013-01-01

    Intrauterine growth restriction (IUGR) affects 5-10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. The rabbit model used reproduced long-term functional impairments and their neurostructural correlates of abnormal neurodevelopment associated with IUGR

  19. Long-Term Functional Outcomes and Correlation with Regional Brain Connectivity by MRI Diffusion Tractography Metrics in a Near-Term Rabbit Model of Intrauterine Growth Restriction

    Science.gov (United States)

    Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard

    2013-01-01

    Background Intrauterine growth restriction (IUGR) affects 5–10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. Methodology At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. Principal Findings The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. Conclusions The rabbit model used reproduced long-term functional impairments and their neurostructural

  20. Decreased occipital lobe metabolism by FDG-PET/CT

    Science.gov (United States)

    Solnes, Lilja; Nalluri, Abhinav; Cohen, Jesse; Jones, Krystyna M.; Zan, Elcin; Javadi, Mehrbod S.; Venkatesan, Arun

    2017-01-01

    Objective: To compare brain metabolism patterns on fluorodeoxyglucose (FDG)-PET/CT in anti–NMDA receptor and other definite autoimmune encephalitis (AE) and to assess how these patterns differ between anti–NMDA receptor neurologic disability groups. Methods: Retrospective review of clinical data and initial dedicated brain FDG-PET/CT studies for neurology inpatients with definite AE, per published consensus criteria, treated at a single academic medical center over a 10-year period. Z-score maps of FDG-PET/CT were made using 3-dimensional stereotactic surface projections in comparison to age group–matched controls. Brain region mean Z scores with magnitudes ≥2.00 were interpreted as significant. Comparisons were made between anti–NMDA receptor and other definite AE patients as well as among patients with anti–NMDA receptor based on modified Rankin Scale (mRS) scores at the time of FDG-PET/CT. Results: The medial occipital lobes were markedly hypometabolic in 6 of 8 patients with anti–NMDA receptor encephalitis and as a group (Z = −4.02, interquartile range [IQR] 2.14) relative to those with definite AE (Z = −2.32, 1.46; p = 0.004). Among patients with anti–NMDA receptor encephalitis, the lateral and medial occipital lobes were markedly hypometabolic for patients with mRS 4–5 (lateral occipital lobe Z = −3.69, IQR 1; medial occipital lobe Z = −4.08, 1) compared with those with mRS 0–3 (lateral occipital lobe Z = −0.83, 2; p occipital lobe Z = −1.07, 2; p = 0.001). Conclusions: Marked medial occipital lobe hypometabolism by dedicated brain FDG-PET/CT may serve as an early biomarker for discriminating anti–NMDA receptor encephalitis from other AE. Resolution of lateral and medial occipital hypometabolism may correlate with improved neurologic status in anti–NMDA receptor encephalitis. PMID:29159205

  1. Laterality of Temporoparietal Causal Connectivity during the Prestimulus Period Correlates with Phonological Decoding Task Performance in Dyslexic and Typical Readers

    OpenAIRE

    Frye, Richard E.; Liederman, Jacqueline; McGraw Fisher, Janet; Wu, Meng-Hung

    2011-01-01

    We examined how effective connectivity into and out of the left and right temporoparietal areas (TPAs) to/from other key cortical areas affected phonological decoding in 7 dyslexic readers (DRs) and 10 typical readers (TRs) who were young adults. Granger causality was used to compute the effective connectivity of the preparatory network 500 ms prior to presentation of nonwords that required phonological decoding. Neuromagnetic activity was analyzed within the low, medium, and high beta and ga...

  2. Correlation connection between the anomalous magnetic and gravitational fields for regions with different types of the Earth's crust

    International Nuclear Information System (INIS)

    Lugovenko, V.N.; Pronin, V.P.; Kosheleva, L.V.

    1989-01-01

    A method for the correlation analysis of anomalous geophysical fields at different survey altitudes is proposed. The joint correlation analysis is performed for anomalous magnetic and gravitational fields for regions with different types of the Earth's crust. (author)

  3. Brain SPECT imaging in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Krausz, Y.; Yaffe, S.; Atlan, H.; Cohen, D.; Konstantini, S.; Meiner, Z.

    1991-01-01

    Temporal lobe epilepsy is diagnosed by clinical symptoms and signs and by localization of an epileptogenic focus. A brain SPECT study of two patients with temporal lobe epilepsy, using 99m Tc-HMPAO, was used to demonstrate a perfusion abnormality in the temporal lobe, while brain CT and MRI were non-contributory. The electroencephalogram, though abnormal, did not localize the diseased area. The potential role of the SPECT study in diagnosis and localization of temporal lobe epilepsy is discussed. (orig.)

  4. Frontal lobe atrophy of the brain in schizophrenia

    International Nuclear Information System (INIS)

    Hara, Tomio

    1981-01-01

    Reported here are the CT findings on cerebral atrophic lesion chiefly developed in the frontal lobe in schizophrenics with unusual organic encephalopathy. Encephalopathy was recognized in 84 (73%) of 115 schizophrenics and 13 (33%) of 40 neurotics. In an attempt to exclude the effects of aging on encephalopathy, the ages at CT and at the development of disease, the number of morbid years, subtypical schizophrenia and relation between the clinical severity and the atrophic condition were comparatively studied. As a result, cerebral atrophy tended to increase along with aging, but the findings differed in that atrophia classified by age covered the entire brain in general, whereas atrophia in schizophrenics was found in the frontal lobe. In particular, because of the fact that clinical severity and atrophia in the frontal lobe are high correlated and that severe atrophia is recognized even in young people, schizophrenia and atrophia in the frontal lobe are considered to be closely related to each other. It is therefore suggested that the CT findings are useful to clinicians for finding appropriate methods to deal with the prognosis of schizophrenics in their daily diagnosis and for the therapeutic prevention of encephalatrophy by stimulating the frontal lobe, thereby delaying mental deterioration. (author)

  5. Anterior Temporal Lobe Morphometry Predicts Categorization Ability.

    Science.gov (United States)

    Garcin, Béatrice; Urbanski, Marika; Thiebaut de Schotten, Michel; Levy, Richard; Volle, Emmanuelle

    2018-01-01

    Categorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the gray matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.

  6. Anterior Temporal Lobe Morphometry Predicts Categorization Ability

    Directory of Open Access Journals (Sweden)

    Béatrice Garcin

    2018-02-01

    Full Text Available Categorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the gray matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.

  7. Changes in thalamus connectivity in mild cognitive impairment: Evidence from resting state fMRI

    International Nuclear Information System (INIS)

    Wang Zhiqun; Jia Xiuqin; Liang Peipeng; Qi Zhigang; Yang Yanhui; Zhou Weidong; Li Kuncheng

    2012-01-01

    Purpose: The subcortical region such as thalamus was believed to have close relationship with many cerebral cortexes which made it especially interesting in the study of functional connectivity. Here, we used resting state functional MRI (fMRI) to examine changes in thalamus connectivity in mild cognitive impairment (MCI), which presented a neuro-disconnection syndrome. Materials and methods: Data from 14 patients and 14 healthy age-matched controls were analyzed. Thalamus connectivity was investigated by examination of the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Results: We found that functional connectivity between the left thalamus and a set of regions was decreased in MCI; these regions are: bilateral cuneus, middle occipital gyrus (MOG), superior frontal gyrus (SFG), medial prefrontal cortex (MPFC), precuneus, inferior frontal gyrus (IFG) and precentral gyrus (PreCG). There are also some regions showed reduced connectivity to right thalamus; these regions are bilateral cuneus, MOG, fusiform gyrus (FG), MPFC, paracentral lobe (PCL), precuneus, superior parietal lobe (SPL) and IFG. We also found increased functional connectivity between the left thalamus and the right thalamus in MCI. Conclusion: The decreased connectivity between the thalamus and the other brain regions might indicate reduced integrity of thalamus-related cortical networks in MCI. Furthermore, the increased connectivity between the left and right thalamus suggest compensation for the loss of cognitive function. Briefly, impairment and compensation of thalamus connectivity coexist in the MCI patients.

  8. Hyperthermia-induced disruption of functional connectivity in the human brain network.

    Directory of Open Access Journals (Sweden)

    Gang Sun

    Full Text Available BACKGROUND: Passive hyperthermia is a potential risk factor to human cognitive performance and work behavior in many extreme work environments. Previous studies have demonstrated significant effects of passive hyperthermia on human cognitive performance and work behavior. However, there is a lack of a clear understanding of the exact affected brain regions and inter-regional connectivities. METHODOLOGY AND PRINCIPAL FINDINGS: We simulated 1 hour environmental heat exposure to thirty-six participants under two environmental temperature conditions (25 °C and 50 °C, and collected resting-state functional brain activity. The functional connectivities with a preselected region of interest (ROI in the posterior cingulate cortex and precuneus (PCC/PCu, furthermore, inter-regional connectivities throughout the entire brain using a prior Anatomical Automatic Labeling (AAL atlas were calculated. We identified decreased correlations of a set of regions with the PCC/PCu, including the medial orbitofrontal cortex (mOFC and bilateral medial temporal cortex, as well as increased correlations with the partial orbitofrontal cortex particularly in the bilateral orbital superior frontal gyrus. Compared with the normal control (NC group, the hyperthermia (HT group showed 65 disturbed functional connectivities with 50 of them being decreased and 15 of them being increased. While the decreased correlations mainly involved with the mOFC, temporal lobe and occipital lobe, increased correlations were mainly located within the limbic system. In consideration of physiological system changes, we explored the correlations of the number of significantly altered inter-regional connectivities with differential rectal temperatures and weight loss, but failed to obtain significant correlations. More importantly, during the attention network test (ANT we found that the number of significantly altered functional connectivities was positively correlated with an increase in

  9. Insights into Intrinsic Brain Networks based on Graph Theory and PET in right- compared to left-sided Temporal Lobe Epilepsy.

    Science.gov (United States)

    Vanicek, Thomas; Hahn, Andreas; Traub-Weidinger, Tatjana; Hilger, Eva; Spies, Marie; Wadsak, Wolfgang; Lanzenberger, Rupert; Pataraia, Ekaterina; Asenbaum-Nan, Susanne

    2016-06-28

    The human brain exhibits marked hemispheric differences, though it is not fully understood to what extent lateralization of the epileptic focus is relevant. Preoperative [(18)F]FDG-PET depicts lateralization of seizure focus in patients with temporal lobe epilepsy and reveals dysfunctional metabolic brain connectivity. The aim of the present study was to compare metabolic connectivity, inferred from inter-regional [(18)F]FDG PET uptake correlations, in right-sided (RTLE; n = 30) and left-sided TLE (LTLE; n = 32) with healthy controls (HC; n = 31) using graph theory based network analysis. Comparing LTLE and RTLE and patient groups separately to HC, we observed higher lobar connectivity weights in RTLE compared to LTLE for connections of the temporal and the parietal lobe of the contralateral hemisphere (CH). Moreover, especially in RTLE compared to LTLE higher local efficiency were found in the temporal cortices and other brain regions of the CH. The results of this investigation implicate altered metabolic networks in patients with TLE specific to the lateralization of seizure focus, and describe compensatory mechanisms especially in the CH of patients with RTLE. We propose that graph theoretical analysis of metabolic connectivity using [(18)F]FDG-PET offers an important additional modality to explore brain networks.

  10. Changes in frontal lobe function before and after surgery in patients with unruptured intracranial aneurysm

    International Nuclear Information System (INIS)

    Ozaki, Saya; Kumon, Yoshiaki; Igase, Keiji; Watanabe, Hideaki; Ohnishi, Takanori

    2008-01-01

    We evaluated neuropsychological function in 18 patients with unruptured cerebral aneurysm who showed good postoperative outcomes. We paid particular attention to frontal lobe function. We also investigated relationships between cerebral blood flow (CBF) and frontal lobe function. Patients were examined using digit span, word fluency (WF), Stroop and trail-making tests to clarify frontal lobe function before and 1-2 months after surgery. We also used the mini-mental state examination (MMSE), Raven's colored progressive matrices (RCPM) and revised Wechsler adult intelligence scale (WAIS-R) to examine cognitive function. CBF was measured using 133 Xe-single photon emission computed tomography (SPECT) before and 1-2 months after surgery. Tests revealed that the patients' postoperative neuropsychological status was improved compared to the preoperative status for MMSE, RCPM and WAIS-R. Among the tests of frontal lobe function, WF results had deteriorated significantly after surgery. Resting CBF in the frontal lobe was significantly decreased. Regional CBF in the frontal lobe was decreased significantly in comparison with values in the parietal and temporal lobes in patients showing deterioration of WF. Deterioration of WF correlated with CBF changes in the frontal lobe. These results suggest that surgery for unruptured cerebral aneurysm exerts detrimental effects on frontal lobe function that may be related to CBF changes. (author)

  11. Temporal Lobe Epilepsy in Children

    Science.gov (United States)

    Nickels, Katherine C.; Wong-Kisiel, Lily C.; Moseley, Brian D.; Wirrell, Elaine C.

    2012-01-01

    The temporal lobe is a common focus for epilepsy. Temporal lobe epilepsy in infants and children differs from the relatively homogeneous syndrome seen in adults in several important clinical and pathological ways. Seizure semiology varies by age, and the ictal EEG pattern may be less clear cut than what is seen in adults. Additionally, the occurrence of intractable seizures in the developing brain may impact neurocognitive function remote from the temporal area. While many children will respond favorably to medical therapy, those with focal imaging abnormalities including cortical dysplasia, hippocampal sclerosis, or low-grade tumors are likely to be intractable. Expedient workup and surgical intervention in these medically intractable cases are needed to maximize long-term developmental outcome. PMID:22957247

  12. Occipital lobe infarctions are different

    OpenAIRE

    Naess, Halvor; Waje-Andreassen, Ulrikke; Thomassen, Lars

    2007-01-01

    Halvor Naess, Ulrikke Waje-Andreassen, Lars ThomassenDepartment of Neurology, Haukeland University Hospital, University of Bergen, N-5021 Bergen, NorwayObjectives: We hypothesized that occipital lobe infarctions differ from infarctions in other locations as to etiology, risk factors and prognosis among young adults.Methods: Location, etiology, risk factors and long-term outcome were evaluated among all young adults 15–49 years suffering from cerebral infarction in Hordaland County, Norw...

  13. PreSMA stimulation changes task-free functional connectivity in the fronto-basal-ganglia that correlates with response inhibition efficiency.

    Science.gov (United States)

    Xu, Benjamin; Sandrini, Marco; Wang, Wen-Tung; Smith, Jason F; Sarlls, Joelle E; Awosika, Oluwole; Butman, John A; Horwitz, Barry; Cohen, Leonardo G

    2016-09-01

    Previous work using transcranial magnetic stimulation (TMS) demonstrated that the right presupplementary motor area (preSMA), a node in the fronto-basal-ganglia network, is critical for response inhibition. However, TMS influences interconnected regions, raising the possibility of a link between the preSMA activity and the functional connectivity within the network. To understand this relationship, we applied single-pulse TMS to the right preSMA during functional magnetic resonance imaging when the subjects were at rest to examine changes in neural activity and functional connectivity within the network in relation to the efficiency of response inhibition evaluated with a stop-signal task. The results showed that preSMA-TMS increased activation in the right inferior-frontal cortex (rIFC) and basal ganglia and modulated their task-free functional connectivity. Both the TMS-induced changes in the basal-ganglia activation and the functional connectivity between rIFC and left striatum, and of the overall network correlated with the efficiency of response inhibition and with the white-matter microstructure along the preSMA-rIFC pathway. These results suggest that the task-free functional and structural connectivity between the rIFCop and basal ganglia are critical to the efficiency of response inhibition. Hum Brain Mapp 37:3236-3249, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. MR imaging in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Fobben, E.S.; Zimmerman, R.A.; Sperling, M.R.; Kohn, M.I.; Atlas, S.W.; Hackney, D.B.; Goldberg, H.I.; Bilaniuk, L.T.; Grossman, R.I.

    1988-01-01

    MR imaging examinations of 31 patients undergoing temporal lobe resection for refractory partial epilepsy were reviewed retrospectively for the presence of signal abnormalities as well as atrophy. High-signal abnormalities were present in only two of the described 31 patients (6.5%). Pathologically, these represented mesial temporal sclerosis and a hamartoma. Of the remaining 29 cases, 13 showed pathologically varying degrees of mesial temporal sclerosis and gliosis and 16 were pathologically normal. Atrophy, as determined by gross asymmetry, sulcal and temporal horn enlargement, and computer volume measurements, was observed in 23 of 31 patients, correlating with the clinically affected side in 20 and the contralateral side in three. In this series, in contrast to others reported, focal MR signal abnormalities were not detected in the vast majority of patients with mesial temporal sclerosis

  15. Widespread temporo-occipital lobe dysfunction in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Loewe, Kristian; Machts, Judith; Kaufmann, Jörn; Petri, Susanne; Heinze, Hans-Jochen; Borgelt, Christian; Harris, Joseph Allen; Vielhaber, Stefan; Schoenfeld, Mircea Ariel

    2017-01-09

    Recent studies suggest that amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) lie on a single clinical continuum. However, previous neuroimaging studies have found only limited involvement of temporal lobe regions in ALS. To better delineate possible temporal lobe involvement in ALS, the present study aimed to examine changes in functional connectivity across the whole brain, particularly with regard to extra-motor regions, in a group of 64 non-demented ALS patients and 38 healthy controls. To assess between-group differences in connectivity, we computed edge-level statistics across subject-specific graphs derived from resting-state functional MRI data. In addition to expected ALS-related decreases in functional connectivity in motor-related areas, we observed extensive changes in connectivity across the temporo-occipital cortex. Although ALS patients with comorbid FTD were deliberately excluded from this study, the pattern of connectivity alterations closely resembles patterns of cerebral degeneration typically seen in FTD. This evidence for subclinical temporal dysfunction supports the idea of a common pathology in ALS and FTD.

  16. Simultaneous stability and sensitivity in model cortical networks is achieved through anti-correlations between the in- and out-degree of connectivity

    Directory of Open Access Journals (Sweden)

    Juan Carlos Vasquez

    2013-11-01

    Full Text Available Neuronal networks in rodent barrel cortex are characterized by stable low baseline firing rates. However, they are sensitive to the action potentials of single neurons as suggested by recent single-cell stimulation experiments that report quantifiable behavioral responses in response to short spike trains elicited in single neurons. Hence, these networks are stable against internally generated fluctuations in firing rate but at the same time remain sensitive to similarly-sized externally induced perturbations. We investigated stability and sensitivity in a simple recurrent network of stochastic binary neurons and determined numerically the effects of correlation between the number of afferent (‘in-degree’ and efferent (‘out-degree’ connections in neurons. The key advance reported in this work is that anti-correlation between in-/out-degree distributions increased the stability of the network in comparison to networks with no correlation or positive correlations, while being able to achieve the same level of sensitivity. The experimental characterization of degree distributions is difficult because all presynaptic and postsynaptic neurons have to be identified and counted. We explored whether the statistics of network motifs, which requires the characterization of connections between small subsets of neurons, could be used to detect evidence for degree anti-correlations. We find that the sample frequency of the 3-neuron ‘ring’ motif (1→2→3→1, can be used to detect degree anti-correlation for sub-networks of size 30 using about 50 samples, which is of significance because the necessary measurements are achievable experimentally in the near future.Taken together, we hypothesize that barrel cortex networks exhibit degree anti-correlations and specific network motif statistics.

  17. Bipartite non-classical correlations for a lossy two connected qubit-cavity systems: trace distance discord and Bell's non-locality

    Science.gov (United States)

    Mohamed, Abdel-Baset A.

    2018-04-01

    In this paper, some non-classical correlations are investigated for bipartite partitions of two qubits trapped in two spatially separated cavities connected by an optical fiber. The results show that the trace distance discord and Bell's non-locality introduce other quantum correlations beyond the entanglement. Moreover, the correlation functions of the trace distance discord and the Bell's non-locality are very sensitive to the initial correlations, the coupling strengths, and the dissipation rates of the cavities. The fluctuations of the correlation functions between their initial values and gained (loss) values appear due to the unitary evolution of the system. These fluctuations depend on the chosen initial correlations between the two subsystems. The maximal violations of Bell's inequality occur when the logarithmic negativity and the trace distance discord reach certain values. It is shown that the robustness of the non-classical correlations, against the dissipation rates of the cavities, depends on the bipartite partitions reduced density matrices of the system, and is also greatly enhanced by choosing appropriate coupling strengths.

  18. Fornix white matter is correlated with resting state functional connectivity of the thalamus and hippocampus in healthy aging but not in mild cognitive impairment- a preliminary study

    Directory of Open Access Journals (Sweden)

    Elizabeth Grace Kehoe

    2015-02-01

    Full Text Available In this study we wished to examine the relationship between the structural connectivity of the fornix, a white matter (WM tract in the limbic system which is affected in amnestic mild cognitive impairment (aMCI and Alzheimer’s disease (AD, and the resting state functional connectivity (FC of two key related subcortical structures, the thalamus and hippocampus. Twenty-two older healthy controls (HC and 18 older adults with aMCI underwent multi-modal MRI scanning. The fornix was reconstructed using constrained-spherical deconvolution (CSD-based tractography. The FC between the thalamus and hippocampus was calculated using a region-of-interest approach from which the mean time series were exacted and correlated. Diffusion tensor imaging (DTI measures of the white matter microstructure of the fornix were correlated against the Fisher Z correlation values from the FC analysis. There was no difference between the groups in the fornix white matter measures, nor in the resting state FC of the thalamus and hippocampus. We did however find that the relationship between functional and structural connectivity differed significantly between the groups. In the HCs there was a significant positive association between linear diffusion (CL in the fornix and the FC of the thalamus and hippocampus, however there was no relationship between these measures in the aMCI group. These preliminary findings suggest that in aMCI, the relationship between the functional and structural connectivity of regions of the limbic system may be significantly altered compared to healthy ageing. The combined use of DWI and fMRI may advance our understanding of neural network changes in aMCI, and elucidate subtle changes in the relationship between structural and functional brain networks.

  19. Resting-state functional connectivity between right anterior insula and right orbital frontal cortex correlate with insight level in obsessive-compulsive disorder

    Directory of Open Access Journals (Sweden)

    Jie Fan

    2017-01-01

    Full Text Available Few studies have explored the neurobiological basis of insight level in obsessive-compulsive disorder (OCD, though the salience network (SN has been implicated in insight deficits in schizophrenia. This study was then designed to investigate whether resting-state (rs functional connectivity (FC of SN was associated with insight level in OCD patients. We analyzed rs-functional magnetic resonance imaging (fMRI data from 21 OCD patients with good insight (OCD-GI, 19 OCD patients with poor insight (OCD-PI, and 24 healthy controls (HCs. Seed-based whole-brain FC and ROI (region of interest-wise connectivity analyses were performed with seeds/ROIs in the bilateral anterior insula (AI and dorsal anterior cingulate cortex (dACC. The right AI-right medial orbital frontal cortex (mOFC connectivity was found to be uniquely decreased in the OCD-PI group, and the value of this aberrant connectivity correlated with insight level in OCD patients. In addition, we found that the OCD-GI group had significantly increased right AI-left dACC connectivity within the SN, relative to HCs (overall trend for groups: OCD-GI > OCD-PI > HC. Our findings suggest that abnormal right AI-right mOFC FC may mediate insight deficits in OCD, perhaps due to impaired encoding and integration of self-evaluative information about OCD-related beliefs and behaviors. Our findings indicate a SN connectivity dissociation between OCD-GI and OCD-PI patients and support the notion of considering OCD-GI and OCD-PI as two distinct disorder subtypes.

  20. Transition Dynamics of a Dentate Gyrus-CA3 Neuronal Network during Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Liyuan Zhang

    2017-07-01

    Full Text Available In temporal lobe epilepsy (TLE, the variation of chemical receptor expression underlies the basis of neural network activity shifts, resulting in neuronal hyperexcitability and epileptiform discharges. However, dynamical mechanisms involved in the transitions of TLE are not fully understood, because of the neuronal diversity and the indeterminacy of network connection. Hence, based on Hodgkin–Huxley (HH type neurons and Pinsky–Rinzel (PR type neurons coupling with glutamatergic and GABAergic synaptic connections respectively, we propose a computational framework which contains dentate gyrus (DG region and CA3 region. By regulating the concentration range of N-methyl-D-aspartate-type glutamate receptor (NMDAR, we demonstrate the pyramidal neuron can generate transitions from interictal to seizure discharges. This suggests that enhanced endogenous activity of NMDAR contributes to excitability in pyramidal neuron. Moreover, we conclude that excitatory discharges in CA3 region vary considerably on account of the excitatory currents produced by the excitatory pyramidal neuron. Interestingly, by changing the backprojection connection, we find that glutamatergic type backprojection can promote the dominant frequency of firings and further motivate excitatory counterpropagation from CA3 region to DG region. However, GABAergic type backprojection can reduce firing rate and block morbid counterpropagation, which may be factored into the terminations of TLE. In addition, neuronal diversity dominated network shows weak correlation with different backprojections. Our modeling and simulation studies provide new insights into the mechanisms of seizures generation and connectionism in local hippocampus, along with the synaptic mechanisms of this disease.

  1. Transition Dynamics of a Dentate Gyrus-CA3 Neuronal Network during Temporal Lobe Epilepsy.

    Science.gov (United States)

    Zhang, Liyuan; Fan, Denggui; Wang, Qingyun

    2017-01-01

    In temporal lobe epilepsy (TLE), the variation of chemical receptor expression underlies the basis of neural network activity shifts, resulting in neuronal hyperexcitability and epileptiform discharges. However, dynamical mechanisms involved in the transitions of TLE are not fully understood, because of the neuronal diversity and the indeterminacy of network connection. Hence, based on Hodgkin-Huxley (HH) type neurons and Pinsky-Rinzel (PR) type neurons coupling with glutamatergic and GABAergic synaptic connections respectively, we propose a computational framework which contains dentate gyrus (DG) region and CA3 region. By regulating the concentration range of N-methyl-D-aspartate-type glutamate receptor (NMDAR), we demonstrate the pyramidal neuron can generate transitions from interictal to seizure discharges. This suggests that enhanced endogenous activity of NMDAR contributes to excitability in pyramidal neuron. Moreover, we conclude that excitatory discharges in CA3 region vary considerably on account of the excitatory currents produced by the excitatory pyramidal neuron. Interestingly, by changing the backprojection connection, we find that glutamatergic type backprojection can promote the dominant frequency of firings and further motivate excitatory counterpropagation from CA3 region to DG region. However, GABAergic type backprojection can reduce firing rate and block morbid counterpropagation, which may be factored into the terminations of TLE. In addition, neuronal diversity dominated network shows weak correlation with different backprojections. Our modeling and simulation studies provide new insights into the mechanisms of seizures generation and connectionism in local hippocampus, along with the synaptic mechanisms of this disease.

  2. Occipital lobe seizures and epilepsies.

    Science.gov (United States)

    Adcock, Jane E; Panayiotopoulos, Chrysostomos P

    2012-10-01

    Occipital lobe epilepsies (OLEs) manifest with occipital seizures from an epileptic focus within the occipital lobes. Ictal clinical symptoms are mainly visual and oculomotor. Elementary visual hallucinations are common and characteristic. Postictal headache occurs in more than half of patients (epilepsy-migraine sequence). Electroencephalography (EEG) is of significant diagnostic value, but certain limitations should be recognized. Occipital spikes and/or occipital paroxysms either spontaneous or photically induced are the main interictal EEG abnormalities in idiopathic OLE. However, occipital epileptiform abnormalities may also occur without clinical relationship to seizures particularly in children. In cryptogenic/symptomatic OLE, unilateral posterior EEG slowing is more common than occipital spikes. In neurosurgical series of symptomatic OLE, interictal EEG abnormalities are rarely strictly occipital. The most common localization is in the posterior temporal regions and less than one-fifth show occipital spikes. In photosensitive OLE, intermittent photic stimulation elicits (1) spikes/polyspikes confined in the occipital regions or (2) generalized spikes/polyspikes with posterior emphasis. In ictal EEG, a well-localized unifocal rhythmic ictal discharge during occipital seizures is infrequent. A bioccipital field spread to the temporal regions is common. Frequency, severity, and response to treatment vary considerably from good to intractable and progressive mainly depending on underlying causes.

  3. On the relationship between instantaneous phase synchrony and correlation-based sliding windows for time-resolved fMRI connectivity analysis.

    Science.gov (United States)

    Pedersen, Mangor; Omidvarnia, Amir; Zalesky, Andrew; Jackson, Graeme D

    2018-06-08

    Correlation-based sliding window analysis (CSWA) is the most commonly used method to estimate time-resolved functional MRI (fMRI) connectivity. However, instantaneous phase synchrony analysis (IPSA) is gaining popularity mainly because it offers single time-point resolution of time-resolved fMRI connectivity. We aim to provide a systematic comparison between these two approaches, on both temporal and topological levels. For this purpose, we used resting-state fMRI data from two separate cohorts with different temporal resolutions (45 healthy subjects from Human Connectome Project fMRI data with repetition time of 0.72 s and 25 healthy subjects from a separate validation fMRI dataset with a repetition time of 3 s). For time-resolved functional connectivity analysis, we calculated tapered CSWA over a wide range of different window lengths that were temporally and topologically compared to IPSA. We found a strong association in connectivity dynamics between IPSA and CSWA when considering the absolute values of CSWA. The association between CSWA and IPSA was stronger for a window length of ∼20 s (shorter than filtered fMRI wavelength) than ∼100 s (longer than filtered fMRI wavelength), irrespective of the sampling rate of the underlying fMRI data. Narrow-band filtering of fMRI data (0.03-0.07 Hz) yielded a stronger relationship between IPSA and CSWA than wider-band (0.01-0.1 Hz). On a topological level, time-averaged IPSA and CSWA nodes were non-linearly correlated for both short (∼20 s) and long (∼100 s) windows, mainly because nodes with strong negative correlations (CSWA) displayed high phase synchrony (IPSA). IPSA and CSWA were anatomically similar in the default mode network, sensory cortex, insula and cerebellum. Our results suggest that IPSA and CSWA provide comparable characterizations of time-resolved fMRI connectivity for appropriately chosen window lengths. Although IPSA requires narrow-band fMRI filtering, we recommend the use of

  4. Decreased levels of active uPA and KLK8 assessed by [111 In]MICA-401 binding correlate with the seizure burden in an animal model of temporal lobe epilepsy.

    Science.gov (United States)

    Missault, Stephan; Peeters, Lore; Amhaoul, Halima; Thomae, David; Van Eetveldt, Annemie; Favier, Barbara; Thakur, Anagha; Van Soom, Jeroen; Pitkänen, Asla; Augustyns, Koen; Joossens, Jurgen; Staelens, Steven; Dedeurwaerdere, Stefanie

    2017-09-01

    Urokinase-type plasminogen activator (uPA) and kallikrein-related peptidase 8 (KLK8) are serine proteases that contribute to extracellular matrix (ECM) remodeling after brain injury. They can be labelled with the novel radiotracer [ 111 In]MICA-401. As the first step in exploring the applicability of [ 111 In]MICA-401 in tracing the mechanisms of postinjury ECM reorganization in vivo, we performed in vitro and ex vivo studies, assessing [ 111 In]MICA-401 distribution in the brain in two animal models: kainic acid-induced status epilepticus (KASE) and controlled cortical impact (CCI)-induced traumatic brain injury (TBI). In the KASE model, in vitro autoradiography with [ 111 In]MICA-401 was performed at 7 days and 12 weeks post-SE. To assess seizure burden, rats were monitored using video-electroencephalography (EEG) for 1 month before the 12-week time point. In the CCI model, in vitro autoradiography was performed at 4 days and ex vivo autoradiography at 7 days post-TBI. At 7 days post-SE, in vitro autoradiography revealed significantly decreased [ 111 In]MICA-401 binding in hippocampal CA3 subfield and extrahippocampal temporal lobe (ETL). In the chronic phase, when animals had developed spontaneous seizures, specific binding was decreased in CA3 and CA1/CA2 subfields of hippocampus, dentate gyrus, ETL, and parietal cortex. Of interest, KASE rats with the highest frequency of seizures had the lowest hippocampal [ 111 In]MICA-401 binding (r = -0.76, p ≤ 0.05). Similarly, at 4 days post-TBI, in vitro [ 111 In]MICA-401 binding was significantly decreased in medial and lateral perilesional cortex and ipsilateral dentate gyrus. Ex vivo autoradiography at 7 days post-TBI, however, revealed increased tracer uptake in perilesional cortex and hippocampus, which was likely related to tracer leakage due to blood-brain barrier (BBB) disruption. Strong association of reduced [ 111 In]MICA-401 binding with seizure burden in the KASE model suggests that analysis of reduced

  5. The Responsive Amygdala: Treatment-induced Alterations in Functional Connectivity in Pediatric Complex Regional Pain Syndrome

    Science.gov (United States)

    Simons, LE; Pielech, M; Erpelding, N; Linnman, C; Moulton, E; Sava, S; Lebel, A; Serrano, P; Sethna, N; Berde, C; Becerra, L; Borsook, D

    2014-01-01

    The amygdala is a key brain region with efferent and afferent neural connections that involve complex behaviors such as pain, reward, fear and anxiety. This study evaluated resting state functional connectivity of the amygdala with cortical and subcortical regions in a group of chronic pain patients (pediatric complex regional pain syndrome) with age-gender matched controls before and after intensive physical-biobehavioral pain treatment. Our main findings include (1) enhanced functional connectivity from the amygdala to multiple cortical, subcortical, and cerebellar regions in patients compared to controls, with differences predominantly in the left amygdala in the pre-treated condition (disease state); (2) dampened hyperconnectivity from the left amygdala to the motor cortex, parietal lobe, and cingulate cortex after intensive pain rehabilitation treatment within patients with nominal differences observed among healthy controls from Time 1 to Time 2 (treatment effects); (3) functional connectivity to several regions key to fear circuitry (prefrontal cortex, bilateral middle temporal lobe, bilateral cingulate, hippocampus) correlated with higher pain-related fear scores and (4) decreases in pain-related fear associated with decreased connectivity between the amygdala and the motor and somatosensory cortex, cingulate, and frontal areas. Our data suggest that there are rapid changes in amygdala connectivity following an aggressive treatment program in children with chronic pain and intrinsic amygdala functional connectivity activity serving as a potential indicator of treatment response. PMID:24861582

  6. Functional Connectivity of the Amygdala Is Disrupted in Preschool-Aged Children With Autism Spectrum Disorder.

    Science.gov (United States)

    Shen, Mark D; Li, Deana D; Keown, Christopher L; Lee, Aaron; Johnson, Ryan T; Angkustsiri, Kathleen; Rogers, Sally J; Müller, Ralph-Axel; Amaral, David G; Nordahl, Christine Wu

    2016-09-01

    The objective of this study was to determine whether functional connectivity of the amygdala is altered in preschool-age children with autism spectrum disorder (ASD) and to assess the clinical relevance of observed alterations in amygdala connectivity. A resting-state functional connectivity magnetic resonance imaging study of the amygdala (and a parallel study of primary visual cortex) was conducted in 72 boys (mean age 3.5 years; n = 43 with ASD; n = 29 age-matched controls). The ASD group showed significantly weaker connectivity between the amygdala and several brain regions involved in social communication and repetitive behaviors, including bilateral medial prefrontal cortex, temporal lobes, and striatum (p amygdala and frontal and temporal lobes was significantly correlated with increased autism severity in the ASD group (p amygdala and regions of the brain important for social communication and language, which might be clinically relevant because weaker connectivity was associated with increased autism severity. Moreover, although amygdala connectivity was associated with behavioral domains that are diagnostic of ASD, altered connectivity of primary visual cortex was related to sensory hypersensitivity. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. [Effects of temporal lobe epilepsy and idiopathic epilepsy on cognitive function and emotion in children].

    Science.gov (United States)

    Yang, Xiao-Yan; Long, Li-Li; Xiao, Bo

    2016-07-01

    To investigate the effects of temporal lobe epilepsy and idiopathic epilepsy on cognitive function and emotion in children and the risk factors for cognitive impairment. A retrospective analysis was performed for the clinical data of 38 children with temporal lobe epilepsy and 40 children with idiopathic epilepsy. The controls were 42 healthy children. All subjects received the following neuropsychological tests: Montreal Cognitive Assessment (MoCA) scale, verbal fluency test, digit span test, block design test, Social Anxiety Scale for Children (SASC), and Depression Self-rating Scale for Children (DSRSC). Compared with the control group, the temporal lobe epilepsy and idiopathic epilepsy groups showed significantly lower scores of MoCA, verbal fluency, digit span, and block design (Pepilepsy group, the temporal lobe epilepsy group showed significantly lower scores of MoCA, verbal fluency, digit span, and block design (Ptemporal lobe epilepsy group, MoCA score was negatively correlated with SASC score, DSRSC score, and seizure frequency (r=-0.571, -0.529, and -0.545 respectively; Pepilepsy group, MoCA score was also negatively correlated with SASC score, DSRSC score, and seizure frequency (r=-0.542, -0.487, and -0.555 respectively; Ptemporal lobe epilepsy and idiopathic epilepsy show impaired whole cognition, verbal fluency, memory, and executive function and have anxiety and depression, which are more significant in children with temporal lobe epilepsy. High levels of anxiety, depression, and seizure frequency are risk factors for impaired cognitive function.

  8. Calculation of lobe mixer flow with reynolds stress model. Oryoku hoteishiki model ni yoru lobe mixer ryu no suchi keisan

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Makoto; Arakawa, Chuichi; Tagori, Tetsuo [Ishikawajima-Harima Heavy Industries, Co., Ltd., Tokyo (Japan) Univ. of Tokyo, Tokyo (Japan). Faculty of Engineering Univ. of Tsukuba, Tsukuba (Japan)

    1990-02-25

    It is considered that exhaust gas energy of turbofan engine is partly collected to realize the improvement of propulsion efficiency together with the reduction of noise appeared by the change in velocity distribution of exhaust gas flow. Then Lobe mixer was studied and its effectiveness was widely recognized, however the development of more realistic prediction method of exhaust nozzle system including Lobe mixer, is not completed yet. The stress equation model with low Reynolds Number which is easily used by the expansion of Launder Reece Rodi model in three dimension coordinate system was newly constructed. Applicability of the stress equation in more complicated flow field was greatly improved. While the above model was applied to Lobe mixer system, then the qualitative reproduction of mixing process accompanied with flow around Lobe and longitudinal eddy of core or bi-pass flow, was realized. There is room for improvement of pressure strain correlation term and behavior of Reynolds stress very close by wall surface in this model. 16 refs., 9 figs., 1 tab.

  9. Emotional reactions in patients after frontal lobe stroke.

    Science.gov (United States)

    Stojanović, Zlatan; Stojanović, Sanja Vukadinović

    2015-09-01

    Emotional reactions have been documented after tumor lesions and the other damages of the brain. The aim of this paper was to examine the correlation between frontal lobe lesions and emotional reactions in patients with stroke. The research included 118 patients after stroke. Lesion localization was defined on computed axial tomography records, whereas the area and perimeter of lesion were measured by AutoCAD 2004 software. Examinations by means of the Hamilton Rating Scale for Anxiety and Depression (HRSA and HRSD) were carried out 11-40 days after stroke. Statistic data were processed by simple linear/nonlinear regression, Cox's and the generalized linear model. A higher frequency of emotional reactions, i.e. anxiety, was determined in women after stroke (p = 0.024). A negative correlation between the lesion size and the intensity of anxiety manifestations was determined (Spearman's r = -0.297; p = 0.001). Anxiety was more frequent in patients with frontal lobe lesions in the dominant hemisphere (interaction: frontal lesion * hand dominant hemisphere, p = 0.017). Also, HRSD score values showed the tendency for lesser decline in case of greater frontal lobe lesions in relation to lesions of other regions of prosencephalon (interaction: frontal lesion * lesion area, p = 0.001). The results of this study indicate the correlation between evolutionary younger structures of the central nervous system and emotional reactions of man. Therefore, it is necessary to undertake proper early psychopharmacotherapy in the vulnerable group of patients.

  10. Disturbed Interhemispheric Functional Connectivity Rather than Structural Connectivity in Irritable Bowel Syndrome

    Directory of Open Access Journals (Sweden)

    Rongfeng Qi

    2016-12-01

    Full Text Available Neuroimaging studies have demonstrated that irritable bowel syndrome (IBS—a relapsing functional bowel disorder—presents with disrupted brain connections. However, little is known about the alterations of interhemispheric functional connectivity and underlying structural connectivity in IBS. This study combined resting-state functional magnetic resonance imaging (MRI and diffusion tensor imaging (DTI to investigate changes in interhemispheric coordination in IBS patients. Resting-state functional and structural magnetic resonance images were acquired from 65 IBS patients and 67 healthy controls (matched for age, sex and educational level. Interhemispheric voxel-mirrored homotopic connectivity (VMHC was calculated and compared between groups. Homotopic regions showing abnormal VMHC in patients were targeted as regions of interest for analysis of DTI tractography. The fractional anisotropy, fiber number, and fiber length were compared between groups. Statistical analysis was also performed by including anxiety and depression as covariates to evaluate their effect. A Pearson correlation analysis between abnormal interhemispheric connectivity and clinical indices of IBS patients was performed. Compared to healthy controls, IBS patients had higher interhemispheric functional connectivity between bilateral thalami, cuneus, posterior cingulate cortices, lingual gyri and inferior occipital/cerebellum lobes, as well as lower interhemispheric functional connectivity between bilateral ventral anterior cingulate cortices (vACC and inferior parietal lobules (IPL. The inclusion of anxiety and depression as covariates abolished VMHC difference in vACC. Microstructural features of white matter tracts connecting functionally abnormal regions did not reveal any differences between the groups. VMHC values in vACC negatively correlated with the quality of life scores of patients. In conclusion, this study provides preliminary evidence of the disrupted

  11. Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy.

    Science.gov (United States)

    de Campos, Brunno Machado; Coan, Ana Carolina; Lin Yasuda, Clarissa; Casseb, Raphael Fernandes; Cendes, Fernando

    2016-09-01

    Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by

  12. Atypical handedness in mesial temporal lobe epilepsy.

    Science.gov (United States)

    Doležalová, Irena; Schachter, Steven; Chrastina, Jan; Hemza, Jan; Hermanová, Markéta; Rektor, Ivan; Pažourková, Marta; Brázdil, Milan

    2017-07-01

    The main aim of our study was to investigate the handedness of patients with mesial temporal lobe epilepsy (MTLE). We also sought to identify clinical variables that correlated with left-handedness in this population. Handedness (laterality quotient) was assessed in 73 consecutive patients with MTLE associated with unilateral hippocampal sclerosis (HS) using the Edinburgh Handedness Inventory. Associations between right- and left-handedness and clinical variables were investigated. We found that 54 (74.0%) patients were right-handed, and 19 (26%) patients were left-handed. There were 15 (36.6%) left-handed patients with left-sided seizure onset compared to 4 (12.5%) left-handed patients with right-sided seizure onset (p=0.030). Among patients with left-sided MTLE, age at epilepsy onset was significantly correlated with handedness (8years of age [median; min-max 0.5-17] in left-handers versus 15years of age [median; min-max 3-30] in right-handers (p<0.001). Left-sided MTLE is associated with atypical handedness, especially when seizure onset occurs during an active period of brain development, suggesting a bi-hemispheric neuroplastic process for establishing motor dominance in patients with early-onset left-sided MTLE. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Disturbed cortico-amygdalar functional connectivity as pathophysiological correlate of working memory deficits in bipolar affective disorder.

    Science.gov (United States)

    Stegmayer, Katharina; Usher, Juliana; Trost, Sarah; Henseler, Ilona; Tost, Heike; Rietschel, Marcella; Falkai, Peter; Gruber, Oliver

    2015-06-01

    Patients suffering from bipolar affective disorder show deficits in working memory functions. In a previous functional magnetic resonance imaging study, we observed an abnormal hyperactivity of the amygdala in bipolar patients during articulatory rehearsal in verbal working memory. In the present study, we investigated the dynamic neurofunctional interactions between the right amygdala and the brain systems that underlie verbal working memory in both bipolar patients and healthy controls. In total, 18 euthymic bipolar patients and 18 healthy controls performed a modified version of the Sternberg item-recognition (working memory) task. We used the psychophysiological interaction approach in order to assess functional connectivity between the right amygdala and the brain regions involved in verbal working memory. In healthy subjects, we found significant negative functional interactions between the right amygdala and multiple cortical brain areas involved in verbal working memory. In comparison with the healthy control subjects, bipolar patients exhibited significantly reduced functional interactions of the right amygdala particularly with the right-hemispheric, i.e., ipsilateral, cortical regions supporting verbal working memory. Together with our previous finding of amygdala hyperactivity in bipolar patients during verbal rehearsal, the present results suggest that a disturbed right-hemispheric "cognitive-emotional" interaction between the amygdala and cortical brain regions underlying working memory may be responsible for amygdala hyperactivation and affects verbal working memory (deficits) in bipolar patients.

  14. Hypothesizing Music Intervention Enhances Brain Functional Connectivity Involving Dopaminergic Recruitment: Common Neuro-correlates to Abusable Drugs.

    Science.gov (United States)

    Blum, Kenneth; Simpatico, Thomas; Febo, Marcelo; Rodriquez, Chris; Dushaj, Kristina; Li, Mona; Braverman, Eric R; Demetrovics, Zsolt; Oscar-Berman, Marlene; Badgaiyan, Rajendra D

    2017-07-01

    The goal of this review is to explore the clinical significance of music listening on neuroplasticity and dopaminergic activation by understanding the role of music therapy in addictive behavior treatment. fMRI data has shown that music listening intensely modifies mesolimbic structural changes responsible for reward processing (e.g., nucleus accumbens [NAc]) and may control the emotional stimuli's effect on autonomic and physiological responses (e.g., hypothalamus). Music listening has been proven to induce the endorphinergic response blocked by naloxone, a common opioid antagonist. NAc opioid transmission is linked to the ventral tegmental area (VTA) dopamine release. There are remarkable commonalities between listening to music and the effect of drugs on mesolimbic dopaminergic activation. It has been found that musical training before the age of 7 results in changes in white-matter connectivity, protecting carriers with low dopaminergic function (DRD2A1 allele, etc.) from poor decision-making, reward dependence, and impulsivity. In this article, we briefly review a few studies on the neurochemical effects of music and propose that these findings are relevant to the positive clinical findings observed in the literature. We hypothesize that music intervention enhances brain white matter plasticity through dopaminergic recruitment and that more research is needed to explore the efficacy of these therapies.

  15. [Scimitar syndrome. Correlation anatomo-embryological].

    Science.gov (United States)

    Muñoz-Castellanos, Luis; Kuri-Nivon, Magdalena

    2016-01-01

    To describe morphologically a toracoabdominal visceral block of a scimitar's syndrome case. We propose a pathogenetic theory wich explains the development of the pulmonary venous connection in this syndrome. The anatomic specimen was described with the segmental sequential system. The situs was solitus, the connections between the cardiac segments and the associated anomalies were determined. The anatomy of both lungs, including the venous pulmonary connection, was described. A pathogenetic hypothesis was made, which explains the pulmonary venous connection throw a correlation between the pathology of this syndrome and the normal development of the pulmonary veins. The situs was solitus, the connections of the cardiac chambers were normal; there were hypoplasia and dysplasia of the right lung with sequestration of the inferior lobe; the right pulmonary veins were connected with a curved collector which drainaged into the suprahepatic segment of the inferior vena cava; the left pulmonary veins were open into the left atrium. The sequestered inferior lobe of the right lung received irrigation throw a collateral aortopulmonary vessel. There was an atrial septal defect. The pathogenetic hypothesis propose that the pulmonary venous connection in this syndrome represent the persistent of the Streeter's horizon xiv (28-30 days of development), period in which the sinus of the pulmonary veins has double connection, with the left atrium and with a primitive collector into the right viteline vein which forms the suprahepatic segment of the inferior vena cava. Copyright © 2015 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  16. Relation between fluid intelligence and frontal lobe functioning in older adults.

    Science.gov (United States)

    Isingrini, M; Vazou, F

    1997-01-01

    This study reports the relations among normal aging, intelligence, and frontal lobe functioning. Intelligence tasks and frontal lobe functioning tasks were administered to 107 adults from two age groups (25 to 46 years and 70 to 99 years). Intelligence measures were assessed with two crystallized tests (WAIS Vocabulary and Information subtests), one fluid intelligence test (Cattell's Matrices), and one mixed, crystallized and fluid test (WAIS Similarities subtest). Frontal functioning was assessed using the Wisconsin Card Sorting Test (WCST) and two tests of verbal fluency. Significant age differences in favor of the young were found on the two intelligence tests with a fluid component and on all measures of frontal lobe functioning. Correlational analyses examining the relationship of intelligence measures to frontal variables indicated that these last measures were significantly correlated with only fluid intelligence tests in the elderly group. The implications for the relations among aging, fluid intelligence, and frontal lobe functioning are discussed.

  17. Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction.

    Directory of Open Access Journals (Sweden)

    Wei-na Ding

    Full Text Available Excessive use of the Internet has been linked to a variety of negative psychosocial consequences. This study used resting-state functional magnetic resonance imaging (fMRI to investigate whether functional connectivity is altered in adolescents with Internet gaming addiction (IGA.Seventeen adolescents with IGA and 24 normal control adolescents underwent a 7.3 minute resting-state fMRI scan. Posterior cingulate cortex (PCC connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. To assess the relationship between IGA symptom severity and PCC connectivity, contrast images representing areas correlated with PCC connectivity were correlated with the scores of the 17 subjects with IGA on the Chen Internet Addiction Scale (CIAS and Barratt Impulsiveness Scale-11 (BIS-11 and their hours of Internet use per week.There were no significant differences in the distributions of the age, gender, and years of education between the two groups. The subjects with IGA showed longer Internet use per week (hours (p<0.0001 and higher CIAS (p<0.0001 and BIS-11 (p = 0.01 scores than the controls. Compared with the control group, subjects with IGA exhibited increased functional connectivity in the bilateral cerebellum posterior lobe and middle temporal gyrus. The bilateral inferior parietal lobule and right inferior temporal gyrus exhibited decreased connectivity. Connectivity with the PCC was positively correlated with CIAS scores in the right precuneus, posterior cingulate gyrus, thalamus, caudate, nucleus accumbens, supplementary motor area, and lingual gyrus. It was negatively correlated with the right cerebellum anterior lobe and left superior parietal lobule.Our results suggest that adolescents with IGA exhibit different resting-state patterns of brain activity. As these alterations are partially consistent with those in patients with substance addiction, they support the

  18. Aberrant topological patterns of brain structural network in temporal lobe epilepsy.

    Science.gov (United States)

    Yasuda, Clarissa Lin; Chen, Zhang; Beltramini, Guilherme Coco; Coan, Ana Carolina; Morita, Marcia Elisabete; Kubota, Bruno; Bergo, Felipe; Beaulieu, Christian; Cendes, Fernando; Gross, Donald William

    2015-12-01

    Although altered large-scale brain network organization in patients with temporal lobe epilepsy (TLE) has been shown using morphologic measurements such as cortical thickness, these studies, have not included critical subcortical structures (such as hippocampus and amygdala) and have had relatively small sample sizes. Here, we investigated differences in topological organization of the brain volumetric networks between patients with right TLE (RTLE) and left TLE (LTLE) with unilateral hippocampal atrophy. We performed a cross-sectional analysis of 86 LTLE patients, 70 RTLE patients, and 116 controls. RTLE and LTLE groups were balanced for gender (p = 0.64), seizure frequency (Mann-Whitney U test, p = 0.94), age (p = 0.39), age of seizure onset (p = 0.21), and duration of disease (p = 0.69). Brain networks were constructed by thresholding correlation matrices of volumes from 80 cortical/subcortical regions (parcellated with Freesurfer v5.3 https://surfer.nmr.mgh.harvard.edu/) that were then analyzed using graph theoretical approaches. We identified reduced cortical/subcortical connectivity including bilateral hippocampus in both TLE groups, with the most significant interregional correlation increases occurring within the limbic system in LTLE and contralateral hemisphere in RTLE. Both TLE groups demonstrated less optimal topological organization, with decreased global efficiency and increased local efficiency and clustering coefficient. LTLE also displayed a more pronounced network disruption. Contrary to controls, hub nodes in both TLE groups were not distributed across whole brain, but rather found primarily in the paralimbic/limbic and temporal association cortices. Regions with increased centrality were concentrated in occipital lobes for LTLE and contralateral limbic/temporal areas for RTLE. These findings provide first evidence of altered topological organization of the whole brain volumetric network in TLE, with disruption of the coordinated patterns of

  19. Serum BDNF correlates with connectivity in the (pre)motor hub in the aging human brain--a resting-state fMRI pilot study.

    Science.gov (United States)

    Mueller, Karsten; Arelin, Katrin; Möller, Harald E; Sacher, Julia; Kratzsch, Jürgen; Luck, Tobias; Riedel-Heller, Steffi; Villringer, Arno; Schroeter, Matthias L

    2016-02-01

    Brain-derived neurotrophic factor (BDNF) has been discussed to be involved in plasticity processes in the human brain, in particular during aging. Recently, aging and its (neurodegenerative) diseases have increasingly been conceptualized as disconnection syndromes. Here, connectivity changes in neural networks (the connectome) are suggested to be the most relevant and characteristic features for such processes or diseases. To further elucidate the impact of aging on neural networks, we investigated the interaction between plasticity processes, brain connectivity, and healthy aging by measuring levels of serum BDNF and resting-state fMRI data in 25 young (mean age 24.8 ± 2.7 (SD) years) and 23 old healthy participants (mean age, 68.6 ± 4.1 years). To identify neural hubs most essentially related to serum BDNF, we applied graph theory approaches, namely the new data-driven and parameter-free approach eigenvector centrality (EC) mapping. The analysis revealed a positive correlation between serum BDNF and EC in the premotor and motor cortex in older participants in contrast to young volunteers, where we did not detect any association. This positive relationship between serum BDNF and EC appears to be specific for older adults. Our results might indicate that the amount of physical activity and learning capacities, leading to higher BDNF levels, increases brain connectivity in (pre)motor areas in healthy aging in agreement with rodent animal studies. Pilot results have to be replicated in a larger sample including behavioral data to disentangle the cause for the relationship between BDNF levels and connectivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Brain intrinsic network connectivity in individuals with frequent tanning behavior.

    Science.gov (United States)

    Ketcherside, Ariel; Filbey, Francesca M; Aubert, Pamela M; Seibyl, John P; Price, Julianne L; Adinoff, Bryon

    2018-05-01

    Emergent studies suggest a bidirectional relationship between brain functioning and the skin. This neurocutaneous connection may be responsible for the reward response to tanning and, thus, may contribute to excessive tanning behavior. To date, however, this association has not yet been examined. To explore whether intrinsic brain functional connectivity within the default mode network (DMN) is related to indoor tanning behavior. Resting state functional connectivity (rsFC) was obtained in twenty adults (16 females) with a history of indoor tanning. Using a seed-based [(posterior cingulate cortex (PCC)] approach, the relationship between tanning severity and FC strength was assessed. Tanning severity was measured with symptom count from the Structured Clinical Interview for Tanning Abuse and Dependence (SITAD) and tanning intensity (lifetime indoor tanning episodes/years tanning). rsFC strength between the PCC and other DMN regions (left globus pallidus, left medial frontal gyrus, left superior frontal gyrus) is positively correlated with tanning symptom count. rsFC strength between the PCC and salience network regions (right anterior cingulate cortex, left inferior parietal lobe, left inferior temporal gyrus) is correlated with tanning intensity. Greater connectivity between tanning severity and DMN and salience network connectivity suggests that heightened self-awareness of salient stimuli may be a mechanism that underlies frequent tanning behavior. These findings add to the growing evidence of brain-skin connection and reflect dysregulation in the reward processing networks in those with frequent tanning.

  1. PET imaging in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Semah, F.

    2006-01-01

    The research projects on epilepsy addressed two main issues: the pathophysiology of the inter-ictal hypo-metabolism in temporal lobe epilepsy and the role of the basal ganglia in the control of seizure. Our research projects focused primarily on temporal lobe epilepsy: The pathophysiology of inter-ictal hypo-metabolism and its correlation with the epileptogenic network was investigated in patients with mesial temporal lobe epilepsy. Inter-ictal hypo-metabolism is commonly found in mesio-temporal lobe epilepsy (MTLE) but its pathophysiology remains incompletely understood. We hypothesized that metabolic changes reflect the preferential networks involved in ictal discharges. We analyzed the topography of inter-ictal hypo-metabolism according to electro-clinical patterns in 50 patients with unilateral hippocampal sclerosis (HS) and consistent features of MTLE. Based on electro-clinical correlations we identified 4 groups:1) mesial group characterized by mesial seizure onset without evidence of early spread beyond the temporal lobe; 2) anterior mesio-lateral group (AML) with early anterior spread, involving the anterior lateral temporal cortex and insulo-fronto-opercular areas; 3) widespread mesio-lateral group (WML) with widespread spread, involving both anterior and posterior lateral temporal and peri-sylvian areas; 4) bi-temporal group (BT) with early contralateral temporal spread. Results of FDG-PET imaging in each group were compared to control subjects using statistical parametric mapping software (SPM99). MRI data and surgical outcome in each group were compared to metabolic findings. Hypo-metabolism was limited to the hippocampal gyrus, the temporal pole and the insula in the mesial group. Gradual involvement of the lateral temporal cortex, the insula and the peri-sylvian areas was observed in the AML and WML groups. The BT group differed from the others by mild bi-temporal involvement, bilateral insular hypo-metabolism and longer epilepsy duration. MRI

  2. PET imaging in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Semah, F. [Service Hospitalier Frederic Joliot, DSV-CEA, 91 Orsay (France)

    2006-07-01

    The research projects on epilepsy addressed two main issues: the pathophysiology of the inter-ictal hypo-metabolism in temporal lobe epilepsy and the role of the basal ganglia in the control of seizure. Our research projects focused primarily on temporal lobe epilepsy: The pathophysiology of inter-ictal hypo-metabolism and its correlation with the epileptogenic network was investigated in patients with mesial temporal lobe epilepsy. Inter-ictal hypo-metabolism is commonly found in mesio-temporal lobe epilepsy (MTLE) but its pathophysiology remains incompletely understood. We hypothesized that metabolic changes reflect the preferential networks involved in ictal discharges. We analyzed the topography of inter-ictal hypo-metabolism according to electro-clinical patterns in 50 patients with unilateral hippocampal sclerosis (HS) and consistent features of MTLE. Based on electro-clinical correlations we identified 4 groups:1) mesial group characterized by mesial seizure onset without evidence of early spread beyond the temporal lobe; 2) anterior mesio-lateral group (AML) with early anterior spread, involving the anterior lateral temporal cortex and insulo-fronto-opercular areas; 3) widespread mesio-lateral group (WML) with widespread spread, involving both anterior and posterior lateral temporal and peri-sylvian areas; 4) bi-temporal group (BT) with early contralateral temporal spread. Results of FDG-PET imaging in each group were compared to control subjects using statistical parametric mapping software (SPM99). MRI data and surgical outcome in each group were compared to metabolic findings. Hypo-metabolism was limited to the hippocampal gyrus, the temporal pole and the insula in the mesial group. Gradual involvement of the lateral temporal cortex, the insula and the peri-sylvian areas was observed in the AML and WML groups. The BT group differed from the others by mild bi-temporal involvement, bilateral insular hypo-metabolism and longer epilepsy duration. MRI

  3. Occipital lobe epilepsy with fear as leading ictal symptom.

    Science.gov (United States)

    Oehl, Bernhard; Schulze-Bonhage, Andreas; Lanz, Michael; Brandt, Armin; Altenmüller, Dirk-Matthias

    2012-03-01

    Ictal fear is a semiological feature which is commonly associated with mesial temporal lobe epilepsy. Here, we describe fear as a leading symptom in cryptogenic occipital lobe epilepsy. In a patient with negative MRI findings, intracranial EEG recordings documented a strict correlation between habitual ictal anxiety attacks and both spontaneous and stimulation-induced epileptic activity in a right occipital epileptogenic area with subsequent spreading to the symptomatogenic zone in the amygdala. Circumscribed occipital topectomy led to seizure freedom. Episodes of non-epileptic fear ceased shortly afterwards. This report provides insight into pathways of propagation of epileptic activity, illustrates different etiologies of pathologic fear and underlines the importance of ictal EEG recordings. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Disrupted functional connectivity of the anterior cingulate cortex in cirrhotic patients without overt hepatic encephalopathy: a resting state fMRI study.

    Directory of Open Access Journals (Sweden)

    Long Jiang Zhang

    Full Text Available BACKGROUND: To evaluate the changes of functional connectivity of the anterior cingulate cortex (ACC in patients with cirrhosis without overt hepatic encephalopathy (HE using resting state functional MRI. METHODOLOGY/PRINCIPAL FINDINGS: Participants included 67 cirrhotic patients (27 minimal hepatic encephalopathy (MHE and 40 cirrhotic patients without MHE (non-HE, and 40 age- and gender- matched healthy controls. rsfMRI were performed on 3 Telsa scanners. The pregenual ACC resting-state networks (RSNs were characterized by using a standard seed-based whole-brain correlation method and compared between cirrhotic patients and healthy controls. Pearson correlation analysis was performed between the ACC RSNs and venous blood ammonia levels, neuropsychological tests (number connection test type A [NCT-A] and digit symbol test [DST] scores in cirrhotic patients. All thresholds were set at P<0.05, with false discovery rate corrected. Compared with controls, non-HE and MHE patients showed significantly decreased functional connectivity in the bilateral ACC, bilateral middle frontal cortex (MFC, bilateral middle cingulate cortex (MCC, bilateral superior temporal gyri (STG/middle temporal gyri (MTG, bilateral thalami, bilateral putamen and bilateral insula, and increased functional connectivity of bilateral precuneus and left temporo-occipital lobe and bilateral lingual gyri. Compared with non-HE patients, MHE showed the decreased functional connectivity of right MCC, bilateral STG/MTG and right putamen. This indicates decreased ACC functional connectivity predominated with the increasing severity of HE. NCT-A scores negatively correlated with ACC functional connectivity in the bilateral MCC, right temporal lobe, and DST scores positively correlated with functional connectivity in the bilateral ACC and the right putamen. No correlation was found between venous blood ammonia levels and functional connectivity in ACC in cirrhotic patients. CONCLUSIONS

  5. Increased and correlated expression of connective tissue growth factor and transforming growth factor beta 1 in surgically removed periodontal tissues with chronic periodontitis.

    Science.gov (United States)

    Mize, T W; Sundararaj, K P; Leite, R S; Huang, Y

    2015-06-01

    Both gingival tissue destruction and regeneration are associated with chronic periodontitis, although the former overwhelms the latter. Studies have shown that transforming growth factor beta 1 (TGF-β1), a growth factor largely involved in tissue regeneration and remodeling, is upregulated in chronic periodontitis. However, the gingival expression of connective tissue growth factor (CTGF or CCN2), a TGF-β1-upregulated gene, in patients with periodontitis remains undetermined. Although both CTGF/CCN2 and TGF-b1 increase the production of extracellular matrix, they have many different biological functions. Therefore, it is important to delineate the impact of periodontitis on gingival CTGF/CCN2 expression. Periodontal tissue specimens were collected from seven individuals without periodontitis (group 1) and from 14 with periodontitis (group 2). The expression of CTGF and TGFβ1 mRNAs were quantified using real-time PCR. Analysis using the nonparametric Mann-Whitney U-test showed that the levels of expression of both CTGF/CCN2 and TGFβ1 mRNAs were significantly increased in individuals with periodontitis compared with individuals without periodontitis. Furthermore, analysis using a nonparametric correlation (Spearman r) test showed a positive correlation between TGFβ1 and CTGF/CCN2 mRNAs. The gingival expression levels of CTGF/CCN2 and TGFβ1 mRNAs in individuals with periodontitis are upregulated and correlated. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. The frontal lobes and inhibitory function

    International Nuclear Information System (INIS)

    Konishi, Seiki

    2011-01-01

    Neuropsychological studies using traditional tasks of inhibitory functions, such as the Wisconsin card sorting test (WCST) and the Go/No-Go Task have revealed that the frontal lobe is responsible for several types of inhibitory functions. However, the detailed psychological nature of the inhibitory functions and the precise location of their critical foci within the frontal lobe remain to be investigated. Functional magnetic resonance imaging provides spatial and temporal resolution that allowed us to illuminate at least 4 frontal regions involved in inhibitory functions: the dorsolateral, ventrolateral, and rostral parts of the frontal lobe and the presupplementary motor area (preSMA). The ventrolateral part of the frontal lobe in the right hemisphere was activated during response inhibition. The preSMA in the left hemisphere was activated during inhibition of proactive interference immediately after the dimension changes of the WCST. The rostral part of the frontal lobe in the left hemisphere was activated during inhibition long after the dimension changes. The dorsolateral part of the frontal lobe in the left hemisphere was activated at the dimension changes in the first time, but not in the second time. These findings provide clues to our understanding of functional differentiation of inhibitory functions and their localization in the frontal lobe. (author)

  7. Ventral medial prefrontal functional connectivity and emotion regulation in chronic schizophrenia: A pilot study

    Institute of Scientific and Technical Information of China (English)

    Feng-Mei Fan; Shu-Ping Tan; Fu-De Yang; Yun-Long Tan; Yan-Li Zhao; Nan Chen; Bin-Bin Li

    2013-01-01

    People with schizophrenia exhibit impaired social cognitive functions,particularly emotion regulation.Abnormal activations of the ventral medial prefrontal cortex (vMPFC) during emotional tasks have been demonstrated in schizophrenia,suggesting its important role in emotion processing in patients.We used the resting-state functional connectivity approach,setting a functionally relevant region,the vMPFC,as a seed region to examine the intrinsic functional interactions and communication between the vMPFC and other brain regions in schizophrenic patients.We found hypo-connectivity between the vMPFC and the medial frontal cortex,right middle temporal lobe (MTL),right hippocampus,parahippocampal cortex (PHC) and amygdala.Further,there was a decreased strength of the negative connectivity (or anticorrelation) between the vMPFC and the bilateral dorsal lateral prefrontal cortex (DLPFC) and pre-supplementary motor areas.Among these connectivity alterations,reduced vMPFCDLPFC connectivity was positively correlated with positive symptoms on the Positive and Negative Syndrome Scale,while vMPFC-right MTL/PHC/amygdala functional connectivity was positively correlated with the performance of emotional regulation in patients.These findings imply that communication and coordination throughout the brain networks are disrupted in schizophrenia.The emotional correlates of vMPFC connectivity suggest a role of the hypo-connectivity between these regions in the neuropathology of abnormal social cognition in chronic schizophrenia.

  8. Episodic reinstatement in the medial temporal lobe.

    Science.gov (United States)

    Staresina, Bernhard P; Henson, Richard N A; Kriegeskorte, Nikolaus; Alink, Arjen

    2012-12-12

    The essence of episodic memory is our ability to reexperience past events in great detail, even in the absence of external stimulus cues. Does the phenomenological reinstatement of past experiences go along with reinstating unique neural representations in the brain? And if so, how is this accomplished by the medial temporal lobe (MTL), a brain region intimately linked to episodic memory? Computational models suggest that such reinstatement (also termed "pattern completion") in cortical regions is mediated by the hippocampus, a key region of the MTL. Although recent functional magnetic resonance imaging studies demonstrated reinstatement of coarse item properties like stimulus category or task context across different brain regions, it has not yet been shown whether reinstatement can be observed at the level of individual, discrete events-arguably the defining feature of episodic memory-nor whether MTL structures like the hippocampus support this "true episodic" reinstatement. Here we show that neural activity patterns for unique word-scene combinations encountered during encoding are reinstated in human parahippocampal cortex (PhC) during retrieval. Critically, this reinstatement occurs when word-scene combinations are successfully recollected (even though the original scene is not visually presented) and does not encompass other stimulus domains (such as word-color associations). Finally, the degree of PhC reinstatement across retrieval events correlated with hippocampal activity, consistent with a role of the hippocampus in coordinating pattern completion in cortical regions.

  9. Emphysema lung lobe volume reduction: effects on the ipsilateral and contralateral lobes

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Matthew S.; Kim, Hyun J.; Abtin, Fereidoun G.; Galperin-Aizenberg, Maya; Pais, Richard; Da Costa, Irene G.; Ordookhani, Arash; Chong, Daniel; Ni, Chiayi; McNitt-Gray, Michael F.; Goldin, Jonathan G. [David Geffen School of Medicine at UCLA, Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, Los Angeles, CA (United States); Strange, Charlie [Medical University of South Carolina, Department of Pulmonary and Critical Care Medicine, Columbia, SC (United States); Tashkin, Donald P. [David Geffen School of Medicine at UCLA, Division of Pulmonary and Critical Care Medicine, Los Angeles, CA (United States)

    2012-07-15

    To investigate volumetric and density changes in the ipsilateral and contralateral lobes following volume reduction of an emphysematous target lobe. The study included 289 subjects with heterogeneous emphysema, who underwent bronchoscopic volume reduction of the most diseased lobe with endobronchial valves and 132 untreated controls. Lobar volume and low-attenuation relative area (RA) changes post-procedure were measured from computed tomography images. Regression analysis (Spearman's rho) was performed to test the association between change in the target lobe volume and changes in volume and density variables in the other lobes. The target lobe volume at full inspiration in the treatment group had a mean reduction of -0.45 L (SE = 0.034, P < 0.0001), and was associated with volume increases in the ipsilateral lobe (rho = -0.68, P < 0.0001) and contralateral lung (rho = -0.16, P = 0.006), and overall reductions in expiratory RA (rho = 0.31, P < 0.0001) and residual volume (RV)/total lung capacity (TLC) (rho = 0.13, P = 0.03). When the volume of an emphysematous target lobe is reduced, the volume is redistributed primarily to the ipsilateral lobe, with an overall reduction. Image-based changes in lobar volumes and densities indicate that target lobe volume reduction is associated with statistically significant overall reductions in air trapping, consistent with expansion of the healthier lung. (orig.)

  10. Emphysema lung lobe volume reduction: effects on the ipsilateral and contralateral lobes

    International Nuclear Information System (INIS)

    Brown, Matthew S.; Kim, Hyun J.; Abtin, Fereidoun G.; Galperin-Aizenberg, Maya; Pais, Richard; Da Costa, Irene G.; Ordookhani, Arash; Chong, Daniel; Ni, Chiayi; McNitt-Gray, Michael F.; Goldin, Jonathan G.; Strange, Charlie; Tashkin, Donald P.

    2012-01-01

    To investigate volumetric and density changes in the ipsilateral and contralateral lobes following volume reduction of an emphysematous target lobe. The study included 289 subjects with heterogeneous emphysema, who underwent bronchoscopic volume reduction of the most diseased lobe with endobronchial valves and 132 untreated controls. Lobar volume and low-attenuation relative area (RA) changes post-procedure were measured from computed tomography images. Regression analysis (Spearman's rho) was performed to test the association between change in the target lobe volume and changes in volume and density variables in the other lobes. The target lobe volume at full inspiration in the treatment group had a mean reduction of -0.45 L (SE = 0.034, P < 0.0001), and was associated with volume increases in the ipsilateral lobe (rho = -0.68, P < 0.0001) and contralateral lung (rho = -0.16, P = 0.006), and overall reductions in expiratory RA (rho = 0.31, P < 0.0001) and residual volume (RV)/total lung capacity (TLC) (rho = 0.13, P = 0.03). When the volume of an emphysematous target lobe is reduced, the volume is redistributed primarily to the ipsilateral lobe, with an overall reduction. Image-based changes in lobar volumes and densities indicate that target lobe volume reduction is associated with statistically significant overall reductions in air trapping, consistent with expansion of the healthier lung. (orig.)

  11. Correlated Disruption of Resting-State fMRI, LFP, and Spike Connectivity between Area 3b and S2 following Spinal Cord Injury in Monkeys.

    Science.gov (United States)

    Wu, Ruiqi; Yang, Pai-Feng; Chen, Li Min

    2017-11-15

    This study aims to understand how functional connectivity (FC) between areas 3b and S2 alters following input deprivation and the neuronal basis of disrupted FC of resting-state fMRI signals. We combined submillimeter fMRI with microelectrode recordings to localize the deafferented digit regions in areas 3b and S2 by mapping tactile stimulus-evoked fMRI activations before and after cervical dorsal column lesion in each male monkey. An average afferent disruption of 97% significantly reduced fMRI, local field potential (LFP), and spike responses to stimuli in both areas. Analysis of resting-state fMRI signal correlation, LFP coherence, and spike cross-correlation revealed significantly reduced functional connectivity between deafferented areas 3b and S2. The degrees of reductions in stimulus responsiveness and FC after deafferentation differed across fMRI, LFP, and spiking signals. The reduction of FC was much weaker than that of stimulus-evoked responses. Whereas the largest stimulus-evoked signal drop (∼80%) was observed in LFP signals, the greatest FC reduction was detected in the spiking activity (∼30%). fMRI signals showed mild reductions in stimulus responsiveness (∼25%) and FC (∼20%). The overall deafferentation-induced changes were quite similar in areas 3b and S2 across signals. Here we demonstrated that FC strength between areas 3b and S2 was much weakened by dorsal column lesion, and stimulus response reduction and FC disruption in fMRI covary with those of LFP and spiking signals in deafferented areas 3b and S2. These findings have important implications for fMRI studies aiming to probe FC alterations in pathological conditions involving deafferentation in humans. SIGNIFICANCE STATEMENT By directly comparing fMRI, local field potential, and spike signals in both tactile stimulation and resting states before and after severe disruption of dorsal column afferent, we demonstrated that reduction in fMRI responses to stimuli is accompanied by weakened

  12. Imaging structural and functional brain networks in temporal lobe epilepsy

    Science.gov (United States)

    Bernhardt, Boris C.; Hong, SeokJun; Bernasconi, Andrea; Bernasconi, Neda

    2013-01-01

    Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy. PMID:24098281

  13. Imaging structural and functional brain networks in temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Boris eBernhardt

    2013-10-01

    Full Text Available Early imaging studies in temporal lobe epilepsy (TLE focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy.

  14. Imaging structural and functional brain networks in temporal lobe epilepsy.

    Science.gov (United States)

    Bernhardt, Boris C; Hong, Seokjun; Bernasconi, Andrea; Bernasconi, Neda

    2013-10-01

    Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy.

  15. Functional substrate for memory function differences between patients with left and right mesial temporal lobe epilepsy associated with hippocampal sclerosis.

    Science.gov (United States)

    Jin, Seung-Hyun; Chung, Chun Kee

    2015-10-01

    Little is known about the functional substrate for memory function differences in patients with left or right mesial temporal lobe epilepsy (mTLE) associated with hippocampal sclerosis (HS) from an electrophysiological perspective. To characterize these differences, we hypothesized that hippocampal theta connectivity in the resting-state might be different between patients with left and right mTLE with HS and be correlated with memory performance. Resting-state hippocampal theta connectivity, identified via whole-brain magnetoencephalography, was evaluated. Connectivity and memory function in 41 patients with mTLE with HS (left mTLE=22; right mTLE=19) were compared with those in 46 age-matched healthy controls and 28 patients with focal cortical dysplasia (FCD) but without HS. Connectivity between the right hippocampus and the left middle frontal gyrus was significantly stronger in patients with right mTLE than in patients with left mTLE. Moreover, this connectivity was positively correlated with delayed verbal recall and recognition scores in patients with mTLE. Patients with left mTLE had greater delayed recall impairment than patients with right mTLE and FCD. Similarly, delayed recognition performance was worse in patients with left mTLE than in patients with right mTLE and FCD. No significant differences in memory function between patients with right mTLE and FCD were detected. Patients with right mTLE showed significantly stronger hippocampal theta connectivity between the right hippocampus and left middle frontal gyrus than patients with FCD and left mTLE. Our results suggest that right hippocampal-left middle frontal theta connectivity could be a functional substrate that can account for differences in memory function between patients with left and right mTLE. This functional substrate might be related to different compensatory mechanisms against the structural hippocampal lesions in left and right mTLE groups. Given the positive correlation between

  16. Epileptiform transients of the occipital lobe in pediatrics.

    Science.gov (United States)

    Campbell, Stefan

    2013-09-01

    Differentiating between benign occipital transients and epileptic discharges from the occipital lobes is imperative. Focal occipital spikes and sharp waves are not always associated with benign disorders. The occurrence of occipital spikes and spike and wave complexes depends on the child's age, the maturation of the occipital cortex, and the cortex's connection with other structures (Beaumanoir et al. 1993). Clinical manifestations also evolve as the patient ages. Seizure semiology is due to the maturation of the visual system and its connections. An infant from birth to twelve months of age could experience autonomic symptoms such as pallor and vomiting with possible minor motor movements. Visual symptoms and/or headaches are usually not noticed until between five and seven years of age. These visual phenomena can continue into adulthood.

  17. Alterations of the occipital lobe in schizophrenia.

    Science.gov (United States)

    Tohid, Hassaan; Faizan, Muhammad; Faizan, Uzma

    2015-07-01

    The relationship of the occipital lobe of the brain with schizophrenia is not commonly studied; however, this topic is considered an essential subject matter among clinicians and scientists. We conducted this systematic review to elaborate the relationship in depth. We found that most schizophrenic patients show normal occipital anatomy and physiology, a minority showed dwindled values, and some demonstrated augmented function and structure. The findings are laborious to incorporate within single disease models that present the involvement of the occipital lobe in schizophrenia. Schizophrenia progresses clinically in the mid-twenties and thirties and its prognosis is inadequate. Changes in the volume, the gray matter, and the white matter in the occipital lobe are quite evident; however, the mechanism behind this involvement is not yet fully understood. Therefore, we recommend further research to explore the occipital lobe functions and volumes across the different stages of schizophrenia.

  18. Pressure balance between lobe and plasma sheet

    International Nuclear Information System (INIS)

    Baumjohann, W.; Paschmann, G.; Luehr, H.

    1990-01-01

    Using eight months of AMPTE/IRM plasma and magnetic field data, the authors have done a statistical survey on the balance of total (thermal and magnetic) pressure in the Earth's plasma sheet and tail lobe. About 300,000 measurements obtained in the plasma sheet and the lobe were compared for different levels of magnetic activity as well as different distances from the Earth. The data show that lobe and plasma sheet pressure balance very well. Even in the worst case they do not deviate by more than half of the variance in the data itself. Approximately constant total pressure was also seen during a quiet time pass when IRM traversed nearly the whole magnetotail in the vertical direction, from the southern hemisphere lobe through the neutral sheet and into the northern plasma sheet boundary layer

  19. Microsurgical techniques in temporal lobe epilepsy.

    Science.gov (United States)

    Alonso Vanegas, Mario A; Lew, Sean M; Morino, Michiharu; Sarmento, Stenio A

    2017-04-01

    Temporal lobe resection is the most prevalent epilepsy surgery procedure. However, there is no consensus on the best surgical approach to treat temporal lobe epilepsy. Complication rates are low and efficacy is very high regarding seizures after such procedures. However, there is still ample controversy regarding the best surgical approach to warrant maximum seizure control with minimal functional deficits. We describe the most frequently used microsurgical techniques for removal of both the lateral and mesial temporal lobe structures in the treatment of medically intractable temporal lobe epilepsy (TLE) due to mesial temporal sclerosis (corticoamygdalohippocampectomy and selective amygdalohippocampectomy). The choice of surgical technique appears to remain a surgeon's preference for the near future. Meticulous surgical technique and thorough three-dimensional microsurgical knowledge are essentials for obtaining the best results. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  20. Deployment Instabilities of Lobed-Pumpkin Balloon

    Science.gov (United States)

    Nakashino, Kyoichi

    A lobed-pumpkin balloon, currently being developed in ISAS/JAXA as well as in NASA, is a promising vehicle for long duration scientific observations in the stratosphere. Recent ground and flight experiments, however, have revealed that the balloon has deployment instabilities under certain conditions. In order to overcome the instability problems, a next generation SPB called 'tawara' type balloon has been proposed, in which an additional cylindrical part is appended to the standard lobed-pumpkin balloon. The present study investigates the deployment stability of tawara type SPB in comparison to that of standard lobed-pumpkin SPB through eigenvalue analysis on the basis of finite element methods. Our numerical results show that tawara type SPB enjoys excellent deployment performance over the standard lobed-pumpkin SPBs.

  1. Alterations of the occipital lobe in schizophrenia

    Science.gov (United States)

    Tohid, Hassaan; Faizan, Muhammad; Faizan, Uzma

    2015-01-01

    The relationship of the occipital lobe of the brain with schizophrenia is not commonly studied; however, this topic is considered an essential subject matter among clinicians and scientists. We conducted this systematic review to elaborate the relationship in depth. We found that most schizophrenic patients show normal occipital anatomy and physiology, a minority showed dwindled values, and some demonstrated augmented function and structure. The findings are laborious to incorporate within single disease models that present the involvement of the occipital lobe in schizophrenia. Schizophrenia progresses clinically in the mid-twenties and thirties and its prognosis is inadequate. Changes in the volume, the gray matter, and the white matter in the occipital lobe are quite evident; however, the mechanism behind this involvement is not yet fully understood. Therefore, we recommend further research to explore the occipital lobe functions and volumes across the different stages of schizophrenia. PMID:26166588

  2. MRI lesion and epileptogenic focus in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Matsuda, Kazumi; Yagi, Kazuichi; Mihara, Tadahiro; Tottori, Takayasu; Watanabe, Yutaka; Seino, Masakazu

    1989-01-01

    The spatial relationship between a circumscribed lesion in the temporal lobe detected by MRI and an epileptogenic focus identified by ictal depth EEG along with a correlation of the MRI lesion with neuropathological findings were investigated in patients with medically intractable temporal lobe epilepsy but without any focal lesion on CT. Four parameters (an areal ratio of the temporal lobe against the hemisphere, area and calculated T1, T2 values of the hippocampus) were used to determine the abnormal MRI side. An agreement was reached in 67-72% of 18 patients between the abnormal values of the hippocampal area and of calculated T1, T2 and the side of the epileptogenic focus. In 14 of 17 patients, typical hippocampal sclerosis was demonstrated in resected tissue in accordance with the MRI lesions (atrophy and/or prolonged T2 of hippocampus). These results imply: 1)MRI abnormality thus defined may, if not all, indicate the side of the epileptogenic focus, and 2)also the presence of hippocampal sclerosis. It was emphasized that the MRI lesion would be a usable instrument to explore the causal relationship of hippocampal sclerosis to a generation of epileptogenic lesions as well as for presurgical evalution. (author)

  3. Impairments in proverb interpretation following focal frontal lobe lesions☆

    Science.gov (United States)

    Murphy, Patrick; Shallice, Tim; Robinson, Gail; MacPherson, Sarah E.; Turner, Martha; Woollett, Katherine; Bozzali, Marco; Cipolotti, Lisa

    2013-01-01

    The proverb interpretation task (PIT) is often used in clinical settings to evaluate frontal “executive” dysfunction. However, only a relatively small number of studies have investigated the relationship between frontal lobe lesions and performance on the PIT. We compared 52 patients with unselected focal frontal lobe lesions with 52 closely matched healthy controls on a proverb interpretation task. Participants also completed a battery of neuropsychological tests, including a fluid intelligence task (Raven’s Advanced Progressive Matrices). Lesions were firstly analysed according to a standard left/right sub-division. Secondly, a finer-grained analysis compared the performance of patients with medial, left lateral and right lateral lesions with healthy controls. Thirdly, a contrast of specific frontal subgroups compared the performance of patients with medial lesions with patients with lateral frontal lesions. The results showed that patients with left frontal lesions were significantly impaired on the PIT, while in patients with right frontal lesions the impairments approached significance. Medial frontal patients were the only frontal subgroup impaired on the PIT, relative to healthy controls and lateral frontal patients. Interestingly, an error analysis indicated that a significantly higher number of concrete responses were found in the left lateral subgroup compared to healthy controls. We found no correlation between scores on the PIT and on the fluid intelligence task. Overall our results suggest that specific regions of the frontal lobes contribute to the performance on the PIT. PMID:23850600

  4. Impairments in proverb interpretation following focal frontal lobe lesions.

    Science.gov (United States)

    Murphy, Patrick; Shallice, Tim; Robinson, Gail; MacPherson, Sarah E; Turner, Martha; Woollett, Katherine; Bozzali, Marco; Cipolotti, Lisa

    2013-09-01

    The proverb interpretation task (PIT) is often used in clinical settings to evaluate frontal "executive" dysfunction. However, only a relatively small number of studies have investigated the relationship between frontal lobe lesions and performance on the PIT. We compared 52 patients with unselected focal frontal lobe lesions with 52 closely matched healthy controls on a proverb interpretation task. Participants also completed a battery of neuropsychological tests, including a fluid intelligence task (Raven's Advanced Progressive Matrices). Lesions were firstly analysed according to a standard left/right sub-division. Secondly, a finer-grained analysis compared the performance of patients with medial, left lateral and right lateral lesions with healthy controls. Thirdly, a contrast of specific frontal subgroups compared the performance of patients with medial lesions with patients with lateral frontal lesions. The results showed that patients with left frontal lesions were significantly impaired on the PIT, while in patients with right frontal lesions the impairments approached significance. Medial frontal patients were the only frontal subgroup impaired on the PIT, relative to healthy controls and lateral frontal patients. Interestingly, an error analysis indicated that a significantly higher number of concrete responses were found in the left lateral subgroup compared to healthy controls. We found no correlation between scores on the PIT and on the fluid intelligence task. Overall our results suggest that specific regions of the frontal lobes contribute to the performance on the PIT. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

  5. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem.

    Science.gov (United States)

    Bleiziffer, Patrick; Schmidtel, Daniel; Görling, Andreas

    2014-11-28

    The occurrence of instabilities, in particular singlet-triplet and singlet-singlet instabilities, in the exact-exchange (EXX) Kohn-Sham method is investigated. Hessian matrices of the EXX electronic energy with respect to the expansion coefficients of the EXX effective Kohn-Sham potential in an auxiliary basis set are derived. The eigenvalues of these Hessian matrices determine whether or not instabilities are present. Similar as in the corresponding Hartree-Fock case instabilities in the EXX method are related to symmetry breaking of the Hamiltonian operator for the EXX orbitals. In the EXX methods symmetry breaking can easily be visualized by displaying the local multiplicative exchange potential. Examples (N2, O2, and the polyyne C10H2) for instabilities and symmetry breaking are discussed. The relation of the stability conditions for EXX methods to approaches calculating the Kohn-Sham correlation energy via the adiabatic-connection fluctuation-dissipation (ACFD) theorem is discussed. The existence or nonexistence of singlet-singlet instabilities in an EXX calculation is shown to indicate whether or not the frequency-integration in the evaluation of the correlation energy is singular in the EXX-ACFD method. This method calculates the Kohn-Sham correlation energy through the ACFD theorem theorem employing besides the Coulomb kernel also the full frequency-dependent exchange kernel and yields highly accurate electronic energies. For the case of singular frequency-integrands in the EXX-ACFD method a regularization is suggested. Finally, we present examples of molecular systems for which the self-consistent field procedure of the EXX as well as the Hartree-Fock method can converge to more than one local minimum depending on the initial conditions.

  6. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem

    International Nuclear Information System (INIS)

    Bleiziffer, Patrick; Schmidtel, Daniel; Görling, Andreas

    2014-01-01

    The occurrence of instabilities, in particular singlet-triplet and singlet-singlet instabilities, in the exact-exchange (EXX) Kohn-Sham method is investigated. Hessian matrices of the EXX electronic energy with respect to the expansion coefficients of the EXX effective Kohn-Sham potential in an auxiliary basis set are derived. The eigenvalues of these Hessian matrices determine whether or not instabilities are present. Similar as in the corresponding Hartree-Fock case instabilities in the EXX method are related to symmetry breaking of the Hamiltonian operator for the EXX orbitals. In the EXX methods symmetry breaking can easily be visualized by displaying the local multiplicative exchange potential. Examples (N 2 , O 2 , and the polyyne C 10 H 2 ) for instabilities and symmetry breaking are discussed. The relation of the stability conditions for EXX methods to approaches calculating the Kohn-Sham correlation energy via the adiabatic-connection fluctuation-dissipation (ACFD) theorem is discussed. The existence or nonexistence of singlet-singlet instabilities in an EXX calculation is shown to indicate whether or not the frequency-integration in the evaluation of the correlation energy is singular in the EXX-ACFD method. This method calculates the Kohn-Sham correlation energy through the ACFD theorem theorem employing besides the Coulomb kernel also the full frequency-dependent exchange kernel and yields highly accurate electronic energies. For the case of singular frequency-integrands in the EXX-ACFD method a regularization is suggested. Finally, we present examples of molecular systems for which the self-consistent field procedure of the EXX as well as the Hartree-Fock method can converge to more than one local minimum depending on the initial conditions

  7. Default network connectivity as a vulnerability marker for obsessive compulsive disorder.

    Science.gov (United States)

    Peng, Z W; Xu, T; He, Q H; Shi, C Z; Wei, Z; Miao, G D; Jing, J; Lim, K O; Zuo, X N; Chan, R C K

    2014-05-01

    Aberrant functional connectivity within the default network is generally assumed to be involved in the pathophysiology of obsessive compulsive disorder (OCD); however, the genetic risk of default network connectivity in OCD remains largely unknown. Here, we systematically investigated default network connectivity in 15 OCD patients, 15 paired unaffected siblings and 28 healthy controls. We sought to examine the profiles of default network connectivity in OCD patients and their siblings, exploring the correlation between abnormal default network connectivity and genetic risk for this population. Compared with healthy controls, OCD patients exhibited reduced strength of default network functional connectivity with the posterior cingulate cortex (PCC), and increased functional connectivity in the right inferior frontal lobe, insula, superior parietal cortex and superior temporal cortex, while their unaffected first-degree siblings only showed reduced local connectivity in the PCC. These findings suggest that the disruptions of default network functional connectivity might be associated with family history of OCD. The decreased default network connectivity in both OCD patients and their unaffected siblings may serve as a potential marker of OCD.

  8. Aberrant resting-state corticostriatal functional connectivity in cirrhotic patients with hyperintense globus pallidus on T1-weighted MR imaging.

    Directory of Open Access Journals (Sweden)

    Xi-Qi Zhu

    Full Text Available Neurobiological and neuroimaging studies have emphasized the structural and functional alterations in the striatum of cirrhotic patients, but alterations in the functional connections between the striatum and other brain regions have not yet been explored. Of note, manganese accumulation in the nervous system, frequently reflected by hyperintensity at the bilateral globus pallidus (GP on T1-weighted imaging, has been considered a factor affecting the striatal and cortical functions in hepatic decompensation. We employed resting-state functional magnetic resonance imaging to analyze the temporal correlation between the striatum and the remaining brain regions using seed-based correlation analyses. The two-sample t-test was conducted to detect the differences in corticostriatal connectivity between 44 cirrhotic patients with hyperintensity at the bilateral GP and 20 healthy controls. Decreased connectivity of the caudate was detected in the anterior/middle cingulate gyrus, and increased connectivity of the caudate was found in the left motor cortex. A reduction in functional connectivity was found between the putamen and several regions, including the anterior cingulate gyrus, right insular lobe, inferior frontal gyrus, left parahippocampal gyrus, and anterior lobe of the right cerebellum; increased connectivity was detected between the putamen and right middle temporal gyrus. There were significant correlations between the corticostriatal connectivity and neuropsychological performances in the patient group, but not between the striatal connectivity and GP signal intensity. These alterations in the corticostriatal functional connectivity suggested the abnormalities in the intrinsic brain functional organiztion among the cirrhotic patients with manganese deposition, and may be associated with development of metabolic encephalopathy. The manganese deposition in nervous system, however, can not be an independent factor predicting the resting

  9. Disrupted thalamic resting-state functional connectivity in patients with minimal hepatic encephalopathy

    International Nuclear Information System (INIS)

    Qi, Rongfeng; Zhang, Long Jiang; Zhong, Jianhui; Zhang, Zhiqiang; Ni, Ling; Zheng, Gang; Lu, Guang Ming

    2013-01-01

    Background and purpose: Little is known about the role of thalamus in the pathophysiology of minimal hepatic encephalopathy (MHE). The purpose of this study was to investigate whether the thalamic functional connectivity was disrupted in cirrhotic patients with MHE by using resting-state functional magnetic resonance imaging (rs-fMRI). Materials and Methods: Twenty seven MHE patients and twenty seven age- and gender- matched healthy controls participated in the rs-fMRI scans. The functional connectivity of 11 thalamic nuclei were characterized by using a standard seed-based whole-brain correlation method and compared between MHE patients and healthy controls. Pearson correlation analysis was performed between the thalamic functional connectivity and venous blood ammonia levels/neuropsychological tests scores of patients. Results: The ventral anterior nucleus (VAN) and the ventral posterior medial nucleus (VPMN) in each side of thalamus showed abnormal functional connectivities in MHE. Compared with healthy controls, MHE patients demonstrated significant decreased functional connectivity between the right/left VAN and the bilateral putamen/pallidum, inferior frontal gyri, insula, supplementary motor area, right middle frontal gyrus, medial frontal gyrus. In addition, MHE patients showed significantly decreased functional connectivity with the right/left VPMN in the bilateral middle temporal gyri (MTG), temporal lobe, and right superior temporal gyrus. The venous blood ammonia levels of MHE patients negatively correlated with the functional connectivity between the VAN and the insula. Number connecting test scores showed negative correlation with the functional connectivity between the VAN and the insula, and between the VPMN and the MTG. Conclusion: MHE patients had disrupted thalamic functional connectivity, which mainly located in the bilateral ventral anterior nuclei and ventral posterior medial nuclei. The decreased connectivity between thalamus and many

  10. Disrupted thalamic resting-state functional connectivity in patients with minimal hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Rongfeng [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhang, Long Jiang, E-mail: kevinzhanglongjiang@yahoo.com.cn [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhong, Jianhui [Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang, Zhiqiang; Ni, Ling; Zheng, Gang [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Lu, Guang Ming, E-mail: cjr.luguangming@vip.163.com [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China)

    2013-05-15

    Background and purpose: Little is known about the role of thalamus in the pathophysiology of minimal hepatic encephalopathy (MHE). The purpose of this study was to investigate whether the thalamic functional connectivity was disrupted in cirrhotic patients with MHE by using resting-state functional magnetic resonance imaging (rs-fMRI). Materials and Methods: Twenty seven MHE patients and twenty seven age- and gender- matched healthy controls participated in the rs-fMRI scans. The functional connectivity of 11 thalamic nuclei were characterized by using a standard seed-based whole-brain correlation method and compared between MHE patients and healthy controls. Pearson correlation analysis was performed between the thalamic functional connectivity and venous blood ammonia levels/neuropsychological tests scores of patients. Results: The ventral anterior nucleus (VAN) and the ventral posterior medial nucleus (VPMN) in each side of thalamus showed abnormal functional connectivities in MHE. Compared with healthy controls, MHE patients demonstrated significant decreased functional connectivity between the right/left VAN and the bilateral putamen/pallidum, inferior frontal gyri, insula, supplementary motor area, right middle frontal gyrus, medial frontal gyrus. In addition, MHE patients showed significantly decreased functional connectivity with the right/left VPMN in the bilateral middle temporal gyri (MTG), temporal lobe, and right superior temporal gyrus. The venous blood ammonia levels of MHE patients negatively correlated with the functional connectivity between the VAN and the insula. Number connecting test scores showed negative correlation with the functional connectivity between the VAN and the insula, and between the VPMN and the MTG. Conclusion: MHE patients had disrupted thalamic functional connectivity, which mainly located in the bilateral ventral anterior nuclei and ventral posterior medial nuclei. The decreased connectivity between thalamus and many

  11. Region-specific connectivity in patients with periventricular nodular heterotopia and epilepsy: A study combining diffusion tensor imaging and functional MRI.

    Science.gov (United States)

    Liu, Wenyu; An, Dongmei; Tong, Xin; Niu, Running; Gong, Qiyong; Zhou, Dong

    2017-10-01

    Periventricular nodular heterotopia (PNH) is an important cause of chronic epilepsy. The purpose of this study was to evaluate region-specific connectivity in PNH patients with epilepsy and assess correlation between connectivity strength and clinical factors including duration and prognosis. Diffusion tensor imaging (DTI) and resting state functional MRI (fMRI) were performed in 28 subjects (mean age 27.4years; range 9-56years). The structural connectivity of fiber bundles passing through the manually-selected segmented nodules and other brain regions were analyzed by tractography. Cortical lobes showing functional correlations to nodules were also determined. For all heterotopic gray matter nodules, including at least one in each subject, the most frequent segments to which nodular heterotopia showed structural (132/151) and functional (146/151) connectivity were discrete regions of the ipsilateral overlying cortex. Agreement between diffusion tensor tractography and functional connectivity analyses was conserved in 81% of all nodules (122/151). In patients with longer duration or refractory epilepsy, the connectivity was significantly stronger, particularly to the frontal and temporal lobes (P<0.05). Nodules in PNH were structurally and functionally connected to the cortex. The extent is stronger in patients with longstanding or intractable epilepsy. These findings suggest the region-specific interactions may help better evaluate prognosis and seek medical or surgical interventions of PNH-related epilepsy. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Emotional reactions in patients after frontal lobe stroke

    Directory of Open Access Journals (Sweden)

    Stojanović Zlatan

    2015-01-01

    Full Text Available Background/Aim. Emotional reactions have been documented after tumor lesions and the other damages of the brain. The aim of this paper was to examine the correlation between frontal lobe lesions and emotional reactions in patients with stroke. Methods. The research included 118 patients after stroke. Lesion localization was defined on computed axial tomography records, whereas the area and perimeter of lesion were measured by AutoCAD 2004 software. Examinations by means of the Hamilton Rating Scale for Anxiety and Depression (HRSA and HRSD were carried out 11-40 days after stroke. Statistic data were processed by simple linear/nonlinear regression, Cox's and the generalized linear model. Results. A higher frequency of emotional reactions, i.e. anxiety, was determined in women after stroke (p = 0.024. A negative correlation between the lesion size and the intensity of anxiety manifestations was determined (Spearman’s r = -0.297; p = 0.001. Anxiety was more frequent in patients with frontal lobe lesions in the dominant hemisphere (interaction: frontal lesion * hand dominant hemisphere, p = 0.017. Also, HRSD score values showed the tendency for lesser decline in case of greater frontal lobe lesions in relation to lesions of other regions of prosencephalon (interaction: frontal lesion * lesion area, p = 0.001. Conclusion. The results of this study indicate the correlation between evolutionary younger structures of the central nervous system and emotional reactions of man. Therefore, it is necessary to undertake proper early psychopharmacotherapy in the vulnerable group of patients.

  13. MRI findings of temporal lobe ganglioglioma

    International Nuclear Information System (INIS)

    Lee, Myung Jun; Lee, Ho Kyu; Lee, Jung Kyo; Choi, Choong Gon; Suh, Dae Chul

    1999-01-01

    Ganglioglioma is a rare primary brain tumor usually found in the temporal lobe. The purpose of this study is to describe the characteristic MR findings of temporal lobe ganglioglioma. Over a seven-year period, ten patients with cerebral ganglioglioma were evaluated at our institution. Seven cases of temporal lobe ganglioma were found ; six of these involved men, and one, a woman ; their mean age was 29.6 years. In three patients, Gd-DTPA-enhanced T1-weighted images were also obtained. We retrospectively analysed the MRI findings with respect to location, size, cortical involvement, margin, cystic change, degree of enhancement, MR signal intensity, calcification and peritumoral change. In five cases, tumors were located within the temporal lobe. In one, a tumor extended from the temporal lobe to the thalamus, and in one from the temporal lobe to the thalamus and cerebral peduncle. All temporal gangliogliomas measured 1.6-3.8cm in their greatest diameter (mean diameter, 2.7cm). In all cases, the cortices were involved with the maintenance of gyriform. The tumor margin was ill defined in five cases and well defined in two. Tumors showed multiple small cystic changes in four cases, a large cyst in two, and a solid nodule in one. In three cases in which contrast media was administered, no lesions were enhanced. On T1-weighted images, iso-signal intensities were seen in five cases and high signal intensities in two. On T2-weighted images, the corresponding figures were five and two. On MRI, tumor calcification and calvarial erosion were each detected in two cases. In patients with temporal lobe epilepsy in whom cortical solid or cystic and poorly enhanced lesions were seen on brain MRI, and in whom associated findings such as calcification and or adjacent bony erosion were noted, ganglioglioma must be considered

  14. Microsurgical anatomy of the central lobe.

    Science.gov (United States)

    Frigeri, Thomas; Paglioli, Eliseu; de Oliveira, Evandro; Rhoton, Albert L

    2015-03-01

    The central lobe consists of the pre- and postcentral gyri on the lateral surface and the paracentral lobule on the medial surface and corresponds to the sensorimotor cortex. The objective of the present study was to define the neural features, craniometric relationships, arterial supply, and venous drainage of the central lobe. Cadaveric hemispheres dissected using microsurgical techniques provided the material for this study. The coronal suture is closer to the precentral gyrus and central sulcus at its lower rather than at its upper end, but they are closest at a point near where the superior temporal line crosses the coronal suture. The arterial supply of the lower two-thirds of the lateral surface of the central lobe was from the central, precentral, and anterior parietal branches that arose predominantly from the superior trunk of the middle cerebral artery. The medial surface and the superior third of the lateral surface were supplied by the posterior interior frontal, paracentral, and superior parietal branches of the pericallosal and callosomarginal arteries. The venous drainage of the superior two-thirds of the lateral surface and the central lobe on the medial surface was predominantly through the superior sagittal sinus, and the inferior third of the lateral surface was predominantly through the superficial sylvian veins to the sphenoparietal sinus or the vein of Labbé to the transverse sinus. The pre- and postcentral gyri and paracentral lobule have a morphological and functional anatomy that differentiates them from the remainder of their respective lobes and are considered by many as a single lobe. An understanding of the anatomical relationships of the central lobe can be useful in preoperative planning and in establishing reliable intraoperative landmarks.

  15. Abnormal Resting-State Functional Connectivity of Insular Subregions and Disrupted Correlation with Working Memory in Adults with Attention Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Zhao, Qihua; Li, Hui; Yu, Xiaoyan; Huang, Fang; Wang, Yanfei; Liu, Lu; Cao, Qingjiu; Qian, Qiujin; Zang, Yufeng; Sun, Li; Wang, Yufeng

    2017-01-01

    Executive function (EF) deficits are major impairments in adults with attention deficit/hyperactivity disorder (ADHD). Previous studies have shown that the insula is involved in cognitive and EFs. However, the insula is highly heterogeneous in function, and few studies have focused on functional networks which related to specific insular subregions in adults with ADHD. We explored the functional networks of the insular subregions [anterior insula (AI), mid-insula (MI), and posterior insula (PI)]. Furthermore, their correlations with self-ratings of ecological EFs, including inhibition, shifting, and working memory were investigated. Resting-state functional magnetic resonance imaging data in 28 adults with ADHD and 30 matched healthy controls (HCs) were analyzed. The seed-based resting-state functional connectivity (RSFC) of the insular subregions was evaluated. We also investigated their associations with the Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) inhibition, working memory, and shifting factor scores. Compared with HCs, adults with ADHD showed altered RSFC of the AI, with the precuneus, precentral gyrus, and inferior temporal gyrus extended to the middle temporal gyrus, lingual gyrus, and superior occipital gyrus, respectively. There were no significant differences in RSFC of the MI and PI between the two groups. Within the HC group, working memory scores were associated with the RSFC of AI with precuneus and temporal gyrus. However, there was no correlation between these variables in the ADHD group. The study evaluated RSFC patterns of the insular subregions in adults with ADHD for the first time. Altered RSFC of the AI which is a crucial region of salience network (SN) and part of regions in default mode network (DMN), were detected in adults with ADHD in both results with and without global signal regression (GSR), suggesting that disrupted SN-DMN functional connectivity may be involved in EF impairments in adults with ADHD

  16. MRI and brain spect findings in patients with unilateral temporal lobe epilepsy and normal CT scan

    Directory of Open Access Journals (Sweden)

    P.G. Carrilho

    1994-06-01

    Full Text Available 26 patients with temporal lobe epilepsy clinically documented by several abnormal interictal surface EEGs with typical unitemporal epileptiform activity and a normal CT scan were studied. Interictal99mTC HMPAO brain SPECT and MRI were performed in all subjects. Abnormalities were shown in 61.5% of MRI (n=16 and 65.4% of SPECT (n=17. Hippocampal atrophy associated to a high signal on T2-weighted MRI slices suggesting mesial temporal sclerosis was the main finding (n=12; 75% of abnormal MRI. MRI correlated well to surface EEG in 50% (n=13. There was also a good correlation between MRI and SPECT in 30.7% (n=8. SPECT and EEG were in agreement in 57.7% (n=l5. MRI, SPECT and EEG were congruent in 26.9% (n=7. These results support the usefulness of interictal brain SPECT and MRI in detecting lateralized abnormalities in temporal lobe epilepsy. On the other hand, in two cases, interictal SPECT correlated poorly with surface EEG. This functional method should not be used isolately in the detection of temporal lobe foci. MRI is more useful than CT as a neuroimaging technique in temporal lobe epilepsy. It may detect small structural lesions and mesial temporal lobe sclerosis which are not easily seen with traditional CT scanning.

  17. Decreased left temporal lobe volume of panic patients measured by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, R.R.; Del-Ben, C.M.; Araujo, D.; Crippa, J.A.; Graeff, F.G. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Dept. de Neurologia e Psicologia Medica]. E-mail: fgraeff@keynet.com.br; Santos, A.C. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Dept. de Clinica Medica; Guimaraes, F.S. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Dept. de Farmacologia

    2003-07-01

    Reported neuroimaging studies have shown functional and morphological changes of temporal lobe structures in panic patients, but only one used a volumetric method. The aim of the present study was to determine the volume of temporal lobe structures in patients with panic disorder, measured by magnetic resonance imaging. Eleven panic patients and eleven controls matched for age, sex, handedness, socioeconomic status and years of education participated in the study. The mean volume of the left temporal lobe of panic patients was 9% smaller than that of controls (t{sub 21} = 2.37, P = 0.028). In addition, there was a trend (P values between 0.05 and 0.10) to smaller volumes of the right temporal lobe (7%, t{sub 21} = 1.99, P = 0.06), right amygdala (8%, t{sub 21} = 1.83, P = 0.08), left amygdala (5%, t{sub 21} = 1.78, P 0.09) and left hippocampus (9%, t{sub 21} = 1.93, P = 0.07) in panic patients compared to controls. There was a positive correlation between left hippocampal volume and duration of panic disorder (r = 0.67, P = 0.025), with recent cases showing more reduction than older cases. The present results show that panic patients have a decreased volume of the left temporal lobe and indicate the presence of volumetric abnormalities of temporal lobe structures. (author)

  18. Decreased left temporal lobe volume of panic patients measured by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Uchida, R.R.; Del-Ben, C.M.; Araujo, D.; Crippa, J.A.; Graeff, F.G.; Santos, A.C.; Guimaraes, F.S.

    2003-01-01

    Reported neuroimaging studies have shown functional and morphological changes of temporal lobe structures in panic patients, but only one used a volumetric method. The aim of the present study was to determine the volume of temporal lobe structures in patients with panic disorder, measured by magnetic resonance imaging. Eleven panic patients and eleven controls matched for age, sex, handedness, socioeconomic status and years of education participated in the study. The mean volume of the left temporal lobe of panic patients was 9% smaller than that of controls (t 21 = 2.37, P = 0.028). In addition, there was a trend (P values between 0.05 and 0.10) to smaller volumes of the right temporal lobe (7%, t 21 = 1.99, P = 0.06), right amygdala (8%, t 21 = 1.83, P = 0.08), left amygdala (5%, t 21 = 1.78, P 0.09) and left hippocampus (9%, t 21 = 1.93, P = 0.07) in panic patients compared to controls. There was a positive correlation between left hippocampal volume and duration of panic disorder (r = 0.67, P = 0.025), with recent cases showing more reduction than older cases. The present results show that panic patients have a decreased volume of the left temporal lobe and indicate the presence of volumetric abnormalities of temporal lobe structures. (author)

  19. Quantitative Evaluation of Medial Temporal Lobe Morphology in Children with Febrile Status Epilepticus: Results of the FEBSTAT Study.

    Science.gov (United States)

    McClelland, A C; Gomes, W A; Shinnar, S; Hesdorffer, D C; Bagiella, E; Lewis, D V; Bello, J A; Chan, S; MacFall, J; Chen, M; Pellock, J M; Nordli, D R; Frank, L M; Moshé, S L; Shinnar, R C; Sun, S

    2016-12-01

    The pathogenesis of febrile status epilepticus is poorly understood, but prior studies have suggested an association with temporal lobe abnormalities, including hippocampal malrotation. We used a quantitative morphometric method to assess the association between temporal lobe morphology and febrile status epilepticus. Brain MR imaging was performed in children presenting with febrile status epilepticus and control subjects as part of the Consequences of Prolonged Febrile Seizures in Childhood study. Medial temporal lobe morphologic parameters were measured manually, including the distance of the hippocampus from the midline, hippocampal height:width ratio, hippocampal angle, collateral sulcus angle, and width of the temporal horn. Temporal lobe morphologic parameters were correlated with the presence of visual hippocampal malrotation; the strongest association was with left temporal horn width (P status epilepticus, encompassing both the right and left sides. This association was statistically strongest in the right temporal lobe, whereas hippocampal malrotation was almost exclusively left-sided in this cohort. The association between temporal lobe measurements and febrile status epilepticus persisted when the analysis was restricted to cases with visually normal imaging findings without hippocampal malrotation or other visually apparent abnormalities. Several component morphologic features of hippocampal malrotation are independently associated with febrile status epilepticus, even when complete hippocampal malrotation is absent. Unexpectedly, this association predominantly involves the right temporal lobe. These findings suggest that a spectrum of bilateral temporal lobe anomalies are associated with febrile status epilepticus in children. Hippocampal malrotation may represent a visually apparent subset of this spectrum. © 2016 by American Journal of Neuroradiology.

  20. Anatomical substrates of the alerting, orienting and executive control components of attention: focus on the posterior parietal lobe.

    Directory of Open Access Journals (Sweden)

    Xuntao Yin

    Full Text Available Both neuropsychological and functional neuroimaging studies have identified that the posterior parietal lobe (PPL is critical for the attention function. However, the unique role of distinct parietal cortical subregions and their underlying white matter (WM remains in question. In this study, we collected both magnetic resonance imaging and diffusion tensor imaging (DTI data in normal participants, and evaluated their attention performance using attention network test (ANT, which could isolate three different attention components: alerting, orienting and executive control. Cortical thickness, surface area and DTI parameters were extracted from predefined PPL subregions and correlated with behavioural performance. Tract-based spatial statistics (TBSS was used for the voxel-wise statistical analysis. Results indicated structure-behaviour relationships on multiple levels. First, a link between the cortical thickness and WM integrity of the right inferior parietal regions and orienting performance was observed. Specifically, probabilistic tractography demonstrated that the integrity of WM connectivity between the bilateral inferior parietal lobules mediated the orienting performance. Second, the scores of executive control were significantly associated with the WM diffusion metrics of the right supramarginal gyrus. Finally, TBSS analysis revealed that alerting performance was significant correlated with the fractional anisotropy of local WM connecting the right thalamus and supplementary motor area. We conclude that distinct areas and features within PPL are associated with different components of attention. These findings could yield a more complete understanding of the nature of the PPL contribution to visuospatial attention.

  1. The gyri of the octopus vertical lobe have distinct neurochemical identities.

    Science.gov (United States)

    Shigeno, Shuichi; Ragsdale, Clifton W

    2015-06-15

    The cephalopod vertical lobe is the largest learning and memory structure known in invertebrate nervous systems. It is part of the visual learning circuit of the central brain, which also includes the superior frontal and subvertical lobes. Despite the well-established functional importance of this system, little is known about neuropil organization of these structures and there is to date no evidence that the five longitudinal gyri of the vertical lobe, perhaps the most distinctive morphological feature of the octopus brain, differ in their connections or molecular identities. We studied the histochemical organization of these structures in hatchling and adult Octopus bimaculoides brains with immunostaining for serotonin, octopus gonadotropin-releasing hormone (oGNRH), and octopressin-neurophysin (OP-NP). Our major finding is that the five lobules forming the vertical lobe gyri have distinct neurochemical signatures. This is most prominent in the hatchling brain, where the median and mediolateral lobules are enriched in OP-NP fibers, the lateral lobule is marked by oGNRH innervation, and serotonin immunostaining heavily labels the median and lateral lobules. A major source of input to the vertical lobe is the superior frontal lobe, which is dominated by a neuropil of interweaving fiber bundles. We have found that this neuropil also has an intrinsic neurochemical organization: it is partitioned into territories alternately enriched or impoverished in oGNRH-containing fascicles. Our findings establish that the constituent lobes of the octopus superior frontal-vertical system have an intricate internal anatomy, one likely to reflect the presence of functional subsystems within cephalopod learning circuitry. © 2015 Wiley Periodicals, Inc.

  2. Diagnosis of temporal lobe epilepsy by positron emission tomography

    International Nuclear Information System (INIS)

    Shimizu, Hiroyuki; Ishijima, Buichi; Iio, Masaaki.

    1985-01-01

    Positron emission tomography(PET) was performed in 18 temporal lobe epileptics. About 20 mCi of 11 C-glucose was perorally administered to the patients and 30 minutes later scanning was started when the transport of 11 C-glucose from blood to the brain tissue reached equilibrium. At the level of 25mm above orbitomeatal line, the slice image of the temporal lobe shows a relatively high metabolic oval ring involving the amygdala, hippocapal formation and the hippocampal gyrus medially and the T 1 , T 2 and T 3 neocortices laterally in normal subjects. The epileptic focus, when detected on PET images, was observed as a defect in this oval ring. In 15(83.3%) out of 18 cases, the location of epileptic focus was confirmed as a low metabolic defect. This diagnosis rate was higher than that of other focal epilepsy by PET study. The locations of foci were devided into three types: mesial (5 cases), lateral (4 cases) and combined (6 cases). The seizure symptoms of the patients were analyzed in terms of the correspondence to the focus types. The results showed that automatism and pseudoabsence had a close relation to the mesial and combined types and psychical, vertiginous or visual seizures correlated to the combined and lateral types. Visceral or motor seizures were induced equally by any focus types. These facts suggested that automatism and pseudoabsence were correlated with the mesial organs such as the amygdala and hippocampus and psychical, vertiginous or visual seizures had origin in lateral neocortices. Visceral or motor seizures were supposed to be the results of the spread from the temporal focus to the adjacent structures. It was concluded that PET was very useful in localization diagnosis of temporal lobe epilepsy. In surgical treatment of epilepsy, in which the knowledge of the exact extent of epileptic foci is strongly demanded, PET study will offer invaluable data to the strategy of operation and foreseeing its prognosis. (author)

  3. Effects of VRK2 (rs2312147 on white matter connectivity in patients with schizophrenia.

    Directory of Open Access Journals (Sweden)

    Hoyoung Sohn

    Full Text Available Recent genome-wide association studies of schizophrenia reported a novel risk variant, rs2312147 at vaccinia-related kinase 2 gene (VRK2, in multiple Asian and European samples. However, its effect on the brain structure in schizophrenia is little known. We analyzed the brain structure of 36 schizophrenia patients and 18 healthy subjects with regard to rs2312147 genotype groups. Brain magnetic resonance scans for gray matter (GM and white matter (WM analysis, and genotype analysis for VRK2 rs2312147, were conducted. The Positive and Negative Syndrome Scale and the Digit Symbol Test were assessed for schizophrenia patients. There was no significant difference in either GM volume or WM connectivity with regard to rs2312147 genotype in healthy subjects. In contrast, we found significant differences in the WM connectivity between rs2312147 CC and CT/TT genotype groups of schizophrenia patients. The related brain areas included the splenium of corpus callosum, the left occipital lobe WM, the internal capsule (left anterior limb and right retrolenticular part, the bilateral temporal lobe WM, the left fornix/stria terminalis, the left cingulate gyrus WM, and the left parietal lobe WM. Voxelwise correlation analysis revealed that the Digit Symbol Test scores (age corrected correlated with the fractional anisotropy in WM tracts that previously showed significant group differences between the CT/TT and CC genotypes in the rs2312147 CT/TT genotype group, while no significant correlation was found in the CC genotype group. Our data may provide evidence for the effect of VRK2 on WM connectivity in patients with schizophrenia.

  4. Infectious Causes of Right Middle Lobe Syndrome.

    Science.gov (United States)

    Rashid, Aatif; Nanjappa, Sowmya; Greene, John N

    2017-01-01

    Right middle lobe (RML) syndrome is defined as recurrent or chronic obstruction or infection of the middle lobe of the right lung. Nonobstructive causes of middle lobe syndrome include inflammatory processes and defects in the bronchial anatomy and collateral ventilation. We report on 2 case patients with RML syndrome, one due to infection with Mycobacterium avium complex followed by M asiaticum infection and the other due to allergic bronchopulmonary aspergillosis. A history of atopy, asthma, or chronic obstructive pulmonary disease has been reported in up to one-half of those with RML. The diagnosis can be made by plain radiography, computed tomography, and bronchoscopy. Medical treatment consists of bronchodilators, mucolytics, and antimicrobials. Patients whose disease is unresponsive to treatment and those with obstructive RML syndrome can be offered surgical treatment.

  5. Medical image of the week: azygous lobe

    Directory of Open Access Journals (Sweden)

    Bhupinder Natt

    2013-12-01

    Full Text Available No abstract available. Article truncated at 150 words. A 59 year old man underwent chest radiography for evaluation of fever and cough. Imaging showed an accessory azygous lobe. An azygos lobe is found in 1% of anatomic specimens and forms when the right posterior cardinal vein, one of the precursors of the azygos vein, fails to migrate over the apex of the lung (1. Instead, the vein penetrates the lung carrying along pleural layers that entrap a portion of the right upper lobe. The vein appears to run within the lung, but is actually surrounded by both parietal and visceral pleura. The azygos fissure therefore consists of four layers of pleura, two parietal layers and two visceral layers, which wrap around the vein giving the appearance of a tadpole. Apart from an interesting incidental radiological finding, it is of limited clinical importance except that its presence should be recognized during thoracoscopic procedures. This patient was found to have …

  6. Lung lobe collapse: pathophysiology and radiologic significance

    International Nuclear Information System (INIS)

    Lord, P.F.; Gomez, J.A.

    1985-01-01

    The radiographic changes caused by collapse of lung lobes in pulmonary disease, pneumothorax, and pleural effusion depend on the lobar recoiling force and local pleural pressure. Differences in the tendency of normal lung lobes or regions to collapse depend on the relative surface-to-volume ratio, determined by shape and size of the region or lobe. This ratio affects the physiologic parameters of pulmonary interdependence, compliance, and collateral air flow. Pulmonary surfactant increases compliance, particularly at low volumes, maintains alveolar stability, and assists in maintaining capillary patency and preventing pulmonary edema. Its loss due to lung injury increases collapsing forces. In the presence of pneumothorax or pleural effusion, diseases that cause lobar collapse produce localized air or fluid entrapment that is a diagnostic sign of the presence of the underlying pulmonary disease

  7. MRI parcellation of ex vivo medial temporal lobe.

    Science.gov (United States)

    Augustinack, Jean C; Magnain, Caroline; Reuter, Martin; van der Kouwe, André J W; Boas, David; Fischl, Bruce

    2014-06-01

    Recent advancements in radio frequency coils, field strength and sophisticated pulse sequences have propelled modern brain mapping and have made validation to biological standards - histology and pathology - possible. The medial temporal lobe has long been established as a pivotal brain region for connectivity, function and unique structure in the human brain, and reveals disconnection in mild Alzheimer's disease. Specific brain mapping of mesocortical areas affected with neurofibrillary tangle pathology early in disease progression provides not only an accurate description for location of these areas but also supplies spherical coordinates that allow comparison between other ex vivo cases and larger in vivo datasets. We have identified several cytoarchitectonic features in the medial temporal lobe with high resolution ex vivo MRI, including gray matter structures such as the entorhinal layer II 'islands', perirhinal layer II-III columns, presubicular 'clouds', granule cell layer of the dentate gyrus as well as lamina of the hippocampus. Localization of Brodmann areas 28 and 35 (entorhinal and perirhinal, respectively) demonstrates MRI based area boundaries validated with multiple methods and histological stains. Based on our findings, both myelin and Nissl staining relate to contrast in ex vivo MRI. Precise brain mapping serves to create modern atlases for cortical areas, allowing accurate localization with important applications to detecting early disease processes. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Improved diagnostic accuracy of Alzheimer's disease by combining regional cortical thickness and default mode network functional connectivity: Validated in the Alzheimer's disease neuroimaging initiative set

    International Nuclear Information System (INIS)

    Park, Ji Eun; Park, Bum Woo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Jung; Oh, Joo Young; Shim, Woo Hyun; Lee, Jae Hong; Roh, Jee Hoon

    2017-01-01

    To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal (p < 0.001) and supramarginal gyrus (p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease

  9. Inverted Lobes Have Satisfactory Functions Compared With Noninverted Lobes in Lung Transplantation.

    Science.gov (United States)

    Kayawake, Hidenao; Chen-Yoshikawa, Toyofumi F; Motoyama, Hideki; Hamaji, Masatsugu; Hijiya, Kyoko; Aoyama, Akihiro; Goda, Yasufumi; Oda, Hiromi; Ueda, Satoshi; Date, Hiroshi

    2018-04-01

    To overcome the problem of small-for-size grafts in standard living-donor lobar lung transplantation (LDLLT), we developed inverted LDLLT, in which a right lower lobe from 1 donor is implanted as a right graft and another right lower lobe from another donor is implanted as a left graft. We retrospectively analyzed the functions of inverted grafts vs noninverted grafts. Between 2008 and 2015, 64 LDLLTs were performed. Included were 35 LDLLTs whose recipients were adults and monitored for more than 6 months without developing chronic lung allograft dysfunction. Among them, 65 implanted lobes were eligible for this analysis. There were 31 right lower lobes implanted as right grafts (right-to-right group), 7 right lower lobes as inverted left grafts (right-to-left group), and 27 left lower lobes as left grafts (left-to-left group). We evaluated the graft forced vital capacity (G-FVC) and graft volume of the 65 lobes before and 6 months after LDLLT and compared them among the three groups. Preoperatively, G-FVC in the right-to-left group (1,050 mL) was comparable to that in the right-to-right group (1,177 mL) and better than that in the left-to-left group (791 mL, p satisfactory compared with those of noninverted grafts. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Temporal lobe sclerosis associated with hippocampal sclerosis in temporal lobe epilepsy: neuropathological features.

    Science.gov (United States)

    Thom, Maria; Eriksson, Sofia; Martinian, Lillian; Caboclo, Luis O; McEvoy, Andrew W; Duncan, John S; Sisodiya, Sanjay M

    2009-08-01

    Widespread changes involving neocortical and mesial temporal lobe structures can be present in patients with temporal lobe epilepsy and hippocampal sclerosis. The incidence, pathology, and clinical significance of neocortical temporal lobe sclerosis (TLS) are not well characterized. We identified TLS in 30 of 272 surgically treated cases of hippocampal sclerosis. Temporal lobe sclerosis was defined by variable reduction of neurons from cortical layers II/III and laminar gliosis; it was typically accompanied by additional architectural abnormalities of layer II, that is, abnormal neuronal orientation and aggregation. Quantitative analysis including tessellation methods for the distribution of layer II neurons supported these observations. In 40% of cases, there was a gradient of TLS with more severe involvement toward the temporal pole, possibly signifying involvement of hippocampal projection pathways. There was a history of a febrile seizure as an initial precipitating injury in 73% of patients with TLS compared with 36% without TLS; no other clinical differences between TLS and non-TLS cases were identified. Temporal lobe sclerosis was not evident preoperatively by neuroimaging. No obvious effect of TLS on seizure outcome was noted after temporal lobe resection; 73% became seizure-free at 2-year follow-up. In conclusion, approximately 11% of surgically treated hippocampal sclerosis is accompanied by TLS. Temporal lobe sclerosis is likely an acquired process with accompanying reorganizational dysplasia and an extension of mesial temporal sclerosis rather than a separate pathological entity.

  11. Dose–Volume Relationships Associated With Temporal Lobe Radiation Necrosis After Skull Base Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Mark W., E-mail: markmcdonaldmd@gmail.com [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana (United States); Indiana University Health Proton Therapy Center, Bloomington, Indiana (United States); Linton, Okechukwu R. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana (United States); Calley, Cynthia S.J. [Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana (United States)

    2015-02-01

    Purpose: We evaluated patient and treatment parameters correlated with development of temporal lobe radiation necrosis. Methods and Materials: This was a retrospective analysis of a cohort of 66 patients treated for skull base chordoma, chondrosarcoma, adenoid cystic carcinoma, or sinonasal malignancies between 2005 and 2012, who had at least 6 months of clinical and radiographic follow-up. The median radiation dose was 75.6 Gy (relative biological effectiveness [RBE]). Analyzed factors included gender, age, hypertension, diabetes, smoking status, use of chemotherapy, and the absolute dose:volume data for both the right and left temporal lobes, considered separately. A generalized estimating equation (GEE) regression analysis evaluated potential predictors of radiation necrosis, and the median effective concentration (EC50) model estimated dose–volume parameters associated with radiation necrosis. Results: Median follow-up time was 31 months (range 6-96 months) and was 34 months in patients who were alive. The Kaplan-Meier estimate of overall survival at 3 years was 84.9%. The 3-year estimate of any grade temporal lobe radiation necrosis was 12.4%, and for grade 2 or higher radiation necrosis was 5.7%. On multivariate GEE, only dose–volume relationships were associated with the risk of radiation necrosis. In the EC50 model, all dose levels from 10 to 70 Gy (RBE) were highly correlated with radiation necrosis, with a 15% 3-year risk of any-grade temporal lobe radiation necrosis when the absolute volume of a temporal lobe receiving 60 Gy (RBE) (aV60) exceeded 5.5 cm{sup 3}, or aV70 > 1.7 cm{sup 3}. Conclusions: Dose–volume parameters are highly correlated with the risk of developing temporal lobe radiation necrosis. In this study the risk of radiation necrosis increased sharply when the temporal lobe aV60 exceeded 5.5 cm{sup 3} or aV70 > 1.7 cm{sup 3}. Treatment planning goals should include constraints on the volume of temporal lobes receiving

  12. Intralobar fibres of the occipital lobe: a post mortem dissection study.

    Science.gov (United States)

    Vergani, Francesco; Mahmood, Sajedha; Morris, Cristopher M; Mitchell, Patrick; Forkel, Stephanie J

    2014-07-01

    The atlas by Heinrich Sachs (1892) provided an accurate description of the intralobar fibres of the occipital lobe, with a detailed representation of the short associative tracts connecting different parts of the lobe. Little attention has been paid to the work of Sachs since its publication. In this study, we present the results of the dissection of three hemispheres, performed according to the Klingler technique (1935). Our anatomical findings are then compared to the original description of the occipital fibres anatomy as detailed by Sachs. Three hemispheres were dissected according to Klingler's technique (1935). Specimens were fixed in 10% formalin and frozen at -15 °C for two weeks. After defreezing, dissection of the white matter fibres was performed with blunt dissectors. Coronal sections were obtained according to the cuts originally described by Sachs. In addition, medial to lateral and lateral to medial dissection of the white matter of the occipital lobe was also performed. A network of short association fibres was demonstrated in the occipital lobe, comprising intralobar association fibres and U-shaped fibres, which are connecting neighbouring gyri. Lateral to the ventricles, longitudinal fibres of the stratum sagittale were also identified that are arranged as external and internal layers. Fibres of the forceps major were also found to be in direct contact with the ventricular walls. We were able to replicate all tracts originally described by Sachs. In addition, a previously unrecognised tract, connecting the cuneus to the lingual gyrus, was identified. This tract corresponds to the "sledge runner", described in tractography studies. The occipital lobe shows a rich network of intralobar fibres, arranged around the ventricular wall. Good concordance was observed between the Klingler dissection technique and the histological preparations of Sachs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Altered brain connectivity in sagittal craniosynostosis.

    Science.gov (United States)

    Beckett, Joel S; Brooks, Eric D; Lacadie, Cheryl; Vander Wyk, Brent; Jou, Roger J; Steinbacher, Derek M; Constable, R Todd; Pelphrey, Kevin A; Persing, John A

    2014-06-01

    Sagittal nonsyndromic craniosynostosis (sNSC) is the most common form of NSC. The condition is associated with a high prevalence (> 50%) of deficits in executive function. The authors employed diffusion tensor imaging (DTI) and functional MRI to evaluate whether hypothesized structural and functional connectivity differences underlie the observed neurocognitive morbidity of sNSC. Using a 3-T Siemens Trio MRI system, the authors collected DTI and resting-state functional connectivity MRI data in 8 adolescent patients (mean age 12.3 years) with sNSC that had been previously corrected via total vault cranioplasty and 8 control children (mean age 12.3 years) without craniosynostosis. Data were analyzed using the FMRIB Software Library and BioImageSuite. Analyses of the DTI data revealed white matter alterations approaching statistical significance in all supratentorial lobes. Statistically significant group differences (sNSC right supramarginal gyrus. Analysis of the resting-state seed in relation to whole-brain data revealed significant increases in negative connectivity (anticorrelations) of Brodmann area 8 to the prefrontal cortex (Montreal Neurological Institute [MNI] center of mass coordinates [x, y, z]: -6, 53, 6) and anterior cingulate cortex (MNI coordinates 6, 43, 14) in the sNSC group relative to controls. Furthermore, in the sNSC patients versus controls, the Brodmann area 7, 39, and 40 seed had decreased connectivity to left angular gyrus (MNI coordinates -31, -61, 34), posterior cingulate cortex (MNI coordinates 13, -52, 18), precuneus (MNI coordinates 10, -55, 54), left and right parahippocampus (MNI coordinates -13, -52, 2 and MNI coordinates 11, -50, 2, respectively), lingual (MNI coordinates -11, -86, -10), and fusiform gyri (MNI coordinates -30, -79, -18). Intrinsic connectivity analysis also revealed altered connectivity between central nodes in the default mode network in sNSC relative to controls; the left and right posterior cingulate cortices

  14. Insight in psychotic disorder: relation with psychopathology and frontal lobe function.

    Science.gov (United States)

    Kumar, Atmesh; Sharma, Pranjal; Das, Shyamanta; Nath, Kamal; Talukdar, Uddip; Bhagabati, Dipesh

    2014-01-01

    Through conceptualising poor insight in psychotic disorders as a form of anosognosia, frontal lobe dysfunction is often ascribed a vital role in its pathogenesis. The objective of this study was to compare the relation of insight in patients with psychotic illness to that of psychopathology and frontal lobe function. Forty patients with psychotic disorder were selected from those attending the Department of Psychiatry in a tertiary care teaching hospital. The evaluation of insight was carried out using the Schedule for Assessment of Insight (SAI), that of frontal lobe function by the Frontal Assessment Battery (FAB) and psychopathology by the Brief Psychiatric Rating Scale (BPRS). The correlation coefficients were determined. A negative correlation between SAI and BPRS scores means that the BPRS score is opposite to SAI scores. When the SAI total score was compared with the FAB total score, the correlation coefficient demonstrated a positive correlation. Better insight predicted lesser psychopathology and also that poor insight would exist with greater psychopathology. Better insight predicted a higher functional status of frontal lobes and prefrontal cortex in particular. Insight deficits in schizophrenia and other psychotic illnesses are multidimensional. Integration of different aetiological factors like biological, psychopathological, environmental ones and others are necessary for a better understanding of insight in psychosis. Copyright © 2013 S. Karger AG, Basel.

  15. Gene expression profile in temporal lobe epilepsy

    NARCIS (Netherlands)

    Aronica, Eleonora; Gorter, Jan A.

    2007-01-01

    Epilepsy is one of the most common neurological disorders. Temporal lobe epilepsy (TLE) represents the most frequent epilepsy syndrome in adult patients with resistance to pharmacological treatment. In TLE, the origin of seizure activity typically involves the hippocampal formation, which displays

  16. Gene expression profile in temporal lobe epilepsy.

    NARCIS (Netherlands)

    Aronica, E.M.A.; Gorter, J.A.

    2007-01-01

    Epilepsy is one of the most common neurological disorders. Temporal lobe epilepsy (TLE) represents the most frequent epilepsy syndrome in adult patients with resistance to pharmacological treatment. In TLE, the origin of seizure activity typically involves the hippocampal formation, which displays

  17. Formation of Bipolar Lobes by Jets

    Science.gov (United States)

    Soker, Noam

    2002-04-01

    I conduct an analytical study of the interaction of jets, or a collimated fast wind (CFW), with a previously blown asymptotic giant branch (AGB) slow wind. Such jets (or CFWs) are supposedly formed when a compact companion, a main-sequence star, or a white dwarf accretes mass from the AGB star, forms an accretion disk, and blows two jets. This type of flow, which I think shapes bipolar planetary nebulae (PNs), requires three-dimensional gasdynamical simulations, which are limited in the parameter space they can cover. By imposing several simplifying assumptions, I derive simple expressions which reproduce some basic properties of lobes in bipolar PNs and which can be used to guide future numerical simulations. I quantitatively apply the results to two proto-PNs. I show that the jet interaction with the slow wind can form lobes which are narrow close to, and far away from, the central binary system, and which are wider somewhere in between. Jets that are recollimated and have constant cross section can form cylindrical lobes with constant diameter, as observed in several bipolar PNs. Close to their source, jets blown by main-sequence companions are radiative; only further out they become adiabatic, i.e., they form high-temperature, low-density bubbles that inflate the lobes.

  18. Centrifugal acceleration in the magnetotail lobes

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2010-02-01

    Full Text Available Combined Cluster EFW and EDI measurements have shown that cold ion outflow in the magnetospheric lobes dominates the hydrogen ion outflow from the Earth's atmosphere. The ions have too low kinetic energy to be measurable with particle instruments, at least for the typical spacecraft potential of a sunlit spacecraft in the tenuous lobe plasmas outside a few RE. The measurement technique yields both density and bulk velocity, which can be combined with magnetic field measurements to estimate the centrifugal acceleration experienced by these particles. We present a quantitative estimate of the centrifugal acceleration, and the velocity change with distance which we would expect due to centrifugal acceleration. It is found that the centrifugal acceleration is on average outward with an average value of about of 5 m s−2. This is small, but acting during long transport times and over long distances the cumulative effect is significant, while still consistent with the relatively low velocities estimated using the combination of EFW and EDI data. The centrifugal acceleration should accelerate any oxygen ions in the lobes to energies observable by particle spectrometers. The data set also put constraints on the effectiveness of any other acceleration mechanisms acting in the lobes, where the total velocity increase between 5 and 19 RE geocentric distance is less than 5 km s−1.

  19. Radiologic evaluation of right middle lobe collapse

    International Nuclear Information System (INIS)

    Kwun, Dae Young; Kim, Jong Deok; Kim, Jong Chul

    1989-01-01

    There are many pathogenetic factors for collapse of right middle lobe; profuse peribronchial clustering of lymph nodes about the right middle lobe bronchus, poor drainage of the bronchus because of its acute angle of take-off from the intermediate bronchus, and the isolation of this small lobe from the right upper and lower lobes, and thus from the aerating effects of collateral ventilation. Retrospectively we reviewed 36 cases of right of right middle lobe collapse of which causes were confirmed by histopathologic or bronchographic findings during the recent 6 years from March 1983 to February 1988 at Inje College Pusan Paik Hospital, and obtained the following results: 1. Male to female ratio was 1:1:4,and peak incidence (64%) was in the fifth and sixth decades with the mean age of 51.1 years. 2. Bronchiectasis was the most common cause (30.6%), and the others were chronic bronchitis (25.0%), pulmonary tuberculosis (19.4%), lung cancer (16.7%), and non-specific inflammatory disease (8.3%). This suggests benign disease is 5 times more common cause of right middle lobe collapse than lung cancer. 3. Among the plain chest radiolograph findings, obliteration of right cardiac border and triangular radiopaque density were the most frequent findings(77.8% in each) and the next was downward and anterior displacement of minor and major fissures (55.6%) 4. Bronchography was done in 11 cases; bronchiectasis was found in 8 cases and chronic bronchitis in 3 cases. Right middle lobe bronchus was obstructed in 2 cases of chronic bronchitis. 5. Chest CT scan was performed in 4 cases of lung cancer, 2 of non-specific inflammatory disease, and 1 of pulmonary tuberculosis: all of lung cancer revealed hilar mass, budged or lobulated fissures, in homogenous density, and mediastinal lymph node enlargement, and all benign disease showed homogenous density and flat to concave fissures. Right middle lobar bronchus narrowing was seen in 5 cases and its obstruction in 2 cases

  20. Frontal lobe atrophy in motor neuron diseases.

    Science.gov (United States)

    Kiernan, J A; Hudson, A J

    1994-08-01

    Neuronal degeneration in the precentral gyrus alone cannot account for the occurrence of spastic paresis in motor neuron diseases. To look for more extensive cortical atrophy we measured MRIs of the upper parts of the frontal and parietal lobes in 11 sporadic cases of classical amyotrophic lateral sclerosis (ALS), eight patients with primary lateral sclerosis (PLS) and an age- and sex-matched group of 49 neurologically normal people. None of the patients had overt dementia or other mental diseases. In PLS there is progressive spastic paresis but in contrast to ALS there is no lower motor neuron degeneration. The surface area of the precentral gyri and the amount of underlying white matter in PLS were consistently approximately 75% of the normal size. By contrast, there was some shrinkage of the precentral gyri in some of the ALS patients but the mean measurements for the group did not differ significantly from the controls. Anterior to the precentral sulci, the cortical surface area in PLS was approximately 85% of that of the controls, with correspondingly reduced white matter. In ALS the cortical surface areas of the anterior frontal lobes did not differ from those of the controls, but the amount of underlying white matter was reduced almost as much in ALS as it was in PLS. The measured changes in the frontal lobes suggest that in PLS there is simultaneous atrophy of the primary, premotor and supplementary motor areas of the cortex, with consequent degeneration of corticospinal and corticoreticular axons descending through the underlying white matter. These changes could account for the progressive upper motor neuron syndrome. In ALS, with no significant frontal cortical atrophy, the shrinkage of the white matter may be due to degeneration of axons projecting to the frontal cortex from elsewhere. Deprivation of afferents could explain the diminution of motor functions of the frontal lobes in ALS and also the changes in word fluency, judgement and attention that

  1. Memory in children with symptomatic temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Catarina A. Guimarães

    2014-03-01

    Full Text Available In children with temporal lobe epilepsy (TLE, memory deficit is not so well understood as it is in adults. The aim of this study was to identify and describe memory deficits in children with symptomatic TLE, and to verify the influence of epilepsy variables on memory. We evaluated 25 children with TLE diagnosed on clinical, EEG and MRI findings. Twenty-five normal children were compared with the patients. All children underwent a neuropsychological assessment to estimate intellectual level, attention, visual perception, handedness, and memory processes (verbal and visual: short-term memory, learning, and delayed recall. The results allowed us to conclude: besides memory deficits, other neuropsychological disturbances may be found in children with TLE such as attention, even in the absence of overall cognitive deficit; the earlier onset of epilepsy, the worse verbal stimuli storage; mesial lesions correlate with impairment in memory storage stage while neocortical temporal lesions correlate with retrieval deficits.

  2. Decreased occipital lobe metabolism by FDG-PET/CT: An anti-NMDA receptor encephalitis biomarker.

    Science.gov (United States)

    Probasco, John C; Solnes, Lilja; Nalluri, Abhinav; Cohen, Jesse; Jones, Krystyna M; Zan, Elcin; Javadi, Mehrbod S; Venkatesan, Arun

    2018-01-01

    To compare brain metabolism patterns on fluorodeoxyglucose (FDG)-PET/CT in anti-NMDA receptor and other definite autoimmune encephalitis (AE) and to assess how these patterns differ between anti-NMDA receptor neurologic disability groups. Retrospective review of clinical data and initial dedicated brain FDG-PET/CT studies for neurology inpatients with definite AE, per published consensus criteria, treated at a single academic medical center over a 10-year period. Z-score maps of FDG-PET/CT were made using 3-dimensional stereotactic surface projections in comparison to age group-matched controls. Brain region mean Z scores with magnitudes ≥2.00 were interpreted as significant. Comparisons were made between anti-NMDA receptor and other definite AE patients as well as among patients with anti-NMDA receptor based on modified Rankin Scale (mRS) scores at the time of FDG-PET/CT. The medial occipital lobes were markedly hypometabolic in 6 of 8 patients with anti-NMDA receptor encephalitis and as a group (Z = -4.02, interquartile range [IQR] 2.14) relative to those with definite AE (Z = -2.32, 1.46; p = 0.004). Among patients with anti-NMDA receptor encephalitis, the lateral and medial occipital lobes were markedly hypometabolic for patients with mRS 4-5 (lateral occipital lobe Z = -3.69, IQR 1; medial occipital lobe Z = -4.08, 1) compared with those with mRS 0-3 (lateral occipital lobe Z = -0.83, 2; p occipital lobe Z = -1.07, 2; p = 0.001). Marked medial occipital lobe hypometabolism by dedicated brain FDG-PET/CT may serve as an early biomarker for discriminating anti-NMDA receptor encephalitis from other AE. Resolution of lateral and medial occipital hypometabolism may correlate with improved neurologic status in anti-NMDA receptor encephalitis.

  3. Semantic memory is impaired in patients with unilateral anterior temporal lobe resection for temporal lobe epilepsy.

    Science.gov (United States)

    Lambon Ralph, Matthew A; Ehsan, Sheeba; Baker, Gus A; Rogers, Timothy T

    2012-01-01

    Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients' accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency

  4. Severe atrophy of right hepatic lobe simulating right hepatic lobectomy

    International Nuclear Information System (INIS)

    Yeh, C.W.; Strashun, A.; Goldsmith, S.J.

    1981-01-01

    Absence of the right hepatic lobe following blunt abdominal trauma without surgical resection is reported. The usual site of the right hepatic lobe is demonstrated to be occupied by bowel by hepatobiliary imaging

  5. Fast computation of voxel-level brain connectivity maps from resting-state functional MRI using l₁-norm as approximation of Pearson's temporal correlation: proof-of-concept and example vector hardware implementation.

    Science.gov (United States)

    Minati, Ludovico; Zacà, Domenico; D'Incerti, Ludovico; Jovicich, Jorge

    2014-09-01

    An outstanding issue in graph-based analysis of resting-state functional MRI is choice of network nodes. Individual consideration of entire brain voxels may represent a less biased approach than parcellating the cortex according to pre-determined atlases, but entails establishing connectedness for 1(9)-1(11) links, with often prohibitive computational cost. Using a representative Human Connectome Project dataset, we show that, following appropriate time-series normalization, it may be possible to accelerate connectivity determination replacing Pearson correlation with l1-norm. Even though the adjacency matrices derived from correlation coefficients and l1-norms are not identical, their similarity is high. Further, we describe and provide in full an example vector hardware implementation of l1-norm on an array of 4096 zero instruction-set processors. Calculation times correlation in very high-density resting-state functional connectivity analyses. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Confabulation and memory impairments following frontal lobe lesions

    OpenAIRE

    Turner, Martha

    2005-01-01

    Neuroimaging studies have provided considerable evidence for frontal lobe involvement in memory processing. Memory impairments arc also frequently reported in patients with frontal lobe lesions. However detailed anatomical localisation is rare, making integration of lesion and imaging findings difficult. An investigation of the functional and anatomical contributions of the frontal lobes to memory was conducted in 42 patients with frontal lobe lesions, examining memory processes identified in...

  7. Cognitive Function and Heat Shock Protein 70 in Children With Temporal Lobe Epilepsy.

    Science.gov (United States)

    Oraby, Azza M; Raouf, Ehab R Abdol; El-Saied, Mostafa M; Abou-Khadra, Maha K; Helal, Suzette I; Hashish, Adel F

    2017-01-01

    We conducted the present study to examine cognitive function and serum heat shock protein 70 levels among children with temporal lobe epilepsy. The Stanford-Binet Intelligence Test was carried out to examine cognitive function in 30 children with temporal lobe epilepsy and 30 controls. Serum heat shock protein 70 levels were determined with an enzyme-linked immunosorbent assay. The epilepsy group had significantly lower cognitive function testing scores and significantly higher serum heat shock protein 70 levels than the control group; there were significant negative correlations between serum heat shock protein 70 levels and short-term memory and composite scores. Children with uncontrolled seizures had significantly lower verbal reasoning scores and significantly higher serum heat shock protein 70 levels than children with controlled seizures. Children with temporal lobe epilepsy have cognitive dysfunction and elevated levels of serum heat shock protein 70, which may be considered a stress biomarker.

  8. Distinctly visible right upper lobe bronchus on the lateral chest: A clue to adolescent cystic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Reinig, J.W.; Sanchez, F.W.; Thomason, D.M.; Gobien, R.P.

    1985-05-01

    Radiographic differentiation between cystic fibrosis and asthma presenting in teenagers and young adults can be difficult. Many patients with a late presentation of cystic fibrosis display minimal changes on a chest radiograph. However, a large majority (90%) of cystic fibrosis patients with an essentially normal PA chest radiograph will have a distinctly outlined orifice of right upper lobe bronchus on a lateral chest film as opposed to a small number of asthmatics (25%) or normal patients (18%). This observation correlates well with the pathologic finding that the initial pulmonary involvement in cystic fibrosis is typically in the right upper lobe in adolescents. Teenager or young adult patients presenting with a history of repeated respiratory infections, asthma-like symptoms and a distinctly visible right upper lobe bronchus on a lateral chest film should be sweat-tested to exclude cystic fibrosis.

  9. Cognitive Functioning in Temporal Lobe Epilepsy: A BOLD-fMRI Study.

    Science.gov (United States)

    Guo, Lili; Bai, Genji; Zhang, Hui; Lu, Daoyan; Zheng, Jiyong; Xu, Gang

    2017-12-01

    We aimed to analyze the association between resting-state functional magnetic resonance imaging (re-fMRI) and cognitive function (including language, executive, and memory functions) in temporal lobe epilepsy (TLE) patients, which will help to explore the mechanism of brain function in patients. 15 TLE patients and 15 non-TLE patients were recruited. All subjects underwent neuropsychological testing and memory functional evaluation. Changes in verbal intelligence quotient (VIQ), performance intelligence quotient (PIQ), full intelligence quotient (FIQ), and memory quotient (MQ) were compared between two groups. Re-fMRI data were also collected from two groups to evaluate these changes. Each individual score of neuropsychological testing and memory functional evaluation were higher in control group, which was statistically different (all P temporal gyrus back, right superior temporal gyrus, left cerebellum, left angular gyrus, left wedge anterior lobe, and left central back; while the negatively activated brain regions were left prefrontal, right cerebellum, right corner back, and right anterior cingulate gyrus. During the language task, the activated brain regions of the TLE patients were right prefrontal lobe, the lateral temporal gyri, the left cerebellum, left cornu laterale gyrus, left precuneus, and the left postcentral gyrus, whereas the negatively activated brain areas were the left prefrontal cortex, the right cerebellum, right cornu laterale gyrus, and the right anterior cingulate gyrus. During the executive task, epilepsy patients showed activation difference in right prefrontal and right frontal lobe and right brain, left superior temporal gyrus, and right cerebellum anterior lobe compared with the control group; no negatively activated differences in brain areas. During the memory task, the difference lay in bilateral anterior cingulate gyrus and bilateral wedge anterior lobe while the negatively activated brain areas were the left inferior frontal

  10. The extratemporal lobe epilepsies in the epilepsy monitoring unit

    Science.gov (United States)

    Dash, Deepa; Tripathi, Manjari

    2014-01-01

    Extratemporal lobe epilepsies (ETLE) are characterized by the epileptogenic foci outside the temporal lobe. They have a wide spectrum of semiological presentation depending upon the site of origin. They can arise from frontal, parietal, occipital lobes and from hypothalamic hamartoma. We discuss in this review the semiology of different types of ETLE encountered in the epilepsy monitoring unit. PMID:24791090

  11. A Rare Case of Craniopharyngioma in the Temporal Lobe

    Directory of Open Access Journals (Sweden)

    Sasan Razmjoo

    2017-01-01

    Full Text Available Herein, we report on a rare case of craniopharyngioma arising in the left temporal lobe with no prior history of head trauma or surgery. There was a solid-cystic mass in the left temporal lobe on MR images. To the best of our knowledge, this is the second case of a craniopharyngioma occurring in the temporal lobe.

  12. Mesial temporal lobe epilepsy - An overview of surgical techniques.

    Science.gov (United States)

    Muzumdar, Dattatraya; Patil, Manoj; Goel, Atul; Ravat, Sangeeta; Sawant, Nina; Shah, Urvashi

    2016-12-01

    Mesial temporal lobe epilepsy is one of the commonest indications for epilepsy surgery. Presurgical evaluation for drug resistant epilepsy and identification of appropriate candidates for surgery is essential for optimal seizure freedom. The anatomy of mesial temporal lobe is complex and needs to be understood in the context of the advanced imaging, ictal and interictal Video_EEG monitoring, neuropsychology and psychiatric considerations. The completeness of disconnection of epileptogenic neural networks is paramount and is correlated with the extent of resection of the mesial temporal structures. In the Indian subcontinent, a standard but extended anterior temporal lobectomy is a viable option in view of the diverse socioeconomic, cultural and pathological considerations. The maximum utilization of epilepsy surgery services in this region is also a challenge. There is a need for regional comprehensive epilepsy care teams in a tertiary care academic hospital to form centers of excellence catering to a large population. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  13. Assessing the Psychedelic “After-Glow” in Ayahuasca Users: Post-Acute Neurometabolic and Functional Connectivity Changes Are Associated with Enhanced Mindfulness Capacities

    Science.gov (United States)

    Sampedro, Frederic; de la Fuente Revenga, Mario; Valle, Marta; Roberto, Natalia; Domínguez-Clavé, Elisabet; Elices, Matilde; Luna, Luís Eduardo; Crippa, José Alexandre S; Hallak, Jaime E C; de Araujo, Draulio B; Friedlander, Pablo; Barker, Steven A; Álvarez, Enrique; Soler, Joaquim; Pascual, Juan C; Feilding, Amanda

    2017-01-01

    Abstract Background Ayahuasca is a plant tea containing the psychedelic 5-HT2A agonist N,N-dimethyltryptamine and harmala monoamine-oxidase inhibitors. Acute administration leads to neurophysiological modifications in brain regions of the default mode network, purportedly through a glutamatergic mechanism. Post-acutely, ayahuasca potentiates mindfulness capacities in volunteers and induces rapid and sustained antidepressant effects in treatment-resistant patients. However, the mechanisms underlying these fast and maintained effects are poorly understood. Here, we investigated in an open-label uncontrolled study in 16 healthy volunteers ayahuasca-induced post-acute neurometabolic and connectivity modifications and their association with mindfulness measures. Methods Using 1H-magnetic resonance spectroscopy and functional connectivity, we compared baseline and post-acute neurometabolites and seed-to-voxel connectivity in the posterior and anterior cingulate cortex after a single ayahuasca dose. Results Magnetic resonance spectroscopy showed post-acute reductions in glutamate+glutamine, creatine, and N-acetylaspartate+N-acetylaspartylglutamate in the posterior cingulate cortex. Connectivity was increased between the posterior cingulate cortex and the anterior cingulate cortex, and between the anterior cingulate cortex and limbic structures in the right medial temporal lobe. Glutamate+glutamine reductions correlated with increases in the “nonjudging” subscale of the Five Facets Mindfulness Questionnaire. Increased anterior cingulate cortex-medial temporal lobe connectivity correlated with increased scores on the self-compassion questionnaire. Post-acute neural changes predicted sustained elevations in nonjudging 2 months later. Conclusions These results support the involvement of glutamate neurotransmission in the effects of psychedelics in humans. They further suggest that neurometabolic changes in the posterior cingulate cortex, a key region within the default

  14. Assessing the Psychedelic "After-Glow" in Ayahuasca Users: Post-Acute Neurometabolic and Functional Connectivity Changes Are Associated with Enhanced Mindfulness Capacities.

    Science.gov (United States)

    Sampedro, Frederic; de la Fuente Revenga, Mario; Valle, Marta; Roberto, Natalia; Domínguez-Clavé, Elisabet; Elices, Matilde; Luna, Luís Eduardo; Crippa, José Alexandre S; Hallak, Jaime E C; de Araujo, Draulio B; Friedlander, Pablo; Barker, Steven A; Álvarez, Enrique; Soler, Joaquim; Pascual, Juan C; Feilding, Amanda; Riba, Jordi

    2017-09-01

    Ayahuasca is a plant tea containing the psychedelic 5-HT2A agonist N,N-dimethyltryptamine and harmala monoamine-oxidase inhibitors. Acute administration leads to neurophysiological modifications in brain regions of the default mode network, purportedly through a glutamatergic mechanism. Post-acutely, ayahuasca potentiates mindfulness capacities in volunteers and induces rapid and sustained antidepressant effects in treatment-resistant patients. However, the mechanisms underlying these fast and maintained effects are poorly understood. Here, we investigated in an open-label uncontrolled study in 16 healthy volunteers ayahuasca-induced post-acute neurometabolic and connectivity modifications and their association with mindfulness measures. Using 1H-magnetic resonance spectroscopy and functional connectivity, we compared baseline and post-acute neurometabolites and seed-to-voxel connectivity in the posterior and anterior cingulate cortex after a single ayahuasca dose. Magnetic resonance spectroscopy showed post-acute reductions in glutamate+glutamine, creatine, and N-acetylaspartate+N-acetylaspartylglutamate in the posterior cingulate cortex. Connectivity was increased between the posterior cingulate cortex and the anterior cingulate cortex, and between the anterior cingulate cortex and limbic structures in the right medial temporal lobe. Glutamate+glutamine reductions correlated with increases in the "nonjudging" subscale of the Five Facets Mindfulness Questionnaire. Increased anterior cingulate cortex-medial temporal lobe connectivity correlated with increased scores on the self-compassion questionnaire. Post-acute neural changes predicted sustained elevations in nonjudging 2 months later. These results support the involvement of glutamate neurotransmission in the effects of psychedelics in humans. They further suggest that neurometabolic changes in the posterior cingulate cortex, a key region within the default mode network, and increased connectivity between the

  15. Measuring the volume of frontal lobe in healthy Chinese adults of the Han nationality on the high-resolution MRI

    International Nuclear Information System (INIS)

    Yin Lu; Liu Peifang; Ye Zhaoxiang; Chen Nan; Wang Xing; Li Kuncheng; Zhuo Yan; Chen Lin

    2010-01-01

    Objective: To explore the normal range of the volume of frontal lobe in Chinese adults of the Han nationality and provide morphological data for the construction of database for Chinese Standard Brain. Methods: This is a clinical multi-center study. Two hundred Chinese healthy volunteers (age range =18 to 70) recruited from 16 hospitals were divided into 5 groups, i.e., age range from 18 to 30, age range from 31 to 40, age range from 41 to 50, age range from 51 to 60, and age range from 61 to 70. Each group contained 20 males and 20 females. All of the volunteers were scanned by MR using T 1 weighted three- dimensional magnetization prepared rapid acquisition gradient echo sequence. We used the manual method to trace the region of interest and measured the left and right frontal lobe volumes separately. All the data were analyzed with SPSS (version 13.0). The sex differences in the frontal lobe volumes were analyzed by independent-samples t test, and the side differences were analyzed by paired-samples t test. Correlation and regression analysis was used between the age and the frontal lobe volumes. Results: In 200 healthy Chinese Han volunteers, the total frontal lobe volumes was (563±73) cm 3 . For male, the volumes of the left and the right frontal lobe were (288±42) cm 3 and (292±41) cm 3 , respectively. The volumes of the left and right frontal lobe in 100 women were (273±30)cm 3 and (274±30) cm 3 respectively. The differences of sex (t=3.334, P 0.05). There were negative correlations between the frontal lobe volumes and age in men and women (r=-0.586, -0.498, P< 0.01). Conclusions: The total frontal lobe volume of men was larger than that of women. The volume of the right frontal lobe was larger than the left frontal lobe in men, and the asymmetries didn't exist in women. The total frontal lobe volumes were both shrinking with age in men and women, which was more rapid in men than in women. (authors)

  16. Multimodality medical image database for temporal lobe epilepsy

    Science.gov (United States)

    Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost

    2003-05-01

    This paper presents the development of a human brain multi-modality database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted and FLAIR MRI and ictal/interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as non-verbal Wechsler memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication matches the neurosurgeons expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.

  17. Dynamic perfusion patterns in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Dupont, Patrick; Paesschen, Wim van; Zaknun, John J.; Maes, Alex; Tepmongkol, Supatporn; Locharernkul, Chaichon; Vasquez, Silvia; Carpintiero, Silvina; Bal, C.S.; Dondi, Maurizio

    2009-01-01

    To investigate dynamic ictal perfusion changes during temporal lobe epilepsy (TLE). We investigated 37 patients with TLE by ictal and interictal SPECT. All ictal injections were performed within 60 s of seizure onset. Statistical parametric mapping was used to analyse brain perfusion changes and temporal relationships with injection time and seizure duration as covariates. The analysis revealed significant ictal hyperperfusion in the ipsilateral temporal lobe extending to subcortical regions. Hypoperfusion was observed in large extratemporal areas. There were also significant dynamic changes in several extratemporal regions: ipsilateral orbitofrontal and bilateral superior frontal gyri and the contralateral cerebellum and ipsilateral striatum. The study demonstrated early dynamic perfusion changes in extratemporal regions probably involved in both propagation of epileptic activity and initiation of inhibitory mechanisms. (orig.)

  18. Dynamic perfusion patterns in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Patrick; Paesschen, Wim van [KU Leuven/UZ Gasthuisberg, Nuclear Medicine, Medical Imaging Center and Neurology, Leuven (Belgium); Zaknun, John J. [International Atomic Energy Agency (IAEA), Nuclear Medicine Section, Division of Human Health, Wagramer Strasse 5, PO BOX 200, Vienna (Austria); University Hospital of Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); Maes, Alex [KU Leuven/UZ Gasthuisberg, Nuclear Medicine, Medical Imaging Center and Neurology, Leuven (Belgium); AZ Groeninge, Nuclear Medicine, Kortrijk (Belgium); Tepmongkol, Supatporn; Locharernkul, Chaichon [Chulalongkorn University, Nuclear Medicine and Neurology, Bangkok (Thailand); Vasquez, Silvia; Carpintiero, Silvina [Fleni Instituto de Investigaciones Neurologicas, Nuclear Medicine, Buenos Aires (Argentina); Bal, C.S. [All India Institute of Medical Sciences, Nuclear Medicine, New Delhi (India); Dondi, Maurizio [International Atomic Energy Agency (IAEA), Nuclear Medicine Section, Division of Human Health, Wagramer Strasse 5, PO BOX 200, Vienna (Austria); Ospedale Maggiore, Nuclear Medicine, Bologna (Italy)

    2009-05-15

    To investigate dynamic ictal perfusion changes during temporal lobe epilepsy (TLE). We investigated 37 patients with TLE by ictal and interictal SPECT. All ictal injections were performed within 60 s of seizure onset. Statistical parametric mapping was used to analyse brain perfusion changes and temporal relationships with injection time and seizure duration as covariates. The analysis revealed significant ictal hyperperfusion in the ipsilateral temporal lobe extending to subcortical regions. Hypoperfusion was observed in large extratemporal areas. There were also significant dynamic changes in several extratemporal regions: ipsilateral orbitofrontal and bilateral superior frontal gyri and the contralateral cerebellum and ipsilateral striatum. The study demonstrated early dynamic perfusion changes in extratemporal regions probably involved in both propagation of epileptic activity and initiation of inhibitory mechanisms. (orig.)

  19. MR imaging of temporal lobe meningoencephalocele

    International Nuclear Information System (INIS)

    Tampieri, D.; Leblanc, R.; Melangon, D.; del-Carpio-O'Donovan, R.; Ethier, R.

    1991-01-01

    Basal meningoencephaloceles represent a rare entity, and they may be associated with a variety of midline cerebral abnormalities. The classification of basal meningoencephaloceles is related to their anatomic location. This paper reports experience in 3 patients, 2 who have temporal lobe epilepsy and a bone defect in the region of the foramen rotondum. In these 2 patients the encephalocele and its covering were protruding into the pterygopalatine fossa without any orbital involvement. The third patient presented with cerebrospinal fluid rhinorrhea caused by a transsphenoidal meningoencephalocele. MR imaging is the examination of choice for detecting these lesions since it allows for the visualization of the encephalocele and its meningeal covering as well as the bone defect and associated lesions in the temporal lobes

  20. MRI findings of temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Nakahara, Ichiro; Yin, Dali; Fukami, Masahiro; Kondo, Seiji; Takeuchi, Juji; Kanemoto, Kousuke; Sengoku, Akira; Kawai, Itsuo

    1992-01-01

    MRI findings were analyzed retrospectively in 46 patients with temporal lobe epilepsy in which the side of epileptogenic focus had been confirmed by EEG studies. T 1 - and T 2 -weighted images were obtained by the use of a 1.0 or 1.5 T superconducting-type MRI machine with a coronal scan perpendicular to the axis of the temporal horn of the lateral ventricle. Additional axial and sagittal scans were performed in some cases. The area of the hippocampal body was measured quantitatively using a computerized image-analysis system in 26 cases in which the hippocampus had been visualized with enough contrast on T 1 -weighted coronal images. Abnormal findings were observed in 31/46 (67%) cases. Hippocampal (HC) and temporal lobe (TL) atrophy were observed in 18/46 (39%) and 23/46 (50%) cases respectively, and the side of the atrophy corresponded with the side of the epileptogenic focus, as confirmed by EEG studies, with specificities of 89% and 74% respectively. A quantitative measurement of the area of the hippocampal body showed unilateral hippocampal atrophy more than 10% in 18/25 (69%) cases (10-25%: 10 cases, 25-50%: 7 cases, 50% 2 abnormality was observed in only 4 cases. Structural lesions were observed in 4 cases including an arachnoid cyst, an astrocytoma in amygdala, the Dandy-Walker syndrome, and tuberous sclerosis, using the more efficient imaging qualities than the CT scan. From these observations, it is apparant that superconducting MRI is extremely useful in the diagnosis of the epileptogenic topography of temporal lobe epilepsy. Particularly, hippocampal atrophy was found to correspond with the side of the epileptogenic focus on EEG with a high specificity; its quantitative evaluation could be one of the most important standards in detecting the operative indications for temporal lobe epilepsy. (author)

  1. Bilateral optical nerve atrophy secondary to lateral occipital lobe infarction.

    Science.gov (United States)

    Mao, Junfeng; Wei, Shihui

    2013-06-01

    To report a phenomenon of optical nerve atrophy secondary to lateral occipital lobe infarction. Two successive patients with unilateral occipital lobe infarction who experienced bilateral optical nerve atrophy during the follow-up underwent cranial imaging, fundus photography, and campimetry. Each patient was diagnosed with occipital lobe infarction by cranial MRI. During the follow-up, a bilateral optic atrophy was revealed, and campimetry showed a right homonymous hemianopia of both eyes with concomitant macular division. Bilateral optic atrophy was related to occipital lobe infarction, and a possible explanation for the atrophy was transneuronal degeneration caused by occipital lobe infarction.

  2. Reduced frontal and occipital lobe asymmetry on the CT-scans of schizophrenic patients. Its specificity and clinical significance

    International Nuclear Information System (INIS)

    Falkai, P.; Schneider, T.; Greve, B.; Klieser, E.; Bogerts, B.

    1995-01-01

    Frontal and occipital lobe widths were determined in the computed tomographic (CT) scans of 135 schizophrenic patients, 158 neuro psychiatrically healthy and 102 psychiatric control subjects, including patients with affective psychosis, neurosis and schizoaffective psychosis. Most healthy right-handed subjects demonstrate a relative enlargement of the right frontal as well as left occipital lobe compared to the opposite hemisphere. These normal frontal and occipital lobe asymmetries were selectively reduced in schizophrenics (f.: 5%, p < .0005; o.: 3%, p < .05), irrespective of the pathophysiological subgroup. Schizophrenic neuroleptic non-responders revealed a significant reduction of frontal lobe asymmetry (3%, p < .05), while no correlation between BPRS-sub scores and disturbed cerebral laterality could be detected. In sum the present study demonstrates the disturbed cerebral lateralisation in schizophrenic patients supporting the hypothesis of interrupted early brain development in schizophrenia. (author)

  3. Temporal Lobe Epilepsy Surgery Failures: A Review

    Science.gov (United States)

    Harroud, Adil; Bouthillier, Alain; Weil, Alexander G.; Nguyen, Dang Khoa

    2012-01-01

    Patients with temporal lobe epilepsy (TLE) are refractory to antiepileptic drugs in about 30% of cases. Surgical treatment has been shown to be beneficial for the selected patients but fails to provide a seizure-free outcome in 20–30% of TLE patients. Several reasons have been identified to explain these surgical failures. This paper will address the five most common causes of TLE surgery failure (a) insufficient resection of epileptogenic mesial temporal structures, (b) relapse on the contralateral mesial temporal lobe, (c) lateral temporal neocortical epilepsy, (d) coexistence of mesial temporal sclerosis and a neocortical lesion (dual pathology); and (e) extratemporal lobe epilepsy mimicking TLE or temporal plus epilepsy. Persistence of epileptogenic mesial structures in the posterior temporal region and failure to distinguish mesial and lateral temporal epilepsy are possible causes of seizure persistence after TLE surgery. In cases of dual pathology, failure to identify a subtle mesial temporal sclerosis or regions of cortical microdysgenesis is a likely explanation for some surgical failures. Extratemporal epilepsy syndromes masquerading as or coexistent with TLE result in incomplete resection of the epileptogenic zone and seizure relapse after surgery. In particular, the insula may be an important cause of surgical failure in patients with TLE. PMID:22934162

  4. A correlation study on position and volume variation of primary lung cancer during respiration by four-dimensional CT

    International Nuclear Information System (INIS)

    Zhang Yingjie; Li Jianbin; Tian Shiyu; Li Fengxiang; Fan Tingyong; Shao Qian; Xu Min; Lu Jie

    2011-01-01

    Objective: To investigate the correlation of position movement of primary tumor with interested organs and skin markers, and to investigate the correlation of volume variation of primary tumors and lungs during different respiration phases for patients with lung cancer at free breath condition scanned by four-dimensional CT (4DCT) simulation. Methods: 16 patients with lung cancer were scanned at free breath condition by simulation 4DCT which connected to a respiration-monitoring system. A coordinate system was created based on image of T 5 phase,gross tumor volume (GTV) and normal tissue structures of 10 phases were contoured. The three dimensional position variation of them were measured and their correlation were analyzed, and the same for the volume variation of GTV and lungs of 10 respiratory phases. Results: Movement range of lung cancer in different lobe differed extinct: 0.8 - 5.0 mm in upper lobe, 5.7 -5.9 mm in middle lobe and 10.2 - 13.7 mm in lower lobe, respectively. Movement range of lung cancer in three dimensional direction was different: z-axis 4.3 mm ± 4.3 mm > y-axis 2.2 mm ± 1.0 mm > x-axis 1.7 mm ± 1.5 mm (χ 2 =16.22, P =0.000), respectively. There was no statistical significant correlation for movement vector of GTV and interested structures (r =-0.50 - -0.01, P =0.058 - -0.961), nor for volume variation of tumor and lung (r =0.23, P =0.520). Conclusions: Based on 4DCT, statistically significant differences of GTV centroid movement are observed at different pulmonary lobes and in three dimensional directions. So individual 4DCT measurement is necessary for definition of internal target volume margin for lung cancer. (authors)

  5. Clinical study on temporal lobe epilepsy in childhood caused by temporal lobe space occupying lesions

    International Nuclear Information System (INIS)

    Matsuura, Mariko; Oguni, Hirokazu; Funatsuka, Makoto; Osawa, Makiko; Yamane, Fumitaka; Hori, Tomokatsu; Shimizu, Hiroyuki

    2008-01-01

    We studied the clinicoelectrical and neuroimaging features of 11 patients with symptomatic temporal lobe epilepsy (TLE) caused by temporal lobe space occupying lesions (SOLs), and compared its characteristics with those of 19 mesial TLE (MTLE) patients. Brain MRI demonstrated SOLs in the mesiotemporal lobe in 9, and laterotemporal lobe in the remaining 2 patients. Ten of the 11 patients successfully underwent surgery, which revealed tumors in 7 and focal cortical dysplasia in 3 patients. Comparisons of the clinical features between those with space occupying TLE (SOTLE) and MTLE showed that both conditions shared the same clinical seizure manifestations such as gastric uprising sensation or ictal fear and a favorable response to surgery. However, the patients with SOTLE had fewer febrile convulsion, and more frequent seizure recurrences as well as TLE EEG discharges and associations of the monophasic clinical course than those with MTLE. In addition, the MRI findings were characterized by unilateral hippocampal atrophy in MTLE and expanding or SOLs in the SOTLE group. Children with complex partial seizures of suspected temporal lobe origin should undergo extensive neuroimaging evaluation. (author)

  6. Carbamazepine reduces memory induced activation of mesial temporal lobe structures: a pharmacological fMRI-study

    Directory of Open Access Journals (Sweden)

    Okujava Michael

    2001-11-01

    Full Text Available Abstract Background and Purpose It is not known whether carbamazepine (CBZ; a drug widely used in neurology and psychiatry influences the blood oxygenation level dependent (BOLD contrast changes induced by neuronal activation and measured by functional MRI (fMRI. We aimed to investigate the influence of CBZ on memory induced activation of the mesial temporal lobes in patients with symptomatic temporal lobe epilepsy (TLE. Material and Methods Twenty-one individual patients with refractory symptomatic TLE with different CBZ serum levels and 20 healthy controls were studied using BOLD fMRI. Mesial temporal lobe (MTL activation was induced by a task that is based on the retrieval of individually familiar visuo-spatial knowledge. The extent of significant MTL fMRI activation was measured and correlated with the CBZ serum level. Results In TLE patients, the extent of significant fMRI activation over both MTL was negatively correlated to the CBZ serum level (Spearman r = -0.654, P Conclusions In TLE patients, carbamazepine reduces the fMRI-detectable changes within the mesial temporal lobes as induced by effortful memory retrieval. FMRI appears to be suitable to study the effects of chronic drug treatment in patients with epilepsy.

  7. Improved diagnostic accuracy of Alzheimer's disease by combining regional cortical thickness and default mode network functional connectivity: Validated in the Alzheimer's disease neuroimaging initiative set

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Park, Bum Woo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Jung; Oh, Joo Young; Shim, Woo Hyun [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Lee, Jae Hong; Roh, Jee Hoon [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2017-11-15

    To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal (p < 0.001) and supramarginal gyrus (p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease.

  8. Magnetic resonance imaging in temporal lobe epilepsy. Usefulness for the etiological diagnosis of temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Mohamed, A.; Lueders, H.O.

    2000-01-01

    With improvement in magnetic resonance (MR) imaging techniques, the ability to identify lesions responsible for temporal lobe epilepsy has increased. MR imaging has also enabled the in vivo diagnosis of hippocampal sclerosis. Brain tumors are responsible for 2-4% of epilepsies in adult population and 10-20% of medically intractable epilepsy. The sensitivity of MR imaging in the diagnosis of tumors and other lesions of the temporal lobe (vascular malformations, etc.) is around 90%. Both hippocampal sclerosis and other temporal lobe lesions are amenable to surgical therapy with excellent postsurgical seizure outcome. In this article, we characterize and underline distinguishing features of the different pathological entities. We also suggest an approach to reviewing the MR images of an epileptic patient. (author)

  9. Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure.

    Science.gov (United States)

    Göttlich, Martin; Jandl, Nico M; Wojak, Jann F; Sprenger, Andreas; von der Gablentz, Janina; Münte, Thomas F; Krämer, Ulrike M; Helmchen, Christoph

    2014-01-01

    Patients with bilateral vestibular failure (BVF) suffer from gait unsteadiness, oscillopsia and impaired spatial orientation. Brain imaging studies applying caloric irrigation to patients with BVF have shown altered neural activity of cortical visual-vestibular interaction: decreased bilateral neural activity in the posterior insula and parietal operculum and decreased deactivations in the visual cortex. It is unknown how this affects functional connectivity in the resting brain and how changes in connectivity are related to vestibular impairment. We applied a novel data driven approach based on graph theory to investigate altered whole-brain resting-state functional connectivity in BVF patients (n= 22) compared to age- and gender-matched healthy controls (n= 25) using resting-state fMRI. Changes in functional connectivity were related to subjective (vestibular scores) and objective functional parameters of vestibular impairment, specifically, the adaptive changes during active (self-guided) and passive (investigator driven) head impulse test (HIT) which reflects the integrity of the vestibulo-ocular reflex (VOR). BVF patients showed lower bilateral connectivity in the posterior insula and parietal operculum but higher connectivity in the posterior cerebellum compared to controls. Seed-based analysis revealed stronger connectivity from the right posterior insula to the precuneus, anterior insula, anterior cingulate cortex and the middle frontal gyrus. Excitingly, functional connectivity in the supramarginal gyrus (SMG) of the inferior parietal lobe and posterior cerebellum correlated with the increase of VOR gain during active as compared to passive HIT, i.e., the larger the adaptive VOR changes the larger was the increase in regional functional connectivity. Using whole brain resting-state connectivity analysis in BVF patients we show that enduring bilateral deficient or missing vestibular input leads to changes in resting-state connectivity of the brain. These

  10. Altered functional connectivity to stressful stimuli in prenatally cocaine-exposed adolescents.

    Science.gov (United States)

    Zakiniaeiz, Yasmin; Yip, Sarah W; Balodis, Iris M; Lacadie, Cheryl M; Scheinost, Dustin; Constable, R Todd; Mayes, Linda C; Sinha, Rajita; Potenza, Marc N

    2017-11-01

    Prenatal cocaine exposure (PCE) is linked to addiction and obesity vulnerability. Neural responses to stressful and appetitive cues in adolescents with PCE versus those without have been differentially linked to substance-use initiation. However, no prior studies have assessed cue-reactivity responses among PCE adolescents using a connectivity-based approach. Twenty-two PCE and 22 non-prenatally drug-exposed (NDE) age-, sex-, IQ- and BMI-matched adolescents participated in individualized guided imagery with appetitive (favorite-food), stressful and neutral-relaxing cue scripts during functional magnetic resonance imaging. Subjective favorite-food craving scores were collected before and after script exposure. A data-driven voxel-wise intrinsic connectivity distribution analysis was used to identify between-group differences and examine relationships with craving scores. A group-by-cue interaction effect identified a parietal lobe cluster where PCE versus NDE adolescents showed less connectivity during stressful and more connectivity during neutral-relaxing conditions. Follow-up seed-based connectivity analyses revealed that, among PCE adolescents, the parietal seed was positively connected to inferior parietal and sensory areas and negatively connected to corticolimbic during both stress and neutral-relaxing conditions. For NDE, greater parietal connectivity to parietal, cingulate and sensory areas and lesser parietal connectivity to medial prefrontal areas were found during stress compared to neutral-relaxing cueing. Craving scores inversely correlated with corticolimbic connectivity in PCE, but not NDE adolescents, during the favorite-food condition. Findings from this first data-driven intrinsic connectivity analysis of PCE influences on adolescent brain function indicate differences relating to PCE status and craving. These findings provide insight into the developmental impact of in utero drug exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Representing Representation: Integration between the Temporal Lobe and the Posterior Cingulate Influences the Content and Form of Spontaneous Thought.

    Directory of Open Access Journals (Sweden)

    Jonathan Smallwood

    Full Text Available When not engaged in the moment, we often spontaneously represent people, places and events that are not present in the environment. Although this capacity has been linked to the default mode network (DMN, it remains unclear how interactions between the nodes of this network give rise to particular mental experiences during spontaneous thought. One hypothesis is that the core of the DMN integrates information from medial and lateral temporal lobe memory systems, which represent different aspects of knowledge. Individual differences in the connectivity between temporal lobe regions and the default mode network core would then predict differences in the content and form of people's spontaneous thoughts. This study tested this hypothesis by examining the relationship between seed-based functional connectivity and the contents of spontaneous thought recorded in a laboratory study several days later. Variations in connectivity from both medial and lateral temporal lobe regions was associated with different patterns of spontaneous thought and these effects converged on an overlapping region in the posterior cingulate cortex. We propose that the posterior core of the DMN acts as a representational hub that integrates information represented in medial and lateral temporal lobe and this process is important in determining the content and form of spontaneous thought.

  12. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury.

    Science.gov (United States)

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Hellyer, Peter J; Jolly, Amy E; Patel, Maneesh C; Cole, James H; Leech, Robert; Sharp, David J

    2018-01-01

    Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with measures of

  13. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury

    Science.gov (United States)

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Jolly, Amy E; Patel, Maneesh C; Leech, Robert; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with

  14. Tc-99m MAA findings in dilated cardiomyopathy with partial anomalous venous connections.

    Science.gov (United States)

    Ishii, Shirou; Shishido, Fumio; Miyajima, Masayuki; Sakuma, Koutarou; Shigihara, Takeshi; Kikuchi, Ken

    2011-07-01

    Tc-99m MAA showed asymmetric uptake in the lung field in a 21-year-old man with dilated cardiomyopathy. CT revealed partial anomalous venous connections in the left upper lobe. Angiogram of the left pulmonary upper lobe showed all the contrast material drained into the left vertical vein. The possible cause of relative increase in the left upper lobe blood flow is that right pulmonary blood flow is slowed by the high pressure in the left atrium due to dilated cardiomyopathy, whereas the flow from the left upper lobe drains into the superior vena cava which has less pressure than left atrium.

  15. Development of rostral inferior parietal lobule area functional connectivity from late childhood to early adulthood.

    Science.gov (United States)

    Wang, Mengxing; Zhang, Jilei; Dong, Guangheng; Zhang, Hui; Lu, Haifeng; Du, Xiaoxia

    2017-06-01

    Although the mirror neuron system (MNS) has been extensively studied in monkeys and adult humans, very little is known about its development. Previous studies suggest that the MNS is present by infancy and that the brain and MNS-related cognitive abilities (such as language, empathy, and imitation learning) continue to develop after childhood. In humans, the PFt area of the inferior parietal lobule (IPL) seems to particularly correlate with the functional properties of the PF area in primates, which contains mirror neurons. However, little is known about the functional connectivity (FC) of the PFt area with other brain areas and whether these networks change over time. Here, we investigated the FC development of the PFt area-based network in 59 healthy subjects aged 7-26 years at resting-state to study brain development from late childhood through adolescence to early adulthood. The bilateral PFt showed similar core FC networks, which included the frontal lobe, the cingulate gyri, the insula, the somatosensory cortex, the precuneus, the superior and inferior parietal lobules, the temporal lobe, and the cerebellum posterior lobes. Furthermore, the FC between the left PFt and the left IPL exhibited a significantly positive correlation with age, and the FC between the left PFt and the right postcentral gyrus exhibited a significantly negative correlation with age. In addition, the FC between the right PFt and the right putamen exhibited a significantly negative correlation with age. Our findings suggest that the PFt area-based network develops and is reorganized with age. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  16. Decrease in N-acetylaspartate/creatine ratio in the motor area and the frontal lobe in amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Abe, K.; Takanashi, M.; Yanagihara, T.; Watanabe, Y.; Tanaka, H.; Fujita, N.; Hirabuki, N.

    2001-01-01

    We studied whether N-acetylaspartate (NAA), a neuronal marker, is reduced in the brain of 14 patients with clinically definite amyotrophic lateral sclerosis (ALS) and whether NAA levels in the motor area and frontal lobe correlate with the clinical features, including frontal lobe function. We also studied 14 normal controls were evaluated. We obtained peak integrals in 1 H magnetic resonance spectroscopy (MRS) for NAA, creatine (Cr), and choline-containing compounds (Cho). Severity of the disease was determined using the manual muscle strength test, and the Norris limb and bulbar scales. In the patients, the NAA/Cr ratio was reduced in the motor area and frontal lobe, while the Cho/Cr ratio was normal throughout the brain. There were significant correlations between the NAA/Cr ratio in the motor area and the Norris limb scale (r = 0.50; P < 0.01) and between the NAA/Cr ratio in the frontal lobe and the number of categories achieved in the Wisconsin Card Sorting test (r = 0.71; P < 0.05), implying frontal lobe dysfunction. These correlations suggest that a reduced NAA/Cr ratio is a marker of cortical neuronal loss and dysfunction in ALS. (orig.)

  17. Decrease in N-acetylaspartate/creatine ratio in the motor area and the frontal lobe in amyotrophic lateral sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Takanashi, M.; Yanagihara, T. [Dept. of Neurology, Osaka University Graduate School of Medicine (Japan); Watanabe, Y.; Tanaka, H.; Fujita, N.; Hirabuki, N. [Dept. of Radiology, Osaka University Graduate School of Medicine (Japan)

    2001-07-01

    We studied whether N-acetylaspartate (NAA), a neuronal marker, is reduced in the brain of 14 patients with clinically definite amyotrophic lateral sclerosis (ALS) and whether NAA levels in the motor area and frontal lobe correlate with the clinical features, including frontal lobe function. We also studied 14 normal controls were evaluated. We obtained peak integrals in {sup 1}H magnetic resonance spectroscopy (MRS) for NAA, creatine (Cr), and choline-containing compounds (Cho). Severity of the disease was determined using the manual muscle strength test, and the Norris limb and bulbar scales. In the patients, the NAA/Cr ratio was reduced in the motor area and frontal lobe, while the Cho/Cr ratio was normal throughout the brain. There were significant correlations between the NAA/Cr ratio in the motor area and the Norris limb scale (r = 0.50; P < 0.01) and between the NAA/Cr ratio in the frontal lobe and the number of categories achieved in the Wisconsin Card Sorting test (r = 0.71; P < 0.05), implying frontal lobe dysfunction. These correlations suggest that a reduced NAA/Cr ratio is a marker of cortical neuronal loss and dysfunction in ALS. (orig.)

  18. Connecting Grammaticalisation

    DEFF Research Database (Denmark)

    Nørgård-Sørensen, Jens; Heltoft, Lars; Schøsler, Lene

    morphological, topological and constructional paradigms often connect to form complex paradigms. The book introduces the concept of connecting grammaticalisation to describe the formation, restructuring and dismantling of such complex paradigms. Drawing primarily on data from Germanic, Romance and Slavic...

  19. Avaliação de foco epileptogênico do lobo temporal: correlação entre SPECT ictal, ressonância magnética e ressonância magnética com espectroscopia de prótons Evaluation of epileptogenic focus in temporal lobe: correlation between ictal brain SPECT, magnetic resonance imaging and magnetic resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Maria Elena Martins Diegues

    2004-02-01

    Full Text Available O objetivo deste trabalho foi determinar a existência de concordância entre os métodos radioisotópico e radiológico e, em caso positivo, avaliar a utilidade do SPECT ictal na determinação do foco epileptogênico. Foram realizados SPECT ictal, ressonância magnética (RM e ressonância magnética com espectroscopia de prótons (RME em seis pacientes com epilepsia de lobo temporal refratária. O SPECT ictal foi realizado após a retirada das drogas antiepilépticas durante monitoramento por vídeo-EEG, utilizando-se o 99mTc-ECD, administrado aos pacientes no início da crise. As imagens de RM foram obtidas em T1, T2 e FLAIR, com cortes de 3 e 5 mm de espessura, e a RME foi realizada com técnica PRESS, com voxel único posicionado no hipocampo, bilateralmente. A análise estatística incluiu os valores de Kappa (k, erro-padrão (ep e o nível de significância (p para a lateralização do foco. Os achados foram analisados com base na localização por EEG da descarga ictal, no tempo de duração da crise (109-280 s; média: 152 s e no tempo de administração do traçador (30-262 s; média: 96 s. Obtivemos dados correlatos em quatro pacientes (67%, com valores de k = 0,67, ep = 0,38 e p = 0,041. Concluímos que existe concordância entre SPECT ictal, RM e RME, e a utilidade do procedimento radioisotópico está relacionada aos casos em que o EEG não é diagnóstico e quando há discordância ou indefinição diagnóstica na análise comparativa entre EEG, RM e RME.The purpose of this study was to determine the degree of concordance between radiological and radioisotopic methods and, if positive, to evaluate the usefulness of ictal SPECT in the localization of the epileptogenic focus. Ictal brain SPECT, magnetic resonance imaging (MRI and magnetic resonance spectroscopy (MRS were performed on six patients with refractory temporal lobe epilepsy. Ictal SPECT was performed after withdrawal of the anti-epileptogenic drugs during video

  20. Regional homogeneity, resting-state functional connectivity and amplitude of low frequency fluctuation associated with creativity measured by divergent thinking in a sex-specific manner.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Yokoyama, Ryoichi; Kotozaki, Yuka; Nakagawa, Seishu; Sekiguchi, Atsushi; Iizuka, Kunio; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Makoto Miyauchi, Carlos; Shinada, Takamitsu; Sakaki, Kohei; Nozawa, Takayuki; Ikeda, Shigeyuki; Yokota, Susumu; Daniele, Magistro; Sassa, Yuko; Kawashima, Ryuta

    2017-05-15

    Brain connectivity is traditionally thought to be important for creativity. Here we investigated the associations of creativity measured by divergent thinking (CMDT) with resting-state functional magnetic imaging (fMRI) measures and their sex differences. We examined these relationships in the brains of 1277 healthy young adults. Whole-brain analyses revealed a significant interaction between verbal CMDT and sex on (a) regional homogeneity within an area from the left anterior temporal lobe (b) on the resting state functional connectivity (RSFC) between the mPFC and the left inferior frontal gyrus and (c) on fractional amplitude of low frequency fluctuations (fALFF) in several distinct areas, including the precuneus and middle cingulate gyrus, left middle temporal gyrus, right middle frontal gyrus, and cerebellum. These interactions were mediated by positive correlations in females and negative correlations in males. These findings suggest that greater CMDT in females is reflected by (a) regional coherence (regional homogeneity) of brain areas responsible for representing and combining concepts as well as (b) the efficient functional connection (RSFC) between the key areas for the default state of cognitive activity and speech production, and (c) greater spontaneous neural activity (fALFF) during the resting of brain areas involved in frontal lobe functions, default cognitive activities, and language functions. Furthermore, these findings suggest that the associations between creativity and resting state brain connectivity patterns are different between males and females. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. White matter correlates of cognitive domains in normal aging with diffusion tensor imaging

    Directory of Open Access Journals (Sweden)

    Efrat eSasson

    2013-03-01

    Full Text Available The ability to perform complex as well as simple cognitive tasks engages a network of brain regions that is mediated by the white matter fiber bundles connecting them. Different cognitive tasks employ distinctive white matter fiber bundles. The temporal lobe and its projections subserve a variety of key functions known to deteriorate during aging. In a cohort of 52 healthy subjects (ages 25-82 years, we performed voxel-wise regression analysis correlating performance in higher-order cognitive domains (executive function, information processing speed, and memory with white matter integrity, as measured by diffusion tensor imaging (DTI fiber tracking in the temporal lobe projections (uncinate fasciculus (UF, fornix, cingulum, inferior longitudinal fasciculus (ILF, and superior longitudinal fasciculus (SLF. The fiber tracts were spatially registered and statistical parametric maps were produced to spatially localize the significant correlations. Results showed that performance in the executive function domain is correlated with DTI parameters in the left SLF and right UF; performance in the information processing speed domain is correlated with fractional anisotropy (FA in the left cingulum, left fornix, right and left ILF and SLF; and the memory domain shows significant correlations with DTI parameters in the right fornix, right cingulum, left ILF, left SLF and right UF. These findings suggest that DTI tractography enables anatomical definition of region of interest for correlation of behavioral parameters with diffusion indices, and functionality can be correlated with white matter integrity.

  2. Corpora amylacea in temporal lobe epilepsy associated with hippocampal sclerosis

    Directory of Open Access Journals (Sweden)

    Ribeiro Marlise de Castro

    2003-01-01

    Full Text Available Hippocampal sclerosis (HS is the commonest pathology in epileptic patients undergoing temporal lobe epilepsy surgery. Beside, there are an increased density of corpora amylacea (CA founded in 6 to 63% of those cases. OBJECTIVE: verify the presence of CA and the clinical correlates of their occurrence in a consective series of patients undergoing temporal surgery with diagnosis of HS. METHOD: We reviewed 72 hippocampus specimens from January 1997 to July 2000. Student's t test for independent, samples, ANOVA and Tukey test were performed for statistical analysis. RESULTS: CA were found in 35 patients (49%, whose mean epilepsy duration (28.7 years was significantly longer than that group of patients without CA (19.5 years, p= 0.001. Besides, when CA were found, duration was also significantly correlated with distribution within hippocampus: 28.7 years with diffuse distribution of CA, 15.4 with exclusively subpial and 17.4 years with distribution subpial plus perivascular (p= 0.001. CONCLUSION: Our findings corroborate the presence of CA in patients with HS and suggest that a longer duration of epilepsy correlate with a more distribution of CA in hippocampus.

  3. Visual perception and memory systems: from cortex to medial temporal lobe.

    Science.gov (United States)

    Khan, Zafar U; Martín-Montañez, Elisa; Baxter, Mark G

    2011-05-01

    Visual perception and memory are the most important components of vision processing in the brain. It was thought that the perceptual aspect of a visual stimulus occurs in visual cortical areas and that this serves as the substrate for the formation of visual memory in a distinct part of the brain called the medial temporal lobe. However, current evidence indicates that there is no functional separation of areas. Entire visual cortical pathways and connecting medial temporal lobe are important for both perception and visual memory. Though some aspects of this view are debated, evidence from both sides will be explored here. In this review, we will discuss the anatomical and functional architecture of the entire system and the implications of these structures in visual perception and memory.

  4. Origin of frontal lobe spikes in the early onset benign occipital lobe epilepsy (Panayiotopoulos syndrome).

    Science.gov (United States)

    Leal, Alberto J R; Ferreira, José C; Dias, Ana I; Calado, Eulália

    2008-09-01

    Early onset benign occipital lobe epilepsy (Panayiotopoulos syndrome [PS]) is a common and easily recognizable epilepsy. Interictal EEG spike activity is often multifocal but most frequently localized in the occipital lobes. The origin and clinical significance of the extra-occipital spikes remain poorly understood. Three patients with the PS and interictal EEG spikes with frontal lobe topography were studied using high-resolution EEG. Independent component analysis (ICA) was used to decompose the spikes in components with distinct temporal dynamics. The components were mapped in the scalp with a spline-laplacian algorithm. The change in scalp potential topography from spike onset to peak, suggests the contribution of several intracranial generators, with different kinetics of activation and significant overlap. ICA was able to separate the major contributors to frontal spikes and consistently revealed an early activating group of components over the occipital areas in all the patients. The local origin of these early potentials was established by the spline-laplacian montage. Frontal spikes in PS are consistently associated with early and unilateral occipital lobe activation, suggesting a postero-anterior spike propagation. Frontal spikes in the PS represent a secondary activation triggered by occipital interictal discharges and do not represent an independent focus.

  5. Drained Lava Tubes and Lobes From Eocretaceous Paraná-Etendeka Province, Brazil

    Science.gov (United States)

    Waichel, B. L.; Lima, E. F. D.; Mouro, L. D.; Briske, D. R.; Tratz, E. B.

    2017-12-01

    The identification of lava tubes in continental flood basalt provinces (CFBP) is difficult and reports of preserved drained tubes and lobes are rare. The large extension of CFBP must be related to an efficient transport of lava and tubes are the most efficient mechanism to transport lava in insulated pathways, like observed in modern volcanic fields. Looking for caves in the central portion of Paraná-Etendeka Province, we discovered drained lava tubes (4) and lobes (6) in a volcanic sequence constituted by pahoehoe flows. Lava tubes are: Casa de Pedra, Perau Branco, Dal Pae and Pinhão. The Casa de Pedra tube system is composed of two principal chambers with similar dimensions, reaching up to 10 m long and 4.0 m high connected by a narrow passage. The general form of the chamber is hemispherical, with re-entrances of ellipsoidal shape probably formed by small lava lobes and collapse structures in the roof. The second chamber is connected with three secondary lava tubes. Columns in the cave are formed when the flowing lava separates in two lava channels that join again further down the system, forming and anastomosing tube network. Lateral lava benches and lava drainings at the walls are observed in secondary tubes. The general lava flow is to SW. The Perau Branco system is composed of five tubes with ellipsoidal openings. The main features are the long tubes that emerge from the small flattened chambers. One tube is more than 20 m long, with alternating circular and flattened ellipsoidal sections. The general lava flow is to NE. Pinhão tube is spherical with 3 meters diameter and 15 m long, with lava flow orientation to NW. This tube has a bottleneck shape with linings (up to 3 cm thick), which are observed in the roof and walls. Dal Pae Tube is 10 m long with an ellipsoidal opening, bottleneck shape and orientation to NE. The lava flow directions measured in the tubes is to SW (Casa de Pedra, Pinhão) and NE (Perau Branco, Dal Pae) and this pattern is related to

  6. Using auditory steady state responses to outline the functional connectivity in the tinnitus brain.

    Directory of Open Access Journals (Sweden)

    Winfried Schlee

    Full Text Available BACKGROUND: Tinnitus is an auditory phantom perception that is most likely generated in the central nervous system. Most of the tinnitus research has concentrated on the auditory system. However, it was suggested recently that also non-auditory structures are involved in a global network that encodes subjective tinnitus. We tested this assumption using auditory steady state responses to entrain the tinnitus network and investigated long-range functional connectivity across various non-auditory brain regions. METHODS AND FINDINGS: Using whole-head magnetoencephalography we investigated cortical connectivity by means of phase synchronization in tinnitus subjects and healthy controls. We found evidence for a deviating pattern of long-range functional connectivity in tinnitus that was strongly correlated with individual ratings of the tinnitus percept. Phase couplings between the anterior cingulum and the right frontal lobe and phase couplings between the anterior cingulum and the right parietal lobe showed significant condition x group interactions and were correlated with the individual tinnitus distress ratings only in the tinnitus condition and not in the control conditions. CONCLUSIONS: To the best of our knowledge this is the first study that demonstrates existence of a global tinnitus network of long-range cortical connections outside the central auditory system. This result extends the current knowledge of how tinnitus is generated in the brain. We propose that this global extend of the tinnitus network is crucial for the continuos perception of the tinnitus tone and a therapeutical intervention that is able to change this network should result in relief of tinnitus.

  7. Subtle pathological changes in neocortical temporal lobe epilepsy.

    Science.gov (United States)

    Ochoa, Juan G; Hentgarden, Diana; Paulzak, Audrey; Ogden, Melissa; Pryson, Richard; Lamle, Markus; Rusyniak, Walter G

    2017-06-01

    This was a prospective observational study to correlate the clinical symptoms, electrophysiology, imaging, and surgical pathology of patients with temporal lobe epilepsy (TLE) without hippocampal sclerosis. We selected consecutive patients with TLE and normal MRI undergoing temporal lobe resection between April and September 2015. Clinical features, imaging, and functional data were reviewed. Intracranial monitoring and language mapping were performed when it was required according to our team recommendation. Prior to hippocampal resection, intraoperative electrocorticography was performed using depth electrodes in the amygdala and the hippocampus. The resected hippocampus was sent for pathological analysis. Five patients with diagnosis with non-lesional TLE were included. We did not find distinctive clinical features that could be a characteristic of non-lesional TLE. The mean follow-up was 13.2months (11-15months); 80% of patients achieved Engel Class I outcome. There was no distinctive electrographic findings in these patients. Histopathologic analysis was negative for mesial temporal sclerosis. A second blinded independent neuropathologist with expertise in epilepsy found ILAE type I focal cortical dysplasia in the parahippocampal gyrus in all patients. A third independent neuropathologist reported changes in layer 2 with larger pyramidal neurons in 4 cases but concluded that none of these cases met the diagnostic criteria of FCD. Subtle pathological changes could be associated with a parahippocampal epileptic zone and should be investigated in patients with MRI-negative TLE. This study also highlights the lack of interobserver reliability for the diagnosis of mild cortical dysplasia. Finally, selective amygdalo-hippocampectomy or laser ablation of the hippocampus may not control intractable epilepsy in this specific population. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Interictal rCBF SPECT, MRI and Surgical Outcome of Intractable Temporal Lobe Epilepsy

    International Nuclear Information System (INIS)

    Zeon, Seok Kil; Joo, Yang Goo; Lee, Sang Doe; Son, Eun Ik; Lee, Young Hwan

    1994-01-01

    Interictal single photon emission computed tomography of regional cerebral blood flow (rCBF SPECT) in 18 intractable temporal lobe epilepsy patients (8 male and 10 female patients: average 23.5 years old) were compared with 2.0 T magnetic resonance imaging (MRI). And surgical outcome was analysed with the findings, symptom duration and lateralization of temporal lobe. Preoperatively rCRF SPECT was done in all 18 patients with intravenous injection of 740 MRq 99 m T c-HMPAO. MRI was also done preoperatively in 13 patients. Surgical outcome was classified by Engel's outcome classification (four part classification recommended at the first Palm Desert conference). rCRF SPECT detected correctly lateralising abnormality of temporal lobe hypoperfusion in 13/ 18 (72.2%), contralateral temporal lobe hypoperfusion in 2/18 (11.1%) and showed no definite abnormality in 3/18 (16.7%). The positive predictive value of unilateral temporal lobe hypoperfusion was 87%. MRI detected correct localising abnormality in 8/13 (61.5%), such as hippocampal atrophy (7/13), asymmetric temporal horn (6/13), anterior temporal lobe atrophy (1/13), increased signal intensity from hippocampus (1/13) and calcific density (1/13), and no abnormal finding was noted in 5/13 (38.5%), There was no false positive findings and the positive predictive value of MRI was 100%, Only 2 cases showed same lateralization findings in rCBF SPECT and MRI. There was no significant correlation between symptom duration and no abnormal findings on SPECT or MRI. Surgical outcome showed class I in 15/18 (83.3%), and class II in 2/18 (11.1%). One case of no abnormal finding in both SPECT and MRI showed class III surgical outcome. No class IV surgical out.come was noted. Surgical outcome, lateralization of epileptic focus in temporal lobe and abnormal findings in rCBR SPECT or MRI were not significantly correlated.

  9. Surgical Considerations of Intractable Mesial Temporal Lobe Epilepsy

    Science.gov (United States)

    Boling, Warren W.

    2018-01-01

    Surgery of temporal lobe epilepsy is the best opportunity for seizure freedom in medically intractable patients. The surgical approach has evolved to recognize the paramount importance of the mesial temporal structures in the majority of patients with temporal lobe epilepsy who have a seizure origin in the mesial temporal structures. For those individuals with medically intractable mesial temporal lobe epilepsy, a selective amygdalohippocampectomy surgery can be done that provides an excellent opportunity for seizure freedom and limits the resection to temporal lobe structures primarily involved in seizure genesis. PMID:29461485

  10. Surgical Considerations of Intractable Mesial Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Warren W. Boling

    2018-02-01

    Full Text Available Surgery of temporal lobe epilepsy is the best opportunity for seizure freedom in medically intractable patients. The surgical approach has evolved to recognize the paramount importance of the mesial temporal structures in the majority of patients with temporal lobe epilepsy who have a seizure origin in the mesial temporal structures. For those individuals with medically intractable mesial temporal lobe epilepsy, a selective amygdalohippocampectomy surgery can be done that provides an excellent opportunity for seizure freedom and limits the resection to temporal lobe structures primarily involved in seizure genesis.

  11. Channel systems and lobe construction in the Mississippi Fan

    Science.gov (United States)

    Garrison, L. E.; Kenyon, Neil H.; Bouma, A.H.

    1982-01-01

    Morphological features on the Mississippi Fan in the eastern Gulf of Mexico were mapped using GLORIA II, a long-range side-scan sonar system. Prominent is a sinuous channel flanked by well-developed levees and occasional crevasse splays. The channel follows the axis and thickest part of the youngest fan lobe; seismic-reflection profiles offer evidence that its course has remained essentially constant throughout lobe development. Local modification and possible erosion of levees by currents indicates a present state of inactivity. Superficial sliding has affected part of the fan lobe, but does not appear to have been a factor in lobe construction. ?? 1982 A. M. Dowden, Inc.

  12. Subcomponents and connectivity of the inferior fronto-occipital fasciculus revealed by diffusion spectrum imaging fiber tracking

    Directory of Open Access Journals (Sweden)

    Yupeng Wu

    2016-09-01

    Full Text Available The definitive structure and functional role of the inferior fronto-occipital fasciculus (IFOF are still controversial. In this study, we aimed to investigate the connectivity, asymmetry and segmentation patterns of this bundle. High angular diffusion spectrum imaging (DSI analysis was performed on ten healthy adults and a 90-subject DSI template (NTU-90 Atlas. In addition, a new tractography approach based on the anatomic subregions and two regions of interest (ROI was evaluated for the fiber reconstructions. More widespread anterior-posterior connections than previous standard definition of the IFOF were found. This distinct pathway demonstrated a greater inter-subjects connective variability with a maximum of 40% overlap in its central part. The statistical results revealed no asymmetry between the left and right hemispheres and no significant differences existed in distributions of the IFOF according to sex. In addition, five subcomponents within the IFOF were identified according to the frontal areas of originations. As the subcomponents passed through the anterior floor of the external capsule, the fibers radiated to the posterior terminations. The most common connection patterns of the subcomponents were as follows: IFOF-I, from frontal polar cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe and pericalcarine; IFOF-II, from orbito-frontal cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe and pericalcarine; IFOF-III, from inferior frontal gyrus to inferior occipital lobe, middle occipital lobe, superior occipital lobe, occipital pole and pericalcarine; IFOF-IV, from middle frontal gyrus to occipital pole and inferior occipital lobe; IFOF-V, from superior frontal gyrus to occipital pole, inferior occipital lobe and middle occipital lobe. Our work demonstrates the feasibility of high resolution diffusion tensor tractography with sufficient

  13. Subcomponents and Connectivity of the Inferior Fronto-Occipital Fasciculus Revealed by Diffusion Spectrum Imaging Fiber Tracking.

    Science.gov (United States)

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao

    2016-01-01

    The definitive structure and functional role of the inferior fronto-occipital fasciculus (IFOF) are still controversial. In this study, we aimed to investigate the connectivity, asymmetry, and segmentation patterns of this bundle. High angular diffusion spectrum imaging (DSI) analysis was performed on 10 healthy adults and a 90-subject DSI template (NTU-90 Atlas). In addition, a new tractography approach based on the anatomic subregions and two regions of interest (ROI) was evaluated for the fiber reconstructions. More widespread anterior-posterior connections than previous "standard" definition of the IFOF were found. This distinct pathway demonstrated a greater inter-subjects connective variability with a maximum of 40% overlap in its central part. The statistical results revealed no asymmetry between the left and right hemispheres and no significant differences existed in distributions of the IFOF according to sex. In addition, five subcomponents within the IFOF were identified according to the frontal areas of originations. As the subcomponents passed through the anterior floor of the external capsule, the fibers radiated to the posterior terminations. The most common connection patterns of the subcomponents were as follows: IFOF-I, from frontal polar cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-II, from orbito-frontal cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-III, from inferior frontal gyrus to inferior occipital lobe, middle occipital lobe, superior occipital lobe, occipital pole, and pericalcarine; IFOF-IV, from middle frontal gyrus to occipital pole, and inferior occipital lobe; IFOF-V, from superior frontal gyrus to occipital pole, inferior occipital lobe, and middle occipital lobe. Our work demonstrates the feasibility of high resolution diffusion tensor tractography with sufficient sensitivity to

  14. Subcomponents and Connectivity of the Inferior Fronto-Occipital Fasciculus Revealed by Diffusion Spectrum Imaging Fiber Tracking

    Science.gov (United States)

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao

    2016-01-01

    The definitive structure and functional role of the inferior fronto-occipital fasciculus (IFOF) are still controversial. In this study, we aimed to investigate the connectivity, asymmetry, and segmentation patterns of this bundle. High angular diffusion spectrum imaging (DSI) analysis was performed on 10 healthy adults and a 90-subject DSI template (NTU-90 Atlas). In addition, a new tractography approach based on the anatomic subregions and two regions of interest (ROI) was evaluated for the fiber reconstructions. More widespread anterior-posterior connections than previous “standard” definition of the IFOF were found. This distinct pathway demonstrated a greater inter-subjects connective variability with a maximum of 40% overlap in its central part. The statistical results revealed no asymmetry between the left and right hemispheres and no significant differences existed in distributions of the IFOF according to sex. In addition, five subcomponents within the IFOF were identified according to the frontal areas of originations. As the subcomponents passed through the anterior floor of the external capsule, the fibers radiated to the posterior terminations. The most common connection patterns of the subcomponents were as follows: IFOF-I, from frontal polar cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-II, from orbito-frontal cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-III, from inferior frontal gyrus to inferior occipital lobe, middle occipital lobe, superior occipital lobe, occipital pole, and pericalcarine; IFOF-IV, from middle frontal gyrus to occipital pole, and inferior occipital lobe; IFOF-V, from superior frontal gyrus to occipital pole, inferior occipital lobe, and middle occipital lobe. Our work demonstrates the feasibility of high resolution diffusion tensor tractography with sufficient sensitivity

  15. Brain-Wide Analysis of Functional Connectivity in First-Episode and Chronic Stages of Schizophrenia.

    Science.gov (United States)

    Li, Tao; Wang, Qiang; Zhang, Jie; Rolls, Edmund T; Yang, Wei; Palaniyappan, Lena; Zhang, Lu; Cheng, Wei; Yao, Ye; Liu, Zhaowen; Gong, Xiaohong; Luo, Qiang; Tang, Yanqing; Crow, Timothy J; Broome, Matthew R; Xu, Ke; Li, Chunbo; Wang, Jijun; Liu, Zhening; Lu, Guangming; Wang, Fei; Feng, Jianfeng

    2017-03-01

    Published reports of functional abnormalities in schizophrenia remain divergent due to lack of staging point-of-view and whole-brain analysis. To identify key functional-connectivity differences of first-episode (FE) and chronic patients from controls using resting-state functional MRI, and determine changes that are specifically associated with disease onset, a clinical staging model is adopted. We analyze functional-connectivity differences in prodromal, FE (mostly drug naïve), and chronic patients from their matched controls from 6 independent datasets involving a total of 789 participants (343 patients). Brain-wide functional-connectivity analysis was performed in different datasets and the results from the datasets of the same stage were then integrated by meta-analysis, with Bonferroni correction for multiple comparisons. Prodromal patients differed from controls in their pattern of functional-connectivity involving the inferior frontal gyri (Broca's area). In FE patients, 90% of the functional-connectivity changes involved the frontal lobes, mostly the inferior frontal gyrus including Broca's area, and these changes were correlated with delusions/blunted affect. For chronic patients, functional-connectivity differences extended to wider areas of the brain, including reduced thalamo-frontal connectivity, and increased thalamo-temporal and thalamo-sensorimoter connectivity that were correlated with the positive, negative, and general symptoms, respectively. Thalamic changes became prominent at the chronic stage. These results provide evidence for distinct patterns of functional-dysconnectivity across FE and chronic stages of schizophrenia. Importantly, abnormalities in the frontal language networks appear early, at the time of disease onset. The identification of stage-specific pathological processes may help to understand the disease course of schizophrenia and identify neurobiological markers crucial for early diagnosis. © The Author 2016. Published by

  16. SPECT image analysis using statistical parametric mapping in patients with temporal lobe epilepsy associated with hippocampal sclerosis

    International Nuclear Information System (INIS)

    Shiraki, Junko

    2004-01-01

    The author examined interictal 123 I-IMP SPECT images using statistical parametric mapping (SPM) in 19 temporal lobe epilepsy patients who revealed hippocampal sclerosis with MRI. Decreased regional cerebral blood flow (rCBF) were shown for eight patients in the medial temporal lobe, six patients in the lateral temporal lobe and five patients in the both medial and lateral temporal lobe. These patients were classified into two types; medial type and lateral type, the former decreased rCBF only in medial and the latter decreased rCBF in the other temporal area. Correlation of rCBF and clinical parameters in the lateral type, age at seizure onset was significantly older (p=0.0098, t-test) than those of patients in the medial type. SPM analysis for interictal SPECT of temporal lobe epilepsy clarified location of decreased rCBF and find correlations with clinical characteristics. In addition, SPM analysis of SPECT was useful to understand pathophysiology of the epilepsy. (author)

  17. Disentangling the cognitive components supporting Austin Maze performance in left versus right temporal lobe epilepsy.

    Science.gov (United States)

    Hocking, Julia; Thomas, Hannah J; Dzafic, Ilvana; Williams, Rebecca J; Reutens, David C; Spooner, Donna M

    2013-12-01

    Neuropsychological tests requiring patients to find a path through a maze can be used to assess visuospatial memory performance in temporal lobe pathology, particularly in the hippocampus. Alternatively, they have been used as a task sensitive to executive function in patients with frontal lobe damage. We measured performance on the Austin Maze in patients with unilateral left and right temporal lobe epilepsy (TLE), with and without hippocampal sclerosis, compared to healthy controls. Performance was correlated with a number of other neuropsychological tests to identify the cognitive components that may be associated with poor Austin Maze performance. Patients with right TLE were significantly impaired on the Austin Maze task relative to patients with left TLE and controls, and error scores correlated with their performance on the Block Design task. The performance of patients with left TLE was also impaired relative to controls; however, errors correlated with performance on tests of executive function and delayed recall. The presence of hippocampal sclerosis did not have an impact on maze performance. A discriminant function analysis indicated that the Austin Maze alone correctly classified 73.5% of patients as having right TLE. In summary, impaired performance on the Austin Maze task is more suggestive of right than left TLE; however, impaired performance on this visuospatial task does not necessarily involve the hippocampus. The relationship of the Austin Maze task with other neuropsychological tests suggests that differential cognitive components may underlie performance decrements in right versus left TLE. © 2013.

  18. Metabolic connectivity analysis in Alzheimer’s disease (AD) by interregional correlation combining [11C] PIB and [18F] FDG PET

    NARCIS (Netherlands)

    2015-01-01

    Objectives: to determine whether [18F] FDG PET brain pattern correlates with [11C] PIB uptake in AD specific brain region using a SPM (Statistical Parametric Mapping) based network analysis. Methods: Combined [11C] PIB and [18F] FDG PET patterns data of 15 patients: 3 controls (CP), 8 probable

  19. T2 hyperintense signal in patients with temporal lobe epilepsy with MRI signs of hippocampal sclerosis and in patients with temporal lobe epilepsy with normal MRI.

    Science.gov (United States)

    Kubota, Bruno Yukio; Coan, Ana Carolina; Yasuda, Clarissa Lin; Cendes, Fernando

    2015-05-01

    Increased MRI T2 signal is commonly present not only in the hippocampus but also in other temporal structures of patients with temporal lobe epilepsy (TLE), and it is associated with histological abnormalities related to the epileptogenic lesion. This study aimed to verify the distribution of T2 increased signal in temporal lobe structures and its correlations with clinical characteristics of TLE patients with (TLE-HS) or without (TLE-NL) MRI signs of hippocampal sclerosis. We selected 203 consecutive patients: 124 with TLE-HS and 79 with TLE-NL. Healthy controls (N=59) were used as a comparison group/comparative group. T2 multiecho images obtained via a 3-T MRI were evaluated with in-house software. T2 signal decays were computed from five original echoes in regions of interest in the hippocampus, amygdala, and white matter of the anterior temporal lobe. Values higher than 2 standard deviations from the mean of controls were considered as abnormal. T2 signal increase was observed in the hippocampus in 78% of patients with TLE-HS and in 17% of patients with TLE-NL; in the amygdala in 13% of patients with TLE-HS and in 14% of patients with TLE-NL; and in the temporal lobe white matter in 22% of patients with TLE-HS and in 8% of patients with TLE-NL. Group analysis demonstrated a significant difference in the distribution of the T2 relaxation times of the hippocampus (ANOVA, ptemporal lobe white matter (ptemporal lobe white matter (ANOVA, p=0.025) for patients with TLE-NL compared with controls. The average signal from the hippocampus ipsilateral to the epileptogenic zone was significantly higher in patients with no family history of epilepsy (two-sample T-test, p=0.005). Increased T2 signal occurs in different temporal structures of patients with TLE-HS and in patients with TLE-NL. The hippocampal hyperintense signal is more pronounced in patients without family history of epilepsy and is influenced by earlier seizure onset. These changes in T2 signal may be

  20. Apples are not the only fruit: The effects of concept typicality on semantic representation in the anterior temporal lobe

    Directory of Open Access Journals (Sweden)

    Anna M. Woollams

    2012-04-01

    Full Text Available Intuitively, an apple seems a fairly good example of a fruit, whereas an avocado seems less so. The extent to which an exemplar is representative of its category, a variable known as concept typicality, has long been thought to be a key dimension determining semantic representation. Concept typicality is, however, correlated with a number of other variables, in particular age of acquisition and name frequency. Consideration of picture naming accuracy from a large case-series of semantic dementia patients demonstrated strong effects of concept typicality that were maximal in the moderately impaired patients, over and above the impact of age of acquisition and name frequency. Induction of a temporary virtual lesion to the left anterior temporal lobe, the region most commonly affected in semantic dementia, via repetitive Transcranial Magnetic Stimulation produced an enhanced effect of concept typicality in the picture naming of normal participants, but did not affect the magnitude of the age of acquisition or name frequency effects. These results indicate that concept typicality exerts its influence on semantic representations themselves, as opposed to the strength of connections outside the semantic system. To date, there has been little direct exploration of the dimension of concept typicality within connectionist models of intact and impaired conceptual representation, and these findings provide a target for future computational simulation.

  1. A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy

    Science.gov (United States)

    Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; Bonelli, Silvia; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.

    2013-01-01

    Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with

  2. QSPR Calculation of Normal Boiling Points of Organic Molecules Based on the Use of Correlation Weighting of Atomic Orbitals with Extended Connectivity of Zero- and First-Order Graphs of Atomic Orbitals

    Directory of Open Access Journals (Sweden)

    Eduardo A. Castro

    2004-12-01

    Full Text Available We report the results of a calculation of the normal boiling points of a representative set of 200 organic molecules through the application of QSPR theory. For this purpose we have used a particular set of flexible molecular descriptors, the so called Correlation Weighting of Atomic Orbitals with Extended Connectivity of Zero- and First-Order Graphs of Atomic Orbitals. Although in general the results show suitable behavior to predict this physical chemistry property, the existence of some deviant behaviors points to a need to complement this index with some other sort of molecular descriptors. Some possible extensions of this study are discussed.

  3. The mirror mechanism in the parietal lobe.

    Science.gov (United States)

    Rizzolatti, Giacomo; Rozzi, Stefano

    2018-01-01

    The mirror mechanism is a basic mechanism that transforms sensory representations of others' actions into motor representations of the same actions in the brain of the observer. The mirror mechanism plays an important role in understanding actions of others. In the present chapter we discuss first the basic organization of the posterior parietal lobe in the monkey, stressing that it is best characterized as a motor scaffold, on the top of which sensory information is organized. We then describe the location of the mirror mechanism in the posterior parietal cortex of the monkey, and its functional role in areas PFG, and anterior, ventral, and lateral intraparietal areas. We will then present evidence that a similar functional organization is present in humans. We will conclude by discussing the role of the mirror mechanism in the recognition of action performed with tools. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Frontal Lobe Function in Chess Players

    Directory of Open Access Journals (Sweden)

    Vahid Nejati

    2012-05-01

    Full Text Available Chess is considered as a cognitive game because of severe engagement of the mental resources during playing. The purpose of this study is evaluation of frontal lobe function of chess players with matched non-players. Wisconsin Card Sorting Test (WCST data showed no difference between the player and non-player groups in preservation error and completed categories but surprisingly showed significantly lower grade of the player group in correct response. Our data reveal that chess players dont have any preference in any stage of Stroop test. Chess players dont have any preference in selective attention, inhibition and executive cognitive function. Chess players' have lower shifting abilities than non-players.

  5. Frontal lobe function in chess players.

    Science.gov (United States)

    Nejati, Majid; Nejati, Vahid

    2012-01-01

    Chess is considered as a cognitive game because of severe engagement of the mental resources during playing. The purpose of this study is evaluation of frontal lobe function of chess players with matched non-players. Wisconsin Card Sorting Test (WCST) data showed no difference between the player and non-player groups in preservation error and completed categories but surprisingly showed significantly lower grade of the player group in correct response. Our data reveal that chess players don't have any preference in any stage of Stroop test. Chess players don't have any preference in selective attention, inhibition and executive cognitive function. Chess players' have lower shifting abilities than non-players.

  6. Xenomelia: a new right parietal lobe syndrome.

    Science.gov (United States)

    McGeoch, Paul D; Brang, David; Song, Tao; Lee, Roland R; Huang, Mingxiong; Ramachandran, V S

    2011-12-01

    Damage to the right parietal lobe has long been associated with various disorders of body image. The authors have recently suggested that an unusual behavioural condition in which otherwise rational individuals desire the amputation of a healthy limb might also arise from right parietal dysfunction. Four subjects who desired the amputation of healthy legs (two right, one left and one, at first, bilateral and then left only) were recruited and underwent magnetoencephalography (MEG) scans during tactile stimulation of sites above and below the desired amputation line. Regions of interest (ROIs) in each hemisphere (superior parietal lobule (SPL), inferior parietal lobule, S1, M1, insula, premotor cortex and precuneus) were defined using FreeSurfer software. Analysis of average MEG activity across the 40-140 ms post-stimulation timeframe was carried out using an unpaired t test. This revealed significantly reduced activation only in the right SPL ROI for the subjects' affected legs when compared with both subjects' unaffected legs and that of controls. The right SPL is a cortical area that appears ideally placed to unify disparate sensory inputs to create a coherent sense of having a body. The authors propose that inadequate activation of the right SPL leads to the unnatural situation in which the sufferers can feel the limb in question being touched without it actually incorporating into their body image, with a resulting desire for amputation. The authors introduce the term 'xenomelia' as a more appropriate name than apotemnophilia or body integrity identity disorder, for what appears to be an unrecognised right parietal lobe syndrome.

  7. The relationship between frontal and temporal lobe lesions in traumatic brain injury and procedural memory

    International Nuclear Information System (INIS)

    Kato, Noriaki; Okazaki, Tetsuya; Hachisuka, Kenji

    2008-01-01

    We examined the correlation between the location of chronic phase brain damage identified by a head MRI and the procedural memory test results in patients who have sustained a traumatic brain injury (TBI). Subjects were 27 patients with TBI, who completed all of three procedural memory tasks (mirror-reading, mirror-drawing, and Tower of Toronto). Using a head MRI, the presence or absence of lesions in the frontal lobe and the temporal lobe were determined. To evaluate declarative memory, we implemented the Wechsler Memory Scale-Rivesed (WMS-R), Rivermead Behavioral Memory Test (RBMT), and Rey-Osterrieth Complex Figure Test (3-minute delayed recall). All three of procedural memory tasks were repeated 3 times a day for 3 consecutive days. The rate of improvement (%) of the procedural memory task was determined as {average of the results on the first day- average of the results on the third day)/average of the results on the first day} x 100. We obtained the rate of improvement for each of the three tasks. The patients were divided according to the existence of frontal and temporal lobe lesions in brain MRI, and then rates of improvement were compared by the existence of frontal or temporal lesion using the Mann-Whitney test. In result, the average value of the declarative memory test results was within the range of disorders for all items. On the procedural memory tasks, the rate of improvement did not significantly decrease by the presence of frontal or temporal lobe lesion. It is believed that the basal ganglia and the cerebellum are significantly involved in procedural memory. Also in TBI patients, the procedural memory tends to be retained. Our results suggest that frontal and temporal lobe lesions, which are frequently found in traumatic brain injury, are not likely to be related to procedural memory. (author)

  8. A comparative perspective on the human temporal lobe

    NARCIS (Netherlands)

    Bryant, K.L.; Preuss, T.M.; Bruner, E.; Ogihara, N.; Tanabe, H.

    2018-01-01

    The temporal lobe is a morphological specialization of primates resulting from an expansion of higher-order visual cortex that is a hallmark of the primate brain. Among primates, humans possess a temporal lobe that has significantly expanded. Several uniquely human cognitive abilities, including

  9. Surgical anatomy of the pyramidal lobe and its significance in ...

    African Journals Online (AJOL)

    In diffuse thyroid diseases, the lobes were always pathologically involved and significantly longer. Conclusion. Since the pyramidal lobe is a normal component of the thyroid gland, of varying position and size, with pathological changes in benign and malignant diseases, it should always be examined during thyroid surgery ...

  10. Altered Intrinsic Functional Connectivity in Language-Related Brain Regions in Association with Verbal Memory Performance in Euthymic Bipolar Patients

    Directory of Open Access Journals (Sweden)

    David E. J. Linden

    2013-09-01

    Full Text Available Potential abnormalities in the structure and function of the temporal lobes have been studied much less in bipolar disorder than in schizophrenia. This may not be justified because language-related symptoms, such as pressured speech and flight of ideas, and cognitive deficits in the domain of verbal memory are amongst the hallmark of bipolar disorder (BD, and contribution of temporal lobe dysfunction is therefore likely. In the current study, we examined resting-state functional connectivity (FC between the auditory cortex (Heschl’s gyrus [HG], planum temporale [PT] and whole brain using seed correlation analysis in n = 21 BD euthymic patients and n = 20 matched healthy controls and associated it with verbal memory performance. In comparison to controls BD patients showed decreased functional connectivity between Heschl’s gyrus and planum temporale and the left superior and middle temporal gyrus. Additionally, fronto-temporal functional connectivity with the right inferior frontal/precentral gyrus and the insula was increased in patients. Verbal episodic memory deficits in the investigated sample of BD patients and language-related symptoms might therefore be associated with a diminished FC within the auditory/temporal gyrus and a compensatory fronto-temporal pathway.

  11. Age-Related Difference in Functional Brain Connectivity of Mastication

    Science.gov (United States)

    Lin, Chia-shu; Wu, Ching-yi; Wu, Shih-yun; Lin, Hsiao-Han; Cheng, Dong-hui; Lo, Wen-liang

    2017-01-01

    The age-related decline in motor function is associated with changes in intrinsic brain signatures. Here, we investigated the functional connectivity (FC) associated with masticatory performance, a clinical index evaluating general masticatory function. Twenty-six older adults (OA) and 26 younger (YA) healthy adults were recruited and assessed using the masticatory performance index (MPI) and resting-state functional magnetic resonance imaging (rs-fMRI). We analyzed the rs-fMRI FC network related to mastication, which was constructed based on 12 bilateral mastication-related brain regions according to the literature. For the OA and the YA group, we identified the mastication-related hubs, i.e., the nodes for which the degree centrality (DC) was positively correlated with the MPI. For each pair of nodes, we identified the inter-nodal link for which the FC was positively correlated with the MPI. The network analysis revealed that, in the YA group, the FC between the sensorimotor cortex, the thalamus (THA) and the cerebellum was positively correlated with the MPI. Consistently, the cerebellum nodes were defined as the mastication-related hubs. In contrast, in the OA group, we found a sparser connection within the sensorimotor regions and cerebellum and a denser connection across distributed regions, including the FC between the superior parietal lobe (SPL), the anterior insula (aINS) and the dorsal anterior cingulate cortex (dACC). Compared to the YA group, the network of the OA group also comprised more mastication-related hubs, which were spatially distributed outside the sensorimotor regions, including the right SPL, the right aINS, and the bilateral dACC. In general, the findings supported the hypothesis that in OA, higher masticatory performance is associated with a widespread pattern of mastication-related hubs. Such a widespread engagement of multiple brain regions associated with the MPI may reflect an increased demand in sensorimotor integration, attentional

  12. Tissue Expressions of Soluble Human Epoxide Hydrolase-2 Enzyme in Patients with Temporal Lobe Epilepsy.

    Science.gov (United States)

    Ahmedov, Merdin Lyutviev; Kemerdere, Rahsan; Baran, Oguz; Inal, Berrin Bercik; Gumus, Alper; Coskun, Cihan; Yeni, Seher Naz; Eren, Bulent; Uzan, Mustafa; Tanriverdi, Taner

    2017-10-01

    We sought to simply demonstrate how levels of soluble human epoxide hydrolase-2 show changes in both temporal the cortex and hippocampal complex in patients with temporal lobe epilepsy. A total of 20 patients underwent anterior temporal lobe resection due to temporal lobe epilepsy. The control group comprised 15 people who died in traffic accidents or by falling from a height, and their autopsy findings were included. Adequately sized temporal cortex and hippocampal samples were removed from each patient during surgery, and the same anatomic structures were removed from the control subjects during the autopsy procedures. Each sample was stored at -80°C as rapidly as possible until the enzyme assay. The temporal cortex in the epilepsy patients had a significantly higher enzyme level than did the temporal cortex of the control group (P = 0.03). Correlation analysis showed that as the enzyme level increases in the temporal cortex, it also increases in the hippocampal complex (r 2  = 0.06, P = 0.00001). More important, enzyme tissue levels showed positive correlations with seizure frequency in both the temporal cortex and hippocampal complex in patients (r 2  = 0.7, P = 0.00001 and r 2  = 0.4, P = 0.003, respectively). The duration of epilepsy was also positively correlated with the hippocampal enzyme level (r 2  = 0.06, P = 0.00001). Soluble human epoxy hydrolase enzyme-2 is increased in both lateral and medial temporal tissues in temporal lobe epilepsy. Further studies should be conducted as inhibition of this enzyme has resulted in a significant decrease in or stopping of seizures and attenuated neuroinflammation in experimental epilepsy models in the current literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Brain Functional Connectivity Is Modified by a Hypocaloric Mediterranean Diet and Physical Activity in Obese Women

    Directory of Open Access Journals (Sweden)

    Natalia García-Casares

    2017-07-01

    Full Text Available Functional magnetic resonance imaging (fMRI in the resting state has shown altered brain connectivity networks in obese individuals. However, the impact of a Mediterranean diet on cerebral connectivity in obese patients when losing weight has not been previously explored. The aim of this study was to examine the connectivity between brain structures before and six months after following a hypocaloric Mediterranean diet and physical activity program in a group of sixteen obese women aged 46.31 ± 4.07 years. Before and after the intervention program, the body mass index (BMI (kg/m2 was 38.15 ± 4.7 vs. 34.18 ± 4.5 (p < 0.02, and body weight (kg was 98.5 ± 13.1 vs. 88.28 ± 12.2 (p < 0.03. All subjects underwent a pre- and post-intervention fMRI under fasting conditions. Functional connectivity was assessed using seed-based correlations. After the intervention, we found decreased connectivity between the left inferior parietal cortex and the right temporal cortex (p < 0.001, left posterior cingulate (p < 0.001, and right posterior cingulate (p < 0.03; decreased connectivity between the left superior frontal gyrus and the right temporal cortex (p < 0.01; decreased connectivity between the prefrontal cortex and the somatosensory cortex (p < 0.025; and decreased connectivity between the left and right posterior cingulate (p < 0.04. Results were considered significant at a voxel-wise threshold of p ≤ 0.05, and a cluster-level family-wise error correction for multiple comparisons of p ≤ 0.05. In conclusion, functional connectivity between brain structures involved in the pathophysiology of obesity (the inferior parietal lobe, posterior cingulate, temporo-insular cortex, prefrontal cortex may be modified by a weight loss program including a Mediterranean diet and physical exercise.

  14. Supplementary CT temporal lobe cuts confer no worthwhile benefit

    Energy Technology Data Exchange (ETDEWEB)

    Straiton, J A; Macpherson, P; Teasdale, E M [Institute of Neurological Sciences, Glasgow (UK). Dept. of Neuroradiology

    1991-02-01

    The value of angled temporal lobe cuts as a supplement to conventional head computed tomography (CT) has been assessed by comparing the diagnostic yield of standard axial and specific temporal lobe images (TLCT) in 62 patients with temporal lobe epilepsy and 87 with Alzheimer-type senile dementia. Fewer than one patient in six had structural abnormality in the temporal lobe most readily demonstrated by axial CT. Five patients with epilepsy and ten with dementia had changes demonstrated only by TLCT, reported on by one or other of a pair of observers. However such changes were of dubious clinical relevance, or arose as a result of artefact. In one patient with epilepsy and underlying neoplasm, axial CT was positive and TLCT false-negative. The routine addition of temporal lobe cuts to a conventional axial examination confers no added benefit to justify the prolonged examination time and increased radiation dose to the lens of the eye. (orig.).

  15. Supplementary CT temporal lobe cuts confer no worthwhile benefit

    International Nuclear Information System (INIS)

    Straiton, J.A.; Macpherson, P.; Teasdale, E.M.

    1991-01-01

    The value of angled temporal lobe cuts as a supplement to conventional head computed tomography (CT) has been assessed by comparing the diagnostic yield of standard axial and specific temporal lobe images (TLCT) in 62 patients with temporal lobe epilepsy and 87 with Alzheimer-type senile dementia. Fewer than one patient in six had structural abnormality in the temporal lobe most readily demonstrated by axial CT. Five patients with epilepsy and ten with dementia had changes demonstrated only by TLCT, reported on by one or other of a pair of observers. However such changes were of dubious clinical relevance, or arose as a result of artefact. In one patient with epilepsy and underlying neoplasm, axial CT was positive and TLCT false-negative. The routine addition of temporal lobe cuts to a conventional axial examination confers no added benefit to justify the prolonged examination time and increased radiation dose to the lens of the eye. (orig.)

  16. An Efficient Approach for Identifying Stable Lobes with Discretization Method

    Directory of Open Access Journals (Sweden)

    Baohai Wu

    2013-01-01

    Full Text Available This paper presents a new approach for quick identification of chatter stability lobes with discretization method. Firstly, three different kinds of stability regions are defined: absolute stable region, valid region, and invalid region. Secondly, while identifying the chatter stability lobes, three different regions within the chatter stability lobes are identified with relatively large time intervals. Thirdly, stability boundary within the valid regions is finely calculated to get exact chatter stability lobes. The proposed method only needs to test a small portion of spindle speed and cutting depth set; about 89% computation time is savedcompared with full discretization method. It spends only about10 minutes to get exact chatter stability lobes. Since, based on discretization method, the proposed method can be used for different immersion cutting including low immersion cutting process, the proposed method can be directly implemented in the workshop to promote machining parameters selection efficiency.

  17. Making Connections

    Science.gov (United States)

    Pien, Cheng Lu; Dongsheng, Zhao

    2011-01-01

    Effective teaching includes enabling learners to make connections within mathematics. It is easy to accord with this statement, but how often is it a reality in the mathematics classroom? This article describes an approach in "connecting equivalent" fractions and whole number operations. The authors illustrate how a teacher can combine a common…

  18. Abnormality of cerebral cortical glucose metabolism in temporal lobe epilepsy with cognitive function impairment

    International Nuclear Information System (INIS)

    Bang-Hung Yang; Tsung-Szu Yeh; Tung-Ping Su; Jyh-Cheng Chen; Ren-Shyan Liu

    2004-01-01

    Objective: People with epilepsy commonly report having problems with their memory. Many indicate that memory difficulties significantly hinder their functioning at work, in school, and at home. Besides, some studies have reported that memory performance as a prognostic factor is of most value in patients with risk of refractory epilepsy and when used in a multidisciplinary setting. However, the cerebral cortical areas involving memory impairment in epilepsy is still unknown. The purpose of this study was to access changes of cerebral glucose metabolism of epilepsy patients using [F-18] fluorodeoxyglucose positron emission tomography (FDG PET). Method: Nine temporal lobe epilepsy patients were studied. Each patient was confirmed with lesions in right mesial temporal lobe by MRI, PET and EEG. Serial cognition function tests were performed. Regional cerebral glucose metabolism (rCMRglc) was measured by PET at 45 minutes after injection of 370 MBq of FDG. Parametric images were generated by grand mean scaling each scan to 50. The images were then transformed into standard stereotactic space. Statistical parametric mapping (SPM2) was applied to find the correlations between verbal memory, figure memory, perception intelligent quotation (PIQ) and rCMRglc in epilepsy patients. The changes of rCMRglc were significant if corrected p value was less than 0.05. Results: There was no significant relationship between figure memory score and verbal memory score. FDG-PET scan showed changes of rCMRglc positive related with verbal memory score in precentral gyms of right frontal lobe (Brodmann area 4, corrected p < 0.001, voxel size 240) and cingulated gyms of right limbic lobe (Brodmann area 32, corrected p=0.002, voxel size 143). No negative relationship was demonstrable between verbal memory and rCMRglc in this study. Besides, significanfiy positive correlation between figure memory was shown in cuneus of right occipital lobe (Brodmann area 18, corrected p < 0.001, voxel size

  19. Uncinate fasciculus fiber tracking in mesial temporal lobe epilepsy. Initial findings

    International Nuclear Information System (INIS)

    Rodrigo, S.; Oppenheim, C.; Meder, J.F.; Chassoux, F.; Golestani, N.; Cointepas, Y.; Poupon, C.; Semah, F.; Mangin, J.F.; Le Bihan, D.

    2007-01-01

    In temporal lobe epilepsy (TLE) due to hippocampal sclerosis (HS), ictal discharge spread to the frontal and insulo-perisylvian cortex is commonly observed. The implication of white matter pathways in this propagation has not been investigated. We compared diffusion tensor imaging (DTI) measurements along the uncinate fasciculus (UF), a major tract connecting the frontal and temporal lobes, in patients and controls. Ten right-handed patients referred for intractable TLE due to a right HS were investigated on a 1.5-T MR scanner including a DTI sequence. All patients had interictal fluorodeoxyglucose PET showing an ipsilateral temporal hypometabolism associated with insular and frontal or perisylvian hypometabolism. The controls consisted of ten right-handed healthy subjects. UF fiber tracking was performed, and its fractional anisotropy (FA) values were compared between patients and controls, separately for the right and left UF. The left-minus-right FA UF asymmetry index was computed to test for intergroup differences. Asymmetries were found in the control group with right-greater-than-left FA. This asymmetrical pattern was lost in the patient group. Right FA values were lower in patients with right HS versus controls. Although preliminary, these findings may be related to the preferential pathway of seizure spread from the mesial temporal lobe to frontal and insulo-perisylvian areas. (orig.)

  20. Uncinate fasciculus fiber tracking in mesial temporal lobe epilepsy. Initial findings

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigo, S.; Oppenheim, C.; Meder, J.F. [Universite Paris-Descartes, Faculte de Medecine, Centre Hospitalier Sainte-Anne, Departement d' Imagerie Morphologique et Fonctionnelle, Paris (France); Chassoux, F. [Universite Paris-Descartes, Faculte de Medecine, Service de Neurochirurgie, Centre Hospitalier Sainte-Anne, Paris (France); Golestani, N.; Cointepas, Y.; Poupon, C.; Semah, F.; Mangin, J.F.; Le Bihan, D. [Service Hospitalier Frederic Joliot, CEA, Orsay (France)

    2007-07-15

    In temporal lobe epilepsy (TLE) due to hippocampal sclerosis (HS), ictal discharge spread to the frontal and insulo-perisylvian cortex is commonly observed. The implication of white matter pathways in this propagation has not been investigated. We compared diffusion tensor imaging (DTI) measurements along the uncinate fasciculus (UF), a major tract connecting the frontal and temporal lobes, in patients and controls. Ten right-handed patients referred for intractable TLE due to a right HS were investigated on a 1.5-T MR scanner including a DTI sequence. All patients had interictal fluorodeoxyglucose PET showing an ipsilateral temporal hypometabolism associated with insular and frontal or perisylvian hypometabolism. The controls consisted of ten right-handed healthy subjects. UF fiber tracking was performed, and its fractional anisotropy (FA) values were compared between patients and controls, separately for the right and left UF. The left-minus-right FA UF asymmetry index was computed to test for intergroup differences. Asymmetries were found in the control group with right-greater-than-left FA. This asymmetrical pattern was lost in the patient group. Right FA values were lower in patients with right HS versus controls. Although preliminary, these findings may be related to the preferential pathway of seizure spread from the mesial temporal lobe to frontal and insulo-perisylvian areas. (orig.)

  1. Neuromagnetic vistas into typical and atypical development of frontal lobe functions

    Directory of Open Access Journals (Sweden)

    Margot J Taylor

    2014-06-01

    Full Text Available The frontal lobes are involved in many higher-order cognitive functions such as social cognition executive functions and language and speech. These functions are complex and follow a prolonged developmental course from childhood through to early adulthood. Magnetoencephalography (MEG is ideal for the study of development of these functions, due to its combination of temporal and spatial resolution which allows the determination of age-related changes in both neural timing and location. There are several challenges for MEG developmental studies: to design tasks appropriate to capture the neurodevelopmental trajectory of these cognitive functions, and to develop appropriate analysis strategies to capture various aspects of neuromagnetic frontal lobe activity. Here, we review our MEG research on social and executive functions, and speech in typically developing children and in two clinical groups – children with ASD and children born very preterm. The studies include facial emotional processing, inhibition, visual short-term memory, speech production and resting-state networks. We present data from event-related analyses as well as on oscillations and connectivity analyses and review their contributions to understanding frontal lobe cognitive development. We also discuss the challenges of testing young children in the MEG and the development of age-appropriate technologies and paradigms.

  2. Anomalous Systemic Artery to the Left Lower Lobe: Literature Review and a New Surgical Technique.

    Science.gov (United States)

    Miller, Jacob R; Lancaster, Timothy S; Abarbanell, Aaron M; Manning, Peter B; Eghtesady, Pirooz

    2018-05-01

    Anomalous systemic arterial supply to the basal segments of the left lower lobe without coexisting pulmonary artery connection is a rare anomaly. Most feel treatment is necessary; however, the ideal strategy is unclear. Treatments described include embolization, pulmonary resection, or anastomosis to the native pulmonary artery. We recently encountered an infant with this anomaly and present a literature review summarizing all recent reports. Additionally, we describe a novel surgical technique to create a tension-free anastomosis utilizing segmental aortic translocation that we employed in our patient due to a large distance between the anomalous vessel and native left pulmonary artery.

  3. Anterior-Posterior Connectivity within the Default Mode Network Increases During Maturation.

    Science.gov (United States)

    Washington, Stuart D; VanMeter, John W

    The default mode network (DMN) supports self-referential thought processes important for successful socialization including: theory-of-mind, episodic memory, and prospection. Connectivity between DMN's nodes, which are distributed between the frontal, temporal, and parietal lobes, change with age and may continue changing into adulthood. We have previously explored the maturation of functional connections in the DMN as they relate to autism spectrum disorder (ASD) in children 6 to 18 years of age. In this chapter, we refine our earlier study of DMN functional maturation by focusing on the development of inter-nodal connectivity in a larger pool of typically developing people 6 to 25 years of age (mean = 13.22 years ± 5.36 s.d.; N = 36; 42% female). Correlations in BOLD activity (Fisher's Z) between ROIs revealed varying strengths of functional connectivity between regions, the strongest of which was between the left and right inferior parietal lobules or IPLs (Z = 0.62 ± 0.25 s.d.) and the weakest of which was between the posterior cingulate cortex (PCC) and right middle temporal gyrus or MTG (Z = 0.06 ± 0.22 s.d.). Further, connectivity between two pairs of DMN nodes significantly increased as a quadratic function of age ( p maturational trajectory.

  4. Gastric injury from 90Y to left hepatic lobe tumors adjacent to the stomach: fact or fiction?

    International Nuclear Information System (INIS)

    Gates, Vanessa L.; Hickey, Ryan; Marshall, Karen; Williams, Melissa; Salzig, Krystina; Lewandowski, Robert J.; Salem, Riad

    2015-01-01

    Radioembolization with 90 Y microspheres is a locoregional radiation therapy for unresectable hepatic neoplasm. Non-target delivery of 90 Y microspheres resulting in gastrointestinal (GI) symptoms is a recognized complication; there is minimal knowledge regarding the radiation effect to the gastric wall from left hepatic lobe 90 Y treatments. Our aim was to study the incidence of GI complications when the target tissue (hepatic parenchyma ± tumor) is in close proximity to the gastric wall. We hypothesized that liver (tumor) to stomach proximity does not correlate with increased toxicity. Between November 2011 and September 2013, we studied all patients who underwent left lobe radioembolization with 90 Y glass microspheres. With Institutional Review Board (IRB) approval, we retrospectively reviewed MRI/CT images of these patients, identifying a subset of patients with the left hepatic lobe <1 cm from the gastric wall. Patients were seen in clinic 1 month posttreatment and subsequently at 3-month intervals. Short- and long-term gastric adverse events were tabulated. Ninety-seven patients successfully underwent left hepatic lobe 90 Y microsphere radioembolization in which the average distance from the liver to the stomach wall was 1.0 ± 2.8 mm. The average dose for patients who received radioembolization to the left hepatic lobe was 109 ± 57 Gy. Fifty patients had tumor within 1 cm of the gastric wall. The average dose for patients who received radioembolization to the left hepatic lobe with tumor within 1 cm of the gastric wall was 121 ± 41 Gy. There were no reportable or recordable medical events. Of the patients, 34 % reported abdominal pain that was grade 1-2; 65 % of the patients reported no abdominal pain. None of the 97 patients developed a clinically evident GI ulcer. Patients with left lobe tumors adjacent to or abutting the stomach do not exhibit acute or chronic radiation effects following radioembolization with glass microspheres. (orig.)

  5. Gastric injury from {sup 90}Y to left hepatic lobe tumors adjacent to the stomach: fact or fiction?

    Energy Technology Data Exchange (ETDEWEB)

    Gates, Vanessa L.; Hickey, Ryan; Marshall, Karen; Williams, Melissa; Salzig, Krystina; Lewandowski, Robert J. [Robert H. Lurie Comprehensive Cancer Center, Department of Radiology, Section of Interventional Radiology, Northwestern Memorial Hospital, Chicago, IL (United States); Salem, Riad [Robert H. Lurie Comprehensive Cancer Center, Department of Radiology, Section of Interventional Radiology, Northwestern Memorial Hospital, Chicago, IL (United States); Northwestern University, Department of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Chicago, IL (United States)

    2015-12-15

    Radioembolization with {sup 90}Y microspheres is a locoregional radiation therapy for unresectable hepatic neoplasm. Non-target delivery of {sup 90}Y microspheres resulting in gastrointestinal (GI) symptoms is a recognized complication; there is minimal knowledge regarding the radiation effect to the gastric wall from left hepatic lobe {sup 90}Y treatments. Our aim was to study the incidence of GI complications when the target tissue (hepatic parenchyma ± tumor) is in close proximity to the gastric wall. We hypothesized that liver (tumor) to stomach proximity does not correlate with increased toxicity. Between November 2011 and September 2013, we studied all patients who underwent left lobe radioembolization with {sup 90}Y glass microspheres. With Institutional Review Board (IRB) approval, we retrospectively reviewed MRI/CT images of these patients, identifying a subset of patients with the left hepatic lobe <1 cm from the gastric wall. Patients were seen in clinic 1 month posttreatment and subsequently at 3-month intervals. Short- and long-term gastric adverse events were tabulated. Ninety-seven patients successfully underwent left hepatic lobe {sup 90}Y microsphere radioembolization in which the average distance from the liver to the stomach wall was 1.0 ± 2.8 mm. The average dose for patients who received radioembolization to the left hepatic lobe was 109 ± 57 Gy. Fifty patients had tumor within 1 cm of the gastric wall. The average dose for patients who received radioembolization to the left hepatic lobe with tumor within 1 cm of the gastric wall was 121 ± 41 Gy. There were no reportable or recordable medical events. Of the patients, 34 % reported abdominal pain that was grade 1-2; 65 % of the patients reported no abdominal pain. None of the 97 patients developed a clinically evident GI ulcer. Patients with left lobe tumors adjacent to or abutting the stomach do not exhibit acute or chronic radiation effects following radioembolization with glass

  6. The cognitive profile of occipital lobe epilepsy and the selective association of left temporal lobe hypometabolism with verbal memory impairment.

    Science.gov (United States)

    Knopman, Alex A; Wong, Chong H; Stevenson, Richard J; Homewood, Judi; Mohamed, Armin; Somerville, Ernest; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Bleasel, Andrew F

    2014-08-01

    We investigated the cognitive profile of structural occipital lobe epilepsy (OLE) and whether verbal memory impairment is selectively associated with left temporal lobe hypometabolism on [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET). Nine patients with OLE, ages 8-29 years, completed presurgical neuropsychological assessment. Composite measures were calculated for intelligence quotient (IQ), speed, attention, verbal memory, nonverbal memory, and executive functioning. In addition, the Wisconsin Card Sorting Test (WCST) was used as a specific measure of frontal lobe functioning. Presurgical FDG-PET was analyzed with statistical parametric mapping in 8 patients relative to 16 healthy volunteers. Mild impairments were evident for IQ, speed, attention, and executive functioning. Four patients demonstrated moderate or severe verbal memory impairment. Temporal lobe hypometabolism was found in seven of eight patients. Poorer verbal memory was associated with left temporal lobe hypometabolism (p = 0.002), which was stronger (p = 0.03 and p = 0.005, respectively) than the association of left temporal lobe hypometabolism with executive functioning or with performance on the WCST. OLE is associated with widespread cognitive comorbidity, suggesting cortical dysfunction beyond the occipital lobe. Verbal memory impairment is selectively associated with left temporal lobe hypometabolism in OLE, supporting a link between neuropsychological dysfunction and remote hypometabolism in focal epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  7. Electroclinical findings of minor motor events during sleep in temporal lobe epilepsy.

    Science.gov (United States)

    Giuliano, Loretta; Uccello, Denise; Fatuzzo, Daniela; Mainieri, Greta; Zappia, Mario; Sofia, Vito

    2017-07-01

    It is well known that sleep-related motor seizures can originate from the temporal lobe. However, little is known about the clinical features of minor motor manifestations during sleep in patients with temporal lobe epilepsy. The main objective of our study was to verify the existence of minor motor events during sleep in patients with mesial temporal lobe epilepsy (MTLE) and to define their clinical features and electroencephalography (EEG) correlations. We enrolled in the study patients with diagnosis of symptomatic MTLE and a group of healthy controls. All patients and controls underwent long-term video -EEG monitoring, including at least one night of nocturnal sleep. We analyzed all the movements recorded during nocturnal sleep of patients and controls and their electroencephalographic correlations. We analyzed the nocturnal sleep of 15 patients with symptomatic MTLE (8 males and 7 females; mean age ± standard deviation [SD]31.8 ± 14.9 years) and of 15 healthy controls (6 males and 9 females; mean age ± SD 32.8 ± 11.2 years). The analysis of movements during sleep revealed significant differences between groups, with the patients presenting significantly more movements in sleep than healthy controls (56.7 ± 39.2 vs. 15 ± 6.1; p Epilepsy.

  8. Temporal lobe epilepsy with varying severity: MRI study of 222 patients

    International Nuclear Information System (INIS)

    Lehericy, S.; Hasboun, D.; Dormont, D.; Marsault, C.; Semah, F.; Baulac, M.; Clemenceau, S.; Granat, O.

    1997-01-01

    MRI was performed in 222 consecutive adult patients with temporal lobe epilepsy of varying severity from January 1991 to May 1993. The diagnosis of hippocampal sclerosis was established visually by three independent observers. The accuracy of visual assessment of hippocampal asymmetry was compared with volumetric measurements. Neuropathological correlations were obtained in 63 patients with refractory seizures. Temporal lobe abnormalities were observed in 180 patients (81 %) as follows: hippocampal sclerosis in 122 (55 %); developmental abnormalities in 16 (7.2 %); tumours in 15 (6.8 %); scars in 11 (5 %); cavernous angiomas in 10 (4.5 %); miscellaneous lesions in 6. MRI was normal or showed unrelated changes in 42 patients (19 %). Visual assessment correctly lateralised hippocampal sclerosis in 79 of the 84 patients measured (94 %). Temporal lobectomy confirmed the MRI data (side and aetiology) in all 63 operated patients. Patients with normal MRI had an older age of seizure onset and were more often drug-responsive than patients with hippocampal sclerosis. MRI showed temporal lobe abnormalities in 81 % of epileptic patients with varying severity with good neuropathological correlation. Patients with normal MRI had a less severe form of the disease. (orig.)

  9. About Connections

    Directory of Open Access Journals (Sweden)

    Kathleen S Rockland

    2015-05-01

    Full Text Available Despite the attention attracted by connectomics, one can lose sight of the very real questions concerning What are connections? In the neuroimaging community, structural connectivity is ground truth and underlying constraint on functional or effective connectivity. It is referenced to underlying anatomy; but, as increasingly remarked, there is a large gap between the wealth of human brain mapping and the relatively scant data on actual anatomical connectivity. Moreover, connections have typically been discussed as pairwise, point x projecting to point y (or: to points y and z, or more recently, in graph theoretical terms, as nodes or regions and the interconnecting edges. This is a convenient shorthand, but tends not to capture the richness and nuance of basic anatomical properties as identified in the classic tradition of tracer studies. The present short review accordingly revisits connectional weights, heterogeneity, reciprocity, topography, and hierarchical organization, drawing on concrete examples. The emphasis is on presynaptic long-distance connections, motivated by the intention to probe current assumptions and promote discussions about further progress and synthesis.

  10. Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations.

    Directory of Open Access Journals (Sweden)

    Gaelle Bettus

    Full Text Available In this study, we aimed to demonstrate whether spontaneous fluctuations in the blood oxygen level dependent (BOLD signal derived from resting state functional magnetic resonance imaging (fMRI reflect spontaneous neuronal activity in pathological brain regions as well as in regions spared by epileptiform discharges. This is a crucial issue as coherent fluctuations of fMRI signals between remote brain areas are now widely used to define functional connectivity in physiology and in pathophysiology. We quantified functional connectivity using non-linear measures of cross-correlation between signals obtained from intracerebral EEG (iEEG and resting-state functional MRI (fMRI in 5 patients suffering from intractable temporal lobe epilepsy (TLE. Functional connectivity was quantified with both modalities in areas exhibiting different electrophysiological states (epileptic and non affected regions during the interictal period. Functional connectivity as measured from the iEEG signal was higher in regions affected by electrical epileptiform abnormalities relative to non-affected areas, whereas an opposite pattern was found for functional connectivity measured from the BOLD signal. Significant negative correlations were found between the functional connectivities of iEEG and BOLD signal when considering all pairs of signals (theta, alpha, beta and broadband and when considering pairs of signals in regions spared by epileptiform discharges (in broadband signal. This suggests differential effects of epileptic phenomena on electrophysiological and hemodynamic signals and/or an alteration of the neurovascular coupling secondary to pathological plasticity in TLE even in regions spared by epileptiform discharges. In addition, indices of directionality calculated from both modalities were consistent showing that the epileptogenic regions exert a significant influence onto the non epileptic areas during the interictal period. This study shows that functional

  11. Mapping the changed hubs and corresponding functional connectivity in idiopathic restless legs syndrome.

    Science.gov (United States)

    Liu, Chunyan; Wang, Jiaojian; Hou, Yue; Qi, Zhigang; Wang, Li; Zhan, Shuqin; Wang, Rong; Wang, Yuping

    2018-05-01

    The hubs of the brain network play a key role in integrating and transferring information between different functional modules. However, whether the changed pattern in functional network hubs contributes to the onset of leg discomfort symptoms in restless legs syndrome (RLS) patients remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI) and graph theory methods, we investigated whether alterations of hubs can be detected in RLS. First, we constructed the whole-brain voxelwise functional connectivity and calculated a functional connectivity strength (FCS) map in each of 16 drug-naive idiopathic RLS patients and 26 gender- and age-matched healthy control (HC) subjects. Next, a two-sample t test was applied to compare the FCS maps between HC and RLS patients, and to identify significant changes in FCS in RLS patients. To further elucidate the corresponding changes in the functional connectivity patterns of the aberrant hubs in RLS patients, whole-brain resting-state functional connectivity analyses for the hub areas were performed. The hub analysis revealed decreased FCS in the cuneus, fusiform gyrus, paracentral lobe, and precuneus, and increased FCS in the superior frontal gyrus and thalamus in idiopathic drug-naive RLS patients. Subsequent functional connectivity analyses revealed decreased functional connectivity in sensorimotor and visual processing networks and increased functional connectivity in the affective cognitive network and cerebellar-thalamic circuit. Furthermore, the mean FCS value in the superior frontal gyrus was significantly correlated with Hamilton Anxiety Rating Scale scores in RLS patients, and the mean FCS value in the fusiform gyrus was significantly correlated with Hamilton Depression Rating Scale scores. These findings may provide novel insight into the pathophysiology of RLS. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Stellar Population Properties of Ultracompact Dwarfs in M87: A Mass–Metallicity Correlation Connecting Low-metallicity Globular Clusters and Compact Ellipticals

    Science.gov (United States)

    Zhang, Hong-Xin; Puzia, Thomas H.; Peng, Eric W.; Liu, Chengze; Côté, Patrick; Ferrarese, Laura; Duc, Pierre-Alain; Eigenthaler, Paul; Lim, Sungsoon; Lançon, Ariane; Muñoz, Roberto P.; Roediger, Joel; Sánchez-Janssen, Ruben; Taylor, Matthew A.; Yu, Jincheng

    2018-05-01

    We derive stellar population parameters for a representative sample of ultracompact dwarfs (UCDs) and a large sample of massive globular clusters (GCs) with stellar masses ≳ 106 M ⊙ in the central galaxy M87 of the Virgo galaxy cluster, based on model fitting to the Lick-index measurements from both the literature and new observations. After necessary spectral stacking of the relatively faint objects in our initial sample of 40 UCDs and 118 GCs, we obtain 30 sets of Lick-index measurements for UCDs and 80 for GCs. The M87 UCDs have ages ≳ 8 Gyr and [α/Fe] ≃ 0.4 dex, in agreement with previous studies based on smaller samples. The literature UCDs, located in lower-density environments than M87, extend to younger ages and smaller [α/Fe] (at given metallicities) than M87 UCDs, resembling the environmental dependence of the stellar nuclei of dwarf elliptical galaxies (dEs) in the Virgo cluster. The UCDs exhibit a positive mass–metallicity relation (MZR), which flattens and connects compact ellipticals at stellar masses ≳ 108 M ⊙. The Virgo dE nuclei largely follow the average MZR of UCDs, whereas most of the M87 GCs are offset toward higher metallicities for given stellar masses. The difference between the mass–metallicity distributions of UCDs and GCs may be qualitatively understood as a result of their different physical sizes at birth in a self-enrichment scenario or of galactic nuclear cluster star formation efficiency being relatively low in a tidal stripping scenario for UCD formation. The existing observations provide the necessary but not sufficient evidence for tidally stripped dE nuclei being the dominant contributors to the M87 UCDs.

  13. MicroRNA‑133b inhibits connective tissue growth factor in colorectal cancer and correlates with the clinical stage of the disease.

    Science.gov (United States)

    Guo, Yihang; Li, Xiaorong; Lin, Changwei; Zhang, Yi; Hu, Gui; Zhou, Jianyu; Du, Juan; Gao, Kai; Gan, Yi; Deng, Hao

    2015-04-01

    Accumulating evidence indicates that dysregulation of microRNA‑133b (miR‑133b) is an important step in the development of certain types of human cancer and contributes to tumorigenesis. Altered expression of miR‑133b has been reported in colon carcinoma, but its association with clinical stage in colorectal cancer (CRC) has remained elusive. Connective tissue growth factor (CTGF), a potentially promising candidate gene for interaction with miR‑133b, was screened using microarray analysis. The expression of miR‑133b and CTGF was evaluated using reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The regulatory effects of miR‑133b on CTGF were evaluated using a dual‑luciferase reporter assay. CTGF was identified as a functional target of miR‑133b. The results demonstrated low expression of miR‑133b in CRC specimens with poor cell differentiation (P=0.011), lymph node metastasis (P=0.037) and advanced clinical stages (stage III or IV vs. I or II; P=0.036). Furthermore, there was a significant association between a high level of expression of CTGF mRNA and an advanced clinical stage (stage III or IV vs. I or II; P=0.015) and lymph node metastasis (P=0.034). CTGF expression was negatively regulated by miR‑133b in the human colorectum, suggesting that miR‑133b and CTGF may be candidate therapeutic targets in colorectal cancer.

  14. Delayed Development of Brain Connectivity in Adolescents With Schizophrenia and Their Unaffected Siblings.

    Science.gov (United States)

    Zalesky, Andrew; Pantelis, Christos; Cropley, Vanessa; Fornito, Alex; Cocchi, Luca; McAdams, Harrison; Clasen, Liv; Greenstein, Deanna; Rapoport, Judith L; Gogtay, Nitin

    2015-09-01

    Abnormalities in structural brain connectivity have been observed in patients with schizophrenia. Mapping these abnormalities longitudinally and understanding their genetic risk via sibship studies will provide crucial insight into progressive developmental changes associated with schizophrenia. To identify corticocortical connections exhibiting an altered developmental trajectory in adolescents with childhood-onset schizophrenia (COS) and to determine whether similar alterations are found in patients' unaffected siblings. Using prospective structural brain magnetic resonance imaging, large-scale corticocortical connectivity was mapped from ages 12 to 24 years in 109 patients with COS (272 images), 86 of their unaffected siblings (184 images), and 102 healthy controls (262 images) over a 20-year period beginning January 1, 1991, through April 30, 2011, as part of the ongoing COS study at the National Institute of Mental Health. Structural connectivity between pairs of cortical regions was estimated using a validated technique based on across-subject covariation in magnetic resonance imaging-derived cortical thickness measurements. Compared with normally developing controls, significant left-hemisphere occipitotemporal deficits in cortical thickness correlations were found in patients with COS as well as their healthy siblings (P siblings normalized by mid-adolescence, whereas patients with COS showed significantly longer maturational delays, with cortical thickness correlations between the left temporal lobe and left occipital cortex not showing evidence of development until early adulthood. The normalization of deficits with age in patients with COS correlated with improvement in symptoms. Compared with controls, left-hemisphere occipitotemporal thickness correlations in a subgroup of patients with high positive symptoms were significantly reduced from age 14 to 18 years (P siblings associated with resilience to developing schizophrenia. These findings indicate

  15. The distinctly visible right upper lobe bronchus on the lateral chest: A clue to adolescent cystic fibrosis

    International Nuclear Information System (INIS)

    Reinig, J.W.; Sanchez, F.W.; Thomason, D.M.; Gobien, R.P.

    1985-01-01

    Radiographic differentiation between cystic fibrosis and asthma presenting in teenagers and young adults can be difficult. Many patients with a late presentation of cystic fibrosis display minimal changes on a chest radiograph. However, a large majority (90%) of cystic fibrosis patients with an essentially normal PA chest radiograph will have a distinctly outlined orifice of right upper lobe bronchus on a lateral chest film as opposed to a small number of asthmatics (25%) or normal patients (18%). This observation correlates well with the pathologic finding that the initial pulmonary involvement in cystic fibrosis is typically in the right upper lobe in adolescents. Teenager or young adult patients presenting with a history of repeated respiratory infections, asthma-like symptoms and a distinctly visible right upper lobe bronchus on a lateral chest film should be sweat-tested to exclude cystic fibrosis. (orig.)

  16. Task-related functional connectivity of the caudate mediates the association between trait mindfulness and implicit learning in older adults.

    Science.gov (United States)

    Stillman, Chelsea M; You, Xiaozhen; Seaman, Kendra L; Vaidya, Chandan J; Howard, James H; Howard, Darlene V

    2016-08-01

    Accumulating evidence shows a positive relationship between mindfulness and explicit cognitive functioning, i.e., that which occurs with conscious intent and awareness. However, recent evidence suggests that there may be a negative relationship between mindfulness and implicit types of learning, or those that occur without conscious awareness or intent. Here we examined the neural mechanisms underlying the recently reported negative relationship between dispositional mindfulness and implicit probabilistic sequence learning in both younger and older adults. We tested the hypothesis that the relationship is mediated by communication, or functional connectivity, of brain regions once traditionally considered to be central to dissociable learning systems: the caudate, medial temporal lobe (MTL), and prefrontal cortex (PFC). We first replicated the negative relationship between mindfulness and implicit learning in a sample of healthy older adults (60-90 years old) who completed three event-related runs of an implicit sequence learning task. Then, using a seed-based connectivity approach, we identified task-related connectivity associated with individual differences in both learning and mindfulness. The main finding was that caudate-MTL connectivity (bilaterally) was positively correlated with learning and negatively correlated with mindfulness. Further, the strength of task-related connectivity between these regions mediated the negative relationship between mindfulness and learning. This pattern of results was limited to the older adults. Thus, at least in healthy older adults, the functional communication between two interactive learning-relevant systems can account for the relationship between mindfulness and implicit probabilistic sequence learning.

  17. [Mirror movement due to the medial frontal lobe lesion].

    Science.gov (United States)

    Takahashi, N; Kawamura, M; Hirayama, K

    1995-01-01

    We reported a case with acquired mirror movement in upper limbs due to the lesion of right medial frontal lobe including supplementary motor area, and also discussed a possible mechanism underlying it. A 59-year-old right-handed woman developed left hemiparesis caused by cerebral hemorrhage in the right frontoparietal lobe, on April 5, 1981. She had right hemiparesis and right hemianopsia due to cerebral hemorrhage in the left parieto-occipital lobe, 13 days later. As the patient was recovering from paresis, mirror movement appeared on upper limbs. The features of the mirror movement of this case are summarized as follows: (1) it appeared when using both proximal and distal region of upper limbs; (2) it appeared on left upper limb when the patient intended to move right upper limb or on right upper limb when intended to move left upper limb, while it appeared predominantly in the former; and (3) it was more remarkably found in habitual movement using gesture and pantomimic movement for the use of objects, and it was found in lower degree when actual object was used or when the patient tried to imitate the gesture of the examiner. The lesions in MRI were found in medial region of right frontal lobe (supplementary motor area, medial region of motor area, and cingulate gyrus), right medial parietal lobe, posterior region of right occipital lobe, and medial regions of left parietal and occipital lobes. There was no apparent abnormality in corpus callosum.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Internet Connectivity

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Internet Connectivity. BSNL, SIFY, HCL in Guwahati; only BSNL elsewhere in NE (local player in Shillong). Service poor; All vendors lease BW from BSNL.

  19. Mathematics Connection

    African Journals Online (AJOL)

    MATHEMATICS CONNECTION aims at providing a forum topromote the development of Mathematics Education in Ghana. Articles that seekto enhance the teaching and/or learning of mathematics at all levels of theeducational system are welcome.

  20. HR Connect

    Data.gov (United States)

    US Agency for International Development — HR Connect is the USAID HR personnel system which allows HR professionals to process HR actions related to employee's personal and position information. This system...

  1. Functional dissociation between anterior temporal lobe and inferior frontal gyrus in the processing of dynamic body expressions: Insights from behavioral variant frontotemporal dementia.

    Science.gov (United States)

    Jastorff, Jan; De Winter, Francois-Laurent; Van den Stock, Jan; Vandenberghe, Rik; Giese, Martin A; Vandenbulcke, Mathieu

    2016-12-01

    Several brain regions are involved in the processing of emotional stimuli, however, the contribution of specific regions to emotion perception is still under debate. To investigate this issue, we combined behavioral testing, structural and resting state imaging in patients diagnosed with behavioral variant frontotemporal dementia (bvFTD) and age matched controls, with task-based functional imaging in young, healthy volunteers. As expected, bvFTD patients were impaired in emotion detection as well as emotion categorization tasks, testing dynamic emotional body expressions as stimuli. Interestingly, their performance in the two tasks correlated with gray matter volume in two distinct brain regions, the left anterior temporal lobe for emotion detection and the left inferior frontal gyrus (IFG) for emotion categorization. Confirming this observation, multivoxel pattern analysis in healthy volunteers demonstrated that both ROIs contained information for emotion detection, but that emotion categorization was only possible from the pattern in the IFG. Furthermore, functional connectivity analysis showed reduced connectivity between the two regions in bvFTD patients. Our results illustrate that the mentalizing network and the action observation network perform distinct tasks during emotion processing. In bvFTD, communication between the networks is reduced, indicating one possible cause underlying the behavioral symptoms. Hum Brain Mapp 37:4472-4486, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Mapping thalamocortical network pathology in temporal lobe epilepsy.

    Science.gov (United States)

    Bernhardt, Boris C; Bernasconi, Neda; Kim, Hosung; Bernasconi, Andrea

    2012-01-10

    Although experimental work has provided evidence that the thalamus is a crucial relay structure in temporal lobe epilepsy (TLE), the relation of the thalamus to neocortical pathology remains unclear. To assess thalamocortical network pathology in TLE, we mapped pointwise patterns of thalamic atrophy and statistically related them to neocortical thinning. We studied cross-sectionally 36 patients with drug-resistant TLE and 19 age- and sex-matched healthy control subjects using high-resolution MRI. To localize thalamic pathology, we converted manual labels into surface meshes using the spherical harmonic description and calculated local deformations relative to a template. In addition, we measured cortical thickness by means of the constrained Laplacian anatomic segmentation using proximity algorithm. Compared with control subjects, patients with TLE showed ipsilateral thalamic atrophy that was located along the medial surface, encompassing anterior, medial, and posterior divisions. Unbiased analysis correlating the degree of medial thalamic atrophy with cortical thickness measurements mapped bilateral frontocentral, lateral temporal, and mesiotemporal cortices. These areas overlapped with those of cortical thinning found when patients were compared with control subjects. Thalamic atrophy intensified with a longer duration of epilepsy and was more severe in patients with a history of febrile convulsions. The degree and distribution of thalamic pathology relates to the topography and extent of neocortical atrophy, lending support to the concept that the thalamus is an important hub in the pathologic network of TLE.

  3. Comparative Lateralizing Ability of Multimodality MRI in Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Karabekir Ercan

    2016-01-01

    Full Text Available Purpose. The objective is to compare lateralizing ability of three quantitative MR (qMRI modalities to depict changes of hippocampal architecture with clinical entities in temporal lobe epilepsy. Methods. We evaluated 14 patients with clinical and EEG proven diagnosis of unilateral TLE and 15 healthy volunteers. T1-weighted 3D dataset for volumetry, single-voxel 1H MR spectroscopy (MRS, and diffusion tensor imaging (DTI were performed for bilateral hippocampi of all subjects. Results. Individual volumetric measurements provided accurate lateralization in 85% of the patients, spectroscopy in 57%, and DTI in 57%. Higher lateralization ratios were acquired combining volumetry-spectroscopy (85%, spectroscopy-DTI (85%, and volumetry-DTI (100%. Significantly decreased NAA/(Cho+Cr ratios (p=0.002 and increased FA (p=0.001 values were obtained in ipsilateral to epileptogenic hippocampus. Duration of epilepsy and FA values showed a significant negative correlation (p=0.016, r=-0.847. The history of febrile convulsion associated with ipsilateral increased ADC values (p=0.015, r=0.851 and reduced NAA/(Cho+Cr ratios (p=0.047, r=-761. Conclusion. Volumetry, MRS, and DTI studies provide complementary information of hippocampal pathology. For lateralization of epileptogenic focus and preoperative examination, volumetry-DTI combination may be indicative of diagnostic accuracy.

  4. Defected red blood cell membranes and direct correlation with the uraemic milieu: the connection with the decreased red blood cell lifespan observed in haemodialysis patients

    International Nuclear Information System (INIS)

    Stamopoulos, D; Manios, E; Gogola, V; Grapsa, E; Bakirtzi, N

    2012-01-01

    Together with impaired production of erythropoietin and iron deficiency, the decreased lifespan of red blood cells (RBCs) is a main factor contributing to the chronic anaemia observed in haemodialysis (HD) patients. Atomic force microscopy is employed in this work to thoroughly survey the membrane of intact RBCs (iRBCs) of HD patients in comparison to those of healthy donors, aiming to obtain direct information on the structural status of RBCs that can be related to their decreased lifespan. We observed that the iRBC membrane of the HD patients is overpopulated with extended circular defects, termed ‘orifices’, that have typical dimension ranging between 0.2 and 1.0 μm. The ‘orifice’ index—that is, the mean population of ‘orifices’ per top membrane surface—exhibits a pronounced relative increase of order 54 ± 12% for the HD patients as compared to healthy donors. Interestingly, for the HD patients, the ‘orifice’ index, which relates to the structural status of the RBC membrane, correlates strongly with urea concentration, which is a basic index of the uraemic milieu. Thus, these results indicate that the uraemic milieu downgrades the structural status of the RBC membrane, possibly triggering biochemical processes that result in their premature elimination from the circulation. This process could decrease the lifespan of RBCs, as observed in HD patients. (paper)

  5. Papillary thyroid microcarcinoma in a thyroid pyramidal lobe

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae Kwan; Kim, Dong Wook; Park, Ha Kyoung; Jung, Soo Jin [Busan Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of)

    2014-12-15

    We report an extremely rare case of papillary thyroid microcarcinoma (PTMC) in the thyroid pyramidal lobe (TPL). A 48-year-old woman underwent ultrasound-guided fine-needle aspiration for a small thyroid nodule in the right lobe in local clinic, and it revealed a malignant cytology. On preoperative ultrasonography for tumor staging in our hospital, another small suspiciously malignant hypoechoic nodule was detected in the left TPL. Total thyroidectomy and central nodal dissection were performed. Histopathology confirmed PTMCs in the left TPL and both thyroid lobes. Ultrasonography for TPL should be required for complete evaluation of possible multifocality of thyroid malignancy.

  6. Resting-state network disruption and APOE genotype in Alzheimer's disease: a lagged functional connectivity study.

    Directory of Open Access Journals (Sweden)

    Leonides Canuet

    Full Text Available BACKGROUND: The apolipoprotein E epsilon 4 (APOE-4 is associated with a genetic vulnerability to Alzheimer's disease (AD and with AD-related abnormalities in cortical rhythms. However, it is unclear whether APOE-4 is linked to a specific pattern of intrinsic functional disintegration of the brain after the development of the disease or during its different stages. This study aimed at identifying spatial patterns and effects of APOE genotype on resting-state oscillations and functional connectivity in patients with AD, using a physiological connectivity index called "lagged phase synchronization". METHODOLOGY/PRINCIPAL FINDINGS: Resting EEG was recorded during awake, eyes-closed state in 125 patients with AD and 60 elderly controls. Source current density and functional connectivity were determined using eLORETA. Patients with AD exhibited reduced parieto-occipital alpha oscillations compared with controls, and those carrying the APOE-4 allele had reduced alpha activity in the left inferior parietal and temporo-occipital cortex relative to noncarriers. There was a decreased alpha2 connectivity pattern in AD, involving the left temporal and bilateral parietal cortex. Several brain regions exhibited increased lagged phase synchronization in low frequencies, specifically in the theta band, across and within hemispheres, where temporal lobe connections were particularly compromised. Areas with abnormal theta connectivity correlated with cognitive scores. In patients with early AD, we found an APOE-4-related decrease in interhemispheric alpha connectivity in frontal and parieto-temporal regions. CONCLUSIONS/SIGNIFICANCE: In addition to regional cortical dysfunction, as indicated by abnormal alpha oscillations, there are patterns of functional network disruption affecting theta and alpha bands in AD that associate with the level of cognitive disturbance or with the APOE genotype. These functional patterns of nonlinear connectivity may potentially

  7. Attempt of correlative observation of morphological synaptic connectivity by combining confocal laser-scanning microscope and FIB-SEM for immunohistochemical staining technique.

    Science.gov (United States)

    Sonomura, Takahiro; Furuta, Takahiro; Nakatani, Ikuko; Yamamoto, Yo; Honma, Satoru; Kaneko, Takeshi

    2014-11-01

    Ten years have passed since a serial block-face scanning electron microscopy (SBF-SEM) method was developed [1]. In this innovative method, samples were automatically sectioned with an ultramicrotome placed inside a scanning electron microscope column, and the block surfaces were imaged one after another by SEM to capture back-scattered electrons. The contrast-inverted images obtained by the SBF-SEM were very similar to those acquired using conventional TEM. SFB-SEM has made easy to acquire image stacks of the transmission electron microscopy (TEM) in the mesoscale, which is taken with the confocal laser-scanning microcopy(CF-LSM).Furthermore, serial-section SEM has been combined with the focused ion beam (FIB) milling method [2]. FIB-incorporated SEM (FIB-SEM) has enabled the acquisition of three-dimensional images with a higher z-axis resolution com- pared to ultramicrotome-equipped SEM.We tried immunocytochemistry for FIB-SEM and correlated this immunoreactivity with that in CF-LSM. Dendrites of neurons in the rat neostriatum were visualized using a recombinant viral vector. Moreover, the thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2). After detection of the sites of terminals apposed to the dendrites by using CF-LSM, GFP and VGluT2 immunoreactivities were further developed for EM by using immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB) methods, respectively.We showed that conventional immuno-cytochemical staining for TEM was applicable to FIB-SEM. Furthermore, several synaptic contacts, which were thought to exist on the basis of CF-LSM findings, were confirmed with FIB-SEM, revealing the usefulness of the combined method of CF-LSM and FIB-SEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    International Nuclear Information System (INIS)

    Ye, Ting; Peng, Jing; Nie, Binbin; Gao, Juan; Liu, Jiangtao; Li, Yang; Wang, Gang; Ma, Xin; Li, Kuncheng

    2012-01-01

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  9. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ting, E-mail: yeting@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Peng, Jing, E-mail: ppengjjing@sina.com.cn [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Nie, Binbin, E-mail: niebb@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Gao, Juan, E-mail: gaojuan@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Liu, Jiangtao, E-mail: Liujiangtao813@sina.com [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Li, Yang, E-mail: Liyang2007428@hotmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Wang, Gang, E-mail: gangwang@gmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Ma, Xin, E-mail: lijianshe@medmail.com.cn [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Li, Kuncheng [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); and others

    2012-12-15

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  10. Turbulent measurements in the lobe mixer of a turbofan engine. Turbofan engine lobe mixer nagare no ranryu keisoku

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Makoto; Ogawa, Yuji; Arakawa, Chuichi; Tagori, Tetsuo [Ishikawajima-Harima Heavy Industries, Co., Ltd., Tokyo, (Japan) Nippon Steel Corp., Tokyo, (Japan) The Univ. of Tokyo, Tokyo, (Japan). Faculty of Engineering The Univ. of Tsukuba, Tsukuba, (Japan)

    1990-01-25

    In order to examine the flow generated by the lobe mixer of a turbofan engine precisely, after measuring a three dimensional turbulent flow by a hot-wire anemometer, the mixing process of a bypass flow and a core flow with cross-sectional vortexes, and factors generating the vortex were clarified experimentally using the scale model of an exhaust duct with the lobe mixer. As a result, the mixing process was strongly affected by a lobe tip figure and a lobe figure near a center-body, and affected by the minimum gap between the lobe and center-body. The subsequent mixing process was scarcely affected by the ratio of a core flow velocity to a bypass flow one, although strongly affected by flow conditions on a lobe surface. Since the lobe mixer promoted the mixing around a center axis shifting a fast core flow outwards, it was unfavorable to mixing, however, it was expected to be useful for reducing engine jet noise. 3 refs., 7 figs.

  11. Ecdysone-dependent and ecdysone-independent programmed cell death in the developing optic lobe of Drosophila.

    Science.gov (United States)

    Hara, Yusuke; Hirai, Keiichiro; Togane, Yu; Akagawa, Hiromi; Iwabuchi, Kikuo; Tsujimura, Hidenobu

    2013-02-01

    The adult optic lobe of Drosophila develops from the primordium during metamorphosis from mid-3rd larval stage to adult. Many cells die during development of the optic lobe with a peak of the number of dying cells at 24 h after puparium formation (h APF). Dying cells were observed in spatio-temporal specific clusters. Here, we analyzed the function of a component of the insect steroid hormone receptor, EcR, in this cell death. We examined expression patterns of two EcR isoforms, EcR-A and EcR-B1, in the optic lobe. Expression of each isoform altered during development in isoform-specific manner. EcR-B1 was not expressed in optic lobe neurons from 0 to 6h APF, but was expressed between 9 and 48 h APF and then disappeared by 60 h APF. In each cortex, its expression was stronger in older glia-ensheathed neurons than in younger ones. EcR-B1 was also expressed in some types of glia. EcR-A was expressed in optic lobe neurons and many types of glia from 0 to 60 h APF in a different pattern from EcR-B1. Then, we genetically analyzed EcR function in the optic lobe cell death. At 0 h APF, the optic lobe cell death was independent of any EcR isoforms. In contrast, EcR-B1 was required for most optic lobe cell death after 24 h APF. It was suggested that cell death cell-autonomously required EcR-B1 expressed after puparium formation. βFTZ-F1 was also involved in cell death in many dying-cell clusters, but not in some of them at 24 h APF. Altogether, the optic lobe cell death occurred in ecdysone-independent manner at prepupal stage and ecdysone-dependent manner after 24 h APF. The acquisition of ecdysone-dependence was not directly correlated with the initiation or increase of EcR-B1 expression. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Convergent Findings of Altered Functional and Structural Brain Connectivity in Individuals with High Functioning Autism: A Multimodal MRI Study.

    Directory of Open Access Journals (Sweden)

    Sophia Mueller

    Full Text Available Brain tissue changes in autism spectrum disorders seem to be rather subtle and widespread than anatomically distinct. Therefore a multimodal, whole brain imaging technique appears to be an appropriate approach to investigate whether alterations in white and gray matter integrity relate to consistent changes in functional resting state connectivity in individuals with high functioning autism (HFA. We applied diffusion tensor imaging (DTI, voxel-based morphometry (VBM and resting state functional connectivity magnetic resonance imaging (fcMRI to assess differences in brain structure and function between 12 individuals with HFA (mean age 35.5, SD 11.4, 9 male and 12 healthy controls (mean age 33.3, SD 9.0, 8 male. Psychological measures of empathy and emotionality were obtained and correlated with the most significant DTI, VBM and fcMRI findings. We found three regions of convergent structural and functional differences between HFA participants and controls. The right temporo-parietal junction area and the left frontal lobe showed decreased fractional anisotropy (FA values along with decreased functional connectivity and a trend towards decreased gray matter volume. The bilateral superior temporal gyrus displayed significantly decreased functional connectivity that was accompanied by the strongest trend of gray matter volume decrease in the temporal lobe of HFA individuals. FA decrease in the right temporo-parietal region was correlated with psychological measurements of decreased emotionality. In conclusion, our results indicate common sites of structural and functional alterations in higher order association cortex areas and may therefore provide multimodal imaging support to the long-standing hypothesis of autism as a disorder of impaired higher-order multisensory integration.

  13. Abnormal Resting-State Functional Connectivity in Patients with Chronic Fatigue Syndrome: Results of Seed and Data-Driven Analyses.

    Science.gov (United States)

    Gay, Charles W; Robinson, Michael E; Lai, Song; O'Shea, Andrew; Craggs, Jason G; Price, Donald D; Staud, Roland

    2016-02-01

    Although altered resting-state functional connectivity (FC) is a characteristic of many chronic pain conditions, it has not yet been evaluated in patients with chronic fatigue. Our objective was to investigate the association between fatigue and altered resting-state FC in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Thirty-six female subjects, 19 ME/CFS and 17 healthy controls, completed a fatigue inventory before undergoing functional magnetic resonance imaging. Two methods, (1) data driven and (2) model based, were used to estimate and compare the intraregional FC between both groups during the resting state (RS). The first approach using independent component analysis was applied to investigate five RS networks: the default mode network, salience network (SN), left frontoparietal networks (LFPN) and right frontoparietal networks, and the sensory motor network (SMN). The second approach used a priori selected seed regions demonstrating abnormal regional cerebral blood flow (rCBF) in ME/CFS patients at rest. In ME/CFS patients, Method-1 identified decreased intrinsic connectivity among regions within the LFPN. Furthermore, the FC of the left anterior midcingulate with the SMN and the connectivity of the left posterior cingulate cortex with the SN were significantly decreased. For Method-2, five distinct clusters within the right parahippocampus and occipital lobes, demonstrating significant rCBF reductions in ME/CFS patients, were used as seeds. The parahippocampal seed and three occipital lobe seeds showed altered FC with other brain regions. The degree of abnormal connectivity correlated with the level of self-reported fatigue. Our results confirm altered RS FC in patients with ME/CFS, which was significantly correlated with the severity of their chronic fatigue.

  14. Establishing Connectivity

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    Global law settings are characterised by a structural pre-eminence of connectivity norms, a type of norm which differs from coherency or possibility norms. The centrality of connectivity norms emerges from the function of global law, which is to increase the probability of transfers of condensed ...... and human rights can be understood as serving a constitutionalising function aimed at stabilising and facilitating connectivity. This allows for an understanding of colonialism and contemporary global governance as functional, but not as normative, equivalents.......Global law settings are characterised by a structural pre-eminence of connectivity norms, a type of norm which differs from coherency or possibility norms. The centrality of connectivity norms emerges from the function of global law, which is to increase the probability of transfers of condensed...... social components, such as economic capital and products, religious doctrines and scientific knowledge, from one legally structured context to another within world society. This was the case from colonialism and colonial law to contemporary global supply chains and human rights. Both colonial law...

  15. [Two cases of mesial temporal lobe epilepsy associated with old intracerebral hemorrhage in the lateral temporal lobe without "dual pathology"].

    Science.gov (United States)

    Morioka, T; Nishio, S; Hisada, K; Muraishi, M; Ishibashi, H; Mamiya, K; Ohfu, M; Fukui, M

    1998-05-01

    Two cases of intractable temporal lobe epilepsy associated with old intracerebral hemorrhage in the lateral temporal lobe were reported. Although preoperative magnetic resonance imaging (MRI) failed to reveal hippocampal atrophy with T2 hyperintensity, electrocorticographic (ECoG) recording with chronic invasive subdural electrodes indicated the mesial temporal lobe to be an ictal onset zone. After anterior temporal lobectomy involving the lesion and hippocampectomy, the patients became seizure-free. Hippocampal sclerosis, namely "dual pathology", was not noted on histological examination. Careful ECoG recording with chronic subdural electrodes is mandatory even when the preoperative MRI does not demonstrate the radiological hippocampal sclerosis.

  16. Pediatric frontal lobe epilepsy : white matter abnormalities and cognitive impairment

    NARCIS (Netherlands)

    Braakman, H.M.H.; Vaessen, M.J.; Jansen, J.F.A.; Debeij-van Hall, M.H.J.A.; Louw, de A.; Hofman, P.A.M.; Vles, J.S.H.; Aldenkamp, A.P.; Backes, W.H.

    2014-01-01

    Objectives: Cognitive impairment is frequent in children with frontal lobe epilepsy (FLE). Its etiology remains unknown. With diffusion tensor imaging, we have studied cerebral white matter properties and associations with cognitive functioning in children with FLE and healthy controls.

  17. Genetics Home Reference: autosomal dominant nocturnal frontal lobe epilepsy

    Science.gov (United States)

    ... with ADNFLE have experienced psychiatric disorders (such as schizophrenia), behavioral problems, or intellectual disability. It is unclear ... Epilepsy Society Citizens United for Research in Epilepsy (CURE) GeneReviews (1 link) Autosomal Dominant Nocturnal Frontal Lobe ...

  18. Magnetic resonance tomography (MRT) for lesions of the temporal lobes

    International Nuclear Information System (INIS)

    Schoerner, W.; Felix, R.; Meencke, H.J.; Freie Univ. Berlin; Freie Univ. Berlin

    1985-01-01

    A comparative study between magnetic resonance tomography (MRT) and CT was carried out in 16 patients with temporal lobe epilepsy. The MRT studies were performed on a 0.35 T Magnetom with T.1 modes in a coronal plane. MRT proved to the superior to CT. CT demonstrated a discrete temporal lobe lesion in three patients and MRT in four patients. In addition, unilateral atrophy of the temporal lobe was demonstrated by MRT in six cases; these could not be diagnosed by CT. The lack of artifacts near the skull base, the possibility of producing coronal sections and the excellent tissue differential of MRT provide the basis for improved diagnosis of lesions in the temporal lobes. (orig.) [de

  19. Cognitive impairments in patients with intractable temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Mahgol Tavakoli

    2011-01-01

    Conclusions: These findings indicated that WMS-III and WAIS-R can differentiate patients with refractory temporal lobe epilepsy from normal subjects. However, the obtained cognitive profile could not differentiate between the right and the left TLE.

  20. Combination of DTI and fMRI reveals the white matter changes correlating with the decline of default-mode network activity in Alzheimer's disease

    Science.gov (United States)

    Wu, Xianjun; Di, Qian; Li, Yao; Zhao, Xiaojie

    2009-02-01

    Recently, evidences from fMRI studies have shown that there was decreased activity among the default-mode network in Alzheimer's disease (AD), and DTI researches also demonstrated that demyelinations exist in white matter of AD patients. Therefore, combining these two MRI methods may help to reveal the relationship between white matter damages and alterations of the resting state functional connectivity network. In the present study, we tried to address this issue by means of correlation analysis between DTI and resting state fMRI images. The default-mode networks of AD and normal control groups were compared to find the areas with significantly declined activity firstly. Then, the white matter regions whose fractional anisotropy (FA) value correlated with this decline were located through multiple regressions between the FA values and the BOLD response of the default networks. Among these correlating white matter regions, those whose FA values also declined were found by a group comparison between AD patients and healthy elderly control subjects. Our results showed that the areas with decreased activity among default-mode network included left posterior cingulated cortex (PCC), left medial temporal gyrus et al. And the damaged white matter areas correlated with the default-mode network alterations were located around left sub-gyral temporal lobe. These changes may relate to the decreased connectivity between PCC and medial temporal lobe (MTL), and thus correlate with the deficiency of default-mode network activity.

  1. First record of lobed trace fossils in Brazil's Upper Cretaceous paleosols: Rhizoliths or evidence of insects and their social behavior?

    Science.gov (United States)

    Luciano do Nascimento, Diego; Batezelli, Alessandro; Bernardes Ladeira, Francisco Sérgio

    2017-11-01

    This is the first report of trace fossils potentially associated with insect social behavior in sandy and well-drained paleosols of the Upper Cretaceous continental sequence of Brazil. The trace fossils consist of dozens of lobed and vertical structures cemented by CaCO3 and preserved mainly in full relief in paleosols of the Marilia Formation (Bauru Basin) in the state of Minas Gerais. The described ichnofossils are predominantly vertical, up to 2 m long, and are composed of horizontal lobed structures connected by vertical tunnel-like structures that intersect in the center and at the edges. The lobed structures range from 3 to 15 cm long and 2-6 cm thick. Two different hypotheses are analyzed to explain the origin of the trace fossils; the less probable one is that the structures are laminar calcretes associated with rhizoliths and rhizoconcretions. The hypothesis involving social insects was considered because the trace fossils described herein partially resemble a modern ant nest and the ichnofossil Daimoniobarax. The micromorphological analysis of the lobed and tunnel-like structures indicates modifications of the walls, such as the presence of inorganic fluidized linings, dark linings and oriented grains, supporting the hypothesis that they are chambers and shafts. The architecture and size of the reported nests suggest the possibility that social insect colonies existed during the Maastrichtian and are direct evidence of the social behavior and reproductive strategies of the Cretaceous pedofauna.

  2. Spike voltage topography in temporal lobe epilepsy.

    Science.gov (United States)

    Asadi-Pooya, Ali A; Asadollahi, Marjan; Shimamoto, Shoichi; Lorenzo, Matthew; Sperling, Michael R

    2016-07-15

    We investigated the voltage topography of interictal spikes in patients with temporal lobe epilepsy (TLE) to see whether topography was related to etiology for TLE. Adults with TLE, who had epilepsy surgery for drug-resistant seizures from 2011 until 2014 at Jefferson Comprehensive Epilepsy Center were selected. Two groups of patients were studied: patients with mesial temporal sclerosis (MTS) on MRI and those with other MRI findings. The voltage topography maps of the interictal spikes at the peak were created using BESA software. We classified the interictal spikes as polar, basal, lateral, or others. Thirty-four patients were studied, from which the characteristics of 340 spikes were investigated. The most common type of spike orientation was others (186 spikes; 54.7%), followed by lateral (146; 42.9%), polar (5; 1.5%), and basal (3; 0.9%). Characteristics of the voltage topography maps of the spikes between the two groups of patients were somewhat different. Five spikes in patients with MTS had polar orientation, but none of the spikes in patients with other MRI findings had polar orientation (odds ratio=6.98, 95% confidence interval=0.38 to 127.38; p=0.07). Scalp topographic mapping of interictal spikes has the potential to offer different information than visual inspection alone. The present results do not allow an immediate clinical application of our findings; however, detecting a polar spike in a patient with TLE may increase the possibility of mesial temporal sclerosis as the underlying etiology. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. SPITZER OBSERVATIONS OF HOTSPOTS IN RADIO LOBES

    International Nuclear Information System (INIS)

    Werner, Michael W.; Murphy, David W.; Livingston, John H.; Gorjian, Varoujan; Jones, Dayton L.; Meier, David L.; Lawrence, Charles R.

    2012-01-01

    We have carried out a systematic search with Spitzer Warm Mission and archival data for infrared emission from the hotspots in radio lobes that have been described by Hardcastle et al. These hotspots have been detected with both radio and X-ray observations, but an observation at an intermediate frequency in the infrared can be critical to distinguish between competing models for particle acceleration and radiation processes in these objects. Between the archival and warm mission data, we report detections of 18 hotspots; the archival data generally include detections at all four IRAC bands, the Warm Mission data only at 3.6 μm. Using a theoretical formalism adopted from Godfrey et al., we fit both archival and warm mission spectral energy distributions (SEDs)—including radio, X-ray, and optical data from Hardcastle as well as the Spitzer data—with a synchrotron self-Compton (SSC) model, in which the X-rays are produced by Compton scattering of the radio frequency photons by the energetic electrons which radiate them. With one exception, an SSC model requires that the magnetic field be less or much less than the equipartition value which minimizes total energy and has comparable amounts of energy in the magnetic field and in the energetic particles. This conclusion agrees with those of comparable recent studies of hotspots, and with the analysis presented by Hardcastle et al. We also show that the infrared data rule out the simplest synchrotron-only models for the SEDs. We briefly discuss the implications of these results and of alternate interpretations of the data.

  4. Cognitive dysfunctions in occipital lobe epilepsy compared to temporal lobe epilepsy.

    Science.gov (United States)

    Santangelo, Gabriella; Trojano, Luigi; Vitale, Carmine; Improta, Ilaria; Alineri, Irma; Meo, Roberta; Bilo, Leonilda

    2017-06-01

    To compare cognitive profiles of occipital lobe epilepsy (OLE) and temporal lobe epilepsy (TLE) and to investigate whether impairment of visuospatial functions is a specific deficit of OLE. Eighteen patients with OLE, 18 patients with TLE, and 18 controls underwent a neuropsychological battery assessing memory, visuospatial functions, and frontal/executive functions. Multivariate analysis evidenced poorer performance of patients with TLE and patients with OLE relative to controls on tasks assessing verbal and non-verbal long-term memory, frontal functions, and visuospatial functions. Patients with OLE had poorer performance than patients with TLE on visuospatial tasks, whereas patients with TLE performed worse than patients with OLE on verbal long-term memory test. Discriminant analysis identified two canonical discriminant functions: The first explained 53.3% of the variance, and the second explained 46.7% of the variance. The first function included verbal and non-verbal memory tests distinguishing controls from both OLE and TLE, whereas the second factor including a visuoconstructional test distinguished OLE from TLE and controls. The results demonstrate that visuoconstructional dysfunction is related to OLE and support the idea that alterations of occipito-parietal stream may be specific to patients with OLE. © 2015 The British Psychological Society.

  5. Patterns of verbal learning and memory in children with intractable temporal lobe or frontal lobe epilepsy.

    Science.gov (United States)

    Fuentes, Amanda; Smith, Mary Lou

    2015-12-01

    The objective of this study was to provide a better understanding of the verbal learning and memory (VLM) patterns that might differentiate children with frontal lobe epilepsy (FLE) from children with temporal lobe epilepsy (TLE) and to examine the impact of variables thought to influence outcomes (seizure laterality, age at seizure onset, age at assessment, epilepsy duration, number of antiepileptic drugs). Retrospective analyses were carried out for children with intractable unilateral TLE (n=100) and FLE (n=27) who completed standardized measures of VLM entailing lists of single words or lists of word pairs. Mean intelligent quotients and VLM scores on single words fell within the average range for both groups, whereas scores fell within the low average to borderline range on word pairs. No significant overall differences in VLM were found between the group with TLE and the group with FLE. Older age at assessment and older age at seizure onset were generally associated with better VLM in both groups but were related to better performance in a number of indices in the group with TLE and only fewer intrusions in the group with FLE. The VLM profiles of children with TLE and FLE are generally similar. Older age at assessment and older age at seizure onset have a favorable impact on both groups but are related to better encoding, retrieval, and monitoring processes for the group with TLE and improved memory monitoring (i.e., as indicated by fewer intrusions) in the group with FLE. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A comparison of occipital and temporal lobe epilepsies.

    Science.gov (United States)

    Appel, S; Sharan, A D; Tracy, J I; Evans, J; Sperling, M R

    2015-10-01

    Differentiating between occipital lobe epilepsy (OLE) and temporal lobe epilepsy (TLE) is often challenging. This retrospective case-control study compares OLE to TLE and explores markers that suggest the diagnosis of OLE. We queried the Jefferson Epilepsy Center surgery database for patients who underwent a resection that involved the occipital lobe. For each patient with OLE, three sequential case-control patients with TLE were matched. Demographic characteristics, symptoms, electrophysiological findings, imaging findings, and surgical outcome were compared. Nineteen patients with OLE and 57 patients with TLE were included in the study. Visual symptoms were unique to patients with OLE (8/19) and were not reported by patients with TLE (P Occipital interictal spikes (IIS) were found only in one-third of the patients with OLE (6/19) and in no patients with TLE (P lobe were found in five of 19 patients with OLE vs one of 57 patients with TLE (P = 0.003). IIS involved more than one lobe of the brain in most patients with OLE (11/19) but only in nine of 57 the TLE group. (P = 0.0003) Multilobar resection was needed in most patients with OLE (15/19), typically including the temporal lobe, but in only one of the patients with TLE (P Occipital lobe epilepsy is difficult to identify and may masquerade as temporal lobe epilepsy. Visual symptoms and occipital findings in the EEG suggest the diagnosis of OLE, but absence of these features, does not exclude the diagnosis. When posterior temporal EEG findings or multilobar involvement occurs, the diagnosis of OLE should be considered. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. A close link between metabolic activity and functional connectivity in the resting human brain

    Energy Technology Data Exchange (ETDEWEB)

    Passow, Susanne [Department of Biological and Medical Psychology, University of Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Specht, Karsten [Department of Biological and Medical Psychology, University of Bergen (Norway); Department of Clinical Engineering, Haukeland University Hospital, Bergen (Norway); Adamsen, Tom Christian [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Chemistry, University of Bergen (Norway); Biermann, Martin; Brekke, Njål [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen (Norway); Craven, Alexander Richard [Department of Biological and Medical Psychology, University of Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Ersland, Lars [Department of Clinical Engineering, Haukeland University Hospital, Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Grüner, Renate [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Physics and Technology, University of Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway); Kleven-Madsen, Nina [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Physics and Technology, University of Bergen (Norway); Kvernenes, Ole-Heine [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Schwarzlmüller, Thomas [Department of Radiology, Haukeland University Hospital, Bergen (Norway); Department of Clinical Medicine, University of Bergen (Norway); Olesen, Rasmus [Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus (Denmark); Hugdahl, Kenneth [Department of Biological and Medical Psychology, University of Bergen (Norway); Department of Radiology, Haukeland University Hospital, Bergen (Norway); Division of Psychiatry, Haukeland University Hospital, Bergen (Norway); NORMENT Center of Excellence, University of Oslo (Norway)

    2015-05-18

    Default-mode network (DMN) functional connectivity and its task-dependent down-regulation have attracted a lot of attention in the field of neuroscience. Nevertheless, the exact underlying mechanisms of DMN functional connectivity, or more specifically, the blood oxygen level-dependent (BOLD) signal, are still not completely understood. To investigate more directly the association between local glucose consumption, local glutamatergic neurotransmission and DMN functional connectivity during rest, the present study combined for the first time 2-Deoxy-2-[18F]fluoroglucose positron emission tomography (FDG-PET), proton magnetic resonance spectroscopy (1H-MRS), and resting-state functional magnetic resonance imaging (rs-fMRI). Seed-based correlation analyses, using a key region of the DMN i.e. the dorsal posterior cingulate cortex as seed, revealed overall striking spatial similarities between fluctuations in FDG-uptake and the BOLD signal. More specifically, a conjunction analysis across both modalities showed that DMN areas as the inferior parietal lobe, angular gyrus, precuneus, middle and medial frontal gyrus were positively correlated with the dorsal posterior cingulate cortex. Furthermore, we could demonstrate that local glucose consumption in the medial frontal gyrus, posterior cingulate cortex and left angular gyrus was associated with functional connectivity within the DMN. We did not find a relationship between glutamatergic neurotransmission and functional connectivity. In line with very recent findings, our results provide further evidence for a close association between local metabolic activity and functional connectivity and enable further insights towards a better understanding of the underlying mechanisms of the BOLD signal.

  8. A close link between metabolic activity and functional connectivity in the resting human brain

    International Nuclear Information System (INIS)

    Passow, Susanne; Specht, Karsten; Adamsen, Tom Christian; Biermann, Martin; Brekke, Njål; Craven, Alexander Richard; Ersland, Lars; Grüner, Renate; Kleven-Madsen, Nina; Kvernenes, Ole-Heine; Schwarzlmüller, Thomas; Olesen, Rasmus; Hugdahl, Kenneth

    2015-01-01

    Default-mode network (DMN) functional connectivity and its task-dependent down-regulation have attracted a lot of attention in the field of neuroscience. Nevertheless, the exact underlying mechanisms of DMN functional connectivity, or more specifically, the blood oxygen level-dependent (BOLD) signal, are still not completely understood. To investigate more directly the association between local glucose consumption, local glutamatergic neurotransmission and DMN functional connectivity during rest, the present study combined for the first time 2-Deoxy-2-[18F]fluoroglucose positron emission tomography (FDG-PET), proton magnetic resonance spectroscopy (1H-MRS), and resting-state functional magnetic resonance imaging (rs-fMRI). Seed-based correlation analyses, using a key region of the DMN i.e. the dorsal posterior cingulate cortex as seed, revealed overall striking spatial similarities between fluctuations in FDG-uptake and the BOLD signal. More specifically, a conjunction analysis across both modalities showed that DMN areas as the inferior parietal lobe, angular gyrus, precuneus, middle and medial frontal gyrus were positively correlated with the dorsal posterior cingulate cortex. Furthermore, we could demonstrate that local glucose consumption in the medial frontal gyrus, posterior cingulate cortex and left angular gyrus was associated with functional connectivity within the DMN. We did not find a relationship between glutamatergic neurotransmission and functional connectivity. In line with very recent findings, our results provide further evidence for a close association between local metabolic activity and functional connectivity and enable further insights towards a better understanding of the underlying mechanisms of the BOLD signal.

  9. Connected Traveler

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    The Connected Traveler framework seeks to boost the energy efficiency of personal travel and the overall transportation system by maximizing the accuracy of predicted traveler behavior in response to real-time feedback and incentives. It is anticipated that this approach will establish a feedback loop that 'learns' traveler preferences and customizes incentives to meet or exceed energy efficiency targets by empowering individual travelers with information needed to make energy-efficient choices and reducing the complexity required to validate transportation system energy savings. This handout provides an overview of NREL's Connected Traveler project, including graphics, milestones, and contact information.

  10. Losing sight of the future: Impaired semantic prospection following medial temporal lobe lesions

    Science.gov (United States)

    Race, Elizabeth; Keane, Margaret M.; Verfaellie, Mieke

    2012-01-01

    The ability to imagine the future (prospection) relies on many of the same brain regions that support memory for the past. To date, scientific research has primarily focused on the neural substrates of episodic forms of prospection (mental simulation of spatiotemporally specific future events) whereas little is known about the neural substrates of semantic prospection (mental simulation of future nonpersonal facts). Of particular interest is the role of the medial temporal lobes, and specifically the hippocampus. While the hippocampus has been proposed to play a key role in episodic prospection, recent evidence suggests that it may not play a similar role in semantic prospection. To examine this possibility, amnesic patients with medial temporal lobe (MTL) lesions were asked to imagine future issues occurring in the public domain. The results showed that patients could list general semantic facts about the future, but when probed to elaborate, patients produced impoverished descriptions that lacked semantic detail. This impairment occurred despite intact performance on standard neuropsychological tests of semantic processing, and did not simply reflect deficits in narrative construction. The performance of a patient with damage limited to the hippocampus was similar to that of the remaining MTL patients and amnesic patients’ impaired elaboration of the semantic future correlated with their impaired elaboration of the semantic past. Together, these results provide novel evidence from MTL amnesia that memory and prospection are linked in the semantic domain and reveal that the medial temporal lobes play a critical role in the construction of detailed, multi-element semantic simulations. PMID:23197413

  11. Are personality traits of juvenile myoclonic epilepsy related to frontal lobe dysfunctions? A proton MRS study.

    Science.gov (United States)

    de Araújo Filho, Gerardo Maria; Lin, Katia; Lin, Jaime; Peruchi, Mirella M; Caboclo, Luís Otávio S F; Guaranha, Mirian S B; Guilhoto, Laura M F F; Carrete, Henrique; Yacubian, Elza Márcia T

    2009-05-01

    Personality traits characterized by emotional instability and immaturity, unsteadiness, lack of discipline, hedonism, frequent and rapid mood changes, and indifference toward one's disease have been associated with patients who have juvenile myoclonic epilepsy (JME). Literature data demonstrate worse seizure control and more psychosocial dysfunctions among patients with JME who have those traits. In this controlled study we performed a correlation analysis of psychiatric scores with magnetic resonance spectroscopy (MRS) values across JME patients, aiming to verify the existence of a possible relation between frontal lobe dysfunction and the prevalence of personality disorders (PDs) in JME. Sixteen JME patients with cluster B PDs, 41 JME patients without any psychiatric disorder, and 30 healthy controls were submitted to a psychiatric evaluation and to a quantitative multivoxel MRS of thalamus; insula; cingulate gyrus; striatum; and frontal, parietal, and occipital lobes. Groups were homogeneous according to age, gender, and manual dominance. Psychiatric evaluation was performed through the Scheduled Clinical Interview for DSM-IV, Axis I and II (SCID I and II, respectively). A significant reduction of N-acetyl-aspartate over creatinine (NAA/Cr) ratio was observed mainly in the left frontal lobe in the JME and PD group. In addition, a significant increase in the glutamate-glutamine over creatinine GLX/Cr ratio was also observed in this referred region in the same group. These data support the hypothesis that PDs in JME could represent neuronal dysfunction and possibly a more severe form of this epileptic syndrome.

  12. Accelerated cognitive decline in a rodent model for temporal lobe epilepsy.

    Science.gov (United States)

    Schipper, Sandra; Aalbers, Marlien W; Rijkers, Kim; Lagiere, Melanie; Bogaarts, Jan G; Blokland, Arjan; Klinkenberg, Sylvia; Hoogland, Govert; Vles, Johan S H

    2016-12-01

    Cognitive impairment is frequently observed in patients with temporal lobe epilepsy. It is hypothesized that cumulative seizure exposure causes accelerated cognitive decline in patients with epilepsy. We investigated the influence of seizure frequency on cognitive decline in a rodent model for temporal lobe epilepsy. Neurobehavioral assessment was performed before and after surgery, after the induction of self-sustaining limbic status epilepticus (SSLSE), and in the chronic phase in which rats experienced recurrent seizures. Furthermore, we assessed potential confounders of memory performance. Rats showed a deficit in spatial working memory after the induction of the SSLSE, which endured in the chronic phase. A progressive decline in recognition memory developed in SSLSE rats. Confounding factors were absent. Seizure frequency and also the severity of the status epilepticus were not correlated with the severity of cognitive deficits. The effect of the seizure frequency on cognitive comorbidity in epilepsy has long been debated, possibly because of confounders such as antiepileptic medication and the heterogeneity of epileptic etiologies. In an animal model of temporal lobe epilepsy, we showed that a decrease in spatial working memory does not relate to the seizure frequency. This suggests for other mechanisms are responsible for memory decline and potentially a common pathophysiology of cognitive deterioration and the occurrence and development of epileptic seizures. Identifying this common denominator will allow development of more targeted interventions treating cognitive decline in patients with epilepsy. The treatment of interictal symptoms will increase the quality of life of many patients with epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Reduced prefrontal connectivity in psychopathy.

    Science.gov (United States)

    Motzkin, Julian C; Newman, Joseph P; Kiehl, Kent A; Koenigs, Michael

    2011-11-30

    Linking psychopathy to a specific brain abnormality could have significant clinical, legal, and scientific implications. Theories on the neurobiological basis of the disorder typically propose dysfunction in a circuit involving ventromedial prefrontal cortex (vmPFC). However, to date there is limited brain imaging data to directly test whether psychopathy may indeed be associated with any structural or functional abnormality within this brain area. In this study, we employ two complementary imaging techniques to assess the structural and functional connectivity of vmPFC in psychopathic and non-psychopathic criminals. Using diffusion tensor imaging, we show that psychopathy is associated with reduced structural integrity in the right uncinate fasciculus, the primary white matter connection between vmPFC and anterior temporal lobe. Using functional magnetic resonance imaging, we show that psychopathy is associated with reduced functional connectivity between vmPFC and amygdala as well as between vmPFC and medial parietal cortex. Together, these data converge to implicate diminished vmPFC connectivity as a characteristic neurobiological feature of psychopathy.

  14. Thalamo-Cortical Disruption Contributes to Short-Term Memory Deficits in Patients with Medial Temporal Lobe Damage.

    Science.gov (United States)

    Voets, Natalie L; Menke, Ricarda A L; Jbabdi, Saad; Husain, Masud; Stacey, Richard; Carpenter, Katherine; Adcock, Jane E

    2015-11-01

    Short-term (STM) and long-term memory (LTM) have largely been considered as separate brain systems reflecting fronto-parietal and medial temporal lobe (MTL) functions, respectively. This functional dichotomy has been called into question by evidence of deficits on aspects of working memory in patients with MTL damage, suggesting a potentially direct hippocampal contribution to STM. As the hippocampus has direct anatomical connections with the thalamus, we tested the hypothesis that damage to thalamic nuclei regulating cortico-cortical interactions may contribute to STM deficits in patients with hippocampal dysfunction. We used diffusion-weighted magnetic resonance imaging-based tractography to identify anatomical subdivisions in patients with MTL epilepsy. From these, we measured resting-state functional connectivity with detailed cortical divisions of the frontal, temporal, and parietal lobes. Whereas thalamo-temporal functional connectivity reflected LTM performance, thalamo-prefrontal functional connectivity specifically predicted STM performance. Notably, patients with hippocampal volume loss showed thalamic volume loss, most prominent in the pulvinar region, not detected in patients with normal hippocampal volumes. Aberrant thalamo-cortical connectivity in the epileptic hemisphere was mirrored in a loss of behavioral association with STM performance specifically in patients with hippocampal atrophy. These findings identify thalamo-cortical disruption as a potential mechanism contributing to STM deficits in the context of MTL damage. © The Author 2015. Published by Oxford University Press.

  15. Versive seizures in occipital lobe epilepsy: lateralizing value and pathophysiology.

    Science.gov (United States)

    Usui, Naotaka; Mihara, Tadahiro; Baba, Koichi; Matsuda, Kazumi; Tottori, Takayasu; Umeoka, Shuichi; Kondo, Akihiko; Nakamura, Fumihiro; Terada, Kiyohito; Usui, Keiko; Inoue, Yushi

    2011-11-01

    To clarify the value of versive seizures in lateralizing and localizing the epileptogenic zone in patients with occipital lobe epilepsy, we studied 13 occipital lobe epilepsy patients with at least one versive seizure recorded during preoperative noninvasive video-EEG monitoring, who underwent occipital lobe resection, and were followed postoperatively for more than 2 years with Engel's class I outcome. The videotaped versive seizures were analyzed to compare the direction of version and the side of surgical resection in each patient. Moreover, we examined other motor symptoms (partial somatomotor manifestations such as tonic and/or clonic movements of face and/or limbs, automatisms, and eyelid blinking) associated with version. Forty-nine versive seizures were analyzed. The direction of version was always contralateral to the side of resection except in one patient. Among accompanying motor symptoms, partial somatomotor manifestations were observed in only five patients. In conclusion, versive seizure is a reliable lateralizing sign indicating contralateral epileptogenic zone in occipital lobe epilepsy. Since versive seizures were accompanied by partial somatomotor manifestations in less than half of the patients, it is suggested that the mechanism of version in occipital lobe epilepsy is different from that in frontal lobe epilepsy. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Bicavitary effusion secondary to liver lobe torsion in a dog

    Directory of Open Access Journals (Sweden)

    Khan Z

    2016-04-01

    Full Text Available Zaheda Khan,1 Kathryn Gates,2 Stephen A Simpson,31Emergency and Critical Care, Animal Specialty and Emergency Center, Los Angeles, CA, 2Emergency and Critical Care, Advanced Critical Care, Emergency and Specialty Services, Culver City, CA 3Emergency and Critical Care, Southern California Veterinary Specialty Hospital, Irvine, CA, USA Abstract: We described the diagnosis and successful treatment of pleural and peritoneal effusion secondary to liver lobe torsion in a dog. A 12-year-old female spayed Borzoi dog was referred for heart failure. Emergency room thoracic and abdominal ultrasound showed a large volume of pleural effusion with mild peritoneal effusion and an abdominal mass. Pleural fluid analysis classified the effusion as exudative. A complete ultrasound revealed mild peritoneal effusion and decreased blood flow to the right liver lobe. Other causes of bicavitary effusion were ruled out based on blood work, ultrasound, echocardiogram, and computed tomography. The patient was taken to surgery and diagnosed with caudate liver lobe torsion and had a liver lobectomy. At the 2-week postoperative recheck, the patient was doing well and there was complete resolution of the pleural effusion. Liver lobe torsion is a rare occurrence in dogs and can be difficult to diagnose. Clinical signs are nonspecific for liver lobe torsion and patients may present in respiratory distress with significant pleural fluid accumulation. When assessing patients with pleural and peritoneal effusion, liver lobe torsion should be considered as a differential diagnosis.Keywords: pleural effusion, peritoneal effusion, hepatic torsion

  17. Transient simulation in interior flow field of lobe pump

    International Nuclear Information System (INIS)

    Li, Y B; Sang, X H; Shen, H; Jia, K; Meng, Q W

    2013-01-01

    The subject of this paper is mainly focused on the development and control of the double folium and trifolium lobe pump profiles by using the principle of involute engagement and use CAD to get an accurate involute profile. We use the standard k-ε turbulence model and PISO algorithm based on CFD software FLUENT. The dynamic mesh and UDF technology is introduced to simulate the interior flow field inside a lobe pump, and the variation of interior flow field under the condition of the lobe rotating is analyzed. We also analyse the influence produced by the difference in lobes, and then reveal which lobe is best. The results show that dynamic variation of the interior flow field is easily obtained by dynamic mesh technology and the distribution of its pressure and velocity. Because of the small gaps existing between the rotors and pump case, the higher pressure area will flow into the lower area though the small gaps which cause the working area keep with higher pressure all the time. Both of the double folium and trifolium are existing the vortex during the rotting time and its position, size and shape changes all the time. The vortexes even disappear in a circle period and there are more vortexes in double folium lobe pump. The velocity and pressure pulsation of trifolium pump are lower than that of the double folium

  18. Medical image of the week: right middle lobe syndrome

    Directory of Open Access Journals (Sweden)

    Cristan EA

    2016-05-01

    Full Text Available No abstract available. Article truncated at 150 words. A 73 year-old woman, a lifetime non-smoker, presented to the pulmonary clinic with chronic dyspnea on exertion and cough. Physical exam was unremarkable and pulmonary function testing showed normal spirometry. A chest radiograph revealed calcified mediastinal adenopathy and increased density in the right middle lobe region (Figure 1. A computed tomography scan of the chest revealed significant narrowing of the right middle lobe bronchus with partial atelectasis and prominent calcified mediastinal lymphadenopathy (Figure 2. Bronchoscopy showed no endobronchial lesions but there was evidence of extrinsic compression surrounding the right middle lobe orifice. An endobronchial biopsy revealed noncaseating granulomas. Bronchoscopy cultures and cytology were negative and this was presumed to be from a previous infection with histoplasmosis given the patient’s long-term residence in an endemic area. Given chronic narrowing of right middle lobe bronchus with persistent atelectasis of the right middle lobe, the patient was diagnosed with right middle lobe syndrome. ...

  19. Prospective relations between resting-state connectivity of parietal subdivisions and arithmetic competence.

    Science.gov (United States)

    Price, Gavin R; Yeo, Darren J; Wilkey, Eric D; Cutting, Laurie E

    2018-04-01

    The present study investigates the relation between resting-state functional connectivity (rsFC) of cytoarchitectonically defined subdivisions of the parietal cortex at the end of 1st grade and arithmetic performance at the end of 2nd grade. Results revealed a dissociable pattern of relations between rsFC and arithmetic competence among subdivisions of intraparietal sulcus (IPS) and angular gyrus (AG). rsFC between right hemisphere IPS subdivisions and contralateral IPS subdivisions positively correlated with arithmetic competence. In contrast, rsFC between the left hIP1 and the right medial temporal lobe, and rsFC between the left AG and left superior frontal gyrus, were negatively correlated with arithmetic competence. These results suggest that strong inter-hemispheric IPS connectivity is important for math development, reflecting either neurocognitive mechanisms specific to arithmetic processing, domain-general mechanisms that are particularly relevant to arithmetic competence, or structural 'cortical maturity'. Stronger connectivity between IPS, and AG, subdivisions and frontal and temporal cortices, however, appears to be negatively associated with math development, possibly reflecting the ability to disengage suboptimal problem-solving strategies during mathematical processing, or to flexibly reorient task-based networks. Importantly, the reported results pertain even when controlling for reading, spatial attention, and working memory, suggesting that the observed rsFC-behavior relations are specific to arithmetic competence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. The development of regional functional connectivity in preterm infants into early childhood.

    Science.gov (United States)

    Lee, Wayne; Morgan, Benjamin R; Shroff, Manohar M; Sled, John G; Taylor, Margot J

    2013-09-01

    Resting state networks are proposed to reflect the neuronal connectivity that underlies cognitive processes. Consequently, abnormal behaviour of these networks due to disease or altered development may predict poor cognitive outcome. To understand how very preterm birth may affect the development of resting state connectivity, we followed a cohort of very preterm-born infants from birth through to 4 years of age using resting state functional MRI. From a larger longitudinal cohort of infants born very preterm (regions and left and right temporal lobes, we investigated local and inter-region connectivity as a function of group and age. We found strong local connectivity during the preterm period, which matured into inter-hemispheric and preliminary default-mode network correlations by 4 years of age. This development is comparable to the resting state networks found in term-born infants of equivalent age. The results of this study suggest that differences in developmental trajectory between preterm-born and term-born infants are small and, if present, would require a large sample from both populations to be detected.

  1. Making connections

    NARCIS (Netherlands)

    Marion Duimel

    2007-01-01

    Original title: Verbinding maken; senioren en internet. More and more older people are finding their way to the Internet. Many people aged over 50 who have only recently gone online say that a new world has opened up for them. By connecting to the Internet they have the feeling that they

  2. CMS Connect

    Science.gov (United States)

    Balcas, J.; Bockelman, B.; Gardner, R., Jr.; Hurtado Anampa, K.; Jayatilaka, B.; Aftab Khan, F.; Lannon, K.; Larson, K.; Letts, J.; Marra Da Silva, J.; Mascheroni, M.; Mason, D.; Perez-Calero Yzquierdo, A.; Tiradani, A.

    2017-10-01

    The CMS experiment collects and analyzes large amounts of data coming from high energy particle collisions produced by the Large Hadron Collider (LHC) at CERN. This involves a huge amount of real and simulated data processing that needs to be handled in batch-oriented platforms. The CMS Global Pool of computing resources provide +100K dedicated CPU cores and another 50K to 100K CPU cores from opportunistic resources for these kind of tasks and even though production and event processing analysis workflows are already managed by existing tools, there is still a lack of support to submit final stage condor-like analysis jobs familiar to Tier-3 or local Computing Facilities users into these distributed resources in an integrated (with other CMS services) and friendly way. CMS Connect is a set of computing tools and services designed to augment existing services in the CMS Physics community focusing on these kind of condor analysis jobs. It is based on the CI-Connect platform developed by the Open Science Grid and uses the CMS GlideInWMS infrastructure to transparently plug CMS global grid resources into a virtual pool accessed via a single submission machine. This paper describes the specific developments and deployment of CMS Connect beyond the CI-Connect platform in order to integrate the service with CMS specific needs, including specific Site submission, accounting of jobs and automated reporting to standard CMS monitoring resources in an effortless way to their users.

  3. Neural Correlate of Anterograde Amnesia in Wernicke-Korsakoff Syndrome.

    Science.gov (United States)

    Nahum, Louis; Pignat, Jean-Michel; Bouzerda-Wahlen, Aurélie; Gabriel, Damien; Liverani, Maria Chiara; Lazeyras, François; Ptak, Radek; Richiardi, Jonas; Haller, Sven; Thorens, Gabriel; Zullino, Daniele F; Guggisberg, Adrian G; Schnider, Armin

    2015-09-01

    The neural correlate of anterograde amnesia in Wernicke-Korsakoff syndrome (WKS) is still debated. While the capacity to learn new information has been associated with integrity of the medial temporal lobe (MTL), previous studies indicated that the WKS is associated with diencephalic lesions, mainly in the mammillary bodies and anterior or dorsomedial thalamic nuclei. The present study tested the hypothesis that amnesia in WKS is associated with a disrupted neural circuit between diencephalic and hippocampal structures. High-density evoked potentials were recorded in four severely amnesic patients with chronic WKS, in five patients with chronic alcoholism without WKS, and in ten age matched controls. Participants performed a continuous recognition task of pictures previously shown to induce a left medial temporal lobe dependent positive potential between 250 and 350 ms. In addition, the integrity of the fornix was assessed using diffusion tensor imaging (DTI). WKS, but not alcoholic patients without WKS, showed absence of the early, left MTL dependent positive potential following immediate picture repetitions. DTI indicated disruption of the fornix, which connects diencephalic and hippocampal structures. The findings support an interpretation of anterograde amnesia in WKS as a consequence of a disconnection between diencephalic and MTL structures with deficient contribution of the MTL to rapid consolidation.

  4. A CLINICORADIOLOGICAL STUDY OF MIDDLE LOBE SYNDROME DUE TO TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    Saurabh Karmakar

    2016-09-01

    Full Text Available BACKGROUND Although pulmonary tuberculosis is a common disease in India, tuberculosis of right middle lobe is infrequent. Tuberculosis of the right middle lobe leading to chronic collapse is a cause of Right Middle Lobe syndrome. METHODS The patients attended Pulmonary Medicine Outdoor at Era’s Lucknow Medical College, Lucknow from April 2015 to March 2016. The purpose of this study is to describe the clinicoradiological features of patients of middle lobe syndrome due to tuberculosis. All patients presented with cough with or without expectoration, fever, chest pain, haemoptysis and constitutional symptoms like loss of appetite and weight. Chest X-ray PA view revealed ill-defined opacity abutting the right cardiac border. HRCT thorax was done in each case. The diagnosis of tuberculous aetiology was based on (1 History of chronic cough and fever, not responding to antibiotic therapy and constitutional symptoms, (2 A positive tuberculin test using 2 TU of PPD RT 23 and (3 Detection of acid fast bacilli by direct smear or Mycobacterium tuberculosis by polymerase chain reaction in bronchoalveolar lavage. RESULTS Out of 10 patients, 4 (40% were males and 6 (60% were females. The mean ages of the males were 55.8 years and females were 60.8 years and overall mean age was 59 years. Most of the patients were females and belonged to the middle age and old age group. ATT was started in all the patients. CONCLUSIONS Right middle lobe syndrome predominantly affects the older population and the female gender. Although tuberculosis is a common disease in India, Middle Lobe Syndrome is a very rare presentation of the disease. Due to non-specific symptoms and usually normal chest X-ray PA view in Right Middle Lobe Syndrome, we should keep a high index of suspicion to diagnose the condition.

  5. Comparison of IMP-SPECT findings to subtest scores of Wechsler intelligence adult Scale-Revised in temporal lobe epilepsy patients

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Rumiko; Uejima, Masahiko; Kaneko, Yuko; Miyamoto, Yuriko; Watabe, Manabu; Takahashi, Ruriko; Niwa, Shin-ichi; Shishido, Fumio [Fukushima Medical Coll. (Japan)

    1998-02-01

    In this study, 40 temporal lobe epilepsy patients were assessed, using the Laterality Index (LI) of ROI values in IMP-SPECT findings, Wechsler adult intelligence Scale-Revised (WAIS-R) and subtest scores. LIs of the frontal, temporal and occipital lobes were calculated as follows: the ROI values on the right side were subtracted from those on the left, and the results was divided by the sum of the ROI values on the right and left sides. The individual subtest scores on WAIS-R were standardized by all evaluation scores in order to exclude the influence of differences in intelligence level as much as possible. The results were as follows: there was a positive correlation (r=0.74, p<0.001) between LI values and the performance in Arithmetic in the left temporal lobe hypoperfusion group. And there was a positive correlation (r=0.50, p<0.02) between LI values and the performance in Vocabulary in the left temporal lobe hypoperfusion group. In the right occipital lobe hypoperfusion group, there was a negative correlation (r=-O.44, p

  6. Comparison of IMP-SPECT findings to subtest scores of Wechsler intelligence adult Scale-Revised in temporal lobe epilepsy patients

    International Nuclear Information System (INIS)

    Kan, Rumiko; Uejima, Masahiko; Kaneko, Yuko; Miyamoto, Yuriko; Watabe, Manabu; Takahashi, Ruriko; Niwa, Shin-ichi; Shishido, Fumio

    1998-01-01

    In this study, 40 temporal lobe epilepsy patients were assessed, using the Laterality Index (LI) of ROI values in IMP-SPECT findings, Wechsler adult intelligence Scale-Revised (WAIS-R) and subtest scores. LIs of the frontal, temporal and occipital lobes were calculated as follows: the ROI values on the right side were subtracted from those on the left, and the results was divided by the sum of the ROI values on the right and left sides. The individual subtest scores on WAIS-R were standardized by all evaluation scores in order to exclude the influence of differences in intelligence level as much as possible. The results were as follows: there was a positive correlation (r=0.74, p<0.001) between LI values and the performance in Arithmetic in the left temporal lobe hypoperfusion group. And there was a positive correlation (r=0.50, p<0.02) between LI values and the performance in Vocabulary in the left temporal lobe hypoperfusion group. In the right occipital lobe hypoperfusion group, there was a negative correlation (r=-O.44, p< O.05) between LI values and the performance in Coding. It is suggested that decreased blood flow areas detected by SPECT might influence brain function. (author)

  7. Gendered Connections

    DEFF Research Database (Denmark)

    Jensen, Steffen Bo

    2009-01-01

    This article explores the gendered nature of urban politics in Cape Town by focusing on a group of female, township politicians. Employing the Deleuzian concept of `wild connectivity', it argues that these politically entrepreneurial women were able to negotiate a highly volatile urban landscape...... by drawing on and operationalizing violent, male networks — from struggle activists' networks, to vigilante groups and gangs, to the police. The fact that they were women helped them to tap into and exploit these networks. At the same time, they were restricted by their sex, as their ability to navigate...... space also drew on quite traditional notions of female respectability. Furthermore, the article argues, the form of wild connectivity to an extent was a function of the political transition, which destabilized formal structures of gendered authority. It remains a question whether this form...

  8. Temporal hypometabolism at the onset of cryptogenic temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Matheja, P.; Kuwert, T.; Weckesser, M.; Schober, O. [Dept. of Nuclear Medicine, Muenster Univ. (Germany); Luedemann, P.; Kellinghaus, C.; Diehl, B.; Ringelstein, E.B. [Dept. of Neurology, Muenster Univ. (Germany); Schuierer, G. [Dept. of Clinical Radiology, Muenster Univ. (Germany)

    2001-05-01

    Most patients with intractable temporal lobe epilepsy (TLE) exhibit temporal glucose hypometabolism. The reasons for the development of this abnormality are as yet unclear. The current notion is that an initial injury causes seizures, which in turn give rise to hypometabolism. The aim of this study was to assess whether temporal reductions in glucose metabolism in non-lesional TLE are the result of repeated seizures or whether hypometabolism represents an initial disturbance at the onset of disease. Glucose consumption was assessed with fluorine-18 fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG PET) in 62 patients with cryptogenic non-refractory TLE in different stages of disease. Twelve subjects without neurological illness served as controls. Patients with onset of epilepsy at least 3 years prior to the PET scan were defined as having chronic TLE. Using this criterion, the whole patient cohort included 27 patients with de novo TLE and 35 patients with chronic TLE. The groups were matched for age and sex. The appearance of high-resolution magnetic resonance images of the brain was unremarkable in all patients. In the total cohort, number, duration and frequency of seizures had a significant relation to the magnitude of hypometabolism. Temporal hypometabolism was exhibited by 26 of the 62 patients (42%), including 8 out of 27 (30%) with newly diagnosed TLE and 18 out of 35 (51%) with chronic TLE. The disturbances were more extensive and more severe in patients with chronic TLE. It is concluded that temporal hypometabolism may already be present at the onset of TLE, but is less frequent and less severe in newly diagnosed than in chronic TLE. The metabolic disturbance correlates with the number of seizures. These findings suggest that an initial dysfunction is present in a considerable number of patients and that hypometabolism is worsened by continuing epileptic activity. (orig.)

  9. Regional homogeneity and functional connectivity patterns in major depressive disorder, cognitive vulnerability to depression and healthy subjects.

    Science.gov (United States)

    Sun, Hui; Luo, Lizhu; Yuan, Xinru; Zhang, Lu; He, Yini; Yao, Shuqiao; Wang, Jiaojian; Xiao, Jing

    2018-08-01

    Cognitive vulnerability to depression (CVD) is a high risk for depressive disorder. Recent studies focus on individuals with CVD to determine the neural basis of major depressive disorder (MDD) neuropathology. However, whether CVD showed specific or similar brain functional activity and connectivity patterns, compared to MDD, remain largely unknown. Here, using resting-state functional magnetic resonance imaging in subjects with CVD, healthy controls (HC) and MDD, regional homogeneity (ReHo) and resting-state functional connectivity (R-FC) analyses were conducted to assess local synchronization and changes in functional connectivity patterns. Significant ReHo differences were found in right posterior lobe of cerebellum (PLC), left lingual gyrus (LG) and precuneus. Compared to HC, CVD subjects showed increased ReHo in the PLC, which was similar to the difference found between MDD and HC. Compared to MDD patients, CVD subjects showed decreased ReHo in PLC, LG, and precuneus. R-FC analyses found increased functional connections between LG and left inferior parietal lobule, posterior cingulate cortex, and dorsolateral prefrontal cortex in CVD compared to both HC and MDD. Moreover, Regional mean ReHo values were positively correlated with Center for Epidemiologic Studies Depression Scale scores. These analyses revealed that PLC and functional connections between LG and left inferior parietal lobule, posterior cingulate cortex, and dorsolateral prefrontal cortex may be a potential marker for CVD. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Significance of the Tentorial Alignment in Protecting the Occipital Lobe with the Poppen Approach for Tentorial or Pineal Area Meningiomas.

    Science.gov (United States)

    Li, Deling; Zhang, Haoyu; Jia, Wang; Zhang, Liwei; Zhang, Junting; Liu, Weiming; Ni, Ming; Jia, Guijun

    2017-12-01

    We aimed to identify the factors that can predict the risk of occipital lobe damage preoperatively when resecting tumors located at the tentorial or pineal regions with the occipital-transtentorial approach (Poppen approach). In 27 consecutive patients who underwent tumor resection with the Poppen approach for tentorial or pineal region meningiomas, the following morphologic parameters were assessed on a preoperative magnetic resonance imaging: (1) tentorial angle, (2) tentorial length, and (3) the shortest distance from the confluence of the sinus to the tumor. These parameters, together with tumor size, texture, and resection extent, were correlated with occipital lobe damage by using the one-way analysis of variance, χ 2 , or Fisher's exact tests. The mean value was 55.3° ± 5.6° (range, 45°-66°) for the tentorial angle, which was significantly associated with the occipital lobe damage grades (P = 0.008), but this was not the case for the tentorial length (P = 0.802) and the shortest distance from the confluence of the sinus to the tumor (P = 0.695). Interestingly, age was also strongly associated with occipital lobe damage risk (P = 0.020). The patients in the subgroup with no occipital damage (grade 4) were the youngest (aged 47.3 years), compared with other grades, with age of 58.0 years for grade 1, 54.3 years for grade 2, and 58.6 years for grade 3. These 2 parameters were also significant after multivariate analysis. No correlation was observed between either tumor nature or the extent of resection and damage grades. The risk of occipital lobe damage increases in the presence of a steep tentorial angle during the Poppen approach for tentorial or pineal area tumors. Awareness of such anatomic features preoperatively is important for minimizing operative complications. Copyright © 2017. Published by Elsevier Inc.

  11. Test of inscribed description in the Alzheimer's disease: correlation of neuro-psychology and of cerebral sanguinary rates

    International Nuclear Information System (INIS)

    Houzard, C.; Croisile, B.; Philippon, B.; Hibert, O.; Gogoleva, S.M.; Itti, R.; Cinotti, L.; Wertheimer, H.P.

    1997-01-01

    The alteration of the written description of an image scene constitutes an early and sensible indicator in diagnosing the Alzheimer's disease (AD). Measurements of cerebral blood rates (CBR) by SPECT show characteristic regional anomalies. We have studied correlations between the neuro-psychological tests (NT), parameters of description (description of the image of a thief of crackers) and CBR in patients afflicted by AD. Ten patients afflicted by AD of slow onset (MMSE 20.2± 5.1) were subject to the following NTs: MMSE, Wounded A, Battery of Aphasia, BNT, verbal fluence, gesticulative practice, direct and inversion span, copy of a figure, immediate recall of a figure, immediate recall of a story. The description variables were the length of texts (words, phrases), the items of information, the grammatical, semantic and orthographic errors. The relative variations of CBR were obtained after injection by HMPAO - 99m Tc. The indices of asymmetry were calculated by the method of the regions of interest and the correlations were calculated between the NTs, description variables and L/R asymmetry by SPECT. For the temporal lobes the correlations are significant with: Battery of Aphasia and BNT (p < 0.01), and recall of a story (p < 0.05); in the anterior frontal lobes with: MMSE and direct span (p < 0.05); in the posterior frontal lobes with: Battery of Aphasia (p < 0.05), BNT and recall of a story (p < 0.01). For writing, the grammatical errors are correlated with the anterior frontal asymmetries (p < 0.03); the semantic errors with the anterior and posterior frontal lobes (p < 0.02) and with the temporal lobes (p < 0.05). Our results show a correlations of the frontal and temporal asymmetries with the early degradation of the scores of written semantic errors and the oral tests of language. The grammatical errors appearing later and in severe forms of AD as the attention abilities are connected only to anterior frontal asymmetries. Different functional networks could

  12. Giant lipoma arising from deep lobe of the parotid gland

    Directory of Open Access Journals (Sweden)

    Hsu Ying-Che

    2006-06-01

    Full Text Available Abstract Background Lipomas are common benign soft tissue neoplasms but they are found very rarely in the deep lobe of parotid gland. Surgical intervention in these tumors is challenging because of the proximity of the facial nerve, and thus knowledge of the anatomy and meticulous surgical technique are essential. Case presentation A 71-year-old female presented with a large asymptomatic mass, which had occupied the left facial area for over the past fifteen years, and she requested surgical excision for a cosmetically better facial appearance. The computed tomography (CT scan showed a well-defined giant lipoma arising from the left deep parotid gland. The lipoma was successfully enucleated after full exposure and mobilization of the overlying facial nerve branches. The surgical specimen measured 9 × 6 cm in size, and histopathology revealed fibrolipoma. The patient experienced an uneventful recovery, with a satisfying facial contour and intact facial nerve function. Conclusion Giant lipomas involving the deep parotid lobe are extremely rare. The high-resolution CT scan provides an accurate and cost-effective preoperative investigative method. Surgical management of deep lobe lipoma should be performed by experienced surgeons due to the need for meticulous dissection of the facial nerve branches. Superficial parotidectomy before deep lobe lipoma removal may be unnecessary in selected cases because preservation of the superficial lobe may contribute to a better aesthetic and functional result.

  13. Temporal order processing of syllables in the left parietal lobe.

    Science.gov (United States)

    Moser, Dana; Baker, Julie M; Sanchez, Carmen E; Rorden, Chris; Fridriksson, Julius

    2009-10-07

    Speech processing requires the temporal parsing of syllable order. Individuals suffering from posterior left hemisphere brain injury often exhibit temporal processing deficits as well as language deficits. Although the right posterior inferior parietal lobe has been implicated in temporal order judgments (TOJs) of visual information, there is limited evidence to support the role of the left inferior parietal lobe (IPL) in processing syllable order. The purpose of this study was to examine whether the left inferior parietal lobe is recruited during temporal order judgments of speech stimuli. Functional magnetic resonance imaging data were collected on 14 normal participants while they completed the following forced-choice tasks: (1) syllable order of multisyllabic pseudowords, (2) syllable identification of single syllables, and (3) gender identification of both multisyllabic and monosyllabic speech stimuli. Results revealed increased neural recruitment in the left inferior parietal lobe when participants made judgments about syllable order compared with both syllable identification and gender identification. These findings suggest that the left inferior parietal lobe plays an important role in processing syllable order and support the hypothesized role of this region as an interface between auditory speech and the articulatory code. Furthermore, a breakdown in this interface may explain some components of the speech deficits observed after posterior damage to the left hemisphere.

  14. Seizure semiology identifies patients with bilateral temporal lobe epilepsy.

    Science.gov (United States)

    Loesch, Anna Mira; Feddersen, Berend; Tezer, F Irsel; Hartl, Elisabeth; Rémi, Jan; Vollmar, Christian; Noachtar, Soheyl

    2015-01-01

    Laterality in t