WorldWideScience

Sample records for loam soil derived

  1. Nitrogen Amendment Stimulated Decomposition of Maize Straw-Derived Biochar in a Sandy Loam Soil: A Short-Term Study.

    Directory of Open Access Journals (Sweden)

    Weiwei Lu

    Full Text Available This study examined the effect of nitrogen (N on biochar stability in relation to soil microbial community as well as biochar labile components using δ13C stable isotope technology. A sandy loam soil under a long-term rotation of C3 crops was amended with biochar produced from maize (a C4 plant straw in absence (BC0 and presence (BCN of N and monitored for dynamics of carbon dioxide (CO2 flux, phospholipid fatty acids (PLFAs profile and dissolved organic carbon (DOC content. N amendment significantly increased the decomposition of biochar during the first 5 days of incubation (P < 0.05, and the proportions of decomposed biochar carbon (C were 2.30% and 3.28% in BC0 and BCN treatments, respectively, during 30 days of incubation. The magnitude of decomposed biochar C was significantly (P < 0.05 higher than DOC in biochar (1.75% and part of relatively recalcitrant biochar C was mineralized in both treatments. N amendment increased soil PLFAs concentration at the beginning of incubation, indicating that microorganisms were N-limited in test soil. Furthermore, N amendment significantly (P < 0.05 increased the proportion of gram-positive (G+ bacteria and decreased that of fungi, while no noticeable changes were observed for gram-negative (G- bacteria and actinobacteria at the early stage of incubation. Our results indicated that N amendment promoted more efficiently the proliferation of G+ bacteria and accelerated the decomposition of relatively recalcitrant biochar C, which in turn reduced the stability of maize straw-derived biochar in test soil.

  2. effect of tractor forward speed on sandy loam soil physical ...

    African Journals Online (AJOL)

    Dr Obe

    Ilorin on a sandy loam soil to evaluate the effect of the imposition of different .... of the blade is 10.5cm. ... arranged in an inverted cone shape with ... replicates were taken for each speed run. The ..... Thakur, T. C; A. Yadav; B. P. Varshney and.

  3. Impact of tillage intensity on clay loam soil structure

    DEFF Research Database (Denmark)

    Daraghmeh, Omar; Petersen, Carsten; Munkholm, Lars Juhl

    Soil structure and structural stability are key parameters in sustainable soil management and optimum cropping practices. Locally and temporally adapted precision tillage may improve crop performance while at the same time reduce environmental impacts. The main objective of this study...... was to improve the knowledge of precision tillage practices through characterizing the effect of varied tillage intensities on structural properties of a clay loam soil. A field experiment was conducted using a randomized complete block design with two main factors, i.e. operational speed (OS, 2 levels......) and rotovating speed (RS, 3 levels). The tillage was conducted using a PTO-driven rotovator equipped to measure angular velocity. The effect of traffic compaction, made directly after tillage, was measured on soil taken from wheel track (WT) compared with soil outside wheel track (NWT). Soil samples from 0-3 cm...

  4. EFFECTS OF ALKALINE SANDY LOAM ON SULFURIC SOIL ACIDITY AND SULFIDIC SOIL OXIDATION

    Directory of Open Access Journals (Sweden)

    Patrick S. Michael

    2015-08-01

    Full Text Available  In poor soils, addition of alkaline sandy loam containing an adequate proportion of sand, silt and clay would add value by improving the texture, structure and organic matter (OM for general use of the soils. In acid sulfate soils (ASS, addition of alkaline sandy would improve the texture and leach out salts as well as add a sufficient proportion of OM for vegetation establishment. In this study, addition of alkaline sandy loam into sulfuric soil effectively increased the pH, lowered the redox and reduced the sulfate content, the magnitude of the effects dependent on moisture content. Addition of alkaline sandy loam in combination with OM was highly effective than the effects of the lone alkaline sandy loam. When alkaline sandy was added alone or in combination with OM into sulfidic soil, the effects on pH and the redox were similar as in the sulfuric soil but the effect on sulfate content was variable. The effects under aerobic conditions were higher than under anaerobic conditions. The findings of this study have important implications for the general management of ASS where lime availability is a concern and its application is limited.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 42-54

  5. Transport of atrazine and dicamba through silt and loam soils

    Science.gov (United States)

    Tindall, James A.; Friedel, Michael J.

    2016-01-01

    The objectives of this research were to determine the role of preferential flow paths in the transport of atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) and dicamba (3-6-dichloro-2-methoxybenzoic acid) through silt and loam soils overlying the High Plains aquifer in Nebraska. In a previous study, 3 of 6 study areas demonstrated high percentages of macropores; those three areas were used in this study for analysis of chemical transport. As a subsequent part of the study, 12 intact soil cores (30-cm diameter by 40-cm height), were excavated sequentially, two from each of the following depths: 0-40cm and 40-80cm. These cores were used to study preferential flow characteristics using dye staining and to determine hydraulic properties. Two undisturbed experimental field plots, each with a 3-m2 surface area, were installed in three study areas in Nebraska. Each was instrumented with suction lysimeters and tensiometers at depths of 10cm to 80cm in 10-cm increments. Additionally, each plot was planted with corn (Zea mays). A neutron probe access tube was installed in each plot to determine soil w ater content at 15-cm intervals. All plots were enclosed w ith a raised frame (of 8-cm height) to prevent surface runoff. All suction lysimeters were purged monthly for three months and were sampled immediately prior to pre-plant herbicide application to obtain background chemical concentrations. Atrazine and dicamba moved rapidly through the soil, but only after a heavy rainfall event, probably owing to the presence of preferential flow paths and lack of microbial degradation in these soil areas. Staining of laboratory cores showed a positive correlation between the percent area stained by depth and the subsequent breakthrough of Br- in the laboratory and leaching of field-applied herbicides owing to large rainfall events. Suction lysimeter samples in the field showed increases in concentrations of herbicides at depths where laboratory data indicated greater

  6. Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam

    DEFF Research Database (Denmark)

    Amoakwah, Emmanuel; Frimpong, Kwame Agyei; Okae-Anti, D

    2017-01-01

    Soil structure is a key soil physical property that affects soil water balance, gas transport, plant growth and development, and ultimately plant yield. Biochar has received global recognition as a soil amendment with the potential to ameliorate the structure of degraded soils. We investigated how...... corn cob biochar contributed to changes in soil water retention, air flow by convection and diffusion, and derived soil structure indices in a tropical sandy loam. Intact soil cores were taken from a field experiment that had plots without biochar (CT), and plots each with 10 t ha− 1 (BC-10), 20 t ha...... to significant increase in soil water retention compared to the CT and BC-10 as a result of increased microporosity (pores biochar had minimal impact. No significant influence of biochar was observed for ka and Dp/D0 for the BC treatments compared to the CT despite...

  7. The fate of fresh and stored 15N-labelled sheep urine and urea applied to a sandy and a sandy loam soil using different application strategies

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1996-01-01

    The fate of nitrogen from N-15-labelled sheep urine and urea applied to two soils was studied under field conditions. Labelled and stored urine equivalent to 204 kg N ha(-1) was either incorporated in soil or applied to the soil surface prior to sowing of Italian ryegrass (Lolium multiflorum L...... and soil was not significantly different for incorporated urine and urea. Almost all the supplied labelled N was accounted for in soil and herbage in the sandy loam soil, whereas 33-34% of the labelled N was unaccounted for in the sandy soil. When the stored urine was applied to the soil surface, 20...... was applied to growing ryegrass at the sandy loam soil, the immobilization of urine-derived N was significantly reduced compared to application prior to sowing. The results indicated that the net mineralization of urine N was similar to that of urea in the sandy soil, but only about 75% of the urine N was net...

  8. Effect of Tractor Forward Speed on Sandy Loam Soil Physical ...

    African Journals Online (AJOL)

    Results indicate significant differences in soil physical conditions arising from different levels of tractor forward speed. A forward speed of approximately 7km/h resulted in appreciable amelioration of soil structure as reflected in improvements in the soil strength properties and maximum reduction in clod mean weight ...

  9. Enhanced isoproturon mineralisation in a clay silt loam agricultural soil

    OpenAIRE

    El-Sebai , T.; Lagacherie , B.; Cooper , J.F.; Soulas , G.; Martin-Laurent , F.

    2005-01-01

    International audience; 14C-ring-labelled isoproturon mineralisation was investigated in a French agricultural soil previously exposed to isoproturon. 50 different soil samples collected every 2 m along a transect of 100 m in length were treated one or two times with isoproturon under laboratory conditions and analysed by radiorespirometry. 94% of the soil samples showed a high ability to mineralise isoproturon with a relatively low variability in the cumulative percentage of mineralisation r...

  10. Advance of Wetting Front in Silt Loam Soil

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmood

    2013-04-01

    Full Text Available Under drip irrigation , the plant's root is concentrated inside the wetted bulb (region. Thus, the development of these roots and the plant production are greatly affected by the wetting pattern. Therefore, the wetting pattern of soil under drip irrigation must be taken into consideration in the design of drip irrigation system for both single dripping source or multi-overlapping wetting patterns of dripping water sources.2The aim of this study is to evaluate the effect of initial water content of the soil and spacing between two adjacent dripping sources with different flow rate on the movement of the wetting front.This study included 16 tests for monitoring the advancement of the wetting front with time during and after the water application phase. The water advance and water distribution measurement are carried out for two cases of the soil profile: for the first case with initial volumetric water content of 4.08% and for the second case with initial volumetric water content of 12.24%. Two spacing between the emitter were tested 25cm and 50 cm using application flow rates of 0.606, 1.212, 1.818, and 2.424 cm3 /min/cm to show the combined effect of spacing and flow rate on the performance of two adjacent emitter.The study proposed a method for determining the spacing between the two emitting sources , the water application rate and watering time. The proposed method depends on a wetted zone whose depth is equal to the root zone depth with a values equals to the maximum vertical advance of the wetting front underneath the drip line at time when this depth is equal to the depth of wetting at mid­point between the drip line. the study revealed that both the vertical water advance in soil underneath the emitter and the horizontal advance of the wetting front is larger than those in the case of single emitter.Furthermore, the vertical water advance increases with the decrease spacing between the two drip lines. Also, the horizontal advance of the

  11. Soil nitrogen dynamics and Capsicum Annuum sp. plant response to biochar amendment in silt loam soil

    Science.gov (United States)

    Horel, Agota; Gelybo, Gyorgyi; Dencso, Marton; Toth, Eszter; Farkas, Csilla; Kasa, Ilona; Pokovai, Klara

    2017-04-01

    The present study investigated the growth of Capsicum Annuum sp. (pepper) in small-scale experiment to observe changes in plant growth and health as reflected by leaf area, plant height, yield, root density, and nitrogen usage. Based on field conditions, part of the study aimed to examine the photosynthetic and photochemical responses of plants to treatments resulting from different plant growth rates. During the 12.5 week long study, four treatments were investigated with biochar amount of 0, 0.5%, 2.5%, and 5.0% (by weight) added to silt loam soil. The plants were placed under natural environmental conditions, such that photosynthetic activities from photosynthetically active radiation (PAR) and the plants photochemical reflectance index (PRI) could be continuously measured after exposure to sunlight. In this study we found that benefits from biochar addition to silt loam soil most distinguishable occurred in the BC2.5 treatments, where the highest plant yield, highest root density, and highest leaf areas were observed compared to other treatments. Furthermore, data showed that too low (0.5%) or too high (5.0%) biochar addition to the soil had diminishing effects on Capsicum Annuum sp. growth and yield over time. At the end of the 12th week, BC2.5 had 22.2%, while BC0.5 and BC5.0 showed 17.4% and 15.7% increase in yield dry weight respectively compared to controls. The collected data also showed that the PRI values of plants growing on biochar treated soils were generally lower compared to control treatments, which could relate to leaf nitrogen levels. Total nitrogen amount showed marginal changes over time in all treatments. The total nitrogen concentration showed 28.6% and 17.7% increase after the 6th week of the experiment for BC2.5 and BC5.0, respectively, while inorganic nutrients of NO3-N and NH4+-N showed a continuous decrease during the course of the study, with a substantial drop during the first few weeks. The present study provides evidence for impact

  12. Determination of Selenium Toxicity for Survival and Reproduction of Enchytraeid Worms in a Sandy Loam Soil

    Science.gov (United States)

    2016-07-01

    LOAM SOIL ECBC-TR-1388 Roman G. Kuperman Ronald T. Checkai Michael Simini Carlton T. Phillips RESEARCH AND TECHNOLOGY DIRECTORATE Richard M...plastic wrap was stretched over the top of each container and secured with a rubber band. Three pinholes were made in the plastic wrap to 6...172–178. Glover, J.; Levander, O.; Parizek, J.; Vouk, V. Selenium. In Handbook on the Toxicology of Metals; Friberg, L., Norberg, G.F., Vouk, V.B

  13. Impacts of soil conditioners and water table management on phosphorus loss in tile drainage from a clay loam soil.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D

    2015-03-01

    Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Degradation of roxarsone in a silt loam soil and its toxicity assessment.

    Science.gov (United States)

    Liang, Tengfang; Ke, Zhengchen; Chen, Qing; Liu, Li; Chen, Guowei

    2014-10-01

    The land application of poultry or swine litter, containing large amounts of roxarsone, causes serious arsenic pollution in soil. Understanding biotransformation process of roxarsone and its potential risks favors proper disposal of roxarsone-contaminated animal litter, yet remains not achieved. We report an experimental study of biotransformation process of roxarsone in a silt loam soil under various soil moisture and temperature conditions, and the toxicity of roxarsone and its products from degradation. Results showed that soil moisture and higher temperature promoted roxarsone degradation, associating with emergent pentavalent arsenic. Analysis of fluorescein diacetate (FDA) hydrolysis activity revealed that roxarsone does not exert acute toxic on soil microbes. With the release of inorganic arsenic, FDA hydrolysis activity was inhibited gradually, as evidenced by ecotoxicological assessment using Photobacterium leiognathi. The results shade new lights on the dynamic roxarsone biotransformation processes in soil, which is important for guiding appropriate disposal of poultry or swine litter in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Cadmium phytoextraction from loam soil in tropical southern China by Sorghum bicolor.

    Science.gov (United States)

    Wang, Xu; Chen, Can; Wang, Jianlong

    2017-06-03

    The cadmium (Cd) uptake characteristics by Sorghum bicolor cv. Nengsi 2# and Cowley from the acidic sandy loam soil (pH = 6.1) during the entire growth period (100 days) were investigated in pot outdoors in a tropical district of southern China, Hainan Island. The Cd-spiked levels in soil were set as 3 and 15 mg/kg. Correspondingly, the available Cd levels in soil extracted by Mehlich III solution were 2.71 and 9.41 mg/kg, respectively. Basically, two varieties in a full growth period (100 days) did not show a significant difference in their growth and Cd uptake. Under high Cd stress, the plant growth was inhibited and its biomass weight and height decreased by 38.7-51.5% and 27.6-28.5%, respectively. However, S. bicolor showed higher bioaccumulation capability of Cd from soil to plant [bioconcentration factor (BCF)>4], and higher transfer capability of Cd from roots to shoots [translocation factor (TF)>1] under high Cd stress; Cd contents in the roots, stems, and leaves of S. bicolor reached 43.79-46.07, 63.28-70.60, and 63.10-66.06 mg/kg, respectively. S. bicolor exhibited the potential phytoextraction capability for low or moderate Cd-contamination in acidic sandy loam soil.

  16. Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils

    DEFF Research Database (Denmark)

    Sun, Zhencai; Bruun, Esben; Arthur, Emmanuel

    2014-01-01

    Biochar added to agricultural soils may sequester carbon and improve physico-chemical conditions for crop growth, due to effects such as increased water and nutrient retention in the root zone. The effects of biochar on soil microbiological properties are less certain. We addressed the effects...... of wood-based biochar on soil respiration, water contents, potential ammonia oxidation (PAO), arylsulfatase activity (ASA), and crop yields at two temperate sandy loam soils under realistic field conditions. In situ soil respiration, PAO, and ASA were not significantly different in quadruplicate field...... plots with or without biochar (20 Mg ha−1); however, in the same plots, volumetric water contents increased by 7.5 % due to biochar (P = 0.007). Crop yields (oat) were not significantly different in the first year after biochar application, but in the second year, total yields of spring barley increased...

  17. Neutron Gauge Calibration Curve as Affected by Chloride Concentration and Bulk Density of Loam Soil

    International Nuclear Information System (INIS)

    AL-Hasani, A.A.; Fahad, A.A.; Shihab, R.M.

    2010-01-01

    chloride concentration and bulk density are considered among important factors affecting calibration curve of neutron gauge in the soil.The aim of this study was to investigate the effect of chloride concentration and bulk density of a loam soil on neutron gauge calibration curve.Sufficient amount of loam soil was air dried screened through a 2 mm sieve,and divided into three equal portions.Sodium chloride of 2.5 and 6.6g kg'-1 soil was added to the first and second portions,respectively.The third portion was left as a control.The soil then moistened and mixed well to make volumetric water content within the range of 0.01 to 0.24 cm 3 cm - 3. The moist soil was packed into an iron drum 0.80 m diameter and 1.00 m height to obtain bulk densities of 1.10 and 1.30 to 1.60 Mg m - 3 for uncompacted soil,respectively.Access tube 0.05 m inner diameter was installed in the center of the drum.Three readings from CPN 503 neutron gauge were taken at each 0.15,0.30, 0.45,and 0.75 m depth.Results indicated that the count (counts/standard count) for an aqueous solution decreased with the increase in chloride concentration.Similarly, the slope of the linear calibration curves of the investigated soil decreased with the increase in chloride concentration.Shifting of the curves was 9 to 10%for the uncompacted soil, whereas it was 12 to 14 % for the compacted of low and high concentration of chloride, respectively . Results of changing bulk density always reduced the slope value as compared with the uncorrected count ratio.

  18. Interaction of the Bored Sand and Gravel Drain Pile with the Surrounding Compacted Loam Soil and Foundation Raft Taking into Account Rheological Properties of the Loam Soil and Non-Linear Properties of the Drain Pile

    Science.gov (United States)

    Ter-Martirosyan, Z. G.; Ter-Martirosyan, A. Z.; Anzhelo, G. O.; Buslov, A. S.

    2018-01-01

    The task of the interaction of the sand and gravel drain pile with the surrounding loam soil after its preliminary deep compaction and formation of the composite ground cylinder from the drain pile and surrounding compacted loam soil (cells) is considered in the article. It is seen that the subsidence and carrying capacity of such cell considerably depends on physical and mechanical properties of the compacted drain piles and surrounding loam soil as well as their diameter and intercellular distance. The strain-stress state of the cell is considered not taking into account its component elements, but taking into account linear and elastic-plastic properties of the drain pile and creep flow of the surrounding loam soil. It is stated that depending on these properties the distribution and redistribution of the load on a cell takes place from the foundation raft between the drain pile and surrounding soil. Based on the results of task solving the formulas and charts are given demonstrating the ratio of the load between the drain pile and surrounding loam soil in time.

  19. Effect of biochar amendment on nitrate retention in a silty clay loam soil

    Directory of Open Access Journals (Sweden)

    Angela Libutti

    2016-08-01

    Full Text Available Biochar incorporation into agricultural soils has been proposed as a strategy to decrease nutrient leaching. The present study was designed to assess the effect of biochar on nitrate retention in a silty clay loam soil. Biochar obtained from the pyrogasification of fir wood chips was applied to soil and tested in a range of laboratory sorption experiments. Four soil treatments were considered: soil only (control, soil with 2, 4 and 8% of biochar by mass. The Freundlich sorption isotherm model was used to fit the adsorbed amount of nitrate in the soil-biochar mixtures. The model performed very well in interpreting the experimental data according to a general linear regression (analysis of co-variance statistical approach. Nitrate retention in the soilbiochar mixtures was always higher than control, regardless the NO3 – concentration in the range of 0-400 mg L–1. Different sorption capacities and intensities were detected depending on the biochar application rate. The highest adsorption capacity was observed in the soils added with 2 and 4% of biochar, respectively. From the results obtained is possible to infer that nitrate retention is higher at lower biochar addition rate to soil (2 and 4% and at lower nitrate concentration in the soil water solution. These preliminary laboratory results suggest that biochar addition to a typical Mediterranean agricultural soil could be an effective management option to mitigate nitrate leaching.

  20. Migration of Co and Cs radionuclides through a loam soil column

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma bin Syed Ahmad; Shimooka, K.

    1990-01-01

    A soil column experiment was conducted to determine the migration of Co and Cs radionuclides through a loam soil. The different migration rates of the radionuclides at low and high concentrations were determined at pH 7. Retardation factor (Rf) both the radionuclides at low and high concentrations were determined by fitting adsorbed concentration distribution equations to observed values. The calculation shows that the Rf1=500 and Rf2=3 for Co at high and low concentrations, respectively. For Cs, the Rf1=600 and Rf2=5 at high and low concentrations, respectively. The results shows that major portions of both the radionuclides were adsorbed onto the soil layer at the top by ion exchange mechanism which resulted in the high retardation factor values. Minor portions had migrated downwards as insoluble cations, pseudocolloids and very fine silt particles resulting in the low retardation factor

  1. Crop uptake and leaching losses of 15N labelled fertilizer nitrogen in relation to waterlogging of clay and sandy loam soils

    International Nuclear Information System (INIS)

    Webster, C.P.; Belford, R.K.; Cannell, R.Q.

    1986-01-01

    Ammonium nitrate fertilizer, labelled with 15 N, was applied in spring to winter wheat growing in undisturbed monoliths of clay and sandy loam soil in lysimeters; the rates of application were respectively 95 and 102 kg N ha -1 in the spring of 1976 and 1975. Crops of winter wheat, oilseed rape, peas and barley grown in the following 5 or 6 years were treated with unlabelled nitrogen fertilizer at rates recommended for maximum yields. During each year of the experiments the lysimeters were divided into treatments which were either freely drained or subjected to periods of waterlogging. Another labelled nitrogen application was made in 1980 to a separate group of lysimeters with a clay soil and a winter wheat crop to study further the uptake of nitrogen fertilizer in relation to waterlogging. In the first growing season, shoots of the winter wheater at harvest contained 46 and 58% of the fertilizer nitrogen applied to the clay and sandy loam soils respectively. In the following year the crops contained a further 1-2% of the labelled fertilizer, and after 5 and 6 years the total recoveries of labelled fertilizer in the crops were 49 and 62% on the clay and sandy loam soils respectively. In the first winter after the labelled fertilizer was applied, less than 1% of the fertilizer was lost in the drainage water, and only about 2% of the total nitrogen (mainly nitrate) in the drainage water from both soils was derived from the fertilizer

  2. Aggregate-associated carbon and nitrogen in reclaimed sandy loam soils

    Energy Technology Data Exchange (ETDEWEB)

    Wick, A.F.; Stahl, P.D.; Ingram, L.J. [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2009-11-15

    Minimal research has been conducted on aggregate, C, and N in coarse-textured soils used to reclaim surface coal mine lands. Furthermore, little is known about the contribution different plant communities make to the recovery of aggregation in these soils. Two chronosequences of semiarid reclaimed sites with sandy loam soils were sampled under shrub- and grass-dominated communities. Aggregation, aggregate fractions, and associated C and N were measured. No definitive trends of increasing macroaggregates between sites were observed undershrubs; however, macro- and microaggregation was greater in the 16-yr-old (0.20 and 0.23 kg aggregate kg{sup -1} soil, respectively) than in the 5-yr-old soils (0.02 and 0.08 kg aggregate kg{sup -1} soil, respectively) under grasses. Although C and N concentrations were drastically reduced (50-75%) with mining activity between the <1-yr-old and native soils, aggregate C and N concentrations tinder shrubs and grasses were similar to each other and to the native soils in the 5-yr-old site. Sods under grass in the 16-yr-old site had lower available and aggregate-occluded C and N concentrations than the 5-yr-old site, while C and N concentrations did not change between 5- and 16-yr-old soils under shrubs. Conversely, aggregate C and N pool sizes under shrubs and grasses both increased with site age to conditions similar to those observed in the native soil. Reclaimed shrub site soils had consistently higher C concentrations in the older reclaimed sites (10 and 16 yr old) than the soils under grasses, indicating greater accumulation and retention of C and N in organic material under shrub than grass communities in semiarid reclaimed sites.

  3. ELASTOPLASTICIDAD DE UN SUELO FRANCO ARENOSO DE SABANA I SANDY LOAM SAVANNA SOIL ELASTOPLASTICITY

    Directory of Open Access Journals (Sweden)

    Américo Hossne García

    2018-04-01

    Full Text Available The knowledge of elastoplastic properties is important for calculating soil elastic and plastic deformations experienced by static or dynamic loads generated, for example, by farm implements and root growth. The objective of this study was to determine the soil elastoplastic parameters: Young’s modulus (E, the shear modulus (G, bulk modulus (K and Poisson’s ratio (υ of a sandy-loam soil from a savanna in Monagas State, Venezuela. Triaxial tests and regression analyses were used to interpret the variance between them. The results show that E varied from 4693.39 to 36669.35 kPa; G from 700 to 5000 kPa; K from 500 to 2000 kPa and υ had a value of 0.50. It is concluded that these soils are incompressible under plastic conditions, i.e. easily deformable. The Poisson’s ratio varied significantly with soil water content. The Young modulus, bulk modulus and the shear modulus showed high variation with respect to water content. Both the Young’s modulus and Poisson’s ratio increased, at low soil water content, with the rise in chamber pressure .

  4. Depth distribution of preferential flow patterns in a sandy loam soil as affected by tillage

    Directory of Open Access Journals (Sweden)

    C. T. Petersen

    1997-01-01

    Full Text Available Dye-tracer studies using the anionic dye Brilliant Blue FCF were conducted on a structured sandy loam soil (Typic Agrudalf. 25 mm of dye solution was applied to the surface of 11 1.6 x 1.6 m field plots, some of which had been subjected to conventional seed bed preparation (harrowing while others had been rotovated to either 5 or 15 cm depth before sowing. The soil was excavated to about 160 cm depth one or two days after dye application. Flow patterns and structural features appearing on vertical or horizontal cross sections were examined and photographed. The flow patterns were digitized, and depth functions for the number of activated flow pathways and the degree of dye coverage were calculated. Dye was found below 100 cm depth on 26 out of 33 vertical cross sections made in conventionally tilled plots showing that preferential flow was a prevailing phenomenon. The depth-averaged number of stained flow pathways in the 25-100 cm layer was significantly smaller in a plot rotovated to 5 cm depth than in a conventionally tilled plot, both under relatively dry initial soil conditions and when the entire soil profiles were initially at field capacity. There were no examples of dye penetration below 25 cm depth one month after deep rotovation. Distinct horizontal structures in flow patterns appearing at 20-40 cm depth coupled with changes in flow domains indicated soil layering with abrupt changes in soil structure and hydraulic properties.

  5. Inhibition effect of zinc in wastewater on the N2O emission from coastal loam soils.

    Science.gov (United States)

    Huang, Yan; Ou, Danyun; Chen, Shunyang; Chen, Bin; Liu, Wenhua; Bai, Renao; Chen, Guangcheng

    2017-03-15

    The effects of zinc (Zn) on nitrous oxide (N 2 O) fluxes from coastal loam soil and the abundances of soil nitrifier and denitrifier were studied in a tidal microcosm receiving livestock wastewater with different Zn levels. Soil N 2 O emission significantly increased due to discharge of wastewater rich in ammonia (NH 4 + -N) while the continuous measurements of gas flux showed a durative reduction in N 2 O flux by high Zn input (40mgL -1 ) during the low tide period. Soil inorganic nitrogen concentrations increased at the end of the experiment and even more soil NH 4 + -N was measured in the high-Zn-level treatment, indicating an inhibition of ammonia oxidation by Zn input. Quantitative PCR of soil amoA, narG and nirK genes encoding ammonia monooxygenase, nitrate reductase and nitrite reductase, respectively, showed that the microbial abundances involved in these metabolisms were neither affected by wastewater discharge nor Zn contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Eleven years' effect of conservation practices for temperate sandy loams: II. Soil pore characteristics

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Munkholm, Lars Juhl

    2017-01-01

    Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore characte......Conservation agriculture (CA) is regarded by many as a sustainable intensification strategy. Minimal soil disturbance in combination with residue retention are important CA components. This study examined the long-term effects of crop rotation, residue retention, and tillage on soil pore...... characteristics of two Danish sandy loams. Rotation R2 is a rotation of winter crops (mainly cereals) with residues retained, rotation R3 a mix of winter and spring crops (mainly cereals) with residues removed, and rotation R4 the same mix of winter and spring crops, but with residues retained. Each rotation...... included the tillage treatments: moldboard plowing to 20-cm depth (MP), harrowing to 8- to 10-cm depth (H) and direct drilling (D). Soil cores were taken from the topsoil (4–8, 12–16, 18–27 cm) in mid-autumn 2013 and early spring 2014. Water retention, air permeability, and gas diffusivity was determined...

  7. Degradation and persistence of cotton pesticides in sandy loam soils from Punjab, Pakistan.

    Science.gov (United States)

    Tariq, Muhammad Ilyas; Afzal, Shahzad; Hussain, Ishtiaq

    2006-02-01

    The present study evaluated the influence of temperature, moisture, and microbial activity on the degradation and persistence of commonly used cotton pesticides, i.e., carbosulfan, carbofuran, lambda-cyhalothrin, endosulfan, and monocrotophos, with the help of laboratory incubation and lysimeter studies on sandy loam soil (Typic Ustocurepts) in Pakistan. Drainage from the lysimeters was sampled on days 49, 52, 59, 73, 100, 113, and 119 against the pesticide application on days 37, 63, 82, 108, and 137 after the sowing of cotton. Carbofuran, monocrotophos, and nitrate were detected in the drainage samples, with an average value, respectively, of 2.34, 2.6 microg/L, and 15.6 mg/L for no-tillage and 2.16, 2.3 microg/L, and 13.4 mg/L for tillage. In the laboratory, pesticide disappearance kinetics were measured with sterile and nonsterile soils from 0 to 10 cm in depth at 15, 25, and 35 degrees C and 50% and 90% field water capacities. Monocrotophos and carbosulfan dissipation followed first-order kinetics while others followed second-order kinetics. The results of incubation studies showed that temperature and moisture contents significantly reduced the t(1/2) (half-life) values of pesticides in sterile and nonsterile soil, but the effect of microbial activity was nearly significant that might be due to less organic carbon (0.3%). The presence of carbofuran and monocrotophos in the soil profile (0-10, 10-30, 30-60, 60-90, 90-150 cm) and the higher concentrations of endosulfan and lambda-cyhalothrin in the top layer (0-10 cm) showed the persistence of the pesticides. The detection of endosulfan and lambda-cyhalothrin in the 10-30 cm soil layer might be due to preferential flow. The data generated from this study could be helpful for risk assessment studies of pesticides and for validating pesticide transport models for sandy loam soils in cotton-growing areas of Pakistan.

  8. Plant uptake and soil retention of phthalic acid applied to Norfolk sandy loam

    International Nuclear Information System (INIS)

    Dorney, J.R.; Weber, J.B.; Overcash, M.R.; Strek, H.J.

    1985-01-01

    Plant uptake and soil retention of 14 C carboxyl-labeled phthalic acid were studied at application rates of 0.6, 6.0, 60.0, and 600.0 ppm (soil dry weight) to Norfolk sandy loam (Typic Paleudult, fine loamy, kaolinitic, thermic). Height and dry weight of corn (Zea mays L. Pioneer 3368A) (21 day), tall fescue (Festuca arundinacea Schreb. Kentucky 31) (45 day) immature soybean (Glycine max (L.) Merr. Altoona) (21 day) plant, mature soybean plant, and mature wheat (Triticum aestivum L. Butte) straw were not affected by phthalic acid applied to soil. In addition, soybean seed and wheat seed dry weight were unaffected. Immature wheat (40 day) height decreased at the 600 ppm rate. Plant uptake of phthalic acid ranged from 0 to 23 ppm and was significantly above background for all plants and plant materials except soybean pods. Fescue and immature plants exhibited the highest concentration of phthalic acid while mature wheat plants and wheat seeds exhibited the least. Most of the phthalic acid volatilized or was decomposed from the soil by the end of the study; an average of only 5.7% of the originally applied chemical was recovered in both soil or plants. An average of 0.02% of the originally applied phthalic acid leached out of the treated zone. Considering the low toxicity of phthalic acid and its relatively rapid disappearance from soil, it is unlikely to become a health hazard from contaminated plants. However, plant uptake of other toxic organics could potentially become a hazard on soils treated with sludge containing significant quantities of these substances

  9. Respirable dust and quartz exposure from three South African farms with sandy, sandy loam, and clay soils.

    Science.gov (United States)

    Swanepoel, Andrew J; Kromhout, Hans; Jinnah, Zubair A; Portengen, Lützen; Renton, Kevin; Gardiner, Kerry; Rees, David

    2011-07-01

    To quantify personal time-weighted average respirable dust and quartz exposure on a sandy, a sandy loam, and a clay soil farm in the Free State and North West provinces of South Africa and to ascertain whether soil type is a determinant of exposure to respirable quartz. Three farms, located in the Free State and North West provinces of South Africa, had their soil type confirmed as sandy, sandy loam, and clay; and, from these, a total of 298 respirable dust and respirable quartz measurements were collected between July 2006-November 2009 during periods of major farming operations. Values below the limit of detection (LOD) (22 μg · m(-3)) were estimated using multiple 'imputation'. Non-parametric tests were used to compare quartz exposure from the three different soil types. Exposure to respirable quartz occurred on all three farms with the highest individual concentration measured on the sandy soil farm (626 μg · m(-3)). Fifty-seven, 59, and 81% of the measurements on the sandy soil, sandy loam soil, and clay soil farm, respectively, exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 25 μg · m(-3). Twelve and 13% of respirable quartz concentrations exceeded 100 μg · m(-3) on the sandy soil and sandy loam soil farms, respectively, but none exceeded this level on the clay soil farm. The proportions of measurements >100 μg · m(-3) were not significantly different between the sandy and sandy loam soil farms ('prop.test'; P = 0.65), but both were significantly larger than for the clay soil farm ('prop.test'; P = 0.0001). The percentage of quartz in respirable dust was determined for all three farms using measurements > the limit of detection. Percentages ranged from 0.5 to 94.4% with no significant difference in the median quartz percentages across the three farms (Kruskal-Wallis test; P = 0.91). This study demonstrates that there is significant potential for over-exposure to respirable quartz in

  10. IMPACT OF THE REPEATED TRACTOR PASSES ON SOME PHYSICAL PROPERTIES OF SILTY LOAM SOIL

    Directory of Open Access Journals (Sweden)

    Dubravko Filipović

    2011-12-01

    Full Text Available The aim of this paper was to quantify soil compaction induced by tractor traffic on untilled wet silty loam soil (Mollic Fluvisol. Changes in penetration resistance, bulk density and total porosity were measured for detecting the soil compaction. Treatments include ten passes of a four-wheel drive tractor with the engine power of 54.0 kW and weight of 3560 kg (1580 kg on the front axle and 1980 kg on the rear axle, 2.41 m distance between axles. The tyres on the tractor were cross-ply, front 11.2-24 and rear 16.9-30, with the inflation pressure of 160 kPa and 100 kPa, respectively. The speed of tractor during passes over experimental plots was 5.0 km h-1. In comparison to control, each tractor pass induced an increase in soil penetration resistance at all depths, and the average increment ratios, determined as the average of all layers, were 9.8, 18.5 and 26.1% after one, five and ten passes, respectively. The bulk density also increased with number of tractor passes, but with less percentage increasing. The increment ratios comparison to the control were 3.6, 9.5 and 12.9% after one, five and ten passes, respectively. The total porosity decreased with the number of passes, and the decrement ratios were 4.5, 16.5 and 20.8% after one, five and ten passes, respectively.

  11. Uncertainty of Deardorff’s soil moisture model based on continuous TDR measurements for sandy loam soil

    Directory of Open Access Journals (Sweden)

    Brandyk Andrzej

    2016-03-01

    Full Text Available Knowledge on soil moisture is indispensable for a range of hydrological models, since it exerts a considerable influence on runoff conditions. Proper tools are nowadays applied in order to gain in-sight into soil moisture status, especially of uppermost soil layers, which are prone to weather changes and land use practices. In order to establish relationships between meteorological conditions and topsoil moisture, a simple model would be required, characterized by low computational effort, simple structure and low number of identified and calibrated parameters. We demonstrated, that existing model for shallow soils, considering mass exchange between two layers (the upper and the lower, as well as with the atmosphere and subsoil, worked well for sandy loam with deep ground water table in Warsaw conurbation. GLUE (Generalized Likelihood Uncertainty Estimation linked with GSA (Global Sensitivity Analysis provided for final determination of parameter values and model confidence ranges. Including the uncertainty in a model structure, caused that the median soil moisture solution of the GLUE was shifted from the one optimal in deterministic sense. From the point of view of practical model application, the main shortcoming were the underestimated water exchange rates between the lower soil layer (ranging from the depth of 0.1 to 0.2 m below ground level and subsoil. General model quality was found to be satisfactory and promising for its utilization for establishing measures to regain retention in urbanized conditions.

  12. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai

    2014-01-01

    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... and dry regions) for a given soil and biochar amendment scenarios. This study evaluates how biochar applied to a sandy loam field at rates from 0 to 50 Mg ha−1 yr–1 in 2011, 2012, or both years (2011+2012) influences the full water retention curve. Inorganic fertilizer and pig slurry were added to all...... treatments. Six months after the last biochar application, intact and disturbed soil samples were collected for analyses. Soil water retention was measured from −1 kPa to −100 kPa using tension tables and ceramic plates and from −10 MPa to −480 MPa using a Vapor Sorption Analyzer. Soil specific area...

  13. Phosphorus application to cotton enhances growth, yield, and quality characteristics on a sandy loam soil

    International Nuclear Information System (INIS)

    Ahmad, M.; Ranjha, A.M.

    2009-01-01

    Phosphorus (P) is the second most limiting nutrient in cotton (Gossypium hirsutum L.) production after nitrogen. Under wheat-cotton cropping system of Pakistan most of the farmers apply P fertilizer only to wheat crop. A field experiment was conducted to evaluate the effect of fertilizer P on the growth, yield and fibre quality of cotton on a sandy loam calcareous soil at farmer's field in cotton growing area of district Khanewal, Punjab. Five levels of P (0, 17, 26, 34 and 43 kg P ha /sup -1/) along with 120 kg N and 53 kg K ha/sup -1/ were applied. The response of cotton growth parameters was greater than quality components to P addition in calcareous soil. There was significant increase in the growth and yield parameters with each additional rate of P. The response of number of bolls per plant, boll weight and seed cotton yield was to the tune of 88.23, 16.82 and 42%, respectively at P application rate of 34 kg ha/sup -1/. Cotton quality components (lint %age, fiber length and fiber strength) improved from 2 to 5% where 43 kg P ha/sup -1/ was added. The lint and seed P concentration was little affected by P application as compared to stem and leaves showing its essentiality for cell division and development of meristematic tissue. Phosphorus use, thus not only valuable for wheat crop but also its application to cotton crop is of vital importance in improving both lint yield and quality. (author)

  14. Soil resistance and resilience to mechanical stresses for three differently managed sandy loam soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per

    2012-01-01

    carbon (CCCsoils to compaction using air permeability (ka), void ratio (e) and air-filled porosity (ε) as functional indicators and to characterise aggregate stability, strength and friability. Aggregate tensile strength...... the compression index and a proposed functional index,was significantly greater for theMFC soil compared to the other two soils. The change in compression index with initial void ratio was significantly less for the MFC than the other soils. Plastic reorganisation of the soil particles immediately after......To improve our understanding of how clay-organic carbon dynamics affect soil aggregate strength and physical resilience, we selected three nearby soils (MFC,Mixed Forage Cropping; MCC,Mixed Cash Cropping; CCC, Cereal Cash Cropping)with identical clay content and increasing contents of organic...

  15. Microstructure and stability of two sandy loam soils with different soil management

    NARCIS (Netherlands)

    Bouma, J.

    1969-01-01

    A practical problem initiated this study. In the Haarlemmermeer, a former lake reclaimed about 1850, several farmers had difficulties with soil structure. Land, plowed in autumn, was very wet in spring. Free water was sometimes present on the soil surface. Planting and seeding were long delayed in

  16. Field Performance of Nine Soil Water Content Sensors on a Sandy Loam Soil in New Brunswick, Maritime Region, Canada

    Directory of Open Access Journals (Sweden)

    Lionel Stevens

    2009-11-01

    Full Text Available An in situ field test on nine commonly-used soil water sensors was carried out in a sandy loam soil located in the Potato Research Center, Fredericton, NB (Canada using the gravimetric method as a reference. The results showed that among the tested sensors, regardless of installation depths and soil water regimes, CS615, Trase, and Troxler performed the best with the factory calibrations, with a relative root mean square error (RRMSE of 15.78, 16.93, and 17.65%, and a r2 of 0.75, 0.77, and 0.65, respectively. TRIME, Moisture Point (MP917, and Gopher performed slightly worse with the factory calibrations, with a RRMSE of 45.76, 26.57, and 20.41%, and a r2 of 0.65, 0.72, and 0.78, respectively, while the Gypsum, WaterMark, and Netafim showed a frequent need for calibration in the application in this region.

  17. Assessment of structural stability of a degraded sandy clay loam soil ...

    African Journals Online (AJOL)

    The effects of bare, two legumes and four grasses cover treatments on the structural stability of a sandy clay loam Ultisol were studied within a two year period. The experiment was of a randomised complete block design with seven treatments. The legume treatments were Centrosema pubescens (Ce) and Pueraria ...

  18. Effect of Simulated Weathering and Aging of TNT in Amended Sandy Loam Soil on Toxicity to the Enchytraeid Worm, Enchytreaeus Crypticus

    Science.gov (United States)

    2006-05-01

    high bioavailability of organic compounds. However, amended SSL soil was analyzed for presence of metabolic transformation products from nitroaromatic...Phillips, C.; Checkai, R. 1999. Comparison of malathion toxicity using enchytraeid reproduction test and earthworm toxicity test in different soil ...OF TNT IN AMENDED SANDY LOAM SOIL ON TOXICITY TO THE ENCHYTRAEID WORM, ENCHYTRAEUS CRYPTICUS Roman G. Kuperman Ronald T. Checkai Michael Simini

  19. Weeds of cereal stubble-fields on various soils in the Kielce region. P. 1. Podzolic and brown soils developed from sands and loams

    Directory of Open Access Journals (Sweden)

    Franciszek Pawłowski

    2013-12-01

    Full Text Available Occupying cereal stubble-fields weed flora is the most characteristic of the environmental (especially soil conditions. Because of its developing and accomplishing the reproductive stages there it can threatens cultivated plants. They are considered to complete the seed store in a soil by 393 min per ha. The results presented in the paper concern the species composition, number and constancy (S and indice of coverage (D of the cereal stubble-field weed species on various soils in the Kielce region (the central part of Poland. The report was based upon 885 phytosociological records collected in the 268 stands. The records were carried out after the crop harvest, in the latter part of September, in 1976-1980. Soil were chosen on the base of soil maps. The analyse of soil samples, taken at the investigation process, were done in order to confirm the soil quality. The worked out material was divided into three parts. The first part, including 369 phytosociological records collected in the 112 stands (in 90 localities concerns stubble-field weeds on podzolic and brown soils developed from sands (loose, weakly loamy and loamy and loams (light and medium. It was found that these soils were grown by 108 (loamy sands to 132 (weakly loamy sands weed species. Among them 66 species were common for all of the soils. Species composition was not differentiated by the soil type (brown, podzolic within kind of the. soil (sand or loams. Among soil examined, the brown loams was the most abundant with species of high constancy degree (30 species but brown loose sands and podzolic loamy sands was the poorest one with (16 species.

  20. Influence of Long-term Application of Feedlot Manure Amendments on Water Repellency of a Clay Loam Soil.

    Science.gov (United States)

    Miller, Jim J; Beasley, Bruce W; Hazendonk, Paul; Drury, Craig F; Chanasyk, David S

    2017-05-01

    Long-term application of feedlot manure to cropland may increase the quantity of soil organic carbon (C) and change its quality, which may influence soil water repellency. The objective was to determine the influence of feedlot manure type (stockpiled vs. composted), bedding material (straw [ST] vs. woodchips [WD]), and application rate (13, 39, or 77 Mg ha) on repellency of a clay loam soil after 17 annual applications. The repellency was determined on all 14 treatments using the water repellency index ( index), the water drop penetration time (WDPT) method, and molarity of ethanol (MED) test. The C composition of particulate organic matter in soil of five selected treatments after 16 annual applications was also determined using C nuclear magnetic resonance-direct polarization with magic-angle spinning (NMR-DPMAS). Manure type had no significant ( > 0.05) effect on index and WDPT, and MED classification was similar. Mean index and WDPT values were significantly greater and MED classification more hydrophobic for WD than ST. Application rate had no effect on the index, but WDPT was significantly greater and MED classification more hydrophobic with increasing application rate. Strong ( > 0.7) but nonsignificant positive correlations were found between index and WDPT versus hydrophobic (alkyl + aromatic) C, lignin at 74 ppm (O-alkyl), and unspecified aromatic compounds at 144 ppm. Specific aromatic compounds also contributed more to repellency than alkyl, O-alkyl, and carbonyl compounds. Overall, all three methods consistently showed that repellency was greater for WD- than ST-amended clay loam soil, but manure type had no effect. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Combined mild soil washing and compost-assisted phytoremediation in treatment of silt loams contaminated with copper, nickel, and chromium.

    Science.gov (United States)

    Sung, Menghau; Lee, Chi-Yi; Lee, Suen-Zone

    2011-06-15

    A new soil remediation option, combining the soil washing process using pure water followed by the compost-assisted phytoextraction, is evaluated using silt loams contaminated with plating wastewater containing Cu, Ni, and Cr. Plants utilized in this study are the rapeseeds, sunflowers, tomatoes, and soapworts. Phytoextraction operation was carried out in pot experiments over a period of 4 months. Metal concentrations in roots and shoots of plants were analyzed upon completion of each pot experiment. Hypothesis testing was employed in assessing the significance of difference in the experimental data. Results indicated that the rapeseed, a hyperaccumulator, is most effective in extracting metals from the compost-amended silt loams. The fast-growing sunflowers and tomatoes are comparable to rapeseeds in accumulating metals despite their relatively low metal concentrations in tissues. Bioaccumulation coefficients obtained for all plants are less than one, indicating that phytostabilization rather than phytoextraction is the dominant mechanism at this simulated final-phase condition. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Changes to soil water content and biomass yield under combined maize and maize-weed vegetation with different fertilization treatments in loam soil

    Directory of Open Access Journals (Sweden)

    Lehoczky Éva

    2016-06-01

    Full Text Available Especially during early developmental stages, competition with weeds can reduce crop growth and have a serious effect on productivity. Here, the effects of interactions between soil water content (SWC, nutrient availability, and competition from weeds on early stage crop growth were investigated, to better understand this problem. Field experiments were conducted in 2013 and 2014 using long-term study plots on loam soil in Hungary. Plots of maize (Zea mays L. and a weed-maize combination were exposed to five fertilization treatments. SWC was observed along the 0–80 cm depth soil profile and harvested aboveground biomass (HAB was measured.

  3. Influence of wood-derived biochar on the physico-mechanical and chemical characteristics of agricultural soils

    Science.gov (United States)

    Ahmed, Ahmed S. F.; Raghavan, Vijaya

    2018-01-01

    Amendment of soil with biochar has been shown to enhance fertility and increase crop productivity, but the specific influence of biochar on soil workability remains unclear. Select physico-mechanical and chemical properties of clay loam and sandy loam soils were measured after amendment with wood-derived biochar of two particle size ranges (0.5-425 and 425-850 µm) at five dosages ranging from 0.5 to 10% dry weight. Whereas the clay loam soil workability decreased when the finer wood-derived biochar was applied at rates of 6 or 10%, soil fertility was not enhanced. The sandy loam soil, due to Proctor compaction, significantly decreased in bulk density with 6 and 10% wood-derived biochar amendments indicating higher soil resistance to compaction.

  4. Overall assessment of soil quality on humid sandy loams: Effects of location, rotation and tillage

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Hansen, Elly Møller; Rickson, J.M.

    2015-01-01

    .e. visual evaluation of soil structure (VESS), overall visual structure (OVS) and overall soil structure (OSS)) were employed to differentiate the effects of these alternative management practices on soil structural quality and relative crop yield (RY). A Pearson correlation was also employed to find...... the correlation between the soil quality indices and relative crop yield. Relevant soil properties for calculating the soil quality indices were measured or obtained from previous publications. Crop rotation affected the soil structure and RY. The winter-dominated crop rotation (R2) resulted in the poorest soil...... correlations were found in most cases between soil quality indices (including M-SQR) and RY. This highlights the influence of soil quality (as measured by the selected indicators) – and soil structure in particular – on crop yield potential....

  5. Evaluation of Diuron Tolerance and Biotransformation by Fungi from a Sugar Cane Plantation Sandy-Loam Soil.

    Science.gov (United States)

    Perissini-Lopes, Bruna; Egea, Tássia Chiachio; Monteiro, Diego Alves; Vici, Ana Cláudia; Da Silva, Danilo Grünig Humberto; Lisboa, Daniela Correa de Oliveira; de Almeida, Eduardo Alves; Parsons, John Robert; Da Silva, Roberto; Gomes, Eleni

    2016-12-14

    Microorganisms capable of degrading herbicides are essential to minimize the amount of chemical compounds that may leach into other environments. This work aimed to study the potential of sandy-loam soil fungi to tolerate the herbicide Herburon (50% diuron) and to degrade the active ingredient diuron. Verticillium sp. F04, Trichoderma virens F28, and Cunninghamella elegans B06 showed the highest growth in the presence of the herbicide. The evaluation of biotransformation showed that Aspergillus brasiliensis G08, Aspergillus sp. G25, and Cunninghamella elegans B06 had the greatest potential to degrade diuron. Statistical analysis demonstrated that glucose positively influences the potential of the microorganism to degrade diuron, indicating a cometabolic process. Due to metabolites founded by diuron biotransformation, it is indicated that the fungi are relevant in reducing the herbicide concentration in runoff, minimizing the environmental impact on surrounding ecosystems.

  6. Soil structure and earthworm activity in an marine silt loam under pasture versus arable land

    NARCIS (Netherlands)

    Jongmans, A.G.; Pulleman, M.M.; Marinissen, J.C.Y.

    2001-01-01

    Agricultural management influences soil organic matter (SOM) and earthworm activity which interact with soil structure. We aimed to describe the change in earthworm activity and related soil (micro)structure and SOM in a loamy Eutrodept as affected by permanent pasture (PP) and conventional arable

  7. Seasonal dynamics in wheel load-carrying capacity of a loam soil in the Swiss Plateau

    DEFF Research Database (Denmark)

    Gut, S.; Chervet, A.; Stettler, Matthias

    2015-01-01

    on in situ measurements of h, measurements of precompression stress at various h and simulations of soil stress. In this work, we concentrated on prevention of subsoil compaction. Calculations were made for different tyres (standard and low-pressure top tyres) and for soil under different tillage......Subsoil compaction is a major problem in modern agriculture caused by the intensification of agricultural production and the increase in weight of agricultural machinery. Compaction in the subsoil is highly persistent and leads to deterioration of soil functions. Wheel load-carrying capacity (WLCC......) is defined as the maximum wheel load for a specific tyre and inflation pressure that does not result in soil stress in excess of soil strength. The soil strength and hence WLCC is strongly influenced by soil matric potential (h). The aim of this study was to estimate the seasonal dynamics in WLCC based...

  8. Persistence of bifenthrin in sandy loam soil as affected by microbial community.

    Science.gov (United States)

    Sharma, Divya; Singh, Shashi Bala

    2012-06-01

    Soil was fortified with bifenthrin at the level of 10 μg g(-1) soil. Soil samples were drawn at regular intervals of 0, 10, 20, 30 and 40 days. For extraction of bifenthrin, soil was extracted with acetone. Clean up was done by liquid-liquid partitioning with dichloromethane after diluting with brine solution. Quantification of bifenthrin residues was done by GC using mega bore column and ECD detector. Recovery of bifenthrin in soil ranged between 92.6 % and 93.8 % at 0.5 and 1.0 μg g(-1). The instrumental limit of detection of bifenthrin was 0.005 μg mL(-1) and LOQ for soil by this method was found to be 0.05 μg g(-1). The calibration curve was found to be linear within range the range of 0.01 and 0.10 μg mL(-1) concentration. The DT(50) (disappearance time for 50 % loss) of bifenthrin at the level of 10 μg g(-1) in sterile and non sterile soil were found to be 330 and 147 days, respectively. A vast difference in the half life of sterile and non sterile soil indicated the presence of potential microbes for bifenthrin degradation.

  9. Estimating Infiltration Rates for a Loessal Silt Loam Using Soil Properties

    Science.gov (United States)

    M. Dean Knighton

    1978-01-01

    Soil properties were related to infiltration rates as measured by single-ringsteady-head infiltometers. The properties showing strong simple correlations were identified. Regression models were developed to estimate infiltration rate from several soil properties. The best model gave fair agreement to measured rates at another location.

  10. Effect of industrial, municipal and agricultural wastes on peanut in lateritic sandy loam soil

    International Nuclear Information System (INIS)

    Sarkar, S.; Khan, A.R.

    2002-06-01

    Modern agriculture, worldwide, depends upon the external application of plant nutrients supplied mostly through chemical fertilizer to meet the crop needs. The natural recycling cannot provide the very large amount of nutrients needed year after year in an intensive cropping system and nutrients being a major constraint harvesting the nutrient energy from biological and industrial waste are of prime importance for maximizing the food grain production in the world. A number of industrial wastes like fly ash from thermal power plants, paper factory sludge from paper factory, sewage sludge from municipal source and farmyard manure from livestock farming are the important waste resources, having potentiality in recycling in agricultural land. When these wastes are recycled through soil for crop production, due to the degradative and assimilative capacity of soil, the pollution hazards of these wastes can be minimized to a greater extent as compared to direct disposing of at the site. Fly ash is a waste product residue resulting from the combustion of pulverised coal in coal-fired power generating station. Physico - chemical analysis of fly ash has revealed the presence of both macro-micro nutrients, which can sustain plant growth. Its application in the agricultural land acts as a liming material and improves crop growth by neutralizing the soil acidity, increasing the water availability for the plants and supplement of nutrients (Adriano et al, 1980, Molliner and Street, 1982, Schnappinger et al, 1975). Application of paper factory sludge has been reported to increase the organic carbon content in soil and nutrient content like P, K, Ca, Mg and micronutrients (Guerini et al, 1994, Muse and Mitchell, 1995). Sludge application also improves the organic carbon content of the soil and availability of nutrients like Ca, K and Mg besides improvement of physical properties (Pitchel and Hayes, 1990). Much is known regarding crop performance and changes in physical and

  11. Microbial functional diversity responses to 2 years since biochar application in silt-loam soils on the Loess Plateau.

    Science.gov (United States)

    Zhu, Li-Xia; Xiao, Qian; Shen, Yu-Fang; Li, Shi-Qing

    2017-10-01

    The structure and function of soil microbial communities have been widely used as indicators of soil quality and fertility. The effect of biochar application on carbon sequestration has been studied, but the effect on soil microbial functional diversity has received little attention. We evaluated effects of biochar application on the functional diversities of microbes in a loam soil. The effects of biochar on microbial activities and related processes in the 0-10 and 10-20cm soil layers were determined in a two-year experiment in maize field on the Loess Plateau in China. Low-pyrolysis biochar produced from maize straw was applied into soils at rates of 0 (BC0), 10 (BC10) and 30 (BC30)tha -1 . Chemical analysis indicated that the biochar did not change the pH, significantly increased the amounts of organic carbon and nitrogen, and decreased the amount of mineral nitrogen and the microbial quotient. The biochar significantly decreased average well colour development (AWCD) values in Biolog EcoPlates™ for both layers, particularly for the rate of 10tha -1 . Biochar addition significantly decreased substrate richness (S) except for BC30 in the 0-10cm layer. Effects of biochar on the Shannon-Wiener index (H) and Simpson's dominance (D) were not significant, except for a significant increase in evenness index (E) in BC10 in the 10-20cm layer. A principal component analysis clearly differentiated the treatments, and microbial use of six categories of substrates significantly decreased in both layers after biochar addition, although the use of amines and amides did not differ amongst the three treatments in the deeper layer. Maize above ground dry biomass and height did not differ significantly amongst the treatments, and biochar had no significant effect on nitrogen uptake by maize seedlings. H was positively correlated with AWCD, and negatively with pH. AWCD was positively correlated with mineral N and negatively with pH. Our results indicated that shifts in soil

  12. Clinoptilolite zeolite influence on inorganic nitrogen in silt loam and sandy agricultural soils

    Science.gov (United States)

    Development of best management practices can help improve inorganic nitrogen (N) availability to plants and reduce nitrate-nitrogen (NO3-N) leaching in soils. This study was conducted to determine the influence of the zeolite mineral Clinoptilolite (CL) additions on NO3-N and ammonium-nitrogen (NH4...

  13. Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    Over the last few years, the application of biochar (BC) as a soil amendment to sequester carbon and mitigate global climate change has received considerable attention. While positive effects of biochar on plant nutrition are well documented, little is known about potential impacts on the physical....... Hysteresis of the water vapor sorption isotherms increased with increasing BC application rates. Biochar age did not significantly affect vapor sorption and SSA....

  14. Crop residues as driver for N2O emissions from a sandy loam soil

    DEFF Research Database (Denmark)

    Pugesgaard, Siri; Petersen, Søren O.; Chirinda, Ngonidzashe

    2017-01-01

    -term experiment on a loamy sand soil at Foulum in Denmark. All cropping systems included winter wheat, a leguminous crop (faba bean or grass-clover), potato and spring barley grown in different 4-crop rotations varying in strategies for N supply (fertilizer/manure type and rate, use of catch crops and green......-N leaching losses ranged from 39 to 56 kg N ha−1 y−1 and were lowest in rotations with catch crops; leaching was not correlated with N surplus or N input in fertilizer or manure. Crop yields of the organic rotations were 25 to 37% lower than in identical conventional rotations. As a consequence, yield...

  15. Effect of organic amendments on nitrate leaching mitigation in a sandy loam soil of Shkodra district, Albania

    Directory of Open Access Journals (Sweden)

    Erdona Demiraj

    2018-03-01

    Full Text Available European lacustrine systems are frequently exposed to nitrate (NO3– pollution causing eutrophication processes. An example of these lakes is Shkodra Lake, a large, shallow lake shared by Albania and Montenegro, in the Balkans Peninsula. Shkodra Lake is a natural sink that collects NO3– from agricultural activities, widely diffused in the surrounding area. The additions of wheat straw and biochar have been suggested to increase soil NO3– retention of agricultural lands. To better understand the role of these two organic soil amendments in mitigating NO3– leaching from arable lands, a pot experiment using a representative sandy loam soil of the Skodra Lake basin was performed. More specifically, a greenhouse experiment with Lolium multiflorum L. and Zea mays L., was carried out for three months, to evaluate the concentrations of NO3–-N in leachate and the cumulative leaching losses of NO3–-N, after wheat straw (10 Mg ha–1 and biochar (10 Mg ha–1 soil addition, under the same rate of NPK fertiliser (300 kg ha–1. The effect of the two organic amendments on nitrate retention, was evaluated according to two methods: i Soil NO3–-N leaching with distilled water; and ii Soil NO3–-N extraction with 2M KCl. The leached NO3–-N and the Potentially Leachable NO3–-N (2M KCl extraction were respectively determined. N uptake by plants, as well as the Nitrogen Use Efficiency were also calculated. A retention effect on nitrate was found in Lolium multiflorum L. and wheat straw treatments compared to control, by reducing leached NO3–-N almost to 35%. In SBFL (soil+biochar+fertiliser+Lolium treatment, biochar effectively reduced the total amount of nitrate in leachate of 27% and 26% compared to SFL (soil+fertiliser+Lolium and SSFL (soil+straw+fertiliser+Lolium treatments, respectively. The potentially leachable NO3–-N was two to four times higher than the leached NO3–-N. The amount of potentially leachable NO3–-N per hectare ranged

  16. Improving the Bearing Strength of Sandy Loam Soil Compressed Earth Block Bricks Using Sugercane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    Ramadhan W. Salim

    2014-06-01

    Full Text Available The need for affordable and sustainable alternative construction materials to cement in developing countries cannot be underemphasized. Compressed Earth Bricks have gained acceptability as an affordable and sustainable construction material. There is however a need to boost its bearing capacity. Previous research show that Sugarcane Bagasse Ash as a soil stabilizer has yielded positive results. However, there is limited research on its effect on the mechanical property of Compressed Earth Brick. This current research investigated the effect of adding 3%, 5%, 8% and 10% Sugarcane Bagasse Ash on the compressive strength of compressed earth brick. The result showed improvement in its compressive strength by 65% with the addition of 10% Sugarcane Bagasse Ash.

  17. Soil precompression stress, penetration resistance and crop yields in relation to differently-trafficked, temperate-region sandy loam soils

    DEFF Research Database (Denmark)

    Schjønning, Per; Lamandé, Mathieu; Munkholm, Lars Juhl

    2016-01-01

    . Undisturbed soil cores were used for quantifying the precompression stress (spc) of non-compacted soil. Tractor-trailer combinations for slurry application with wheel loads of 3, 6 and 8 Mg (treatments M3, M6, M8) were used for the experimental traffic in the spring at field-capacity. For one additional...

  18. Cultivos de cobertura: efectos sobre la macroporosidad y la estabilidad estructural de un suelo franco-limoso Cover crops: effects on soil macroporosity and soil structural stability in a silt loam soil

    Directory of Open Access Journals (Sweden)

    María Florencia Varela

    2011-07-01

    Full Text Available Los suelos franco-limosos manejados con siembra directa a menudo poseen porosidad estructural baja e inestable. Con el objetivo de determinar la capacidad de los cultivos de cobertura (CC de mejorar la porosidad y estabilidad estructural de estos suelos se llevaron a cabo experimentos de campo y de invernáculo. Ambos tuvieron tratamientos con y sin CC (avena, Avena sativa L., en rotación con soja (Glicine max L. Merr.. Luego de los CC se midieron densidad aparente (DA, el índice de inestabilidad estructural (IE y en el ensayo de invernáculo además, se midió la evolución de la distribución de tamaño de poros (DTP. En ambos ensayos la introducción de CC no disminuyó la DA, aunque incrementó la estabilidad del suelo (PNo- till (NT silt loam topsoils have often a low and unstable structural porosity. The objective of this study was to determine the capability of cover crops (CC of improving the structural porosity and stability of silt loam soils under NT. Greenhouse and field experiments were carried out on a silt loam soil (Typic Argiudoll with and without CC (oat, Avena sativa L. in crop sequences with soybean (Glicine max L. Merr.. Soil bulk density (DA and aggregate instability index (IE were measured after the CC in both experiments. In the greenhouse experiment, soil pore size distribution (DTP was measured. The use of CC did not change DA, but soil IE was significantly lower in crop sequences with CC (P < 0.05 both under field and greenhouse conditions. Stability increases were likely due to the effect of CC residues and root mass. No differences in DTP were found between treatments, although a significant effect of sampling date was observed (P<0.05. Changes in DTP were due to significant increases in mesopore (517.5% and macropore (52.7% volumes. Such changes occurred in all the treatments, probably due to the soil wetting-drying cycles. The results found in this study agree with other studies carried out on silt loams in the

  19. Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil

    NARCIS (Netherlands)

    Vermeulen, G.D.; Mosquera Losada, J.

    2009-01-01

    Some organic arable and vegetable farms in the Netherlands use cm-precise guidance of machinery to restrict wheel traffic to fixed traffic lanes and to achieve non-trafficked cropping zones with optimized soil structure in between the lanes. Contrary to controlled traffic farming (CTF) the traffic

  20. Physical-hydraulic properties of a sandy loam typic paleudalf soil under organic cultivation of 'montenegrina' mandarin (Citrus deliciosa Tenore¹

    Directory of Open Access Journals (Sweden)

    Caroline Valverde dos Santos

    2014-12-01

    Full Text Available Citrus plants are the most important fruit species in the world, with emphasis to oranges, mandarins and lemons. In Rio Grande do Sul, Brazil, most fruit production is found on small properties under organic cultivation. Soil compaction is one of the factors limiting production and due to the fixed row placement of this crop, compaction can arise in various manners in the interrows of the orchard. The aim of this study was to evaluate soil physical properties and water infiltration capacity in response to interrow management in an orchard of mandarin (Citrus deliciosa Tenore 'Montenegrina' under organic cultivation. Interrow management was performed through harrowing, logs in em "V", mowing, and cutting/knocking down plants with a knife roller. Soil physical properties were evaluated in the wheel tracks of the tractor (WT, between the wheel tracks (BWT, and in the area under the line projection of the canopy (CLP, with undisturbed soil samples collected in the 0.00-0.15, 0.15-0.30, 0.30-0.45, and 0.45-0.60 m layers, with four replicates. The soil water infiltration test was performed using the concentric cylinder method, with a maximum time of 90 min for each test. In general, soil analysis showed a variation in the physical-hydraulic properties of the Argissolo Vermelho-Amarelo distrófico arênico (sandy loam Typic Paleudalf in the three sampling sites in all layers, regardless of the management procedure in the interrows. Machinery traffic leads to heterogeneity in the soil physical-hydraulic properties in the interrows of the orchard. Soil porosity and bulk density are affected especially in the wheel tracks of the tractor (WT, which causes a reduction in the constant rate of infiltration and in the accumulated infiltration of water in this sampling site. The use of the disk harrow and mower leads to greater harmful effects on the soil, which can interfere with mandarin production.

  1. Effects of a novel poly (AA-co-AAm)/AlZnFe₂O₄/potassium humate superabsorbent hydrogel nanocomposite on water retention of sandy loam soil and wheat seedling growth.

    Science.gov (United States)

    Shahid, Shaukat Ali; Qidwai, Ansar Ahmad; Anwar, Farooq; Ullah, Inam; Rashid, Umer

    2012-10-25

    A novel poly(acrylic acid-co-acrylamide)AlZnFe₂O₄/potassium humate( )superabsorbent hydrogel nanocomposite (PHNC) was synthesized and its physical properties characterized using SEM, Energy Dispersive X-ray (EDX) and FTIR spectroscopic techniques. Air dried sandy loam soil was amended with 0.1 to 0.4 w/w% of PHNC to evaluate its soil moisture retention attributes. Effect of PHNC amendment on pH, electrical conductivity (EC), porosity, bulk density and hydraulic conductivity of sandy loam soil was also studied. The soil amendment with 0.1 to 0.4 w/w% of PHNC remarkably enhanced the moisture retention at field capacity as compared to the un-amended soils. Seed germination and seedling growth of wheat (Triticum aestivum L.) was considerably increased and a delay by 6-9 days in wilting of seedlings was observed in the soil amended with PHNC, resulting in improved wheat plant establishment and growth.

  2. USE OF THE “ROTHC” MODEL TO SIMULATE SOIL ORGANIC CARBON DYNAMICS ON A SILTY-LOAM INCEPTISOL IN NORTHERN ITALY UNDER DIFFERENT FERTILIZATION PRACTICES

    Directory of Open Access Journals (Sweden)

    Rosa Francaviglia

    2014-01-01

    Full Text Available We evaluated the efficiency of the RothC model to simulate Soil Organic Carbon (SOC dynamics after 12 years of organic and mineral fertilization practices in a study area located in northern Italy, on a silty-loam Inceptisol with a rotation including tomato, maize and alfalfa. The model performance was assessed by RMSE and EF coefficients. RothC simulated well observed SOC decreases in 71 samples (RMSE=7.42; EF=0.79, while performed with less accuracy when considering all samples (96 samples; RMSE=12.37; EF=0.58, due to the fact that the model failed in case of measured SOC increases (25 samples; RMSE=20.77; EF=-0.038. The model was used to forecast the SOC dynamics over a 50 year period under the same pedoclimatic conditions. Only clay contents >15% allowed to predict increasing levels of SOC respect to the starting values.

  3. Influence of N,K and CaSO4 on utilisation of sulfur by rice in red sandy loam soil

    International Nuclear Information System (INIS)

    Patnaik, M.C.; Sathe, Arun

    1993-01-01

    A greenhouse study with rice on red sandy loam soil showed that uptake of sulphur increased from both native as well as applied source with increase in the application of sulphur from 20-60 kg S ha -1 through gypsum. The grain yields were influenced by nitrogen application but there was only relative increase with the application of potassium and sulphur. There was positive effect of applied nitrogen and sulphur for the total sulphur removal by the rice crop. The per cent sulphur utilisation decreased with increase in sulphur application from 20-60 kg S ha -1 through gypsum but increased with increase in the application of nitrogen from 0-150 kg N ha -1 . Sulphur utilization by rice crop was more in potassium treated pots compared to that without its application. (author). 7 refs., 3 tabs

  4. Impact of industrial effluent on growth and yield of rice (Oryza sativa L.) in silty clay loam soil.

    Science.gov (United States)

    Anwar Hossain, Mohammad; Rahman, Golum Kibria Muhammad Mustafizur; Rahman, Mohammad Mizanur; Molla, Abul Hossain; Mostafizur Rahman, Mohammad; Khabir Uddin, Mohammad

    2015-04-01

    Degradation of soil and water from discharge of untreated industrial effluent is alarming in Bangladesh. Therefore, buildup of heavy metals in soil from contaminated effluent, their entry into the food chain and effects on rice yield were quantified in a pot experiment. The treatments were comprised of 0, 25%, 50%, 75% and 100% industrial effluents applied as irrigation water. Effluents, initial soil, different parts of rice plants and post-harvest pot soil were analyzed for various elements, including heavy metals. Application of elevated levels of effluent contributed to increased heavy metals in pot soils and rice roots due to translocation effects, which were transferred to rice straw and grain. The results indicated that heavy metal toxicity may develop in soil because of contaminated effluent application. Heavy metals are not biodegradable, rather they accumulate in soils, and transfer of these metals from effluent to soil and plant cells was found to reduce the growth and development of rice plants and thereby contributed to lower yield. Moreover, a higher concentration of effluent caused heavy metal toxicity as well as reduction of growth and yield of rice, and in the long run a more aggravated situation may threaten human lives, which emphasizes the obligatory adoption of effluent treatment before its release to the environment, and regular monitoring by government agencies needs to be ensured. Copyright © 2015. Published by Elsevier B.V.

  5. Study and Estimation of the Ratio of 137CS and 40K Specific Activities in Sandy and Loam Soils

    Directory of Open Access Journals (Sweden)

    Renata Mikalauskienė

    2011-12-01

    Full Text Available The present article describes changes in specific activities and fluctuations in the ratio of natural 40K and artificial 137Cs radionuclides in soil samples taken from different places of Lithuanian territory. The samples of soil have been selected from the districts polluted after the accident in Chernobyl nuclear plant performing nuclear testing operations. The study has established the main physical and chemical properties of soil samples and their impact on the concentration of 40K activities. 137Cs/40K specific activities in soil have been observed under the dry weight of the sample that varied from 0.0034 to 0.0240. The results of the study could be used for establishing and estimating 137Cs and 40K transfer in the system “soil-plant”.Article in Lithuanian

  6. Eleven years' effect of conservation practices for temperate sandy loams: I. Soil physical properties and topsoil carbon content

    DEFF Research Database (Denmark)

    Abdollahi, Lotfallah; Getahun, Gizachew Tarekegn; Munkholm, Lars Juhl

    2017-01-01

    (D) and harrowing to a depth of 8 to 10 cm (H). Soil sampling and in-field measurements were performed in autumn 2013 and spring 2014. In the field, soil structure was visually evaluated and penetration resistance (PR) measured. Soil C, wet stability (clay dispersion and wet aggregate stability....... However, H and D in combination with residue retention gave the best structural stability. Residue retention alleviated negative effects of reduced tillage on PR and improved wet stability in the MP treatment at the Foulum site. Clay and SOC correlated well with soil physical parameters, confirming...... their important role in soil structure formation and stabilization. Our study showed benefits of combining key CA elements, although longer-term studies are most likely needed to reveal the full potential....

  7. Toxicity of Nitro-Heterocyclic and Nitroaromatic Energetic Materials to Folsomia candida in a Natural Sandy Loam Soil

    Science.gov (United States)

    2015-04-01

    these tests. Acetone (CAS: 67-64-1; high-performance liquid chromatography [HPLC] grade) was used for preparing EM solutions during the soil amendments... chromatography grade, purity: 99.9%) was used in the HPLC determinations. Certified standards of the energetics (AccuStandard, Inc., New Haven, CT) were used...H.; Van Gestel, C.A.M. Handbook of Soil Invertebrate Toxicity Tests; John Wiley & Sons: Hoboken, NJ, 1998. McLellan, W.L.; Hartley, W.R.; Brower

  8. Comparing Beerkan infiltration tests with rainfall simulation experiments for hydraulic characterization of a sandy-loam soil

    NARCIS (Netherlands)

    Prima, Di Simone; Bagarello, Vincenzo; Lassabatere, Laurent; Angulo-Jaramillo, Rafael; Bautista, Inmaculada; Burguet, Maria; Cerda Bolinches, Artemio; Iovino, Massimo; Prosdocimi, Massimo

    2017-01-01

    Saturated soil hydraulic conductivity, Ks, data collected by ponding infiltrometer methods and usual experimental procedures could be unusable for interpreting field hydrological processes and particularly rainfall infiltration. The Ks values determined by an infiltrometer

  9. [Characteristics of N2, N2O, NO, CO2 and CH4 Emissions in Anaerobic Condition from Sandy Loam Paddy Soil].

    Science.gov (United States)

    Cao, Na; Wang, Rui; Liao, Ting-ting; Chen, Nuo; Zheng, Xun-hua; Yao, Zhi-sheng; Zhang, Hai; Butterbach-Bahl, Klaus

    2015-09-01

    Understanding the characteristics of the production of nitrogen gases (N2, N2O and NO), CO2 and CH4 in anaerobic paddy soils is not only a prerequisite for an improved mechanistic understanding of key microbial processes involved in the production of atmospheric greenhouse gases (GHG), but might also provide the basis for designing greenhouse gas mitigation strategies. Moreover, quantifying the composition fractions of denitrification gaseous products is of key importance for improving parameterization schemes of microbial processes in process-oriented models which are increasingly used for assessing soil GHG emissions at site and national scales. In our experiments we investigated two sandy loam soils from two paddy fields. The initial concentrations of soil nitrate and dissolved organic carbon (DOC) were set at approximately 50 mg.kg-1 and mg.kg-1, respectively, by adding a mixture solution of KNO3 and glucose. The emissions of N2, N2O NO, CO2 and CH4, as well as concentrations of carbon and nitrogen substrates for each soil sample were measured simultaneously, using a gas-flow-soil-core technique and a paralleling substrate monitoring system. The results showed that the accumulative emissions of N2, N2O and NO of the two soil samples for the entire incubation period were 6 - 8, 20, and 15 - 18 mg.kg-1, respectively. By measuring the cumulative emissions of denitrification gases (N, = N2 + N2O + NO) we were able to explain 95% to 98% of observed changes in s1ifr nilrate concentrations. The mass fractions of N2, N2O and NO emissions to Nt were approximately 15% -19%, 47% -49%, and 34% -36%, respectively. Thus, in our experiments N2O and NO were the main products of denitrification for the entire incubation period. However, as the temporal courses of hourly or daily production of the denitrification gases showed, NO production dominated and peaked firstly, and then N2O, before finally N2 became the dominant product. Our results show the high temporal dynamic of

  10. The Effects of Land Configuration and Wood-Shavings Mulch on the Properties of a Sandy Loam Soil in Northeast Nigeria. 2. Changes in Physical Properties

    Directory of Open Access Journals (Sweden)

    Chiroma, AM.

    2006-01-01

    Full Text Available Mulching and ridge tillage are proven technologies for improving soil productivity in semi-arid regions. Yet data quantifying the combined influences of these practices are limited. Our objectives were to determine the changes in selected physical properties of a sandy loam after 4-years of annual tillage and wood-shavings mulching. The tillage and wood-shavings treatments consisted of: Flat bed (FB, Open ridge (OR, Tiedridge (TR, FBM, ORM and TRM were same as FB, OR and TR, respectively except that wood-shavings at a rate of 10 t/ha were surface applied ≈ 2 weeks after sowing each year to serve as both a mulch and an organic amendment. At the end of the trial in 2002, bulk density, penetration resistance, total porosity and soil water content from each of 0-0.075, 0.075-0.15 and 0.15-0.30 m depths were determined. Composite samples from the surface (0.075 and 0.075-0.15 m layers from 3 replicates of each treatment were also collected for the determination of wet aggregate stability and from 0-0.15 m and 0.15-0.30 m layers for determination of saturated hydraulic conductivity (Ksat. After 4 years of annual tillage and addition of woodshavings, soil bulk density and penetration resistance were consistently lower and total porosity higher in the FBM, ORM and TRM treatments than in the FB, OR and TR treatments. Penetration resistance in all treatments was strongly related to soil water content. A 'hoe pan' was established below 0.15 m depth beneath the furrows of the ridged treatments. This could be attributed to human traffic during field operations and ponding of water, which occurred in the furrows following heavy rains. Wet aggregate stability estimated as the proportion of aggregates of size > 0.25 mm (macro-aggregates in the 0-0.15 m layer were significantly (P< 0.05 higher under FBM, ORM and TRM than under FB, OR or TR treatments. Ksat was not influenced by either tillage or wood-shavings treatments but were higher for the mulched plots

  11. Radiological aspects of choice of a system of cultivation of sod-podzolic sandy loam soils with different degree of humidity on lands of Mogilev region contaminated with 137Cs

    International Nuclear Information System (INIS)

    Lazarevich, S.S.; Ermolenko, A.V.; Shapsheeva, T.P.

    2010-01-01

    In the conditions of the Republic of Belarus there were presented data about the influence of technological factors on entry of 137Cs into plant products (grain and green mass). In course of the study there were analyzed the following variants of soil cultivation: moldboard plowing; subsurface chisel soil tillage; subsurface surface soil tillage; minimal tillage. There were presented data on specific activity of 137Cs in plant product samples of oat (Avena sativa) grain; field pea (Pisum arvense L.) and oat mixture grain and green mass; wheat (Triticum aestivum) grain. There were determined the main principles of influence of cultivation systems of sod-podzolic sandy loam soil with different degree of humidity on transition of 137Cs into plants depending on the degree of soil and crop humidity. On the automorphic soil there was revealed a tendency of increased transition of 137Cs into grain and green mass after application of subsurface surface soil tillage system

  12. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions

    Directory of Open Access Journals (Sweden)

    F.Sh.F. Badawi

    2011-06-01

    Full Text Available The ability of tested rhizomicrobial isolates (Serratia marcescens and Trichoderma harzianum along with a strain of root nodule bacteria (Bradyrhizobium spp. to exhibit some PGP-properties was evaluated in vitro conditions. The main PGP-properties, namely the ability to solubilize-P and production of IAA, as well as production of siderophores and HCN were examined. Additionally, field trials were conducted on sandy loam soil at El-Tahrir Province during two successive summer seasons to study the effect of co-inoculation with Bradyrhizobium either individually or together with S. marcescens and/or T. harzianum on nodulation, some plant growth characters, peanut yield and its yield components. The in vitro experiment revealed that all of the tested microorganisms were apparently able to trigger PGP-properties. Phosphate solubilization was the common feature of the employed microorganisms. However, T. harzianum appeared to be superior to other microorganisms, and Bradyrhizobium displayed the lowest capacity. The ability of the microorganisms to produce indole compounds showed that S. marcescens was more effective in IAA production and followed by Bradyrhizobium. Capacity of S. marcescens and T. harzianum to excrete ferric-specific ligands (siderophores and HCN was detected, while Bradyrhizobium failed to produce such compounds. Results of field trials showed that the uninoculated peanut had the least nodulation status, N2-ase activity and all vegetative growth characters in both studied seasons. Bacterization of peanut seeds with bradyrhizobia exerted considerable improvement in number and mass of root nodules, increased the rate of acetylene reduction and all growth characters in comparison to the uninoculated control. The synergy inoculation between bradyrhizobia and any of the tested microorganisms led to further increases of all mentioned characters and strengthened the stimulating effect of the bacterial inoculation. However, the promotive

  13. Field Performance of the Disk Harrow, Power Harrow and Rotary Tiller at Different Soil Moisture Contents on a Clay Loam Soil in Mazandaran

    Directory of Open Access Journals (Sweden)

    M Rajabi Vandechali

    2015-03-01

    Full Text Available About 60% of the mechanical energy consumed in mechanized agriculture is used for tillage operations and seedbed preparation. On the other hand, unsuitable tillage system resulted in soil degradation, affecting soil physical properties and destroying soil structure. The objective of this research was to compare the effects of three types of secondary tillage machines on soil physical properties and their field performances. An experiment was conducted in a wheat farm in Jouybar area of Mazandaran as split plots based on randomized complete block design with three replications. The main independent variable (plot was soil moisture with three levels (23.6-25, 22.2-23.6 and 20.8-22.2 percent based on dry weight and the subplot was three types of machine (two-disk perpendicular passing harrow, Power harrow and Rotary tiller. The measured parameters included: clod mean weight diameter, soil bulk density, specific fuel consumption, machine efficiency and machine capacity. The effects of treatments and their interactions on the specific fuel consumption, machine efficiency and machine capacity and also the effects of treatments on bulk density were significant (P

  14. Efficacy of Natural Polymer Derivatives on Soil Physical Properties and Erosion on an Experimental Loess Hillslope.

    Science.gov (United States)

    Liu, Jun'e; Wang, Zhanli; Li, Yuanyuan

    2017-12-22

    Raindrops disperse large soil aggregates into smaller particles, which can clog soil pores, cause soil crusting, reduce rainfall infiltration and increase soil loss. It was found that natural polymer derivatives were effective in improving soil physical properties and decreasing soil erosion on an experimental loess hillslope. This study investigated the effect of new natural polymer derivatives (Jag S and Jag C162) on soil properties, rainfall infiltration and sediment yield at four rates of sprayed polymers (0, 1, 3 and 5 g/m²), three rainfall intensities (1, 1.5 and 2 mm/min) and a slope gradient of 15° with a silt loam soil through simulated rain. The results showed that both Jag S and Jag C162 significantly increased the shear strength and improved the aggregates composition of the soil surface. The water-stable soil aggregates >0.25 mm increased from 9% to 50% with increasing rates of Jag S and Jag C162. Jag S and Jag C162 also effectively increased rainfall infiltration and final infiltration rate, and reduced erosion compared to controls without natural polymer derivatives added. However, higher rates of Jag S produced lower infiltration rates. Although both Jag S and Jag C162 effectively influenced soil physical properties and erosion, the effect of Jag C162 was more significant than that of Jag S.

  15. Efficacy of Natural Polymer Derivatives on Soil Physical Properties and Erosion on an Experimental Loess Hillslope

    Directory of Open Access Journals (Sweden)

    Jun’e Liu

    2017-12-01

    Full Text Available Raindrops disperse large soil aggregates into smaller particles, which can clog soil pores, cause soil crusting, reduce rainfall infiltration and increase soil loss. It was found that natural polymer derivatives were effective in improving soil physical properties and decreasing soil erosion on an experimental loess hillslope. This study investigated the effect of new natural polymer derivatives (Jag S and Jag C162 on soil properties, rainfall infiltration and sediment yield at four rates of sprayed polymers (0, 1, 3 and 5 g/m2, three rainfall intensities (1, 1.5 and 2 mm/min and a slope gradient of 15° with a silt loam soil through simulated rain. The results showed that both Jag S and Jag C162 significantly increased the shear strength and improved the aggregates composition of the soil surface. The water-stable soil aggregates >0.25 mm increased from 9% to 50% with increasing rates of Jag S and Jag C162. Jag S and Jag C162 also effectively increased rainfall infiltration and final infiltration rate, and reduced erosion compared to controls without natural polymer derivatives added. However, higher rates of Jag S produced lower infiltration rates. Although both Jag S and Jag C162 effectively influenced soil physical properties and erosion, the effect of Jag C162 was more significant than that of Jag S.

  16. Efficacy of Natural Polymer Derivatives on Soil Physical Properties and Erosion on an Experimental Loess Hillslope

    Science.gov (United States)

    Liu, Jun’e; Wang, Zhanli; Li, Yuanyuan

    2017-01-01

    Raindrops disperse large soil aggregates into smaller particles, which can clog soil pores, cause soil crusting, reduce rainfall infiltration and increase soil loss. It was found that natural polymer derivatives were effective in improving soil physical properties and decreasing soil erosion on an experimental loess hillslope. This study investigated the effect of new natural polymer derivatives (Jag S and Jag C162) on soil properties, rainfall infiltration and sediment yield at four rates of sprayed polymers (0, 1, 3 and 5 g/m2), three rainfall intensities (1, 1.5 and 2 mm/min) and a slope gradient of 15° with a silt loam soil through simulated rain. The results showed that both Jag S and Jag C162 significantly increased the shear strength and improved the aggregates composition of the soil surface. The water-stable soil aggregates >0.25 mm increased from 9% to 50% with increasing rates of Jag S and Jag C162. Jag S and Jag C162 also effectively increased rainfall infiltration and final infiltration rate, and reduced erosion compared to controls without natural polymer derivatives added. However, higher rates of Jag S produced lower infiltration rates. Although both Jag S and Jag C162 effectively influenced soil physical properties and erosion, the effect of Jag C162 was more significant than that of Jag S. PMID:29271899

  17. Landslide in claystone derived soil

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, A M

    1979-07-01

    This article describes a landslide that occured in the Pittsburgh area in a soil deposit derived from the Pittsburgh Redbed Claystone when a cut was made at the toe. (The Pittsburgh Redbed Claystone is the parent of much of the soil material involved in the Pittsburgh area and occurs about mid way between the base of Pittsburgh Coal and the top of the Upper Freepost Coal). The topography before the slide was known and the geometry of the slide mass was established. Slope stability analysis indicated that the landslide could have been predicted using effective stress-shear-strength parameters of s of 12 to 13 and c is 0, where s is angle of shearing resistance and c is cohesion intercept in terms of effective stresses.

  18. The influence of clay-to-carbon ratio on soil physical properties in a humid sandy loam soil with contrasting tillage and residue management

    DEFF Research Database (Denmark)

    Getahun, Gizachew Tarekegn; Munkholm, Lars Juhl; Schjønning, Per

    2016-01-01

    × SOC according to Dexter et al. (2008). NCC was a better predictor of dispersible clay than total clay and SOC at all depths in natural aggregates, while tensile strength and derived parameters were generally better explained by the total amount of clay in remoulded aggregates. Remoulded aggregates had...

  19. Improvement in the water retention characteristics of sandy loam soil using a newly synthesized poly(acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material.

    Science.gov (United States)

    Shahid, Shaukat Ali; Qidwai, Ansar Ahmad; Anwar, Farooq; Ullah, Inam; Rashid, Umer

    2012-08-03

    The use of some novel and efficient crop nutrient-based superabsorbent hydrogel nanocomposites (SHNCs), is currently becoming increasingly important to improve the crop yield and productivity, due to their water retention properties. In the present study a poly(Acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite was synthesized and its physical properties characterized using Energy Dispersive X-ray (EDX), FE-SEM and FTIR spectroscopic techniques. The effects of different levels of SHNC were studied to evaluate the moisture retention properties of sandy loam soil (sand 59%, silt 21%, clay 19%, pH 7.4, EC 1.92 dS/m). The soil amendment with 0.1, 0.2, 0.3 and 0.4 w/w% of SHNC enhanced the moisture retention significantly at field capacity compared to the untreated soil. Besides, in a separate experiment, seed germination and seedling growth of wheat was found to be notably improved with the application of SHNC. A delay in wilting of seedlings by 5-8 days was observed for SHNC-amended soil, thereby improving wheat plant growth and establishment.

  20. Toxicity of RDX, HMX, TNB, 2,4-DNT, and 2,6-DNT to the Earthworm, Eisenia Fetida, in a Sandy Loam Soil

    National Research Council Canada - National Science Library

    Simini, Michael; Checkai, Ronald T; Kuperman, Roman G; Phillips, Carlton T; Kolakowski, Jan E; Kurnas, Carl W; Sunahara, Geoffrey I

    2006-01-01

    ...), and 1,3,5-trinitrobenzene (TNB) to fill the data gaps. Tests were conducted in freshly amended and in amended soils subjected to a weathering/aging process to better reflect exposure conditions in field soils...

  1. Toxicity of RDX, HMX, TNB, 2,4-DNT, and 2,6-DNT to the Earthworm, Eisenia Fetida, in a Sandy Loam Soil

    National Research Council Canada - National Science Library

    Simini, Michael; Checkai, Ronald T; Kuperman, Roman G; Phillips, Carlton T; Kolakowski, Jan E; Kurnas, Carl W; Sunahara, Geoffrey I

    2006-01-01

    ...) for ecological risk assessment of soil contaminants at Superfund sites. Insufficient information existed to generate Eco-SSLs for explosives and related materials in soil. The earthworm (Eisenia fetida...

  2. Effects of organic versus conventional arable farming on soil structure and organic matter dynamics in a marine loam in the Netherlands

    NARCIS (Netherlands)

    Pulleman, M.M.; Jongmans, A.G.; Marinissen, J.C.Y.; Bouma, J.

    2003-01-01

    We compared the effects of conventional and organic arable farming on soil organic matter (SOM) content, soil structure, aggregate stability and C and N mineralization, which are considered important factors in defining sustainable land management. Within one soil series, three different farming

  3. Earthworm biomass as additional information for risk assessment of heavy metal biomagnification: a case study for dredged sediment-derived soils and polluted floodplain soils

    International Nuclear Information System (INIS)

    Vandecasteele, Bart; Samyn, Jurgen; Quataert, Paul; Muys, Bart; Tack, Filip M.G.

    2004-01-01

    The important role of earthworms in the biomagnification of heavy metals in terrestrial ecosystems is widely recognised. Differences in earthworm biomass between sites is mostly not accounted for in ecological risk assessment. These differences may be large depending on soil properties and pollution status. A survey of earthworm biomass and colonisation rate was carried out on dredged sediment-derived soils (DSDS). Results were compared with observations for the surrounding alluvial plains. Mainly grain size distribution and time since disposal determined earthworm biomass on DSDS, while soil pollution status of the DSDS was of lesser importance. Highest earthworm biomass was observed on sandy loam DSDS disposed at least 40 years ago. - Polluted clayey dredged sediment-derived soils have a relatively low risk for heavy metal biomagnification due to slow earthworm colonisation

  4. Enhancement of physical and hydrological properties of a sandy loam soil via application of different biochar particle sizes during incubation period

    Directory of Open Access Journals (Sweden)

    Leila Esmaeelnejad

    2016-06-01

    Full Text Available In spite of many studies that have been carried out, there is a knowledge-gap as to how different sizes of biochars alter soil properties. Therefore, the main objective of this study was to investigate the effects of different sizes of biochars on soil properties. The biochars were produced at two pyrolysis temperatures (350 and 550°C from two feedstocks (rice husk and apple wood chips. Produced biochars were prepared at two diameters (1-2 mm and <1 mm and mixed with soil at a rate of 2% (w/w. Multiple effects of type, temperature and size of biochars were significant, so as the mixture of soil and finer woodchip biochars produced at 550°C had significant effects on all soil properties. Soil aggregation and stabilization of macro-aggregates, values of mean weight diameter and water stable aggregates were improved due to increased soil organic matter as binding agents and microbial biomass. In addition, plant available water capacity, air capacity, S-index, meso-pores and water retention content were significantly increased compared to control. But, saturated hydraulic conductivity (Ks was reduced due to blockage of pores by biochar particles, reduction of pore throat size and available space for flow and also, high field capacity of biochars. So, application of biochar to soil, especially the finest particles of high-tempered woody biochars, can improve physical and hydrological properties of coarse-textured soils and reduce their water drainage by modification of Ks.

  5. Enhancement of physical and hydrological properties of a sandy loam soil via application of different biochar particle sizes during incubation period

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeelnejad, L.; Shorafa, M.; Gorji, M.; Hosseini, S.M.

    2016-11-01

    In spite of many studies that have been carried out, there is a knowledge-gap as to how different sizes of biochars alter soil properties. Therefore, the main objective of this study was to investigate the effects of different sizes of biochars on soil properties. The biochars were produced at two pyrolysis temperatures (350 and 550°C) from two feedstocks (rice husk and apple wood chips). Produced biochars were prepared at two diameters (1-2 mm and <1 mm) and mixed with soil at a rate of 2% (w/w). Multiple effects of type, temperature and size of biochars were significant, so as the mixture of soil and finer woodchip biochars produced at 550°C had significant effects on all soil properties. Soil aggregation and stabilization of macro-aggregates, values of mean weight diameter and water stable aggregates were improved due to increased soil organic matter as binding agents and microbial biomass. In addition, plant available water capacity, air capacity, S-index, meso-pores and water retention content were significantly increased compared to control. But, saturated hydraulic conductivity (Ks) was reduced due to blockage of pores by biochar particles, reduction of pore throat size and available space for flow and also, high field capacity of biochars. So, application of biochar to soil, especially the finest particles of high-tempered woody biochars, can improve physical and hydrological properties of coarse-textured soils and reduce their water drainage by modification of Ks. (Author)

  6. Effect of Simulated Weathering and Aging of TNT in Amended Sandy Loam Soil on Toxicity to the Enchytraeid Worm, Enchytreaeus Crypticus

    National Research Council Canada - National Science Library

    Kuperman, Roman G; Checkai, Ronald T; Simini, Michael; Phillips, Carlton T; Kolakowski, Jan E; Kurnas, Carl W

    2006-01-01

    ...) for the ecological risk assessment of contaminants at Superfund sites. Insufficient information for TNT to generate Eco-SSL for soil invertebrates has necessitated standardized toxicity testing to fill the data gap...

  7. morphological characteristics and classification of soils derived

    African Journals Online (AJOL)

    Prof. Ekwueme

    MORPHOLOGICAL CHARACTERISTICS AND CLASSIFICATION OF. SOILS DERIVED FROM DIVERSE PARENT MATERIALS IN CENTRAL. CROSS RIVER STATE, NIGERIA. 271. M. E. NSOR and I. J. IBANGA. (Received 5 October 2007; Revision Accepted 5 December 2007). ABSTRACT. Variation in soil characteristics ...

  8. Analysis of some parameters related to the hydraulic infiltration of a silty-loam soil subjected to organic and mineral fertilizer systems in Southern Italy

    Directory of Open Access Journals (Sweden)

    Antonietta Napolitano

    2011-05-01

    Full Text Available This experiment was carried out to detect the most linear process to calculate the hydraulic conductivity, with the aim to classify the soil of experimental station of the Unit for Research in Cultivations Alternative to Tobacco (CAT, locate in South Italy (Scafati, Province of Salerno, subject to different types of manure: compost and mineral fertilizer. The field tests were made by a system measuring infiltration by double, inner and outer ring, inserted into the ground. Each ring was supplied with a constant level of water from external bottle (3 cm, and hydraulic conductivity is determined when the water flow rate in the inner ring is constant. Four areas, two fertilized by mineral fertilizer (areas I and III and two amended with compost (areas II and IV at two depths, 5 and 10 cm (H1-H2, were analysed. The parameters were recorded at the following dates: on 18th and 19th September 2009, respectively, at 5 and 10 cm of depth (H1-H2 in area I; on 7th and 8th October 2009 in area II; on 13th and 14th October 2009 in area III; on 16th and 17th October 2009 in area IV. The effect of compost, used one time only, is present in all parameters, even if with a low statistical significance (P<0.01-0.05. This biomass stores a better water reserve [g (100 g–1-Δθ] and causes a lower avidity for water (bibacity and a better speed of percolation (Ks of exceeding water. The organic matter decreased the variability of soil along field. The studied soil showed to be almost permeable and not having any serious problem concerning rain intensity.

  9. Derivation of Soil Ecological Criteria for Copper in Chinese Soils.

    Science.gov (United States)

    Wang, Xiaoqing; Wei, Dongpu; Ma, Yibing; McLaughlin, Mike J

    2015-01-01

    Considerable information on copper (Cu) ecotoxicity as affected by biological species and abiotic properties of soils has been collected from the last decade in the present study. The information on bioavailability/ecotoxicity, species sensitivity and differences in laboratory and field ecotoxicity of Cu in different soils was collated and integrated to derive soil ecological criteria for Cu in Chinese soils, which were expressed as predicted no effect concentrations (PNEC). First, all ecotoxicity data of Cu from bioassays based on Chinese soils were collected and screened with given criteria to compile a database. Second, the compiled data were corrected with leaching and aging factors to minimize the differences between laboratory and field conditions. Before Cu ecotoxicity data were entered into a species sensitivity distribution (SSD), they were normalized with Cu ecotoxicity predictive models to modify the effects of soil properties on Cu ecotoxicity. The PNEC value was set equal to the hazardous concentration for x% of the species (HCx), which could be calculated from the SSD curves, without an additional assessment factor. Finally, predictive models for HCx based on soil properties were developed. The soil properties had a significant effect on the magnitude of HCx, with HC5 varying from 13.1 mg/kg in acidic soils to 51.9 mg/kg in alkaline non-calcareous soils. The two-factor predictive models based on soil pH and cation exchange capacity could predict HCx with determination coefficients (R2) of 0.82-0.91. The three-factor predictive models--that took into account the effect of soil organic carbon--were more accurate than two-factor models, with R2 of 0.85-0.99. The predictive models obtained here could be used to calculate soil-specific criteria. All results obtained here could provide a scientific basis for revision of current Chinese soil environmental quality standards, and the approach adopted in this study could be used as a pragmatic framework for

  10. Growth and yield response of hybrid maize (Zea mays L. to phosphorus levels in sandy loam soil of Chitwan Valley, Nepal

    Directory of Open Access Journals (Sweden)

    Bandhu Raj Baral

    2015-06-01

    Full Text Available To evaluate the phosphorus response on winter hybrid maize, a field experiment was conducted at farm land of National Maize Research Program, Rampur, Chitwan, Nepal on 2012 and 2013. Seven levels of Phosphorus i.e. 0, 20, 40, 60, 80, 100 and 120 kg P2O5 ha-1 were applied along with 160:40 kg N:K2O ha-1. The experiment was laid out in randomized complete block design with three replications. Hybrid maize RML 32 × RML 17 was used for this study. Analysis of variance showed that plant height (cm, dry matter accumulation (g, number of kernels per row, 1000 grain weight (g and grain yield (ton ha-1 were significantly affected with Phosphorus level. The results showed that the trend of increment was positive for grain yield with increased P level from 0 to 80 kg P2O5 ha-1. The highest grain yield (10.77 ton ha-1 was measured when 120 kg P2O5 ha-1 is applied. It is concluded that 80 kg P2O5 ha-1 can be applied in winter season for hybrid maize RML-32 × RML-17 in Chitwan valley low land irrigated condition. Further studies are necessary on different soil types, seasons, management system and varieties to get more information about the most proper addition of P on maize. DOI: http://dx.doi.org/10.3126/ije.v4i2.12634 International Journal of Environment Vol.4(2 2015: 147-156

  11. Common bean growth, N uptake and seed production in sandy loam soil as affected by application of plant residues, nitrogen and irrigation level

    International Nuclear Information System (INIS)

    Abdallah, A.A.G.

    2002-01-01

    Field experiment was conducted at the experimental farm, Inshas, atomic energy authority, egypt. Common bean seeds e.v. Nebrasks were cultivated in sandy loan soil using drip irrigation system prepared for this purpose. Two water regimes, i.e., 100% (793.0 m 3 /fed.) and 65% (513.0 m 3 /fed.) of maximum available water were used in main plots. Where in sub plots two fertilizers types were applied i.e., soybean plant residues which contains N 15 labelled as an organic matter without any addition of any fertilizer and nitrogen as chemical fertilizer without using organic matter. The obtained results indicated that, application of plant residues was superior for total seed yield comparing to nitrogen fertilization treatments. This N source with irrigation level of 793.33 m 3 /fed. had a slight increase in total seed yield comparing with (513.0 m 3 /fed.). Irrigation level of 513.0 m 3 /fed. (65% MAW) as well as application of soybean plant residues showed the highest value of water use efficiency. The highest value of N seed percentage was obtained irrigation level with (513.0 m 3 /fed.). Soybean plant residues improved and increased seeds N content, and total seeds protein content. Both N chemical and irrigation level (65% Maw) recorded highest values with N 15 % atom excess. This result has been obtained at two growth stages and seed yield. The same trend of N 15 % atom excess reflected N utilized with both growth stages and seed yield

  12. influence of tillage practices on physical properties of a sandy loam

    African Journals Online (AJOL)

    DR. AMINU

    many regions of the world if the mechanics of tillage effects on soil physical properties is to be well understood. Thus, the ... tillage systems on water storage of a sandy loam soil after 22 years of ..... Soil infiltration ... and processes. Academy ...

  13. Pore structure characteristics after two years biochar application to a sandy loam field

    DEFF Research Database (Denmark)

    Sun, Zhencai; Arthur, Emmanuel; de Jonge, Lis Wollesen

    2015-01-01

    the effects of birch wood biochar (20, 40, and 100 Mg ha−1) applied to a sandy loam on soil total porosity and pore structure indices. Bulk and intact soil samples were collected for physicochemical analyses and water retention and gas diffusivity measurements between pF 1.0 and pF 3.0. Biochar application...

  14. Escoamento superficial e desagregação do solo em entressulcos em solo franco-argilo-arenoso com resíduos vegetais Interrill surface runoff and soil detachment on a sandy clay loam soil with residue cover

    Directory of Open Access Journals (Sweden)

    Elemar Antonino Cassol

    2004-07-01

    Full Text Available A presença de resíduos vegetais sobre a superfície do solo altera as características do escoamento superficial gerado pela chuva e a desagregação e transporte de sedimento resultantes do processo erosivo. O objetivo deste trabalho foi avaliar as condições hidráulicas e as relações de desagregação do solo e de resistência ao escoamento com a presença de resíduos vegetais na erosão em entressulcos. O experimento foi realizado no laboratório, com um Argissolo Vermelho distrófico típico, em parcelas com 0,10 m m-1 de declive sob chuva simulada. O solo foi coberto por resíduos vegetais de palha de soja, nas doses de 0, 0,05, 0,1, 0,2, 0,4 e 0,8 kg m-2. O aumento na cobertura do solo (CS com resíduos vegetais elevou a altura da lâmina de escoamento e a rugosidade hidráulica e reduziu a velocidade média do escoamento, provocada pelo aumento das forças viscosas promovida pela interposição física dos resíduos ao escoamento. O resultado é a redução na taxa de desagregação do solo (Di. A Di foi de 5,35x10-4 kg m-2 s-1 para solo descoberto e 1,50x10-5 kg m-2 s-1 em solo com 100% de cobertura na maior dose de palha. Os modelos de Laflen e potencial foram adequados para estimar o coeficiente de cobertura para resíduo em contato direto com a superfície do solo em função da cobertura do solo.Soil surface cover with crop residue modifies surface flow characteristics, generated by excess rainfall, and soil detachment and sediment transport resulting from the erosion process. The objective of this study was to evaluate the hydraulic conditions, detachment and flow resistance on interrill erosion on soil covered with residue. The experiment was conducted in the laboratory, on a Hapludult soil at a slope of 0.10 m m-1, under simulated rainfall and soil surface covered with soybean residue at the rates of 0, 0.05, 0.1, 0.2, 0.4, and 0.8 kg m-2. The increase in soil surface cover (SC with residue, caused an increase in water flow

  15. Distribución de la porosidad de un suelo franco arcilloso (alfisol en condiciones semiáridas después de 15 años bajo siembra directa Soil porosity distribution of a clay loam soil (alfisol in semi-arid conditions after 15 years under direct drilling

    Directory of Open Access Journals (Sweden)

    Cecilia Isabel Cerisola

    2005-12-01

    Full Text Available A partir de un estudio más amplio sobre evolución de las propiedades físicas de un suelo sometido a tres sistemas de labranza, se realizó, en dos campañas consecutivas, un seguimiento de la distribución de la porosidad del suelo según su origen, en parcelas cultivadas bajo siembra directa continua durante 15 años. En el ensayo se consideró un trayecto de 2 metros de longitud, perpendicular a la dirección de las labores, donde se realizaron mediciones de densidad aparente seca y contenido de humedad. El cultivo extensivo de secano (cereal, en cada una de las dos campañas, fue cebada de ciclo corto y de ciclo largo. El calendario de la toma de datos de las variables medidas se fijó en 5 fechas por campaña. La porosidad estructural del suelo, debida principalmente a la alternancia de ciclos de humectación - desecación, fue calculada cada 5 cm y hasta 35 cm de profundidad. Este proceso de fisuración natural resulta suficiente para asegurar un buen drenaje y facilitar el desarrollo radicular de las plantas, siempre y cuando el contenido de humedad se mantenga dentro de la capacidad de retención de agua.On a long-term essay under direct drilling, the evolution of the physical properties of a clay loam soil, such as distribution by origin of soil porosity, has been assessed during two growing seasons. The cereal crops in each growing seasons were spring barley and winter barley, respectively. Soil physical properties were measured on a 2 m length transect located in a perpendicular line to the direction of vehicular traffic for field operations. Five sampling opportunities, within crop cycle, were used to measure the variables. Structural soil porosity, due principally to shrinkage and swelling cycles, was assessed in the 0 to 35 cm depth soil profile. This natural process seemed to be sufficient to guarantee good drainage and normal crop development, unless in the moisture content range included in field capacity.

  16. Linear Shrinkage Behaviour of Compacted Loam Masonry Blocks

    Directory of Open Access Journals (Sweden)

    NAWAB ALI LAKHO

    2017-04-01

    Full Text Available Walls of wet loam, used in earthen houses, generally experience more shrinkage which results in cracks and less compressive strength. This paper presents a technique of producing loam masonry blocks that are compacted in drained state during casting process in order to minimize shrinkage. For this purpose, loam masonry blocks were cast and compacted at a pressure of 6 MPa and then dried in shade by covering them in plastic sheet. The results show that linear shrinkage of 2% occurred which is smaller when compared to un-compacted wet loam walls. This implies that the loam masonry blocks compacted in drained state is expected to perform better than un-compacted wet loam walls.

  17. Interaction of radionuclides with diluvium loams

    International Nuclear Information System (INIS)

    Martyanov, V.V.; Guskov, A.V.; Tkachenko, A.V.; Prozorov, L.B.; Karlina, O.K.

    2005-01-01

    Full text of publication follows: Primary goal of this research was to study the interaction of radioactive liquid waste with diluvium loams. A geology-hydro-geological characterisation of the RADON-site facility, located in the Southern Region of Russia, is given. According to the results of laboratory and field studies, the hydro-geological parameters of diluvium loams were designed, and their mineral and grain structures were investigated. It was established, that loams have low filtration properties. Definition of filtration coefficients (Kf) under laboratory conditions has shown low values (hydraulic gradient J=10, Kf = 8.10 -4 m/day). But the field experiment has shown, that Kf values vary from 0.1 up to 0.04 m/day with a gradient of J=1! (It is important to point at the selection of the initial data for modelling migration). Mineral structure: quartz - 43 %, montmorillonite - 28 %, hydro-micas - 17 %, iron hydroxides - 5 %, feldspar - 3,7 %, kaolinite - 2 %, carbonates - 1 %, organics - 0,3 %. The content of minerals known as good sorbents, makes up to 52 %. Laboratory experiments dedicated to the determination of sorption isotherms for various radionuclides were carried out. As a result, distribution coefficients (Kd) for 90 Sr, 137 Cs, 60 Co, 238 Pu were determined. Geology-hydro-geological and radiochemical data were used for the schematization of the system. Then, the mathematical modelling and forecasting of radionuclide migration was carried out. Two conservative scenarios were considered - full destruction of the waste matrices + water flow (lateral and vertical direction). As migrating components 90 Sr, 137 Cs, 60 Co, 238 Pu were considered. 90 Sr, 137 Cs, 60 Co, 238 Pu have different mobility due to their Kd ranging from tens and hundreds up to thousand ml/g depending on the properties of the diluvium loams. Initial radionuclide concentrations were as follow: 137 Cs -1.32.10 8 Bq/l, 60 Co - 2.52.10 7 Bq/l, 90 Sr - 1.81.10 7 Bq/l, 238 Pu - 7.78.10 6

  18. Impact of spreading olive mill waste water on agricultural soils for leaching of metal micronutrients and cations.

    Science.gov (United States)

    Aharonov-Nadborny, R; Tsechansky, L; Raviv, M; Graber, E R

    2017-07-01

    Olive mill waste water (OMWW) is an acidic (pH 4-5), saline (EC ∼ 5-10 mS cm -1 ), blackish-red aqueous byproduct of the three phase olive oil production process, with a high chemical oxygen demand (COD) of up to 220,000 mg L -1 . OMWW is conventionally disposed of by uncontrolled dumping into the environment or by semi-controlled spreading on agricultural soils. It was hypothesized that spreading such liquids on agricultural soils could result in the release and mobilization of indigenous soil metals. The effect of OMWW spreading on leaching of metal cations (Na, K, Mg, Mn, Fe, Cu, Zn) was tested in four non-contaminated agricultural soils having different textures (sand, clay loam, clay, and loam) and chemical properties. While the OMWW contributed metals to the soil solution, it also mobilized indigenous soil metals as a function of soil clay content, cation exchange capacity (CEC), and soil pH-buffer capacity. Leaching of soil-originated metals from the sandy soil was substantially greater than from the loam and clay soils, while the clay loam was enriched with metals derived from the OMWW. These trends were attributed to cation exchange and organic-metal complex formation. The organic matter fraction of OMWW forms complexes with metal cations; these complexes may be mobile or precipitate, depending on the soil chemical and physical environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Field performance of three real-time moisture sensors in sandy loam and clay loam soils

    Science.gov (United States)

    The study was conducted to evaluate HydraProbe (HyP), Campbell Time Domain Reflectometry (TDR) and Watermarks (WM) moisture sensors for their ability to estimate water content based on calibrated neutron probe measurements. The three sensors were in-situ tested under natural weather conditions over ...

  20. Field-measured, hourly soil water evaporation stages in relation to reference evapotranspiration rate and soil to air temperature ratio

    Science.gov (United States)

    Soil water evaporation takes critical water supplies away from crops, especially in areas where both rainfall and irrigation water are limited. This study measured bare soil water evaporation from clay loam, silt loam, sandy loam, and fine sand soils. It found that on average almost half of the ir...

  1. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: A microcosm incubation study.

    Science.gov (United States)

    Jin, Yi; Liang, Xinqiang; He, Miaomiao; Liu, Yu; Tian, Guangming; Shi, Jiyan

    2016-01-01

    Using manure-derived-biochar as an alternative phosphorus (P) source has bright future prospects to improve soil P status. A 98-day microcosm incubation experiment was set up for two soils which were amended with manure biochar at proportions of 0, 0.5% and 1.5%. Swine manure samples were air-dried and manure biochar was prepared by pyrolysis at 400 °C for 4 h. As determined by P-31 nuclear magnetic resonance ((31)P NMR) spectroscopy, manure biochar mainly increased the contents and fractions of orthophosphate and pyrophosphate in two soils, while decreased those of monoesters (P<0.05). At the end of incubation, 1.5% of manure biochar raised soil pH by 0.5 and 0.6 units, cation exchange capacity by 16.9% and 32.2%, and soil total P by 82.1% and 81.1% for silt loam and clay loam soils, respectively, as compared with those soils without biochar. Simultaneously, 1.5% of manure biochar decreased acid phosphomonoesterase activities by 18.6% and 34.0% for clay loam and silt loam, respectively; while it increased alkaline phosphomonoesterase activities by 28.5% and 95.1% for clay loam and silt loam, respectively. The enhancement of soil P availability after manure biochar addition was firstly due to the orthophosphate and pyrophosphate as the major P species in manure biochar which directly increased contents of soil inorganic P, and also attributed to the decomposition of some organic P like monoesters by enhanced alkaline phosphomonoesterase activities from manure biochar addition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Cytotoxic Metabolites from the Soil-Derived Fungus Exophiala Pisciphila

    Directory of Open Access Journals (Sweden)

    Xiu-Kun Lin

    2011-03-01

    Full Text Available A new polyketide compound 1 and a new naturally occurring chromone derivative 2, along with two known indole alkaloids 3–4 were characterized from the ethyl acetate extract of a soil-derived fungal strain, Exophiala pisciphila PHF-9. The structures of compounds 1–4 were established by detailed spectroscopic analysis and comparison with literature data. The absolute configuration of 1 was determined by a modified Mosher’s method. Compound 1 exhibited moderate cytotoxicity against A-549, Hela, PANC-28 and BEL-7402 cell lines.

  3. Long-term influence of tillage and fertilization on net carbon dioxide exchange rate on two soils with different textures.

    Science.gov (United States)

    Feiziene, Dalia; Feiza, Virginijus; Slepetiene, Alvyra; Liaudanskiene, Inga; Kadziene, Grazina; Deveikyte, Irena; Vaideliene, Asta

    2011-01-01

    The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. The fate of uranium contaminants of phosphate fertiliser: chemical partitioning of uranium in two New Zealand soils of volcanic origin and the effect on partitioning of amending one of those soils with uranium

    International Nuclear Information System (INIS)

    Taylor, M.D.

    1998-01-01

    This study assessed the chemical partitioning of U isotopes in Horomanga Sandy Loam and Te Kowhai silt loam, two agricultural soils derived from rhyolitic ash and receiving low level contamination from U impurities in phosphate fertiliser. To simulate future U additions, a sub-sample of the Horomanga soil was amended with 2.259 μg U g -1 soil before sequential extraction. The hypothesis that U additions will be strongly held on to the soil and are not available for leaching or plant uptake was tested. After extraction U was purified and determined by alpha spectrometry. Results were corrected for tailing, background, for losses in the purification process (using 232 U), and for soil moisture. It is concluded that only a small proportion of U in the two type of soils examined was derived from fertiliser and that very little U would be available to plants or to leaching

  5. Copper removal from contaminated soils by soil washing process using camellian-derived saponin

    Science.gov (United States)

    Reyes, Arturo; Fernanda Campos, Maria; Videla, Álvaro; Letelier, María Victoria; Fuentes, Bárbara

    2015-04-01

    Antofagasta Region in North of Chile has been the main copper producer district in the world. As a consequence of a lack of mining closure regulation, a large number of abandon small-to-medium size metal-contaminated sites have been identified in the last survey performed by the Chilean Government. Therefore, more research development on sustainable reclamation technologies must be made in this extreme arid-dry zone. The objective of this study is to test the effectiveness of soil remediation by washing contaminated soil using camellian-derived saponin for the mobilization of copper. Soil samples were taken from an abandoned copper mine site located at 30 km North Antofagasta city. They were dried and sieved at 75 µm for physico-chemical characterization. A commercial saponin extracted from camellias seed was used as biosurfactant. The soil used contains 67.4 % sand, 26.3 % silt and 6.3 % clay. The soil is highly saline (electric conductivity, 61 mScm-1), with low organic matter content (0.41%), with pH 7.30, and a high copper concentration (2200 mg Kg-1 soil). According to the sequential extraction procedure of the whole soil, copper species are mainly as exchangeable fraction (608.2 mg Kg-1 soil) and reducible fraction (787.3 mg Kg-1 soil), whereas the oxidizable and residual fractions are around 205.7 and 598.8 mg Kg-1 soil, respectively. Soil particles under 75 µm contain higher copper concentrations (1242 mg Kg-1 soil) than the particle fraction over 75 µm (912 mg Kg-1 soil). All washing assays were conducted in triplicate using a standard batch technique with and without pH adjustment. The testing protocols includes evaluation of four solid to liquid ratio (0.5:50; 1.0:50; 2.0:50, and 5.0:50) and three saponin concentrations (0, 1, and 4 mg L-1). After shaking (24 h, 20±1 °C) and subsequently filtration (0.45 µm), the supernatants were analyzed for copper and pH. The removal efficiencies of copper by saponin solutions were calculated in according to the

  6. Development and Rainfed Paddy Soils Potency Derived From Lacustrine Material in Paguyaman, Gorontalo

    OpenAIRE

    Nurdin

    2011-01-01

    Rainfed paddy soils that are derived from lacustrine and include of E4 agroclimatic zone have many unique properties and potentially for paddy and corn plantations. This sreseach was aimed to: (1) study the soil development of rainfed paddy soils derived from lacustrine and (2) evaluate rainfed paddy soils potency for paddy and corn in Paguyaman. Soil samples were taken from three profiles according to toposequent, and they were analyzed in laboratory. Data were analyzed with descripti...

  7. Characteristics and distribution of soil piping erosion in loess-derived soils of Belgium

    International Nuclear Information System (INIS)

    Verachtert, E.; Van Den Eeckhaut, M.; Poesen, J.; Deckers, J.

    2009-01-01

    Subsurface erosion (piping, tunnel erosion) in non-karstic landscapes has been considered of little importance compared to sheet and gully erosion for a long time. Although the basic factors responsible for piping in certain environments are well understood, there is still uncertainty about the topographic and soil properties inducing subsurface pipe development in loess-derived soils under temperate climate. Therefore, this research aims at understanding the factors controlling the occurrence of piping erosion in the loess-derived soils of the Flemish Ardennes (Belgium). Analysis of ortho photos as well as field surveys were conducted to detect the sites with piping in the study area. Enquiries among farmers and technical services were carried out. In total, 114 sites (parcels) with 301 collapsed soil pipes were found in a 170 kM 2 study area. For each site with piping, data was collected on possible controlling factors: topographic parameters, land use, lithology and soil type. Land use plays an important role as 94% of the sites with piping are found under pasture. (Author) 15 refs.

  8. Characteristics and distribution of soil piping erosion in loess-derived soils of Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Verachtert, E.; Van Den Eeckhaut, M.; Poesen, J.; Deckers, J.

    2009-07-01

    Subsurface erosion (piping, tunnel erosion) in non-karstic landscapes has been considered of little importance compared to sheet and gully erosion for a long time. Although the basic factors responsible for piping in certain environments are well understood, there is still uncertainty about the topographic and soil properties inducing subsurface pipe development in loess-derived soils under temperate climate. Therefore, this research aims at understanding the factors controlling the occurrence of piping erosion in the loess-derived soils of the Flemish Ardennes (Belgium). Analysis of ortho photos as well as field surveys were conducted to detect the sites with piping in the study area. Enquiries among farmers and technical services were carried out. In total, 114 sites (parcels) with 301 collapsed soil pipes were found in a 170 kM{sup 2} study area. For each site with piping, data was collected on possible controlling factors: topographic parameters, land use, lithology and soil type. Land use plays an important role as 94% of the sites with piping are found under pasture. (Author) 15 refs.

  9. Research Note:Determination of soil hydraulic properties using pedotransfer functions in a semi-arid basin, Turkey

    Directory of Open Access Journals (Sweden)

    M. Tombul

    2004-01-01

    Full Text Available Spatial and temporal variations in soil hydraulic properties such as soil moisture q(h and hydraulic conductivity K(q or K(h, may affect the performance of hydrological models. Moreover, the cost of determining soil hydraulic properties by field or laboratory methods makes alternative indirect methods desirable. In this paper, various pedotransfer functions (PTFs are used to estimate soil hydraulic properties for a small semi-arid basin (Kurukavak in the north-west of Turkey. The field measurements were a good fit with the retention curve derived using Rosetta SSC-BD for a loamy soil. To predict parameters to describe soil hydraulic characteristics, continuous PTFs such as Rosetta SSC-BD (Model H3 and SSC-BD-q33q1500 (Model H5 have been applied. Using soil hydraulic properties that vary in time and space, the characteristic curves for three soil types, loam, sandy clay loam and sandy loam have been developed. Spatial and temporal variations in soil moisture have been demonstrated on a plot and catchment scale for loamy soil. It is concluded that accurate site-specific measurements of the soil hydraulic characteristics are the only and probably the most promising method to progress in the future. Keywords: soil hydraulic properties, soil characteristic curves, PTFs

  10. A computer program for deriving soil cleanup criteria

    International Nuclear Information System (INIS)

    Yu, C.

    1990-01-01

    The US Department of Energy (DOE) has issued a new order, DOE Order 5400.5, for Radiation Protection of the Public and the Environment. In this order, the DOE sets forth radiological protection guidelines for the cleanup of residual radioactive materials. Radionuclide concentrations and radioactivity levels have been established that are acceptable if a site is to be used without radiological restrictions. The guidelines can be categorized as either generic (site independent), that is, taken from existing radiation protection standards, or site specific, that is, derived from the basic dose limit using site-specific data and models. The generic guidelines for soil concentrations of 226 Ra, 228 Ra, 230 Th, and 232 Th adopted in DOE Order 5400.5 are generally consistent with US Environmental Protection Agency standards in Title 40, Code of Federal Regulations, Part 192. Procedures and data for deriving site-specific guidelines for other radionuclides in soil have been coded in a microcomputer program called RESRAD. The RESRAD code has been used by the DOE and its contractors to calculate postremediation doses and cleanup guidelines. The RESRAD code is a useful, easy to run, and very user-friendly tool

  11. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil.

    Science.gov (United States)

    Wijesekara, Hasintha; Bolan, Nanthi S; Thangavel, Ramesh; Seshadri, Balaji; Surapaneni, Aravind; Saint, Christopher; Hetherington, Chris; Matthews, Peter; Vithanage, Meththika

    2017-12-01

    A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha -1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ 13 C and δ 15 N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO 2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ 13 C, and enriched δ 15 N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO 2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO 2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Suitability of marginal biomass-derived biochars for soil amendment

    Energy Technology Data Exchange (ETDEWEB)

    Buss, Wolfram [UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF (United Kingdom); Graham, Margaret C. [School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF (United Kingdom); Shepherd, Jessica G. [UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF (United Kingdom); School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF (United Kingdom); Mašek, Ondřej, E-mail: ondrej.masek@ed.ac.uk [UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF (United Kingdom)

    2016-03-15

    The term “marginal biomass” is used here to describe materials of little or no economic value, e.g. plants grown on contaminated land, food waste or demolition wood. In this study 10 marginal biomass-derived feedstocks were converted into 19 biochars at different highest treatment temperatures (HTT) using a continuous screw-pyrolysis unit. The aim was to investigate suitability of the resulting biochars for land application, judged on the basis of potentially toxic element (PTE) concentration, nutrient content and basic biochar properties (pH, EC, ash, fixed carbon). It was shown that under typical biochar production conditions the percentage content of several PTEs (As, Al, Zn) and nutrients (Ca, Mg) were reduced to some extent, but also that biochar can be contaminated by Cr and Ni during the pyrolysis process due to erosion of stainless steel reactor parts (average + 82.8% Cr, + 226.0% Ni). This can occur to such an extent that the resulting biochar is rendered unsuitable for soil application (maximum addition + 22.5 mg Cr kg{sup −1} biochar and + 44.4 mg Ni kg{sup −1} biochar). Biomass grown on land heavily contaminated with PTEs yielded biochars with PTE concentrations above recommended threshold values for soil amendments. Cd and Zn were of particular concern, exceeding the lowest threshold values by 31-fold and 7-fold respectively, despite some losses into the gas phase. However, thermal conversion of plants from less severely contaminated soils, demolition wood and food waste anaerobic digestate (AD) into biochar proved to be promising for land application. In particular, food waste AD biochar contained very high nutrient concentrations, making it interesting for use as fertiliser. - Highlights: • Marginal biomass feedstocks are materials of little economic value. • Biochar from biomass grown on PTE-rich soils tends to exceed guideline values. • Biochar from biomass with high mineral content can be a beneficial nutrient source. • Cr and Ni

  13. Suitability of marginal biomass-derived biochars for soil amendment

    International Nuclear Information System (INIS)

    Buss, Wolfram; Graham, Margaret C.; Shepherd, Jessica G.; Mašek, Ondřej

    2016-01-01

    The term “marginal biomass” is used here to describe materials of little or no economic value, e.g. plants grown on contaminated land, food waste or demolition wood. In this study 10 marginal biomass-derived feedstocks were converted into 19 biochars at different highest treatment temperatures (HTT) using a continuous screw-pyrolysis unit. The aim was to investigate suitability of the resulting biochars for land application, judged on the basis of potentially toxic element (PTE) concentration, nutrient content and basic biochar properties (pH, EC, ash, fixed carbon). It was shown that under typical biochar production conditions the percentage content of several PTEs (As, Al, Zn) and nutrients (Ca, Mg) were reduced to some extent, but also that biochar can be contaminated by Cr and Ni during the pyrolysis process due to erosion of stainless steel reactor parts (average + 82.8% Cr, + 226.0% Ni). This can occur to such an extent that the resulting biochar is rendered unsuitable for soil application (maximum addition + 22.5 mg Cr kg −1 biochar and + 44.4 mg Ni kg −1 biochar). Biomass grown on land heavily contaminated with PTEs yielded biochars with PTE concentrations above recommended threshold values for soil amendments. Cd and Zn were of particular concern, exceeding the lowest threshold values by 31-fold and 7-fold respectively, despite some losses into the gas phase. However, thermal conversion of plants from less severely contaminated soils, demolition wood and food waste anaerobic digestate (AD) into biochar proved to be promising for land application. In particular, food waste AD biochar contained very high nutrient concentrations, making it interesting for use as fertiliser. - Highlights: • Marginal biomass feedstocks are materials of little economic value. • Biochar from biomass grown on PTE-rich soils tends to exceed guideline values. • Biochar from biomass with high mineral content can be a beneficial nutrient source. • Cr and Ni from the

  14. Evaporation From Soil Containers With Irregular Shapes

    Science.gov (United States)

    Assouline, Shmuel; Narkis, Kfir

    2017-11-01

    Evaporation from bare soils under laboratory conditions is generally studied using containers of regular shapes where the vertical edges are parallel to the flow lines in the drying domain. The main objective of this study was to investigate the impact of irregular container shapes, for which the flow lines either converge or diverge toward the surface. Evaporation from initially saturated sand and sandy loam soils packed in cones and inverted cones was compared to evaporation from corresponding cylindrical columns. The initial evaporation rate was higher in the cones, and close to potential evaporation. At the end of the experiment, the cumulative evaporation depth in the sand cone was equal to that in the column but higher than in the inverted cone, while in the sandy loam, the order was cone > column > inverted cone. By comparison to the column, stage 1 evaporation was longer in the cones, and practically similar in the inverted cones. Stage 2 evaporation rate decreased with the increase of the evaporating surface area. These results were more pronounced in the sandy loam. For the sand column, the transition between stage 1 and stage 2 evaporation occurred when the depth of the saturation front was approximately equal to the characteristic length of the soil. However, for the cone and the inverted cone, it occurred for a shallower depth of the saturation front. It seems therefore that the concept of the characteristic length derived from the soil hydraulic properties is related to drying systems of regular shapes.

  15. Direct and Indirect Short-term Effects of Biochar on Physical Characteristics of an Arable Sandy Loam

    DEFF Research Database (Denmark)

    Sun, Zhencai; Moldrup, Per; Elsgaard, Lars

    2013-01-01

    Biochar addition to agricultural soil is reported in several studies to reduce climate gas emissions, boost carbon storage, and improve soil fertility and crop productivity. These effects may be partly related to soil physical changes resulting from biochar amendment, but knowledge of how biochar...... application mechanistically affects soil physical characteristics is limited. This study investigated the effect of biochar application on soil structural and functional properties, including specific surface area, water retention, and gas transport parameters. Intact soil cores were taken from a field...... experiment on an arable sandy loam that included four reference plots without biochar and four plots with 20 tons ha(-1) biochar incorporated into the upper 20 cm 7 months before sampling. Water retention was measured at matric potentials ranging from wet (pF 1.0) to extremely dry conditions (pF similar to 6...

  16. Effect of Injecting Hydrogen Peroxide into Heavy Clay Loam Soil on Plant Water Status, NET CO2 Assimilation, Biomass, and Vascular Anatomy of Avocado Trees Efecto de la Inyección de Peróxido de Hidrógeno en Suelo Franco Arcilloso Pesado, sobre el Estado Hídrico, Asimilación Neta de CO2, Biomasa y Anatomía Vascular de Paltos

    Directory of Open Access Journals (Sweden)

    Pilar M Gil M

    2009-03-01

    Full Text Available In Chile, avocado (Persea americana Mill. orchards are often located in poorly drained, low-oxygen soils, situation which limits fruit production and quality. The objective of this study was to evaluate the effect of injecting soil with hydrogen peroxide (H2O2 as a source of molecular oxygen, on plant water status, net CO2 assimilation, biomass and anatomy of avocado trees set in clay loam soil with water content maintained at field capacity. Three-year-old ‘Hass’ avocado trees were planted outdoors in containers filled with heavy loam clay soil with moisture content sustained at field capacity. Plants were divided into two treatments, (a H2O2 injected into the soil through subsurface drip irrigation and (b soil with no H2O2 added (control. Stem and root vascular anatomical characteristics were determined for plants in each treatment in addition to physical soil characteristics, net CO2 assimilation (A, transpiration (T, stomatal conductance (gs, stem water potential (SWP, shoot and root biomass, water use efficiency (plant biomass per water applied [WUEb]. Injecting H2O2 into the soil significantly increased the biomass of the aerial portions of the plant and WUEb, but had no significant effect on measured A, T, gs, or SWP. Xylem vessel diameter and xylem/phloem ratio tended to be greater for trees in soil injected with H2O2 than for controls. The increased biomass of the aerial portions of plants in treated soil indicates that injecting H2O2 into heavy loam clay soils may be a useful management tool in poorly aerated soil.En Chile, los huertos de palto (Persea americana Mill. se ubican comúnmente en suelos pobremente drenados con bajo contenido de oxígeno, lo que limita producción y calidad de fruta. El objetivo de este estudio fue evaluar el efecto de la inyección de peróxido de hidrógeno (H2O2 al suelo como fuente de O2, sobre el estado hídrico, asimilación de CO2, biomasa y anatomía de paltos en suelo franco arcilloso con

  17. Correlations of soil-gas and indoor radon with geology in glacially derived soils of the northern Great Plains

    International Nuclear Information System (INIS)

    Schumann, R.R.; Owen, D.E.; Peake, R.T.; Schmidt, K.M.

    1990-01-01

    This paper reports that a higher percentage of homes in parts of the northern Great Plains underlain by soils derived from continental glacial deposits have elevated indoor radon levels (greater than 4 pCi/L) than any other area in the country. Soil-gas radon concentrations, surface radioactivity, indoor radon levels, and soil characteristics were studied in areas underlain by glacially-derived soils in North Dakota and Minnesota to examine the factors responsible for these elevated levels. Clay-rich till soils in North Dakota have generally higher soil-gas radon levels, and correspondingly higher indoor radon levels, than the sandy till soils common to west-central Minnesota. Although the proportions of homes with indoor radon levels greater than 4 pCi/L are similar in both areas, relatively few homes underlain by sandy tills have screening indoor radon levels greater than 20 pCi/L, whereas a relatively large proportion of homes underlain by clayey tills have screening indoor radon levels exceeding 20 pCi/L. The higher radon levels in North Dakota are likely due to enhanced emanation from the smaller grains and to relatively higher soil radium concentrations in the clay-rich soils, whereas the generally higher permeability of the sandy till soils in Minnesota allows soil gas to be drawn into structures from a larger source volume, increasing indoor radon levels in these areas

  18. Evaluation of AMSR-E derived soil moisture over Australia, /Remote Sensing of Environment

    NARCIS (Netherlands)

    Draper, C.S.; Walker, J.P.; Steinle, P.J.; De Jeu, R.A.M.; Holmes, T.R.H.

    2009-01-01

    This paper assesses remotely sensed near-surface soil moisture over Australia, derived from the passive microwave Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument. Soil moisture fields generated by the AMSR-E soil moisture retrieval algorithm developed at the Vrije

  19. Adsorption-desorption characteristics of Ni, Zn and Pb in soils of a landfill environment in Metro Manila, Philippines

    International Nuclear Information System (INIS)

    Castañeda, Soledad S.; Cuarto, Christina D.; David, Carlos Primo C.

    2015-01-01

    This study investigated the sorption-desorption characteristics of Ni, Zn, and Pb on two soil types in the environment of a municipal waste disposal facility. Batch experiments were carried out in ambient temperature and in unadjusted and close to soil field pH conditions. The kinetics of of adsorption fitted a pseudo second-order model. Rate constants were calculated and an empirical model for predicting adsorption of metal ions at a given time was derived from these constants. The equilibrium sorption capacities for the heavy metals in the clay and sandy loam soils were estimated using the Linear, Freundlich, and Langmuir isotherm models. The sorption process of Ni, Pb, and Zn in both soils generally fitted well with the Freundlich isotherm model at moderate to high initial concentration range of the metals. The Langmuir isotherm was applicable to the adsorption of Ni and Zn only. The adsorption capacity of the clay soil for the metals followed the order Zn > Pb > Ni. In the sandy loam soil, the adsorption capacity for the metals under the same conditions followed the order Pb > Zn > Ni. The adsorption capacities for the metals were in order of 1mg/g in both the landfill clay soil and the Lukutan River sandy loam soil, with slightly higher values for the clay soil. Desorption was minimal, less than 1% in the clay soil and about 2% in the sandy loam soil. Sorption reversibility tests showed that the retention of the metals in both soils follows the order Ni> Pb> Zn. (author)

  20. Passive Microwave Observation of Soil Water Infiltration

    Science.gov (United States)

    Jackson, Thomas J.; Schmugge, Thomas J.; Rawls, Walter J.; ONeill, Peggy E.; Parlange, Marc B.

    1997-01-01

    Infiltration is a time varying process of water entry into soil. Experiments were conducted here using truck based microwave radiometers to observe small plots during and following sprinkler irrigation. Experiments were conducted on a sandy loam soil in 1994 and a silt loam in 1995. Sandy loam soils typically have higher infiltration capabilities than clays. For the sandy loam the observed brightness temperature (TB) quickly reached a nominally constant value during irrigation. When the irrigation was stopped the TB began to increase as drainage took place. The irrigation rates in 1995 with the silt loam soil exceeded the saturated conductivity of the soil. During irrigation the TB values exhibited a pattern that suggests the occurrence of coherent reflection, a rarely observed phenomena under natural conditions. These results suggested the existence of a sharp dielectric boundary (wet over dry soil) that was increasing in depth with time.

  1. The influence of reduced tillage on water regime and nutrient leaching in a loamy soil

    OpenAIRE

    Baigys, Giedrius; Gaigalis, Kazimieras; Kutra, Ginutis

    2006-01-01

    The effect of tillage technologies and terms on soil moisture regime and nitrate leaching was studied in field trials carried out on 0.76-1.36-ha fields. The study site was arranged in Pikeliai village (Kėdainiai district). The soil prevailing in the study site is Endocalcari - Endohypogleic Cambisol, sandy light loam and sandy loam on deeper layers of sandy loam and sandy light loam. The arable horizon contains sandy light loam, which is characteristic of the soils prevailing in the Middle L...

  2. Formation and Stability of Microbially Derived Soil Organic Matter

    Science.gov (United States)

    Waldrop, M. P.; Creamer, C.; Foster, A. L.; Lawrence, C. R.; Mcfarland, J. W.; Schulz, M. S.

    2017-12-01

    Soil carbon is vital to soil health, food security, and climate change mitigation, but the underlying mechanisms controlling the stabilization and destabilization of soil carbon are still poorly understood. There has been a conceptual paradigm shift in how soil organic matter is formed which now emphasizes the importance of microbial activity to build stable (i.e. long-lived) and mineral-associated soil organic matter. In this conceptual model, the consumption of plant carbon by microorganisms, followed by subsequent turnover of microbial bodies closely associated with mineral particles, produces a layering of amino acid and lipid residues on the surfaces of soil minerals that remains protected from destabilization by mineral-association and aggregation processes. We tested this new model by examining how isotopically labeled plant and microbial C differ in their fundamental stabilization and destabilization processes on soil minerals through a soil profile. We used a combination of laboratory and field-based approaches to bridge multiple spatial scales, and used soil depth as well as synthetic minerals to create gradients of soil mineralogy. We used Raman microscopy as a tool to probe organic matter association with mineral surfaces, as it allows for the simultaneous quantification and identification of living microbes, carbon, minerals, and isotopes through time. As expected, we found that the type of minerals present had a strong influence on the amount of C retained, but the stabilization of new C critically depends on growth, death, and turnover of microbial cells. Additionally, the destabilization of microbial residue C on mineral surfaces was little affected by flushes of DOC relative to wet-dry cycles alone. We believe this new insight into microbial mechanisms of C stabilization in soils will eventually lead to new avenues for measuring and modeling SOM dynamics in soils, and aid in the management of soil C to mediate global challenges.

  3. Influence of salinity on bioremediation of oil in soil

    International Nuclear Information System (INIS)

    Rhykerd, R.L.; Weaver, R.W.; McInnes, K.J.

    1995-01-01

    Spills from oil production and processing result in soils being contaminated with oil and salt. The effect of NaCl on degradation of oil in a sandy-clay loam and a clay loam soil was determined. Soils were treated with 50 g kg -1 non-detergent motor oil (30 SAE). Salt treatments included NaCl amendments to adjust the soil solution electrical conductivities to 40, 120, and 200 dS m -1 . Soils were amended with nutrients and incubated at 25 o C. Oil degradation was estimated from the quantities of CO 2 evolved and from gravimetric determinations of remaining oil. Salt concentrations of 200 dS m -1 in oil amended soils resulted in a decrease in oil mineralized by 44% for a clay loam and 20% for a sandy-clay loam soil. A salt concentration of 40 dS m -1 reduced oil mineralization by about 10% in both soils. Oil mineralized in the oil amended clay-loam soil was 2-3 times greater than for comparable treatments of the sandy-clay loam soil. Amending the sandy-clay loam soil with 5% by weight of the clay-loam soil enhanced oil mineralization by 40%. Removal of salts from oil and salt contaminated soils before undertaking bioremediation may reduce the time required for bioremediation. (author)

  4. Nature and Properties of Lateritic Soils Derived from Different Parent Materials in Taiwan

    Directory of Open Access Journals (Sweden)

    Tzu-Hsing Ko

    2014-01-01

    Full Text Available The objective of this study was to investigate the physical, chemical, and mineralogical composition of lateritic soils in order to use these soils as potential commercial products for industrial application in the future. Five lateritic soils derived from various parent materials in Taiwan, including andesite, diluvium, shale stone, basalt, and Pleistocene deposit, were collected from the Bt1 level of soil samples. Based on the analyses, the Tungwei soil is an alfisol, whereas other lateritic soils are ultisol. Higher pH value of Tungwei is attributed to the large amounts of Ca2+ and Mg2+. Loupi and Pingchen soils would be the older lateritic soils because of the lower active iron ratio. For the iron minerals, the magnetic iron oxides such as major amounts of magnetite and maghemite were found for Tamshui and Tungwei lateritic soils, respectively. Lepidocrocite was only found in Soka soil and intermediate amounts of goethite were detected for Loupi and Pingchen soils. After Mg-saturated and K-saturated processes, major amounts of mixed layer were observed in Loupi and Soka soils, whereas the montmorillonite was only detected in Tungwei soil. The investigation results revealed that the parent materials would play an important role during soil weathering process and physical, chemical, and mineralogy compositions strongly affect the formation of lateritic soils.

  5. Nature and Properties of Lateritic Soils Derived from Different Parent Materials in Taiwan

    Science.gov (United States)

    2014-01-01

    The objective of this study was to investigate the physical, chemical, and mineralogical composition of lateritic soils in order to use these soils as potential commercial products for industrial application in the future. Five lateritic soils derived from various parent materials in Taiwan, including andesite, diluvium, shale stone, basalt, and Pleistocene deposit, were collected from the Bt1 level of soil samples. Based on the analyses, the Tungwei soil is an alfisol, whereas other lateritic soils are ultisol. Higher pH value of Tungwei is attributed to the large amounts of Ca2+ and Mg2+. Loupi and Pingchen soils would be the older lateritic soils because of the lower active iron ratio. For the iron minerals, the magnetic iron oxides such as major amounts of magnetite and maghemite were found for Tamshui and Tungwei lateritic soils, respectively. Lepidocrocite was only found in Soka soil and intermediate amounts of goethite were detected for Loupi and Pingchen soils. After Mg-saturated and K-saturated processes, major amounts of mixed layer were observed in Loupi and Soka soils, whereas the montmorillonite was only detected in Tungwei soil. The investigation results revealed that the parent materials would play an important role during soil weathering process and physical, chemical, and mineralogy compositions strongly affect the formation of lateritic soils. PMID:24883366

  6. Critical Limits for Hg(II) in soils, derived from chronic toxicity data

    International Nuclear Information System (INIS)

    Tipping, E.; Lofts, S.; Hooper, H.; Frey, B.; Spurgeon, D.; Svendsen, C.

    2010-01-01

    Published chronic toxicity data for Hg(II) added to soils were assembled and evaluated to produce a data set comprising 52 chronic end-points, five each for plants and invertebrates and 42 for microbes. With end-points expressed in terms of added soil Hg(II) contents, Critical Limits were derived from the 5th percentiles of species sensitivity distributions, values of 0.13 μg (g soil) -1 and 3.3 μg (g soil organic matter) -1 being obtained. The latter value exceeds the currently recommended Critical Limit, used to determine Hg(II) Critical Loads in Europe, of 0.5 μg (g soil organic matter) -1 . We also applied the WHAM/Model VI chemical speciation model to estimate concentrations of Hg 2+ in soil solution, and derived an approximate Critical Limit Function (CLF) that includes pH; log [Hg 2+ ] crit = -2.15 pH -17.10. Because they take soil properties into account, the soil organic matter-based limit and the CLF provide the best assessment of toxic threat for different soils. For differing representative soils, each predicts a range of up to 100-fold in the dry weight-based content of mercury that corresponds to the Critical Limit. - Published laboratory toxicity data and chemical speciation modelling are used to derive Critical Limits expressed as either soil Hg(II) content or Hg 2+ concentration.

  7. Turnover of soil carbon pools following addition of switchgrass-derived biochar to four soils

    Science.gov (United States)

    The amendment of soils with biochar may improve plant growth and sequester carbon, especially in marginal soils not suitable for the majority of commodity production. While biochar can persist in soils, it is not clear whether its persistence is affected by soil type. Moreover, we know little of how...

  8. Phenanthrene sorption on biochar-amended soils

    DEFF Research Database (Denmark)

    Kahawaththa Gamage, Inoka Damayanthi Kumari; Moldrup, Per; Paradelo Pérez, Marcos

    2014-01-01

    on their influences on the sorption of environmental contaminants. In a field-based study at two experimental sites in Denmark, we investigated the effect of birch wood-derived biochar (Skogans kol) on the sorption of phenanthrene in soils with different properties. The soil sorption coefficient, Kd (L kg-1......), of phenanthrene was measured on sandy loam and loamy sand soils which have received from zero up to 100 t ha-1 of biochar. Results show that birch wood biochar had a higher Kd compared to soils. Furthermore, the application of birch wood biochar enhanced the sorption of phenanthrene in agricultural soils...... carbon, while it negatively correlated with clay content. The results also revealed that biochar-mineral interactions play an important role in the sorption of phenanthrene in biochar-amended soil....

  9. Soil Temperature and Moisture Profile (STAMP) System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.

  10. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin

    2014-01-01

    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.

  11. On the assimilation of satellite derived soil moisture in numerical weather prediction models

    Science.gov (United States)

    Drusch, M.

    2006-12-01

    Satellite derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analysed from the modelled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. Three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF) have been performed for the two months period of June and July 2002: A control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating bias corrected TMI (TRMM Microwave Imager) derived soil moisture over the southern United States through a nudging scheme using 6-hourly departures. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analysed in the nudging experiment is the most accurate estimate when compared against in-situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage. The transferability of the results to other satellite derived soil moisture data sets will be discussed.

  12. Soil physical effects on longleaf pine performance in the West Gulf Coastal Plain

    Science.gov (United States)

    Mary Anne S. Sayer; James D. Haywood; Shi-Jean Susana Sung

    2015-01-01

    We summarize 8 years of soil physical property responses to herbicide manipulation of the understory in two young longleaf pine stands growing on either Ruston fine sandy loam or Beauregard silt loam soils. We also describe relationships between pine sapling vigor and the soil physical environment across a 3-year period on the Ruston soil and a 2-year period on the...

  13. Factors controlling the spatial distribution of soil piping erosion on loess-derived soils: A case study from central Belgium

    Science.gov (United States)

    Verachtert, E.; Van Den Eeckhaut, M.; Poesen, J.; Deckers, J.

    2010-06-01

    Collapsible loess-derived soils are prone to soil piping erosion, where enlargement of macropores may lead to a subsurface pipe network and eventually to soil collapse and gully development. This study aims at understanding the main factors controlling spatial patterns of piping in loess-derived soils under a temperate climate. To map the spatial distribution of piping and identify the environmental controls on its distribution, a regional survey was carried out in a 236 km 2 study area in the Flemish Ardennes (Belgium). Orthophotos taken at optimal field conditions (winter) were analyzed to detect piping in open landscapes and ground thruthing was systematically done through field surveys. In total, 137 parcels having 560 collapsed pipes were mapped. Dimensions of the sinkholes and local slope gradient were measured in the field and topographical variables were derived from LiDAR data. Land use plays an important role as 97% of the sites with piping are found under pasture. The probability of piping increases rapidly on hillslopes with gradients exceeding 8% and with a concave profile and plan curvature, enhancing subsurface flow concentration. The zones with soil profiles on shallow loess over a relatively thin layer of homogeneous blue massive clays (Aalbeke Member) are most prone to piping. Soil characteristics are of less importance to explain piping occurrence. Furthermore, the topographical threshold line indicating the critical slope gradient for a given contributing drainage area was determined. This threshold line (negative power relation) is similar to the threshold line for shallow gully initiation.

  14. The Influence Of Loam Type And Cement Content On The Compressive Strength Of Rammed Earth

    Directory of Open Access Journals (Sweden)

    Narloch P. L.

    2015-03-01

    Full Text Available Currently, a worldwide dynamic rise of interest in using soil as a construction material can be observed. This trend is evident in the rapid rise of the amount of standards that deal with soil techniques. In 2012 the number of standards was larger by one third than five years prior. To create a full standardization of the rammed earth technique it is necessary to take into account the diversity of used soil and stabilizing additives. The proportion of the components, the process of element production and the research methods must also be made uniform. The article describes the results of research on the compressive strength of rammed earth samples that differed from each other with regards to the type of loam used for the mixture and the amount of the stabilizer. The stabilizer used was Portland cement CEM I 42.5R. The research and the analysis of the results were based on foreign publications, the New Zealand standard NZS 4298:1998, the American Standard NMAC14.7.4 and archival Polish Standards from the 1960’s that dealt with earth material.

  15. Storage of Miscanthus-derived carbon in rhizomes, roots, and soil

    DEFF Research Database (Denmark)

    Christensen, Bent Tolstrup; Lærke, Poul Erik; Jørgensen, Uffe

    2016-01-01

    Compared with annual crops, dedicated perennial bioenergy crops are ascribed additional benefits in terms of reduced greenhouse gas emissions; these benefits include increased carbon (C) storage in soil. We measured Miscanthus-derived C in rhizomes, roots, and 0–100 cm soil beneath three 16-yr-ol...

  16. THE EFFECT OF SALINITY-SODICITY AND GLYPHOSATE FORMULATIONS – AVANS PREMIUM 360 SL ON PHOSPHOMONOESTERASE ACTIVITIES IN SANDY LOAM

    Directory of Open Access Journals (Sweden)

    Maciej Płatkowski

    2016-01-01

    Full Text Available The aim of study was to determine the influence of NaCl and glyphosate-based herbicide Avans Premium 360 SL on acid and alkaline phosphomonoesterase activities in sandy loam. The experiment was carried out in laboratory conditions on sandy loam with Corg content 10.90 g/kg. Soil was divided into half kilogram samples and adjusted to 60% of maximum water holding capacity. In the experiment dependent variables were: I – dosages of Avans Premium 360 SL (0, a recommended field dosage – FD, a tenfold higher dosage – 10 FD and hundredfold higher dosage – 100 FD, II – amount of NaCl (0, 3% and 6%, III – day of experiment (1, 7, 14, 28 and 56. On days of experiment the activity of alkaline and acid phosphomonoesterase activity was assayed spectrophotometrically. The obtained result showed that the application of Avans Premium 360 SL decreased in acid and alkaline phosphomonoesterase activity in clay soil. Significant interaction effect between the dosage of Avans Premium 360 SL, NaCl amount and day of experiment was reported in the experiment. The inhibitory effect of Avans Premium 360 SL was the highest in soil with NaCl at the amount of 6%.

  17. Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene

    International Nuclear Information System (INIS)

    Zhang Honghua; Lin Kunde; Wang Hailong; Gan, Jay

    2010-01-01

    Biochars are anthropogenic carbonaceous sorbent and their influences on the sorption of environmental contaminants need to be characterized. Here we evaluated the effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Two biochars separately produced at 350 o C and 700 o C and three soils were tested. Biochar amendment generally enhanced the soil sorption of phenanthrene. The biochar produced at 700 o C generally showed a greater ability at enhancing a soil's sorption ability than that prepared at 350 o C. The single-step desorption measurement showed an apparent hysteresis in biochar-amended soils. After 28 d equilibration, the sorptive capacity of biochar-amended soil (with an organic carbon content of 0.16%) significantly decreased. This study clearly suggested that biochar application enhanced soil sorption of hydrophobic organic compounds, but the magnitude of enhancement depended on the preparation of biochars, the indigenous soil organic carbon levels, and the contact time between soil and biochar. - Pinus radiata derived biochars influence soil sorption and desorption of phenanthrene.

  18. Soil texture derived from topography in North-eastern Amazonia

    OpenAIRE

    Laurent, François; Poccard-Chapuis, René; Plassin, Sophie; Pimentel Martinez, Gustavo

    2017-01-01

    We present a 1:100,000 scale soil texture map of Paragominas county (Pará, Brazil), covering 19,330 km2. The method allows rapid production of a soil texture map of a large area where the strength of a duricrust controls the relief. It is based on an easily accessible explanatory variable, topography, which is represented using a Digital Elevation Model. The method makes it possible to map the spatial distribution of the texture of the topsoil layer. Modelling was complemented by field observ...

  19. Spatial Prediction of Soil Classes by Using Soil Weathering Parameters Derived from vis-NIR Spectroscopy

    Science.gov (United States)

    Ramirez-Lopez, Leonardo; Alexandre Dematte, Jose

    2010-05-01

    There is consensus in the scientific community about the great need of spatial soil information. Conventional mapping methods are time consuming and involve high costs. Digital soil mapping has emerged as an area in which the soil mapping is optimized by the application of mathematical and statistical approaches, as well as the application of expert knowledge in pedology. In this sense, the objective of the study was to develop a methodology for the spatial prediction of soil classes by using soil spectroscopy methodologies related with fieldwork, spectral data from satellite image and terrain attributes in simultaneous. The studied area is located in São Paulo State, and comprised an area of 473 ha, which was covered by a regular grid (100 x 100 m). In each grid node was collected soil samples at two depths (layers A and B). There were extracted 206 samples from transect sections and submitted to soil analysis (clay, Al2O3, Fe2O3, SiO2 TiO2, and weathering index). The first analog soil class map (ASC-N) contains only soil information regarding from orders to subgroups of the USDA Soil Taxonomy System. The second (ASC-H) map contains some additional information related to some soil attributes like color, ferric levels and base sum. For the elaboration of the digital soil maps the data was divided into three groups: i) Predicted soil attributes of the layer B (related to the soil weathering) which were obtained by using a local soil spectral library; ii) Spectral bands data extracted from a Landsat image; and iii) Terrain parameters. This information was summarized by a principal component analysis (PCA) in each group. Digital soil maps were generated by supervised classification using a maximum likelihood method. The trainee information for this classification was extracted from five toposequences based on the analog soil class maps. The spectral models of weathering soil attributes shown a high predictive performance with low error (R2 0.71 to 0.90). The spatial

  20. Resistance and Resilience of Soil Microbial Communities Exposed to Petroleum-Derived Compounds

    DEFF Research Database (Denmark)

    Modrzynski, Jakub Jan

    Functioning of soil microbial communities is generally considered resilient to disturbance, including chemical stress. Activities of soil microbial communities are often sustained in polluted environments due to exceptional plasticity of microbial communities and functional redundancy. Pollution......-induced community tolerance (PICT) often develops following chemical stress. Nonetheless, environmental pollution may severely disturb functioning of soil microbial communities, thereby threatening provision of important ecosystem services provided by microorganisms. Pollution with petroleum and petroleum......-derived compounds (PDCs) is a significant environmental problem on a global scale. Research addressing interactions between microorganisms and PDC pollution is dominated by studies of biodegradation, with less emphasis on microbial ecotoxicology. Soil microbial communities are generally considered highly resilient...

  1. Processing Uranium-Bearing Materials Containing Coal and Loam

    Energy Technology Data Exchange (ETDEWEB)

    Civin, V; Prochazka, J [Research and Development Laboratory No. 3 of the Uranium Industry, Prague, Czechoslovakia (Czech Republic)

    1967-06-15

    Among the ores which are classified as low-grade in the CSSR are mixtures of coal and bentonitic loam of tertiary origin, containing approximately 0.1% U and with a moisture content at times well above 20-30%. The uranium is held mainly by the carbonaceous component. Conventional processing of these materials presents various difficulties which are not easily overcome. During leaching the pulp thickens and frequently becomes pasty, due to the presence of montmorillonites. Further complications arise from the high sorption capacity of the materials (again primarily due to montmorillonites) and poor sedimentation of the viscous pulps. In addition, the materials are highly refractory to the leaching agents. The paper presents experience gained in solving the problems of processing these ores. The following basic routes were explored: (1) separation of the carbonaceous and loamy components: The organic component appears to be the main activity carrier. Processing the concentrated material upon separation of the inactive or less active loam may not only remove the thixotropic behaviour but also substantially reduce the cost of the ore treatment; (2) 'liquifying' the pulps or preventing the thickening of the pulp by addition of suitable agents; (3) joint acid or carbonate processing of the materials in question with current ore types; (4) removal or suppression of thixotropic behaviour by thermal pretreatment of the material; and (5) application of the 'acid cure' method. The first method appears to be the most effective, but it presents considerable difficulties due to the extreme dispersion of the carbonaceous phase and further research is being carried out. Methods 2 and 3 proved to be unacceptable. Method 4, which includes roasting at 300-400{sup o}C, is now being operated on an industrial scale. The final method has also shown definite advantages for particular deposits of high montmorillonite content material. (author)

  2. Metal accumulation and crop yield for a variety of edible crops grown in diverse soil media amended with sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J; Blessin, C W; Inglett, G E; Kwolek, W F

    1981-07-01

    This study was designed to determine the best uses for sewage sludge, by amending soil materials ranging in scope from distributed materials such as coal mine gob and sanitary landfill to fully productive agricultural soils. The following aspects were studied: physical characteristics of the soils as a result of their amendment with sludge; yields for a broad variety of crop species; nutritional quality of selected crops; metal uptake and accumulation in crop tissues; and translocation of metals from soil medium to tissues. Harvested crops with the highest metal contents were derived from landfill and coal mine gob treatments, and the lowest were associated with loam, clay, and agriculturally productive topsoils.

  3. Surface Runoff of Pesticides from a Clay Loam Field in Sweden.

    Science.gov (United States)

    Larsbo, Mats; Sandin, Maria; Jarvis, Nick; Etana, Ararso; Kreuger, Jenny

    2016-07-01

    Pesticides stored at or close to the soil surface after field application can be mobilized and transported off the field when surface runoff occurs. The objective of our study was to quantify the potential pesticide losses in surface runoff from a conventionally managed agricultural field in a Swedish climate. This was achieved by measuring surface runoff volumes and concentrations in runoff of six spring-applied pesticides and autumn-applied glyphosate and its metabolite aminomethylphosphonic acid (AMPA). Measurements were performed for 3 yr both during the growing seasons and during intervening winter snowmelt periods on a clay loam field close to Uppsala. During growing seasons, surface runoff was generated on only five occasions during one 25-d period in 2012 when the infiltration capacity of the soil may have been reduced by structural degradation due to large cumulative rainfall amounts after harrowing. Concentrations in surface runoff exceeded Swedish water quality standards in all samples during this growing season for diflufenican and pirimicarb. Surface runoff was generated during three snowmelt periods during the winter of 2012-2013. All of the applied pesticides were found in snowmelt samples despite incorporation of residues by autumn plowing, degradation, and leaching into the soil profile during the period between spraying and sampling. Concentrations of glyphosate ranged from 0.12 to 7.4 μg L, and concentrations of AMPA ranged from 0 to 2.7 μg L. Our results indicate that temporal changes in hydraulic properties during the growing season and when the soil freezes during winter affect pesticide losses through surface runoff. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    Science.gov (United States)

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity. © 2013 John Wiley & Sons Ltd.

  5. Critical Limits for Hg(II) in soils, derived from chronic toxicity data

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E., E-mail: et@ceh.ac.u [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Lofts, S. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Hooper, H. [Centre for Ecology and Hydrology, Wallingford, OX10 8BB (United Kingdom); Frey, B. [Swiss Federal Research Institute WSL, 8903 Birmensdorf (Switzerland); Spurgeon, D.; Svendsen, C. [Centre for Ecology and Hydrology, Wallingford, OX10 8BB (United Kingdom)

    2010-07-15

    Published chronic toxicity data for Hg(II) added to soils were assembled and evaluated to produce a data set comprising 52 chronic end-points, five each for plants and invertebrates and 42 for microbes. With end-points expressed in terms of added soil Hg(II) contents, Critical Limits were derived from the 5th percentiles of species sensitivity distributions, values of 0.13 {mu}g (g soil){sup -1} and 3.3 {mu}g (g soil organic matter){sup -1} being obtained. The latter value exceeds the currently recommended Critical Limit, used to determine Hg(II) Critical Loads in Europe, of 0.5 {mu}g (g soil organic matter){sup -1}. We also applied the WHAM/Model VI chemical speciation model to estimate concentrations of Hg{sup 2+} in soil solution, and derived an approximate Critical Limit Function (CLF) that includes pH; log [Hg{sup 2+}]{sub crit} = -2.15 pH -17.10. Because they take soil properties into account, the soil organic matter-based limit and the CLF provide the best assessment of toxic threat for different soils. For differing representative soils, each predicts a range of up to 100-fold in the dry weight-based content of mercury that corresponds to the Critical Limit. - Published laboratory toxicity data and chemical speciation modelling are used to derive Critical Limits expressed as either soil Hg(II) content or Hg{sup 2+} concentration.

  6. Sorption kinetics of diuron on volcanic ash derived soils.

    Science.gov (United States)

    Cáceres-Jensen, Lizethly; Rodríguez-Becerra, Jorge; Parra-Rivero, Joselyn; Escudey, Mauricio; Barrientos, Lorena; Castro-Castillo, Vicente

    2013-10-15

    Diuron sorption kinetic was studied in Andisols, Inceptisol and Ultisols soils in view of their distinctive physical and chemical properties: acidic pH and variable surface charge. Two types of kinetic models were used to fit the experimental dates: those that allow to establish principal kinetic parameters and modeling of sorption process (pseudo-first-order, pseudo-second-order), and some ones frequently used to describe solute transport mechanisms of organic compounds on different sorbents intended for remediation purposes (Elovich equation, intraparticle diffusion, Boyd, and two-site nonequilibrium models). The best fit was obtained with the pseudo-second-order model. The rate constant and the initial rate constant values obtained through this model demonstrated the behavior of Diuron in each soil, in Andisols were observed the highest values for both parameters. The application of the models to describe solute transport mechanisms allowed establishing that in all soils the mass transfer controls the sorption kinetic across the boundary layer and intraparticle diffusion into macropores and micropores. The slowest sorption rate was observed on Ultisols, behavior which must be taken into account when the leaching potential of Diuron is considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Humic substances as a washing agent for Cd-contaminated soils.

    Science.gov (United States)

    Meng, Fande; Yuan, Guodong; Wei, Jing; Bi, Dongxue; Ok, Yong Sik; Wang, Hailong

    2017-08-01

    Cost-effective and eco-friendly washing agents are in demand for Cd contaminated soils. Here, we used leonardite-derived humic substances to wash different types of Cd-contaminated soils, namely, a silty loam (Soil 1), a silty clay loam (Soil 2), and a sandy loam (Soil 3). Washing conditions were investigated for their effects on Cd removal efficiency. Cadmium removal was enhanced by a high humic substance concentration, long washing time, near neutral pH, and large solution/soil ratio. Based on the tradeoff between efficiency and cost, an optimum working condition was established as follows: humic substance concentration (3150 mg C/L), solution pH (6.0), washing time (2 h) and a washing solution/soil ratio (5). A single washing removed 0.55 mg Cd/kg from Soil 1 (1.33 mg Cd/kg), 2.32 mg Cd/kg from Soil 2 (6.57 mg Cd/kg), and 1.97 mg Cd/kg from Soil 3 (2.63 mg Cd/kg). Cd in effluents was effectively treated by adding a small dose of calcium hydroxide, reducing its concentration below the discharge limit of 0.1 mg/L in China. Being cost-effective and safe, humic substances have a great potential to replace common washing agents for the remediation of Cd-contaminated soils. Besides being environmentally benign, humic substances can improve soil physical, chemical, and biological properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Proportion of root-derived acid phosphomonoesterase in total soil acid phosphomonoesterase in different forests

    Directory of Open Access Journals (Sweden)

    Ladislav Holík

    2011-01-01

    Full Text Available Enzyme acid phosphomonoesterase (APM plays an important role in phosphorus mineralization in different type of terrestrial ecosystems. This enzyme is of great agronomic significance because it hydrolyses organic phosphorus to different forms of inorganic phosphorus which are assimilable by plants. APM may also indicate changes in the quantity and quality of phosphorylated substrates in soil and is a good indicator of its biological state as well as presence of pollutants. APM may be produced by plant roots and soil microorganisms and both of these sources may play different role in phosphorus mineralization in different ecosystems. The aim of this work was determine acid phosphomonoesterase (APM activity location in soil of different forest ecosystems. The APM activity location determination was performed on the basis of root-derived and soil-derived APM and expression of proportion of those root-derived in total soil APM up to 13 cm depth. The results of this preliminary study showed that root-derived APM formed 21–34 % of total soil APM in pine and oak forest.

  9. Evaluation of ferrolysis in arsenate adsorption on the paddy soil derived from an Oxisol.

    Science.gov (United States)

    Jiang, Jun; Dai, Zhaoxia; Sun, Rui; Zhao, Zhenjie; Dong, Ying; Hong, Zhineng; Xu, Renkou

    2017-07-01

    Iron oxides are dominant effective adsorbents for arsenate in iron oxide-rich variable charge soils. Oxisol-derived paddy soils undergo intensive ferrolysis, which results in high leaching and transformation of iron oxides. However, little information is available concerning the effect of ferrolysis on arsenate adsorption by paddy soil and parent Oxisol. In the present study, we examined the arsenate affinity of soils using arsenate adsorption/desorption isotherms, zeta potential, adsorption kinetics, pH effect and phosphate competition experiments. Results showed that ferrolysis in an alternating flooding-drying Oxisol-derived paddy soil resulted in a significant decrease of free iron oxides and increase of amorphous iron oxides in the surface and subsurface layers. There were more reactive sites exposed on amorphous than on crystalline iron oxides. Therefore, disproportionate ratios of arsenate adsorption capacities and contents of free iron oxides were observed in the studied Oxisols compared with paddy soils. The Gibbs free energy values corroborated that both electrostatic and non-electrostatic adsorption mechanisms contributed to the arsenate adsorption by bulk soils, and the kinetic adsorption data further suggested that the rate-limiting step was chemisorption. The zeta potential of soil colloids decreased after arsenate was adsorbed on the surfaces, forming inner-sphere complexes and thus transferring their negative charges to the soil particle surfaces. The adsorption/desorption isotherms showed that non-electrostatic adsorption was the main mechanism responsible for arsenate binding to the Oxisol and derived paddy soils, representing 91.42-94.65% of the adsorption capacities. Further studies revealed that arsenate adsorption was greatly inhibited by increasing suspension pH and incorporation of phosphate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Relationship of soil potassium forms with maize potassium contents in soils derived from different parent materials

    Directory of Open Access Journals (Sweden)

    Rashid Mehmood Butt

    2017-06-01

    Full Text Available Understanding of soil potassium (K dynamics is essential for sustainable crop production. Bioavailability of K depends on forms and distribution within the soil profile. The objectives of this research were to determine which soil K forms control the maize (Zea mays K contents and compare the extracting capability of sodium tetraphenylborate (NaTPB with ammonium acetate (NH4OAc method. Nine soils representing three different parent materials, i.e. loess, sandstone and shale were sampled at three surface genetic horizons. Within each parent material, three soils at varying level of development were selected. Besides basic soil parameters, K was fractioned into water soluble K, exchangeable K, non-exchangeable K, and NaTPB-extracted K. The maize was sown in pots having 2 kg soil from each genetic horizon. Crop was harvested at seven weeks and plant was analysed for K contents. Results show that NaTPB-extracted K gave best correlation as compared to NH4OAc method. This conveys that a non-exchangeable K portion that becomes available to plants can be better estimated by NaTPB method than NH4OAc extraction.

  11. Crop yield monitoring in the Sahel using root zone soil moisture anomalies derived from SMOS soil moisture data assimilation

    Science.gov (United States)

    Gibon, François; Pellarin, Thierry; Alhassane, Agali; Traoré, Seydou; Baron, Christian

    2017-04-01

    West Africa is greatly vulnerable, especially in terms of food sustainability. Mainly based on rainfed agriculture, the high variability of the rainy season strongly impacts the crop production driven by the soil water availability in the soil. To monitor this water availability, classical methods are based on daily precipitation measurements. However, the raingauge network suffers from the poor network density in Africa (1/10000km2). Alternatively, real-time satellite-derived precipitations can be used, but they are known to suffer from large uncertainties which produce significant error on crop yield estimations. The present study proposes to use root soil moisture rather than precipitation to evaluate crop yield variations. First, a local analysis of the spatiotemporal impact of water deficit on millet crop production in Niger was done, from in-situ soil moisture measurements (AMMA-CATCH/OZCAR (French Critical Zone exploration network)) and in-situ millet yield survey. Crop yield measurements were obtained for 10 villages located in the Niamey region from 2005 to 2012. The mean production (over 8 years) is 690 kg/ha, and ranges from 381 to 872 kg/ha during this period. Various statistical relationships based on soil moisture estimates were tested, and the most promising one (R>0.9) linked the 30-cm soil moisture anomalies from mid-August to mid-September (grain filling period) to the crop yield anomalies. Based on this local study, it was proposed to derive regional statistical relationships using 30-cm soil moisture maps over West Africa. The selected approach was to use a simple hydrological model, the Antecedent Precipitation Index (API), forced by real-time satellite-based precipitation (CMORPH, PERSIANN, TRMM3B42). To reduce uncertainties related to the quality of real-time rainfall satellite products, SMOS soil moisture measurements were assimilated into the API model through a Particular Filter algorithm. Then, obtained soil moisture anomalies were

  12. Characterization and classification of two soils derived from basic rocks in Pernambuco State Coast, Northeast Brazil

    Directory of Open Access Journals (Sweden)

    Oliveira Lindomário Barros de

    2004-01-01

    Full Text Available Geomorphic surfaces that present soils derived from basic rocks under warm and humid climate are unique scenarios for studying tropical soils. This paper aimed to characterize and classify two pedons derived from basalt at the Atlantic Forest Zone, Pernambuco State, Northeastern coast of Brazil. Two representative pedons (P1 and P2 were selected on a hillslope at the Cabo de Santo Agostinho municipality. Field macromorphological descriptions were carried out and soil horizon were sampled for physical, chemical, mineralogical and micromorphological characterization. The soils were classified, according to the Brazilian System of Soil Classification (and US Soil Taxonomy as: "Latossolo Vermelho-Amarelo distroférrico argissólico" (Typic Hapludox (P1 and "Nitossolo Vermelho distroférrico típico" (Rhodic Paleudult (P2. Pedon 1 differs from Pedon 2 in some aspects. For instance, P1 presents more yellowish colors, absence of clay illuviation, more friable consistence and the prismatic structure undergoes transformation to angular and subangular blocks. Pedon 2 presents ferri-argilans and leptocutans which indicate that vertical and lateral illuviation of clay is an active process in their formation. These chemically poor and mineralogically uniform soils are a result of the high temperature and rainfall of the studied area.

  13. The characterization, mobility, and persistence of roaster-derived arsenic in soils at Giant Mine, NWT

    Energy Technology Data Exchange (ETDEWEB)

    Bromstad, Mackenzie J.; Wrye, Lori A.; Jamieson, Heather E.

    2017-07-01

    Approximately 20,000 tonnes of arsenic (As)-bearing emissions from roasting gold (Au)-bearing arsenopyrite ore were aerially released from 1949 to 1999 at Giant Mine, near Yellowknife, Canada. Soil samples collected within 4 km of the former roaster from sites undisturbed by mining or other human activity contain up to 7700 mg/kg total As. Total As concentrations are highest within a few cm of the surface, and particularly enriched in soil pockets on rock outcrops. Scanning electron microscopy and synchrotron microanalysis show that roaster-derived arsenic trioxide (As2O3) has persisted in shallow soils in the area. Roaster-generated maghemite and hematite are also present. These anthropogenic forms of As are much more common in near-surface soils than natural As-bearing minerals. Comparison of the proportions of As, Sb, and Au concentrations in outcrop soil samples and historic As2O3-rich dust captured by emission controls suggest most of the roaster-derived As in soils at Giant was likely deposited before 1964. Topographic restriction by rock outcrops and a dry, cold climate likely contribute to the persistence of As2O3 in outcrop soils.

  14. Stability of soil's microaggregates derived from different parental materials

    International Nuclear Information System (INIS)

    Rondon de Rodriguez, Clara; Elizalde Albes, Graciano

    1998-01-01

    In two polipedons derived from different parental materials, it was found that microaggregates (50 - 250 μm ) aren't affected in their stability by the time, by the physical ultrasonic forces, neither by the blockage of electrostatic bonds of water, suggesting that in these aggregates, there are stronger bonds than the ones which can be broken by these agents. On the contrary water, the chemical treatments with HCl and H 2 O 2 concentrated, disjoin the microaggregates, being possible to differentiate a polipedon from other

  15. Interactions between Soil Texture and Placement of Dairy Slurry Application

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Kjærgaard, Charlotte; Rubæk, Gitte Holton

    2011-01-01

    soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 μm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam...... physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil...

  16. Response of microbial community of organic-matter-impoverished arable soil to long-term application of soil conditioner derived from dynamic rapid fermentation of food waste.

    Science.gov (United States)

    Hou, Jiaqi; Li, Mingxiao; Mao, Xuhui; Hao, Yan; Ding, Jie; Liu, Dongming; Xi, Beidou; Liu, Hongliang

    2017-01-01

    Rapid fermentation of food waste can be used to prepare soil conditioner. This process consumes less time and is more cost-effective than traditional preparation technology. However, the succession of the soil microbial community structure after long-term application of rapid fermentation-derived soil conditioners remains unclear. Herein, dynamic rapid fermentation (DRF) of food waste was performed to develop a soil conditioner and the successions and diversity of bacterial communities in an organic-matter-impoverished arable soil after six years of application of DRF-derived soil conditioner were investigated. Results showed that the treatment increased soil organic matter (SOM) accumulation and strawberry yield by 5.3 g/kg and 555.91 kg/ha, respectively. Proteobacteria, Actinobacteria, Acidobacteria, and Firmicutes became the dominant phyla, occupying 65.95%-77.52% of the bacterial sequences. Principal component analysis (PCA) results showed that the soil bacterial communities were largely influenced by the treatment. Redundancy analysis (RDA) results showed that the relative abundances of Gemmatimonadetes, Chloroflexi, Verrucomicrobia, Nitrospirae, and Firmicutes were significantly correlated with soil TC, TN, TP, NH4+-N, NO3--N, OM, and moisture. These communities were all distributed in the soil samples collected in the sixth year of application. Long-term treatment did not enhance the diversity of bacterial species but significantly altered the distribution of major functional bacterial communities in the soils. Application of DRF-derived soil conditioner could improve the soil quality and optimize the microbial community, ultimately enhancing fruit yields.

  17. Observing plants dealing with soil water stress: Daily soil moisture fluctuations derived from polymer tensiometers

    Science.gov (United States)

    van der Ploeg, Martine; de Rooij, Gerrit

    2014-05-01

    Periods of soil water deficit often occur within a plant's life cycle, even in temperate deciduous and rain forests (Wilson et al. 2001, Grace 1999). Various experiments have shown that roots are able to sense the distribution of water in the soil, and produce signals that trigger changes in leaf expansion rate and stomatal conductance (Blackman and Davies 1985, Gollan et al. 1986, Gowing et al. 1990 Davies and Zhang 1991, Mansfield and De Silva 1994, Sadras and Milroy 1996). Partitioning of water and air in the soil, solute distribution in soil water, water flow through the soil, and water availability for plants can be determined according to the distribution of the soil water potential (e.g. Schröder et al. 2013, Kool et al. 2014). Understanding plant water uptake under dry conditions has been compromised by hydrological instrumentation with low accuracy in dry soils due to signal attenuation, or a compromised measurement range (Whalley et al. 2013). Development of polymer tensiometers makes it possible to study the soil water potential over a range meaningful for studying plant responses to water stress (Bakker et al. 2007, Van der Ploeg et al. 2008, 2010). Polymer tensiometer data obtained from a lysimeter experiment (Van der Ploeg et al. 2008) were used to analyse day-night fluctuations of soil moisture in the vicinity of maize roots. To do so, three polymer tensiometers placed in the middle of the lysimeter from a control, dry and very dry treatment (one lysimeter per treatment) were used to calculate water content changes over 12 hours. These 12 hours corresponded with the operation of the growing light. Soil water potential measurements in the hour before the growing light was turned on or off were averaged. The averaged value was used as input for the van Genuchten (1980) model. Parameters for the model were obtained from laboratory determination of water retention, with a separate model parameterization for each lysimeter setup. Results show daily

  18. Microbial utilization of rice straw and its derived biochar in a paddy soil

    International Nuclear Information System (INIS)

    Pan, Fuxia; Li, Yaying; Chapman, Stephen James; Khan, Sardar; Yao, Huaiying

    2016-01-01

    The application of straw and biochar to soil has received great attention because of their potential benefits such as fertility improvement and carbon (C) sequestration. The abiotic effects of these materials on C and nitrogen (N) cycling in the soil ecosystem have been previously investigated, however, the effects of straw or its derived biochar on the soil microbial community structure and function are not well understood. For this purpose, a short-term incubation experiment was conducted using 13 C-labeled rice straw and its derived biochar ( 13 C-labeled biochar) to deepen our understanding about soil microbial community dynamics and function in C sequestration and greenhouse gas emission in the acidic paddy soil amended with these materials. Regarding microbial function, biochar and straw applications increased CO 2 emission in the initial stage of incubation and reached the highest level (0.52 and 3.96 mg C kg −1 soil h −1 ) at 1 d and 3 d after incubation, respectively. Straw amendment significantly (p < 0.01) increased respiration rate, total phospholipid fatty acids (PLFAs) and 13 C-PLFA as compared to biochar amendment and the control. The amount and percent of Gram positive bacteria, fungi and actinomycetes were also significantly (p < 0.05) higher in 13 C-labeled straw amended soil than the 13 C-labeled biochar amended soil. According to the 13 C data, 23 different PLFAs were derived from straw amended paddy soil, while only 17 PLFAs were derived from biochar amendments. The profile of 13 C-PLFAs derived from straw amendment was significantly (p < 0.01) different from biochar amendment. The PLFAs 18:1ω7c and cy17:0 (indicators of Gram negative bacteria) showed high relative abundances in the biochar amendment, while 10Me18:0, i17:0 and 18:2ω6,9c (indicators of actinomycetes, Gram positive bacteria and fungi, respectively) showed high relative abundance in the straw amendments. Our results suggest that the function, size and structure of the

  19. Microbial utilization of rice straw and its derived biochar in a paddy soil

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Fuxia [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Yaying [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800 (China); Chapman, Stephen James [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom); Khan, Sardar [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Department of Environmental Science, University of Peshawar (Pakistan); Yao, Huaiying, E-mail: hyyao@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800 (China)

    2016-07-15

    The application of straw and biochar to soil has received great attention because of their potential benefits such as fertility improvement and carbon (C) sequestration. The abiotic effects of these materials on C and nitrogen (N) cycling in the soil ecosystem have been previously investigated, however, the effects of straw or its derived biochar on the soil microbial community structure and function are not well understood. For this purpose, a short-term incubation experiment was conducted using {sup 13}C-labeled rice straw and its derived biochar ({sup 13}C-labeled biochar) to deepen our understanding about soil microbial community dynamics and function in C sequestration and greenhouse gas emission in the acidic paddy soil amended with these materials. Regarding microbial function, biochar and straw applications increased CO{sub 2} emission in the initial stage of incubation and reached the highest level (0.52 and 3.96 mg C kg{sup −1} soil h{sup −1}) at 1 d and 3 d after incubation, respectively. Straw amendment significantly (p < 0.01) increased respiration rate, total phospholipid fatty acids (PLFAs) and {sup 13}C-PLFA as compared to biochar amendment and the control. The amount and percent of Gram positive bacteria, fungi and actinomycetes were also significantly (p < 0.05) higher in {sup 13}C-labeled straw amended soil than the {sup 13}C-labeled biochar amended soil. According to the {sup 13}C data, 23 different PLFAs were derived from straw amended paddy soil, while only 17 PLFAs were derived from biochar amendments. The profile of {sup 13}C-PLFAs derived from straw amendment was significantly (p < 0.01) different from biochar amendment. The PLFAs 18:1ω7c and cy17:0 (indicators of Gram negative bacteria) showed high relative abundances in the biochar amendment, while 10Me18:0, i17:0 and 18:2ω6,9c (indicators of actinomycetes, Gram positive bacteria and fungi, respectively) showed high relative abundance in the straw amendments. Our results suggest

  20. Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant

    Energy Technology Data Exchange (ETDEWEB)

    Song Saisai [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhu Lizhong [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China)], E-mail: zlz@zju.edu.cn; Zhou Wenjun [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China)

    2008-12-15

    Batch experiments were conducted to evaluate the performance of saponin, a plant-derived biosurfactant, for simultaneously removing phenanthrene and cadmium from the combined contaminated soils. Results showed that phenanthrene was desorbed from the contaminated soils by saponin with the partition of phenanthrene into surfactant micelle, meanwhile cadmium was effectively removed from the contaminated soils by the complexation of cadmium with the external carboxyl groups of saponin micelle. The efficiencies of saponin for the removal of phenanthrene and cadmium from the contaminated soils were greater than that of Triton X100 and citric acid, respectively. At concentration of 3750 mg/L, saponin has a removal rate of 87.7% and 76.2% of cadmium and phenanthrene, respectively, from the combined contaminated soil. The removals of cadmium and phenanthrene from the soils were not obviously constrained each other. Thus, saponin has the potential for the removal of heavy metal and PAHs from the combined contaminated soils. - Saponin has great potential for the simultaneous removal of cadmium and phenanthrene from the combined contaminated soils.

  1. Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant

    International Nuclear Information System (INIS)

    Song Saisai; Zhu Lizhong; Zhou Wenjun

    2008-01-01

    Batch experiments were conducted to evaluate the performance of saponin, a plant-derived biosurfactant, for simultaneously removing phenanthrene and cadmium from the combined contaminated soils. Results showed that phenanthrene was desorbed from the contaminated soils by saponin with the partition of phenanthrene into surfactant micelle, meanwhile cadmium was effectively removed from the contaminated soils by the complexation of cadmium with the external carboxyl groups of saponin micelle. The efficiencies of saponin for the removal of phenanthrene and cadmium from the contaminated soils were greater than that of Triton X100 and citric acid, respectively. At concentration of 3750 mg/L, saponin has a removal rate of 87.7% and 76.2% of cadmium and phenanthrene, respectively, from the combined contaminated soil. The removals of cadmium and phenanthrene from the soils were not obviously constrained each other. Thus, saponin has the potential for the removal of heavy metal and PAHs from the combined contaminated soils. - Saponin has great potential for the simultaneous removal of cadmium and phenanthrene from the combined contaminated soils

  2. Influence of pH on pesticide sorption by soil containing wheat residue-derived char

    International Nuclear Information System (INIS)

    Sheng Guangyao; Yang Yaning; Huang Minsheng; Yang Kai

    2005-01-01

    Field burning of crop residues incorporates resulting chars into soil and may thus influence the environmental fate of pesticides in the soil. This study evaluated the influence of pH on the sorption of diuron, bromoxynil, and ametryne by a soil in the presence and absence of a wheat residue-derived char. The sorption was measured at pHs ∼3.0 and ∼7.0. Wheat char was found to be a highly effective sorbent for the pesticides, and its presence (1% by weight) in soil contributed >70% to the pesticide sorption (with one exception). The sorption of diuron was not influenced by pH, due to its electroneutrality. Bromoxynil becomes dissociated at high pHs to form anionic species. Its sorption by soil and wheat char was lower at pH ∼7.0 than at pH ∼3.0, probably due to reduced partition of the anionic species of bromoxynil into soil organic matter and its weak interaction with the carbon surface of the char. Ametryne in its molecular form at pH ∼7.0 was sorbed by char-amended soil via partitioning into soil organic matter and interaction with the carbon surface of the char. Protonated ametryne at pH ∼3.0 was substantially sorbed by soil primarily via electrostatic forces. Sorption of protonated ametryne by wheat char was also significant, likely due not only to the interaction with the carbon surface but also to interactions with hydrated silica and surface functional groups of the char. Sorption of ametryne by char-amended soil at pH ∼3.0 was thus influenced by both the soil and the char. Environmental conditions may thus significantly influence the sorption and behavior of pesticides in agricultural soils containing crop residue-derived chars. - Wheat char was effective for adsorption of pesticides in soil, with efficacy varying with pH and particular pesticides

  3. Influence of pH on pesticide sorption by soil containing wheat residue-derived char

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Guangyao [Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701 (United States)]. E-mail: gsheng@uark.edu; Yang Yaning [Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701 (United States); Huang Minsheng [Department of Environmental Science and Technology, East China Normal University, Shanghai 200062 (China); Yang Kai [Department of Environmental Science and Technology, East China Normal University, Shanghai 200062 (China)

    2005-04-01

    Field burning of crop residues incorporates resulting chars into soil and may thus influence the environmental fate of pesticides in the soil. This study evaluated the influence of pH on the sorption of diuron, bromoxynil, and ametryne by a soil in the presence and absence of a wheat residue-derived char. The sorption was measured at pHs {approx}3.0 and {approx}7.0. Wheat char was found to be a highly effective sorbent for the pesticides, and its presence (1% by weight) in soil contributed >70% to the pesticide sorption (with one exception). The sorption of diuron was not influenced by pH, due to its electroneutrality. Bromoxynil becomes dissociated at high pHs to form anionic species. Its sorption by soil and wheat char was lower at pH {approx}7.0 than at pH {approx}3.0, probably due to reduced partition of the anionic species of bromoxynil into soil organic matter and its weak interaction with the carbon surface of the char. Ametryne in its molecular form at pH {approx}7.0 was sorbed by char-amended soil via partitioning into soil organic matter and interaction with the carbon surface of the char. Protonated ametryne at pH {approx}3.0 was substantially sorbed by soil primarily via electrostatic forces. Sorption of protonated ametryne by wheat char was also significant, likely due not only to the interaction with the carbon surface but also to interactions with hydrated silica and surface functional groups of the char. Sorption of ametryne by char-amended soil at pH {approx}3.0 was thus influenced by both the soil and the char. Environmental conditions may thus significantly influence the sorption and behavior of pesticides in agricultural soils containing crop residue-derived chars. - Wheat char was effective for adsorption of pesticides in soil, with efficacy varying with pH and particular pesticides.

  4. Ameliorating Effects of Biochar Derived from Poultry Manure and White Clover Residues on Soil Nutrient Status and Plant growth Promotion--Greenhouse Experiments.

    Science.gov (United States)

    Abbasi, M Kaleem; Anwar, Ahsan Ali

    2015-01-01

    Biochar application to agricultural soils is rapidly emerging as a new management strategy for its potential role in carbon sequestration, soil quality improvements, and plant growth promotion. The aim of our study was to investigate the effects of biochars derived from white clover residues and poultry manure on soil quality characteristics, growth and N accumulation in maize (Zea mays L.) and wheat (Triticum aestivum L.) grown in a loam soil under greenhouse conditions. Treatments comprised of: untreated control; mineral N fertilizer (urea N, UN) at the rate of 200, and 100 mg N kg(-1), white clover residues biochar (WCRB), poultry manure biochar (PMB) at 30 Mg ha(-1), and the possible combinations of WCRB+PMB (50:50), UN+WCRB (50:50), UN+PMB (50:50), and UN+WCRB+PMB (50:25:25). The treatments were arranged in a completely randomized design with three replications. Results indicated a significant increase in the growth and biomass production of maize and wheat supplemented with biochars alone or mixed with N fertilizer. Biochars treatments showed varying impact on plant growth depended upon the type of the biochar, and in general plant growth under PMB was significantly higher than that recorded under WCRB. The growth characteristics in the combined treatments (half biochar+half N) were either higher or equivalent to that recorded under full fertilizer N treatment (N200). The biochar treatments WCRB, PMB, and WCRB+PMB (50:50) increased maize shoot N by 18, 26 and 21%, respectively compared to the control while wheat shoot N did not show positive response. The N-uptake by maize treated with WCRB, PMB, and WCRB+PMB (50:50) was 54, 116, and 90 mg g(-1) compared to the 33 mg g(-1) in the control while the N-uptake by wheat was 41, 60, and 53 mg g(-1) compared to 24 mg g(-1) in the control. The mixed treatments (half biochar+half N) increased N-uptake by 2.3 folds in maize and 1.7 to 2.5 folds in wheat compared to the N100 showing increasing effect of biochar on N

  5. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.

    Science.gov (United States)

    Antonkiewicz, Jacek; Para, Andrzej

    2016-01-01

    Products of the reaction between dialdehyde starch and Y-NH2 compounds (e.g. semicarbazide or hydrazine) are effective ligands for metal ions. The usefulness of these derivatives was tested in the experiment, both in terms of the immobilization of heavy metal ions in soil and the potential application in phytoextraction processes. The experimental model comprised maize and the ions of such metals as: Zn(II), Pb(II), Cu(II), Cd(II), and Ni(II). The amount of maize yield, as well as heavy metal content and uptake by the aboveground parts and roots of maize, were studied during a three-year pot experiment. The results of the study indicate the significant impact of heavy metals on reduced yield and increased heavy metal content in maize. Soil-applied dialdehyde starch derivatives resulted in lower yields, particularly disemicarbazone (DASS), but in heavy metal-contaminated soils they largely limited the negative impact of these metals both on yielding and heavy metal content in plants, particularly dihydrazone (DASH). It was demonstrated that the application of dihydrazone (DASH) to a soil polluted with heavy metals boosted the uptake of Zn, Pb, Cu, and Cd from the soil, hence there is a possibility to use this compound in the phytoextraction of these metals from the soil. Decreased Ni uptake was also determined, hence the possibility of using this compound in the immobilization of this metal. The study showed that dialdehyde starch disemicarbazone was ineffective in the discussed processes.

  6. Influence of flooding and metal immobilising soil amendments on availability of metals for willows and earthworms in calcareous dredged sediment-derived soils

    Energy Technology Data Exchange (ETDEWEB)

    Vandecasteele, Bart, E-mail: bart.vandecasteele@ilvo.vlaanderen.b [Institute for Agricultural and Fisheries Research (ILVO), Scientific Institute of the Flemish Government, Burg. Van Gansberghelaan 109, B-9820 Merelbeke (Belgium); Du Laing, Gijs [Ghent University, Department of Applied Analytical and Physical Chemistry, Coupure 653, B-9000 Ghent (Belgium); Lettens, Suzanna [Research Institute for Nature and Forest (INBO), Scientific Institute of the Flemish Government, Gaverstraat 4, B-9500 Geraardsbergen (Belgium); Jordaens, Kurt [Department of Biology, Evolutionary Biology Group, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Tack, Filip M.G. [Ghent University, Department of Applied Analytical and Physical Chemistry, Coupure 653, B-9000 Ghent (Belgium)

    2010-06-15

    Soil amendments previously shown to be effective in reducing metal bioavailability and/or mobility in calcareous metal-polluted soils were tested on a calcareous dredged sediment-derived soil with 26 mg Cd/kg dry soil, 2200 mg Cr/kg dry soil, 220 mg Pb/kg dry soil, and 3000 mg Zn/kg dry soil. The amendments were 5% modified aluminosilicate (AS), 10% w/w lignin, 1% w/w diammonium phosphate (DAP, (NH{sub 4}){sub 2}HPO{sub 4}), 1% w/w MnO, and 5% w/w CaSO{sub 4}. In an additional treatment, the contaminated soil was submerged. Endpoints were metal uptake in Salix cinerea and Lumbricus terrestris, and effect on oxidation-reduction potential (ORP) in submerged soils. Results illustrated that the selected soil amendments were not effective in reducing ecological risk to vegetation or soil inhabiting invertebrates, as metal uptake in willows and earthworms did not significantly decrease following their application. Flooding the polluted soil resulted in metal uptake in S. cinerea comparable with concentrations for an uncontaminated soil. - Some soil amendments resulted in higher metal uptake by earthworms and willows than when the polluted soil was not amended but submersion of the polluted soil resulted in reduced Cd and Zn uptake in Salix cinerea.

  7. Efficiency of (32P) triple superphosphate on four soils derived from volcanic ashes

    International Nuclear Information System (INIS)

    Pino, I.; Casas, L.; Michaud, A.

    1986-01-01

    The efficiency of triple superphosphate on four soils derived from volcanic ashes (Andepts) was evaluated. Experiments in greenhouse with rye grass was carried out. Three doses of superphosphate (150,300 and 600 kg P 2 O 5 /ha) labeled with 32 P were used. The fertilizer was located 2.5 cm underneath the seed. The phosphorus derived from the fertilizer represented a 70 percent from the total P absorved by the plant. The utilization of aggregated nutrient ranged from 2.1 to 5.2, the lower values being obtained for the higher rates. Value 'A' increased with the rate applied but it evaluated comparatively the four soils studied. The isotopic method distinguished quantitatively the P coming from the soil in distinction to the P coming from the fertilizer. (Author)

  8. Efficiency of (/sup 32/P) triple superphosphate on four soils derived from volcanic ashes

    Energy Technology Data Exchange (ETDEWEB)

    Pino, I; Casas, L; Michaud, A

    1986-10-01

    The efficiency of triple superphosphate on four soils derived from volcanic ashes (Andepts) was evaluated. Experiments in greenhouse with rye grass was carried out. Three doses of superphosphate (150,300 and 600 kg P/sub 2/O/sub 5//ha) labeled with /sup 32/P were used. The fertilizer was located 2.5 cm underneath the seed. The phosphorus derived from the fertilizer represented a 70 percent from the total P absorved by the plant. The utilization of aggregated nutrient ranged from 2.1 to 5.2, the lower values being obtained for the higher rates. Value 'A' increased with the rate applied but it evaluated comparatively the four soils studied. The isotopic method distinguished quantitatively the P coming from the soil in distinction to the P coming from the fertilizer.

  9. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls

    Science.gov (United States)

    Kallenbach, Cynthia M.; Frey, Serita D.; Grandy, A. Stuart

    2016-11-01

    Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes produce chemically diverse, stable SOM. We show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.

  10. Guidance document on the derivation of maximum permissible risk levels for human intake of soil contaminants

    NARCIS (Netherlands)

    Janssen PJCM; Speijers GJA; CSR

    1997-01-01

    This report contains a basic step-to-step description of the procedure followed in the derivation of the human-toxicological Maximum Permissible Risk (MPR ; in Dutch: Maximum Toelaatbaar Risico, MTR) for soil contaminants. In recent years this method has been applied for a large number of compounds

  11. Penixanthones A and B, two new xanthone derivatives from fungus Penicillium sp. SYFz-1 derived of mangrove soil sample.

    Science.gov (United States)

    Tao, Huaming; Wei, Xiaoyi; Lin, Xiuping; Zhou, Xuefeng; Dong, Junde; Yang, Bin

    2017-10-01

    Two new xanthone derivatives, penixanthones A (1) and B (2), together with three known compounds, aspenicillide (3), 1,5-dihydroxy-3-methoxy-7-methyl-anthracene-9,10-dione (4) and 1,2-indandiol (5), were isolated from the ethyl acetate extract of a culture of the fungus Penicillium sp. SYFz-1, which was separated from a mangrove soil sample. The structures of these compounds were elucidated by spectroscopic methods including NMR and mass spectrometry. The absolute configurations of penixanthones A (1) and B (2) were determined on the basis of electronic circular dichroism (ECD) data analysis.

  12. Error estimates for near-Real-Time Satellite Soil Moisture as Derived from the Land Parameter Retrieval Model

    NARCIS (Netherlands)

    Parinussa, R.M.; Meesters, A.G.C.A.; Liu, Y.Y.; Dorigo, W.; Wagner, W.; de Jeu, R.A.M.

    2011-01-01

    A time-efficient solution to estimate the error of satellite surface soil moisture from the land parameter retrieval model is presented. The errors are estimated using an analytical solution for soil moisture retrievals from this radiative-transfer-based model that derives soil moisture from

  13. Anaerobic decomposition of switchgrass by tropical soil-derived feedstock-adapted consortia.

    Science.gov (United States)

    DeAngelis, Kristen M; Fortney, Julian L; Borglin, Sharon; Silver, Whendee L; Simmons, Blake A; Hazen, Terry C

    2012-01-01

    Tropical forest soils decompose litter rapidly with frequent episodes of anoxic conditions, making it likely that bacteria using alternate terminal electron acceptors (TEAs) play a large role in decomposition. This makes these soils useful templates for improving biofuel production. To investigate how TEAs affect decomposition, we cultivated feedstock-adapted consortia (FACs) derived from two tropical forest soils collected from the ends of a rainfall gradient: organic matter-rich tropical cloud forest (CF) soils, which experience sustained low redox, and iron-rich tropical rain forest (RF) soils, which experience rapidly fluctuating redox. Communities were anaerobically passed through three transfers of 10 weeks each with switchgrass as a sole carbon (C) source; FACs were then amended with nitrate, sulfate, or iron oxide. C mineralization and cellulase activities were higher in CF-FACs than in RF-FACs. Pyrosequencing of the small-subunit rRNA revealed members of the Firmicutes, Bacteroidetes, and Alphaproteobacteria as dominant. RF- and CF-FAC communities were not different in microbial diversity or biomass. The RF-FACs, derived from fluctuating redox soils, were the most responsive to the addition of TEAs, while the CF-FACs were overall more efficient and productive, both on a per-gram switchgrass and a per-cell biomass basis. These results suggest that decomposing microbial communities in fluctuating redox environments are adapted to the presence of a diversity of TEAs and ready to take advantage of them. More importantly, these data highlight the role of local environmental conditions in shaping microbial community function that may be separate from phylogenetic structure. After multiple transfers, we established microbial consortia derived from two tropical forest soils with different native redox conditions. Communities derived from the rapidly fluctuating redox environment maintained a capacity to use added terminal electron acceptors (TEAs) after multiple

  14. Explaining Air and Water Transport in Undisturbed Soils By X-Ray CT Derived Macroporosity and CT- Number-Derived Matrix Density

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Katuwal, Sheela; Møldrup, Per

    The characterization of soil pore space geometry is important to predict the fluxes of air, water and solutes through soil and understand soil hydrogeochemical functions. X-ray computed tomography (CT) -derived parameters were evaluated as predictors of water, air and solute transport through soil....... Forty five soil columns (20-cm × 20-cm) were collected at an agricultural field in Estrup, Denmark. The soil columns were scanned in a medical CT-scanner. Subsequent to this, non-reactive tracer leaching experiments were performed in the laboratory together with measurements of air permeability (Ka...... is considered a robust indicator of preferential flow. Meanwhile, CT-derived limiting macro-porosity was the best predictor for Ka and log10Ksat. A best subsets regression analysis was performed combining macroporosity, limiting macroporosity and CTmatrix. The predictions of water and air flow improved using...

  15. Spatio-temporal Root Zone Soil Moisture Estimation for Indo - Gangetic Basin from Satellite Derived (AMSR-2 and SMOS) Surface Soil Moisture

    Science.gov (United States)

    Sure, A.; Dikshit, O.

    2017-12-01

    Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.

  16. Deriving site-specific soil clean-up values for metals and metalloids: rationale for including protection of soil microbial processes.

    Science.gov (United States)

    Kuperman, Roman G; Siciliano, Steven D; Römbke, Jörg; Oorts, Koen

    2014-07-01

    Although it is widely recognized that microorganisms are essential for sustaining soil fertility, structure, nutrient cycling, groundwater purification, and other soil functions, soil microbial toxicity data were excluded from the derivation of Ecological Soil Screening Levels (Eco-SSL) in the United States. Among the reasons for such exclusion were claims that microbial toxicity tests were too difficult to interpret because of the high variability of microbial responses, uncertainty regarding the relevance of the various endpoints, and functional redundancy. Since the release of the first draft of the Eco-SSL Guidance document by the US Environmental Protection Agency in 2003, soil microbial toxicity testing and its use in ecological risk assessments have substantially improved. A wide range of standardized and nonstandardized methods became available for testing chemical toxicity to microbial functions in soil. Regulatory frameworks in the European Union and Australia have successfully incorporated microbial toxicity data into the derivation of soil threshold concentrations for ecological risk assessments. This article provides the 3-part rationale for including soil microbial processes in the development of soil clean-up values (SCVs): 1) presenting a brief overview of relevant test methods for assessing microbial functions in soil, 2) examining data sets for Cu, Ni, Zn, and Mo that incorporated soil microbial toxicity data into regulatory frameworks, and 3) offering recommendations on how to integrate the best available science into the method development for deriving site-specific SCVs that account for bioavailability of metals and metalloids in soil. Although the primary focus of this article is on the development of the approach for deriving SCVs for metals and metalloids in the United States, the recommendations provided in this article may also be applicable in other jurisdictions that aim at developing ecological soil threshold values for protection of

  17. Dating Antarctic soils using atmosphere-derived 10Be and nitrate

    International Nuclear Information System (INIS)

    Graham, I.J.; Ditchburn, R.G.; Claridge, G.G.C.; Whitehead, N.E.; Zondervan, A.; Sheppard, D.S.

    2002-01-01

    Because they are slow forming, Antarctic soils have the potential to yield considerable climatic information from the past c.20 m.y. However, these soils have proved difficult to date absolutely by conventional means. Here we present a novel approach to the problem, based on atmosphere-derived 10 Be and nitrate contents. In situations where medium to long term deposition rates can be reasonably estimated from ice core data, the total nitrate inventory in an Antarctic soil can place constraints on its formation age. 10 Be radioactive decay may then be used, assuming steady state equilibrium, to further refine the age profile. We have applied such models to a complex soil from the Taylor Valley region in South Victoria Land, deriving an overall nitrate inventory age of c. 18 Ma, and 10 Be decay ages for the upper and middle layers of c.15 and c.17 Ma, respectively. These results are consistent with the >10 Ma age of the soil deduced from stratigraphic and geomorphological information. (author). 28 refs., 4 figs., 2 tabs

  18. The Natural Terrestrial Carbon Sequestration Potential of Rocky Mountain Soils Derived From Volcanic Bedrock

    Science.gov (United States)

    Yager, D. B.; Burchell, A.; Johnson, R. H.

    2008-12-01

    The possible economic and environmental ramifications of climate change have stimulated a range of atmospheric carbon mitigation actions, as well as, studies to understand and quantify potential carbon sinks. However, current carbon management strategies for reducing atmospheric emissions underestimate a critical component. Soils represent between 18 - 30% of the terrestrial carbon sink needed to prevent atmospheric doubling of CO2 by 2050 and a crucial element in mitigating climate change, natural terrestrial sequestration (NTS), is required. NTS includes all naturally occurring, cumulative, biologic and geologic processes that either remove CO2 from the atmosphere or prevent net CO2 emissions through photosynthesis and microbial fixation, soil formation, weathering and adsorption or chemical reactions involving principally alumino- ferromagnesium minerals, volcanic glass and clays. Additionally, NTS supports ecosystem services by improving soil productivity, moisture retention, water purification and reducing erosion. Thus, 'global climate triage' must include the protection of high NTS areas, purposeful enhancement of NTS processes and reclamation of disturbed and mined lands. To better understand NTS, we analyzed soil-cores from Colorado, Rocky Mountain Cordillera sites. North-facing, high-plains to alpine sites in non-wetland environments were selected to represent temperate soils that may be less susceptible to carbon pool declines due to global warming than soils in warmer regions. Undisturbed soils sampled have 2 to 6 times greater total organic soil carbon (TOSC) than global TOSC averages (4 - 5 Wt. %). Forest soils derived from weathering of intermediate to mafic volcanic bedrock have the highest C (34.15 Wt. %), C:N (43) and arylsulfatase (ave. 278, high 461 μg p-nitrophenol/g/h). Intermediate TOSC was identified in soils derived from Cretaceous shale (7.2 Wt. %) and Precambrian, felsic gneiss (6.2 Wt. %). Unreclaimed mine-sites have the lowest C (0

  19. Summary of proposed approach for deriving cleanup guidelines for radionuclides in soil at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

    1996-11-01

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL`s Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory, carried out under an Interagency Agreement (IAG) with the United States Department of Energy (DOE), the United States Environmental Protection Agency (EPA) and the New York State Department of Environmental Conservation (NYSDEC). The objective of this paper is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL.

  20. Reference natural radionuclide concentrations in Australian soils and derived terrestrial air kerma rate.

    Science.gov (United States)

    Kleinschmidt, R

    2017-06-01

    Sediment from drainage catchment outlets has been shown to be a useful means of sampling large land masses for soil composition. Naturally occurring radioactive material concentrations (uranium, thorium and potassium-40) in soil have been collated and converted to activity concentrations using data collected from the National Geochemistry Survey of Australia. Average terrestrial air kerma rate data are derived using the elemental concentration data, and is tabulated for Australia and states for use as baseline reference information. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. Summary of proposed approach for deriving cleanup guidelines for radionuclides in soil at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

    1996-11-01

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL's Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory, carried out under an Interagency Agreement (IAG) with the United States Department of Energy (DOE), the United States Environmental Protection Agency (EPA) and the New York State Department of Environmental Conservation (NYSDEC). The objective of this paper is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL

  2. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    Directory of Open Access Journals (Sweden)

    Beškoski Vladimir P.

    2012-01-01

    Full Text Available The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of biological systems to destroy and reduce the concentrations of hazardous waste from contaminated sites, is an evolving technology for the removal and degradation of petroleum hydrocarbons as well as industrial solvents, phenols and pesticides. Microorganisms are the main bioremediation agents due to their diverse metabolic capacities. In order to enhance the rate of pollutant degradation the technology optimizes the conditions for the growth of microorganisms present in soil by aeration, nutrient addition and, if necessary, by adding separately prepared microorganisms cultures. The other factors that influence the efficiency of process are temperature, humidity, presence of surfactants, soil pH, mineral composition, content of organic substance of soil as well as type and concentration of contaminant. This paper presents a review of our ex situ bioremediation procedures successfully implemented on the industrial level. This technology was used for treatment of soils contaminated by crude oil and its derivatives originated from refinery as well as soils polluted with oil fuel and transformer oil.

  3. Spatio-temporal variation in soil derived nitrous oxide emissions under sugarcane

    International Nuclear Information System (INIS)

    Huang, Xiaodong; Grace, Peter; Mengersen, Kerrie; Weier, Keith

    2011-01-01

    Nitrous oxide (N 2 O) is a significant greenhouse gas with a global warming potential that is 300 times than that of carbon dioxide. Soil derived N 2 O emissions usually display a high degree of spatial and temporal variability because of their dependence on soil chemical and physical properties, and climate dependent environmental factors. However, there is little research that incorporates spatial dependence in the estimation of N 2 O emissions allowing for environmental factors in the same model. This study aims to examine the impact of two environmental factors (soil temperature and soil moisture) on N 2 O emissions and explore the spatial structure of N 2 O in the sub-tropical South East Queensland region of Australia. The replicated data on N 2 O emissions and soil properties were collected at a typical sugarcane land site covering 25 uniform grid points across 3600 m 2 between October 2007 and September 2008. A Bayesian conditional autoregressive (CAR) model was used to model spatial dependence. Results showed that soil moisture and soil temperature appeared to have substantially different effects on N 2 O emissions after taking spatial dependence into account in the four seasons. There was a substantial variation in the spatial distribution of N 2 O emission in the different seasons. The high N 2 O emission regions were accompanied by high uncertainty and changed in varying seasons in this study site. Spatial CAR models might be more plausible to elucidate and account for the uncertainty arising from unclear variables and spatial variability in the assessment of N 2 O emissions in soils, and more accurately identify relationships with key environmental factors and help to reduce the uncertainty of the soil parameters. - Highlights: → Soil moisture and soil temperature have substantially different effects on N 2 O emissions across four seasons of emissions. → High N 2 O emissions were associated with high uncertainty and varied between seasons.

  4. Suitability of soils of the university of Nigeria, Nsukka for the ...

    African Journals Online (AJOL)

    The Nkpologu series of valley bottom, plain and gentle slopes (0-6%) are suitable due to favorable topography, moderately heavy soil textures (sandy clay loam to sandy loam at the topsoil, and sandy clay at the subsoil), and relative soil fertility (with average topsoil % base sat. on the basis of ECEC of 45.08% and O.M. ...

  5. Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF's Integrated Forecast System and the TMI soil moisture data set

    Science.gov (United States)

    Drusch, M.

    2007-02-01

    Satellite-derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analyzed from the modeled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. For this study, three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been performed for the 2-month period of June and July 2002: a control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating TMI (TRMM Microwave Imager) derived soil moisture over the southern United States. In this experimental run the satellite-derived soil moisture product is introduced through a nudging scheme using 6-hourly increments. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analyzed in the nudging experiment is the most accurate estimate when compared against in situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage.

  6. Soil seal development under simulated rainfall: Structural, physical and hydrological dynamics

    Science.gov (United States)

    Armenise, Elena; Simmons, Robert W.; Ahn, Sujung; Garbout, Amin; Doerr, Stefan H.; Mooney, Sacha J.; Sturrock, Craig J.; Ritz, Karl

    2018-01-01

    This study delivers new insights into rainfall-induced seal formation through a novel approach in the use of X-ray Computed Tomography (CT). Up to now seal and crust thickness have been directly quantified mainly through visual examination of sealed/crusted surfaces, and there has been no quantitative method to estimate this important property. X-ray CT images were quantitatively analysed to derive formal measures of seal and crust thickness. A factorial experiment was established in the laboratory using open-topped microcosms packed with soil. The factors investigated were soil type (three soils: silty clay loam - ZCL, sandy silt loam - SZL, sandy loam - SL) and rainfall duration (2-14 min). Surface seal formation was induced by applying artificial rainfall events, characterised by variable duration, but constant kinetic energy, intensity, and raindrop size distribution. Soil porosities derived from CT scans were used to quantify the thickness of the rainfall-induced surface seals and reveal temporal seal micro-morphological variations with increasing rainfall duration. In addition, the water repellency and infiltration dynamics of the developing seals were investigated by measuring water drop penetration time (WDPT) and unsaturated hydraulic conductivity (Kun). The range of seal thicknesses detected varied from 0.6 to 5.4 mm. Soil textural characteristics and OM content played a central role in the development of rainfall-induced seals, with coarser soil particles and lower OM content resulting in thicker seals. Two different trends in soil porosity vs. depth were identified: i) for SL soil porosity was lowest at the immediate soil surface, it then increased constantly with depth till the median porosity of undisturbed soil was equalled; ii) for ZCL and SL the highest reduction in porosity, as compared to the median porosity of undisturbed soil, was observed in a well-defined zone of maximum porosity reduction c. 0.24-0.48 mm below the soil surface. This

  7. soil failure crescent radii measurement for draft in tillage study

    African Journals Online (AJOL)

    user

    1986-09-01

    Sep 1, 1986 ... SCHOOL OF ENGINEERING AND ENGINEERING TECHNOLOGY. FEDERAL UNIVERSITY OF TECHNOLOGY. OWERRI. ABSTRACT. Field clay loam and sandy loam soils were tilled with a chisel .... modified earth moving equation proposed by Mckyes and All was: ... applications of analytical mechanics.

  8. Changes in Fire-Derived Soil Black Carbon Storage in a Sub-humid Woodland

    Science.gov (United States)

    White, J. D.; Yao, J.; Murray, D. B.; Hockaday, W. C.

    2014-12-01

    Fire-derived black carbon (BC) in soil, including charcoal, represents a potentially important fraction of terrestrial carbon cycling due to its presumed long persistence in soil. Interpretation of site BC retention is important for assessing feedbacks to ecosystem processes including nutrient and water cycling. However, interaction between vegetation disturbance, BC formation, and off site transport may exist that complicate interpretation of BC addition to soils from wildfire or prescribed burns directly. To investigate the relationship between disturbance and site retention on soil BC, we determined BC concentrations for a woodland in central Texas, USA, from study plots in hilly terrain with a fire scar dendrochronology spanning 100 years. BC values were determined from 13C nuclear magnetic resonance (NMR) spectroscopy. Estimated values showed mean BC concentration of 2.73 ± 3.06 g BC kg-1 (0.91 ± 0.51 kg BC m-2) for sites with fire occurrence within the last 40 years compared with BC values of1.21 ± 1.70 g BC kg-1 soil (0.18 ± 0.14 kg BC m-2) for sites with fire 40 - 100 years ago. Sites with no tree ring evidence of fire during the last 100 years had the lowest mean soil BC concentration of 0.05 ± 0.11 g BC kg-1 (0.02 ± 0.03 kg BC m-2). Molecular proxies of stability (lignin/N) and decomposition (Alkyl C/O-Alky C) showed no differences across the sites, indicating that low potential for BC mineralization. Modeled soil erosion and time since fire from fire scar data showed that soil BC concentrations were inversely correlated. A modified the ecosystem process model, Biome-BGC, was also used simulate the effects of fire disturbance with different severities and seasonality on C cycling related to the BC production, effect on soil water availability, and off-site transport. Results showed that BC impacts on ecosystem processes, including net ecosystem exchange and leaf area development, were predominantly related to fire frequency. Site BC loss rates were

  9. Development and Rainfed Paddy Soils Potency Derived from Lacustrine Material in Paguyaman, Gorontalo

    Directory of Open Access Journals (Sweden)

    Nurdin

    2011-09-01

    Full Text Available Rainfed paddy soils that are derived from lacustrine and include of E4 agroclimatic zone have many unique properties and potentially for paddy and corn plantations. This sreseach was aimed to: (1 study the soil development of rainfed paddy soils derived from lacustrine and (2 evaluate rainfed paddy soils potency for paddy and corn in Paguyaman. Soil samples were taken from three profiles according to toposequent, and they were analyzed in laboratory. Data were analyzed with descriptive-quantitative analysis. Furthermore, assessment on rainfed paddy soils potency was conducted with land suitability analysis using parametric approach. Results indicate that all pedon had evolved with B horizons structurization. However, pedon located on the summit slope was more developed and intensely weathered than those of the shoulder and foot slopes.The main pedogenesis in all pedons were through elluviation, illuviation, lessivage, pedoturbation, and gleization processes. The main factors of pedogenesis were climate, age (time and topography factors. Therefore, P1 pedons are classified as Ustic Endoaquerts, fine, smectitic, isohypertermic; P2 as Vertic Endoaquepts, fine, smectitic, isohypertermic; and P3 as Vertic Epiaquepts, fine, smectitic, isohypertermic. Based on the potentials of the land, the highest of land suitability class (LSC of land utilization type (LUT local paddy was highly suitable (S1, while the lowest one was not suitable with nutrient availability as the limiting factor (Nna. The highest LCS of paddy-corn LUT was marginally suitable with water availability as the limiting factor (S3wa, while the lower LSC was not suitable with nutrient availabily as the limiting factor (Nna.

  10. Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity.

    Science.gov (United States)

    Ohno, T

    2001-01-01

    Previous studies have suggested that phenolic acids from legume green manures may contribute to weed control through allelopathy. The objectives of this study were to investigate the oxidation reactions of phenolic acids in soil and to determine the subsequent effects of oxidation upon phytotoxicity. Soils were reacted for 18 h with 0.25 mmol L(-1) benzoic and cinnamic acid derivative solutions and Mn release from the suspension was used as a marker for phenolic acid oxidation. The extent of oxidation in soil suspensions was in the order of 3,4dihydroxy- > 4-hydroxy-3-methoxy- > 4-hydroxy-approximately 2-hydroxy-substituted benzoic and cinnamic acids. The same ranking was observed for cyclic voltammetry peak currents of the cinnamic acid derivatives. This suggests that the oxidation of phenolic acids is controlled by the electron transfer step from the sorbed phenolic acid to the metal oxide. A bioassay experiment showed that the 4-hydroxy-, 4-hydroxy-3-methoxy-, and 3,4-dihydroxy-substituted cinnamic acids were bioactive at 0.25 mmol L(-1) concentration. Reaction with soil for 18 h resulted in the elimination of bioactivity of these three cinnamic acids at the 5% significance level. The oxidative reactivity of phenolic acids may limit the potential of allelopathy as a component of an integrated weed management system. However, the initial phytotoxicity after soil incorporation may coincide with the early, critical stage of weed emergence and establishment, so that allelopathic phenolic acids may still play a role in weed management despite their reactivity in soil systems.

  11. Development of Soil Derived Concentration Guidance Levels for Decommissioning at Overseas Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Wook; Yoon, Suk Bon; Kim, Jeongju [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    In Korea, the criteria are expected to be given in terms of dose as in US and Spain. However, since dose cannot be measured, corresponding measurable concentration limits, so-called Derived Concentration Guidance Levels (DCGLs), should be developed for each radionuclide which is expected to be present in the site. Also, as they serve as a goal of decommissioning and direct dismantling and decontamination methods applicable to the site, DCGLs should be developed in the early phase of decommissioning. This paper describes how each overseas nuclear power plant developed its site-specific Soil DCGLs: what kind of post closure use of the site (scenario) was assumed and how the site-specific Soil DCGLs were calculated based on the scenario assumed for each plant. Through this, it is intended to derive lessons learned which will be instructive for future decommissioning of domestic nuclear power plants including Kori Unit 1. It is very important to have as good under-standing as possible of characteristics of the site by collection of relevant information and data in order to apply a scenario which is most foreseeable and plausible for a site to be decommissioned and to provide site-specific inputs to the calculation of the Soil DCGLs. These efforts will help to have not-overly conservative values for the Soil DCGLs, thus thereby reducing the costs and time needed for performing the decommissioning.

  12. Emissions of nitrous oxide from Irish arable soils: effects of tillage and reduced N input

    DEFF Research Database (Denmark)

    Abdalla, M.; Jones, M.B.; Ambus, Per

    2010-01-01

    and reduced N fertilizer on seasonal fluxes and emission factors of N2O and to study the relationship between crop yield and N-induced fluxes of N2O. The soil is classified as a sandy loam with a pH of 7.4 and a mean organic carbon and nitrogen content at 15 cm of 19 and 1.9 g kg(-1) dry soil, respectively....... Reduced tillage had no significant effect on N2O fluxes from soils or crop grain yield. Multiple regression analysis revealed that soil moisture and an interaction between soil moisture and soil nitrate are the main significant factors affecting N2O flux. The derived emission factor was 0...... nitrogen fertilizer by 50% compared to the normal field rate, N2O emissions could be reduced by 57% with no significant decrease on grain yield or quality. This was consistent over the 2 years of measurements....

  13. Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil

    International Nuclear Information System (INIS)

    Du Laing, G.; Vanthuyne, D.R.J.; Vandecasteele, B.; Tack, F.M.G.; Verloo, M.G.

    2007-01-01

    Options for wetland creation or restoration might be limited because of the presence of contaminants in the soil. The influence of hydrological management on the pore water concentrations of Cd, Cr, Cu, Fe, Mn, Ni and Zn in the upper soil layer of a contaminated overbank sedimentation zone was investigated in a greenhouse experiment. Flooding conditions led to increased Fe, Mn, Ni and Cr concentrations and decreased Cd, Cu and Zn concentrations in the pore water of the upper soil layer. Keeping the soil at field capacity resulted in a low pore water concentration of Fe, Mn and Ni while the Cd, Cu, Cr and Zn concentrations increased. Alternating hydrological conditions caused metal concentrations in the pore water to fluctuate. Formation and re-oxidation of small amounts of sulphides appeared dominant in determining the mobility of Cd, Cu, and to a lesser extent Zn, while Ni behaviour was consistent with Fe/Mn oxidation and reduction. These effects were strongly dependent on the duration of the flooded periods. The shorter the flooded periods, the better the metal concentrations could be linked to the mobility of Ca in the pore water, which is attributed to a fluctuating CO 2 pressure. - The hydrological regime is a key factor in determining the metal concentration in the pore water of a contaminated sediment-derived soil

  14. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    Science.gov (United States)

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S.; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil. PMID:23844412

  15. Jatropha curcas L. root structure and growth in diverse soils.

    Science.gov (United States)

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  16. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    Directory of Open Access Journals (Sweden)

    Ofelia Andrea Valdés-Rodríguez

    2013-01-01

    Full Text Available Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots. The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14±5% (mean ± standard deviation. Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  17. Soil solution phosphorus turnover: derivation, interpretation, and insights from a global compilation of isotope exchange kinetic studies

    Science.gov (United States)

    Helfenstein, Julian; Jegminat, Jannes; McLaren, Timothy I.; Frossard, Emmanuel

    2018-01-01

    The exchange rate of inorganic phosphorus (P) between the soil solution and solid phase, also known as soil solution P turnover, is essential for describing the kinetics of bioavailable P. While soil solution P turnover (Km) can be determined by tracing radioisotopes in a soil-solution system, few studies have done so. We believe that this is due to a lack of understanding on how to derive Km from isotopic exchange kinetic (IEK) experiments, a common form of radioisotope dilution study. Here, we provide a derivation of calculating Km using parameters obtained from IEK experiments. We then calculated Km for 217 soils from published IEK experiments in terrestrial ecosystems, and also that of 18 long-term P fertilizer field experiments. Analysis of the global compilation data set revealed a negative relationship between concentrations of soil solution P and Km. Furthermore, Km buffered isotopically exchangeable P in soils with low concentrations of soil solution P. This finding was supported by an analysis of long-term P fertilizer field experiments, which revealed a negative relationship between Km and phosphate-buffering capacity. Our study highlights the importance of calculating Km for understanding the kinetics of P between the soil solid and solution phases where it is bioavailable. We argue that our derivation can also be used to calculate soil solution turnover of other environmentally relevant and strongly sorbing elements that can be traced with radioisotopes, such as zinc, cadmium, nickel, arsenic, and uranium.

  18. Enhanced degradation of spiro-insecticides and their leacher enol derivatives in soil by solarization and biosolarization techniques.

    Science.gov (United States)

    Fenoll, José; Garrido, Isabel; Vela, Nuria; Ros, Caridad; Navarro, Simón

    2017-04-01

    The leaching potential of three insecticides (spirodiclofen, spiromesifen, and spirotetramat) was assessed using disturbed soil columns. Small quantities of spirodiclofen and spiromesifen were detected in leachate fraction, while spirotetramat residues were not found in the leachates. In addition, the transformation products (enol derivatives) are relatively more mobile than the parent compounds and may leach into groundwater. Moreover, the use of disinfection soil techniques (solarization and biosolarization) to enhance their degradation rates in soil was investigated. The results show that both practices achieved a reduction in the number of juvenile nematodes, enhancing in a parallel way degradation rates of the insecticides and their enol derivatives as compared with the non-disinfected soil. This behavior can be mainly attributed to the increase in soil temperature and changes in microbial activity. All insecticides showed similar behavior under solarization and biosolarization conditions. As a consequence, both agronomic techniques could be considered as suitable strategies for detoxification of soils polluted with the studied pesticides.

  19. X-ray CT-Derived Soil Characteristics Explain Varying Air, Water, and Solute Transport Properties across a Loamy Field

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Katuwal, Sheela; Møldrup, Per

    2016-01-01

    -derived parameters by using a best subsets regression analysis. The regression coefficients improved using CTmatrix, limiting macroporosity, and genus density, while the best model for t0.05 used CTmatrix only. The scanning resolution and the time for soil structure development after mechanical activities could......The characterization of soil pore space geometry is important for explaining fluxes of air, water, and solutes through soil and understanding soil hydrogeochemical functions. X-ray computed tomography (CT) can be applied for this characterization, and in this study CT-derived parameters were used...... to explain water, air, and solute transport through soil. Forty-five soil columns (20 by 20 cm) were collected from an agricultural field in Estrup, Denmark, and subsequently scanned using a medical CT scanner. Nonreactive tracer leaching experiments were performed in the laboratory along with measurements...

  20. Frequent fire promotes diversity and cover of biological soil crusts in a derived temperate grassland.

    Science.gov (United States)

    O'Bryan, Katharine E; Prober, Suzanne Mary; Lunt, Ian D; Eldridge, David J

    2009-04-01

    The intermediate disturbance hypothesis (IDH) predicts that species diversity is maximized at moderate disturbance levels. This model is often applied to grassy ecosystems, where disturbance can be important for maintaining vascular plant composition and diversity. However, effects of disturbance type and frequency on cover and diversity of non-vascular plants comprising biological soil crusts are poorly known, despite their potentially important role in ecosystem function. We established replicated disturbance regimes of different type (fire vs. mowing) and frequency (2, 4, 8 yearly and unburnt) in a high-quality, representative Themeda australis-Poa sieberiana derived grassland in south-eastern Australia. Effects on soil crust bryophytes and lichens (hereafter cryptogams) were measured after 12 years. Consistent with expectations under IDH, cryptogam richness and abundance declined under no disturbance, likely due to competitive exclusion by vascular plants as well as high soil turnover by soil invertebrates beneath thick grass. Disturbance type was also significant, with burning enhancing richness and abundance more than mowing. Contrary to expectations, however, cryptogam richness increased most dramatically under our most frequent and recent (2 year) burning regime, even when changes in abundance were accounted for by rarefaction analysis. Thus, from the perspective of cryptogams, 2-year burning was not an adequately severe disturbance regime to reduce diversity, highlighting the difficulty associated with expression of disturbance gradients in the application of IDH. Indeed, significant correlations with grassland structure suggest that cryptogam abundance and diversity in this relatively mesic (600 mm annual rainfall) grassland is maximised by frequent fires that reduce vegetation and litter cover, providing light, open areas and stable soil surfaces for colonisation. This contrasts with detrimental effects of 2-year burning on native perennial grasses

  1. Plasticity and density-moisture-resistance relations of soils amended with fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Mapfuno, E.; Chanasyk, D.S. [University of Alberta, Edmonton, AB (Canada). Dept. of Renewable Resources

    1998-06-01

    The objective of this study was to investigate the impact of fly ash amendments on the plasticity, water retention and penetration resistance-density-moisture relationships of three soils of sandy loam, loam and clay loam textures in order to determine the potential compaction of these soil/fly ash mixtures if they were worked at different moisture ranges. For all three soils the addition of fly ash decreased the plasticity index, but slightly increased the Proctor maximum density. This implies that fly ash amendments reduce the range of moisture within which soils are most susceptible to compaction. However, for the sandy loam and loam textured soils amended with fly ash, cultivation must be avoided at moisture contents close to field capacity since maximum densification occurs at these moisture contents. In all three soils the addition of fly ash increased water retention, especially in the sandy loam. Fly ash amendments increased penetration resistance of the clay loam, but increased penetration resistance of the sandy loam.

  2. Comparative evaluation of the effect of rock phosphate and monoammonium phosphate on plant P: Nutrition in Sod-podzolic and peat soils

    International Nuclear Information System (INIS)

    Bogdevitch, I.; Tarasiuk, S.; Putyatin, Yu.; Seraya, T.

    2002-01-01

    The direct application of finely ground rock phosphate (RP) imported from Russia has been suggested as an alternative to the almost twice more expensive water-soluble monoammonium phosphate (MAP) on acid (moderately limed) Sod-podzolic and peat soils. A pot experiment was conducted in 1997-1998 for a comparative evaluation of P availability from RP and MAP using the 32 P isotope dilution technique. The lupine was grown on Sod-podzolic silty clay loam soil with pH 6.0 and a medium level of available P. Ryegrass plants were grown on peat soil with pH 4.9 and a low level of native soil P fertility. Application of RP and MAP at a rate of 40 mg P/kg soil supplied similar moderate mount of P to lupine plants. The Pdff values, i.e. the fractions of P in the plants derived from the applied RP and MAP, were 7.4 and 8.4%, respectively. The application of the same P fertilizers to the peat soil had different effects on P nutrition of ryegrass plants. The Pdff values were 14.9% for RP and 22.1% for MAP. It may be concluded that for most annual crops water-soluble P forms such as MAP should be preferred. Direct application of RP is recommended for plants with an adequate rhizosphere ability to utilize P, such as lupine on acid Sod-podzolic silty clay loam soils (pH 137 Cs on contaminated, moderately limed Sod-podzolic silty clay loam and peat soils. These soils are widely spread in the radioactive contaminated area of Belarus after the Chernobyl accident. Direct application of RP may be one of the effective countermeasures for the decrease of 137 Cs transfer from the contaminated acid soils to crop production. (author)

  3. Characterization of tillage effects on soil permeability using different measures of macroporosity derived from tension infiltrometry

    Science.gov (United States)

    Bodner, G.; Schwen, A.; Scholl, P.; Kammerer, G.; Buchan, G.; Kaul, H.-P.; Loiskandl, W.

    2010-05-01

    Soil macroporosity is a highly dynamic property influenced by environmental factors, such as raindrop impact, wetting-drying and freezing-thawing cycles, soil biota and plant roots, as well as agricultural management measures. Macroporosity represents an important indicator of soil physical quality, particularly in relation to the site specific water transmission properties, and can be used as a sensitive measure to assess soil structural degradation. Its quantification is also required for the parameterization of dual porosity models that are frequently used in environmental impact studies on erosion and solute (pesticide, nitrate) leaching. The importance of soil macroporosity for the water transport properties of the soil and its complexity due to high spatio-temporal heterogeneity make its quantitative assessment still a challenging task. Tension infiltrometers have been shown to be adequate measurement devices to obtain data in the near-saturated range of water flow where structural (macro)pores are dominating the transport process. Different methods have been used to derive water transmission characteristics from tension infiltrometer measurements. Moret and Arrúe (2007) differentiated between using a minimum equivalent capillary pore radius and a flow weighted mean pore radius to obtain representative macropore flow properties from tension infiltrometer data. Beside direct approaches based on Wooding's equation, also inverse methods have been applied to obtain soil hydraulic properties (Šimůnek et al. 1998). Using a dual porosity model in the inverse procedure allows estimating parameters in the dynamic near-saturated range by numerical optimization to the infiltration measurements, while fixing parameters in the more stable textural range of small pores using e.g. pressure plate data or even pedotransfer functions. The present work presents a comparison of quantitative measures of soil macroporosity derived from tension infiltrometer data by different

  4. Cs-137 soil to plant transfer factors derived from pot experiments and field studies

    International Nuclear Information System (INIS)

    Horak, O.; Gerzabek, M.H.; Mueck, K.

    1989-11-01

    Soil to plant transfer factors (TF) of 137 Cs for different crop plants were determined in pot experiments, in outdoor experiments with plastic containers of 50 l volume, and in field studies. In all cases the soil contamination with 137 Cs resulted from fallout after the Chernobyl reactor accident. Mean TF derived for outdoor plants on a fresh weight basis, ranged from 0,0017 (leaf vegetables) to 0,059 (rye straw) and showed characteristic differences depending on plant part and species. Generally, for fruits and potato tubers a lower TF was found than for vegetative plant parts. Moreover, the data were compared with those from former experiments, carried out before the Chernobyl accident. There is a good agreement for cereals (with exception of rye) fruit vegetables and fodder crops, while actual TF are substantially lower for potatoes, leaf and root vegetables, but higher for rye. A significant negative correlation was observed between the TF and the soil activity concentrations for 137 Cs. In container experiments the TF were found to be influenced mainly by the clay content of the soil. 11 refs., 2 figs., 2 tabs. (Authors)

  5. Derivation of plant-soil relationships for dose assessment on Bikini Atoll

    International Nuclear Information System (INIS)

    Colsher, C.S.

    1976-11-01

    A radiological survey of the terrestrial environment of Bikini and Eneu Islands (Bikini Atoll) was conducted in June 1975 to evaluate the potential radiation dose to the returning Bikini population. This report presents measurements of the radionuclide concentration in soil profiles and in dominant species of edible and nonedible indicator plants and describes the use of these data to derive relationships to predict the plant uptake of radionuclides from soil. Soil-plant concentration factors together with leaf-leaf and fruit-leaf concentration ratios for indicator and edible plant species from the same area are calculated to quantitatively assess and compare the uptake of 90 Sr, 137 Cs, and 239 ' 240 Pu. In general, the concentration factors for 137 Cs in terrestrial vegetation are greater than those for 90 Sr and the concentration factors for both these nuclides exceed those for 239 ' 240 Pu by ten to one hundred-fold. Uptake of 90 Sr and 239 ' 240 Pu by fruit is less than that by mature leaves; however, the opposite is true for 137 Cs. The relative contribution of the individual plant species to the internal dose to man varies with the nuclide. The use of concentration factors and concentration ratios to predict nuclide concentrations in fruit from those in soil or leaves is prescribed

  6. Soil-landscape modelling using fuzzy c-means clustering of attribute data derived from a Digital Elevation Model (DEM).

    NARCIS (Netherlands)

    Bruin, de S.; Stein, A.

    1998-01-01

    This study explores the use of fuzzy c-means clustering of attribute data derived from a digital elevation model to represent transition zones in the soil-landscape. The conventional geographic model used for soil-landscape description is not able to properly deal with these. Fuzzy c-means

  7. Assimilation of SMOS-derived soil moisture in a fully integrated hydrological and soil-vegetation-atmosphere transfer model in Western Denmark

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois; Madsen, Henrik; Stisen, Simon

    2014-01-01

    -derived soil moisture assimilation in a catchment scale model is typically restricted by two challenges: (1) passive microwave is too coarse for direct assimilation and (2) the data tend to be biased. The solution proposed in this study is to disaggregate the SMOS bias using a higher resolution land cover...... classification map that was derived from Landsat thermal images. Using known correlations between SMOS bias and vegetation type, the assimilation filter is adapted to calculate biases online, using an initial bias estimate. Real SMOS-derived soil moisture is assimilated in a precalibrated catchment model...

  8. Derivation of 137Cs deposition density from measurement of 137Cs inventories in undisturbed soils

    International Nuclear Information System (INIS)

    Hien, P.D.; Hiep, H.T.; Quang, N.H.; Huy, N.Q.; Binh, N.T.; Hai, P.S.; Long, N.Q.; Bac, V.T

    2012-01-01

    The 137 Cs inventories in undisturbed soils were measured for 292 locations across the territory of Vietnam. the logarithmic inventory values were regressed against characteristics of sampling sites, such as geographical coordinates, annual rainfall and physico-chemical parameters of soil. The regression model containing latitude and annual rainfall as determinants could explain 76% of the variations in logarithmic inventory values across the territory. The model part was interpreted as the logarithmic 137 Cs deposition density. At the 95% confidence level, 137 Cs deposition density could be predicted be the model ± 7% relative uncertainty. the latitude mean 137 Cs deposition density increases northward from 237 Bq m -2 to 1097 Bq m -2 , while the corresponding values derived from the UNSCEAR (1969) global pattern are 300 Bq m -2 and 600 Bq m -2 . High 137 Cs inputs were found in high-rainfall areas in northern and central parts of the territory. (author)

  9. Isotope derived criteria for the measurement of soil and fertilizer micronutrient availability

    International Nuclear Information System (INIS)

    Tiller, K.G.

    1975-01-01

    Field experiments on long-lived gamma-emitting isotopes such as zinc-65 are unlikely to be acceptable because of health hazards, costs, and long-term losses of experimental field sites after completion of the trials. The use of glasshouse experiments for the assessment, by isotopic dilution procedures, of the efficiencies of different fertilizer formulations and their agronomic use is more advantageous. The measurement of nutrient absorbed from the fertilizer need not be restricted to the use of radioactively labelled fertilizers with its attendant technological problems in manufacture, transport, etc. Efficiency of locally available fertilizers, farm and industrial byproducts, could be related to the labelled native soil source of zinc. The dose rate of carrier-free zinc required can be minimized by limiting pot size and restricting fertilizer rates to realistic levels. Radioisotope derived criteria, while clearly valuable in rice micronutrient studies, require complementary field studies involving soil and plant analysis and fertilizer evaluation under conditions of local farm management

  10. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    Science.gov (United States)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  11. Toxicity of Fipronil in Mississippi Soil Types Against Reticulitermes flavipes (Isoptera: Rhinotermitidae)

    Science.gov (United States)

    J. E. Mulrooney; P. D. Gerard

    2007-01-01

    Three soils (a silt loam, loamy sand, sandy loam) found in Mississippi and pure silica sand were treated with fipronil and bioassayed using eastern subterranean termites, Reticulitermes flavipes. Soils were treated with aqueous solutions of Termidor (fipronil) at concentrations of 0, 0.12, 0.25,2.5, 5.0 and 20.0 ppm (wt AI: wt soil) that brought the soils to 15%...

  12. Deriving soil function maps to assess related ecosystem services using imaging spectroscopy in the Lyss agricultural area, Switzerland

    Science.gov (United States)

    Diek, Sanne; de Jong, Rogier; Braun, Daniela; Böhler, Jonas; Schaepman, Michael

    2014-05-01

    Soils play an important role in the benefits offered by ecosystems services. In densely populated Switzerland soils are a scarce resource, with high pressure on services ranging from urban expansion to over-utilization. Key change drivers include erosion, soil degradation, land management change and (chemical) pollution, which should be taken into consideration. Therefore there is an emerging need for an integrated, sustainable and efficient system assessing the management of soil and land as a resource. The use of remote sensing can offer spatio-temporal and quantitative information of extended areas. In particular imaging spectroscopy has shown to perfectly complement existing sampling schemes as secondary information for digital soil mapping. Although only the upper-most layer of soil interacts with light when using reflectance spectroscopy, it still can offer valuable information that can be utilized by farmers and decision makers. Fully processed airborne imaging spectrometer data from APEX as well as land cover classification for the agricultural area in Lyss were available. Based on several spectral analysis methods we derived multiple soil properties, including soil organic matter, soil texture, and mineralogy; complemented by vegetation parameters, including leaf area index, chlorophyll content, pigment distribution, and water content. The surface variables were retrieved using a combination of index-based and physically-based retrievals. Soil properties in partly to fully vegetated areas were interpolated using regression kriging based methods. This allowed the continuous assessment of potential soil functions as well as non-contiguous maps of abundances of combined soil and vegetation parameters. Based on a simple regression model we could make a rough estimate of ecosystem services. This provided the opportunity to look at the differences between the interpolated soil function maps and the non-contiguous (but combined) vegetation and soil function maps

  13. A New Sesquiterpenoid Derivative from the Coastal Saline Soil Fungus Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Desheng Liu

    2016-05-01

    Full Text Available A new sesquiterpenoid derivative, named aspergiketone (1, along with seven known compounds (2-8 were isolated from the coastal saline soil fungus Aspergillus fumigatus. Their structures were elucidated by spectroscopic analysis, and by comparison of experimental and reported data. The absolute configuration of compound 1 was defined by X-ray diffraction analysis. Compound 1 was cytotoxic towards HL-60 and A549 cell lines with IC 50 values of 12.4 and 22.1 μ M , respectively.

  14. Mucilage from seeds of chia (Salvia hispanica L.) used as soil conditioner; effects on the sorption-desorption of four herbicides in three different soils.

    Science.gov (United States)

    Di Marsico, A; Scrano, L; Amato, M; Gàmiz, B; Real, M; Cox, L

    2018-06-01

    The objective of this work was to determine the effect of the mucilage extracted from Chia seeds (Salvia hispanica L.) as soil amendment on soil physical properties and on the sorption-desorption behaviour of four herbicides (MCPA, Diuron, Clomazone and Terbuthylazine) used in cereal crops. Three soils of different texture (sandy-loam, loam and clay-loam) were selected, and mercury intrusion porosimetry and surface area analysis were used to examine changes in the microstructural characteristics caused by the reactions that occur between the mucilage and soil particles. Laboratory studies were conducted to characterise the selected herbicides with regard their sorption on tested soils added or not with the mucilage. Mucilage amendment resulted in a reduction in soil porosity, basically due to a reduction in larger pores (radius>10μm) and an important increase in finer pores (radius<10μm) and in partcles' surface. A higher herbicide sorption in the amended soils was ascertained when compared to unamended soils. The sorption percentage of herbicides in soils treated with mucilage increased in the order; sandy-loam. The increase in the organic carbon content upon amendment and the natural clay content of the soils are revealed to be responsible for the higher adsorption of Diuron when compared with Terbuthylazine, Clomazone and MCPA. Desorption of the herbicides was highly inhibited in the soils treated with mucilage; only Terbuthylazine showed a slight desorption in the case of loam and clay loam-soils. This study leads to the conclusion that mucilage from Chia seeds used as soil conditioner can reduce the mobility of herbicides tested in agricultural soils with different physico-chemical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. INFLUENCE OF VERMICOMPOST ON THE PHYSICO-CHEMICAL AND BIOLOGICAL PROPERTIES IN DIFFERENT TYPES OF SOIL ALONG WITH YIELD AND QUALITY OF THE PULSE CROP-BLACKGRAM

    Directory of Open Access Journals (Sweden)

    K. Parthasarathi, M. Balamurugan, L. S. Ranganathan

    2008-01-01

    Full Text Available Field experiments were conducted during 2002-2003 on clay loam, sandy loam and red loam soil at Sivapuri, Chidambaram, Tamil Nadu, to evaluate the efficacy of vermicompost on the physico-chemical and biological characteristics of the soils and on the yield and nutrient content of blackgram - Vigna mungo, in comparison to inorganic fertilizers nitrogen, phosphorous, potassium. Vermicompost had increased the pore space, reduced particle and bulk density, increased water holding capacity, cation exchange capacity, reduced pH and electrical conductivity, increased organic carbon content, available nitrogen, phosphorous, potassium and microbial population and activity in all the soil types, particularly clay loam. The yield and quality (protein and sugar content in seed of blackgram was enhanced in soils, particularly clay loam soil. On the contrary, the application of inorganic fertilizers has resulted in reduced porosity, compaction of soil, reduced carbon and reduced microbial activity.

  16. Carbon monoxide photoproduction: implications for photoreactivity of Arctic permafrost-derived soil dissolved organic matter.

    Science.gov (United States)

    Hong, Jun; Xie, Huixiang; Guo, Laodong; Song, Guisheng

    2014-08-19

    Apparent quantum yields of carbon monoxide (CO) photoproduction (AQY(CO)) for permafrost-derived soil dissolved organic matter (SDOM) from the Yukon River Basin and Alaska coast were determined to examine the dependences of AQY(CO) on temperature, ionic strength, pH, and SDOM concentration. SDOM from different locations and soil depths all exhibited similar AQY(CO) spectra irrespective of soil age. AQY(CO) increased by 68% for a 20 °C warming, decreased by 25% from ionic strength 0 to 0.7 mol L(-1), and dropped by 25-38% from pH 4 to 8. These effects combined together could reduce AQY(CO) by up to 72% when SDOM transits from terrestrial environemnts to open-ocean conditions during summer in the Arctic. A Michaelis-Menten kinetics characterized the influence of SDOM dilution on AQY(CO) with a very low substrate half-saturation concentration. Generalized global-scale relationships between AQY(CO) and salinity and absorbance demostrate that the CO-based photoreactivity of ancient permaforst SDOM is comparable to that of modern riverine DOM and that the effects of the physicochemical variables revealed here alone could account for the seaward decline of AQY(CO) observed in diverse estuarine and coastal water bodies.

  17. Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties

    International Nuclear Information System (INIS)

    Bending, Gary D.; Lincoln, Suzanne D.; Edmondson, Rodney N.

    2006-01-01

    The extent of within field variability in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican, and the role of intrinsic soil factors and technical errors in contributing to the variability, was investigated in sites on sandy-loam and clay-loam. At each site, 40 topsoil samples were taken from a 160x60 m area, and pesticides applied in the laboratory. Time to 25% dissipation (DT25) ranged between 13 and 61 weeks for diflufenican, 5.6 and 17.2 weeks for azoxystrobin, and 0.3 and 12.5 weeks for isoproturon. Variability in DT25 was higher in the sandy-loam in which there was also greatest variability in soil chemical and microbial properties. Technical error associated with pesticide extraction, analysis and lack of model fit during derivation of DT25 accounted for between 5.3 and 25.8% of the variability for isoproturon and azoxystrobin, but could account for almost all the variability for diflufenican. Azoxystrobin DT25, sorption and pH were significantly correlated. - Spatial variation determines risk assessment for pesticides in soil

  18. Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties

    Energy Technology Data Exchange (ETDEWEB)

    Bending, Gary D. [Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF (United Kingdom)]. E-mail: gary.bending@warwick.ac.uk; Lincoln, Suzanne D. [Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF (United Kingdom); Edmondson, Rodney N. [Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF (United Kingdom)

    2006-01-15

    The extent of within field variability in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican, and the role of intrinsic soil factors and technical errors in contributing to the variability, was investigated in sites on sandy-loam and clay-loam. At each site, 40 topsoil samples were taken from a 160x60 m area, and pesticides applied in the laboratory. Time to 25% dissipation (DT25) ranged between 13 and 61 weeks for diflufenican, 5.6 and 17.2 weeks for azoxystrobin, and 0.3 and 12.5 weeks for isoproturon. Variability in DT25 was higher in the sandy-loam in which there was also greatest variability in soil chemical and microbial properties. Technical error associated with pesticide extraction, analysis and lack of model fit during derivation of DT25 accounted for between 5.3 and 25.8% of the variability for isoproturon and azoxystrobin, but could account for almost all the variability for diflufenican. Azoxystrobin DT25, sorption and pH were significantly correlated. - Spatial variation determines risk assessment for pesticides in soil.

  19. Identification of Heavy Metal Pollution Derived From Traffic in Roadside Soil Using Magnetic Susceptibility.

    Science.gov (United States)

    Yang, Pingguo; Ge, Jing; Yang, Miao

    2017-06-01

    The study integrates surface and vertical distribution of magnetic susceptibility and heavy metal contents (Pb, Cu, Zn and Fe) to characterize the signature of vehicle pollutants in roadside soils at Linfen city, China. Sites with reforestation and without vegetation cover were investigated. The results showed that magnetic susceptibility and heavy metal contents were higher at the roadside without trees than in the reforest belt. The variations of magnetic susceptibility and heavy metal contents decreased both with distance and with depth. The maximum value was observed at 5-10 m away from the roadside edge. The vertical distribution in soil revealed accumulation of pollutants in 0-5 cm topsoils. The average contents were higher than the background values and in the order Fe (107.21 g kg -1 ), Zn (99.72 mg kg -1 ), Pb (90.99 mg kg -1 ), Cu (36.14 mg kg -1 ). Coarse multi domain grains were identified as the dominating magnetic particles. Multivariate statistical and SEM/EDX analyses suggested that the heavy metals derived from traffic sources. Trees act as efficient receptors and green barrier, which can reduce vehicle derived pollution.

  20. Derivation of ecological criteria for copper in land-applied biosolids and biosolid-amended agricultural soils.

    Science.gov (United States)

    Lu, Tao; Li, Jumei; Wang, Xiaoqing; Ma, Yibing; Smolders, Erik; Zhu, Nanwen

    2016-12-01

    The difference in availability between soil metals added via biosolids and soluble salts was not taken into account in deriving the current land-applied biosolids standards. In the present study, a biosolids availability factor (BAF) approach was adopted to investigate the ecological thresholds for copper (Cu) in land-applied biosolids and biosolid-amended agricultural soils. First, the soil property-specific values of HC5 add (the added hazardous concentration for 5% of species) for Cu 2+ salt amended were collected with due attention to data for organisms and soils relevant to China. Second, a BAF representing the difference in availability between soil Cu added via biosolids and soluble salts was estimated based on long-term biosolid-amended soils, including soils from China. Third, biosolids Cu HC5 input values (the input hazardous concentration for 5% of species of Cu from biosolids to soil) as a function of soil properties were derived using the BAF approach. The average potential availability of Cu in agricultural soils amended with biosolids accounted for 53% of that for the same soils spiked with same amount of soluble Cu salts and with a similar aging time. The cation exchange capacity was the main factor affecting the biosolids Cu HC5 input values, while soil pH and organic carbon only explained 24.2 and 1.5% of the variation, respectively. The biosolids Cu HC5 input values can be accurately predicted by regression models developed based on 2-3 soil properties with coefficients of determination (R 2 ) of 0.889 and 0.945. Compared with model predicted biosolids Cu HC5 input values, current standards (GB4284-84) are most likely to be less protective in acidic and neutral soil, but conservative in alkaline non-calcareous soil. Recommendations on ecological criteria for Cu in land-applied biosolids and biosolid-amended agriculture soils may be helpful to fill the gaps existing between science and regulations, and can be useful for Cu risk assessments in

  1. Changes in microbial community structure following herbicide (glyphosate) additions to forest soils

    Science.gov (United States)

    Alice W. Ratcliff; Matt D. Busse; Carol J. Shestak

    2006-01-01

    Glyphosate applied at the recommended field rate to a clay loam and a sandy loam forest soil resulted in few changes in microbial community structure. Total and culturable bacteria, fungal hyphal length, bacterial:fungal biomass, carbon utilization profiles (BIOLOG), and bacterial and fungal phospholipid fatty acids (PLFA) were unaffected 1, 3, 7, or 30 days...

  2. PHYSICOCHEMICAL PROPERTIES AS PREDICTORS OF ORGANIC CHEMICAL EFFECTS ON SOIL MICROBIAL RESPIRATION

    Science.gov (United States)

    Structure-activity analysis was used to evaluate the effects of 19 hazardous organic chemicals on microbial respiration in two slightly acidic soils (a Captina silt loam from Roane County Tennessee, and a McLaurin sandy loam from Stone County, Mississippi), both low in organic ca...

  3. Effects of soil physical properties on erodibility and infiltration ...

    African Journals Online (AJOL)

    The soil moisture count for plot A ranged between 9.54% to 14.56% while that of plot B range between 10.64% to 11.26%. The particle sizes analysis indicated that the soil type in plot A is mainly medium loam and predominantly sand clay loam in plot B. It is therefore concluded that, the study area is susceptible to erosion ...

  4. A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data

    Science.gov (United States)

    Leng, Pei; Li, Zhao-Liang; Duan, Si-Bo; Gao, Mao-Fang; Huo, Hong-Yuan

    2017-09-01

    Soil moisture has long been recognized as one of the essential variables in the water cycle and energy budget between Earth's surface and atmosphere. The present study develops a practical approach for deriving all-weather soil moisture using combined satellite images and gridded meteorological products. In this approach, soil moisture over the Moderate Resolution Imaging Spectroradiometer (MODIS) clear-sky pixels are estimated from the Vegetation Index/Temperature (VIT) trapezoid scheme in which theoretical dry and wet edges were determined pixel to pixel by China Meteorological Administration Land Data Assimilation System (CLDAS) meteorological products, including air temperature, solar radiation, wind speed and specific humidity. For cloudy pixels, soil moisture values are derived by the calculation of surface and aerodynamic resistances from wind speed. The approach is capable of filling the soil moisture gaps over remaining cloudy pixels by traditional optical/thermal infrared methods, allowing for a spatially complete soil moisture map over large areas. Evaluation over agricultural fields indicates that the proposed approach can produce an overall generally reasonable distribution of all-weather soil moisture. An acceptable accuracy between the estimated all-weather soil moisture and in-situ measurements at different depths could be found with an Root Mean Square Error (RMSE) varying from 0.067 m3/m3 to 0.079 m3/m3 and a slight bias ranging from 0.004 m3/m3 to -0.011 m3/m3. The proposed approach reveals significant potential to derive all-weather soil moisture using currently available satellite images and meteorological products at a regional or global scale in future developments.

  5. N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability

    Science.gov (United States)

    A.M. Weitza; E. Linderb; S. Frolkingc; P.M. Crillc; M. Keller

    2001-01-01

    We studied soil moisture dynamics and nitrous oxide (N2O) ¯uxes from agricultural soils in the humid tropics of Costa Rica. Using a splitplot design on two soils (clay, loam) we compared two crop types (annual, perennial) each unfertilized and fertilized. Both soils are of andic origin. Their properties include relatively low bulk density and high organic matter...

  6. Interaction Among Machine Traffic, Soil Physical Properties and Loblolly Pine Root Prolifereation in a Piedmont Soil

    Science.gov (United States)

    Emily A. Carter; Timothy P. McDonald

    1997-01-01

    The impact of forwarder traffic on soil physical properties was evaluated on a Gwinnett sandy loam, a commonly found soil of the Piedmont. Soil strength and saturated hydraulic conductivity were significantly altered by forwarder traffic, but reductions in air-filled porosity also occurred. Bulk density did not increase significantly in trafficked treatments. The...

  7. Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar.

    Science.gov (United States)

    Fang, Shen'en; Tsang, Daniel C W; Zhou, Fengsha; Zhang, Weihua; Qiu, Rongliang

    2016-04-01

    Currently, sludge pyrolysis has been considered as a promising technology to solve disposal problem of municipal sewage sludge, recover sludge heating value, sequester carbon and replenish nutrients in farmland soils. The resultant sludge-derived biochar (SDBC) is potentially an excellent stabilizing agent for metal species. This study applied the SDBC into four soils that had been contaminated in field with cationic Pb(II) and Cd(II)/Ni(II), and anionic Cr(VI) and As(III), respectively. The performance of metal stabilization under various operational and environmental conditions was evaluated with acid batch extraction and column leaching tests. Results indicated the SDBC could effectively stabilize these metals, which was favored by elevated temperature and longer aging. Periodic temperature decrease from 45 to 4 °C resulted in the release of immobilized Cr(VI) and As(III) but not Pb(II). However, a longer aging time offset such metal remobilization. This was possibly because more Pb was strongly bound and even formed stable precipitates, as shown by XRD and sequential extraction results. With increasing time, Cr(VI) was sorbed and partly reduced to Cr(III), while immobilized As(III) was co-oxidized to As(V) as indicated by XPS spectra. Column tests revealed that adding SDBC as a separate layer was unfavorable because the concentrated Cd(II) and Ni(II) in localized positions increased the peak levels of metal release under continuous acid leaching. In contrast, uniformly mixed SDBC could effectively delay the metal breakthrough and reduce their released amounts. Yet, a long-term monitoring may be required for evaluating the potential leaching risks and bioavailability/toxicity of these immobilized and transformed species in the SDBC-amended soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effect of Aggregate Structure on VOC Gas Adsorption onto Volcanic Ash Soil

    OpenAIRE

    濱本, 昌一郎

    2008-01-01

    The understanding of the gaseous adsorption process and the parameters of volatile organic compounds such as organic solvents or fuels onto soils is very important in the analysis of the transport or fate of these chemicals in soils. Batch adsorption experiments with six different treatments were conducted to determine the adsorption of isohexane, a gaseous aliphatic, onto volcanic ash soil (Tachikawa loam). The measured gas adsorption coefficient for samples of Tachikawa loam used in the fir...

  9. Effect of aging on the bioavailability and fractionation of arsenic in soils derived from five parent materials in a red soil region of Southern China

    International Nuclear Information System (INIS)

    Wang, Yanan; Zeng, Xibai; Lu, Yahai; Su, Shiming; Bai, Lingyu; Li, Lianfang; Wu, Cuixia

    2015-01-01

    The effects of aging time and soil parent materials on the bioavailability and fractionations of arsenic (As) in five red soils were studied. The results indicated that As bioavailability in all soils decreased during aging, especially with a sharp decline occurring in the first 30 days. After aging for 360 days, the highest available As concentration, which accounted for 12.3% of the total, was observed in soils derived from purple sandy shale. While 2.67% was the lowest proportion of the available As in soils derived from quaternary red clay. Furthermore, the best fit of the available As changing with aging time was obtained using the pseudo-second-order model (R"2 = 0.939–0.998, P < 0.05). Notably, Al oxides played a more crucial role (R"2 = 0.89, P<0.05) than did Fe oxides in controlling the rate of As aging. The non-specially and specially absorbed As constituted the primary forms of available As. - Highlights: • The soil derived from purple sandy shale had a relatively higher risk of As toxicity for agricultural production. • The best fit of the variations of available As during the aging time was obtained using the pseudo-second-order model. • Al oxides played a more crucial role than did Fe oxides in controlling the rate of As aging. - Al oxides played a more crucial role than did Fe oxides in controlling the rate of As aging in these red soils.

  10. Empirical Models for Power and Energy Requirements II : A Powered Implement Operation in Serdang Sandy Clay Loam, Malaysia

    Directory of Open Access Journals (Sweden)

    A. F. Kheiralla

    2017-12-01

    Full Text Available Power and energy requirements were measured with an instrumented tractor for rotary tilling in Serdang sandy clay loam soil.  The effects of travel speed and rotor speed upon the measured data were investigated.  Power model from orthogonal regression analysis was formulated based on linear and quadratic functions of travel speed and bite length.  Fuel consumption model from regression analysis was formulated based on linear tractor PTO power as well as linear equivalent tractor PTO power.  Fuel consumption rates predicted by ASAE D497.3 were found to be 25% to 28% overestimates of the values predicted by the model developed.  However, fuel consumption rates reported by OECD Tractor Test were found to be 1% to 9% lower than the fuel consumption rates predicted by the model developed.  A comparison of power and energy requirements for both powered and draught implements showed that the disk harrow was the most energy efficient implement in terms of fuel consumption and specific energy followed by the rotary tiller, disk plough and mouldboard.  Finally, average PTO power, fuel consumption, wheel slip, wheel power and specific energy for a powered implement are presented.

  11. A discrete element model for soil-sweep interaction in three different soils

    DEFF Research Database (Denmark)

    Chen, Y; Munkholm, Lars Juhl; Nyord, Tavs

    2013-01-01

    . To serve the model development, the sweep was tested in three different soils (coarse sand, loamy sand, and sandy loam). In the tests, soil cutting forces (draught and vertical forces) and soil disturbance characteristics (soil cross-section disturbance and surface deformation) resulting from the sweep...... were measured. The measured draught and vertical forces were used in calibrations of the most sensitive model parameter, particle stiffness. The calibrated particle stiffness was 0.75 × 103 N m−1 for the coarse sand, 2.75 × 103 N m−1 for the loamy sand, and 6 × 103 N m−1 for the sandy loam...

  12. Transformation of the herbicide [14C]glufosinate in soils

    International Nuclear Information System (INIS)

    Smith, A.E.

    1989-01-01

    The degradation of 2 μg/g [ 14 C]glufosinate (DL-homoalan-4-ylmethylphosphinic acid) was studied in clay, clay loam, and sandy loam soils at 85% field capacity and at 20 degree C. Over a 4-week period the soils were extracted and analyzed for transformation products by radiochemical and gas chromatographic techniques. In all soils there was release of [ 14 C]carbon dioxide and formation of [ 14 C]-3-(hydroxymethylphosphinyl)propionic acid (MPPA) as major degradation products. Within 21 days, about 55% of the applied 14 C herbicide had been transformed to MPPA in the sandy loam and 19% to [ 14 C]carbon dioxide. After 28 days, approximately 45% of the 14 C herbicide had been transformed to MPPA in the clay and clay loam and 10% released as [ 14 C]carbon dioxide. At all samplings, other 14 C transformation products appeared to be insignificant

  13. Migration of 137Cs and 90Sr in undisturbed soil profiles under controlled and close-to-real conditions

    International Nuclear Information System (INIS)

    Forsberg, S.; Rosen, K.; Fernandez, V.; Juhan, H.

    2000-01-01

    Migration of 137 Cs and 90 Sr in undisturbed soil was studied in large lysimeters three and four years after contamination, as part of a larger European project studying radionuclide soil-plant interactions. The lysimeters were installed in greenhouses with climate control and contaminated with radionuclides in an aerosol mixture, simulating fallout from a nuclear accident. The soil types studied were loam, silt loam, sandy loam and loamy sand. The soils were sampled to 30-40 cm depth in 1997 and 1998. The total deposition of 137 Cs ranged from 24 to 45 MBq/m 2 , and of 90 Sr from 23 to 52 MBq/m 2 . It was shown that migration of 137 Cs was fastest in sandy loam, and of 90 Sr fastest in sandy loam and loam. The slowest migration of both nuclides was found in loamy sand. Retention within the upper 5 cm was 60% for both 137 Cs and 90 Sr in sandy loam, while in loamy sand it was 97 and 96%, respectively. In 1998, migration rates, calculated as radionuclide weighted median depth (migration centre) divided by time since deposition were 1.1 cm/year for both 137 Cs and 90 Sr in sandy loam, 0.8 and 1.0 cm/year, respectively, in loam, 0.6 and 0.8 cm/year in silt loam, and 0.4 and 0.6 cm/year for 137 Cs and 90 Sr, respectively, in loamy sand. A distinction is made between short-term migration, caused by events soon after deposition and less affected by soil type, and long-term migration, more affected by e.g. soil texture. Three to four years after deposition, effects of short-term migration is still dominant in the studied soils

  14. Deriving the suction stress of unsaturated soils from water retention curve, based on wetted surface area in pores

    Science.gov (United States)

    Greco, Roberto; Gargano, Rudy

    2016-04-01

    The evaluation of suction stress in unsaturated soils has important implications in several practical applications. Suction stress affects soil aggregate stability and soil erosion. Furthermore, the equilibrium of shallow unsaturated soil deposits along steep slopes is often possible only thanks to the contribution of suction to soil effective stress. Experimental evidence, as well as theoretical arguments, shows that suction stress is a nonlinear function of matric suction. The relationship expressing the dependence of suction stress on soil matric suction is usually indicated as Soil Stress Characteristic Curve (SSCC). In this study, a novel equation for the evaluation of the suction stress of an unsaturated soil is proposed, assuming that the exchange of stress between soil water and solid particles occurs only through the part of the surface of the solid particles which is in direct contact with water. The proposed equation, based only upon geometric considerations related to soil pore-size distribution, allows to easily derive the SSCC from the water retention curve (SWRC), with the assignment of two additional parameters. The first parameter, representing the projection of the external surface area of the soil over a generic plane surface, can be reasonably estimated from the residual water content of the soil. The second parameter, indicated as H0, is the water potential, below which adsorption significantly contributes to water retention. For the experimental verification of the proposed approach such a parameter is considered as a fitting parameter. The proposed equation is applied to the interpretation of suction stress experimental data, taken from the literature, spanning over a wide range of soil textures. The obtained results show that in all cases the proposed relationships closely reproduces the experimental data, performing better than other currently used expressions. The obtained results also show that the adopted values of the parameter H0

  15. Topographic soil wetness index derived from combined Alaska-British Columbia datasets for the Gulf of Alaska region

    Science.gov (United States)

    D'Amore, D. V.; Biles, F. E.

    2016-12-01

    The flow of water is often highlighted as a priority in land management planning and assessments related to climate change. Improved measurement and modeling of soil moisture is required to develop predictive estimates for plant distributions, soil moisture, and snowpack, which all play important roles in ecosystem planning in the face of climate change. Drainage indexes are commonly derived from GIS tools with digital elevation models. Soil moisture classes derived from these tools are useful digital proxies for ecosystem functions associated with the concentration of water on the landscape. We developed a spatially explicit topographically derived soil wetness index (TWI) across the perhumid coastal temperate rainforest (PCTR) of Alaska and British Columbia. Developing applicable drainage indexes in complex terrain and across broad areas required careful application of the appropriate DEM, caution with artifacts in GIS covers and mapping realistic zones of wetlands with the indicator. The large spatial extent of the model has facilitated the mapping of forest habitat and the development of water table depth mapping in the region. A key element of the TWI is the merging of elevation datasets across the US-Canada border where major rivers transect the international boundary. The unified TWI allows for seemless mapping across the international border and unified ecological applications. A python program combined with the unified DEM allows end users to quickly apply the TWI to all areas of the PCTR. This common platform can facilitate model comparison and improvements to local soil moisture conditions, generation of streamflow, and ecological site conditions. In this presentation we highlight the application of the TWI for mapping risk factors related to forest decline and the development of a regional water table depth map. Improved soil moisture maps are critical for deriving spatial models of changes in soil moisture for both plant growth and streamflow across

  16. Anisotropy of the porosity in a silty loam soil under continuous no tillage management

    OpenAIRE

    Soracco, Carlos Germán; Lozano, Luis A.; Gelati, Pablo R.; Sarli, Guillermo O.; Filgueira, Roberto R.

    2008-01-01

    La superficie bajo siembra directa (SD) se incrementa continuamente en la Republica Argentina. Existen trabajos que muestran una orientación preferencial de los poros en sentido horizontal cerca de la superficie de suelos bajo SD. El objetivo específico de este trabajo fue evaluar la conductividad hidráulica saturada del horizonte superficial en sentido vertical y horizontal en SD continua con descompactación (SDCD) respecto de un testigo de SD sin descompactacion (SDSD) para determinar la ex...

  17. Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data.

    Science.gov (United States)

    Adachi, Minaco; Ito, Akihiko; Yonemura, Seiichiro; Takeuchi, Wataru

    2017-09-15

    Soil respiration is one of the largest carbon fluxes from terrestrial ecosystems. Estimating global soil respiration is difficult because of its high spatiotemporal variability and sensitivity to land-use change. Satellite monitoring provides useful data for estimating the global carbon budget, but few studies have estimated global soil respiration using satellite data. We provide preliminary insights into the estimation of global soil respiration in 2001 and 2009 using empirically derived soil temperature equations for 17 ecosystems obtained by field studies, as well as MODIS climate data and land-use maps at a 4-km resolution. The daytime surface temperature from winter to early summer based on the MODIS data tended to be higher than the field-observed soil temperatures in subarctic and temperate ecosystems. The estimated global soil respiration was 94.8 and 93.8 Pg C yr -1 in 2001 and 2009, respectively. However, the MODIS land-use maps had insufficient spatial resolution to evaluate the effect of land-use change on soil respiration. The spatial variation of soil respiration (Q 10 ) values was higher but its spatial variation was lower in high-latitude areas than in other areas. However, Q 10 in tropical areas was more variable and was not accurately estimated (the values were >7.5 or soil respiration in tropical ecosystems. To solve these problems, it will be necessary to validate our results using a combination of remote sensing data at higher spatial resolution and field observations for many different ecosystems, and it will be necessary to account for the effects of more soil factors in the predictive equations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The non-steroidal anti-inflammatory drug diclofenac is readily biodegradable in agricultural soils

    International Nuclear Information System (INIS)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Lapen, David R.; Topp, Edward

    2010-01-01

    Diclofenac, 2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid, is an important non-steroidal anti-inflammatory drug widely used for human and animals to reduce inflammation and pain. Diclofenac could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in agricultural soils incubated in the laboratory. 14 C-Diclofenac was rapidly mineralized without a lag when added to soils varying widely in texture (sandy loam, loam, clay loam). Over a range of temperature and moisture conditions extractable 14 C-diclofenac residues decreased with half lives < 5 days. No extractable transformation products were detectable by HPLC. Diclofenac mineralization in the loam soil was abolished by heat sterilization. Addition of biosolids to sterile or non-sterile soil did not accelerate the dissipation of diclofenac. These findings indicate that diclofenac is readily biodegradable in agricultural soils.

  19. The non-steroidal anti-inflammatory drug diclofenac is readily biodegradable in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne [Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3 (Canada); Lapen, David R. [Agriculture and Agri-Food Canada, Ottawa ON, Canada K1A 0C6 (Canada); Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3 (Canada)

    2010-12-01

    Diclofenac, 2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid, is an important non-steroidal anti-inflammatory drug widely used for human and animals to reduce inflammation and pain. Diclofenac could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in agricultural soils incubated in the laboratory. {sup 14}C-Diclofenac was rapidly mineralized without a lag when added to soils varying widely in texture (sandy loam, loam, clay loam). Over a range of temperature and moisture conditions extractable {sup 14}C-diclofenac residues decreased with half lives < 5 days. No extractable transformation products were detectable by HPLC. Diclofenac mineralization in the loam soil was abolished by heat sterilization. Addition of biosolids to sterile or non-sterile soil did not accelerate the dissipation of diclofenac. These findings indicate that diclofenac is readily biodegradable in agricultural soils.

  20. Effects of aluminium water treatment residuals, used as a soil amendment to control phosphorus mobility in agricultural soils.

    Science.gov (United States)

    Ulén, Barbro; Etana, Ararso; Lindström, Bodil

    2012-01-01

    Phosphorus (P) leaching from agricultural soils is a serious environmental concern. Application of aluminium water treatment residuals (Al-WTRs) at a rate of 20 Mg ha(-1) to clay soils from central Sweden significantly increased mean topsoil P sorption index (PSI) from 4.6 to 5.5 μmol kg(-1) soil. Mean degree of P saturation in ammonium lactate extract (DPS-AL) significantly decreased from 17 to 13%, as did plant-available P (P-AL). Concentrations of dissolved reactive P (DRP) decreased by 10-85% in leaching water with Al-WTR treatments after exposure of topsoil lysimeters to simulated rain. Soil aggregate stability (AgS) for 15 test soils rarely improved. Three soils (clay loam, silty loam and loam sand) were tested in greenhouse pot experiments. Aluminium-WTR application of 15 or 30 ton ha(-1) to loam sand and a clay loam with P-AL values of 80-100 mg kg(-1) soil significantly increased growth of Italian ryegrass when fertilised with P but did not significantly affect growth of spring barley on any soil. Al-WTR should only be applied to soils with high P fertility where improved crop production is not required.

  1. Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties.

    Science.gov (United States)

    Bending, Gary D; Lincoln, Suzanne D; Edmondson, Rodney N

    2006-01-01

    The extent of within field variability in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican, and the role of intrinsic soil factors and technical errors in contributing to the variability, was investigated in sites on sandy-loam and clay-loam. At each site, 40 topsoil samples were taken from a 160 x 60 m area, and pesticides applied in the laboratory. Time to 25% dissipation (DT25) ranged between 13 and 61 weeks for diflufenican, 5.6 and 17.2 weeks for azoxystrobin, and 0.3 and 12.5 weeks for isoproturon. Variability in DT25 was higher in the sandy-loam in which there was also greatest variability in soil chemical and microbial properties. Technical error associated with pesticide extraction, analysis and lack of model fit during derivation of DT25 accounted for between 5.3 and 25.8% of the variability for isoproturon and azoxystrobin, but could account for almost all the variability for diflufenican. Azoxystrobin DT25, sorption and pH were significantly correlated.

  2. The impact of the age of vines on soil hydraulic conductivity in vineyards in eastern Spain

    NARCIS (Netherlands)

    Alagna, Vincenzo; Prima, Di Simone; Rodrigo-Comino, Jesús; Iovino, Massimo; Pirastru, Mario; Keesstra, Saskia D.; Novara, Agata; Cerdà, Artemio

    2017-01-01

    Soil infiltration processes manage runoff generation, which in turn affects soil erosion. There is limited information on infiltration rates. In this study, the impact of vine age on soil bulk density (BD) and hydraulic conductivity (Ks) was assessed on a loam soil tilled by chisel plough. Soil

  3. Termite Infestation Associated with Type of Soil in Pulau Pinang, Malaysia (Isoptera: Rhinotermitidae)

    OpenAIRE

    Majid, Abdul Hafiz Ab; Ahmad, Abu Hassan

    2013-01-01

    Nine soil samples from nine buildings infested with Coptotermes gestroi in Pulau Pinang, Malaysia, were tested for the type of soil texture. The soil texture analysis procedures used the hydrometer method. Four of nine buildings (44%) yielded loamy sand-type soil, whereas five of nine buildings (56%) contained sandy loam-type soil.

  4. Termite infestation associated with type of soil in pulau pinang, malaysia (isoptera: rhinotermitidae).

    Science.gov (United States)

    Majid, Abdul Hafiz Ab; Ahmad, Abu Hassan

    2013-12-01

    Nine soil samples from nine buildings infested with Coptotermes gestroi in Pulau Pinang, Malaysia, were tested for the type of soil texture. The soil texture analysis procedures used the hydrometer method. Four of nine buildings (44%) yielded loamy sand-type soil, whereas five of nine buildings (56%) contained sandy loam-type soil.

  5. Use of INAA in the preparation of a set soil Reference Materials with certified values of total element contents

    International Nuclear Information System (INIS)

    Kucera, J.; Horakova, J.; Soukal, L.

    1997-01-01

    A set of certified Reference Materials was prepared consisting of four natural agricultural soils with normal (n) and elevated (e) levels of element contents: CRM 7001 Light Sandy Soil (n), CRM 7002 Light Sandy Soil (e), CRM 7003 Silty Clay Loam (n), and CRM 7004 Loam (e). In these materials, certified and/or information values of the total contents of the elements As, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, V and Zn, and their fractions extractable by aqua regia, boiling and cold 2M nitric acid were derived from an interlaboratory comparison in which 28 laboratories participated. Highly precise and accurate procedures of instrumental neutron activation analysis (INAA) were employed for homogeneity testing and also for certification of the total element contents. For comparation purposes, NIST SRM-2704 Buffalo River Sediment was analyzed by INAA, as well. The INAA results obtained compared very well with the certified and/or information values for four soil CRMs and also with NIST values for SRM-2704. From this agreement, a very high reliability of the new soil CRMs can be inferred. (author)

  6. APXS-derived chemistry of the Bagnold dune sands: Comparisons with Gale Crater soils and the global Martian average

    Science.gov (United States)

    O'Connell-Cooper, C. D.; Spray, J. G.; Thompson, L. M.; Gellert, R.; Berger, J. A.; Boyd, N. I.; Desouza, E. D.; Perrett, G. M.; Schmidt, M.; VanBommel, S. J.

    2017-12-01

    We present Alpha-Particle X-ray Spectrometer (APXS) data for the active Bagnold dune field within the Gale impact crater (Mars Science Laboratory (MSL) mission). We derive an APXS-based average basaltic soil (ABS) composition for Mars based on past and recent data from the MSL and Mars Exploration Rover (MER) missions. This represents an update to the Taylor and McLennan (2009) average Martian soil and facilitates comparison across Martian data sets. The active Bagnold dune field is compositionally distinct from the ABS, with elevated Mg, Ni, and Fe, suggesting mafic mineral enrichment and uniformly low levels of S, Cl, and Zn, indicating only a minimal dust component. A relationship between decreasing grain size and increasing felsic content is revealed. The Bagnold sands possess the lowest S/Cl of all Martian unconsolidated materials. Gale soils exhibit relatively uniform major element compositions, similar to Meridiani Planum and Gusev Crater basaltic soils (MER missions). However, they show minor enrichments in K, Cr, Mn, and Fe, which may signify a local contribution. The lithified eolian Stimson Formation within the Gale impact crater is compositionally similar to the ABS and Bagnold sands, which provide a modern analogue for these ancient eolian deposits. Compilation of APXS-derived soil data reveals a generally homogenous global composition for Martian soils but one that can be locally modified due to past or extant geologic processes that are limited in both space and time.

  7. Effect of Crop-Straw Derived Biochars on Pb(II) Adsorption in Two Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    JIANG Tian-yu; XU Ren-kou; GU Tian-xia; JIANG Jun

    2014-01-01

    Two variable charge soils were incubated with biochars derived from straws of peanut, soybean, canola, and rice to investigate the effect of the biochars on their chemical properties and Pb(II) adsorption using batch experiments. The results showed soil cation exchange capacity (CEC) and pH signiifcantly increased after 30 d of incubation with the biochars added. The incorporation of the biochars markedly increased the adsorption of Pb(II), and both the electrostatic and non-electrostatic adsorption mechanisms contributed to Pb(II) adsorption by the variable charge soils. Adsorption isotherms illustrated legume-straw derived biochars more greatly increased Pb(II) adsorption on soils through the non-electrostatic mechanism via the formation of surface complexes between Pb(II) and acid functional groups of the biochars than did non-legume straw biochars. The adsorption capacity of Pb(II) increased, while the desorption amount slightly decreased with the increasing suspension pH for the studied soils, especially in a high suspension pH, indicating that precipitation also plays an important role in immobilizing Pb(II) to the soils.

  8. A laboratory experiment on the behaviour of soil-derived core and intact polar GDGTs in aquatic environments

    NARCIS (Netherlands)

    Peterse, F.; Moy, C. M.; Eglinton, T. I.

    2015-01-01

    We have performed incubation experiments in order to examine the behaviour of soil-derived branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids upon entering an aquatic environment and to evaluate the processes that potentially take place during their fluvial transport from land to

  9. Acidotolerant Bacteria and Fungi as a Sink of Methanol-Derived Carbon in a Deciduous Forest Soil

    Directory of Open Access Journals (Sweden)

    Mareen Morawe

    2017-07-01

    Full Text Available Methanol is an abundant atmospheric volatile organic compound that is released from both living and decaying plant material. In forest and other aerated soils, methanol can be consumed by methanol-utilizing microorganisms that constitute a known terrestrial sink. However, the environmental factors that drive the biodiversity of such methanol-utilizers have been hardly resolved. Soil-derived isolates of methanol-utilizers can also often assimilate multicarbon compounds as alternative substrates. Here, we conducted a comparative DNA stable isotope probing experiment under methylotrophic (only [13C1]-methanol was supplemented and combined substrate conditions ([12C1]-methanol and alternative multi-carbon [13Cu]-substrates were simultaneously supplemented to (i identify methanol-utilizing microorganisms of a deciduous forest soil (European beech dominated temperate forest in Germany, (ii assess their substrate range in the soil environment, and (iii evaluate their trophic links to other soil microorganisms. The applied multi-carbon substrates represented typical intermediates of organic matter degradation, such as acetate, plant-derived sugars (xylose and glucose, and a lignin-derived aromatic compound (vanillic acid. An experimentally induced pH shift was associated with substantial changes of the diversity of active methanol-utilizers suggesting that soil pH was a niche-defining factor of these microorganisms. The main bacterial methanol-utilizers were members of the Beijerinckiaceae (Bacteria that played a central role in a detected methanol-based food web. A clear preference for methanol or multi-carbon substrates as carbon source of different Beijerinckiaceae-affiliated phylotypes was observed suggesting a restricted substrate range of the methylotrophic representatives. Apart from Bacteria, we also identified the yeasts Cryptococcus and Trichosporon as methanol-derived carbon-utilizing fungi suggesting that further research is needed to

  10. Bioaccessibility of Fukushima-Accident-Derived Cs in Soils and the Contribution of Soil Ingestion to Radiation Doses in Children.

    Science.gov (United States)

    Takahara, Shogo; Ikegami, Maiko; Yoneda, Minoru; Kondo, Hitoshi; Ishizaki, Azusa; Iijima, Masashi; Shimada, Yoko; Matsui, Yasuto

    2017-07-01

    Ingestion of contaminated soil is one potential internal exposure pathway in areas contaminated by the Fukushima Daiichi Nuclear Power Plant accident. Doses from this pathway can be overestimated if the availability of radioactive nuclides in soils for the gastrointestinal tract is not considered. The concept of bioaccessibility has been adopted to evaluate this availability based on in vitro tests. This study evaluated the bioaccessibility of radioactive cesium from soils via the physiologically-based extraction test (PBET) and the extractability of those via an extraction test with 1 mol/L of hydrochloric acid (HCl). The bioaccessibility obtained in the PBET was 5.3% ± 1%, and the extractability in the tests with HCl was 16% ± 3%. The bioaccessibility was strongly correlated with the extractability. This result indicates the possibility that the extractability in HCl can be used as a good predictor of the bioaccessibility with PBET. In addition, we assessed the doses to children from the ingestion of soil via hand-to-mouth activity based on our PBET results using a probabilistic approach considering the spatial distribution of radioactive cesium in Date City in Fukushima Prefecture and the interindividual differences in the surveyed amounts of soil ingestion in Japan. The results of this assessment indicate that even if children were to routinely ingest a large amount of soil with relatively high contamination, the radiation doses from this pathway are negligible compared with doses from external exposure owing to deposited radionuclides in Fukushima Prefecture. © 2016 Society for Risk Analysis.

  11. Derivation of ecological standards for risk assessment of molybdate in soil

    NARCIS (Netherlands)

    Oorts, K.; Smolders, E.; McGrath, S.P.; van Gestel, C.A.M.; McLaughlin, M.J.; Carey, S.

    2016-01-01

    An extensive testing programme on the toxicity of sodium molybdate dihydrate in soil was initiated to comply with the European REACH Regulation. The molybdate toxicity was assayed with 11 different bioassays, 10 different soils, soil chemical studies on aging reactions, and toxicity tests before and

  12. Adsorption behavior of endosulfan on alluvial soil

    International Nuclear Information System (INIS)

    Ashraf, M.; Sherazi, S.T.H.; Nizamani, S.M.; Bhanger, M.I.

    2012-01-01

    The present study was carried out to assess the behavior of endosulfan pesticide in alluvial soil under laboratory conditions. Sandy loam soil was studied to evaluate the fate of applied endosulfan with respect to soil properties. Known amount of endosulfan was added on alluvial soil in PVC column and eluted with 1000 ml of water. Eluents were collected in 10 parts, each of 100 ml. The soil in the column was divided in to three equal parts, each of 10 cm. Each part of the soil and eluents were analyzed for the determination of Endosulfan level using GC- mu ECD and GC-MS techniques. The kinetic and equilibrium adsorption characteristics of endosulfan on sandy loam soil was also studied and found that it follows Ho's pseudo second order and Freundlich isotherm. The present study revealed that a-and beta-Endosulfan was determined efficiently with their degraded products in alluvial soil under laboratory conditions with above mentioned instruments. (author)

  13. Forecasting the compressive strength of soil-concretedepending on ...

    African Journals Online (AJOL)

    One of the most important physical and mechanical properties of soil-concrete is the compressive strength. To this end we carried out a study of soil-concrete strength depending on its curing conditions and percentage of cement. For our study we used loam soil with the plasticity index of Ip = 12.3, Portland cement of type I, ...

  14. Volatilization of gasoline from soil

    International Nuclear Information System (INIS)

    Arthus, P.

    1993-05-01

    Gasoline contaminated soil threatens water resources and air quality. The extent of the threat depends on gasoline behavior in soil, which is affected by various mechanisms such as volatilization. To quantify volatilization, gasoline spills were simulated in the laboratory using a synthetic gasoline and three dry soils. Total gasoline and individual gasoline compound concentrations in soil were monitored as a function of depth and time. The time to reduce overall gasoline concentration in coarse sand, sandy loam, and silt loam to 40% of initial concentration, averaged between surface and a 200-mm depth, ranged from 0.25 d to 10 d. A wicking phenomenon which contributed to gasoline flux toward the atmosphere was indicated by behavior of a low-volatility gasoline compound. Based on separate wicking experiments, this bulk immiscible movement was estimated at an upward velocity of 0.09 m/d for Delhi sandy loam and 0.05 m/d for Elora silt loam. 70 refs., 24 figs., 34 tabs

  15. Using Agricultural Residue Biochar to Improve Soil Quality of Desert Soils

    Directory of Open Access Journals (Sweden)

    Yunhe Zhang

    2016-03-01

    Full Text Available A laboratory study was conducted to test the effects of biochars made from different feedstocks on soil quality indicators of arid soils. Biochars were produced from four locally-available agricultural residues: pecan shells, pecan orchard prunings, cotton gin trash, and yard waste, using a lab-scale pyrolyzer operated at 450 °C under a nitrogen environment and slow pyrolysis conditions. Two local arid soils used for crop production, a sandy loam and a clay loam, were amended with these biochars at a rate of 45 Mg·ha−1 and incubated for three weeks in a growth chamber. The soils were analyzed for multiple soil quality indicators including soil organic matter content, pH, electrical conductivity (EC, and available nutrients. Results showed that amendment with cotton gin trash biochar has the greatest impact on both soils, significantly increasing SOM and plant nutrient (P, K, Ca, Mn contents, as well as increasing the electrical conductivity, which creates concerns about soil salinity. Other biochar treatments significantly elevated soil salinity in clay loam soil, except for pecan shell biochar amended soil, which was not statistically different in EC from the control treatment. Generally, the effects of the biochar amendments were minimal for many soil measurements and varied with soil texture. Effects of biochars on soil salinity and pH/nutrient availability will be important considerations for research on biochar application to arid soils.

  16. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence

    Science.gov (United States)

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-01-01

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist. PMID:26503629

  17. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  18. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield.

    Directory of Open Access Journals (Sweden)

    Xiaofei Tian

    Full Text Available Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0-100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0-15.8%, 9.3-13.9%, and 9.2-21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N, and available K content of the 0-20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching.

  19. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield

    Science.gov (United States)

    Tian, Xiaofei; Zhang, Min; Wan, Yongshan; Xie, Zhihua; Chen, Baocheng; Li, Wenqing

    2018-01-01

    Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0–100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively) for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0–15.8%, 9.3–13.9%, and 9.2–21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N), and available K content of the 0–20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching. PMID:29324750

  20. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield.

    Science.gov (United States)

    Tian, Xiaofei; Li, Chengliang; Zhang, Min; Wan, Yongshan; Xie, Zhihua; Chen, Baocheng; Li, Wenqing

    2018-01-01

    Biochar application as a soil amendment has been proposed as a strategy to improve soil fertility and increase crop yields. However, the effects of successive biochar applications on cotton yields and nutrient distribution in soil are not well documented. A three-year field study was conducted to investigate the effects of successive biochar applications at different rates on cotton yield and on the soil nutrient distribution in the 0-100 cm soil profile. Biochar was applied at 0, 5, 10, and 20 t ha-1 (expressed as Control, BC5, BC10, and BC20, respectively) for each cotton season, with identical doses of chemical fertilizers. Biochar enhanced the cotton lint yield by 8.0-15.8%, 9.3-13.9%, and 9.2-21.9% in 2013, 2014, and 2015, respectively, and high levels of biochar application achieved high cotton yields each year. Leaching of soil nitrate was reduced, while the pH values, soil organic carbon, total nitrogen (N), and available K content of the 0-20 cm soil layer were increased in 2014 and 2015. However, the changes in the soil available P content were less substantial. This study suggests that successive biochar amendments have the potential to enhance cotton productivity and soil fertility while reducing nitrate leaching.

  1. Detecting Trends in Wetland Extent from MODIS Derived Soil Moisture Estimates

    Directory of Open Access Journals (Sweden)

    Thomas Gumbricht

    2018-04-01

    Full Text Available A soil wetness index for optical satellite images, the Transformed Wetness Index (TWI is defined and evaluated against ground sampled soil moisture. Conceptually, TWI is formulated as a non-linear normalized difference index from orthogonalized vectors representing soil and water conditions, with the vegetation signal removed. Compared to 745 ground sites with in situ measured soil moisture, TWI has a globally estimated Random Mean Square Error of 14.0 (v/v expressed as percentage, which reduces to 8.5 for unbiased data. The temporal variation in soil moisture is significantly captured at 4 out of 10 stations, but also fails for 2 to 3 out of 10 stations. TWI is biased by different soil mineral compositions, dense vegetation and shadows, with the latter two most likely also causing the failure of TWI to capture soil moisture dynamics. Compared to soil moisture products from microwave brightness temperature data, TWI performs slightly worse, but has the advantages of not requiring ancillary data, higher spatial resolution and a relatively simple application. TWI has been used for wetland and peatland mapping in previously published studies but is presented in detail in this article, and then applied for detecting changes in soil moisture for selected tropical regions between 2001 and 2016. Sites with significant changes are compared to a published map of global tropical wetlands and peatlands.

  2. Water retention and availability in soils of the State of Santa Catarina-Brazil: effect of textural classes, soil classes and lithology

    Directory of Open Access Journals (Sweden)

    André da Costa

    2013-12-01

    Full Text Available The retention and availability of water in the soil vary according to the soil characteristics and determine plant growth. Thus, the aim of this study was to evaluate water retention and availability in the soils of the State of Santa Catarina, Brazil, according to the textural class, soil class and lithology. The surface and subsurface horizons of 44 profiles were sampled in different regions of the State and different cover crops to determine field capacity, permanent wilting point, available water content, particle size, and organic matter content. Water retention and availability between the horizons were compared in a mixed model, considering the textural classes, the soil classes and lithology as fixed factors and profiles as random factors. It may be concluded that water retention is greater in silty or clayey soils and that the organic matter content is higher, especially in Humic Cambisols, Nitisols and Ferralsol developed from igneous or sedimentary rocks. Water availability is greater in loam-textured soils, with high organic matter content, especially in soils of humic character. It is lower in the sandy texture class, especially in Arenosols formed from recent alluvial deposits or in gravelly soils derived from granite. The greater water availability in the surface horizons, with more organic matter than in the subsurface layers, illustrates the importance of organic matter for water retention and availability.

  3. Improving Landslide Forecasting Using ASCAT-Derived Soil Moisture Data: A Case Study of the Torgiovannetto Landslide in Central Italy

    Directory of Open Access Journals (Sweden)

    Wolfgang Wagner

    2012-05-01

    Full Text Available Predicting the spatial and temporal occurrence of rainfall triggered landslides represents an important scientific and operational issue due to the high threat that they pose to human life and property. This study investigates the relationship between rainfall, soil moisture conditions and landslide movement by using recorded movements of a rock slope located in central Italy, the Torgiovannetto landslide. This landslide is a very large rock slide, threatening county and state roads. Data acquired by a network of extensometers and a meteorological station clearly indicate that the movements of the unstable wedge, first detected in 2003, are still proceeding and the alternate phases of quiescence and reactivation are associated with rainfall patterns. By using a multiple linear regression approach, the opening of the tension cracks (as recorded by the extensometers as a function of rainfall and soil moisture conditions prior the occurrence of rainfall, are predicted for the period 2007–2009. Specifically, soil moisture indicators are obtained through the Soil Water Index, SWI, a product derived by the Advanced SCATterometer (ASCAT on board the MetOp (Meteorological Operational satellite and by an Antecedent Precipitation Index, API. Results indicate that the regression performance (in terms of correlation coefficient, r significantly enhances if an indicator of the soil moisture conditions is included. Specifically, r is equal to 0.40 when only rainfall is used as a predictor variable and increases to r = 0.68 and r = 0.85 if the API and the SWI are used respectively. Therefore, the coarse spatial resolution (25 km of satellite data notwithstanding, the ASCAT SWI is found to be very useful for the prediction of landslide movements on a local scale. These findings, although valid for a specific area, present new opportunities for the effective use of satellite-derived soil moisture estimates to improve landslide forecasting.

  4. The impacts of pyrolysis temperature and feedstock type on biochar properties and the effects of biochar application on the properties of a sandy loam

    Science.gov (United States)

    Aston, Steve; Doerr, Stefan; Street-Perrott, Alayne

    2013-04-01

    The production of biochar and its application to soil has the potential to make a significant contribution to climate change mitigation whilst simultaneously improving soil fertility, crop yield and soil water-holding capacity. Biochar is produced from various biomass feedstock materials at varying pyrolysis temperatures, but relatively little is known about how these parameters affect the properties of the resultant biochars and their impact on the properties of the soils to which they are subsequently applied. Salix viminalis, M. giganteus and Picea sitchensis feedstocks were chipped then sieved to 2 - 5 mm, oven dried to constant weight, then pyrolyzed at 350, 500, 600 and 800° C in a nitrogen-purged tube furnace. Biochar yields were measured by weighing the mass of each sample before and after pyrolysis. Biochar hydrophobicity was assessed by using a goniometer to measure water-droplet contact-angles. Cation-exchange-capacity (CEC) was measured using the ammonium acetate method. Biochars were also produced in a rotary kiln from softwood pellets at 400, 500, 600 and 700° C then ground to 0.4 - 1 mm and applied to a sandy loam at a rate of 50 g kg-1. Bulk densities of these soil-biochar mixtures were measured on a tapped, dry, basis. The water-holding-capacity (WHC) of each mixture was measured gravimetrically following saturation and free-draining. The filter paper method was used to assess how pyrolysis temperature influences the effect of biochar application on matric suction. For all feedstocks, large decreases in biochar yield were observed between the pyrolysis temperatures of 350° C and 500° C. For Salix viminalis and M. giganteus feedstocks, subsequent reductions in the yield with increasing pyrolysis temperature were much lower. There were significant differences in hydrophobicity between biochars produced from different biomass and mean biochar hydrophobicity decreased with increasing pyrolysis temperature for all feedstocks. Results for CEC and WHC

  5. Temporal-spatial trends in heavy metal contents in sediment-derived soils along the Sea Scheldt river (Belgium)

    International Nuclear Information System (INIS)

    Vandecasteele, B.; Vos, B. de; Tack, F.M.G.

    2003-01-01

    The alluvial plain upstream in the Sea Scheldt was more affected by upland disposal of polluted sediments. - The aim of this study was to survey the alluvial plains of the Sea Scheldt river in Belgium for the presence of old sediment-derived soils, and to appraise the heavy metal contamination at these sites. Historically, sediments of periodical dredging operations have been disposed in the alluvial plain without concern for the potential presence of contaminants. Up to 96% of the areas that were affected by sediment disposal (ca. 120 ha) was found to be polluted by at least one of the metals Cd, Cr, Zn or Pb. Concentrations of Cd, Cr and Zn were, in 10% of the cases, higher than 14, 1400 and 2200 mg/kg DM, respectively. Based on the Flemish decree on soil sanitation, Cu and Ni concentrations were of less environmental concern on any site. The pollution in the Sea Scheldt alluvial plain nevertheless is lower than for the Upper Scheldt alluvial plain. The sediment-derived soils in the most upstream part near Ghent were used for disposal of sediments from dredging operations elsewhere. Metal concentrations were explored and both spatial and temporal trend were analysed. The pollution levels encountered warrant caution as most of the soils affected by historical dredged sediment disposal are currently in use for pasture

  6. The antihistamine diphenhydramine is extremely persistent in agricultural soil

    International Nuclear Information System (INIS)

    Topp, Edward; Sumarah, Mark W.; Sabourin, Lyne

    2012-01-01

    The widely used antihistamine diphenhydramine is present in municipal biosolids, and is detected in runoff from agricultural land fertilized with biosolids. In the present study the kinetics and major pathways of diphenhydramine dissipation in a loam, sandy loam, and clay loam soil were determined in laboratory incubations. The time to dissipate 50% (DT 50 ) of 14 C-diphenhydramine residues at 30 °C ranged from 88 ± 28 days in the clay loam to 335 ± 145 days in the loam soil. Mineralization of 14 C was insignificant, and diphenhydramine-N-oxide was the only detected extractable transformation product elucidated by radioisotope and HPLC-MS methods. There were no significant effects of municipal biosolids on the kinetics or pathways of removal. Overall, diphenhydramine is quite persistent in soils, and formation of non-extractable soil-bound residues is the major mechanism of diphenhydramine dissipation. -- Highlights: ► Diphenhydramine is a widely used antihistamine drug, is found in biosolids, and in runoff from biosolids-fertilized fields. ► The persistence of 14 C-diphenhydramine was evaluated in soils. ► Half lives ranged from 88 to 335 days. Diphenhydramine-N-oxide was the only detected transformation product. ► Soil-bound residues was a major sink.

  7. The antihistamine diphenhydramine is extremely persistent in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Topp, Edward, E-mail: ed.topp@agr.gc.ca; Sumarah, Mark W.; Sabourin, Lyne

    2012-11-15

    The widely used antihistamine diphenhydramine is present in municipal biosolids, and is detected in runoff from agricultural land fertilized with biosolids. In the present study the kinetics and major pathways of diphenhydramine dissipation in a loam, sandy loam, and clay loam soil were determined in laboratory incubations. The time to dissipate 50% (DT{sub 50}) of {sup 14}C-diphenhydramine residues at 30 Degree-Sign C ranged from 88 {+-} 28 days in the clay loam to 335 {+-} 145 days in the loam soil. Mineralization of {sup 14}C was insignificant, and diphenhydramine-N-oxide was the only detected extractable transformation product elucidated by radioisotope and HPLC-MS methods. There were no significant effects of municipal biosolids on the kinetics or pathways of removal. Overall, diphenhydramine is quite persistent in soils, and formation of non-extractable soil-bound residues is the major mechanism of diphenhydramine dissipation. -- Highlights: Black-Right-Pointing-Pointer Diphenhydramine is a widely used antihistamine drug, is found in biosolids, and in runoff from biosolids-fertilized fields. Black-Right-Pointing-Pointer The persistence of {sup 14}C-diphenhydramine was evaluated in soils. Black-Right-Pointing-Pointer Half lives ranged from 88 to 335 days. Diphenhydramine-N-oxide was the only detected transformation product. Black-Right-Pointing-Pointer Soil-bound residues was a major sink.

  8. Soil pore characteristics assessed from X-ray micro-CT derived images and correlations to soil friability

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, R; Deen, B

    2012-01-01

    X-ray computed tomography (CT) scanning technology has, in recent decades, been shown to be a very powerful technique to visualize and quantify soil structure. The objective of this project was to quantify soilporecharacteristics, on undisturbed field moist soil, using a high resolution X-rayCT...... cores varied in porosity and porecharacteristics. A drop shatter test was used as a reference procedure to quantify soilfriability. The top 40 mm of the 80 mm high soil samples were scanned using a X-raymicro-CT scanner. The selected region of interest (36 × 36 × 36 mm) was reconstructed with a voxel...... of 49 m3 100 m− 3. The air-filled porosity, at sampling/testing, ranged between 5 and 32 m3 100 m− 3, with an average of 15 m3 100 m− 3. The porosity determined from CT imagery ranged between 1 and 31 m3 100 m− 3, with an average of 4.5 m3 100 m− 3. The number of branches, junctions and end points...

  9. Apparent soil electrical conductivity in two different soil types

    Directory of Open Access Journals (Sweden)

    Wilker Nunes Medeiros

    Full Text Available ABSTRACT Mapping the apparent soil electrical conductivity (ECa has become important for the characterization of the soil variability in precision agriculture systems. Could the ECa be used to locate the soil sampling points for mapping the chemical and physical soil attributes? The objective of this work was to examine the relations between ECa and soil attributes in two fields presenting different soil textures. In each field, 50 sampling points were chosen using a path that presented a high variability of ECa obtained from a preliminary ECa map. At each sampling point, the ECa was measured in soil depths of 0-20, 0-40 and 0-60 cm. In addition, at each point, soil samples were collected for the determination of physical and chemical attributes in the laboratory. The ECa data obtained for different soil depths was very similar. A large number of significant correlations between ECa and the soil attributes were found. In the sandy clay loam texture field there was no correlation between ECa and organic matter or between ECa and soil clay and sand content. However, a significant positive correlation was shown for the remaining phosphorus. In the sandy loam texture field the ECa had a significant positive correlation with clay content and a significant negative correlation with sand content. The results suggest that the mapping of apparent soil electrical conductivity does not replace traditional soil sampling, however, it can be used as information to delimit regions in a field that have similar soil attributes.

  10. Bioactive Secondary Metabolites from a Thai Collection of Soil and Marine-Derived Fungi of the Genera Neosartorya and Aspergillus.

    Science.gov (United States)

    Zin, War War May; Prompanya, Chadaporn; Buttachon, Suradet; Kijjoa, Anake

    2016-01-01

    Fungi are microorganisms which can produce interesting secondary metabolites with structural diversity. Although terrestrial fungi have been extensively investigated for their bioactive secondary metabolites such as antibiotics, marine-derived fungi have only recently attracted attention of Natural Products chemists. Our group has been working on the secondary metabolites produced by the cultures of the fungi of the genera Neosartorya and Aspergillus, collected from soil and marine environments from the tropical region for the purpose of finding new leads for anticancer and antibacterial drugs. This review covers only the secondary metabolites of four soil and six marine-derived species of Neosarorya as well as a new species of marine-derived Aspergillus, investigated by our group. In total, we have isolated fifty three secondary metabolites which can be categorized as polyketides (two), isocoumarins (six), terpenoids (two), meroterpenes (fourteen), alkaloids (twenty eight) and cyclic peptide (one). The anticancer and antibacterial activities of these fungal metabolites are also discussed. Among fifty three secondary metabolites isolated, only the alkaloid eurochevalierine and the cadinene sesquiterpene, isolated from the soil fungus N. pseudofisheri, showed relevant in vitro cytostatic activity against glioblastoma (U373) and non-small cell lung cancer (A549) cell lines while the meroditerpene aszonapyrone A exhibited strong antibacterial activity against multidrug-resistant Gram-positive bacteria and also strong antibiofilm activity in these isolates.

  11. Evaluating water erosion prediction project model using Cesium-137-derived spatial soil redistribution data

    Science.gov (United States)

    The lack of spatial soil erosion data has been a major constraint on the refinement and application of physically based erosion models. Spatially distributed models can only be thoroughly validated with distributed erosion data. The fallout cesium-137 has been widely used to generate spatial soil re...

  12. Soil sorption of two nitramines derived from amine-based CO2 capture.

    Science.gov (United States)

    Gundersen, Cathrine Brecke; Breedveld, Gijs D; Foseid, Lena; Vogt, Rolf D

    2017-06-21

    Nitramines are potentially carcinogens that form from the amines used in post-combustion CO 2 capture (PCCC). The soil sorption characteristics of monoethanol (MEA)- and dimethyl (DMA)-nitramines have been assessed using a batch experimental setup, and defined indirectly by measuring loss of nitramine (LC-MS/MS) from the aqueous phase (0.01 M CaCl 2 and 0.1% NaN 3 ) after equilibrium had been established with the soil (24 h). Nitramine soil sorption was found to be strongly dependent on the content of organic matter in the soil (r 2 = 0.72 and 0.95, p Soil sorption of MEA-nitramine was further influenced by the quality of the organic matter (Abs 254 nm , r 2 = 0.93, p soil organic matter. Estimated organic carbon normalized soil-water distribution coefficients (K OC ) are relatively low, and within the same range as for simple amines. Nevertheless, considering the high content of organic matter commonly found in the top layer of a forest soil, this is where most of the nitramines will be retained. Presented data can be used to estimate final concentrations of nitramines in the environment following emissions from amine-based PCCC plants.

  13. Derivation of soil screening thresholds to protect chisel-toothed kangaroo rat from uranium mine waste in northern Arizona

    Science.gov (United States)

    Hinck, Jo E.; Linder, Greg L.; Otton, James K.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.

    2013-01-01

    Chemical data from soil and weathered waste material samples collected from five uranium mines north of the Grand Canyon (three reclaimed, one mined but not reclaimed, and one never mined) were used in a screening-level risk analysis for the Arizona chisel-toothed kangaroo rat (Dipodomys microps leucotis); risks from radiation exposure were not evaluated. Dietary toxicity reference values were used to estimate soil-screening thresholds presenting risk to kangaroo rats. Sensitivity analyses indicated that body weight critically affected outcomes of exposed-dose calculations; juvenile kangaroo rats were more sensitive to the inorganic constituent toxicities than adult kangaroo rats. Species-specific soil-screening thresholds were derived for arsenic (137 mg/kg), cadmium (16 mg/kg), copper (1,461 mg/kg), lead (1,143 mg/kg), nickel (771 mg/kg), thallium (1.3 mg/kg), uranium (1,513 mg/kg), and zinc (731 mg/kg) using toxicity reference values that incorporate expected chronic field exposures. Inorganic contaminants in soils within and near the mine areas generally posed minimal risk to kangaroo rats. Most exceedances of soil thresholds were for arsenic and thallium and were associated with weathered mine wastes.

  14. Immobilisation of lead and zinc in contaminated soil using compost derived from industrial eggshell.

    Science.gov (United States)

    Soares, Micaela A R; Quina, Margarida J; Quinta-Ferreira, Rosa M

    2015-12-01

    This study aims to evaluate the capacity of a compost obtained by co-composting of industrial eggshell (CES) to immobilise lead (Pb) and zinc (Zn) in an acidic soil contaminated by mining activities. Mature compost without eggshell (CWES) and natural eggshell (ES) were also tested as soil amendments for comparison purposes. Three different application rates were used for each material, ensuring the same quantity in terms of neutralizing capacity. Incubation experiments were conducted under controlled conditions and CO2 emissions monitored for 94 days. The environmental availability of Pb and Zn in the amended soil was assessed and bioassays were performed at the end of the incubation period. When eggshells were present, the CES compost raised the soil pH to values higher than 6 and reduced the soil mobile fraction for both Pb and Zn, in more than 95%. Soil toxicity towards Vibrio fischeri was also suppressed and environmental risk decreased to "low level". However, the immobilisation in the acid insoluble soil component was significantly achieved only for Zn. In addition, regarding soil carbon dynamics the CO2-C emissions were enhanced, mainly in the case of the highest rate of amendment. Both first order-E and parallel first order models may adequately describe the kinetic data of CO2-C cumulative release. Without eggshells, the CWES compost revealed limited effect on heavy metals immobilisation, likely due to its small capacity to correct soil acidity, at lower application rates. Using solely eggshells, the ES waste had similar outcomes when compared with CES, but at the higher application rate, CO2 emissions were enhanced with the eggshell compost due to the contribution of biotic carbon present therein. Therefore, this study points out that CES is an effective liming material and may be used for in situ remediation of contaminated soil with Pb and Zn. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Field trial using bone meal amendments to remediate mine waste derived soil contaminated with zinc, lead and cadmium

    International Nuclear Information System (INIS)

    Sneddon, I.R.; Orueetxebarria, M.; Hodson, M.E.; Schofield, P.F.; Valsami-Jones, E.

    2008-01-01

    Bone meal amendments are being considered as a remediation method for metal-contaminated wastes. In various forms (biogenic, geogenic or synthetic), apatite, the principal mineral constituent of bone, has shown promise as an amendment to remediate metal-contaminated soils via the formation of insoluble phosphates of Pb and possibly other metals. The efficacy of commercially available bovine bone meal in this role was investigated in a field trial at Nenthead, Cumbria with a mine waste derived soil contaminated with Zn, Pb and Cd. Two 5 m 2 plots were set up; the first as a control and the second, a treatment plot where the soil was thoroughly mixed with bone meal to a depth of 50 cm at a soil to amendment ratio of 25:1 by weight. An array of soil solution samplers (Rhizon SMS TM ) were installed in both plots and the soil pore water was collected and analysed for Ca, Cd, Zn and Pb regularly over a period of 2 a. Concurrently with the field trial, a laboratory trial with 800 mm high and 100 mm wide leaching columns was conducted using identical samplers and with soil from the field site. A substantial release of Zn, Pb, Cd and Ca was observed associated with the bone meal treatment. This release was transient in the case of the leaching columns, and showed seasonal variation in the case of the field trial. It is proposed that this effect resulted from metal complexation with organic acids released during breakdown of the bone meal organic fraction and was facilitated by the relatively high soil pH of 7.6-8.0. Even after this transient release effect had subsided or when incinerated bone meal was substituted in order to eliminate the organic fraction, no detectable decrease in dissolved metals was observed and no P was detected in solution, in contrast with an earlier small column laboratory study. It is concluded that due to the relative insolubility of apatite at above-neutral pH, the rate of supply of phosphate to soil solution was insufficient to result in

  16. A first attempt to derive soil erosion rates from 137Cs airborne gamma measurements in two Alpine valleys

    Science.gov (United States)

    Arata, Laura; Meusburger, Katrin; Bucher, Benno; Mabit, Lionel; Alewell, Christine

    2016-04-01

    The application of fallout radionuclides (FRNs) as soil tracers is currently one of the most promising and effective approach for evaluating soil erosion magnitudes in mountainous grasslands. Conventional assessment or measurement methods are laborious and constrained by the topographic and climatic conditions of the Alps. The 137Cs (half-life = 30.2 years) is the most frequently used FRN to study soil redistribution. However the application of 137Cs in alpine grasslands is compromised by the high heterogeneity of the fallout due to the origin of 137Cs fallout in the Alps, which is linked to single rain events occurring just after the Chernobyl accident when most of the Alpine soils were still covered by snow. The aim of this study was to improve our understanding of the 137Cs distribution in two study areas in the Central Swiss Alps: the Ursern valley (Canton Uri), and the Piora valley (Canton Ticino). In June 2015, a helicopter equipped with a NaI gamma detector flew over the two study sites and screened the 137Cs activity of the top soil. The use of airborne gamma measurements is particularly efficient in case of higher 137Cs concentration in the soil. Due to their high altitude and high precipitation rates, the Swiss Alps are expected to be more contaminated by 137Cs fallout than other parts of Switzerland. The airborne gamma measurements have been related to several key parameters which characterize the areas, such as soil properties, slopes, expositions and land uses. The ground truthing of the airborne measurements (i.e. the 137Cs laboratory measurements of the soil samples collected at the same points) returned a good fit. The obtained results offer an overview of the 137Cs concentration in the study areas, which allowed us to identify suitable reference sites, and to analyse the relationship between the 137Cs distribution and the above cited parameters. The authors also derived a preliminary qualitative and a quantitative assessment of soil redistribution

  17. Carbon sequestration in soils with annual inputs of maize biomass and maize-derived animal manure: Evidence from 13C abundance

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Christensen, Bent Tolstrup

    2010-01-01

    (beet roots, Beta vulgaris L.). After nine years of maize cropping, soil C from stubbles and roots accounted for 12 and 16% of the total-C in the LUN and ASK soil, respectively. Without additional organic amendment the content of total-C in the ASK soil remained constant and similar to that of soil...... biomass averaged 19% while the retention of C added in maize-derived faeces was 30%. Our study infers that that ruminant manure C contributes about 50% more to soil C sequestration than C applied in crop residues...

  18. Grey relational analysis for evaluating the effects of different rates of wine lees-derived biochar application on a plant-soil system with multi-metal contamination.

    Science.gov (United States)

    Xu, Min; Zhu, Qihong; Wu, Jun; He, Yan; Yang, Gang; Zhang, Xiaohong; Li, Li; Yu, Xiaoyu; Peng, Hong; Wang, Lilin

    2018-03-01

    In this study, grey relational analysis (GRA) was used to investigate the effects of different application rates of wine lees-derived biochar on a plant-soil system with multi-metal contamination. A pot experiment was conducted to determine rice growth in multi-metal-contaminated soil amended with samples of wine lees-derived biochar, and 47 indicators (including soil properties, microbial activity, and plant physiology) were selected as evaluation indexes to assess the plant-soil system. The results indicated that higher wine lees-derived biochar application rates (2% W/W) were favorable for soil fertility, the bioconcentration factor (BF), and the mobility factor (MF, %) (with the exception of Cr, Zn, and Hg), but an application of 1% produced the highest plant growth, enzymatic activities, and bacterial diversity. The richness of the bacterial communities was reduced in the soil amended with the wine lees-derived biochar. According to the GRA assessment, the 1% application rate of wine lees-derived biochar was more suitable for restoring the holistic plant-soil system than were the application rates of 0, 0.5, and 2% (W/W). Furthermore, this study shows that GRA is a useful method for evaluating plant-soil systems.

  19. Adsorption-Desorption of Hexaconazole in Soils with Respect to Soil Properties, Temperature, and pH

    Directory of Open Access Journals (Sweden)

    Maznah Zainol

    2016-06-01

    Full Text Available The effect of temperature and pH on adsorption-desorption of fungicide hexaconazole was studied in two Malaysian soil types; namely clay loam and sandy loam. The adsorption-desorption experiment was conducted using the batch equilibration technique and the residues of hexaconazole were analysed using the GC-ECD. The results showed that the adsorption-desorption isotherms of hexaconazole can be described with Freundlich equation. The Freundlich sorption coefficient (Kd values were positively correlated to the clay and organic matter content in the soils. Hexaconazole attained the equilibrium phase within 24 h in both soil types studied. The adsorption coefficient (Kd values obtained for clay loam soil and sandy loam soil were 2.54 mL/g and 2.27 mL/g, respectively, indicating that hexaconazole was weakly sorbed onto the soils due to the low organic content of the soils. Regarding thermodynamic parameters, the Gibb’s free energy change (ΔG analysis showed that hexaconazole adsorption onto soil was spontaneous and exothermic, plus it exhibited positive hysteresis. A strong correlation was observed between the adsorption of hexaconazole and pH of the soil solution. However, temperature was found to have no effect on the adsorption of hexaconazole onto the soils; for the range tested.

  20. Assessing PAH removal from clayey soil by means of electro-osmosis and electrodialysis

    KAUST Repository

    Lima, Ana T.

    2012-10-01

    Polycyclic aromatic hydrocarbons (PAH) are persistent and toxic contaminants which are difficult to remove from fine porous material like clayey soils. The present work aims at studying two electroremediation techniques for the removal of PAHs from a spiked natural silt soil from Saudi Arabia and a silty loam soil from The Netherlands which has been exposed to tar contamination for over 100. years. The two techniques at focus are electro-osmosis and electrodialysis. The latter is applied for the first time for the removal of PAH. The efficiency of the techniques is studied using these two soils, having been subjected to different PAH contact times. Two surfactants were used: the non-ionic surfactant Tween 80 and anionic surfactant sodium dodecyl sulphate (SDS) to aid desorption of PAHs from the soil. Results show a large discrepancy in the removal rates between spiked soil and long-term field contaminated soil, as expected. In spiked soil, electro-osmosis achieves up to 85% while electrodialysis accomplishes 68% PAH removal. In field contaminated soil, electro-osmosis results in 35% PAH removal whereas electrodialysis results in 79%. Short recommendations are derived for the up-scale of the two techniques. © 2012.

  1. Assessing PAH removal from clayey soil by means of electro-osmosis and electrodialysis

    KAUST Repository

    Lima, Ana T.; Ottosen, Lisbeth M.; Heister, Katja; Loch, J.P. Gustav

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAH) are persistent and toxic contaminants which are difficult to remove from fine porous material like clayey soils. The present work aims at studying two electroremediation techniques for the removal of PAHs from a spiked natural silt soil from Saudi Arabia and a silty loam soil from The Netherlands which has been exposed to tar contamination for over 100. years. The two techniques at focus are electro-osmosis and electrodialysis. The latter is applied for the first time for the removal of PAH. The efficiency of the techniques is studied using these two soils, having been subjected to different PAH contact times. Two surfactants were used: the non-ionic surfactant Tween 80 and anionic surfactant sodium dodecyl sulphate (SDS) to aid desorption of PAHs from the soil. Results show a large discrepancy in the removal rates between spiked soil and long-term field contaminated soil, as expected. In spiked soil, electro-osmosis achieves up to 85% while electrodialysis accomplishes 68% PAH removal. In field contaminated soil, electro-osmosis results in 35% PAH removal whereas electrodialysis results in 79%. Short recommendations are derived for the up-scale of the two techniques. © 2012.

  2. Derivation of guidelines for uranium residual radioactive material in soil at the New Brunswick Site, Middlesex County, New Jersey

    International Nuclear Information System (INIS)

    Dunning, D.; Kamboj, S.; Nimmagadda, M.; Yu, C.

    1996-02-01

    Residual radioactive material guidelines for uranium in soil were derived for the New Brunswick Site, located in Middlesex County, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program of the US Department of Energy (DOE). Residual radioactive material guidelines for individual radionuclides of concern and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the New Brunswick Site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines. The guidelines derived in this report are intended to apply to the remediation of these remaining residual radioactive materials at the site. The primary radionuclides of concern in these remaining materials are expected to be radium-226 and, to a lesser extent, natural uranium and thorium. The DOE has established generic cleanup guidelines for radium and thorium in soil; however, cleanup guidelines for other radionuclides must be derived on a site-specific basis

  3. Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching

    Energy Technology Data Exchange (ETDEWEB)

    Li Kun [Department of Plant, Soil, and Insect Sciences, Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Xing Baoshan [Department of Plant, Soil, and Insect Sciences, Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States) and Northeast Institute of Geography and Agro-ecology, CAS, Harbin 150040 (China)]. E-mail: bx@pssci.umass.edu; Torello, William A. [Department of Plant, Soil, and Insect Sciences, Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States)

    2005-03-01

    Incorporation of organic fertilizers/amendments has been, and continues to be, a popular strategy for golf course turfgrass management. Dissolved organic matter (DOM) derived from these organic materials may, however, facilitate organic chemical movement through soils. A batch equilibrium technique was used to evaluate the effects of organic fertilizer-derived DOM on sorption of three organic chemicals (2,4-D, naphthalene and chlorpyrifos) in USGA (United States Golf Association) sand, a mixed soil (70% USGA sand and 30% native soil) and a silt loam soil (Typic Fragiochrept). DOM was extracted from two commercial organic fertilizers. Column leaching experiments were also performed using USGA sand. Sorption experiments showed that sorption capacity was significantly reduced with increasing DOM concentration in solution for all three chemicals. Column experimental results were consistent with batch equilibrium data. These results suggest that organic fertilizer-derived DOM might lead to enhanced transport of applied chemicals in turf soils. - Dissolved organic matter could result in enhanced transport of chemicals applied to turf.

  4. Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching

    International Nuclear Information System (INIS)

    Li Kun; Xing Baoshan; Torello, William A.

    2005-01-01

    Incorporation of organic fertilizers/amendments has been, and continues to be, a popular strategy for golf course turfgrass management. Dissolved organic matter (DOM) derived from these organic materials may, however, facilitate organic chemical movement through soils. A batch equilibrium technique was used to evaluate the effects of organic fertilizer-derived DOM on sorption of three organic chemicals (2,4-D, naphthalene and chlorpyrifos) in USGA (United States Golf Association) sand, a mixed soil (70% USGA sand and 30% native soil) and a silt loam soil (Typic Fragiochrept). DOM was extracted from two commercial organic fertilizers. Column leaching experiments were also performed using USGA sand. Sorption experiments showed that sorption capacity was significantly reduced with increasing DOM concentration in solution for all three chemicals. Column experimental results were consistent with batch equilibrium data. These results suggest that organic fertilizer-derived DOM might lead to enhanced transport of applied chemicals in turf soils. - Dissolved organic matter could result in enhanced transport of chemicals applied to turf

  5. Mapping potential acid sulfate soils in Denmark using legacy data and LiDAR-based derivatives

    DEFF Research Database (Denmark)

    Beucher, Amélie; Adhikari, Kabindra; Breuning-Madsen, Henrik

    2017-01-01

    drainage of areas classified as potential a.s. soilswithout prior permission fromenvironmental authorities. Themapping of these soils was first conducted in the 1980’s.Wetlands, inwhich Danish potential a.s. soils mostly occur,were targeted and the soilswere surveyed through conventional mapping....... In this study, a probability map for potential a.s. soil occurrence was constructed for thewetlands located in Jutland, Denmark (c. 6500 km2), using the digital soilmapping (DSM) approach. Among the variety of available DSM techniques, artificial neural networks (ANNs) were selected. More than 8000 existing...... of environmental variables. The overall prediction accuracy based on a 30% hold-back validation data reached 70%. Furthermore, the conventional map indicated 32% of the study area (c. 2100 km2) as having a high frequency for potential a.s. soils while the digital map displayed about 46% (c. 3000 km2) as high...

  6. Pasture soils contaminated with fertilizer-derived cadmium and fluorine: livestock effects.

    Science.gov (United States)

    Loganathan, Paripurnanda; Hedley, Mike J; Grace, Neville D

    2008-01-01

    Fertilizers are indispensable for ensuring sustainability of agricultural production, thereby achieving food and fiber security. Nitrogen, sulfur, and potassium fertilizers are relatively free of impurities, but phosphorus (P) fertilizers, the main fertilizer input for the economic production of legume-based pastures, contain several contaminants, of which F and Cd are considered to be of most concern because they have potentially harmful effects on soil quality, livestock health, and food safety. Incidences of fluorosis in grazing livestock, and accumulation of Cd in the edible offal products of livestock, above the maximum permissible concentration set by food authorities have been reported in many countries. The majority of Cd and F applied to pastures in many countries continues to accumulate in the biologically active topsoil due to strong adsorption to soil constituents. However, the rate of Cd accumulation in the last decade has slowed as a result of selective use of low-Cd fertilizers. Cd and F adsorption in soils increase with increased contents of iron and aluminium oxides, layer silicates and allophane in soils, and increased soil pH. Cadmium adsorption also increases with increased Mn oxides and organic matter in soil. However, some Cd will be released during decomposition of plant and animal remains and organic matter. In most pastoral soils the majority of Cd and F added in fertilizers remains in the topsoil and little moves below 20-30 cm, and therefore these are unlikely to contaminate groundwater. However, F may pose a risk to shallow groundwater in very acidic low-P-fixing soils, and Cd may pose a risk in very acidic soils containing low organic matter and clay contents, or in soils with high chloride concentrations. Research is required both to test whether groundwater beneath farms with long histories of P fertilizer use is contaminated by these elements and also to examine their mechanisms of movement. Cd intake by grazing livestock occurs

  7. Detecting small-scale spatial heterogeneity and temporal dynamics of soil organic carbon (SOC) stocks: a comparison between automatic chamber-derived C budgets and repeated soil inventories

    Science.gov (United States)

    Hoffmann, Mathias; Jurisch, Nicole; Garcia Alba, Juana; Albiac Borraz, Elisa; Schmidt, Marten; Huth, Vytas; Rogasik, Helmut; Rieckh, Helene; Verch, Gernot; Sommer, Michael; Augustin, Jürgen

    2017-03-01

    Carbon (C) sequestration in soils plays a key role in the global C cycle. It is therefore crucial to adequately monitor dynamics in soil organic carbon (ΔSOC) stocks when aiming to reveal underlying processes and potential drivers. However, small-scale spatial (10-30 m) and temporal changes in SOC stocks, particularly pronounced in arable lands, are hard to assess. The main reasons for this are limitations of the well-established methods. On the one hand, repeated soil inventories, often used in long-term field trials, reveal spatial patterns and trends in ΔSOC but require a longer observation period and a sufficient number of repetitions. On the other hand, eddy covariance measurements of C fluxes towards a complete C budget of the soil-plant-atmosphere system may help to obtain temporal ΔSOC patterns but lack small-scale spatial resolution. To overcome these limitations, this study presents a reliable method to detect both short-term temporal dynamics as well as small-scale spatial differences of ΔSOC using measurements of the net ecosystem carbon balance (NECB) as a proxy. To estimate the NECB, a combination of automatic chamber (AC) measurements of CO2 exchange and empirically modeled aboveground biomass development (NPPshoot) were used. To verify our method, results were compared with ΔSOC observed by soil resampling. Soil resampling and AC measurements were performed from 2010 to 2014 at a colluvial depression located in the hummocky ground moraine landscape of northeastern Germany. The measurement site is characterized by a variable groundwater level (GWL) and pronounced small-scale spatial heterogeneity regarding SOC and nitrogen (Nt) stocks. Tendencies and magnitude of ΔSOC values derived by AC measurements and repeated soil inventories corresponded well. The period of maximum plant growth was identified as being most important for the development of spatial differences in annual ΔSOC. Hence, we were able to confirm that AC-based C budgets are able

  8. Effects of changes in soil properties derived from land levelling on grape quality and yield in the Priorat (Spain)

    Science.gov (United States)

    Concepción Ramos, Maria

    2017-04-01

    Soil characteristics together with topography and climate influence on the suitability of the environment for grapevine growing and wine production grapevine growth and fruit qualities. Thus, changes in soil properties derived from field works and agricultural activities may influence grape production and quality. This work focuses on the effects of land terracing on soil properties, and the changes in grape quality and production. The study was conducted in the Priorat region, where old vineyards planted in steep slopes have been adapted for the labour mechanization with the construction of terraces. Changes in soil properties, such as organic matter, infiltration, water retention capacity were analysed in both old and transformed vineyards. Grape yield, pH, acidity and the likely alcohol content were evaluated in a sample of 80 plots planted with Grenache and Carignan. The soil surface alterations produced by the terrace construction affected some hydrological properties, such as texture and bulk density, and they also gave rise to lower soil organic matter content (up to 40%), lower available water capacity (up to 25%)and hydraulic (up to 55%). For the evaluated varieties, there were differences in yield between both new and old vineyards: 2.18 vs 0.68 kg/vine for Carignan and 2.34 vs 1.64 kg/vine for Grenache. For Carignan, pH was on average lower in the new than in the old vineyards (3.46 vs. and 3.51) and higher differences were observed in the acidity (5.29 vs. 4.22). Similarly for Grenache, pH values were 3.3 vs 3.24 and acidity 5.18 vs 4.69. Smaller differences were found in the likely alcohol content although it was always higher in the old vineyards (14.5 and 14.9 for Carignan and Grenache, respectively) than in the new vineyards (13.7 and 14.5 for Carignan and Grenache, respectively).

  9. Improving agricultural drought monitoring in West Africa using root zone soil moisture estimates derived from NDVI

    Science.gov (United States)

    McNally, A.; Funk, C. C.; Yatheendradas, S.; Michaelsen, J.; Cappelarere, B.; Peters-Lidard, C. D.; Verdin, J. P.

    2012-12-01

    The Famine Early Warning Systems Network (FEWS NET) relies heavily on remotely sensed rainfall and vegetation data to monitor agricultural drought in Sub-Saharan Africa and other places around the world. Analysts use satellite rainfall to calculate rainy season statistics and force crop water accounting models that show how the magnitude and timing of rainfall might lead to above or below average harvest. The Normalized Difference Vegetation Index (NDVI) is also an important indicator of growing season progress and is given more weight over regions where, for example, lack of rain gauges increases error in satellite rainfall estimates. Currently, however, near-real time NDVI is not integrated into a modeling framework that informs growing season predictions. To meet this need for our drought monitoring system a land surface model (LSM) is a critical component. We are currently enhancing the FEWS NET monitoring activities by configuring a custom instance of NASA's Land Information System (LIS) called the FEWS NET Land Data Assimilation System. Using the LIS Noah LSM, in-situ measurements, and remotely sensed data, we focus on the following questions: What is the relationship between NDVI and in-situ soil moisture measurements over the West Africa Sahel? How can we use this relationship to improve modeled water and energy fluxes over the West Africa Sahel? We investigate soil moisture and NDVI cross-correlation in the time and frequency domain to develop a transfer function model to predict soil moisture from NDVI. This work compares sites in southwest Niger, Benin, Burkina Faso, and Mali to test the generality of the transfer function. For several sites with fallow and millet vegetation in the Wankama catchment in southwest Niger we developed a non-parametric frequency response model, using NDVI inputs and soil moisture outputs, that accurately estimates root zone soil moisture (40-70cm). We extend this analysis by developing a low order parametric transfer function

  10. Hydrogen peroxide treatment of TCE contaminated soil

    International Nuclear Information System (INIS)

    Hurst, D.H.; Robinson, K.G.; Siegrist, R.L.

    1993-01-01

    Solvent contaminated soils are ubiquitous in the industrial world and represent a significant environmental hazard due to their persistence and potentially negative impacts on human health and the environment. Environmental regulations favor treatment of soils with options which reduce the volume and toxicity of contaminants in place. One such treatment option is the in-situ application of hydrogen peroxide to soils contaminated with chlorinated solvents such as trichloroethylene (TCE). This study investigated hydrogen peroxide mass loading rates on removal of TCE from soils of varying organic matter content. Batch experiments conducted on contaminated loam samples using GC headspace analysis showed up to 80% TCE removal upon peroxide treatment. Column experiments conducted on sandy loam soils with high organic matter content showed only 25% TCE removal, even at hydrogen peroxide additions of 25 g peroxide per kg soil

  11. Removal of petroleum-derived hydrocarbons from contaminated soils by solvent extraction

    International Nuclear Information System (INIS)

    Ladanowski, C.; Petti, L.

    1993-01-01

    Laboratory studies were conducted using hexane for the removal of light crude oil from contaminated sand, peat, and clay soils. The bench-scale process tested consists of three major steps: solvent washing, settling/decantation/filtration of extract, and solvent recycle. The results indicate that the use of solvent extraction for cleanup of oil-contaminated soils is an effective technology at the bench-scale level. Using a 1,000 g batch system, extremely high oil removal efficiencies were obtained from contaminated sand (up to 98.9%) and peat soil (up to 83.9%). The final oil contaminant concentration for sand varied between 0.06% and 0.39%, while that for peat soil varied between 1.52% and 5.21%. The guidelines for the decommissioning and cleanup of sites in Ontario for oil and grease (1 wt %) were met in all instances for the treated sand. Hexane recovery from diesel-contaminated sand and peat soil experiments was ca 81% and 67% respectively. 4 refs., 6 figs., 10 tabs

  12. CHANGES IN SOIL MACROFAUNA IN AGROECOSYSTEMS DERIVED FROM LOW DECIDUOUS TROPICAL FOREST ON LEPTOSOLS FROM KARSTIC ZONES

    Directory of Open Access Journals (Sweden)

    Francisco Bautista

    2009-02-01

    Full Text Available In Yucatan Mexico the method of slash and burn is used for the establishment of pastures. Pastures are developed for 15 to 20 years, no more because weed control is too expensive. The impact of these practices on soil macrofauna had not been evaluated. Because of its wide distribution, diverse habits and high sensitivity to disturbance, soil macrofauna is considered a valuable indicator of soil health, allowing monitoring of soil sustainability. We studied soil macrofauna communities in low deciduous tropical forest and four livestock agroecosystems with increasing management-derived disturbance including a silvopastoral system, Taiwan grass (Cynodon nlemfuensis and Star grass (Pennisetum purpureum pastures in order to describe community structure across systems, and evaluate disturbance sensitivity of taxonomical groups to detect taxa with potential use as biological indicators of soil health or degradation. Pitfall traps were used at each of the systems to sample soil macrofauna. We estimate their taxonomical abundance, biomass, richness (order, morphospecies, diversity, dominance and response to disturbance on agroecosystems and the forest. We found 133 macrofauna morphospecies of 15 taxa. Groups with more individuals were: Hymenoptera (64.97%, Coleoptera (22.68%, and Orthoptera (3.91%.  Agroecosystem of two-year old Taiwan-grass pasture (TP2 had the highest macrofauna abundances, biomass and richness, low diversity, and a non-homogeneous distribution of individuals among species; in contrast, silvopastoral system (SP, had low abundance and biomass, the lowest specific richness, high diversity and a homogeneous distribution of individuals among species. The discriminant analysis revealed that the agroecosystems and the forest serve to predict the macrofauna communities, since they have particular or typical soil macrofauna. The cases (sampled points with a correct assignation by agroecosystems were: Forest (70%, Sivopastoral system (70

  13. Characterising and linking X-ray CT derived macroporosity parameters to infiltration in soils with contrasting structures

    DEFF Research Database (Denmark)

    Müller, Karin; Katuwal, Sheela; Young, Iain

    2018-01-01

    with X-ray CT. Kunsat was significantly higher in the Andosol than in the Gleysol at all water potentials, and decreased significantly with depth in both soils. The in situ measurements guided the definition of new macroporosity parameters from the X-ray CT reconstructions. For the Andosol, Kunsat......Soils deliver the regulating ecosystem services of water infiltration and distribution, which can be controlled by macropores. Parameterizing macropore hydraulic properties is challenging due to the lack of direct measurement methods. With tension-disc infiltrometry hydraulic properties near...... saturation can be measured. Differentiating between hydrologically active and non-active pores, at a given water potential, indirectly assesses macropore continuity. Water flow through macropores is controlled by macropore size distribution, tortuosity, and connectivity, which can be directly derived by X...

  14. Effect of dissolved organic matter derived from waste amendments on the mobility of inorganic arsenic (III) in the Egyptian alluvial soil

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, Mohamed [Land and Water Technologies Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, 21934 Alexandria (Egypt); Assaad, Faiz F. [Soils and Water Use Department, National Research Centre, Dokki, Cairo (Egypt); Shalaby, Elsayed A. [Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University (Egypt)

    2013-07-01

    Dissolved organic matter (DOM) is one of the decisive factors affecting pollutants mobility in soils receiving waste amendments. The aim of this study was to investigate the effects of DOM1 derived from agricultural solid waste (ASW) and DOM2 derived from municipal solid waste (MSW) on the mobility of inorganic arsenic (As) in two alluvial soils from the Nile River Delta. In column experiments, addition of DOM solutions significantly increased As concentration in the effluents. There was no significant difference between the two soils, the obtained results from soil2 columns revealed that DOM2 has stronger capability than DOM1 to facilitate As mobility. The pH of the studied soils is alkaline (8.1) which promoted the dissociation as well as deprotonation of DOM and as a consequence, humic substances in DOM become negatively charged organic anions, leading to their substantial competition with As for the adsorption sites on both soil surfaces. The results emphasized that in alkaline soils there is a risk of groundwater pollution in the long run by arsenic either naturally found in soil or originated at high soil pH when dissolved organic carbon (DOC) released from various organic amendments ASW and/or MSW and leached through soil profile.

  15. Characterization of the coal derived humic acids from Mukah, Sarawak as soil conditioner

    Directory of Open Access Journals (Sweden)

    Fong Sim Siong

    2006-01-01

    Full Text Available In Malaysia, abundant coal resources were found in Sarawak and Sabah. The utilization of coal resources, to date, is emphasized on the energy productions. The non-energy utilization as soil conditioner is unexplored. Therefore, this study attempted to characterize the coal humic acids extracted from Mukah coal and to evaluate its properties as soil conditioner. The coal humic acids from the regenerated sample were also assessed. The results revealed that different extractants and concentrations influenced the properties of humic acids. The extraction with KOH at 0.5 mol L-1 produced humic acids with low ash content and high acidic functional groups, which are substantial as soil conditioner. However, the yield was low. Regeneration of coal sample with 10% nitric acids improved the yield to an average of 83.45%. The acidic functional groups of nitrohumic acids were improved with the ash content remained at a low level.

  16. Gas diffusion-derived tortuosity governs saturated hydraulic conductivity in sandy soils

    DEFF Research Database (Denmark)

    Masis Melendez, Federico; Deepagoda Thuduwe Kankanamge Kelum, Chamindu; de Jonge, Lis Wollesen

    2014-01-01

    Accurate prediction of saturated hydraulic conductivity (Ksat) is essential for the development of better distributed hydrological models and area-differentiated risk assessment of chemical leaching. The saturated hydraulic conductivity is often estimated from basic soil properties such as particle......, potential relationships between Ksat and Dp/Do were investigated. A total of 84 undisturbed soil cores were extracted from the topsoil of a field site, and Dp/Do and Ksat were measured in the laboratory. Water-induced and solids-induced tortuosity factors were obtained by applying a two-parameter Dp...

  17. Characterization of pyrolysis products derived from three biological wastes and their effect on plant growth and soil water retention

    Science.gov (United States)

    Bouqbis, Laila; Werner Koyro, Hans; Kammann, Claudia; Zohra Ainlhout, Lalla Fatima; Boukhalef, Laila; Cherif Harrouni, Moulay

    2018-05-01

    Over two-thirds of Morocco can be classified as semiarid, arid and desert with low and variable rainfalls. While the country is subject to frequent drought, groundwater resources are predominantly consume by irrigated agriculture leading to the depletion of water resources and degradation of soil quality. Application of bio-resources wastes to soils after pyrolysis process is well documented to help retain water and nutrients in soils. In this study, three bio-resources wastes derived from argan shells, wood chip, a blend of paper sludge and wheat husks are characterized for physical and chemical properties. To determine the potential impact of salt stress and toxic substances the second part of this study focused on the effect these bio-resources wastes have on germination of salad and barley respectively. The three bio-resources obtained from different biomass showed some unique properties compared to the soil, such as high electrical conductivity (EC), high content of K, Na and Mg, low content of heavy metals. Moreover, the water holding capacities increased with increasing application of bio-resources wastes. Concerning the phytotoxic tests, no negative effect was observed neither for salad (Lactuca sativa L.) nor for barley (Hordeum vulgare) indicating that the three bio-resources could be safely used for agriculture. Collectively, the use of these bio-resources wastes as a soil amendment is anticipated to increase both water and nutrient and could provide the potential for a better plant growth mainly in semiarid, arid and desert climatic conditions like the case of Morocco in which the agricultural practices reserve a majority of the water resources to be used for irrigation.

  18. Characterization of pyrolysis products derived from three biological wastes and their effect on plant growth and soil water retention

    Directory of Open Access Journals (Sweden)

    Bouqbis Laila

    2018-01-01

    Full Text Available Over two-thirds of Morocco can be classified as semiarid, arid and desert with low and variable rainfalls. While the country is subject to frequent drought, groundwater resources are predominantly consume by irrigated agriculture leading to the depletion of water resources and degradation of soil quality. Application of bio-resources wastes to soils after pyrolysis process is well documented to help retain water and nutrients in soils. In this study, three bio-resources wastes derived from argan shells, wood chip, a blend of paper sludge and wheat husks are characterized for physical and chemical properties. To determine the potential impact of salt stress and toxic substances the second part of this study focused on the effect these bio-resources wastes have on germination of salad and barley respectively. The three bio-resources obtained from different biomass showed some unique properties compared to the soil, such as high electrical conductivity (EC, high content of K, Na and Mg, low content of heavy metals. Moreover, the water holding capacities increased with increasing application of bio-resources wastes. Concerning the phytotoxic tests, no negative effect was observed neither for salad (Lactuca sativa L. nor for barley (Hordeum vulgare indicating that the three bio-resources could be safely used for agriculture. Collectively, the use of these bio-resources wastes as a soil amendment is anticipated to increase both water and nutrient and could provide the potential for a better plant growth mainly in semiarid, arid and desert climatic conditions like the case of Morocco in which the agricultural practices reserve a majority of the water resources to be used for irrigation.

  19. Irrigated cotton grown on sierozem soils in South Kazakhstan

    Science.gov (United States)

    The Gloldnaya steppe has large areas of fertile sierozem soils that are important for crop production and its accompanying economic development. The soils are fertile loams but because of the steppe’s dry environment, they need to be irrigated. Our objective was to study irrigation management of cot...

  20. Transport of Pathogen Surrogates in Soil Treatment Units: Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Morales

    2014-04-01

    Full Text Available Segmented mesocosms (n = 3 packed with sand, sandy loam or clay loam soil were used to determine the effect of soil texture and depth on transport of two septic tank effluent (STE-borne microbial pathogen surrogates—green fluorescent protein-labeled E. coli (GFPE and MS-2 coliphage—in soil treatment units. HYDRUS 2D/3D software was used to model the transport of these microbes from the infiltrative surface. Mesocosms were spiked with GFPE and MS-2 coliphage at 105 cfu/mL STE and 105–106 pfu/mL STE, respectively. In all soils, removal rates were >99.99% at 25 cm. The transport simulation compared (1 optimization; and (2 trial-and-error modeling approaches. Only slight differences between the transport parameters were observed between these approaches. Treating both the die-off rates and attachment/detachment rates as variables resulted in an overall better model fit, particularly for the tailing phase of the experiments. Independent of the fitting procedure, attachment rates computed by the model were higher in sandy and sandy loam soils than clay, which was attributed to unsaturated flow conditions at lower water content in the coarser-textured soils. Early breakthrough of the bacteria and virus indicated the presence of preferential flow in the system in the structured clay loam soil, resulting in faster movement of water and microbes through the soil relative to a conservative tracer (bromide.

  1. Effect of biosolids application on soil chemical properties and uptake ...

    African Journals Online (AJOL)

    Effect of biosolids application on soil chemical properties and uptake of some heavy metals by Cercis siliquastrum. ... and municipal solid waste compost (50% CM + 50% MC) at three levels of 0, 2.5 and 5 kg/shrub and three replicates in calcareous sandy loam soil at the botanical garden of Mobarekeh steel company.

  2. Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France

    Science.gov (United States)

    Zhang, Sibo; Calvet, Jean-Christophe; Darrozes, José; Roussel, Nicolas; Frappart, Frédéric; Bouhours, Gilles

    2018-03-01

    This work assesses the estimation of surface volumetric soil moisture (VSM) using the global navigation satellite system interferometric reflectometry (GNSS-IR) technique. Year-round observations were acquired from a grassland site in southwestern France using an antenna consecutively placed at two contrasting heights above the ground surface (3.3 and 29.4 m). The VSM retrievals are compared with two independent reference datasets: in situ observations of soil moisture, and numerical simulations of soil moisture and vegetation biomass from the ISBA (Interactions between Soil, Biosphere and Atmosphere) land surface model. Scaled VSM estimates can be retrieved throughout the year removing vegetation effects by the separation of growth and senescence periods and by the filtering of the GNSS-IR observations that are most affected by vegetation. Antenna height has no significant impact on the quality of VSM estimates. Comparisons between the VSM GNSS-IR retrievals and the in situ VSM observations at a depth of 5 cm show good agreement (R2 = 0.86 and RMSE = 0.04 m3 m-3). It is shown that the signal is sensitive to the grass litter water content and that this effect triggers differences between VSM retrievals and in situ VSM observations at depths of 1 and 5 cm, especially during light rainfall events.

  3. Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2018-03-01

    Full Text Available This work assesses the estimation of surface volumetric soil moisture (VSM using the global navigation satellite system interferometric reflectometry (GNSS-IR technique. Year-round observations were acquired from a grassland site in southwestern France using an antenna consecutively placed at two contrasting heights above the ground surface (3.3 and 29.4 m. The VSM retrievals are compared with two independent reference datasets: in situ observations of soil moisture, and numerical simulations of soil moisture and vegetation biomass from the ISBA (Interactions between Soil, Biosphere and Atmosphere land surface model. Scaled VSM estimates can be retrieved throughout the year removing vegetation effects by the separation of growth and senescence periods and by the filtering of the GNSS-IR observations that are most affected by vegetation. Antenna height has no significant impact on the quality of VSM estimates. Comparisons between the VSM GNSS-IR retrievals and the in situ VSM observations at a depth of 5 cm show good agreement (R2 =  0.86 and RMSE  =  0.04 m3 m−3. It is shown that the signal is sensitive to the grass litter water content and that this effect triggers differences between VSM retrievals and in situ VSM observations at depths of 1 and 5 cm, especially during light rainfall events.

  4. Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil?

    Czech Academy of Sciences Publication Activity Database

    Verbruggen, E.; Jansa, Jan; Hammer, E.C.; Rilling, M.C.

    2016-01-01

    Roč. 104, č. 1 (2016), s. 261-269 ISSN 0022-0477 R&D Projects: GA MŠk(CZ) LK11224 Institutional support: RVO:61388971 Keywords : isotopes * litter decomposition * plant- soil (below-ground) interactions Subject RIV: EE - Microbiology, Virology Impact factor: 5.813, year: 2016

  5. Analyzing water soluble soil organics as Trifluoroacetyl derivatives by liquid state proton nuclear magnetic resonance

    Science.gov (United States)

    Felipe Garza Sanchez; Zakiya Holmes Leggett; Sabapathy Sankar

    2005-01-01

    In forested ecosystems, water soluble organics play an important role in soil processes including carbon and nutrient turnover, microbial activity and pedogenesis. The quantity and quality (i.e., chemistry) of these materials is sensitive to land management practices. Monitoring alterations in the chemistry of water soluble organics resulting from land management...

  6. New insight in the derivation of amplification factor by taking into account soil parameters. In : Proceedings of the 16th World Conference on Earthquake Engineering

    OpenAIRE

    ZENDAGUI, Djawad; STAMBOULI BOUDGHENE, Ahmed; BARD, Pierre Yves; DERRAS, Boumédiène

    2017-01-01

    It is currently admitted that the amplification factor (AF) is one of the best tools to describe site effects. AF depends on soil parameters that are derived from the geometrical and mechanical soil properties of the soil profile. Thus, it is important to identify which soil parameters shape the form of the AF. The aim of this paper is to measure the effects of various site parameters on the variation of AF. As the problem is highly complex, a tool using the GRNN (Generalized Regression Neura...

  7. Meroterpenoid and diphenyl ether derivatives from Penicillium sp. MA-37, a fungus isolated from marine mangrove rhizospheric soil.

    Science.gov (United States)

    Zhang, Yi; Li, Xiao-Ming; Shang, Zhuo; Li, Chun-Shun; Ji, Nai-Yun; Wang, Bin-Gui

    2012-11-26

    Penicillium sp. MA-37, which was obtained from the rhizospheric soil of the mangrove plant Bruguiera gymnorrhiza, exhibited different chemical profiles in static and shaken fermentation modes. Three new meroterpenoid derivatives, 4,25-dehydrominiolutelide B (1), 4,25-dehydro-22-deoxyminiolutelide B (2), and isominiolutelide A (3), together with three known ones were characterized from its static fermentation, while three new diphenyl ether derivatives, namely, Δ(1('),3('))-1'-dehydroxypenicillide (4), 7-O-acetylsecopenicillide C (5), and hydroxytenellic acid B (6), along with five related metabolites were isolated from the shaken culture. The structures of these compounds were elucidated on the basis of spectroscopic analysis, and the structure of compound 2 was confirmed by X-ray crystallographic analysis. The absolute configurations of 1-3 and 6 were determined by ECD and modified Mosher's method, respectively. All isolated compounds were evaluated for brine shrimp lethality and antibacterial activity.

  8. The dominant detritus-feeding invertebrate in Arctic peat soils derives its essential amino acids from gut symbionts

    DEFF Research Database (Denmark)

    Larsen, Thomas; Ventura, Marc; Maraldo, Kristine

    2016-01-01

    insufficiencies of macronutrients such as essential amino acids (EAA). Documenting whether gut symbionts also function as partners for symbiotic EAA supplementation is important because the question of how some detritivores are able to subsist on nutritionally insufficient diets has remained unresolved. 3....... To answer this poorly understood nutritional aspect of symbiont-host interactions, we studied the enchytraeid worm, a bulk soil feeder that thrives in Arctic peatlands. In a combined field and laboratory study, we employed stable isotope fingerprinting of amino acids to identify the biosynthetic origins...... of amino acids to bacteria, fungi and plants in enchytraeids. 4. Enchytraeids collected from Arctic peatlands derived more than 80% of their EAA from bacteria. In a controlled feeding study with the enchytraeid Enchytraeus crypticus, EAA derived almost exclusively from gut bacteria when the worms fed...

  9. Mobility of fertiliser-derived uranium in arable soils and its contribution to uranium concentrations in groundwater and tap water

    International Nuclear Information System (INIS)

    Smidt, Geerd Ahlrich

    2011-01-01

    Phosphorus (P) mineral fertilisers are found to contain high concentrations of uranium (U) (up to 206 mg U kg -1 ) and other trace elements (TE), such as Cd, Pb, Ni, Cu, Zn, Th, Nb, Sr, V, and rare earth elements. The content of U and other trace elements is depended on the sedimentary of igneous origin of the rock phosphate. In this study, the production of P fertilisers has been shown to contaminate top soil horizons with U and other trace elements in the close vicinity of a factory located in Southern Brazil. In contrast to this point source, agricultural P fertilisation leads to a diffuse contamination of the agro-ecosystem with U and other fertiliser-derived trace elements on a large scale. Top soil horizons of arable land accumulate fertiliser-derived U. According to the geochemical behaviour of U(VI) species under oxidising conditions, the mobilisation capacity for U in top soil horizons is considered to be high, contrary to other fertiliser-derived heavy metals (e.g. Cd). Hence, it is assumed that U can be leached to shallow groundwater and can reach fresh water resources potentially used for drinking water supply. The aims of this study were to investigate the concentration of U and other contaminants in P fertilisers, to identify geochemical processes of fertiliser-derived U mobility and mobilisation from arable top soil horizons to the groundwater, and to evaluate the origin of U in German groundwater and tap water. This study presents the broadest recent data set on regional distribution of U concentrations in German tap water to which 76 % of the German population has access. The mean U concentration was 0.68 μg L -1 , the median 0.50 μg L -1 . 1.3 % or 1 million of the 80.6 million inhabitants in Germany are exposed to U concentrations in tap water which are higher than the German drinking water threshold limit of 10 μg L -1 . The regional distribution of U concentrations largely agrees with the geological setting reported for mineral waters

  10. Mobility of fertiliser-derived uranium in arable soils and its contribution to uranium concentrations in groundwater and tap water

    Energy Technology Data Exchange (ETDEWEB)

    Smidt, Geerd Ahlrich

    2011-12-20

    Phosphorus (P) mineral fertilisers are found to contain high concentrations of uranium (U) (up to 206 mg U kg{sup -1}) and other trace elements (TE), such as Cd, Pb, Ni, Cu, Zn, Th, Nb, Sr, V, and rare earth elements. The content of U and other trace elements is depended on the sedimentary of igneous origin of the rock phosphate. In this study, the production of P fertilisers has been shown to contaminate top soil horizons with U and other trace elements in the close vicinity of a factory located in Southern Brazil. In contrast to this point source, agricultural P fertilisation leads to a diffuse contamination of the agro-ecosystem with U and other fertiliser-derived trace elements on a large scale. Top soil horizons of arable land accumulate fertiliser-derived U. According to the geochemical behaviour of U(VI) species under oxidising conditions, the mobilisation capacity for U in top soil horizons is considered to be high, contrary to other fertiliser-derived heavy metals (e.g. Cd). Hence, it is assumed that U can be leached to shallow groundwater and can reach fresh water resources potentially used for drinking water supply. The aims of this study were to investigate the concentration of U and other contaminants in P fertilisers, to identify geochemical processes of fertiliser-derived U mobility and mobilisation from arable top soil horizons to the groundwater, and to evaluate the origin of U in German groundwater and tap water. This study presents the broadest recent data set on regional distribution of U concentrations in German tap water to which 76 % of the German population has access. The mean U concentration was 0.68 μg L{sup -1}, the median 0.50 μg L{sup -1}. 1.3 % or 1 million of the 80.6 million inhabitants in Germany are exposed to U concentrations in tap water which are higher than the German drinking water threshold limit of 10 μg L{sup -1}. The regional distribution of U concentrations largely agrees with the geological setting reported for

  11. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  12. Role of amino acid metabolites in the formation of soil organic matter

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1972-01-01

    Carbon-14 labelled cellulose or glucose were added to a medium loam and two sandy soils. The soils were incubated at 20°C for about 6 yr under laboratory conditions. Six to 12 per cent of the labelled carbon added to the soils was transformed into metabolites hydrolysable to amino acids during th...

  13. Impact of chemical leaching on permeability and cadmium removal from fine-grained soils.

    Science.gov (United States)

    Lin, Zhongbing; Zhang, Renduo; Huang, Shuang; Wang, Kang

    2017-08-01

    The aim of this study was to investigate the influence of chemical leaching on permeability and Cd removal from fine-grained polluted soils. Column leaching experiments were conducted using two types of soils (i.e., artificially Cd-polluted loam and historically polluted silty loam). Chemical agents of CaCl 2 , FeCl 3 , citric acid, EDTA, rhamnolipid, and deionized water were used to leach Cd from the soils. Results showed that organic agents reduced permeability of both soils, and FeCl 3 reduced permeability of loam soil, compared with inorganic agents and deionized water. Entrapment and deposition of colloids generated from the organic agents and FeCl 3 treatments reduced the soil permeability. The peak Cd effluence from the artificially polluted loam columns was retarded. For the artificially polluted soils treated with EDTA and the historically polluted soils with FeCl 3 , Cd precipitates were observed at the bottom after chemical leaching. When Cd was associated with large colloid particles, the reduction of soil permeability caused Cd accumulation in deeper soil. In addition, the slow process of disintegration of soil clay during chemical leaching might result in the retardation of peak Cd effluence. These results suggest the need for caution when using chemical-leaching agents for Cd removal in fine-grained soils.

  14. Hydraulic conductivity in sugar cane cultivated in soils previous vin aza application

    International Nuclear Information System (INIS)

    Musso, M.; Pereira, S.; Fajardo, L.

    2012-01-01

    This work analyzes the hydraulic conductivity in soil clay loams developed in Libertad formation in Bella Union where grows sugar cane with vinaza. In the agricultural activities are used different chemical additives such as organic and inorganic fertilizers, herbicides and pesticides, which interact with the biotic (roots, soil microbiology) and abiotic (clay, soil solution, etc.) elements

  15. Dynamic chemical characteristics of soil solution after pig manure application: a column study.

    Science.gov (United States)

    Hao, Xiuzhen; Zhou, Dongmei; Sun, Lei; Li, Lianzhen; Zhang, Hailin

    2008-06-01

    When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.

  16. CORRELATIONS BETWEEN PESTICIDE TRANSFORMATION RATE AND MICROBIAL RESPIRATION ACTIVITY IN SOIL OF DIFFERENT ECOSYSTEMS

    Science.gov (United States)

    Cecil sandy loam soils (ultisol) from forest (coniferous and deciduous), pasture, and arable ecosystems were sampled (0-10 cm) in the vicinity of Athens, GA, USA. Soil from each site was subdivided into three portions, consisting of untreated soil (control) as well as live and s...

  17. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel

    NARCIS (Netherlands)

    Rietkerk, M.G.; Ouedraogo, T.; Kumar, L.; Sanou, S.; Langevelde, F. van; Kiema, A.; Koppel, J. van de; Andel, J. van; Hearne, J.; Skidmore, A.K.; Ridder, N. de; Stroosnijder, L.; Prins, H.H.T.

    2002-01-01

    We studied fine-scale spatial plant distribution in relation to the spatial distribution of erodible soil particles, organic matter, nutrients and soil water on a sandy to sandy loam soil in the Sahel. We hypothesized that the distribution of annual plants would be highly spatially autocorrelated

  18. Magnetic Soils Profiles in the Volga-Kama Forest-Steppe Region

    Directory of Open Access Journals (Sweden)

    L.A. Fattakhova

    2016-09-01

    Full Text Available The magnetic properties of virgin forest-steppe soils developed on the originally vertically uniform unconsolidated parent material have been investigated. The profile samples of virgin dark-grey forest light-clayey soil derived from a siltstone of the Kazan layer of the Upper Permian and virgin leached medium-thick fertile light-clayey chernozem derived from a Quaternary heavy deluvial loam have been considered. Both soils are characterized by the accumulative type of magnetic susceptibility and F-factor values distribution patterns with depth. In the humus part of the soil profile, magnetics are present pre-dominantly in the < 2.5 µm fraction. The coercivity spectra allowed to determine the contribution of dia-/paramagnetic and ferromagnetic components to magnetic susceptibility. It has been found that magnetic susceptibility enhancement in the organogenic horizons of virgin forest-steppe soils occurs due to the contribution of ferromagnetic components. The results indicate a strong positive linear correlation between the magnetic susceptibility and oxalate-extractable Fe, as well as between the magnetic susceptibility and Schwertmann’s criterion values. Using the method of thermomagnetic analysis of the < 2.5 µm fraction, it has been found that the magnetic susceptibility enhancement in the profiles of forest-steppe soils took place due to the formation of maghemite-magnetite associations. The predominantly ferromagnetic fraction consists of small single-domain grains.

  19. Mapping wind erosion hazard in Australia using MODIS-derived ground cover, soil moisture and climate data

    International Nuclear Information System (INIS)

    Yang, X; Leys, J

    2014-01-01

    This paper describes spatial modeling methods to identify wind erosion hazard (WEH) areas across Australia using the recently available time-series products of satellite-derived ground cover, soil moisture and wind speed. We implemented the approach and data sets in a geographic information system to produce WEH maps for Australia at 500 m ground resolution on a monthly basis for the recent thirteen year period (2000–2012). These maps reveal the significant wind erosion hazard areas and their dynamic tendencies at paddock and regional scales. Dust measurements from the DustWatch network were used to validate the model and interpret the dust source areas. The modeled hazard areas and changes were compared with results from a rule-set approach and the Computational Environmental Management System (CEMSYS) model. The study demonstrates that the time series products of ground cover, soil moisture and wind speed can be jointly used to identify landscape erodibility and to map seasonal changes of wind erosion hazard across Australia. The time series wind erosion hazard maps provide detailed and useful information to assist in better targeting areas for investments and continuous monitoring, evaluation and reporting that will lead to reduced wind erosion and improved soil condition

  20. Three-parameter modeling of the soil sorption of acetanilide and triazine herbicide derivatives.

    Science.gov (United States)

    Freitas, Mirlaine R; Matias, Stella V B G; Macedo, Renato L G; Freitas, Matheus P; Venturin, Nelson

    2014-02-01

    Herbicides have widely variable toxicity and many of them are persistent soil contaminants. Acetanilide and triazine family of herbicides have widespread use, but increasing interest for the development of new herbicides has been rising to increase their effectiveness and to diminish environmental hazard. The environmental risk of new herbicides can be accessed by estimating their soil sorption (logKoc), which is usually correlated to the octanol/water partition coefficient (logKow). However, earlier findings have shown that this correlation is not valid for some acetanilide and triazine herbicides. Thus, easily accessible quantitative structure-property relationship models are required to predict logKoc of analogues of the these compounds. Octanol/water partition coefficient, molecular weight and volume were calculated and then regressed against logKoc for two series of acetanilide and triazine herbicides using multiple linear regression, resulting in predictive and validated models.

  1. LiDAR derived high resolution topography: the next challenge for the analysis of terraces stability and vineyard soil erosion

    Directory of Open Access Journals (Sweden)

    Federico Preti

    2013-09-01

    Full Text Available The soil erosion in the vineyards is a critical issue that could affect their productivity, but also, when the cultivation is organized in terraces, increase the risk due to derived slope failure processes. If terraces are not correctly designed or maintained, a progressively increasing of gully erosion affects the structure of the walls. The results of this process is the increasing of connectivity and runoff. In order to overcome such issues it is really important to recognize in detail all the surface drainage paths, thus providing a basis upon which develop a suitable drainage system or provide structural measures for the soil erosion risk mitigation. In the last few years, the airborne LiDAR technology led to a dramatic increase in terrain information. Airborne LiDAR and Terrestrial Laser Scanner derived high-resolution Digital Terrain Models (DTMs have opened avenues for hydrologic and geomorphologic studies (Tarolli et al., 2009. In general, all the main surface process signatures are correctly recognized using a DTM with cell sizes of 1 m. However sub-meter grid sizes may be more suitable in those situations where the analysis of micro topography related to micro changes is critical for slope failures risk assessment or for the design of detailed drainage flow paths. The Terrestrial Laser Scanner (TLS has been proven to be an useful tool for such detailed field survey. In this work, we test the effectiveness of high resolution topography derived by airborne LiDAR and TLS for the recognition of areas subject to soil erosion risk in a typical terraced vineyard landscape of “Chianti Classico” (Tuscany, Italy. The algorithm proposed by Tarolli et al. (2013, for the automatic recognition of anthropic feature induced flow direction changes, has been tested. The results underline the effectiveness of LiDAR and TLS data in the analysis of soil erosion signatures in vineyards, and indicate the high resolution topography as a useful tool to

  2. Bacillus megaterium strains derived from water and soil exhibit differential responses to the herbicide mesotrione.

    Science.gov (United States)

    Dobrzanski, Tatiane; Gravina, Fernanda; Steckling, Bruna; Olchanheski, Luiz R; Sprenger, Ricardo F; Espírito Santo, Bruno C; Galvão, Carolina W; Reche, Péricles M; Prestes, Rosilene A; Pileggi, Sônia A V; Campos, Francinete R; Azevedo, Ricardo A; Sadowsky, Michael J; Beltrame, Flávio L; Pileggi, Marcos

    2018-01-01

    The intense use of herbicides for weed control in agriculture causes selection pressure on soil microbiota and water ecosystems, possibly resulting in changes to microbial processes, such as biogeochemical cycles. These xenobiotics may increase the production of reactive oxygen species and consequently affect the survival of microorganisms, which need to develop strategies to adapt to these conditions and maintain their ecological functionality. This study analyzed the adaptive responses of bacterial isolates belonging to the same species, originating from two different environments (water and soil), and subjected to selection pressure by herbicides. The effects of herbicide Callisto and its active ingredient, mesotrione, induced different adaptation strategies on the cellular, enzymatic, and structural systems of two Bacillus megaterium isolates obtained from these environments. The lipid saturation patterns observed may have affected membrane permeability in response to this herbicide. Moreover, this may have led to different levels of responses involving superoxide dismutase and catalase activities, and enzyme polymorphisms. Due to these response systems, the strain isolated from water exhibited higher growth rates than did the soil strain, in evaluations made in oligotrophic culture media, which would be more like that found in semi-pristine aquatic environments. The influence of the intracellular oxidizing environments, which changed the mode of degradation of mesotrione in our experimental model and produced different metabolites, can also be observed in soil and water at sites related to agriculture. Since the different metabolites may present different levels of toxicity, we suggest that this fact should be considered in studies on the fate of agrochemicals in different environments.

  3. Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils

    Science.gov (United States)

    Zhou, Dan; Liu, Dan; Gao, Fengxiang; Li, Mengke; Luo, Xianping

    2017-01-01

    The object of this study was to evaluate the effect of sewage sludge biochar on adsorption and mobility of Cr, Mn, Cu, and Zn. Biochar (BC400) was produced via pyrolysis of municipal sewage sludge at 400 °C. Maximum adsorption capacities (qm) for Zn, Cr, Mn, and Cu were 5.905, 5.724, 5.681, and 5.342 mg·g−1, respectively, in the mono-metal solution and 2.475, 8.204, 1.01, and 5.415 mg·g−1, respectively, in the multi-metal solution. The adsorption capacities for Mn, Cu, and Zn decreased in the multi-metal solution due to competitive adsorption, whereas the capacity for Cr increased. Surface precipitation is an important mechanism in the sorption of these metals on BC400. The 360-day incubation experiment showed that BC400 application reduced metal mobility in contaminated soils, which was attributed to the substantial decreases in the acid-soluble fractions of Cr, Mn, Cu, and Zn (72.20%, 70.38%, 50.43%, and 29.78%, respectively). Furthermore, the leaching experiment using simulated acid rain indicated that the addition of BC400 enhanced the acid buffer capacity of contaminated soil, and the concentration of Cr, Mn, Cu, and Zn in the leachate was lower than in untreated soil. Overall, this study indicates that sewage sludge biochar application reduces the mobility of heavy metal in co-contaminated soil, and this adsorption experiment is suitable for the evaluation of biochar properties for remediation. PMID:28644399

  4. Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils.

    Science.gov (United States)

    Zhou, Dan; Liu, Dan; Gao, Fengxiang; Li, Mengke; Luo, Xianping

    2017-06-23

    The object of this study was to evaluate the effect of sewage sludge biochar on adsorption and mobility of Cr, Mn, Cu, and Zn. Biochar (BC400) was produced via pyrolysis of municipal sewage sludge at 400 °C. Maximum adsorption capacities ( q m ) for Zn, Cr, Mn, and Cu were 5.905, 5.724, 5.681, and 5.342 mg·g -1 , respectively, in the mono-metal solution and 2.475, 8.204, 1.01, and 5.415 mg·g -1 , respectively, in the multi-metal solution. The adsorption capacities for Mn, Cu, and Zn decreased in the multi-metal solution due to competitive adsorption, whereas the capacity for Cr increased. Surface precipitation is an important mechanism in the sorption of these metals on BC400. The 360-day incubation experiment showed that BC400 application reduced metal mobility in contaminated soils, which was attributed to the substantial decreases in the acid-soluble fractions of Cr, Mn, Cu, and Zn (72.20%, 70.38%, 50.43%, and 29.78%, respectively). Furthermore, the leaching experiment using simulated acid rain indicated that the addition of BC400 enhanced the acid buffer capacity of contaminated soil, and the concentration of Cr, Mn, Cu, and Zn in the leachate was lower than in untreated soil. Overall, this study indicates that sewage sludge biochar application reduces the mobility of heavy metal in co-contaminated soil, and this adsorption experiment is suitable for the evaluation of biochar properties for remediation.

  5. Two millennia of soil dynamics derived from ancient desert terraces using high resolution 3-D data

    Science.gov (United States)

    Filin, Sagi; Arav, Reuma; Avni, Yoav

    2017-04-01

    Large areas in the arid southern Levant are dotted with ancient terrace-based agriculture systems which were irrigated by runoff harvesting techniques. They were constructed and maintained between the 3rd - 9th centuries AD and abandoned in the 10th century AD. During their 600 years of cultivation, these terraces documented the gradual aggradation of alluvial soils, erosion processes within the drainage basins, as well as flashflood damage. From their abandonment and onwards, they documented 1000 years and more of land degradation and soil erosion processes. Examination of these installations presents an opportunity to study natural and anthropogenic induced changes over almost two millennia. On a global scale, such an analysis is unique as it is rare to find intact manifestations of anthropogenic influences over such time-scales because of landscape dynamics. It is also rare to find a near millennia documentation of soil erosion processes. We study in this paper the aggradation processes within intact agriculture plots in the region surrounding the world heritage Roman-Byzantine ancient city of Avdat, Negev Highlands. We follow the complete cycle of the historical desert agriculture, from the configuration pre-dating the first anthropogenic intervention, through the centuries of cultivation, and up to the present erosion phase, which spans over more than a millennium. We use high resolution 3-D laser scans to document the erosion and the environmental dynamics during these two millennia. The high-resolution data is then utilized to compute siltation rates as well as erosion rates. The long-term measures of soil erosion and land degradation we present here significantly improve our understanding of the mechanism of long-term environmental change acting in arid environments. For sustainable desert inhabitation, the study offers insights into better planning of modern agriculture in similar zones as well as insights on strategies needed to protect such historical

  6. Environmental Indicator Principium with Case References to Agricultural Soil, Water, and Air Quality and Model-Derived Indicators.

    Science.gov (United States)

    Zhang, T Q; Zheng, Z M; Lal, R; Lin, Z Q; Sharpley, A N; Shober, A L; Smith, D; Tan, C S; Van Cappellen, P

    2018-03-01

    Environmental indicators are powerful tools for tracking environmental changes, measuring environmental performance, and informing policymakers. Many diverse environmental indicators, including agricultural environmental indicators, are currently in use or being developed. This special collection of technical papers expands on the peer-reviewed literature on environmental indicators and their application to important current issues in the following areas: (i) model-derived indicators to indicate phosphorus losses from arable land to surface runoff and subsurface drainage, (ii) glutathione-ascorbate cycle-related antioxidants as early-warning bioindicators of polybrominated diphenyl ether toxicity in mangroves, and (iii) assessing the effectiveness of using organic matrix biobeds to limit herbicide dissipation from agricultural fields, thereby controlling on-farm point-source pollution. This introductory review also provides an overview of environmental indicators, mainly for agriculture, with examples related to the quality of the agricultural soil-water-air continuum and the application of model-derived indicators. Current knowledge gaps and future lines of investigation are also discussed. It appears that environmental indicators, particularly those for agriculture, work efficiently at the field, catchment, and local scales and serve as valuable metrics of system functioning and response; however, these indicators need to be refined or further developed to comprehensively meet community expectations in terms of providing a consistent picture of relevant issues and/or allowing comparisons to be made nationally or internationally. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Bio-prospecting of soil Streptomyces and its bioassay-guided isolation of microbial derived auxin with antifungal properties.

    Science.gov (United States)

    Saravana Kumar, P; Yuvaraj, P; Gabrial Paulraj, M; Ignacimuthu, S; Abdullah Al-Dhabi, N

    2018-06-05

    The present study was aimed to isolate bioactive actinomycetes with antifungal properties. Twenty-seven distinct soil derived actinomycetes were investigated for their antifungal activities. Among these, one isolate exhibited significant antifungal activity. Phenotypic and 16s rRNA gene sequence analysis strongly suggested that the active isolate BG4 belonged to the genus Streptomyces. Further, the chemical investigation of the active extract resulted in the isolation of a major compound and it was structurally elucidated as phenyl acetic acid (PAA). PAA exhibited promising antifungal activity with 100% inhibition, ranging from 31.25 to 25μg/mL. It is to be noted that PAA is naturally occurring and biologically active auxin. In addition, it has also been hypothesized that phytohormone endorsing the source of soil-symbionts has similar pathways for synthesizing compounds and its congeners of host due to horizontal gene transfer. These findings demonstrate that microbially derived phytohormone can be used to treat fungal infections. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Opportunities and limitations related to the application of plant-derived lipid molecular proxies in soil science

    Directory of Open Access Journals (Sweden)

    B. Jansen

    2017-11-01

    Full Text Available The application of lipids in soils as molecular proxies, also often referred to as biomarkers, has dramatically increased in the last decades. Applications range from inferring changes in past vegetation composition, climate, and/or human presence to unraveling the input and turnover of soil organic matter (SOM. The molecules used are extractable and non-extractable lipids, including ester-bound lipids. In addition, the carbon or hydrogen isotopic composition of such molecules is used. While holding great promise, the application of soil lipids as molecular proxies comes with several constraining factors, the most important of which are (i variability in the molecular composition of plant-derived organic matter both internally and between individual plants, (ii variability in (the relative contribution of input pathways into the soil, and (iii the transformation and/or (selective degradation of (some of the molecules once present in the soil. Unfortunately, the information about such constraining factors and their impact on the applicability of molecular proxies is fragmented and scattered. The purpose of this study is to provide a critical review of the current state of knowledge with respect to the applicability of molecular proxies in soil science, specifically focusing on the factors constraining such applicability. Variability in genetic, ontogenetic, and environmental factors influences plant n-alkane patterns in such a way that no unique compounds or specific molecular proxies pointing to, for example, plant community differences or environmental influences, exist. Other components, such as n-alcohols, n-fatty acids, and cutin- and suberin-derived monomers, have received far less attention in this respect. Furthermore, there is a high diversity of input pathways offering both opportunities and limitations for the use of molecular proxies at the same time. New modeling approaches might offer a possibility to unravel such mixed input

  9. Soils

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2001-01-01

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  10. Effects of Conventional and Conservation Tillage on Soil Hydraulic Properties of a Silty-loamy Soil

    DEFF Research Database (Denmark)

    Wahl, Niels Arne; Bens, O.; Buczko, U.

    2004-01-01

    Infiltration into soils is strongly correlated with macroporosity. Under agricultural land use, the properties of the macropore network are governed by the applied management and tillage system. On an experimental site with a silt loam soil partly under conventional and conservation tillage, the ......, conservation tillage could possibly offer a means to reduce surface runoff and flood generation in agricultural landscapes dominated by silty-loamy soils. d 2...

  11. Proceedings of the International Symposium on Frozen Soil Impacts on Agricultural, Range, and Forest Lands Held at Spokane, Washington on March 21-22, 1990

    Science.gov (United States)

    1990-03-01

    the United States. The soils were: a Cecil sandy loam (clayey, kaolinitic, thermic Typic Hapludult) from Watkinsville, GA ; a Barnes loam (fine loamy...1987). GLEAMS user manual. Lab Note South East Watershed Research Laboratory 110 187 WGK, Tifton , Ge, 1987. Lane, L.J., and V. A. Ferreira, (1980...as caps for processed uranium mill tailings in the western United States. The purpose of these barriers is to control radon gas release. The soil

  12. Composition and fate of mine- and smelter-derived particulates in soils from humid subtropical and semiarid areas

    Science.gov (United States)

    Ettler, Vojtech; Kribek, Bohdan; Mihaljevic, Martin; Vanek, Ales; Penizek, Vit; Sracek, Ondra; Mapani, Ben; Kamona, Fred; Nyambe, Imasiku

    2017-04-01

    Soils in the vicinity of non-ferrous metal smelters are often highly polluted by inorganic contaminants released from particulate emissions, which undergo weathering processes and release contaminants when deposited in soils. We studied the heavy mineral fraction, separated from mining- and smelter-affected topsoils, from both a humid subtropical area in the Zambian Copperbelt and a hot semi-arid area in the northern Namibia. High concentrations of metal(loid)s were detected in the studied soils: up to 1450 ppm As, 8980 ppm Cu, 4640 ppm Pb, 2620 ppm Zn. A combination of X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS), and electron probe microanalysis (EPMA) helped to identify the phases forming individual metal(loid)-bearing particles. Whereas spherical particles originate from the smelting and flue gas cleaning processes, angular particles either have geogenic origins or they are windblown from the mining operations and mine waste disposal sites. Sulphides from ores and mine tailings often exhibit weathering rims in contrast to smelter-derived high-temperature sulphides (chalcocite [Cu2S], digenite [Cu9S5], covellite [CuS], non-stoichiometric quenched Cu-Fe-S phases). Soils from humid subtropical areas exhibit higher available concentrations of metal(loids), and higher frequencies of weathering features (especially for copper-bearing oxides such as delafossite [CuFeO2]) are observed. In contrast, metal(loid)s are efficiently retained in semi-arid soils, where a high proportion of non-weathered smelter slag particles and low-solubility Ca-Cu-Pb arsenates occur. Our results indicate that compared to semi-arid areas (where inorganic contaminants were rather immobile in soils despite their high concentrations) a higher potential risk exists for agriculture in mine- and smelter-affected humid subtropical areas (where metal(loid) contaminants can be highly available for the uptake by crops). This study was supported by the Czech Science

  13. Fate of the antiretroviral drug tenofovir in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Chapman, Ralph; Lapen, David R.; Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON, N5V 4T3 (Canada)

    2010-10-15

    Tenofovir (9-(R)-(2-phosphonylmethoxypropyl)-adenine) is an antiretroviral drug widely used for the treatment of human immunodeficiency virus (HIV-1) and Hepatitis B virus (HBV) infections. Tenofovir is extensively and rapidly excreted unchanged in the urine. In the expectation that tenofovir could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in selected agricultural soils. Less than 10% of [adenine-8-{sup 14}C]-tenofovir added to soils varying widely in texture (sand, loam, clay loam) was mineralized in a 2-month incubation under laboratory conditions. Tenofovir was less readily extractable from clay soils than from a loam or a sandy loam soil. Radioactive residues of tenofovir were removed from the soil extractable fraction with DT{sub 50}s ranging from 24 {+-} 2 to 67 + 22 days (first order kinetic model) or 44 + 9 to 127 + 55 days (zero order model). No extractable transformation products were detectable by HPLC. Tenofovir mineralization in the loam soil increased with temperature (range 4 {sup o}C to 30 {sup o}C), and did not occur in autoclaved soil, suggesting a microbial basis. Mineralization rates increased with soil moisture content, ranging from air-dried to saturated. In summary, tenofovir was relatively persistent in soils, there were no extractable transformation products detected, and the response of [adenine-8-{sup 14}C]-tenofovir mineralization to soil temperature and heat sterilization indicated that the molecule was biodegraded by aerobic microorganisms. Sorption isotherms with dewatered biosolids suggested that tenofovir residues could potentially partition into the particulate fraction during sewage treatment.

  14. Adsorption and desorption study of 14C-Chloropyrifos in two Malaysian agricultural soils

    International Nuclear Information System (INIS)

    Halimah Muhammad; Nashriyah Mat; Tan Yew Ai; Ismail, B.S.

    2004-01-01

    The adsorption equilibrium time and effects of pH and concentration of 14 C-labeled chloropyrifos 0,0-diethyl 0-(3, 5, 6 tricloro-2-pyridyl)-phosphorothiote in soil were investigated. Two types of Malaysian soil under oil palm were used in this study; namely clay loam and clay soil obtained from the Sungai Sedu and Kuala Lumpur International Airport (KLIA) Estates, respectively. Equilibrium studies of chloropyrifos between the agricultural soil and the pesticide solution were conducted. Adsorption equilibrium time was achieved within 6 and 24 hours for clay loam and clay soil, respectively. It was found that chloropyrifos adsorbed by the soil samples was characterized by an initial rapid adsorption after which adsorption remained approximately constant. The percentage of 14 C-labeled chloropyrifos adsorption on soil was found to be higher in clay loam than in clay soils. Results of the study demonstrated that pH affected the adsorption of chloropyrifos on both clay loam and clay soils. The adsorption of chloropyrifos on both types of soil was higher at low pH with the adsorption reduced as the pH increased. Results also suggest that chloropyrifos sorption by soil is concentration dependent. (Author)

  15. Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mahtab [Korea Biochar Research Center & Department of Biological Environment, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, PO Box 2460, Riyadh 11451 (Saudi Arabia); Ok, Yong Sik; Rajapaksha, Anushka Upamali; Lim, Jung Eun [Korea Biochar Research Center & Department of Biological Environment, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Kim, Byung-Yong; Ahn, Jae-Hyung [Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 565-851 (Korea, Republic of); Lee, Young Han [Division of Plant Environment Research, Gyeongsangnam-do Agricultural Research and Extension Service, Jinju 660-360 (Korea, Republic of); Al-Wabel, Mohammad I [Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, PO Box 2460, Riyadh 11451 (Saudi Arabia); Lee, Sung-Eun, E-mail: selpest@knu.ac.kr [School of Applied Biosciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lee, Sang Soo, E-mail: sslee97@kangwon.ac.kr [Korea Biochar Research Center & Department of Biological Environment, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2016-01-15

    Highlights: • Biochar immobilizes Pb and Cu in a contaminated shooting range soil. • Soybean stover-biochar is an efficient metal immobilizer than pine needle-biochar. • Biochar produced at 700 °C showed significant potential of sequestering C in soil. • Biochar showed less impact on the bacterial community than feedstock biomass. - Abstract: Biochar (BC) could be a potential candidate for the remediation of metal contaminated soil. Mechanistic understandings are needed for the appropriate selection of BC and investigating molecular microbial ecological interactions. The soybean stover-derived BCs were more effective in immobilizing Pb (88%) and Cu (87%) than the pine needle-derived BCs in a contaminated shooting range soil. The sequential chemical extractions indicated that BCs stimulated the geochemical transformation of metal species. Spectroscopic investigations using scanning electron microscopic elemental dot mapping and extended X-ray absorption fine structure spectroscopic measurements showed that Pb in the BCs amended soils was immobilized by the formation of stable chloropyromorphite. Soil organic C and microbial activity were also enhanced by BC. The non-labile C fraction in the soil amended with BCs produced at 700 °C was increased. Biochars showed less impact on the bacterial community than feedstock biomass as promulgated by the pyrosequencing of 16S rRNA gene. The feedstock type (namely soybean stover and pine needles) was the main factor influencing the BCs efficacy on metals’ (im) mobilization and bacterial health in soils.

  16. Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments

    International Nuclear Information System (INIS)

    Ahmad, Mahtab; Ok, Yong Sik; Rajapaksha, Anushka Upamali; Lim, Jung Eun; Kim, Byung-Yong; Ahn, Jae-Hyung; Lee, Young Han; Al-Wabel, Mohammad I; Lee, Sung-Eun; Lee, Sang Soo

    2016-01-01

    Highlights: • Biochar immobilizes Pb and Cu in a contaminated shooting range soil. • Soybean stover-biochar is an efficient metal immobilizer than pine needle-biochar. • Biochar produced at 700 °C showed significant potential of sequestering C in soil. • Biochar showed less impact on the bacterial community than feedstock biomass. - Abstract: Biochar (BC) could be a potential candidate for the remediation of metal contaminated soil. Mechanistic understandings are needed for the appropriate selection of BC and investigating molecular microbial ecological interactions. The soybean stover-derived BCs were more effective in immobilizing Pb (88%) and Cu (87%) than the pine needle-derived BCs in a contaminated shooting range soil. The sequential chemical extractions indicated that BCs stimulated the geochemical transformation of metal species. Spectroscopic investigations using scanning electron microscopic elemental dot mapping and extended X-ray absorption fine structure spectroscopic measurements showed that Pb in the BCs amended soils was immobilized by the formation of stable chloropyromorphite. Soil organic C and microbial activity were also enhanced by BC. The non-labile C fraction in the soil amended with BCs produced at 700 °C was increased. Biochars showed less impact on the bacterial community than feedstock biomass as promulgated by the pyrosequencing of 16S rRNA gene. The feedstock type (namely soybean stover and pine needles) was the main factor influencing the BCs efficacy on metals’ (im) mobilization and bacterial health in soils.

  17. Deriving site-specific clean-up criteria to protect ecological receptors (plants and soil invertebrates) exposed to metal or metalloid soil contaminants via the direct contact exposure pathway

    Science.gov (United States)

    Checkai, Ron; Van Genderen, Eric; Sousa, José Paulo; Stephenson, Gladys; Smolders, Erik

    2014-01-01

    Soil contaminant concentration limits for the protection of terrestrial plants and soil invertebrates are commonly based on thresholds derived using data from laboratory ecotoxicity tests. A comprehensive assessment has been made for the derivation of ecological soil screening levels (Eco-SSL) in the United States; however, these limits are conservative because of their focus on high bioavailability scenarios. Here, we explain and evaluate approaches to soil limit derivation taken by 4 jurisdictions, 2 of which allow for correction of data for factors affecting bioavailability among soils, and between spiked and field-contaminated soils (Registration Evaluation Authorisation and Restriction of Chemicals [REACH] Regulation, European Union [EU], and the National Environment Protection Council [NEPC], Australia). Scientifically advanced features from these methods have been integrated into a newly developed method for deriving soil clean-up values (SCVs) within the context of site-specific baseline ecological risk assessment. Resulting site-specific SCVs that account for bioavailability may permit a greater residual concentration in soil when compared to generic screening limit concentrations (e.g., Eco-SSL), while still affording acceptable protection. Two choices for selecting the level of protection are compared (i.e., allowing higher effect levels per species, or allowing a higher percentile of species that are potentially unprotected). Implementation of this new method is presented for the jurisdiction of the United States, with a focus on metal and metalloid contaminants; however, the new method can be used in any jurisdiction. A case study for molybdate shows the large effect of bioavailability corrections and smaller effects of protection level choices when deriving SCVs. Integr Environ Assess Manag 2014;10:346–357. PMID:24470189

  18. Concentration of radioactive elements (U, Th and K derived from phosphatic fertilizers in cultivated soils

    Directory of Open Access Journals (Sweden)

    Valter Antonio Becegato

    2008-12-01

    Full Text Available Gamma spectrometric measurements were obtained for the agricultural soils aiming at characterizing the spatial distribution of radionuclide concentrations (K, eU and eTh, as well for the samples of phosphatic fertilizers and agricultural gypsum. In the study areas, three types of soils occured: Eutrophic Red Nitosol (Alfisoil, Eutroferric Red Latosol of clayey texture (Oxisoil and Dystrophic Red Latosol of medium texture (Oxisoil. The results showed that the radionuclide concentrations in more clayey soils were higher than in more sandy soils, mainly as a function of a higher adsorption capacity of the former. For the area where human activity predominated, the average contents of K, eU and eTh were respectively 54.75; 10.22 and 7.27 Bq/Kg, significantly higher than those for the area where no fertilizers were used (34.15 Bq/Kg K; 1.69 Bq/Kg eU, and 5.36 Bq/Kg eTh. Variations in the radionuclide concentrations were also observed in various fertilizer formula used in soybean and wheat crops.Medições gamaespectrométricas foram obtidas em solos agrícolas objetivando caracterizar a distribuição espacial das concentrações de radionuclídeos (K, eU e eTh, bem como em amostras de fertilizantes fosfatados e gesso agrícola. Na área ocorrem três tipos de solos: Nitossolo Vermelho Eutrófico, Latossolo Vermelho Eutroférrico textura argilosa e Latossolo Vermelho Distrófico textura média. Constatou-se que as concentrações de radionuclídeos nos solos mais argilosos foram maiores do que nos solos mais arenosos, em função, principalmente, da maior adsorção pelos primeiros. Os teores médios em Bq/Kg de K, eU e eTh na área com atividade antrópica foram respectivamente de 54,75; 10,22 e 7,27, significativamente maiores do que em áreas virgens sem aplicação de fertilizantes (34,15 de K; 1,69 de eU e 5,36 de eTh. Foram também observadas variações nas concentrações de radionuclídeos em diferentes formulações de adubos utilizados nas

  19. Effect of successive cauliflower plantings and Rhizoctonia solani AG 2-1 inoculations on disease suppressiveness of a suppressive and a conducive soil

    NARCIS (Netherlands)

    Postma, J.; Scheper, R.W.A.; Schilder, M.T.

    2010-01-01

    Disease suppressiveness against Rhizoctonia solani AG 2-1 in cauliflower was studied in two marine clay soils with a sandy loam texture. The soils had a different cropping history. One soil had a long-term (40 years) cauliflower history and was suppressive, the other soil was conducive and came from

  20. Paleotemperatures derived from noble gases dissolved in groundwater and in relation to soil temperature

    International Nuclear Information System (INIS)

    Stute, M.; Sonntag, C.

    1992-01-01

    Measurements of He, Ne, Ar, Kr and Xe dissolved in groundwater at two sites (Bocholt, Germany, and the Great Hungarian Plain) were taken to prove the reliability of noble gas temperatures as indicators of paleotemperatures. Noble gas temperatures of groundwater of Holocene age were found to reflect the annual mean soil temperature in the recharge are with an accuracy close to the precision of measurement (1σ approx. ±0.5 deg. C). Noble gas temperature data demonstrate the influence of vegetation cover on the soil temperature in the infiltration area. Groundwater formed in forests at the Bocholt site shows noble gas temperatures that are 2.2 deg. C lower than the groundwater formed in fields or meadows. The temperature data obtained from groundwater of the Great Hungarian Plain for the last glaciation are ≥ 8.6 deg. C lower than data from recent groundwater for maximum glaciation (approx. 18,000 years ago) and 4.7 ± 1 deg. C lower for the preceding interstadial (approx. 28,000-35,000 years ago). These data permit independent reconstruction of paleoclimatic conditions. (author). 19 refs, 3 figs, 1 tab

  1. A framework for assessing ecological risks of petroleum-derived materials in soil

    International Nuclear Information System (INIS)

    Suter, G.W. II

    1997-05-01

    Ecological risk assessment estimates the nature and likelihood of effects of human actions on nonhuman organisms, populations, and ecosystems. It is intended to be clearer and more rigorous in its approach to estimation of effects and uncertainties than previously employed methods of ecological assessment. Ecological risk assessment is characterized by a standard paradigm that includes problem formulation, analysis of exposure and effects, risk characterization, and communication with a risk manager. This report provides a framework that applies the paradigm to the specific problem of assessing the ecological risks of petroleum in soil. This type of approach requires that assessments be performed in phases: (1) a scoping assessment to determine whether there is a potential route of exposure for potentially significant ecological receptors; (2) a screening assessment to determine whether exposures could potentially reach toxic levels; and (3) a definitive assessment to estimate the nature, magnitude, and extent of risks. The principal technical issue addressed is the chemically complex nature of petroleum--a complexity that may be dealt with by assessing risks on the basis of properties of the whole material, properties of individual chemicals that are representative of chemical classes, distributions of properties of the constituents of chemical classes, properties of chemicals detected in the soil, and properties of indicator chemicals. The advantages and feasibility of these alternatives are discussed. The report concludes with research recommendations for improving each stage in the assessment process

  2. Wood-derived-biochar combined with compost or iron grit for in situ stabilization of Cd, Pb, and Zn in a contaminated soil.

    Science.gov (United States)

    Oustriere, Nadège; Marchand, Lilian; Rosette, Gabriel; Friesl-Hanl, Wolfgang; Mench, Michel

    2017-03-01

    In situ stabilization of Cd, Pb, and Zn in an Austrian agricultural soil contaminated by atmospheric depositions from a smelter plant was assessed with a pine bark chip-derived biochar, alone and in combination with either compost or iron grit. Biochar amendment was also trialed in an uncontaminated soil to detect any detrimental effect. The pot experiment consisted in ten soil treatments (% w/w): untreated contaminated soil (Unt); Unt soil amended with biochar alone (1%: B1; 2.5%: B2.5) and in combination: B1 and B2.5 + 5% compost (B1C and B2.5C), B1 and B2.5 + 1% iron grit (B1Z and B2.5Z); uncontaminated soil (Ctrl); Ctrl soil amended with 1 or 2.5% biochar (CtrlB1, CtrlB2.5). After a 3-month reaction period, the soil pore water (SPW) was sampled in potted soils and dwarf beans were grown for a 2-week period. The SPW Cd, Pb, and Zn concentrations decreased in all amended-contaminated soils. The biochar effects increased with its addition rate and its combination with either compost or iron grit. Shoot Cd and Zn removals by beans were reduced and shoot Cd, Pb, and Zn concentrations decreased to common values in all amended soils except the B1 soil. Decreases in the SPW Cd/Pb/Zn concentrations did not improve the root and shoot yields of plants as compared to the Ctrl soil.

  3. Assessment of some straw-derived materials for reducing the leaching potential of Metribuzin residues in the soil

    Energy Technology Data Exchange (ETDEWEB)

    Cara, Irina Gabriela, E-mail: coroirina@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, 3M. Sadoveanu Alley, 700490 Iasi (Romania); Trincă, Lucia Carmen, E-mail: lctrinca@uaiasi.ro [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3 M. Sadoveanu Alley, 700490 Iasi (Romania); Trofin, Alina Elena, E-mail: aetrofin@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3 M. Sadoveanu Alley, 700490 Iasi (Romania); Cazacu, Ana, E-mail: anagarlea@gmail.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3 M. Sadoveanu Alley, 700490 Iasi (Romania); Ţopa, Denis, E-mail: topadennis@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, 3M. Sadoveanu Alley, 700490 Iasi (Romania); Peptu, Cătălina Anişoara, E-mail: catipeptu@yahoo.co.uk [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 D. Mangeron Street, 700050 Iasi (Romania); Jităreanu, Gerard, E-mail: gerardj@uaiasi.ro [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Agriculture, 3M. Sadoveanu Alley, 700490 Iasi (Romania)

    2015-12-15

    Highlights: • Surface characteristics of activated straw (wheat, corn, soybean) were assessed. • Modification methods to enhance materials sorption were presented. • Adsorption mechanism of metribuzin was revealed and discussed. - Abstract: Biomass (straw waste) can be used as raw to obtain materials for herbicide removal from wastewater. These by-products have some important advantages, being environmentally friendly, easily available, presenting low costs, and requiring little processing to increase their adsorptive capacity. In the present study, some materials derived from agricultural waste (wheat, corn and soybean straw) were investigated as potential adsorbents for metribuzin removal from aqueous solutions. The straw wastes were processed by grinding, mineralisation (850 °C) and KOH activation in order to improve their functional surface activity. The materials surface characteristics were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The adsorbents capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry for herbicide determination. For adsorption isotherms, the equilibrium time considered was 3 h. The experimental adsorption data were modelled by Freundlich and Langmuir models. The activated straw and ash-derived materials from wheat, corn and soybean increased the adsorption capacity of metribuzin with an asymmetrical behaviour. Overall, our results sustain that activated ash-derived from straw and activated straw materials can be a valuable solution for reducing the leaching potential of metribuzin through soil.

  4. Assessment of some straw-derived materials for reducing the leaching potential of Metribuzin residues in the soil

    International Nuclear Information System (INIS)

    Cara, Irina Gabriela; Trincă, Lucia Carmen; Trofin, Alina Elena; Cazacu, Ana; Ţopa, Denis; Peptu, Cătălina Anişoara; Jităreanu, Gerard

    2015-01-01

    Highlights: • Surface characteristics of activated straw (wheat, corn, soybean) were assessed. • Modification methods to enhance materials sorption were presented. • Adsorption mechanism of metribuzin was revealed and discussed. - Abstract: Biomass (straw waste) can be used as raw to obtain materials for herbicide removal from wastewater. These by-products have some important advantages, being environmentally friendly, easily available, presenting low costs, and requiring little processing to increase their adsorptive capacity. In the present study, some materials derived from agricultural waste (wheat, corn and soybean straw) were investigated as potential adsorbents for metribuzin removal from aqueous solutions. The straw wastes were processed by grinding, mineralisation (850 °C) and KOH activation in order to improve their functional surface activity. The materials surface characteristics were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The adsorbents capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry for herbicide determination. For adsorption isotherms, the equilibrium time considered was 3 h. The experimental adsorption data were modelled by Freundlich and Langmuir models. The activated straw and ash-derived materials from wheat, corn and soybean increased the adsorption capacity of metribuzin with an asymmetrical behaviour. Overall, our results sustain that activated ash-derived from straw and activated straw materials can be a valuable solution for reducing the leaching potential of metribuzin through soil.

  5. Highly stable rice-straw-derived charcoal in 3700-year-old ancient paddy soil: evidence for an effective pathway toward carbon sequestration.

    Science.gov (United States)

    Wu, Mengxiong; Yang, Min; Han, Xingguo; Zhong, Ting; Zheng, Yunfei; Ding, Pin; Wu, Weixiang

    2016-01-01

    Recalcitrant charcoal application is predicted to decelerate global warming through creating a long-term carbon sink in soil. Although many studies have showed high stability of charcoal derived from woody materials, few have focused on the dynamics of straw-derived charcoal in natural environment on a long timescale to evaluate its potential for agricultural carbon sequestration. Here, we examined straw-derived charcoal in an ancient paddy soil dated from ~3700 calendar year before present (cal. year BP). Analytical results showed that soil organic matter consisted of more than 25% of charcoal in charcoal-rich layer. Similarities in morphology and molecular structure between the ancient and the fresh rice-straw-derived charcoal indicated that ancient charcoal was derived from rice straw. The lower carbon content, higher oxygen content, and obvious carbonyl of the ancient charcoal compared with fresh rice straw charcoal implied that oxidation occurred in the scale of thousands years. However, the dominant aromatic C of ancient charcoal indicated that rice-straw-derived charcoal was highly stable in the buried paddy soil due to its intrinsic chemical structures and the physical protection of ancient paddy wetland. Therefore, it may suggest that straw charcoal application is a potential pathway for C sequestration considering its longevity.

  6. Effects of soil type, moisture content, redox potential and methyl bromide fumigation on Kd values of radio-selenium in soil

    International Nuclear Information System (INIS)

    Ashworth, D.J.; Moore, J.; Shaw, G.

    2008-01-01

    Understanding the processes that determine the solid-liquid partitioning (K d value) of Se is of fundamental importance in assessing the risk associated with the disposal of radio-selenium-containing waste. Using a mini-column (rather than batch) approach, K d values for 75 Se were determined over time in relation to soil moisture content (field capacity or saturated), redox potential and methyl bromide fumigation (used to disrupt the soil microbial population) in three contrasting soil types: clay loam, organic and sandy loam. The K d values were generally in the range 50-500 L kg -1 , with mean soil K d increasing with increasing organic matter content. Saturation with water lowered the measured redox potentials in the soils. However, only in the sandy loam soil did redox potential become negative, and this led to an increase in 75 Se K d value in this soil. Comparison of the data with the Eh-pH stability diagram for Se suggested that such strong reduction may have been consistent with the formation of the insoluble Se species, selenide. These findings, coupled with the fact that methyl bromide fumigation had no discernible effect on 75 Se K d value in the sandy loam soil, suggest that geochemical, rather than microbial, processes controlled 75 Se partitioning. The inter-relations between soil moisture content, redox potential and Se speciation should be considered in the modelling and assessment of radioactive Se fate and transport in the environment

  7. Modeling Phytoremediation of Cadmium Contaminated Soil with Sunflower (Helianthus annus) Under Salinity Stress

    International Nuclear Information System (INIS)

    Motesharezadeh, B.; Navabzadeh, M.; Liyaghat, A. M.

    2016-01-01

    This study was carried out as a factorial experiment with 5 levels of cadmium (Cd) (o, 25, 50, 75, and 100 mg/kg), 5 levels of salinity (Control, 4, 5, 6, and 7 dS/m), and two soil textures (sandy loam and clay loam). The results showed that the amount of Cd in root and shoot of sunflower increased as soil salinity and Cd concentration increased. The best concentrations for Cd phytoremediation were 75 mg/kg in sandy loam and 100 mg/kg in clay loam. Mass-Hoffman model in simulating transpiration Cd stress as well as Homaee model in simulating salt stress indicated the best results in light soils. By multiplying the salinity stress model by Cd stress model, the simultaneous model for each soil was calculated. These models in light soil (r2=0.68) and heavy soil (r2=0.81) were compatible with measured values. In the heavy soil, absorbed Cd by plant along with increased salinity reflected low changes, but changes in Cd absorbed by plants in the heavy soil were more uniform than in the light soil. In conclusion, for estimating the Cd uptake, the model had a better performance in the heavy soil (under salt stress).

  8. Deriving temporally continuous soil moisture estimations at fine resolution by downscaling remotely sensed product

    Science.gov (United States)

    Jin, Yan; Ge, Yong; Wang, Jianghao; Heuvelink, Gerard B. M.

    2018-06-01

    Land surface soil moisture (SSM) has important roles in the energy balance of the land surface and in the water cycle. Downscaling of coarse-resolution SSM remote sensing products is an efficient way for producing fine-resolution data. However, the downscaling methods used most widely require full-coverage visible/infrared satellite data as ancillary information. These methods are restricted to cloud-free days, making them unsuitable for continuous monitoring. The purpose of this study is to overcome this limitation to obtain temporally continuous fine-resolution SSM estimations. The local spatial heterogeneities of SSM and multiscale ancillary variables were considered in the downscaling process both to solve the problem of the strong variability of SSM and to benefit from the fusion of ancillary information. The generation of continuous downscaled remote sensing data was achieved via two principal steps. For cloud-free days, a stepwise hybrid geostatistical downscaling approach, based on geographically weighted area-to-area regression kriging (GWATARK), was employed by combining multiscale ancillary variables with passive microwave remote sensing data. Then, the GWATARK-estimated SSM and China Soil Moisture Dataset from Microwave Data Assimilation SSM data were combined to estimate fine-resolution data for cloudy days. The developed methodology was validated by application to the 25-km resolution daily AMSR-E SSM product to produce continuous SSM estimations at 1-km resolution over the Tibetan Plateau. In comparison with ground-based observations, the downscaled estimations showed correlation (R ≥ 0.7) for both ascending and descending overpasses. The analysis indicated the high potential of the proposed approach for producing a temporally continuous SSM product at fine spatial resolution.

  9. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides

    Science.gov (United States)

    Manohar, S. N.; Meijer, H. A. J.; Herber, M. A.

    2013-12-01

    Naturally occurring radioactive noble gas, radon (222Rn) is a valuable tracer to study atmospheric processes and to validate global chemical transport models. However, the use of radon as a proxy in atmospheric and climate research is limited by the uncertainties in the magnitude and distribution of the radon flux density over the Earth's surface. Terrestrial gamma radiation is a useful proxy for generating radon flux maps. A previously reported radon flux map of Europe used terrestrial gamma radiation extracted from automated radiation monitoring networks. This approach failed to account for the influence of local artificial radiation sources around the detector, leading to under/over estimation of the reported radon flux values at different locations. We present an alternative approach based on soil radionuclides which enables us to generate accurate radon flux maps with good confidence. Firstly, we present a detailed comparison between the terrestrial gamma radiation obtained from the National Radiation Monitoring network of the Netherlands and the terrestrial gamma radiation calculated from soil radionuclides. Extending further, we generated radon flux maps of the Netherlands and Europe using our proposed approach. The modelled flux values for the Netherlands agree reasonably well with the two observed direct radon flux measurements (within 2σ level). On the European scale, we find that the observed radon flux values are higher than our modelled values and we introduce a correction factor to account for this difference. Our approach discussed in this paper enables us to develop reliable and accurate radon flux maps in countries with little or no information on radon flux values.

  10. Prediction of spatial patterns of collapsed pipes in loess-derived soils in a temperate humid climate using logistic regression

    Science.gov (United States)

    Verachtert, E.; Den Eeckhaut, M. Van; Poesen, J.; Govers, G.; Deckers, J.

    2011-07-01

    Soil piping (tunnel erosion) has been recognised as an important erosion process in collapsible loess-derived soils of temperate humid climates, which can cause collapse of the topsoil and formation of discontinuous gullies. Information about the spatial patterns of collapsed pipes and regional models describing these patterns is still limited. Therefore, this study aims at better understanding the factors controlling the spatial distribution and predicting pipe collapse. A dataset with parcels suffering from collapsed pipes (n = 560) and parcels without collapsed pipes was obtained through a regional survey in a 236 km² study area in the Flemish Ardennes (Belgium). Logistic regression was applied to find the best model describing the relationship between the presence/absence of a collapsed pipe and a set of independent explanatory variables (i.e. slope gradient, drainage area, distance-to-thalweg, curvature, aspect, soil type and lithology). Special attention was paid to the selection procedure of the grid cells without collapsed pipes. Apart from the first piping susceptibility map created by logistic regression modelling, a second map was made based on topographical thresholds of slope gradient and upslope drainage area. The logistic regression model allowed identification of the most important factors controlling pipe collapse. Pipes are much more likely to occur when a topographical threshold depending on both slope gradient and upslope area is exceeded in zones with a sufficient water supply (due to topographical convergence and/or the presence of a clay-rich lithology). On the other hand, the use of slope-area thresholds only results in reasonable predictions of piping susceptibility, with minimum information.

  11. Biochar-mediated reductions in greenhouse gas emissions from soil amended with anaerobic digestates

    International Nuclear Information System (INIS)

    Martin, Sarah L.; Clarke, Michèle L.; Othman, Mukhrizah; Ramsden, Stephen J.; West, Helen M.

    2015-01-01

    This investigation examines nitrous oxide (N 2 O) fluxes from soil with simultaneous amendments of anaerobic digestates and biochar. The main source of anthropogenic emissions of N 2 O is agriculture and in particular, manure and slurry application to fields. Anaerobic digestates are increasingly used as a fertiliser and interest is growing in their potential as sources of N 2 O via nitrification and denitrification. Biochar is a stable product of pyrolysis and may affect soil properties such as cation exchange capacity and water holding capacity. Whilst work has been conducted on the effects of biochar amendment on N 2 O emissions in soils fertilised with mineral fertilisers and raw animal manures, little work to date has focused on the effects of biochar on nitrogen transformations within soil amended with anaerobic digestates. The aim of the current investigation was to quantify the effects of biochar application on ammonification, nitrification and N 2 O fluxes within soil amended with three anaerobic digestates derived from different feedstocks. A factorial experiment was undertaken in which a sandy loam soil (Dunnington Heath series) was either left untreated, or amended with three different anaerobic digestates and one of three biochar treatments; 0%, 1% or 3%. Nitrous oxide emissions were greatest from soil amended with anaerobic digestate originating from a maize feedstock. Biochar amendment reduced N 2 O emissions from all treatments, with the greatest effect observed in treatments with maximum emissions. The degree of N 2 O production and efficacy of biochar amelioration of gas emissions is discussed in context of soil microbial biomass and soil available carbon. - Highlights: • Nitrous oxide was emitted from anaerobic digestates applied to soil. • Simultaneous amendment of soil with biochar and anaerobic digestate reduced N 2 O emissions. • Soil nitrate accumulation occurred but was digestate dependent

  12. Mineralization of carbon and nitrogen from fresh and anaerobically stored sheep manure in soils of different texture

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1995-01-01

    A sandy loam soil was mixed with three different amounts of quartz sand and incubated with ((NH4)-N-15)(2)SO4 (60 mu g N g(-1) soil) and fresh or anaerobically stored sheep manure (60 mu g g(-1) soil). The mineralization-immobilization of N and the mineralization of C were studied during 84 days...

  13. Vertical movement of Azospirillum brasilense in soil

    International Nuclear Information System (INIS)

    Singh, Mohan; Lal, B.; Shrivastava, A.K.

    1993-01-01

    Plant growth promoting rhizobacteria like Azospirillum brasilense have considerable potential in increasing crop productivity. The success of bacterial inoculation in fields however, depends on their root colonizing ability. These bacteria, applied either through seed pelleting or directly to the soil are distributed along roots through active or passive movements. 32 P labelled A.brasilense has been used to study their movements in sandy loam soils. (author). 5 refs., 2 figs

  14. Structural-functional concept of thermophysical condition of the soils of Altai Region

    OpenAIRE

    Makarychev, Sergey; Bolotov, Andrey

    2016-01-01

    The goal of this study was to reveal the quantitative interrelations between the thermophysical indices (thermal conductivity and thermal diffusivity) and physical soil properties such as; moisture content, density and detachability. According to the research targets, the soil samples including different genesis and soil particle size distribution were taken in different soil and climatic zones of the Altai Region. These were the sod-podzolic sandy loam soils of the dry steppes, chernozems an...

  15. Derivation of guidelines for uranium residual radioactive material in soil at the B ampersand T Metals Company site, Columbus, Ohio

    International Nuclear Information System (INIS)

    Kamboj, S.; Nimmagadda, Mm.; Yu, C.

    1996-01-01

    Guidelines for uranium residual radioactive material in soil were derived for the B ampersand T Metals Company site in Columbus, Ohio. This site has been identified for remedial action under the US Department of Energy's (DOE's) Formerly Utilized Sites Remedial Action Program (FUSRAP). Single-nuclide and total-uranium guidelines were derived on the basis of the requirement that following remedial action, the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the site should not exceed a dose constraint of 30 mrem/yr for the current use and likely future use scenarios or a dose limit of 100 n-mrem/yr for less likely future use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation. RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines. Three scenarios were considered; each assumed that for a period of 1,000 years following remedial action, the site would be used without radiological restrictions. The three scenarios varied with regard to the type of site use, time spent at the site by the exposed individual, and sources of food and water consumed. The evaluations indicate that the dose constraint of 30 mrem/yr would not be exceeded for uranium (including uranium-234, uranium-235, and uranium-238) within 1,000 years, provided that the soil concentration of total uranium (uranium-234, uranium-235, and uranium-238) at the B ampersand T Metals site did not exceed 1, I 00 pCi/g for Scenario A (industrial worker, current use) or 300 pCi/g for Scenario B (resident with municipal water supply, a likely future use). The dose limit of 100 mrem/yr would not be exceeded at the site if the total uranium concentration of the soil did not exceed 880 pCi/g for Scenario C (resident with an on-site water well, a plausible but unlikely future use)

  16. Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Plauborg, Finn; Jacobsen, Sven-Erik

    2012-01-01

    Quinoa (Chenopodium quinoa Willd.) is believed to be tolerant to abiotic stress including salinity, drought and poor soil quality. To investigate the effect of soil type and soil-drying during the seed-filling phase on N-uptake, yield and water use, a Danish-bred cultivar (cv. Titicaca) was grown...... in field lysimeters with sand, sandy loam and sandy clay loam soil. Despite application of the same amount of nitrogen (120 kg N ha−1) to all plots, there were large differences in crop nitrogen-uptake for sandy clay loam (134 kg ha−1), sandy loam (102 kg ha−1) and sand (77 kg ha−1) under full irrigation....... This lead to higher interception of photosynthetic active radiation and higher seed yield on sandy clay loam (3.3 Mg ha−1) and sandy loam (3.0 Mg ha−1) than on sand (2.3 Mg ha−1). The soil with higher clay content had also the highest transpiration, crop evapotranspiration and yield due to the higher uptake...

  17. Comparison of germination and seed vigor of sunflower in two contaminated soils of different texture

    Science.gov (United States)

    Zhao, Xin; Han, Jaemaro; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Phytoremediation as an emerging low-cost and ecologically friendly alternative to the conventional soil remediation technologies has gained a great deal of attention and into lots of research. As a kind of the methods that use of green plants to remediate heavy metals contaminated soils, the early growth status of plant seeds in the contaminated environmental directly affects the effect of phytoremediation. Germination test in the water (aqueous solution of heavy metal) is generally used for assessing heavy metal phytotoxicity and possibility of plant growth, but there is a limit. Because soil is commonly main target of phytoremediation, not the water. The bioavailability of heavy metals in the soil also depends on the texture. So soil texture is an important factor of phytoremediation effect. Sunflower is the representative species which have good tolerance to various heavy metals; furthermore, the seeds of sunflower can be used as the raw-material for producing bio-diesel. The objectives of this research were to investigate germination rate of sunflowers in various heavy metal contaminated soils and to compare the seedling vigor index (SVI) of sunflower in two contaminated soils of different texture. Sunflower (Helianthusannuus L.) seeds were obtained from a commercial market. In order to prove the soil texture effect on heavy metal contaminated soil, germination tests in soil were conducted with two different types of soil texture (i.e., loam soil and sandy loam soil) classified by soil textural triangle (defined by USDA) including representative soil texture of Korea. Germination tests in soil were conducted using KS I ISO 11260-1 (2005) for reference that sunflower seeds were incubated for 7 days in dark at 25 ± 1 Celsius degree. The target heavy metals are Nickel (Ni) and Zinc (Zn). The Ni and Zn concentrations were 0, 10, 50, 100, 200, 300, 500 mg-Ni/kg-dry soil, and 0, 10, 50, 100, 300, 500, 900 mg-Zn/kg-dry soil, respectively. After germination test for 7

  18. A Comparative Study of the Persistence, Movement and Metabolism of Six Insecticides in Soils and Plants

    International Nuclear Information System (INIS)

    Fuhremann, T.W.; Lichtenstein, E.P.

    1981-01-01

    Full text: Two soil types and oat plants grown in these soils were incubated under identical environmental conditions. The insecticides used in order to increase the water solubility were 14 C-DDT, 14 C-lindane, 14 C-fonofos, 14 C-parathion, 14 C-phorate and 14 C-carbofuran. Total amounts of 14 C-residues recovered from insecticide-treated loam soils plus oats grown in these soils were similar with DDT and oarbofuran. They were also higher than those observed with the other insecticides. While most of the 14 C-DDT residues remained in the soils, most of the 14 C-carbofuran residues were recovered from oat leaves in the form of carbofuran and 3-hydroxycarbofuran. 14 C-residues of all insecticides were more persistent in loam than in sandy soil and sand-grown oats took up more 14 C-insecticide residues than loamgrown oats. The more water-soluble insecticides, 14 C-phorate and Ccarbofuran were more mobile and were metabolized to a greater extent than insecticides of lower water solubilities. Unextractable (bound) 14 C-residues in loam soil ranged from 2.8% to 29.1% of the applied doses of 14 C-DDT and 14 C-parathion, respectively. Bound 14 C-residues were lower in the sandy soil than in the loam soil, however, plant-bound 14 C-residues were higher in oats grown in the sandy soil than in loam grown oats. Insecticide metabolites recovered from soils and plants were identified and quantitated whenever possible. The oxygen analog metabolites of the organophosphorus insecticides were most abundant in the sandy soil and in oats grown therein. Data illustrate the importance of chemical structure, water solubility and soil type in predicting the comparative environmental behaviour of pesticides. (author)

  19. Effect of soil texture on phytoremediation of arsenic-contaminated soils

    Science.gov (United States)

    Pallud, C. E.; Matzen, S. L.; Olson, A.

    2015-12-01

    Soil arsenic (As) contamination is a global problem, resulting in part from anthropogenic activities, including the use of arsenical pesticides and treated wood, mining, and irrigated agriculture. Phytoextraction using the hyperaccumulating fern Pteris vittata is a promising new technology to remediate soils with shallow arsenic contamination with minimal site disturbance. However, many challenges still lie ahead for a global application of phytoremediation. For example, remediation times using P. vittata are on the order of decades. In addition, most research on As phytoextraction with P. vittata has examined As removal from sandy soils, where As is more available, with little research focusing on As removal from clayey soils, where As is less available. The objective of this study is to determine the effects of soil texture and soil fertilization on As extraction by P. vittata, to optimize remediation efficiency and decrease remediation time under complex field conditions. A field study was established 2.5 years ago in an abandoned railroad grade contaminated with As (average 85.5 mg kg-1) with texture varying from sandy loam to silty clay loam. Organic N, inorganic N, organic P, inorganic P, and compost were applied to separate sub-plots; control ferns were grown in untreated soil. In a parallel greenhouse experiment, ferns were grown in sandy loam soil extracted from the field (180 mg As kg-1), with similar treatments as those used at the field site, plus a high phosphate treatment and treatments with arbuscular mycorrhizal fungi. In the field study, fern mortality was 24% higher in clayey soil than in sandy soil due to waterlogging, while As was primarily associated with sandy soil. Results from the sandy loam soil indicate that soil treatments did not significantly increase As phytoextraction, which was lower in phosphate-treated ferns than in control ferns, both in the field and greenhouse study. Under greenhouse conditions, ferns treated with organic N were

  20. Species identities, not functional groups, explain the effects of earthworms on litter carbon-derived soil respiration

    Science.gov (United States)

    Soil respiration is frequently measured as a surrogate for biological activities and is important in soil carbon cycling. The heterotrophic component of soil respiration is primarily driven by microbial decomposition of leaf litter and soil organic matter, and is partially controlled by resource ava...

  1. Derivation of residual radioactive material guidelines for uranium in soil at the Middlesex Sampling Plant Site, Middlesex, New Jersey

    International Nuclear Information System (INIS)

    Dunning, D.E.

    1995-02-01

    Residual radioactive material guidelines for uranium in soil were derived for the Middlesex Sampling Plant (MSP) site in Middlesex, New Jersey. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy. The site became contaminated from operations conducted in support of the Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC) between 1943 and 1967. Activities conducted at the site included sampling, storage, and shipment of uranium, thorium, and beryllium ores and residues. Uranium guidelines for single radioisotopes and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual living or working in the immediate vicinity of the MSP site should not exceed a dose of 30 mrem/yr following remedial action for the current-use and likely future-use scenarios or a dose of 100 mrem/yr for less likely future-use scenarios. The RESRAD computer code, which implements the methodology described in the DOE manual for establishing residual radioactive material guidelines, was used in this evaluation. Four scenarios were considered for the site. These scenarios vary regarding future land use at the site, sources of water used, and sources of food consumed

  2. Derivation of guidelines for uranium residual radioactive material in soil at the Colonie Site, Colonie, New York

    International Nuclear Information System (INIS)

    Dunning, D.

    1996-05-01

    Residual radioactive material guidelines for uranium in soil were derived for the Colonie site located in Colonie, New York. This site has been designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the U.S. Department of Energy (DOE). The site became contaminated with radioactive material as a result of operations conducted by National Lead (NL) Industries from 1958 to 1984; these activities included brass foundry operations, electroplating of metal products, machining of various components using depleted uranium, and limited work with small amounts of enriched uranium and thorium. The Colonie site comprises the former NL Industries property, now designated the Colonie Interim Storage Site (CISS), and 56 vicinity properties contaminated by fallout from airborne emissions; 53 of the vicinity properties were previously remediated between 1984 and 1988. In 1984, DOE accepted ownership of the CISS property from NL Industries. Residual radioactive material guidelines for individual radionuclides and total uranium were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the site should not exceed a dose of 30 mrem/yr following remedial action for the current use and likely future use scenarios or a dose of 100 mrem/yr for less likely future use scenarios. The DOE residual radioactive material guideline computer code, RESRAD, was used in this evaluation; RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines

  3. Interrill sediment enrichment of P and C from organically and conventionally farmed silty loams

    Science.gov (United States)

    Kuhn, N. J.

    2012-04-01

    Globally, between 0.57 and 1.33 Pg of soil organic carbon (SOC) may be affected by interrill processes. Also, a significant amount of phosphorus (P) is contained in the surface soil layer transformed by raindrop impact, runoff and crust formation. In the EU, the P content of a crusted (2 mm) surface layer corresponds to 4 to 40 kg ha-1 of P on arable land (1.094 mil km2). Therefore, the role of interrill processes for nutrient cycling and the global carbon cycle requires close attention. Interrill erosion is a complex phenomen on involving the detachment, transport and deposition of soil particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion and particle size. As a consequence, erosion on interrill areas is selective, moving the most easily detached small and/or light soil particles. This leads to the enrichment of clay, phosphorous (P)and carbon (C). Such enrichment in interrill sediment is well documented, however, the role of interrill erosion processes on the enrichment remains unclear. Enrichment of P and C in interrill sediment is attributed to the preferential erosion of the smaller, lighter soil particles. In this study, the P and organic C content of sediment generated from two Devon silts under conventional (CS) and organic (OS) soil management were examined. Artificial rainfall was applied to the soils using two rainfall scenarios of differing intensity and kinetic energy to determine the effects on the P and C enrichment in interrill sediment. Interrill soil erodibility was lower on the OS, irrespective of rainfall intensity. Sediment from both soils showed a significant enrichment in P and C compared to the bulk soil. However, sediment from the OS displayed a much greater degree of P enrichment. This shows

  4. Citrinin derivatives from the soil filamentous fungus Penicillium sp. H9318

    International Nuclear Information System (INIS)

    Guangmin, Yao; Sebisubi, Fred Musoke; Voo, Lok Yung Christopher; Ho, Coy Choke; Tan, Ghee Teng; Chang, Leng Chee

    2011-01-01

    Investigation of a microbial fermentation organic extract of Penicillium sp. H9318 led to the isolation of a new isoquinolinone alkaloid, (5S)-3,4,5,7-tetramethyl-5,8-dihydroxyl-6(5H)- isoquinolinone (1), along with four known citrinin derivatives (2-5). Citrinin (2) exhibited significant inhibitory activity against Streptomyces 85E in the hyphae formation inhibition (HFI) assay, while compounds 1, 3-5 were not active when tested at 20 μg/disk in the HFI assay. Citrinin (2) further demonstrated a weak inhibitory activity against MCF-7 (IC 50 71.93 μmol L -1 ), LNCaP (IC 50 77.92 μmol L -1 ), LU-1 (147.85 μmol L -1 ) and KB (IC 50 65.93 μmol L -1 ) cell lines, respectively, in the cytotoxicity assay. (author)

  5. Isolation and characterization of two soil derived yeasts for bioethanol production on Cassava starch

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gi-Wook; Kim, Yule; Kang, Hyun-Woo [Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., Ltd, Palbok-Dong 829, Dukjin-Gu, Jeonju 561-203 (Korea); Um, Hyun-Ju; Kim, Mina; Kim, Yang-Hoon [Department of Microbiology, Chungbuk National University, 410 Sungbong-Ro, Heungduk-Gu, Cheongju 361-763 (Korea); Chung, Bong-Woo [Department of Bioprocess Engineering, Chonbuk National University, 664-14, 1-Ga, Duckjin-Dong, Duckjin-Gu, Jeonju 561-156 (Korea)

    2010-08-15

    Two ethanol-producing yeast strains, CHY1011 and CHFY0901 were isolated from soil in South Korea using an enrichment technique in a yeast peptone dextrose medium supplemented with 5% (w v{sup -1}) ethanol at 30 C. The phenotypic and physiological characteristics, as well as molecular phylogenetic analysis based on the D1/D2 domains of the large subunit (26S) rRNA gene and the internally transcribed spacer (ITS) 1 + 2 regions suggested that they were novel strains of Saccharomyces cerevisiae. During shaking flask cultivation, the highest ethanol productivity and theoretical yield of S. cerevisiae CHY1011 in YPD media containing 9.5% total sugars was 1.06 {+-} 0.02 g l{sup -1} h{sup -1} and 95.5 {+-} 1.2%, respectively, while those for S. cerevisiae CHFY0901 were 0.97 {+-} 0.03 g l{sup -1} h{sup -1} and 91.81 {+-} 2.2%, respectively. Simultaneous saccharification and fermentation for ethanol production was carried out using liquefied cassava (Manihot esculenta) starch in a 5 l lab-scale jar fermenter at 32 C for 66 h with an agitation speed of 2 Hz. Under these conditions, S. cerevisiae CHY1011 and CHFY0901 yielded a final ethanol concentration of 89.1 {+-} 0.87 g l{sup -1} and 83.8 {+-} 1.11 g l{sup -1}, a maximum ethanol productivity of 2.10 {+-} 0.02 g l{sup -1} h{sup -1} and 1.88 {+-} 0.01 g l{sup -1} h{sup -1}, and a theoretical yield of 93.5 {+-} 1.4% and 91.3 {+-} 1.1%, respectively. These results suggest that S. cerevisiae CHY1011 and CHFY0901 have potential use in industrial bioethanol fermentation processes. (author)

  6. Organic loading rates affect composition of soil-derived bacterial communities during continuous, fermentative biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yonghua; Bruns, Mary Ann [Department of Crop and Soil Sciences, The Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Husen; Salerno, Michael; Logan, Bruce E. [Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2008-11-15

    Bacterial community composition during steady-state, fermentative H{sub 2} production was compared across a range of organic loading rates (OLRs) of 0.5-19 g COD l{sup -1} h{sup -1} in a 2-l continuous flow reactor at 30 C. The varied OLRs were achieved with glucose concentrations of 2.5-10 g l{sup -1} and hydraulic retention times of 1-10 h. The synthetic wastewater feed was amended with L-cysteine and maintained at a pH of 5.5. For each run at a given glucose concentration, the reactor was inoculated with an aliquot of well-mixed agricultural topsoil that had been heat-treated to reduce numbers of vegetative cells. At OLRs less than 2 g COD l{sup -1} h{sup -1}, DNA sequences from ribosomal RNA intergenic spacer analysis profiles revealed more diverse and variable populations (Selenomonas, Enterobacter, and Clostridium spp.) than were observed above 2 g COD l{sup -1} h{sup -1} (Clostridium spp. only). An isolate, LYH1, was cultured from a reactor sample (10 g glucose l{sup -1} at a 10-h HRT) on medium containing L-cysteine. In confirming H{sub 2} production by LYH1 in liquid batch culture, lag periods for H{sub 2} production in the presence and absence of L-cysteine were 5 and 50 h, respectively. The 16S rRNA gene sequence of LYH1 indicated that the isolate was a Clostridium sp. affiliated with RNA subcluster Ic, with >99% similarity to Clostridium sp. FRB1. In fluorescent in situ hybridization tests, an oligonucleotide probe complementary to the 16S rRNA of LYH1 hybridized with 90% of cells observed at an OLR of 2 g COD h{sup -1}, compared to 26% of cells at an OLR of 0.5 g COD l{sup -1} h{sup -1}. An OLR of 2 g COD l{sup -1} h{sup -1} appeared to be a critical threshold above which clostridia were better able to outcompete Enterobacteriaceae and other organisms in the mixed soil inoculum. Our results are discussed in light of other biohydrogen studies employing pure cultures and mixed inocula. (author)

  7. Broad spectrum antimicrobial activity of forest-derived soil actinomycete, Nocardia sp. PB-52

    Directory of Open Access Journals (Sweden)

    Priyanka eSharma

    2016-03-01

    Full Text Available A mesophilic actinomycete strain designated as PB-52 was isolated from soil samples of Pobitora Wildlife Sanctuary of Assam, India. Based on phenotypic and molecular characteristics, the strain was identified as Nocardia sp. which shares 99.7% sequence similarity with Nocardia niigatensis IFM 0330 (NR_112195. The strain is a Gram-positive filamentous bacterium with rugose spore surface which exhibited a wide range of antimicrobial activity against Gram-positive bacteria including methicillin resistant Staphylococcus aureus (MRSA, Gram-negative bacteria and yeasts. Optimization for the growth and antimicrobial metabolite production of the strain PB-52 was carried out in batch culture under shaking condition. The optimum growth and the antimicrobial metabolite production by the strain PB-52 was recorded in GLM medium at 28ºC, initial pH 7.4 of the medium and incubation period of eight days. Based on polyketide synthases (PKS and nonribosomal peptide synthetases (NRPS gene-targeted PCR amplification, the occurrence of both of these biosynthetic pathways was detected which might be involved in the production of antimicrobial metabolite in PB-52. Extract of the fermented broth culture of PB-52 was prepared with organic solvent extraction method using ethyl acetate. The ethyl acetate extract of PB-52 (EA-PB-52 showed lowest minimum inhibitory concentration (MIC against Staphylococcus aureus MTCC 96 (0.975 μg/ml whereas highest was recorded against Klebsiella pneumoniae ATCC 13883 (62.5 μg/ml. Scanning electron microscopy (SEM revealed that treatment of the test microorganisms with EA-PB-52 destroyed the targeted cells with prominent loss of cell shape and integrity. In order to determine the constituents responsible for its antimicrobial activity, EA-PB-52 was subjected to chemical analysis using gas chromatography-mass spectrometry (GC-MS. GC-MS analysis showed the presence of twelve different chemical constituents in the extract, some of which

  8. Relating soil microbial activity to water content and tillage-induced differences in soil structure

    DEFF Research Database (Denmark)

    Schjønning, Per; Thomsen, Ingrid Kaag; Petersen, Søren O

    2011-01-01

    Several studies have identified optima in soil water content for aerobic microbial activity, and this has been ascribed to a balance between gas and solute diffusivity as limiting processes. We investigated the role of soil structure, as created by different tillage practices (moldboard ploughing......, MP, or shallow tillage, ST), in regulating net nitrification, applied here as an index of aerobic microbial activity. Intact soil cores were collected at 0–4 and 14–18 cm depth from a fine sandy (SAND) and a loamy (LOAM) soil. The cores were drained to one of seven matric potentials ranging from − 15...... content to a maximum and then decreased. This relationship was modelled with a second order polynomium. Model parameters did not show any tillage effect on the optimum water content, but the optimum coincided with a lower matric potential in ST (SAND: − 140 to –197 hPa; LOAM: − 37 to − 65 hPa) than in MP...

  9. Occurrence of benzothiazole and its derivates in tire wear, road dust, and roadside soil.

    Science.gov (United States)

    Zhang, Jing; Zhang, Xinfeng; Wu, Lin; Wang, Ting; Zhao, Jingbo; Zhang, Yanjie; Men, Zhengyu; Mao, Hongjun

    2018-06-01

    Benzothiazole (BT) and its derivates are commonly used as vulcanization accelerators in rubber production. Information on the occurrence of BTs in road dust (RD) and on human exposure to these compounds is very limited. BT and its six derivates in tire wear particles (TWPs) and RD were determined in this study. Samples were extracted using solid-liquid extraction, purified by a HLB SPE column, and determined by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). All seven BTs were found in 17 TWPs samples from different tire brands. The mass fractions of all seven BTs (∑BTs) in TWPs ranged from 46.93 to 215 μg/g with an average concentration of 99.32 μg/g. Benzothiazole and 2-hydroxybenzothiazole (2-OH-BT) were the two major compounds, accounting for 56%-89% of the total. The seven BTs were also found in all 36 sets of RD samples (each set included one sample of TSP (particles < 75 μm in diameter), PM 10 (particles < 10 μm in diameter) and PM 2.5 (particles < 2.5 μm in diameter)) fractions of RD. The median ∑BTs concentration was highest in PM 2.5 (26.62 μg/g), followed by PM 10 (22.03 μg/g), and TSP (0.68 μg/g). Of the seven BTs, BT, 2-aminobenzothiazole (2-NH 2 -BT), 2-mercaptobenzothiazole (MBT), and 2-(methylthio)benzothiazole (MTBT) were distributed in PM 2.5 and 2-OH-BT was distributed in PM 2.5-10 of RD. Based on the mass fractions of BTs in the TSP, PM 10 , and PM 2.5 fractions of RD, human exposure via ingestion, inhalation and dermal absorption were evaluated. Ingestion was found to be the main exposure pathway in humans, and daily intake of BTs in PM 2.5 was highest, followed by PM 10 and TSP, respectively. Children may suffer more health risks than adults when exposed to RD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. How does soil management affect carbon losses from soils?

    Science.gov (United States)

    Klik, A.; Trümper, G.

    2009-04-01

    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  11. Citrinin derivatives from the soil filamentous fungus Penicillium sp. H9318

    Energy Technology Data Exchange (ETDEWEB)

    Guangmin, Yao [Huazhong University of Science and Technology, Wuhan (China). Tongji Medical College. Hubei Key Lab. of Natural Medicinal Chemistry and Resources Evaluation; Sebisubi, Fred Musoke [Ministry of Health, Kampala (Uganda). Div. of Pharmaceutical Services; Voo, Lok Yung Christopher; Ho, Coy Choke [University Malaysia Sabah, Sabah (Malaysia). School of Science and Technology. Biotechnology Program; Tan, Ghee Teng; Chang, Leng Chee, E-mail: lengchee@hawaii.ed [University of Hawaii Hilo, Hilo (United States). College of Pharmacy. Dept. of Pharmaceutical Sciences

    2011-07-01

    Investigation of a microbial fermentation organic extract of Penicillium sp. H9318 led to the isolation of a new isoquinolinone alkaloid, (5S)-3,4,5,7-tetramethyl-5,8-dihydroxyl-6(5H)- isoquinolinone (1), along with four known citrinin derivatives (2-5). Citrinin (2) exhibited significant inhibitory activity against Streptomyces 85E in the hyphae formation inhibition (HFI) assay, while compounds 1, 3-5 were not active when tested at 20 {mu}g/disk in the HFI assay. Citrinin (2) further demonstrated a weak inhibitory activity against MCF-7 (IC{sub 50} 71.93 {mu}mol L{sup -1}), LNCaP (IC{sub 50} 77.92 {mu}mol L{sup -1}), LU-1 (147.85 {mu}mol L{sup -1}) and KB (IC{sub 50} 65.93 {mu}mol L{sup -1}) cell lines, respectively, in the cytotoxicity assay. (author)

  12. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L. Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    Directory of Open Access Journals (Sweden)

    Fugen Dou

    Full Text Available The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic, cultivar ('Cocodrie' and 'Rondo', and soil texture (clay and sandy loam on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  13. Holocene soil-geomorphic surfaces influence the role of salmon-derived nutrients in the coastal temperate rainforest of Southeast Alaska

    Science.gov (United States)

    David V. D' Amore; Nicholas S. Bonzey; Jacob Berkowitz; Janine Rüegg; Scott. Bridgham

    2011-01-01

    The influence of salmon-derived nutrients (SDN) is widely accepted as a potential factor in the maintenance of aquatic and terrestrial productivity in North American Coastal rainforests. Holocene alluvial landforms are intimately connected with the return of anadromous salmon, but the influence of the soils that occupy these landforms and support this important...

  14. Characterization of a soil amendment derived from co-composting of agricultural wastes and biochar

    Science.gov (United States)

    Curaqueo, Gustavo; Ángel Sánchez-Monedero, Miguel; Meier, Sebastián; Medina, Jorge; Panichini, Marcelo; Borie, Fernando; Navia, Rodrigo

    2016-04-01

    contents increased in BC10 treatment, while the K contents were similar in all treatments as well as C/N ratio (around 15). The organic matter content was BC10>BC5>BC0 and the dissolved organic C content was lower than 8.3 g kg-1 for all piles confirming the maturity of compost. The germination test showed a non-toxic effect of all amendments in the species assayed obtaining a germination index between 55% and 80.7% indicating maturity of the amendments evaluated. Our results indicated that the combined use of agricultural wastes and biochar by mean of a co-composting process is a suitable option for generating good quality amendments for improving soil condition and optimizing nutrient cycling at farm scale. Financial support for this research was provided by the National Commission for Scientific and Technological Research through FONDECYT 11140508 Project

  15. Transport and transformation of soil-derived CO2, CH4 and DOC sustain CO2 supersaturation in small boreal streams.

    Science.gov (United States)

    Rasilo, Terhi; Hutchins, Ryan H S; Ruiz-González, Clara; Del Giorgio, Paul A

    2017-02-01

    Streams are typically supersaturated in carbon dioxide (CO 2 ) and methane (CH 4 ), and are recognized as important components of regional carbon (C) emissions in northern landscapes. Whereas there is consensus that in most of the systems the CO 2 emitted by streams represents C fixed in the terrestrial ecosystem, the pathways delivering this C to streams are still not well understood. We assessed the contribution of direct soil CO 2 injection versus the oxidation of soil-derived dissolved organic C (DOC) and CH 4 in supporting CO 2 supersaturation in boreal streams in Québec. We measured the concentrations of CO 2 , CH 4 and DOC in 43 streams and adjacent soil waters during summer base-flow period. A mass balance approach revealed that all three pathways are significant, and that the mineralization of soil-derived DOC and CH 4 accounted for most of the estimated stream CO 2 emissions (average 75% and 10%, respectively), and that these estimated contributions did not change significantly between the studied low order (≤3) streams. Whereas some of these transformations take place in the channel proper, our results suggest that they mainly occur in the hyporheic zones of the streams. Our results further show that stream CH 4 emissions can be fully explained by soil CH 4 inputs. This study confirms that these boreal streams, and in particular their hyporheic zones, are extremely active processors of soil derived DOC and CH 4 , not just vents for soil produced CO 2 . Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Soil microbial and physical properties and their relations along a steep copper gradient

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Holmstrup, Martin

    2012-01-01

    years; from background concentrations up to 3837 mg Cu kg–1) on soil microbial enzyme activity, physical properties and resilience to compression. Soil samples and cores were taken from a fallow sandy loam field in Denmark. Microbial activity was quantified using fluorescein diacetate (FDA...

  17. Effects Of Palm Oil Mill Effluents (Pome) On Soil Bacterial Flora And ...

    African Journals Online (AJOL)

    Sandy loam soil in Egbema, Rivers State was impacted with POME at different levels and analyzed for bacteriological quality and soil enzyme activities. Light application caused significant increase in total heterotrophic, phosphate solibilizing, nitrifying and lipolytic bacterial counts while heavy application caused a decrease ...

  18. the effects of 4 ratios of organic to inorganic manures on soil ...

    African Journals Online (AJOL)

    nkechi

    2011-05-02

    May 2, 2011 ... ON SOIL PHYSICOCHEMICAL PROPERTIES AND MAIZE YIELD. ... fertilizers with the uncombined ones were used for field ... ferallitic sandy loam classified as an ultisol. ... The pots were kept in the field moisture capacity ... the data fitted in the soil textural triangle to obtain ... Equivalent in t/ha pig manure.

  19. Effects of exchangeable Ca:Mg ratio on the dispersion of soils some ...

    African Journals Online (AJOL)

    The soils studied were acidic, low in nutrient level, showed high dispersion rate, high water- dispersible clay content and the textural class were loamy sand and sandy loam. The exchangeable Ca2+ and Mg2+ contents of the soils dominated the exchange complex. The cation exchange capacity (CEC) ranges between 4 ...

  20. Microwave-derived soil moisture over Mediterranean land uses: from ground-based radiometry to SMOS first observations

    Science.gov (United States)

    Saleh, Kauzar; Antolín, Carmen; Juglea, Silvia; Kerr, Yann; Millán-Scheiding, Cristina; Novello, Nathalie; Pardé, Mickael; Wigneron, Jean-Pierre; Zribi, Mehrez; López-Baeza, Ernesto

    2010-05-01

    plant growing cycle. 2) Airborne-based experiments. 2.1) ESA's SMOS Rehearsal 2008. For this campaign an area of 100 km2 of vineyards in winter-like conditions was flown on four days using the EMIRAD radiometer. Soil moisture could be retrieved with good accuracy but only after surface roughness was determined. In fact, the campaign highlighted that close to specular modelling of the surface reflectivity using 0-6 cm measurements of soil moisture underestimated the surface emission. This was observed also in other airborne data sets (Saleh et al. 2009). 2.2) CNES CAROLS campaigns. In 2009, the L-band CAROLS radiometer was flown on three occasions over an area of 1500 km2 covering vineyards, shrub land and Mediterranean pine forest. Main results of CAROLS 2009 will be presented in this communication, and the emphasis will be on comparing local to regional scale results given that CAROLS flights were performed at ~4000 m above the surface. For soil moisture, SVAT-derived, field soil moisture, and surface-type derived soil moisture will be used as ground truth. 3) SMOS data Finally, the results of the above mentioned experiments concerning L-MEB parameterisations will be the basis for comparisons between simulated brightness temperatures (TB) and measured TBs from SMOS at the VAS site. These exercises will be conducted in order to have an assessment of the L-MEB performance in a highly studied and monitored area, and to help pinpointing future areas of investigation in microwave radiometry. References Cano A., Saleh K., Wigneron J.P., Antolín C., Balling J., Kerr Y.H., Kruszewski A., Millán-Scheiding C., Søbjaerg S.S., Skou N., López-Baeza E. (2009), The SMOS Medierranean Ecosystem L-band experiment (MELBEX-I) over natural shrubs, Remote Sensing of Environment, in press. Saleh K., Kerr Y.H., Richaume P., Escorihuela, M.J., Panciera R., Delwart S., Walker J., Boulet G., Maisongrande P., Wursteisen P., Wigneron, J.P. (2009), Soil moisture retrievals at L-band using a two

  1. Influence of Soil Based Growing Media on Vegetative Propagation of Selected Cultivars of Olea Europaea

    International Nuclear Information System (INIS)

    Ahmed, M. I.; Ashraf, M. I.; Malik, S. U.; Husaain, Q.

    2016-01-01

    Pothwar region of Pakistan is a natural habitat of Olea spp. There is a high demand of certified olive plants to establish olive orchids in the region, because native wild species are non-fruit bearing. Plants of certified fruit bearing olive (Olea europaea L.) cultivars are rarely available. Vegetative propagation of olive is highly responsive to texture of soil based growing media. This study examined the effect of growing media composition (soil texture and nutrients) on vegetative propagation of five cultivars of olive. The experiment was carried out in randomized complete block design (RCBD) with two factors factorial having 25 repeats of each four treatments. Plant growth and survival data were collected and analyzed for the influence of soil attributes. In sandy loam soil, cv. Bari-1 had 82 percent plant survival, highest number of roots per plant (3.5), and longest root length (13.01 cm). Highest number of shoots per plant (4.25) and maximum shoot length (15.64 cm) were also recorded for Bari-1 with sandy loam growing media. Silt loam soil is least suitable growing media for vegetative propagation of olive. In the silt loam soil, plants survival rate was 59 percent for cv. Gemlik, number of roots per plant was 1.5 for cv. Ottobrattica, minimum root length 5.65 cm, minimum number of shoots per plant one, and minimum shoot length 7.42 cm were recorded for cv. Pendolino with silt loam soil. Results suggested that sandy loam growing media is better than the others for vegetative propagation of olive. Cultivar Bari-1 performed better than the others examined in this study by indicating highest (1) survival percentage, (2) root and shoot length, and (3) number of roots and shoots produced within a specific period of time. (author)

  2. Microbial Ecology of Soil Aggregation in Agroecosystems

    Science.gov (United States)

    Hofmockel, K. S.; Bell, S.; Tfailly, M.; Thompson, A.; Callister, S.

    2017-12-01

    in the abundance of chemical classes in clay loams compared to sandy loams. Together our data demonstrate that the potential for aggregation and C storage is strongly influenced by soil mineralogy with important implications for plant-microbe interactions that mediate C biogeochemistry.

  3. Evaluation of the ecotoxicological impact of the organochlorine chlordecone on soil microbial community structure, abundance, and function.

    Science.gov (United States)

    Merlin, Chloé; Devers, Marion; Béguet, Jérémie; Boggio, Baptiste; Rouard, Nadine; Martin-Laurent, Fabrice

    2016-03-01

    The insecticide chlordecone applied for decades in banana plantations currently contaminates 20,000 ha of arable land in the French West Indies. Although the impact of various pesticides on soil microorganisms has been studied, chlordecone toxicity to the soil microbial community has never been assessed. We investigated in two different soils (sandy loam and silty loam) exposed to different concentrations of CLD (D0, control; D1 and D10, 1 and 10 times the agronomical dose) over different periods of time (3, 7, and 32 days): (i) the fate of chlordecone by measuring (14)C-chlordecone mass balance and (ii) the impact of chlordecone on microbial community structure, abundance, and function, using standardized methods (-A-RISA, taxon-specific quantitative PCR (qPCR), and (14)C-compounds mineralizing activity). Mineralization of (14)C-chlordecone was inferior below 1 % of initial (14)C-activity. Less than 2 % of (14)C-activity was retrieved from the water-soluble fraction, while most of it remained in the organic-solvent-extractable fraction (75 % of initial (14)C-activity). Only 23 % of the remaining (14)C-activity was measured in nonextractable fraction. The fate of chlordecone significantly differed between the two soils. The soluble and nonextractable fractions were significantly higher in sandy loam soil than in silty loam soil. All the measured microbiological parameters allowed discriminating statistically the two soils and showed a variation over time. The genetic structure of the bacterial community remained insensitive to chlordecone exposure in silty loam soil. In response to chlordecone exposure, the abundance of Gram-negative bacterial groups (β-, γ-Proteobacteria, Planctomycetes, and Bacteroidetes) was significantly modified only in sandy loam soil. The mineralization of (14)C-sodium acetate and (14)C-2,4-D was insensitive to chlordecone exposure in silty loam soil. However, mineralization of (14)C-sodium acetate was significantly reduced in soil

  4. Mapping SOC (Soil Organic Carbon) using LiDAR-derived vegetation indices in a random forest regression model

    Science.gov (United States)

    Will, R. M.; Glenn, N. F.; Benner, S. G.; Pierce, J. L.; Spaete, L.; Li, A.

    2015-12-01

    Quantifying SOC (Soil Organic Carbon) storage in complex terrain is challenging due to high spatial variability. Generally, the challenge is met by transforming point data to the entire landscape using surrogate, spatially-distributed, variables like elevation or precipitation. In many ecosystems, remotely sensed information on above-ground vegetation (e.g. NDVI) is a good predictor of below-ground carbon stocks. In this project, we are attempting to improve this predictive method by incorporating LiDAR-derived vegetation indices. LiDAR provides a mechanism for improved characterization of aboveground vegetation by providing structural parameters such as vegetation height and biomass. In this study, a random forest model is used to predict SOC using a suite of LiDAR-derived vegetation indices as predictor variables. The Reynolds Creek Experimental Watershed (RCEW) is an ideal location for a study of this type since it encompasses a strong elevation/precipitation gradient that supports lower biomass sagebrush ecosystems at low elevations and forests with more biomass at higher elevations. Sagebrush ecosystems composed of Wyoming, Low and Mountain Sagebrush have SOC values ranging from .4 to 1% (top 30 cm), while higher biomass ecosystems composed of aspen, juniper and fir have SOC values approaching 4% (top 30 cm). Large differences in SOC have been observed between canopy and interspace locations and high resolution vegetation information is likely to explain plot scale variability in SOC. Mapping of the SOC reservoir will help identify underlying controls on SOC distribution and provide insight into which processes are most important in determining SOC in semi-arid mountainous regions. In addition, airborne LiDAR has the potential to characterize vegetation communities at a high resolution and could be a tool for improving estimates of SOC at larger scales.

  5. Nitrate leaching from sandy loam soils under a double-cropping forage system estimated from suction-probe measurements.

    NARCIS (Netherlands)

    Trindade, H.; Coutinho, J.; Beusichem, van M.L.; Scholefield, D.; Moreira, N.

    1997-01-01

    Nitrate leaching from a double-cropping forage system was measured over a 2-year period (June 1994–May 1996) in the Northwest region of Portugal using ceramic cup samplers. The crops were grown for silage making and include maize (from May to September) and a winter crop (rest of the year)

  6. Impact of macropores and gravel outcrops on phosphorus leaching at the plot scale in silt loam soils

    Science.gov (United States)

    In response to increased nutrient loads in surface waters, scientists and engineers need to identify critical nutrient source areas and transport mechanisms within a catchment to protect beneficial uses of aquatic systems in a cost effective manner. It was hypothesized that hydrologic heterogeneitie...

  7. Long-term effects of fallow, tillage and manure application on soil organic matter and nitrogen fractions and on sorghum yield under Sudano-Sahelian conditions

    NARCIS (Netherlands)

    Mando, A.; Ouattara, B.; Somado, A.E.; Wopereis, M.C.S.; Stroosnijder, L.; Breman, H.

    2005-01-01

    Soil organic matter (SOM) controls the physical, chemical and biological properties of soil and is a key factor in soil productivity. Data on SOM quantity and quality are therefore important for agricultural sustainability. In 1990, an experiment was set up at Saria, Burkina Faso on a sandy loam

  8. Prediction of Cadmium uptake by brown rice and derivation of soil–plant transfer models to improve soil protection guidelines

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Guo, H.Y.; Liu, T.S.; Chiang, C.F.; Koopmans, G.F.

    2009-01-01

    Cadmium (Cd) levels in paddy fields across Taiwan have increased due to emission from industry. To ensure the production of rice that meets food quality standards, predictive models or suitable soil tests are needed to evaluate the quality of soils to be used for rice cropping. Levels of Cd in soil

  9. Amounts of mercury in soil of some golf course sites

    Energy Technology Data Exchange (ETDEWEB)

    MacLean, A J; Stone, B; Cordukes, W E

    1973-01-01

    Mercurial compounds are widely used for controlling diseases of turfgrass of golf courses, but the fungicides are usually confined to the greens. Composite soil samples were obtained from three golf courses in the Ottawa and Ontario region of Canada. Samples from the turf and surface layer of soil were analyzed and high amounts of mercury were found. The soil of No.I course was a sand; No.II was a sandy loam in the surface and a loam below; and No. III was a loam in the surface layer and a clay loam below. The pH of the surface layer was 6.4 in No. I, 7.5 in No. II, and 6.0 in No. III. The amounts of Hg in the turf were high near the green but they decreased with distance. Fairway III contained the highest amounts of Hg and there was evidence of it leaching to a depth of 90 cm at the edge of the green. The particularly high amounts of Hg in no III were in accord with the liberal use of mercurial fungicides on this course in the period 1912-64. The leaching of Hg depends on amounts of organic matter and the clay in the soil.

  10. Nitrogen Fertilization Increases Cottonwood Growth on Old-Field Soil

    Science.gov (United States)

    B. G. Blackmon; E. H. White

    1972-01-01

    Nitrogen (150 lb ./acre as NH4N03 ) applied to a 6-year-old eastern cottonwood plantation in an old field on Commerce silt loam soil increased diameter, basal area, and volume growth by 200 percent over untreated controls. The plantation did not respond to 100 pounds P per acre from concentrated superphosphate.

  11. Control of Eolian soil erosion from waste site surface barriers

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1994-11-01

    Physical models were tested in a wind tunnel to determine optimum surface-ravel admixtures for protecting silt-loam soil from erosion by, wind and saltating, sand stresses. The tests were performed to support the development of a natural-material surface barrier for and waste sites. Plans call for a 2-m deep silt-loam soil reservoir to retain infiltrating water from rainfall and snowmelt. The objective of the study was to develop a gravel admixture that would produce an erosion-resistant surface layer during, periods of extended dry climatic stress. Thus, tests were performed using simulated surfaces representing dry, unvegetated conditions present just after construction, after a wildfire, or during an extended drought. Surfaces were prepared using silt-loam soil mixed with various grades of sand and Travel. Wind-induced surface shear stresses were controlled over the test surfaces, as were saltating, sand mass flow rates and intensities. Tests were performed at wind speeds that approximated and exceeded local 100-year peak gust intensities. Surface armors produced by pea gravel admixtures were shown to provide the best protection from wind and saltating sand stresses. Compared with unprotected silt-loam surfaces, armored surfaces reduced erosion rates by more than 96%. Based in part on wind tunnel results, a pea gravel admixture of 15% will be added to the top 1 in of soil in a prototype barrier under construction in 1994. Field tests are planned at the prototype site to provide data for comparison with wind tunnel results

  12. Size- and composition-dependent toxicity of synthetic and soil-derived Fe oxide colloids for the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Höss, Sebastian; Fritzsche, Andreas; Meyer, Carolin; Bosch, Julian; Meckenstock, Rainer U; Totsche, Kai Uwe

    2015-01-06

    Colloidal iron oxides (FeOx) are increasingly released to the environment due to their use in environmental remediation and biomedical applications, potentially harming living organisms. Size and composition could affect the bioavailability and toxicity of such colloids. Therefore, we investigated the toxicity of selected FeOx with variable aggregate size and variably composed FeOx-associated organic matter (OM) toward the nematode Caenorhabditis elegans. Ferrihydrite colloids containing citrate were taken up by C. elegans with the food and accumulated inside their body. The toxicity of ferrihydrite, goethite, and akaganeite was dependent on aggregate size and specific surface area, with EC50 values for reproduction ranging from 4 to 29 mg Fe L(-1). Experiments with mutant strains lacking mitochondrial superoxide dismutase (sod-2) showed oxidative stress for two FeOx and Fe(3+)-ions, however, revealed that it was not the predominant mechanism of toxicity. The OM composition determined the toxicity of mixed OM-FeOx phases on C. elegans. FeOx associated with humic acids or citrate were less toxic than OM-free FeOx. In contrast, soil-derived ferrihydrite, containing proteins and polysaccharides from mobile OM, was even more toxic than OM-free Fh of similar aggregate size. Consequently, the careful choice of the type of FeOx and the type of associated OM may help in reducing the ecological risks if actively applied to the subsurface.

  13. Submerged pedology: the soils of minor islands in the Venice lagoon

    Directory of Open Access Journals (Sweden)

    Mohammad Washa

    2015-12-01

    Full Text Available Minor islands of the Venice lagoon are part of a delicate ecosystem, with equilibrium that depends on multiple factors deriving from both the aqueous and the terrestrial compartment, and represent useful indicators of the lagoon ecosystem status. Over centuries, some islands emerged, some others disappeared, others are being submerged in consequence of sea level rise, or are dismantled by marine erosion. Ecological survey and soil sampling evidenced rather homogeneous environment and soil characters, likely due to the same genesis from HTM during centuries, and to environmental conditions such as moisture and brackish groundwater. Four of the examined soils are Inceptisols, while the others present limited horizon differentiation, and are Entisols. All the profiles reflect udic or aquic conditions, and some of them are submerged for most time. Most soils are moderately alkaline (7.9 250 g/kg; organic carbon content at surface is within the normal range (8 17 g/kg and carbonates. Moreover, the textural class is generally silty-loam with increasing clay content with depth. Currently, the soils examined present hydromorphic pedofeatures, which are the result of the most important pedogenic process in the lagoon. Alternating reduction/oxidation processes would increase as a consequence of sea level rise, determining reducing conditions at bottom, and conversely enhancing salt concentration uppermost, with negative consequences for both pedogenic evolution and vegetation survival.

  14. Dynamics of mineral N, water-soluble carbon and potential nitrification in band-steamed arable soil

    DEFF Research Database (Denmark)

    Elsgaard, Lars

    2010-01-01

    the effect of band-steaming on N and C dynamics in a sandy loam soil that was steamed in situ to maximal temperatures of 70-90°C using a prototype band-steamer. Soil samples (0-5 cm depth) were collected during 90 days from band-steamed soil, undisturbed control soil, and control soil treated just...

  15. Sustainable agriculture and soil conservation

    DEFF Research Database (Denmark)

    Olsen, Preben; Dubgaard, Alex

    , sandy soils in the West, (that had not been covered by ice) from more fertile soils being mostly sandy loams and finer textured soils covering the Eastern part of the study area. Several geological features such as pitting due to dead ice formation, smaller, terminal moraines in association with melt......, separate the moraine plateau. From the plateau several, minor erosion valleys, formed at the end of the glaciation some 10,000 years ago, feed into the two valleys. Very accurate soil type information is available for the area as intensive measurements within the area has formed the basis for a new...... methodology for soil classification in Denmark. The soil survey included a detailed mapping at field level, using the electromagnetic sensor, EM38. A high-resolution digital elevation model, obtained by use of laser scanning, is available for the study area. The original scanning has a horizontal resolution...

  16. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China

    International Nuclear Information System (INIS)

    Sui, Yanghui; Gao, Jiping; Liu, Caihong; Zhang, Wenzhong; Lan, Yu; Li, Shuhang; Meng, Jun; Xu, Zhengjin; Tang, Liang

    2016-01-01

    Impacts of biochar on greenhouse gas emissions and C sequestration in agricultural soils have been considered as the key to mitigate climate change. There is limited knowledge regarding the effects of rice straw-derived biochar and interaction with N fertilization on soil C sequestration and rice productivity in fertile paddy fields. A 2-year (2013 and 2014) consecutive field trial was performed using straw treatment (5.05 t ha −1 ) and biochar amendment (0, 1.78, 14.8 and 29.6 t ha −1 ) with or without urea application in a rice paddy in Northeast China. A super high yielding rice variety (Oryza sativa L. subsp. Japonica cv. ‘Shennong 265’) was cultivated with permanent flooding. Results showed that biochar amendments significantly decreased CH 4 emissions relative to straw treatment irrespective of N fertilization, especially in N-fertilized soils with 1.78 t ha −1 biochar. There were no differences in CO 2 emissions with respect to biochar amendments, except for 14.8 t ha −1 biochar with N fertilization. Straw treatment had the highest global warming potential over a 100-year time frame, which was nearly 1.5 times that of 14.8 t ha −1 biochar amendment without N fertilization. Biochar addition increased total soil C by up to 5.75 mg g −1 and 11.69 mg g −1 (with 14.8 and 29.6 t ha −1 biochar, respectively), whereas straw incorporation increased this value by only 3.92 mg g −1 . The aboveground biomass of rice in biochar-amended soils increased to varying degrees compared with that in straw-treated soils. However, biochar application had no effects on rice yield, regardless of N fertilization. This study indicated that transforming straw to biochar was more stabilized and more suitable to mitigate greenhouse gas emissions and increase C storage in agriculture soils in Northeast China. - Highlights: • Rice straw-derived biochar significantly reduced CH 4 emission. • Rice straw-derived biochar interacted with the effects of N fertilizers on

  17. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Yanghui [Rice Research Institute, Shenyang Agricultural University, Shenyang 110866 (China); Gao, Jiping [Rice Research Institute, Shenyang Agricultural University, Shenyang 110866 (China); Liaoning Biochar Engineering & Technology Research Center, Shenyang Agricultural University, Dongling Rd, Shenyang 110866 (China); Liu, Caihong; Zhang, Wenzhong [Rice Research Institute, Shenyang Agricultural University, Shenyang 110866 (China); Lan, Yu [Liaoning Biochar Engineering & Technology Research Center, Shenyang Agricultural University, Dongling Rd, Shenyang 110866 (China); Li, Shuhang [Rice Research Institute, Shenyang Agricultural University, Shenyang 110866 (China); Meng, Jun [Liaoning Biochar Engineering & Technology Research Center, Shenyang Agricultural University, Dongling Rd, Shenyang 110866 (China); Xu, Zhengjin, E-mail: xuzhengjin@126.com [Rice Research Institute, Shenyang Agricultural University, Shenyang 110866 (China); Tang, Liang, E-mail: tl_rice@126.com [Rice Research Institute, Shenyang Agricultural University, Shenyang 110866 (China)

    2016-02-15

    Impacts of biochar on greenhouse gas emissions and C sequestration in agricultural soils have been considered as the key to mitigate climate change. There is limited knowledge regarding the effects of rice straw-derived biochar and interaction with N fertilization on soil C sequestration and rice productivity in fertile paddy fields. A 2-year (2013 and 2014) consecutive field trial was performed using straw treatment (5.05 t ha{sup −1}) and biochar amendment (0, 1.78, 14.8 and 29.6 t ha{sup −1}) with or without urea application in a rice paddy in Northeast China. A super high yielding rice variety (Oryza sativa L. subsp. Japonica cv. ‘Shennong 265’) was cultivated with permanent flooding. Results showed that biochar amendments significantly decreased CH{sub 4} emissions relative to straw treatment irrespective of N fertilization, especially in N-fertilized soils with 1.78 t ha{sup −1} biochar. There were no differences in CO{sub 2} emissions with respect to biochar amendments, except for 14.8 t ha{sup −1} biochar with N fertilization. Straw treatment had the highest global warming potential over a 100-year time frame, which was nearly 1.5 times that of 14.8 t ha{sup −1} biochar amendment without N fertilization. Biochar addition increased total soil C by up to 5.75 mg g{sup −1} and 11.69 mg g{sup −1} (with 14.8 and 29.6 t ha{sup −1} biochar, respectively), whereas straw incorporation increased this value by only 3.92 mg g{sup −1}. The aboveground biomass of rice in biochar-amended soils increased to varying degrees compared with that in straw-treated soils. However, biochar application had no effects on rice yield, regardless of N fertilization. This study indicated that transforming straw to biochar was more stabilized and more suitable to mitigate greenhouse gas emissions and increase C storage in agriculture soils in Northeast China. - Highlights: • Rice straw-derived biochar significantly reduced CH{sub 4} emission. • Rice straw-derived

  18. Effect of Biochar on Soil Physical Characteristics

    DEFF Research Database (Denmark)

    Sun, Zhencai; Møldrup, Per; Vendelboe, Anders Lindblad

    Biochar addition to agricultural soil has been reported to reduce climate gas emission, as well as improve soil fertility and crop productivity. Little, however, is known about biochar effects on soil structural characteristics. This study investigates if biochar-application changes soil structural...... characteristics, as indicated from water retention and gas transport measurements on intact soil samples. Soil was sampled from a field experiment on a sandy loam with four control plots (C) without biochar and four plots (B) with incorporated biochar at a rate of 20 tons per hectare (plot size, 6 x 8 m). The C...... and B plots were placed in a mixed sequence (C-B-C-B-C-B-C-B) and at the same time the eight plots formed a natural pH gradient ranging from pH 7.7 to 6.3. We determined bulk density, saturated hydraulic conductivity (K-sat), soil water retention characteristics, soil-air permeability, and soil...

  19. Identification of a dynamic temperature threshold for soil moisture freeze/thaw (F/T) state classification using soil real dielectric constant derivatives.

    Science.gov (United States)

    Pardo, R.; Berg, A. A.; Warland, J. S.

    2017-12-01

    The use of microwave remote sensing for surface ground ice detection has been well documented using both active and passive systems. Typical validation of these remotely sensed F/T state products relies on in-situ air or soil temperature measurements and a threshold of 0°C to identify frozen soil. However, in soil pores, the effects of capillary and adsorptive forces combine with the presence of dissolved salts to depress the freezing point. This is further confounded by the fact that water over this temperature range releases/absorbs latent heat of freezing/fusion. Indeed, recent results from SLAPEx2015, a campaign conducted to evaluate the ability to detect F/T state and examine the controls on F/T detection at multiple resolutions, suggest that using a soil temperature of 0°C as a threshold for freezing may not be appropriate. Coaxial impedance sensors, like Steven's HydraProbeII (HP), are the most widely used soil sensor in water supply forecast and climatological networks. These soil moisture probes have recently been used to validate remote sensing F/T products. This kind of validation is still relatively uncommon and dependent on categorical techniques based on seasonal reference states of frozen and non-frozen soil conditions. An experiment was conducted to identify the correlation between the phase state of the soil moisture and the probe measurements. Eight soil cores were subjected to F/T transitions in an environmental chamber. For each core, at a depth of 2.5 cm, the temperature and real dielectric constant (rdc) were measured every five minutes using HPs while two heat pulse probes captured the apparent heat capacity 24 minutes apart. Preliminary results show the phase transition of water is bounded by inflection points in the soil temperature, attributed to latent heat. The rdc, however, appears to be highly sensitive to changes in the water preceding the phase change. This opens the possibility of estimating a dynamic temperature threshold for

  20. Predictivity strength of the spatial variability of phenanthrene sorption across two sandy loam fields

    DEFF Research Database (Denmark)

    Soares, Antonio; Paradelo Pérez, Marcos; Møldrup, Per

    2015-01-01

    Sorption is commonly suggested as the major process underlying the transport and fate of polycyclic aromatic hydrocarbons (PAHs) in soils. However, studies focusing in spatial variability at the field scale in particular are still scarce. In order to investigate the sorption of phenanthrene...

  1. Response of three soils in the derived savanna zone of southwestern Nigeria to combined application of organic and inorganic fertilizer as affecting phosphorus fractions

    Directory of Open Access Journals (Sweden)

    Abigail O. Ojo

    2018-04-01

    Full Text Available Phosphorus inputs to the soil are primarily from the application of fertilizer P and organic resources. A ten week incubation study was carried out to determine the effects of organic and inorganic P sources on phosphorus fractions in three derived savanna soils. Poultry manure was applied at 0, 0.75g, 1.5g, 2.25g and 3g per 300g weight of soil while single superphosphate was applied at 0.0023g, 0.0046g, 0.0069g and 0.0092g per 300g of soil. Sampling was done at two weeks interval. At 0 week of the incubation study, Ekiti series had the largest amount of P fractions i.e. Fe-P, Al-P, residual P, reductant soluble P, occluded P, organic P and occluded P while Ca-P was high in Apomu series. However, increases in Fe-P, Al-P, Ca-P and organic P were observed in the three soil series evaluated and poultry manure was notably effective in reducing P occlusion. In conclusion, it was observed that irrespective of the soil series at different stages of the incubation studies, poultry manure and the combined application of poultry manure and Single superphosphate was highly effective in increasing P fractions.

  2. Cost-effective sampling of 137Cs-derived net soil redistribution: part 1 – estimating the spatial mean across scales of variation

    International Nuclear Information System (INIS)

    Li, Y.; Chappell, A.; Nyamdavaa, B.; Yu, H.; Davaasuren, D.; Zoljargal, K.

    2015-01-01

    The 137 Cs technique for estimating net time-integrated soil redistribution is valuable for understanding the factors controlling soil redistribution by all processes. The literature on this technique is dominated by studies of individual fields and describes its typically time-consuming nature. We contend that the community making these studies has inappropriately assumed that many 137 Cs measurements are required and hence estimates of net soil redistribution can only be made at the field scale. Here, we support future studies of 137 Cs-derived net soil redistribution to apply their often limited resources across scales of variation (field, catchment, region etc.) without compromising the quality of the estimates at any scale. We describe a hybrid, design-based and model-based, stratified random sampling design with composites to estimate the sampling variance and a cost model for fieldwork and laboratory measurements. Geostatistical mapping of net (1954–2012) soil redistribution as a case study on the Chinese Loess Plateau is compared with estimates for several other sampling designs popular in the literature. We demonstrate the cost-effectiveness of the hybrid design for spatial estimation of net soil redistribution. To demonstrate the limitations of current sampling approaches to cut across scales of variation, we extrapolate our estimate of net soil redistribution across the region, show that for the same resources, estimates from many fields could have been provided and would elucidate the cause of differences within and between regional estimates. We recommend that future studies evaluate carefully the sampling design to consider the opportunity to investigate 137 Cs-derived net soil redistribution across scales of variation. - Highlights: • The 137 Cs technique estimates net time-integrated soil redistribution by all processes. • It is time-consuming and dominated by studies of individual fields. • We use limited resources to estimate soil

  3. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    detachment. Studies on necessary kinetic energy to detach one kilogram of sediments by raindrop impact have shown that the minimum energy is required for particles of 0.125 mm. Particles between 0.063 to 0.250 mm are the most vulnerable to detachment. This means that soils with high content of particles into vulnerable range, for example silty loam, loamy, fine sandy, and sandy loam are the most susceptible soils to detachment. Many aspects of soil behaviour in the field such as hydraulic conductivity water retention, soil crusting, soil compaction, and workability are influenced strongly by the primary particles. In tropical soils also a negative relation between structure stability and particles of silt, fine sand and very fine sand has been found, this is attributed to low cohesiveness of these particles. The ability of a structure to persist is known as its stability. There are two principal types of stability: the ability of the soil to retain its structure under the action of water, and the ability of the soil to retain its structure under the action of external mechanical stresses. (e.g. by wheels). Both types of stability are related with susceptibility to erosion

  4. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils.

    Science.gov (United States)

    Meers, E; Ruttens, A; Hopgood, M; Lesage, E; Tack, F M G

    2005-10-01

    Remediation of soil pollution is one of the many current environmental challenges. Anthropogenic activity has resulted in the contamination of extended areas of land, the remediation of which is both invasive and expensive by conventional means. Phytoextraction of heavy metals from contaminated soils has the prospect of being a more economic in situ alternative. In addition, phytoextraction targets ecotoxicologically the most relevant soil fraction of these metals, i.e. the bioavailable fraction. Greenhouse experiments were carried out to evaluate the potential of four high biomass crop species in their potential for phytoextraction of heavy metals, with or without with the use of soil amendments (EDTA or EDDS). A calcareous dredged sediment derived surface soil, with high organic matter and clay content and moderate levels of heavy metal pollution, was used in the experiments. No growth depression was observed in EDTA or EDDS treated pots in comparison to untreated controls. Metal accumulation was considered to be low for phytoextraction purposes, despite the use of chelating agents. The low observed shoot concentrations of heavy metals were attributed to the low phytoavailability of heavy metals in this particular soil substrate. The mobilising effects induced by EDTA in the soil were found to be too long-lived for application as a soil amendment in phytoextraction. Although EDDS was found to be more biodegradable, higher effect half lives were observed than reported in literature or observed in previous experiments. These findings caution against the use of any amendment, biodegradable or otherwise, without proper investigation of its effects and the longevity thereof.

  5. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    Science.gov (United States)

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  6. Sorption – desorption of imidacloprid insecticide on Indian soils of five different locations

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Chauhan

    2013-07-01

    Full Text Available Sorption-desorption processes govern the movement of all chemicals including pesticides in soils. The present investigation was undertaken to study the sorption-desorption of imidacloprid, using a batch method, on soils of five different location of India. Sorption data were fitted to Freundlich isotherm. The log K value was the highest for loam type soil (1.830 and the lowest for clay type soil (1.661. The value of 1/n was the maximum for silt loam soil (0.909 but minimum for loam soil (0.723. Simple correlation analysis indicated that among soil properties only electrical conductivity showed a higher but marginally non-significant negative correlation with log K (r = -0.826 indicating that higher concentration of solutes solutes are conducive to low sorption capacity of soil. The desorption data conformed to two surfaces Freundlich desorption isotherm. The values of 1/n1' corresponding to easily desorbed fraction of imidacloprid showed significant negative correlation with soil pH (r = -0.886, significant at p ≤0.05 but significant positive correlation with clay content (r = 0.980, significant at p ≤0.01. The desorption index for easily desorbed fraction of imidacloprid (n1’/n also had significant negative correlation with soil pH (r = 0.953, significant at p ≤0.05. From cumulative desorption data, it appeared that bioavailability of imidacloprid would be lower in neutral soil than acidic or alkaline soils.

  7. The Global Turnover Time Distribution of Soil Carbon Derived from a Meta-analysis of Radiocarbon Profiles

    Science.gov (United States)

    He, Y.; Randerson, J. T.; Allison, S. D.; Torn, M. S.; Harden, J. W.; Smith, L. J.; van der Voort, T.; Trumbore, S.

    2015-12-01

    Soil is the largest terrestrial carbon reservoir and may influence the sign and magnitude of carbon cycle feedbacks under climate change. Soil carbon turnover times provide information about the sensitivity of carbon pools to changes in inputs and warming. The spatial and vertical distribution of soil carbon turnover times emerges from the interplay between climate, vegetation, and soil properties. Radiocarbon levels of soil organic matter can be used to estimate soil carbon turnover using models that take into account radioactive decay over centuries to millennia and inputs of 14C from atmospheric weapons testing ("bomb carbon") during the second half of the 20th century. By synthesizing more than 200 soil radiocarbon profiles from all major biomes and soil orders, we 1) explored the major controlling factors for soil carbon turnover times of surface and deeper soil layers; 2) developed predictive models (tree-based regression, support vector regression and linear regression models) of Δ14C that depends on depth, climate, vegetation, and soil types; and 3) extrapolated the predictive model to produce the first global distribution of soil carbon turnover times to the depth of 1m. Preliminary results indicated that climate and depth were primary controls of the vertical distribution of Δ14C, contributing to about 70% of the variability in our model. Vegetation and soil order exerted similar level of controls (about 15% each). The predictive model performed reasonably well with an R2 of 0.81 and RMSE (root-mean-squared error) of about 50‰ for topsoil and 100‰ for subsoil, as estimated using cross-validation. Extrapolation of the predictive model to the globe in combination with existing soil carbon information (e.g., Harmonized World Soil Database) indicated that more than half of the global total soil carbon in the top 1m had a turnover time of less than 500 years. Subsoils (30-100cm) had millennium-scale turnover times, with the majority (70%) turning over

  8. Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions

    International Nuclear Information System (INIS)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sato, Tsutomu; Nagao, Seiya; Nagai, Haruyasu

    2012-01-01

    The Fukushima Dai-ichi nuclear power plant accident in Japan, triggered by a big earthquake and the resulting tsunami on 11 March 2011, caused a substantial release of radiocesium ( 137 Cs and 134 Cs) and a subsequent contamination of soils in a range of terrestrial ecosystems. Identifying factors and processes affecting radiocesium retention in these soils is essential to predict how the deposited radiocesium will migrate through the soil profile and to other biological components. We investigated vertical distributions of radiocesium and physicochemical properties in soils (to 20 cm depth) at 15 locations under different land-use types (croplands, grasslands, and forests) within a 2 km × 2 km mesh area in Fukushima city. The total 137 Cs inventory deposited onto and into soil was similar (58.4 ± 9.6 kBq m −2 ) between the three different land-use types. However, aboveground litter layer at the forest sites and herbaceous vegetation at the non-forested sites contributed differently to the total 137 Cs inventory. At the forest sites, 50–91% of the total inventory was observed in the litter layer. The aboveground vegetation contribution was in contrast smaller ( 137 Cs in mineral soil layers; 137 Cs penetrated deeper in the forest soil profiles than in the non-forested soil profiles. We quantified 137 Cs retention at surface soil layers, and showed that higher 137 Cs retention can be explained in part by larger amounts of silt- and clay-sized particles in the layers. More importantly, the 137 Cs retention highly and negatively correlated with soil organic carbon content divided by clay content across all land-use types. The results suggest that organic matter inhibits strong adsorption of 137 Cs on clay minerals in surface soil layers, and as a result affects the vertical distribution and thus the mobility of 137 Cs in soil, particularly in the forest ecosystems. - Highlights: ► Vertical distribution of radiocesium was investigated for 15 soils. ► Forest

  9. Can the soil fauna of boreal forests recover from lead-derived stress in a shooting range area?

    Science.gov (United States)

    Selonen, Salla; Liiri, Mira; Setälä, Heikki

    2014-04-01

    The responses of soil faunal communities to lead (Pb) contamination in a shooting range area and the recovery of these fauna after range abandonment were studied by comparing the communities at an active shotgun shooting range, an abandoned shooting range, and a control site, locating in the same forest. Despite the similar overall Pb pellet load at the shooting ranges, reaching up to 4 kg m(-2), Pb concentrations in the top soil of the abandoned range has decreased due to the accumulation of detritus on the soil surface. As a consequence, soil animal communities were shown to recover from Pb-related disturbances by utilizing the less contaminated soil layer. Microarthropods showed the clearest signs of recovery, their numbers and community composition being close to those detected at the control site. However, in the deepest organic soil layer, the negative effects of Pb were more pronounced at the abandoned than at the active shooting range, which was detected as altered microarthropod and nematode community structures, reduced abundances of several microarthropod taxa, and the total absence of enchytraeid worms. Thus, although the accumulation of fresh litter on soil surface can promote the recovery of decomposer communities in the top soil, the gradual release of Pb from corroding pellets may pose a long-lasting risk for decomposer taxa deeper in the soil.

  10. Agrogenic degradation of soils in Krasnoyarsk forest-steppe

    Science.gov (United States)

    Shpedt, A. A.; Trubnikov, Yu. N.; Zharinova, N. Yu.

    2017-10-01

    Agrogenic degradation of soils in Krasnoyarsk forest-steppe was investigated. Paleocryogenic microtopography of microlows and microhighs in this area predetermined the formation of paragenetic soil series and variegated soil cover. Specific paleogeographic conditions, thin humus horizons and soil profiles, and long-term agricultural use of the land resulted in the formation of soils unstable to degradation processes and subjected to active wind and water erosion. Intensive mechanical soil disturbances during tillage and long-term incorporation of the underlying Late Pleistocene (Sartan) calcareous silty and clay loams into the upper soil horizons during tillage adversely affected the soil properties. We determined the contents of total and labile humus and easily decomposable organic matter and evaluated the degree of soil exhaustion. It was concluded that in the case of ignorance of the norms of land use and soil conservation practices, intense soil degradation would continue leading to complete destruction of the soil cover within large areas.

  11. SM2RAIN-CCI: a new global long-term rainfall data set derived from ESA CCI soil moisture

    Science.gov (United States)

    Ciabatta, Luca; Massari, Christian; Brocca, Luca; Gruber, Alexander; Reimer, Christoph; Hahn, Sebastian; Paulik, Christoph; Dorigo, Wouter; Kidd, Richard; Wagner, Wolfgang

    2018-02-01

    Accurate and long-term rainfall estimates are the main inputs for several applications, from crop modeling to climate analysis. In this study, we present a new rainfall data set (SM2RAIN-CCI) obtained from the inversion of the satellite soil moisture (SM) observations derived from the ESA Climate Change Initiative (CCI) via SM2RAIN (Brocca et al., 2014). Daily rainfall estimates are generated for an 18-year long period (1998-2015), with a spatial sampling of 0.25° on a global scale, and are based on the integration of the ACTIVE and the PASSIVE ESA CCI SM data sets.The quality of the SM2RAIN-CCI rainfall data set is evaluated by comparing it with two state-of-the-art rainfall satellite products, i.e. the Tropical Measurement Mission Multi-satellite Precipitation Analysis 3B42 real-time product (TMPA 3B42RT) and the Climate Prediction Center Morphing Technique (CMORPH), and one modeled data set (ERA-Interim). A quality check is carried out on a global scale at 1° of spatial sampling and 5 days of temporal sampling by comparing these products with the gauge-based Global Precipitation Climatology Centre Full Data Daily (GPCC-FDD) product. SM2RAIN-CCI shows relatively good results in terms of correlation coefficient (median value > 0.56), root mean square difference (RMSD, median value test the capabilities of the data set to correctly identify rainfall events under different climate and precipitation regimes.The SM2RAIN-CCI rainfall data set is freely available at https://doi.org/10.5281/zenodo.846259.

  12. Carbon dioxide emissions after application of different tillage systems for loam in northern China

    Science.gov (United States)

    Hongwen, Li; Lifeng, Hu; Fub, Chen; Xuemin, Zhang

    2010-05-01

    Tillage operations influence soil physical properties and crop growth, and thus both directly and indirectly the cropland CO2 exchange with the atmosphere. In this study, the results of CO2 flux measurements on cropland, under different tillage practices in northern China, are presented. CO2 flux on croplands with a winter wheat (Triticum aestivum L.) and maize (Zea may L.) rotation was monitored on plots with conventional tillage (CT), rotary tillage (RT) and no tillage (NT). Soil CO2 flux was generally greater in CT than in NT, and the RT CO2 flux was only slightly smaller than the CT. Daily soil CO2 emissions for CT, RT, and NT averaged 11.30g m-2, 9.63 g m-2 and 7.99 g m-2, respectively, during the growing period. Analysis of variance shows that these differences are significant for the three tillage treatments. Peak CO2 emissions were recorded on the CT and RT croplands after tillage operations. At the same time, no obviously increased emission of CO2 occurred on the NT plot. These differences demonstrate that tillage results in a rapid physical release of CO2.

  13. Comparative research on tillable properties of diatomite-improved soils in the Yangtze River Delta region, China.

    Science.gov (United States)

    Qu, Ji-Li; Zhao, Dong-Xue

    2016-10-15

    To improve soil texture and structure, techniques associated with physical, biological or chemical aspects are generally adopted, among which diatomite is an important soil conditioner. However, few studies have been conducted to investigate the physical, hydraulic and tillage performance of diatomite-improved soils. Consistency limits and compaction properties were investigated in this study, and several performance indicators were compared, such as the liquid limit, plastic limit and compactability, of silt, silt loam and silty-clay loam soils to which diatomite was added at volumetric ratios of 0%, 10%, 20%, and 30%. The results showed that diatomite significantly (pdiatomite lowered the maximum dry bulk density (MBD) of the classified soils, the optimum moisture content (OMC) was increased overall. The trend was consistent with the proportion of diatomite, and MBD decreased by 8.7%, 10.3%, and 13.2% in the silt, silt loam and silty-clay loam soils when 30% diatomite was mixed, whereas OMC increased by 28.7%, 22.4%, and 25.3%, respectively. Additionally, aggregate stability was negatively correlated with MBD but positively correlated with OMC. Diatomite exerts positive effects on soil mechanical strength, suggesting that soils from sludge farms are more tillable with a larger stabilized and workable matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Detecting small-scale spatial differences and temporal dynamics of soil organic carbon (SOC) stocks: a comparison between automatic chamber-derived C budgets and repeated soil inventories

    Science.gov (United States)

    Hoffmann, Mathias; Jurisch, Nicole; Garcia Alba, Juana; Albiac Borraz, Elisa; Schmidt, Marten; Huth, Vytas; Rogasik, Helmut; Rieckh, Helene; Verch, Gernot; Sommer, Michael; Augustin, Jürgen

    2017-04-01

    Carbon (C) sequestration in soils plays a key role in the global C cycle. It is therefore crucial to adequately monitor dynamics in soil organic carbon (ΔSOC) stocks when aiming to reveal underlying processes and potential drivers. However, small-scale spatial and temporal changes in SOC stocks, particularly pronounced on arable lands, are hard to assess. The main reasons for this are limitations of the well-established methods. On the one hand, repeated soil inventories, often used in long-term field trials, reveal spatial patterns and trends in ΔSOC but require a longer observation period and a sufficient number of repetitions. On the other hand, eddy covariance measurements of C fluxes towards a complete C budget of the soil-plant-atmosphere system may help to obtain temporal ΔSOC patterns but lack small-scale spatial resolution. To overcome these limitations, this study presents a reliable method to detect both short-term temporal as well as small-scale spatial dynamics of ΔSOC. Therefore, a combination of automatic chamber (AC) measurements of CO2 exchange and empirically modeled aboveground biomass development (NPPshoot) was used. To verify our method, results were compared with ΔSOC observed by soil resampling. AC measurements were performed from 2010 to 2014 under a silage maize/winter fodder rye/sorghum-Sudan grass hybrid/alfalfa crop rotation at a colluvial depression located in the hummocky ground moraine landscape of NE Germany. Widespread in large areas of the formerly glaciated Northern Hemisphere, this depression type is characterized by a variable groundwater level (GWL) and pronounced small-scale spatial heterogeneity in soil properties, such as SOC and nitrogen (Nt). After monitoring the initial stage during 2010, soil erosion was experimentally simulated by incorporating topsoil material from an eroded midslope soil into the plough layer of the colluvial depression. SOC stocks were quantified before and after soil manipulation and at the end

  15. Determining photon energy absorption parameters for different soil samples

    International Nuclear Information System (INIS)

    Kucuk, Nil; Cakir, Merve; Tumsavas, Zeynal

    2013-01-01

    The mass attenuation coefficients (μ s ) for five different soil samples were measured at 661.6, 1173.2 and 1332.5 keV photon energies. The soil samples were separately irradiated with 137 Cs and 60 Co (370 kBq) radioactive point gamma sources. The measurements were made by performing transmission experiments with a 2″ x 2″ NaI(Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of 137 Cs. The effective atomic numbers (Z eff ) and the effective electron densities (N eff ) were determined experimentally and theoretically using the obtained μ s values for the soil samples. Furthermore, the Z eff and N eff values of the soil samples were computed for the total photon interaction cross-sections using theoretical data over a wide energy region ranging from 1 keV to 15 MeV. The experimental values of the soils were found to be in good agreement with the theoretical values. Sandy loam and sandy clay loam soils demonstrated poor photon energy absorption characteristics. However, clay loam and clay soils had good photon energy absorption characteristics. (author)

  16. 14C tebuconazole degradation in Colombian soils.

    Science.gov (United States)

    Mosquera, C S; Martínez, M J; Guerrero, J A

    2010-01-01

    Tebuconazole is a fungicide used on onion crops (Allium Fistulosum L) in Colombia. Persistence of pesticides in soils is characterized by the half-life (DT50), which is influenced by their chemical structure, the physical and chemical properties of the soil and the previous soil history. Based on its structural and chemical properties, tebuconazole should be expected to be relatively persistent in soils. Laboratory incubation studies were conducted to evaluate persistence and bond residues of 14C tebuconazole in three soils, two inceptisol (I) and one histosol (H). Textural classifications were: loam (101), loamy sand (102) and loam (H03), respectively. Data obtained followed a first-order degradation kinetics (R2 > or = 0.899) with DT50 values between 158 and 198 days. The production of 14CO2 from the 14C-ring-labelled test chemicals was very low and increased slightly during 63 days in all cases. The methanol extractable 14C-residues were higher than aqueous ones and both decreased over incubation time for the three soils. The formation of bound 14C-residues increased with time and final values were 11.3; 5.55 and 7.87% for 101, 102 and H03 respectively. Soil 101 showed the lowest mineralization rate and the highest bound residues formation, which might be explained by the clay fraction content. In contrast, an inverse behavior was found for soils 102 and H03, these results might be explained by the higher soil organic carbon content.

  17. Integrated assessment of space, time, and management-related variability of soil hydraulic properties

    Energy Technology Data Exchange (ETDEWEB)

    Es, H.M. van; Ogden, C.B.; Hill, R.L.; Schindelbeck, R.R.; Tsegaye, T.

    1999-12-01

    Computer-based models that simulate soil hydrologic processes and their impacts on crop growth and contaminant transport depend on accurate characterization of soil hydraulic properties. Soil hydraulic properties have numerous sources of variability related to spatial, temporal, and management-related processes. Soil type is considered to be the dominant source of variability, and parameterization is typically based on soil survey databases. This study evaluated the relative significance of other sources of variability: spatial and temporal at multiple scales, and management-related factors. Identical field experiments were conducted for 3 yr. at two sites in New York on clay loam and silt loam soils, and at two sites in Maryland on silt loam and sandy loam soils, all involving replicated plots with plow-till and no-till treatments. Infiltrability was determined from 2054 measurements using parameters, and Campbell's a and b parameters were determined based on water-retention data from 875 soil cores. Variance component analysis showed that differences among the sites were the most important source of variability for a (coefficient of variation, CV = 44%) and b (CV = 23%). Tillage practices were the most important source of variability for infiltrability (CV = 10%). For all properties, temporal variability was more significant than field-scale spatial variability. Temporal and tillage effects were more significant for the medium- and fine-textured soils, and correlated to initial soil water conditions. The parameterization of soil hydraulic properties solely based on soil type may not be appropriate for agricultural lands since soil-management factors are more significant. Sampling procedures should give adequate recognition to soil-management and temporal processes at significant sources of variability to avoid biased results.

  18. Sources of plant-derived carbon and stability of organic matter in soil: Implications for global change

    Science.gov (United States)

    Susan E. Crow; Kate Lajtha; Timothy R. Filley; Chris Swanston; Richard D. Bowden; Bruce A. Caldwell

    2009-01-01

    Alterations in forest productivity and changes in the relative proportion of above- and belowground biomass may have nonlinear effects on soil organic matter (SOM) storage. To study the influence of plant litter inputs on SOM accumulation, the Detritus Input Removal and Transfer (DIRT) Experiment continuously alters above- and belowground plant inputs to soil by a...

  19. Geoelectrical Soil Properties of Farmlands Located on Ancient River Floodplains in EL Paso County Texas

    Science.gov (United States)

    Pegues, J. G.; Kaip, G.; Doser, D. I.

    2013-12-01

    Farming in Rio Grande flood plain deposit soils has presented challenges concerning soil salinity, soil drainage and soil collapse. Typical soil forms include Saneli silted clay loam, Harkey loam, Harkey silky loam clay and Tigua silty clay. In the lower valley farmlands of Socorro, TX, cotton and alfalfa are the principal crops, but grain sorghum, corn and vegetable crops also are suitable. Pecan trees, as well as fruit trees suited to the climate, can be grown. Agrarians are faced with varying results of crop yields over relatively small stretches of land; for example, a 22 acre area can contain multiple soil inclusions. This study was conducted on a 22 acre tract of farmland which has recently undergone multiple geophysical testing analyses that include: magnetics, DC resistivity, gravity, and ground penetrating radar. Results will compare flood plain sedimentation qualities to agricultural soil classes through the identification of soil salinity and grain size. This investigation will focus on the testing of geo-electrical soil properties through resistivity assessment. Examination of the sight using a capacity coupled resistivity meter to measure the soil properties over various time periods will be conducted. The results will be compared with the other geophysical data to look for correlations that highlight soil properties.

  20. The effects of straw or straw-derived gasification biochar applications on soil quality and crop productivity

    DEFF Research Database (Denmark)

    Hansen, Veronika; Müller-Stöver, Dorette Sophie; Imparato, Valentina

    2017-01-01

    Thermal gasification of straw is a highly efficient technology that produces bioenergy and gasification biochar that can be used as a soil amendment, thereby returning non-renewable nutrients and stable carbon, and securing soil quality and crop productivity. A Danish on-farm field study investig......Thermal gasification of straw is a highly efficient technology that produces bioenergy and gasification biochar that can be used as a soil amendment, thereby returning non-renewable nutrients and stable carbon, and securing soil quality and crop productivity. A Danish on-farm field study...... investigated the impact of traditional straw incorporation vs. straw removal for thermal gasification bioenergy production and the application of straw gasification biochar (GB) on soil quality and crop production. Two rates of GB were applied over three successive years in which the field was cropped...... long-term effects and to identify the optimum balance between straw removal and biochar application rate....

  1. Using magnetic and chemical measurements to detect atmospherically-derived metal pollution in artificial soils and metal uptake in plants

    International Nuclear Information System (INIS)

    Sapkota, B.; Cioppa, M.T.

    2012-01-01

    Quantification of potential effects of ambient atmospheric pollution on magnetic and chemical properties of soils and plants requires precise experimental studies. A controlled growth experiment assessing magnetic and chemical parameters was conducted within (controls) and outside (exposed) a greenhouse setting. Magnetic susceptibility (MS) measurements showed that while initial MS values were similar for the sample sets, the overall MS value of exposed soil was significantly greater than in controls, suggesting an additional input of Fe-containing particles. Scanning electron microscope images of the exposed soils revealed numerous angular magnetic particles and magnetic spherules typical of vehicular exhaust and combustion processes, respectively. Similarly, chemical analysis of plant roots showed that plants grown in the exposed soil had higher concentrations of Fe and heavy (toxic) metals than controls. This evidence suggests that atmospheric deposition contributed to the MS increase in exposed soils and increased metal uptake by plants grown in this soil. - Highlights: ► Magnetic susceptibility (MS) values increased in exposed soils during the growth. ► MS values in control soils decreased from their initial values during the growth. ► Decrease in MS values due to downwards migration of Fe particles, magnetic mineral transformations and Fe uptake by plants. ► Higher metal uptake in plants grown in exposed soils than those grown in controls. ► Atmospheric particulate deposition isolated as main contributor to these effects. - Variations in atmospheric particulate levels are measurable using magnetic and chemical techniques on soils and plant biomass, and suggest pollutant levels may be higher than previously recognized.

  2. Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil.

    Science.gov (United States)

    Abdelhafez, Ahmed A; Li, Jianhua; Abbas, Mohamed H H

    2014-12-01

    The main objectives of the current study were to evaluate the potential effects of biochar derived from sugar cane bagasse (SC-BC) and orange peel (OP-BC) on improving the physicochemical properties of a metal smelter contaminated soil, and determining its potentiality for stabilizing Pb and As in soil. To achieve these goals, biochar was produced in a small-scale biochar producing plant, and an incubation experiment was conducted using a silt loam metal-contaminated soil treated with different application rates of biochar (0-10% w/w). The obtained results showed that, the addition of SC-BC and OP-BC increased significantly the soil aggregate stability, water-holding capacity, cation exchange capacity, organic matter and N-status in soil. SC-BC considerably decreased the solubility of Pb to values lower than the toxic regulatory level of the toxicity characteristics leaching procedure extraction (5 mg L(-1)). The rise in soil pH caused by biochar application, and the increase of soil organic matter transformed the labile Pb into less available fractions i.e. "Fe-Mn oxides" and "organic" bound fractions. On the other hand, As was desorbed from Fe-Mn oxides, which resulted in greater mobility of As in the treated soil. We concluded that SC-BC and OP-BC could be used successfully for remediating soils highly contaminated with Pb. However, considerable attention should be paid when using it in soil contaminated with As. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Uptake and distribution of soil applied zinc by citrus trees-addressing fertilizer use efficiency with 68Zn labeling.

    Science.gov (United States)

    Hippler, Franz Walter Rieger; Boaretto, Rodrigo Marcelli; Quaggio, José Antônio; Boaretto, Antonio Enedi; Abreu-Junior, Cassio Hamilton; Mattos, Dirceu

    2015-01-01

    The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay) that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff) and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays.

  4. Uptake and distribution of soil applied zinc by citrus trees-addressing fertilizer use efficiency with 68Zn labeling.

    Directory of Open Access Journals (Sweden)

    Franz Walter Rieger Hippler

    Full Text Available The zinc (Zn supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays.

  5. Uptake and Distribution of Soil Applied Zinc by Citrus Trees—Addressing Fertilizer Use Efficiency with 68Zn Labeling

    Science.gov (United States)

    Hippler, Franz Walter Rieger; Boaretto, Rodrigo Marcelli; Quaggio, José Antônio; Boaretto, Antonio Enedi; Abreu-Junior, Cassio Hamilton; Mattos, Dirceu

    2015-01-01

    The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay) that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff) and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays. PMID:25751056

  6. Cesium-137 retention in irops obtained from various soils

    International Nuclear Information System (INIS)

    Gulyakin, I.V.; Yudintseva, E.V.; Gorina, L.I.

    1974-01-01

    A non-station experiment has shown that the accumulation of cesium-137 in a plant yield depends on the type of soil. The highest contents of cesium-137 were found in the yield of plants from soddy-podzolic sandy loam soils, and the lowest- in those from leached chernozem. The accumulation of radiocesium in the yield of the basic produce strongly depended on the plant species. The amount of cesium-137 differed 5- to 7-fold in different crops

  7. The influence of compost addition on the water repellency of brownfield soils

    Science.gov (United States)

    Whelan, Amii; Kechavarzi, Cedric; Sakrabani, Ruben; Coulon, Frederic; Simmons, Robert; Wu, Guozhong

    2010-05-01

    Compost application to brownfield sites, which can facilitate the stabilisation and remediation of contaminants whilst providing adequate conditions for plant growth, is seen as an opportunity to divert biodegradable wastes from landfill and put degraded land back into productive use. However, although compost application is thought to improve soil hydraulic functioning, there is a lack of information on the impact of large amounts of compost on soil water repellency. Water repellency in soils is attributed to the accumulation of hydrophobic organic compounds released as root exudates, fungal and microbial by-products and decomposition of organic matter. It has also been shown that brownfield soils contaminated with petroleum-derived organic contaminants can exhibit strong water repellency, preventing the rapid infiltration of water and leading potentially to surface run off and erosion of contaminated soil. However, hydrophobic organic contaminants are known to become sequestrated by partitioning into organic matter or diffusing into nano- and micropores, making them less available over time (ageing). The effect of large amounts of organic matter addition through compost application on the water repellency of soils contaminated with petroleum-derived organic contaminants requires further investigation. We characterised the influence of compost addition on water repellency in the laboratory by measuring the Water Drop Penetration Time (WDPT), sorptivity and water repellency index through infiltration experiments on soil samples amended with two composts made with contrasting feedstocks (green waste and predominantly meat waste). The treatments consisted of a sandy loam, a clay loam and a sandy loam contaminated with diesel fuel and aged for 3 years, which were amended with the two composts at a rate equivalent to 750t/ha. In addition core samples collected from a brownfield site, amended with compost at three different rates (250, 500 and 750t/ha) in 2007, were

  8. Influence of soil texture on hydraulic properties and water relations of a dominant warm-desert phreatophyte.

    Science.gov (United States)

    Hultine, K R; Koepke, D F; Pockman, W T; Fravolini, A; Sperry, J S; Williams, D G

    2006-03-01

    We investigated hydraulic constraints on water uptake by velvet mesquite (Prosopis velutina Woot.) at a site with sandy-loam soil and at a site with loamy-clay soil in southeastern Arizona, USA. We predicted that trees on sandy-loam soil have less negative xylem and soil water potentials during drought and a lower resistance to xylem cavitation, and reach E(crit) (the maximum steady-state transpiration rate without hydraulic failure) at higher soil water potentials than trees on loamy-clay soil. However, minimum predawn leaf xylem water potentials measured during the height of summer drought were significantly lower at the sandy-loam site (-3.5 +/- 0.1 MPa; all errors are 95% confidence limits) than at the loamy-clay site (-2.9 +/- 0.1 MPa). Minimum midday xylem water potentials also were lower at the sandy-loam site (-4.5 +/- 0.1 MPa) than at the loamy-clay site (-4.0 +/- 0.1 MPa). Despite the differences in leaf water potentials, there were no significant differences in either root or stem xylem embolism, mean cavitation pressure or Psi(95) (xylem water potential causing 95% cavitation) between trees at the two sites. A soil-plant hydraulic model parameterized with the field data predicted that E(crit) approaches zero at a substantially higher bulk soil water potential (Psi(s)) on sandy-loam soil than on loamy-clay soil, because of limiting rhizosphere conductance. The model predicted that transpiration at the sandy-loam site is limited by E(crit) and is tightly coupled to Psi(s) over much of the growing season, suggesting that seasonal transpiration fluxes at the sandy-loam site are strongly linked to intra-annual precipitation pulses. Conversely, the model predicted that trees on loamy-clay soil operate below E(crit) throughout the growing season, suggesting that fluxes on fine-textured soils are closely coupled to inter-annual changes in precipitation. Information on the combined importance of xylem and rhizosphere constraints to leaf water supply across soil

  9. Measurement of activity concentration of primordial radionuclides in the soil samples of Tiruchirappalli, Tamil Nadu, India

    International Nuclear Information System (INIS)

    Sadiq Bukhari, A.; Saiyad Musthafa, M.; Syed Mohamed, H.E.; Krishnamoorthy, R.; Shahul Hameed, M.M.; Shahul Hameed, P.

    2008-01-01

    Full text: Radioactive minerals such as uranium ( 238 U), thorium ( 232 Th) and potassium ( 40 K) are considered to be Primordial radionuclides which are widely distributed in the earth's crust. Gamma-radiation from these radionuclides represents the main external source of irradiation for the human body. Human beings are exposed outdoors to the natural terrestrial radiation that originates predominantly from the upper 30 cm of the soil. A pilot project was therefore initiated aiming at systematically measuring the terrestrial gamma radiation in Tiruchirappalli city, Tamil Nadu, South India and to establish baseline data on the terrestrial background radiation level determining its contribution to the annual effective dose equivalent to the human population. The natural radioactivity concentrations were studied in soil samples collected from 50 locations in Tiruchirappalli city. The concentration varies significantly over different soil types and the highest radioactivity was measured over soil types of granite origin followed by red soil and alluvial loam. The mean activity concentrations of 232 Th, 238 U and 40 K in soil samples are found to be 81.78 Bq.kg -1 , 32.62 Bq.kg -1 , and 551.35 Bq.kg -1 respectively. The calculated gamma dose from the soil is in the range between 38.86nGy.h -1 and 240.59 nGy.h -1 with a mean value of 89.76 nGy.h -1 . The mean annual effective dose to the population from outdoor terrestrial gamma radiation was estimated to be 0.11mSv.y -1 which is low as compared with the maximum permissible effective dose equivalent of 1mSv.y -1 (ICRP,1991). In the present study it is observed that the major sources of gamma radiation in soils are mainly derived from rocky area with granite basement. (author)

  10. Genesis of Soils Formed from Mafic Igneous Rock in the Atlantic Forest Environment

    Directory of Open Access Journals (Sweden)

    Adailde do Carmo Santos

    2016-01-01

    Full Text Available ABSTRACT Different parent materials participate in the formation of soils in the hilly landscape of “Mar de Morros” in the Atlantic Forest environment. Those derived from mafic igneous rock (gabbro frequently show erosion problems because of land use, which is aggravated by the mountainous relief and soil attributes. This study evaluated the main pedogenic processes of soils formed from mafic igneous rock (gabbro in a toposequence in Pinheiral (RJ by characterizing physical, chemical, mineralogical and micromorphological attributes. The profiles are located at different sections in the toposequence: summit (P1, shoulder (P2, backslope (P3 and footslope (P4.They were classified according to the Brazilian System of Soil Classification (SiBCS and correlated to Soil Taxonomy. The soil morphology of profiles P2, P3 and P4 is expressed by a brownish-red color, blocky structure with high to moderate development, clay films and clay loam to clay texture, with a textural B horizon. P1 shows less development, with a shallow profile and the sequence of horizons A-C-Cr. The soils have a slightly low degree of weathering, identified by the presence of pyroxenes and feldspars in the sand fraction and montorillonite in the clay fraction; the sum of bases is from 15 to 24 cmolc kg-1; and cation exchange capacity (CEC is from 12 to 22 cmolc kg-1. A significant presence of clay skins was observed in the field and was confirmed by thin section analysis, which showed features such as argillans, ferriargillans and iron nodules. The soil profile at the summit (P1 was classified as Neossolo Regolítico Órtico (Typic Udorthents, and the other profiles as Chernossolo Argilúvicos Órticos (Typic Argiudolls.

  11. Biotoxicity of Mars soils: 2. Survival of Bacillus subtilis and Enterococcus faecalis in aqueous extracts derived from six Mars analog soils

    Science.gov (United States)

    Schuerger, Andrew C.; Ming, Doug W.; Golden, D. C.

    2017-07-01

    The search for an extant microbiota on Mars depends on exploring sites that contain transient or permanent liquid water near the surface. Examples of possible sites for liquid water may be active recurring slope lineae (RSL) and fluid inclusions in ice or salt deposits. The presence of saline fluids on Mars will act to depress the freezing points of liquid water to as low as ‒60 °C, potentially permitting the metabolism and growth of halophilic microorganisms to temperatures significantly below the freezing point of pure water at 0 °C. In order to predict the potential risks of forward contamination by Earth microorganisms to subsurface sites on Mars with liquid brines, experiments were designed to characterize the short-term survival of two bacteria in aqueous soil solutions from six analog soils. The term ''soil'' is used here to denote any loose, unconsolidated matrix with no implications for the presence or absence of organics or biology. The analog soils were previously described (Schuerger et al., 2012, Planetary Space Sci., 72, 91-101), and represented crushed Basalt (benign control), Salt, Acid, Alkaline, Aeolian, and Phoenix analogs on Mars. The survival rates of spores of Bacillus subtilis and vegetative cells of Enterococcus faecalis were tested in soil solutions from each analog at 24, 0, or ‒70 °C for time periods up to 28 d. Survival of dormant spores of B. subtilis were mostly unaffected by incubation in the aqueous extracts of all six Mars analogs. In contrast, survival rates of E. faecalis cells were suppressed by all soil solutions when incubated at 24 °C but improved at 0 and ‒70 °C, except for assays in the Salt and Acid soil solutions in which most cells were killed. Results suggest that Earth microorganisms that form spores may persist in liquid brines on Mars better than non-spore forming species, and thus, spore-forming species may pose a potential forward contamination risk to sites with liquid brines.

  12. Occurrence, fate, and persistence of gemfibrozil in water and soil.

    Science.gov (United States)

    Fang, Yu; Karnjanapiboonwong, Adcharee; Chase, Darcy A; Wang, Jiafan; Morse, Audra N; Anderson, Todd A

    2012-03-01

    Pharmaceuticals and personal care products (PPCPs) have emerged as a group of potential environmental contaminants of concern. The occurrence of gemfibrozil, a lipid-regulating drug, was studied in the influent and effluent at a wastewater treatment plant (WWTP) and groundwater below a land application site receiving treated effluent from the WWTP. In addition, the sorption of gemfibrozil in two loam soils and sand was assessed, and biological degradation rates in two soil types under aerobic conditions were also determined. Results showed that concentrations of gemfibrozil in wastewater influent, effluent, and groundwater were in the range of 3.47 to 63.8 µg/L, 0.08 to 19.4 µg/L, and undetectable to 6.86 µg/L, respectively. Data also indicated that gemfibrozil in the wastewater could reach groundwater following land application of the treated effluent. Soil-water distribution coefficients for gemfibrozil, determined by the batch equilibrium method, varied with organic carbon content in the soils. The sorption capacity was silt loam > sandy loam > sand. Under aerobic conditions, dissipation half-lives for gemfibrozil in sandy loam and silt loam soils were 17.8 and 20.6 days, respectively; 25.4 and 11.3% of gemfibrozil was lost through biodegradation from the two soils over 14 days. Copyright © 2011 SETAC.

  13. Biochemical stability of organic matter in soils amended with organic slow N-release fertilizer derived from charred plant residues and ammonoxidized lignin

    Science.gov (United States)

    Knicker, Heike; de la Rosa, José Maria; López Martín, María; Clemente Barragan, Reyes; Liebner, Falk

    2013-04-01

    As an important plant nutrient, N that has been removed from the soil by plant growth is replaced mainly by the use of synthetic fertilizers. Although this practice has dramatically increased food production, the unintended costs to the environment and human health due to surplus and inefficient application have also been substantial. Major losses of N to the environment can be minimized if "sustainable" agricultural practices are combined with reasonable fertilization. The latter can be achieved by applying slow N-release fertilizers. Here, the N is incorporated into an organic matrix, which after its amendment to soils, slowly decompose, allowing the liberation of the nutrient. Deriving from organic waste, such an amendment helps to efficiently recycle resources and increases the C sequestration potential of soils. However, in order to turn this approach into a successful strategy, the material has to be bioavailable but still sufficiently recalcitrant to ensure slow and controlled N-release. In the present study, we tested potential slow N-release fertilizers recycled from organic waste for their biochemical stability in soils. They comprised N-rich charred grass residues and N-lignin derived from waste of the pulp and paper industry and enriched in N by ammonoxidation. The substrates were mixed with soil of an Histic Humaquept and subsequently subjected to microbial degradation at 28°C in a Respicond IV Apparatus for 10 weeks. Additionally, soil material without organic amendment and soils mixed with lignin or charcoal both with and without KNO3 were included into the experiment. During the degradation experiment the CO2 production was determined on an hourly base. The degradation rate constants and the mean residence times were calculated using a double exponential decay model (pools with fast and slow turnover). Alterations of the chemical composition of the organic matter during degradation were studied by solid-state 13C NMR spectroscopy. First results

  14. Methodological comparison for quantitative analysis of fossil and recently derived carbon in mine soils with high content of aliphatic kerogen

    Czech Academy of Sciences Publication Activity Database

    Vindušková, O.; Sebag, D.; Cailleau, G.; Brus, Jiří; Frouz, J.

    89-90, December (2015), s. 14-22 ISSN 0146-6380 Institutional support: RVO:61389013 Keywords : kerogen * geogenic carbon * soil organic matter Subject RIV: DD - Geochemistry Impact factor: 2.990, year: 2015

  15. Key parameters in testing biodegradation of bio-based materials in soil.

    Science.gov (United States)

    Briassoulis, D; Mistriotis, A

    2018-05-05

    Biodegradation of plastics in soil is currently tested by international standard testing methods (e.g. ISO 17556-12 or ASTM D5988-12). Although these testing methods have been developed for plastics, it has been shown in project KBBPPS that they can be extended also to lubricants with small modifications. Reproducibility is a critical issue regarding biodegradation tests in the laboratory. Among the main testing variables are the soil types and nutrients available (mainly nitrogen). For this reason, the effect of the soil type on the biodegradation rates of various bio-based materials (cellulose and lubricants) was tested for five different natural soil types (loam, loamy sand, clay, clay-loam, and silt-loam organic). It was shown that use of samples containing 1 g of C in a substrate of 300 g of soil with the addition of 0.1 g of N as nutrient strongly improves the reproducibility of the test making the results practically independent of the soil type with the exception of the organic soil. The sandy soil was found to need addition of higher amount of nutrients to exhibit similar biodegradation rates as those achieved with the other soil types. Therefore, natural soils can be used for Standard biodegradation tests of bio-based materials yielding reproducible results with the addition of appropriate nutrients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. An automated microinfiltrometer to measure small-scale soil water infiltration properties

    Directory of Open Access Journals (Sweden)

    Gordon Dennis C.

    2014-09-01

    Full Text Available We developed an automated miniature constant-head tension infiltrometer that measures very small infiltration rates at millimetre resolution with minimal demands on the operator. The infiltrometer is made of 2.9 mm internal radius glass tube, with an integrated bubbling tower to maintain constant negative head and a porous mesh tip to avoid air-entry. In the bubbling tower, bubble formation and release changes the electrical resistance between two electrodes at the air-inlet. Tests were conducted on repacked sieved sands, sandy loam soil and clay loam soil, packed to a soil bulk density ρd of 1200 kg m-3 or 1400 kg m-3 and tested either air-dried or at a water potential ψ of -50 kPa. The change in water volume in the infiltrometer had a linear relationship with the number of bubbles, allowing bubble rate to be converted to infiltration rate. Sorptivity measured with the infiltrometer was similar between replicates and showed expected differences from soil texture and ρd, varying from 0.15 ± 0.01 (s.e. mm s-1/2 for 1400 kg m-3 clay loam at ψ = -50 kPa to 0.65 ± 0.06 mm s-1/2 for 1200 kg m-3 air dry sandy loam soil. An array of infiltrometers is currently being developed so many measurements can be taken simultaneously.

  17. Effect of bovine manure on fecal coliform attachment to soil and soil particles of different sizes.

    Science.gov (United States)

    Guber, Andrey K; Pachepsky, Yakov A; Shelton, Daniel R; Yu, Olivia

    2007-05-01

    Manure-borne bacteria can be transported in runoff as free cells, cells attached to soil particles, and cells attached to manure particles. The objectives of this work were to compare the attachment of fecal coliforms (FC) to different soils and soil fractions and to assess the effect of bovine manure on FC attachment to soil and soil fractions. Three sand fractions of different sizes, the silt fraction, and the clay fraction of loam and sandy clay loam soils were separated and used along with soil samples in batch attachment experiments with water-FC suspensions and water-manure-FC suspensions. In the absence of manure colloids, bacterial attachment to soil, silt, and clay particles was much higher than the attachment to sand particles having no organic coating. The attachment to the coated sand particles was similar to the attachment to silt and clay. Manure colloids in suspensions decreased bacterial attachment to soils, clay and silt fractions, and coated sand fractions, but did not decrease the attachment to sand fractions without the coating. The low attachment of bacteria to silt and clay particles in the presence of manure colloids may cause predominantly free-cell transport of manure-borne FC in runoff.

  18. 238U content in soils of Byelorussia

    International Nuclear Information System (INIS)

    Shagalova, Eh.D.

    1986-01-01

    Results of detection in Byelorussian soils of a heavy natural radionuclide 238 U and its content in humus horizons of the soils on map-schemes are presented. 238 U content is determined by complete decomposition of soils by acids, isolation from thorium using EhDEh-10 P anionite and subsequent solution colorimetry. It is shown that the content of uranium-238 in soils decreases from the North to the South. Its maximum amount (>2x10 -4 %) is detected in turfy-podsolic soils in lake-glacier loams; the minimum one ( -4 %)- in peatymarshy soils. The map-scheme of 238 U content is a background base. Using the background base it is possible to trace the change in uranium content in soils under conditions of technogenic effect and to substantiate the efficiency of environment protection measures

  19. Sequential assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area

    Science.gov (United States)

    Albergel, Clément; Munier, Simon; Leroux, Delphine Jennifer; Dewaele, Hélène; Fairbairn, David; Lavinia Barbu, Alina; Gelati, Emiliano; Dorigo, Wouter; Faroux, Stéphanie; Meurey, Catherine; Le Moigne, Patrick; Decharme, Bertrand; Mahfouf, Jean-Francois; Calvet, Jean-Christophe

    2017-10-01

    In this study, a global land data assimilation system (LDAS-Monde) is applied over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. LDAS-Monde is able to ingest information from satellite-derived surface soil moisture (SSM) and leaf area index (LAI) observations to constrain the interactions between soil-biosphere-atmosphere (ISBA, Interactions between Soil, Biosphere and Atmosphere) land surface model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (ISBA-CTRIP) continental hydrological system. It makes use of the CO2-responsive version of ISBA which models leaf-scale physiological processes and plant growth. Transfer of water and heat in the soil rely on a multilayer diffusion scheme. SSM and LAI observations are assimilated using a simplified extended Kalman filter (SEKF), which uses finite differences from perturbed simulations to generate flow dependence between the observations and the model control variables. The latter include LAI and seven layers of soil (from 1 to 100 cm depth). A sensitivity test of the Jacobians over 2000-2012 exhibits effects related to both depth and season. It also suggests that observations of both LAI and SSM have an impact on the different control variables. From the assimilation of SSM, the LDAS is more effective in modifying soil moisture (SM) from the top layers of soil, as model sensitivity to SSM decreases with depth and has almost no impact from 60 cm downwards. From the assimilation of LAI, a strong impact on LAI itself is found. The LAI assimilation impact is more pronounced in SM layers that contain the highest fraction of roots (from 10 to 60 cm). The assimilation is more efficient in summer and autumn than in winter and spring. Results shows that the LDAS works well constraining the model to the observations and that stronger corrections are applied to LAI than to SM. A comprehensive evaluation of

  20. Composition and fate of mine- and smelter-derived particles in soils of humid subtropical and hot semi-arid areas

    Energy Technology Data Exchange (ETDEWEB)

    Ettler, Vojtěch, E-mail: ettler@natur.cuni.cz [Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Praha 2 (Czech Republic); Johan, Zdenek [BRGM, Avenue Claude Guillemin, 45082 Orléans Cedex 2 (France); Kříbek, Bohdan; Veselovský, František [Czech Geological Survey, Geologická 6, 152 00 Praha 5 (Czech Republic); Mihaljevič, Martin [Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Praha 2 (Czech Republic); Vaněk, Aleš; Penížek, Vít [Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6 (Czech Republic); Majer, Vladimír [Czech Geological Survey, Geologická 6, 152 00 Praha 5 (Czech Republic); Sracek, Ondra [Department of Geology, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Mapani, Ben; Kamona, Fred [Department of Geology, Faculty of Science, University of Namibia, Private Bag 13301, Windhoek (Namibia); Nyambe, Imasiku [University of Zambia, School of Mines, P. O. Box 32 379, Lusaka (Zambia)

    2016-09-01

    We studied the heavy mineral fraction, separated from mining- and smelter-affected topsoils, from both a humid subtropical area (Mufulira, Zambian Copperbelt) and a hot semi-arid area (Tsumeb, Namibia). High concentrations of metal(loid)s were detected in the studied soils: up to 1450 mg As kg{sup −1}, 8980 mg Cu kg{sup −1}, 4640 mg Pb kg{sup −1}, 2620 mg Zn kg{sup −1}. A combination of X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS), and electron probe microanalysis (EPMA) helped to identify the phases forming individual metal(loid)-bearing particles. Whereas spherical particles originate from the smelting and flue gas cleaning processes, angular particles have either geogenic origins or they are windblown from the mining operations and mine waste disposal sites. Sulphides from ores and mine tailings often exhibit weathering rims in contrast to smelter-derived high-temperature sulphides (chalcocite [Cu{sub 2}S], digenite [Cu{sub 9}S{sub 5}], covellite [CuS], non-stoichiometric quenched Cu–Fe–S phases). Soils from humid subtropical areas exhibit higher available concentrations of metal(loids), and higher frequencies of weathering features (especially for copper-bearing oxides such as delafossite [Cu{sup 1+} Fe{sup 3+} O{sub 2}]) are observed. In contrast, metal(loid)s are efficiently retained in semi-arid soils, where a high proportion of non-weathered smelter slag particles and low-solubility Ca–Cu–Pb arsenates occur. Our results indicate that compared to semi-arid areas (where inorganic contaminants were rather immobile in soils despite their high concentrations) a higher potential risk exists for agriculture in mine- and smelter-affected humid subtropical areas (where metal(loid) contaminants can be highly available for the uptake by crops). - Highlights: • Mining- and smelter-derived particles identified in subtropical and semi-arid soils • Sulphides, oxides, and metal-bearing arsenates most frequently encountered

  1. Identification of Soil Properties and Organophosphate Residues From Agricultural Land in Wanasari Sub-District, Brebes, Indonesia

    Science.gov (United States)

    Joko, Tri; Anggoro, Sutrisno; Sunoko, Henna Rya; Rachmawati, Savitri

    2018-02-01

    Organophosphates have been used to eradicate pests and prevent losses from harvest failures caused by pest attack. It is undeniable that the organophosphate persist in soil. This study aims to identify the organophosphate residue and soil properties include pH, soil texture, and permeability. The soil samples were taken from cropland in 10 villages, Wanasari sub-district, Brebes, Indonesia. Organophosphate residue determined by gas chromatography using Flame Photometric Detector. Soil texture was determined by soil texture triangle from NRCS USDA, and the permeability value was determined by falling head method. The mean value of chlorpyrifos, profenofos, diazinon were 0.0078; 0.0388; 0.2271 mg/l respectively. The soil texture varies from clay, silt clay, loam, silt loam, and silt clay loam with permeability value at 10-7 with the soil pH value between 6.4 - 8.1. The results showed that organophosphate residues found in the soil and its potential affect the soil fertility decline. We recommend to conduct routine soil quality analysis to prevent soil damage in the agricultural environment.

  2. Soil organic matter distribution and microaggregate characteristics as affected by agricultural management and earthworm activity

    OpenAIRE

    Pulleman, M M; Six, J; van Breemen, N; Jongmans, A G

    2005-01-01

    Stable microaggregates can physically protect occluded soil organic matter (SOM) against decomposition. We studied the effects of agricultural management on the amount and characteristics of microaggregates and on SOM distribution in a marine loam soil in the Netherlands. Three long-term farming systems were compared: a permanent pasture, a conventional-arable system and an organic-arable system. Whole soil samples were separated into microaggregates (53-250 mu m), 20-53 mu m and 20 mu m) ve...

  3. Online recovery of radiocesium from soil, cellulose and plant samples by supercritical fluid extraction employing crown ethers and calix-crown derivatives as extractants

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Mohapatra, P.K.

    2014-01-01

    Two crown ethers (CEs) viz. dibenzo18crown6, and dibenzo12crown7 and three calix-crown derivatives viz. (octyloxy)calix[4]arene-mono-crown-6 (CMC), calix[4]arene-bis(o-benzocrown-6) (CBC), and calix[4]arene-bis(naphthocrown-6) (CNC) were evaluated for the recovery of 137 Cs from synthetic soil, cellulose (tissue paper), and plant samples by supercritical fluid extraction (SFE) route. CEs showed poor extraction of 137 Cs from soil matrix. SFE experiments using 1 × 10 -3 M solutions of CMC, CBC and CNC in acetonitrile at 3 M HNO 3 as modifiers displayed better extraction of 137 Cs, viz. 21(±2) % (CMC), 16.5(±3) % (CBC), and 4(±1) % (CNC). It was not possible to recover 137 Cs quantitatively from soil matrix. The inefficient extraction of 137 Cs from soil matrix was attributed to its incorporation into the interstitial sites. Experiments on tissue papers using CMC showed near quantitative 137 Cs recovery. On the other hand, recovery from plant samples varied between 50(±5) % (for stems) and 75(±5) % (for leaves). (author)

  4. Monitoring drought affected crop yields based on ERS-scatterometer data : exploration of possibilities to integrate ERS-scatterometer derived soil moisture into the CGMS crop model for a Russian-Ukrainian study area

    NARCIS (Netherlands)

    Boogaard, H.L.; Diepen, van C.A.; Savin, I.

    2000-01-01

    In this study the possibilities of integrating ERS scatterometer-derived soil moisture into CGMS are explored. This remote sensed soil moisture is used to calculate drought stress in grains of barley for a Russian-Ukrainian study area. The results arecompared with drought stress based on the

  5. Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy

    International Nuclear Information System (INIS)

    Haberhauer, G.; Rafferty, B.; Strebl, F.; Gerzabek, M. H.

    1998-06-01

    Transmission Fourier transformed infrared spectroscopy was used to compare organic soil layers originating from three different sites in two climatic regions. A variety of bands characteristic of molecular structures and functional groups have been identified for these samples from a humic podsol, a dystric cambisol and a spodo dystric cambisol. Similar results were obtained for all three soils. From L to H soil horizons, an increase of the band at 1630 cm -1 and decrease of bands in the region from 1510 cm -1 to 1230 cm -1 were observed. The band at 1630 cm -1 can be assigned to carboxylic and aromatic groups. The decline of the peak intensity at 1510 cm -1 is significantly correlated to the total carbon content and C/N ratio. The mineral material of the Ah horizons leads to an increase of the band at 1050 cm -1 due to IR-absorbance of the Si-O bond and to an appearance of bands in the region from 900 to 400 cm -1 , which are characteristic for clay and quartz minerals. Analysis of the FTIR absorbance showed that intensities of distinct peaks (e.g., at 1510 cm -1 ) can be a measure of decomposition of forest litter. Therefore, the proposed simple FTIR method has potential for identification and differentiation of organic soil horizons originating from known tree litter. The similarity of the characteristics of the spectra of the three soil profiles investigated suggests a broad applicability of this method to distinguish organic forest soil horizons. On the basis of the data presented in this study, it may be concluded that FTIR spectroscopy offers a simple, powerful, non-destructive tool for the investigation of decomposition of L to H horizons in forest soils. (author)

  6. Investigating the Effect of Soil Texture and Fertility on Evapotranspiration and Crop Coefficient of Maize Forage

    Directory of Open Access Journals (Sweden)

    M. Ghorbanian Kerdabadi

    2017-02-01

    Full Text Available Introduction: Crop coefficient varies in different environmental conditions, such as deficit irrigation, salinity and intercropping. The effect of soil fertility and texture of crop coefficient and evapotranspiration of maize was investigated in this study. Low soil fertility and food shortages as a stressful environment for plants that makes it different evapotranspiration rates of evapotranspiration calculation is based on the FAO publication 56. Razzaghi et al. (2012 investigate the effect of soil type and soil-drying during the seed-filling phase on N-uptake, yield and water use, a Danish-bred cultivar (CV. Titicaca was grown in field lysimeters with sand, sandy loam and sandy clay loam soil. Zhang et al (2014 were investigated the Effect of adding different amounts of nitrogen during three years (from 2010 to 2012 on water use efficiency and crop evapotranspiration two varieties of winter wheat. The results of their study showed. The results indicated the following: (1 in this dry land farming system, increased N fertilization could raise wheat yield, and the drought-tolerant Changhan No. 58 showed a yield advantage in drought environments with high N fertilizer rates; (2 N application affected water consumption in different soil layers, and promoted wheat absorbing deeper soil water and so increased utilization of soil water; and (3 comprehensive consideration of yield and WUE of wheat indicated that the N rate of 270 kg/ha for Changhan No. 58 was better to avoid the risk of reduced production reduction due to lack of precipitation; however, under conditions of better soil moisture, the N rate of 180 kg/ha was more economic. Materials and Methods: The study was a factorial experiment in a completely randomized design with three soil texture treatment, including silty clay loam, loam and sandy-loam soil and three fertility treatment, including without fertilizer, one and two percent fertilizer( It was conducted at the experimental farm in

  7. A Preliminary Study on Termite Mound Soil as Agricultural Soil for Crop Production in South West, Nigeria

    Directory of Open Access Journals (Sweden)

    O. E. Omofunmi

    2017-08-01

    Full Text Available It is a popular belief of the people in the Southern region of Nigeria that a land infested with termite usually brings prosperity to the land owner regardless of the type of its usage. Therefore, the present study assessed termite mounds soil properties which are important to crop production. Two soil samples were collected and their physical and chemical properties determined in accordance with American Public Health Association (APHA, 2005. Data were analyzed using descriptive statistics. The textural classes showed that the termite mound soil was sand clay loam while the surrounding soil was clay loam. This results revealed that: Termites’ activity induced significant chemical changes in the soil possible due to the materials used in building their nests. There was increase the concentrations of nitrogen, phosphorus, Potassium, calcium and magnesium higher in the termite’s mounds, while the micro-nutrients (zinc, iron and copper except sulphur and manganese lower in the soil infested by termites. There were significant differences (p ≥ 0.05 between termite mound soil and surrounding soil. It showed highly positive correlation between termite mound and surrounding soil (r= 0.92. The concentration of the soil properties around the termite mound are within the range of soil nutrients suitable for arable crop production. Termite mound soil is recommended to be used as an alternative to local farmers who cannot afford to buy expensive inorganic fertilizers.

  8. Effectiveness of the GAEC cross-compliance standard Ploughing in good soil moisture conditions in soil structure protection

    Directory of Open Access Journals (Sweden)

    Maria Teresa Dell'Abate

    2011-08-01

    Full Text Available Researches have been carried out within the framework on the EFFICOND Project, focused at evaluating the effectiveness of the standards of Good Agricultural and Environmental Conditions (GAECs established for Cross Compliance implementation under EC Regulation 1782/2003. In particular the standard 3.1b deals with soil structure protection through appropriate machinery use, with particular reference to ploughing in good soil moisture conditions. The study deals with the evaluation of soil structure after tillage in tilth and no-tilth conditions at soil moisture contents other than the optimum water content for tillage. The Mean Weight Diameter (MWD of water stable aggregates was used as an indicator of tillage effectiveness. The study was carried out in the period 2008-2009 at six experimental farms belonging to Research Centres and Units of the Italian Agricultural Research Council (CRA with different pedo-climatic and cropping conditions. Farm management and data collection in the different sites were carried out by the local CRA researchers and technicians. The comparison of MWD values in tilth and no tilth theses showed statistically significant differences in most cases, depending on topsoil texture. On clay, clay loam, silty clay, and silty clay loam topsoils a general and significant increase of MWD values under no tilth conditions were observed. No significant differences were observed in silt loam and sandy loam textures, probably due to the weak soil structure of the topsoils. Moreover, ploughing in good soil moisture condition determined higher crop production and less weed development than ploughing in high soil moisture conditions.

  9. Electrochemical characterization of corrosion in materials of grounding systems, simulating conditions of synthetic soils with characteristics of local soils

    Science.gov (United States)

    Salas, Y.; Guerrero, L.; Vera-Monroy, S. P.; Blanco, J.; Jimenez, C.

    2017-12-01

    The integrity of structures buried in earthing becomes relevant when analysing maintenance and replacement costs of these systems, as the deterioration is mainly due to two factors, namely: the failures caused in the electrical systems, which are due to the system. Failure in earthing due to corrosion at the interface cause an alteration in the structure of the component material and generates an undesirable resistivity that cause malfunction in this type of protection systems. Two local soils were chosen that were categorized as sandy loam and clay loam type, whose chemical characteristics were simulated by means of an electrolyte corresponding to the amount of ions present determined by a soil characterization based on the CICE (effective cation exchange coefficient), which allows us to deduce the percentage of chloride and sulphate ions present for the different levels established in the experimental matrix. The interaction of these soils with grounding electrodes is a complex problem involving many factors to consider. In this study, the rates and corrosion currents of the different soils on two types of electrodes, one copper and the other AISI 304 stainless steel, were approximated by electrochemical techniques such as potentiodynamic curves and electrochemical impedance spectra. Considerably higher speeds were determined for copper-type electrodes when compared to those based on steel. However, from the Nyquist diagrams, it was noted that copper electrodes have better electrical performance than steel ones. The soil with the highest ionic activity turned out to be the sandy loam. The clay loam soil presents a tendency to water retention and this may be the reason for the different behaviour with respect to ionic mobility. The diffusion control in the steel seems to alter the ionic mobility because its corrosion rates proved to be very similar regardless of the type of soil chemistry. In general, corrosion rates fell since tenths of a millimetre every year to

  10. Soil Degradation Evaluated by a 27 years Landsat image (Vis-Nir-Swir-Tir), climate and digital elevation derivatives

    Science.gov (United States)

    Dematte, J. A., Sr.; Santos, N. V.; de Almeida Malzoni, M. M.; Poppiel, R. R.; Fongaro, C. T.; Rizzo, R.; Safanelli, J. L.; Sayão, V. M.; Mendes, W. S.

    2017-12-01

    According to Food and Agriculture Organization of the United Nations, 30% of the global soils are degraded. Therefore, novel researches on soil degradation process are imperative to prevent damages on social and environmental dynamics. Since we have a wide world dimension, and few manpower, we have to focus on high dimensional evaluation techniques such as remote sensing. The main goal of this work was to develop a method, based on a 27 years time-series of satellite images (Landsat), from which determine the most important factors on soil degradation. The area is located in south Brazil with a 1400 km2 area. The steps of the method are as follows: a) we collected images from the area and based on a novel technique determined the areas with exposed soils; b) we quantified soil properties such as clay and capacity of ionic exchange based on pixel spectra signature; c) the technique also indicated how many times a single pixel was with bare soil during the period; d) we also determined the surface temperature based on band 6; e) using elevation model we created the layers LS factor, drainage density, topographic wetness index, solar radiation; f) we also determined climate information (water balance); g) organic matter (OM) was also estimated. All factors from item a to f were balanced and overlapped (GIS) to generate an index of soil degradation, SD (fig 1a) - values from 1 (low risk) to 5 (high risk). We concluded that 30% of the area is degraded. SD presented coherent values with OM and validate the method. We observed that areas with higher SD (5) contain 43.6% less OM than the ones with low risk (1). In addition, the soil spectral reflectance curve was analyzed concluding that degraded soils shows higher intensity. The current land use (fig 1b) was correlated demonstrating that a higher risk of SD happens mainly in sugar cane (41.6%) in contrast to pasture (16.9%) and forestry (11.7%). Therefore, this approach allows land uses decision-making and public policies.

  11. The EED [Emergencies Engineering Division] solvent extraction process for the removal of petroleum-derived hydrocarbons from soil

    International Nuclear Information System (INIS)

    Bastien, C.Y.

    1994-03-01

    Research was conducted to investigate the ability of hexane and natural gas condensate (NGC) to extract three different types of hydrocarbon contaminant (light crude oil, diesel fuel, and bunker C oil) from three types of soil (sand, peat, and clay). A separate but related study determined the efficiency of solvent extraction (using hexane and five other solvents but not NGC) for removal of polychlorinated biphenyls (PCB) from contaminated soil. The process developed for this research includes stages of mixing, extraction, separation, and solvent recovery, for eventual implementation as a mobile solvent extraction unit. In experiments on samples created in the laboratory, extraction efficiencies of hydrocarbons often rose above 95%. On samples from a petroleum contaminated site, average extraction efficiency was ca 82%. Sandy soils contaminated in the laboratory were effectively cleaned of all hydrocarbons tested but only diesel fuel was successfully extracted from peat soils. No significant differences were observed in the effectiveness of hexane and NGC for contamination levels above 3%. Below this number, NGC seems more effective at removing oil from peat while hexane is slightly more effective on clay soils. Sand is equally cleaned by both solvents at all contamination levels. Safety considerations, odor, extra care needed to deal with light ends and aromatics, and the fact that only 26% of the solvent is actually usable make NGC an unfeasible option in spite of its significantly lower cost compared to hexane. For extracting PCBs, a hexane/acetone mixture proved to have the best removal efficiency. 14 refs., 14 figs., 7 tabs

  12. Thin-layer chromatography coupled with high performance liquid chromatography for determining tetrabromobisphenol A/S and their derivatives in soils.

    Science.gov (United States)

    Liu, Aifeng; Shen, Zhaoshuang; Tian, Yong; Shi, Rongguang; Liu, Yi; Zhao, Zongshan; Xian, Mo

    2017-12-01

    As brominated flame retardants (BFRs), tetrabromobisphenol A/S (TBBPA/S) and their derivatives have raised wide concerns owing to their widely usage, distributions and adverse effects on human health, thus monitoring these BFRs was urgently needed. In this study, a rapid and cost-effective method based on thin-layer chromatography (TLC) sample pre-treatment coupled with high performance liquid chromatography-diode array detector (HPLC-DAD) (UV=214nm) was developed for determining TBBPA/S and their derivatives in soils, including TBBPA, TBBPA bis(allyl ether) (TBBPA-BAE), TBBPA bis(2,3-dibromopropyl ether) (TBBPA-BDBPE), TBBPS bis(allyl ether) (TBBPS-BAE) and TBBPS bis(2,3-dibromopropyl ether) (TBBPS-BDBPE). The method detection limits (MDLs) and the method quantification limits (MQLs) for these BFRs ranged from 0.023 to 0.087μgg -1 dw and 0.076-0.29μgg -1 dw, respectively. The recoveries were 41-108% and both RSD of repeatability and intermediate precision were less than 11%. The developed method presented good performance for analyzing natural soil samples collected from BFRs industrial park, suggesting its great application potential for monitoring environmental TBBPA/S and their derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Investigation of plutonium behaviour in artificially contaminated soil

    International Nuclear Information System (INIS)

    Luksiene, B.; Druteikiene, R.

    2006-01-01

    The vertical migration and transformation of plutonium chemical forms artificially supplied to sandy loam columns after its exposure to natural conditions for about one year was investigated. An analysis of artificially contaminated samples after one year had shown that 81% of 239 Pu 4+ and 44% of 239 Pu 3+ were accumulated in the 0-5 cm layer of sandy loam. The data of sequential analysis of the same type of soil at the adequate artificial contamination level after one month exposure under laboratory conditions are presented as well. Pu 239 binding to soil geochemical fractions was rather uneven. The largest amount of Pu 239 (60%) was determined in the residual fraction. Consequently, it can be assumed that organic substances and some inorganic compounds, which usually are the main components of a residual fraction, affects the retention and migration of plutonium in the soil. (authors)

  14. Autoclave decomposition method for metals in soils and sediments.

    Science.gov (United States)

    Navarrete-López, M; Jonathan, M P; Rodríguez-Espinosa, P F; Salgado-Galeana, J A

    2012-04-01

    Leaching of partially leached metals (Fe, Mn, Cd, Co, Cu, Ni, Pb, and Zn) was done using autoclave technique which was modified based on EPA 3051A digestion technique. The autoclave method was developed as an alternative to the regular digestion procedure passed the safety norms for partial extraction of metals in polytetrafluoroethylene (PFA vessel) with a low constant temperature (119.5° ± 1.5°C) and the recovery of elements were also precise. The autoclave method was also validated using two Standard Reference Materials (SRMs: Loam Soil B and Loam Soil D) and the recoveries were equally superior to the traditionally established digestion methods. Application of the autoclave was samples from different natural environments (beach, mangrove, river, and city soil) to reproduce the recovery of elements during subsequent analysis.

  15. Effects of irrigation strategies and soils on field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    Root distribution of field grown potatoes (cv. Folva) was studied in 4.32m2 lysimeters and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. Drip irrigation was applied for all irrigations. Irrigations were run in three different soils: coarse sand......, loamy sand, and sandy loam. Irrigation treatments started after tuber bulking and lasted until final harvest with PRD and DI receiving 65% of FI. Potatoes irrigated with water-saving irrigation techniques (PRD and DI) did not show statistically different dry root mass and root length density (RLD, cm...... density in the furrow. Most roots accumulated in the surface layers of coarse sand as compared to the other soil types. In the deep soil profile (30–70 cm) a higher root density was found in loamy sand compared with the sandy loam and coarse sand. Approximately twice the amounts of roots were found below...

  16. Investigation of plutonium behaviour in artificially contaminated soil

    International Nuclear Information System (INIS)

    Lukshiene, B.; Druteikiene, R.

    2006-01-01

    The vertical migration and transformation of plutonium chemical forms artificially supplied to sandy loam columns after its exposure to natural conditions for about one year was investigated. An analysis of artificially contaminated samples after one year had shown that 81% of 239 Pu 4+ and 44% of 239 Pu 3+ were accumulated in the 0-5 cm layer of sandy loam. The data of sequential analysis of the same type of soil at the adequate artificial contamination level after one month exposure under laboratory conditions are presented as well. Pu 239 binding to soil geochemical fractions was rather uneven. The largest amount of Pu 239 (60 %) was determined in the residual fraction. Consequently, it can be assumed that organic substances and some inorganic compounds, which usually are the main components of a residual fraction, affects the retention and migration of plutonium in the soil. (authors)

  17. Adsorption and diffusion of plutonium in soil

    International Nuclear Information System (INIS)

    Relyea, J.F.; Brown, D.A.

    1978-01-01

    The behavior of plutonium in soil--water systems was studied by measuring its apparent diffusion coefficient in the aqueous and solid phases and by finding the adsorption--desorption relationships between soil and solution. Apparent diffusion coefficients of plutonium in soil were measured using a quick-freeze method. Aqueous diffusion was studied in a capillary-tube diffusion cell. Adsorption studies were done by equilibrating a tagged soil--water mixture on a rotary shaker before centrifuging and sampling. As expected from high adsorption coefficients (Kd) (300--10,000), the apparent diffusion coefficients were low compared with normal soil cations (1.4 x 10 -8 cm 2 /sec in a sandy soil to less than 2.4 x 10 -11 cm 2 /sec in a silt loam). The Kd of plutonium in aqueous solution containing the chelate ethylenediaminetetraacetic acid (EDTA) was reduced compared with the Kd in dilute HNO 3 . As the EDTA concentration was increased, the Kd was decreased. The chelate diethylenetriaminepentaacetic acid (DTPA) reduced the Kd more than EDTA at comparable concentrations. The aqueous diffusion coefficients varied from 3.1 x 10 -7 cm 2 /sec in a solution extracted from the silt loam up to 2.7 x 10 -5 cm 2 /sec in a solution extracted from the sandy soil

  18. Fingerprinting: Modelling and mapping physical top soil properties with the Mole

    Science.gov (United States)

    Loonstra, Eddie; van Egmond, Fenny

    2010-05-01

    The Mole is a passive gamma ray soil sensor system. It is designed for the mobile collection of radioactive energy stemming from soil. As the system is passive, it only measures energy that reaches the surface of soil. In general, this energy comes from upto 30 to 40 cm deep, which can be considered topsoil. The gathered energy spectra are logged every second, are processed with the method of Full Spectrum Analysis. This method uses all available spectral data and processes it with a Chi square optimalisation using a set of standard spectra into individual nuclide point data. A standard spectrum is the measured full spectrum of a specific detector derived when exposed to 1 Bq/kg of a nuclide. With this method the outcome of the surveys become quantitative.The outcome of a field survey with the Mole results in a data file containing point information of position, Total Counts and the decay products of 232Th, 238U, 40K and 137Cs. Five elements are therefor available for the modelling of soil properties. There are several ways for the modelling of soil properties with sensor derived gamma ray data. The Mole generates ratio scale output. For modelling a quantitative deterministic approach is used based on sample locations. This process is called fingerprinting. Fingerprinting is a comparison of the concentration of the radioactive trace elements and the lab results (pH, clay content, etc.) by regression analysis. This results in a mathematical formula describing the relationship between a dependent and independent property. The results of the sensor readings are interpolated into a nuclide map with GIS software. With the derived formula a soil property map is composed. The principle of fingerprinting can be applied on large geographical areas for physical soil properties such as clay, loam or sand (50 micron), grain size and organic matter. Collected sample data of previous field surveys within the same region can be used for the prediction of soil properties elsewhere

  19. Soil Carbon and Nitrogen Stocks of Different Hawaiian Sugarcane Cultivars

    Directory of Open Access Journals (Sweden)

    Rebecca Tirado-Corbalá

    2015-06-01

    Full Text Available Sugarcane has been widely used as a biofuel crop due to its high biological productivity, ease of conversion to ethanol, and its relatively high potential for greenhouse gas reduction and lower environmental impacts relative to other derived biofuels from traditional agronomic crops. In this investigation, we studied four sugarcane cultivars (H-65-7052, H-78-3567, H-86-3792 and H-87-4319 grown on a Hawaiian commercial sugarcane plantation to determine their ability to store and accumulate soil carbon (C and nitrogen (N across a 24-month growth cycle on contrasting soil types. The main study objective establish baseline parameters for biofuel production life cycle analyses; sub-objectives included (1 determining which of four main sugarcane cultivars sequestered the most soil C and (2 assessing how soil C sequestration varies among two common Hawaiian soil series (Pulehu-sandy clay loam and Molokai-clay. Soil samples were collected at 20 cm increments to depths of up to 120 cm using hand augers at the three main growth stages (tillering, grand growth, and maturity from two experimental plots at to observe total carbon (TC, total nitrogen (TN, dissolved organic carbon (DOC and nitrates (NO−3 using laboratory flash combustion for TC and TN and solution filtering and analysis for DOC and NO−3. Aboveground plant biomass was collected and subsampled to determine lignin and C and N content. This study determined that there was an increase of TC with the advancement of growing stages in the studied four sugarcane cultivars at both soil types (increase in TC of 15–35 kg·m2. Nitrogen accumulation was more variable, and NO−3 (<5 ppm were insignificant. The C and N accumulation varies in the whole profile based on the ability of the sugarcane cultivar’s roots to explore and grow in the different soil types. For the purpose of storing C in the soil, cultivar H-65-7052 (TC accumulation of ~30 kg·m−2 and H-86-3792 (25 kg·m−2 rather H-78

  20. Decolorization of humic acids and alkaline lignin derivative by an anamorphic Bjerkandera adusta E59 strain isolated from soil

    Energy Technology Data Exchange (ETDEWEB)

    Kornillowicz-Kowalska, T.; Ginalska, G.; Belcarz, A.; Iglik, H. [University of Life Sciences, Lublin (Poland). Dept. of Microbiology

    2008-07-01

    An anamorphic Bjerkandera adusta R59 strain, isolated from soil, was found to decolorize post-industrial lignin alkaline fraction, humic acids isolated from two kinds of soil and from brown coal. The drop of methoxyphenolic compound levels in liquid B. adusta cultures containing lignin or humic acids was correlated with decolorization of studied biopolymers, which suggests their partial biodegradation. It was shown that this process was Coupled with the induction of secondary metabolism (idiophase), and highest peroxidase activity in culture medium and appearance of aerial mycelium. Decolorization of lignin and humic acids from lessive soil and brown coal depended on glucose presence (cometabolism). Decolorization of humic acid from chernozem was related partially to adsorption by fungal mycelium.

  1. Calculation of internal dose from ingested soil-derived uranium in humans: Application of a new method

    Energy Technology Data Exchange (ETDEWEB)

    Traeber, S.C.; Li, W.B.; Hoellriegl, V.; Oeh, U. [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Research Unit Medical Radiation Physics and Diagnostics, Neuherberg (Germany); Nebelung, K. [Friedrich Schiller University of Jena, Institute of Geosciences, Jena (Germany); Michalke, B. [Helmholtz Zentrum Muenchen, German Research Center for Envir