WorldWideScience

Sample records for loads calibration laboratory

  1. Calibration for plutonium-238 lung counting at Mound Laboratory

    International Nuclear Information System (INIS)

    Tomlinson, F.K.

    1976-01-01

    The lung counting facility at Mound Laboratory was calibrated for making plutonium-238 lung deposition assessments in the fall of 1969. Phoswich detectors have been used since that time; however, the technique of calibration has improved considerably. The current technique of calibrating the lung counter is described as well as the method of error analysis and determination of the minimum detectable activity. A Remab hybrid phantom is used along with an attenuation curve which is derived from plutonium loaded lungs and ground beef absorber measurements. The errors that are included in an analysis as well as those that are excluded are described. The method of calculating the minimum detectable activity is also included

  2. A Baseline Load Schedule for the Manual Calibration of a Force Balance

    Science.gov (United States)

    Ulbrich, N.; Gisler, R.

    2013-01-01

    A baseline load schedule for the manual calibration of a force balance is defined that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The chosen load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, aft gage location, and the balance moment center; (iv) the balance should be used in "up" and "down" orientation to get positive and negative axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. In addition, three different approaches are discussed in the paper that may be used to independently estimate the natural zeros, i.e., the gage outputs of the absolute load datum of the balance. These three approaches provide gage output differences that can be used to estimate the weight of both the metric and non-metric part of the balance. Data from the calibration of a six-component force balance will be used in the final manuscript of the paper to illustrate characteristics of the proposed baseline load schedule.

  3. Requirements for the accreditation of a calibration laboratory

    International Nuclear Information System (INIS)

    Palacios, T.A.; Peretti, M.M.

    1993-01-01

    CNEA's activity in calibration is recent but it has a significant development. To assure high quality results, activity must be sustained and improved from day to day. The calibrations laboratory was accredited before Laboratories Qualification Committee, thus adding reliability to its results and making it more competitive when compared to other laboratories not accredited. Among other services given are supervision and follow up of calibrations in laboratories, participation in interlaboratory assays together with other calibration laboratories and assessments on calibration aspects of measuring equipment. (author)

  4. HPS instrument calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Masse, F.X; Eisenhower, E.H.; Swinth, K.L.

    1993-12-31

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory.

  5. High-dose secondary calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, J.C. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1993-12-31

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program.

  6. High-dose secondary calibration laboratory accreditation program

    International Nuclear Information System (INIS)

    Humphreys, J.C.

    1993-01-01

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program

  7. NVLAP calibration laboratory program

    Energy Technology Data Exchange (ETDEWEB)

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  8. NVLAP calibration laboratory program

    International Nuclear Information System (INIS)

    Cigler, J.L.

    1993-01-01

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST)

  9. Modal and Wave Load Identification by ARMA Calibration

    DEFF Research Database (Denmark)

    Jensen, Jens Kristian Jehrbo; Kirkegaard, Poul Henning; Brincker, Rune

    1992-01-01

    In this note, modal parameter and wave load identification by calibration of ARMA models are considered for a simple offshore structure. The theory of identification by ARMA calibration is introduced as an identification technique in the time domain, which can be applied for white noise–excited s......In this note, modal parameter and wave load identification by calibration of ARMA models are considered for a simple offshore structure. The theory of identification by ARMA calibration is introduced as an identification technique in the time domain, which can be applied for white noise...... by an experimental example of a monopile model excited by random waves. The identification results show that the approach is able to give very reliable estimates of the modal parameters. Furthermore, a comparison of the identified wave load process and the calculated load process based on the Morison equation shows...

  10. NVLAP activities at Department of Defense calibration laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, D.M. [Defense Nuclear Agency, Alexandria, VA (United States)

    1993-12-31

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts.

  11. NVLAP activities at Department of Defense calibration laboratories

    International Nuclear Information System (INIS)

    Schaeffer, D.M.

    1993-01-01

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts

  12. Quality assurance programs at the PNL calibrations laboratory

    International Nuclear Information System (INIS)

    Piper, R.K.; McDonald, J.C.; Fox, R.A.; Eichner, F.N.

    1993-03-01

    The calibrations laboratory at Pacific Northwest Laboratory (PNL) serves as a radiological standardization facility for personnel and environmental dosimetry and radiological survey instruments. As part of this function, the calibrations laboratory must maintain radiological reference fields with calibrations traceable to the National Institute of Standards and Technology (NIST). This task is accomplished by a combination of (1) sources or reference instruments calibrated at or by NIST, (2) measurement quality assurance (MQA) interactions with NIST, and (3) rigorous internal annual and quarterly calibration verifications. This paper describes a representative sample of the facilities, sources, and actions used to maintain accurate and traceable fields

  13. Tour of the Standards and Calibrations Laboratory

    International Nuclear Information System (INIS)

    Elliott, J.H.

    1978-01-01

    This tour of Lawrence Livermore Laboratory's Standards and Calibrations Laboratory is intended as a guide to the capabilities of and services offered by this unique laboratory. Described are the Laboratory's ability to provide radiation fields and measurements for dosimeters, survey instruments, spectrometers, and sources and its available equipment and facilities. The tour also includes a survey of some Health Physics and interdepartmental programs supported by the Standards and Calibrations Laboratory and a listing of applicable publications

  14. Laboratory implantation for well type ionization chambers calibration

    International Nuclear Information System (INIS)

    Vianello, E.A.; Dias, D.J.; Almeida, C.E. de

    1998-01-01

    The Radiological Science Laboratory is implanting a service for calibration of well type chambers by IAEA training program. The kerma rate in the air (mu Gy/h) of the linear Cs-137 reference source CDCS-J4 have been determined using a well type chamber Standard Imaging HDR-1000 model, which have been calibrated at Secondary Standard Laboratory Calibration of IAEA, whereas two HDR-1000 Plus chambers were calibrated too, following the same standards. The results were compared with Wisconsin University calibration certification and has demonstrated that well type ionization chamber calibration can be used in brachytherapy for several kinds of radionuclides. (Author)

  15. Validation of a densimeter calibration procedure for a secondary calibration laboratory

    International Nuclear Information System (INIS)

    Alpizar Herrera, Juan Carlos

    2014-01-01

    A survey was conducted to quantify the need for calibration of a density measurement instrument at the research units at the Sede Rodrigo Facio of the Universidad de Costa Rica. A calibration procedure was documented for the instrument that presented the highest demand in the survey by the calibration service. A study of INTE-ISO/IEC 17025: 2005 and specifically in section 5.4 of this standard was done, to document the procedure for calibrating densimeters. Densimeter calibration procedures and standards were sought from different national and international sources. The method of hydrostatic weighing or Cuckow method was the basis of the defined procedure. Documenting the calibration procedure and creating other documents was performed for data acquisition log, intermediate calculation log and calibration certificate copy. A veracity test was performed using as reference laboratory a laboratory of calibration secondary national as part of the validation process of the documented procedure. The results of the E_n statistic of 0.41; 0.34 and 0.46 for the calibration points 90%, 50% and 10% were obtained for the densimeter scale respectively. A reproducibility analysis of the method was performed with satisfactory results. Different suppliers were contacted to estimate the economic costs of the equipment and materials, needed to develop the documented method of densimeter calibration. The acquisition of an analytical balance was recommended, instead of a precision scale, in order to improve the results obtained with the documented method [es

  16. Solid laboratory calibration of a nonimaging spectroradiometer.

    Science.gov (United States)

    Schaepman, M E; Dangel, S

    2000-07-20

    Field-based nonimaging spectroradiometers are often used in vicarious calibration experiments for airborne or spaceborne imaging spectrometers. The calibration uncertainties associated with these ground measurements contribute substantially to the overall modeling error in radiance- or reflectance-based vicarious calibration experiments. Because of limitations in the radiometric stability of compact field spectroradiometers, vicarious calibration experiments are based primarily on reflectance measurements rather than on radiance measurements. To characterize the overall uncertainty of radiance-based approaches and assess the sources of uncertainty, we carried out a full laboratory calibration. This laboratory calibration of a nonimaging spectroradiometer is based on a measurement plan targeted at achieving a calibration. The individual calibration steps include characterization of the signal-to-noise ratio, the noise equivalent signal, the dark current, the wavelength calibration, the spectral sampling interval, the nonlinearity, directional and positional effects, the spectral scattering, the field of view, the polarization, the size-of-source effects, and the temperature dependence of a particular instrument. The traceability of the radiance calibration is established to a secondary National Institute of Standards and Technology calibration standard by use of a 95% confidence interval and results in an uncertainty of less than ?7.1% for all spectroradiometer bands.

  17. Calibration Laboratory of the Paul Scherrer Institute

    International Nuclear Information System (INIS)

    Gmuer, K.; Wernli, C.

    1994-01-01

    Calibration and working checks of radiation protection instruments are carried out at the Calibration Laboratory of the Paul Scherrer Institute. In view of the new radiation protection regulation, the calibration laboratory received an official federal status. The accreditation procedure in cooperation with the Federal Office of Metrology enabled a critical review of the techniques and methods applied. Specifically, personal responsibilities, time intervals for recalibration of standard instruments, maximum permissible errors of verification, traceability and accuracy of the standard instruments, form and content of the certificates were defined, and the traceability of the standards and quality assurance were reconsidered. (orig.) [de

  18. Calibration of laboratory equipment and its intermediate verification

    International Nuclear Information System (INIS)

    Remedi, Jorge O.

    2011-01-01

    When a laboratory wants to prove that he has technical competence to carry out tests or calibrations must demonstrate that it has complied with certain requirements that establish , among others, the mandatory : calibrate or verify equipment before putting it into service in order to ensure that it meets to the specifications of laboratory equipment to keep records evidencing the checks that equipment complies with the specification ; perform intermediate checks for maintain confidence in the calibration status of the equipment , ensure that the operation is checked and calibration status of equipment when the equipment goes outside the direct control of the laboratory , before be returned to service, establish a program and procedure for the calibration of equipment; show how determined the calibration periods of their equipment as well as evidence that intermediate checks are suitable for the calibration periods. However, some confusion is observed as to the meaning of the terms 'calibration' and 'verification' of a computer. This paper analyzes applicable documentation and suggests that the differences are generated in part by translations and by characterization concepts upon its usage, that is, if it is legal metrology or assessment conformity. Therefore, this study aims to characterize both concepts , fundamentals to zoom distinguish , outline appropriate strategies for calibration and verification activities to ensure the compliance with regulatory requirements [es

  19. Investigation of a Fiber Optic Strain Sensing (FOSS) Distributed Load Calibration Methodology

    Data.gov (United States)

    National Aeronautics and Space Administration — FOSS is a relatively newer technology that needs to be explored for application to load calibration and loads monitoring efforts. Load calibration opportunities are...

  20. Conception of CTMSP ionizing radiation calibration laboratory

    International Nuclear Information System (INIS)

    Silva, Raimundo Dias da; Kibrit, Eduardo

    2009-01-01

    The present paper describes the implantation process of an ionizing radiation calibration laboratory in a preexistent installation in CTMSP (bunker) approved by CNEN to operate with gamma-ray for non destructive testing. This laboratory will extend and improve the current metrological capacity for the attendance to the increasing demand for services of calibration of ionizing radiation measuring instruments. Statutory and regulatory requirements for the licensing of the installation are presented and deeply reviewed. (author)

  1. LLNL X-ray Calibration and Standards Laboratory

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The LLNL X-ray Calibration and Standards Laboratory is a unique facility for developing and calibrating x-ray sources, detectors, and materials, and for conducting x-ray physics research in support of our weapon and fusion-energy programs

  2. The NRPB Chilton Calibration Laboratory for radiological protection measurements

    International Nuclear Information System (INIS)

    Iles, W.J.

    1982-01-01

    The Calibration Laboratory in NRPB Headquarters is intended as an authoritative reference laboratory for all aspects of radiation protection level instrument calibrations for X-, gamma and beta radiations and to be complementary to the national primary standards of the National Physical Laboratory. The gamma ray, filtered X-ray, fluorescence X-ray and beta ray facilities are described. (U.K.)

  3. Project of an integrated calibration laboratory of instruments at IPEN

    International Nuclear Information System (INIS)

    Barros, Gustavo Adolfo San Jose

    2009-01-01

    The Calibration Laboratory of Instruments of Instituto de Pesquisas Energeticas e Nucleares offers calibration services of radiation detectors used in radioprotection, diagnostic radiology and radiotherapy, for IPEN and for external facilities (public and private). One part of its facilities is located in the main building, along with other laboratories and study rooms, and another part in an isolated building called Bunker. For the optimization, modernization and specially the safety, the laboratories in the main building shall be transferred to an isolated place. In this work, a project of an integrated laboratory for calibration of instruments was developed, and it will be an expansion of the current Calibration Laboratory of Instruments of IPEN. Therefore, a series of radiometric monitoring of the chosen localization of the future laboratory was realized, and all staff needs (dimensions and disposition of the study rooms and laboratories) were defined. In this project, the laboratories with X ray equipment, alpha and beta radiation sources were located at an isolated part of the building, and the wall shielding was determined, depending on the use of each laboratory. (author)

  4. [Fundamental aspects for accrediting medical equipment calibration laboratories in Colombia].

    Science.gov (United States)

    Llamosa-Rincón, Luis E; López-Isaza, Giovanni A; Villarreal-Castro, Milton F

    2010-02-01

    Analysing the fundamental methodological aspects which should be considered when drawing up calibration procedure for electro-medical equipment, thereby permitting international standard-based accreditation of electro-medical metrology laboratories in Colombia. NTC-ISO-IEC 17025:2005 and GTC-51-based procedures for calibrating electro-medical equipment were implemented and then used as patterns. The mathematical model for determining the estimated uncertainty value when calibrating electro-medical equipment for accreditation by the Electrical Variable Metrology Laboratory's Electro-medical Equipment Calibration Area accredited in compliance with Superintendence of Industry and Commerce Resolution 25771 May 26th 2009 consists of two equations depending on the case; they are: E = (Ai + sigmaAi) - (Ar + sigmaAr + deltaAr1) and E = (Ai + sigmaAi) - (Ar + sigmaA + deltaAr1). The mathematical modelling implemented for measuring uncertainty in the Universidad Tecnológica de Pereira's Electrical Variable Metrology Laboratory (Electro-medical Equipment Calibration Area) will become a good guide for calibration initiated in other laboratories in Colombia and Latin-America.

  5. Modal and Wave Load Identification by ARMA Calibration

    DEFF Research Database (Denmark)

    Jensen, Jens Kristian Jehrbo; Kirkegaard, Poul Henning; Brincker, Rune

    In this paper modal parameter as well as wave load identification by calibration of ARMA models is considered for a simple offshore structure. The theory of identification by ARMA calibration is presented as an identification technique in the time domain which can be applied for white noise excited...... systems. The technique is generalized also to include the case of ambient excitation processes such as wave excitation which are non-white processes. Due to those results a simple but effective approach for identification of the load process is proposed. Finally the theoretical presentation is illustrated...

  6. Upgrading the Medical Physics Calibration Laboratory Towards ISO/IEC 17025: Radiation Standards and Calibration in Diagnostic Radiology

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Muhammad Jamal Md Isa; Abd Aziz Mhd Ramli; Wan Hazlinda Ismail; Norhayati Abdullah; Shahrul Azlan Azizan; Siti Sara Deraman; Nor Azlin Azraai; Md Khairusalih Md Zin

    2010-01-01

    Calibration of quality control (QC) test tools used in diagnostic radiology is legally required under the Ministry of Health (MOH) requirement. The Medical Physics Calibration Laboratory of the Malaysian Nuclear Agency is the national focal point for the calibration of quality control test tools used in diagnostic radiology. The Medical Physics Calibration Laboratory has measurement traceability to primary standard dosimetry laboratory (Physikalisch-Technische Bundesanstalt (PTB)), thus providing an interface between the primary standard dosimetry laboratory and Malaysian hospitals, clinics and license class H holder. The Medical Physics Calibration Laboratory facility is comprised of a constant potential x-ray system with a capability of 160 kV tube and a series of reference and working standard ion chambers. The stability of reference and working standard ion chambers was measured using strontium-90. Dosimetric instruments used in diagnostic radiology is calibrated in terms of air kerma to comply with an International Code of Practices of dosimetry for example IAEA's Technical Report Series number 457. The new series of standard radiation qualities was established based on ISO/IEC 61267. The measurement of beam homogeneity was measured using film and ion chamber to define the field size at certain distance and kV output was measured using the spectrometer and non-invasive kVp meter. The uncertainties measurement was determined with expended uncertainties to a level of confidence of approximately 95% (coverage factor k=2). This paper describes the available facility and the effort of the Medical Physics Calibration Laboratory to upgrade the laboratory towards ISO/IEC 17025. (author)

  7. Three-dimensional mapping of salt load in the Murray-Darling Basin, 1 Steps in calibration of airborne electromagnetic surveys

    NARCIS (Netherlands)

    Cresswell, R.G.; Dent, D.L.; Jones, G.; Galloway, D.

    2004-01-01

    An airborne electromagnetic survey yields a three-dimensional map of ground electrical conductivity. The remotely sensed data are translated into salt load by field and laboratory calibration: drilling, measurement of borehole conductivity, electrical conductivity of 1 : 5 soil¿water extracts

  8. Reliability-Based Calibration of Load Duration Factors for Timber Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Svensson, Staffan; Stang, Birgitte Friis Dela

    2005-01-01

    John Dalsgaard Sørensen, Staffan Svensson, Birgitte Dela Stang : Reliability-Based Calibration of Load Duration Factors for Timber Structures     Abstract :   The load bearing capacity of timber structures decrease with time depending on the type of load and timber. Based on representative limit...... states and stochastic models for timber structures, load duration factors are calibrated using probabilistic methods. Load duration e.ects are estimated on basis of simulation of realizations of wind, snow and imposed loads in accordance with the load models in the Danish structural codes. Three damage...... accumulation models are considered, namely Gerhards model, Barrett and Foschi _ s model and Foschi and Yao _ s model. The parameters in these models are .tted by the Maximum Likelihood Method using data relevant for Danish structural timber and the statistical uncertainty is quanti .ed. The reliability...

  9. Measuring the Bed Load velocity in Laboratory flumes using ADCP and Digital Cameras

    Science.gov (United States)

    Conevski, Slaven; Guerrero, Massimo; Rennie, Colin; Bombardier, Josselin

    2017-04-01

    Measuring the transport rate and apparent velocity of the bedload is notoriously hard and there is not a certain technique that would obtain continues data. There are many empirical models, based on the estimation of the shear stress, but only few involve direct measurement of the bed load velocity. The bottom tracking (BT) mode of an acoustic Doppler current profiler (ADCP) has been used many times to estimate the apparent velocity of the bed load. Herein is the basic idea, to exploit the bias of the BT signal towards the bed load movement and to calibrate this signal with traditional measuring techniques. These measurements are quite scarce and seldom reliable since there are not taken in controlled conditions. So far, no clear confirmation has been conducted in laboratory-controlled conditions that would attest the assumptions made in the estimation of the apparent bed load velocity, nor in the calibration of the empirical equations. Therefore, this study explores several experiments under stationary conditions, where the signal of the ADCP BT mode is recorded and compared to the bed load motion recorded by digital camera videography. The experiments have been performed in the hydraulic laboratories of Ottawa and Bologna, using two different ADCPs and two different high resolution cameras. In total, more then 30 experiments were performed for different sediment mixtures and different hydraulic conditions. In general, a good match is documented between the apparent bed load velocity measured by the ADCP and the videography. The slight deviation in single experiments can be explained by gravel particles inhomogeneity, difficult in reproducing the same hydro-sedimentological conditions and the randomness of the backscattering strength.

  10. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.R.

    1993-12-31

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards.

  11. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    Martin, P.R.

    1993-01-01

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards

  12. QA experience at the University of Wisconsin accredited dosimetry calibration laboratory

    Energy Technology Data Exchange (ETDEWEB)

    DeWard, L.A.; Micka, J.A. [Univ. of Wisconsin, Madison, WI (United States)

    1993-12-31

    The University of Wisconsin Accredited Dosimetry Calibration Laboratory (UW ADCL) employs procedure manuals as part of its Quality Assurance (QA) program. One of these manuals covers the QA procedures and results for all of the UW ADCL measurement equipment. The QA procedures are divided into two main areas: QA for laboratory equipment and QA for external chambers sent for calibration. All internal laboratory equipment is checked and recalibrated on an annual basis, after establishing its consistency on a 6-month basis. QA for external instruments involves checking past calibration history as well as comparing to a range of calibration values for specific instrument models. Generally, the authors find that a chamber will have a variation of less than 0.5 % from previous Co-60 calibration factors, and falls within two standard deviations of previous calibrations. If x-ray calibrations are also performed, the energy response of the chamber is plotted and compared to previous instruments of the same model. These procedures give the authors confidence in the transfer of calibration values from National Institute of Standards and Technology (NIST).

  13. QA experience at the University of Wisconsin accredited dosimetry calibration laboratory

    International Nuclear Information System (INIS)

    DeWard, L.A.; Micka, J.A.

    1993-01-01

    The University of Wisconsin Accredited Dosimetry Calibration Laboratory (UW ADCL) employs procedure manuals as part of its Quality Assurance (QA) program. One of these manuals covers the QA procedures and results for all of the UW ADCL measurement equipment. The QA procedures are divided into two main areas: QA for laboratory equipment and QA for external chambers sent for calibration. All internal laboratory equipment is checked and recalibrated on an annual basis, after establishing its consistency on a 6-month basis. QA for external instruments involves checking past calibration history as well as comparing to a range of calibration values for specific instrument models. Generally, the authors find that a chamber will have a variation of less than 0.5 % from previous Co-60 calibration factors, and falls within two standard deviations of previous calibrations. If x-ray calibrations are also performed, the energy response of the chamber is plotted and compared to previous instruments of the same model. These procedures give the authors confidence in the transfer of calibration values from National Institute of Standards and Technology (NIST)

  14. Secondary standards laboratories for ionizing radiation calibrations: the national laboratory interests

    International Nuclear Information System (INIS)

    Roberson, P.L.; Campbell, G.W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary. 1 ref., 2 tabs

  15. Development of a quality assurance program for ionizing radiation secondary calibration laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H.T. II; Taylor, A.R. Jr. [Center for Devices and Radiological Health, Rockville, MD (United States)

    1993-12-31

    For calibration laboratories, routine calibrations of instruments meeting stated accuracy goals are important. One method of achieving the accuracy goals is to establish and follow a quality assurance program designed to monitor all aspects of the calibration program and to provide the appropriate feedback mechanism if adjustments are needed. In the United States there are a number of organizations with laboratory accreditation programs. All existing accreditation programs require that the laboratory implement a quality assurance program with essentially the same elements in all of these programs. Collectively, these elements have been designated as a Measurement Quality Assurance (MQA) program. This paper will briefly discuss the interrelationship of the elements of an MQA program. Using the Center for Devices and Radiological Health (CDRH) X-ray Calibration Laboratory (XCL) as an example, it will focus on setting up a quality control program for the equipment in a Secondary Calibration Laboratory.

  16. Development of a quality assurance program for ionizing radiation secondary calibration laboratories

    International Nuclear Information System (INIS)

    Heaton, H.T. II; Taylor, A.R. Jr.

    1993-01-01

    For calibration laboratories, routine calibrations of instruments meeting stated accuracy goals are important. One method of achieving the accuracy goals is to establish and follow a quality assurance program designed to monitor all aspects of the calibration program and to provide the appropriate feedback mechanism if adjustments are needed. In the United States there are a number of organizations with laboratory accreditation programs. All existing accreditation programs require that the laboratory implement a quality assurance program with essentially the same elements in all of these programs. Collectively, these elements have been designated as a Measurement Quality Assurance (MQA) program. This paper will briefly discuss the interrelationship of the elements of an MQA program. Using the Center for Devices and Radiological Health (CDRH) X-ray Calibration Laboratory (XCL) as an example, it will focus on setting up a quality control program for the equipment in a Secondary Calibration Laboratory

  17. Calibration procedures for improved accuracy of wind turbine blade load measurement

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Johansson, Hjalmar [Teknikgruppen AB, Sollentuna (Sweden)

    1996-12-01

    External loads acting on wind turbine blades are mainly transferred via the hub to the rest of the structure. It is therefore a normal approach to measure the loads acting on the turbine by load measurements in the blade roots. The load measurement is often accomplished by measurements of strain on the surface of the blade or the hub. The strain signals are converted to loads by applying calibration factors to the measurements. This paper deals with difficulties associated with load measurements on two different wind turbines; one with strain gauges applied to a steel hub where a linear stress-load relationship is expected and the other with strain gauges applied to the GFRP blade close to the bearings where strong non-linearity`s and temperature effects are expected. This paper suggests calibration methods to overcome these problems. 2 refs, 11 figs

  18. Assembly of a laboratory for calibration in brachytherapy. Comparison of responses with different instrumentation

    International Nuclear Information System (INIS)

    Pirchio, R.; Saravi, M.

    2006-01-01

    A common practice in quality control programs for dosimetry in brachytherapy is the source calibration. The AAPM (American Association of Physicists in Medicine) in the Task Group No. 40 (TG-40) it recommends that each institution that offers a brachytherapy service verifies the intensity of each source provided by the maker with secondary traceability. For such a reason it is necessary to have laboratories able to make calibrations of sources, traceable electrometer-chambers to primary or credited laboratories. The Regional Center of Reference of Dosimetry of the CNEA (National Commission of Atomic Energy) it is in the stage of finalization of the assembly of a Laboratory for source calibration and use equipment in brachytherapy. For it has two ionization chambers well type and two electrometers gauged by the Accredited Dosimetry Calibration Laboratory of the University of Wisconsin. Also account with a wide variety of supports and with a tube of 137 Cs pattern 3M model 6500/6D6C. The procedures for the calibration of sources and equipment were elaborated starting from the TECDOC-1274. On the other hand, its were carried out measurements with different instrumentation for the comparison of responses and at the same time to implement the calibration procedures. For it, its were used chambers and electrometers of the institution, of hospitals and of the national company 'Solydes'. In the measurements its were used seeds of 125 I taken place in Argentina and the tube of 137 Cs pattern mentioned previously. In first place it was proceeded to the determination of the center of the region of the plateau in the axial response for the seeds of Iodine-125 and the tube of Cesium-137 pattern using different chambers. Later on its were carried out measurements of accumulated loads during a certain interval of time in this position. The calibration factors of each chamber were determined, N Sk (μGy m 2 h -1 A -1 ), as the quotient of the kerma rate in reference air of the

  19. Standardization of irradiation values at the Radiation Calibration Laboratory

    International Nuclear Information System (INIS)

    Pham Van Dung; Hoang Van Nguyen; Phan Van Toan; Phan Dinh Sinh; Tran Thi Tuyet; Do Thi Phuong

    2007-01-01

    The objective of the theme is to determine dose rates around radiation facilities and sources in the NRI Radiation Calibration Laboratory. By improving equipment, calibrating a main dosemeter and carrying out experiments, the theme team received the following results: 1. The controller of a X-rays generator PY(-200 was improved. It permits to increase accuracy of radiation dose calibration up to 2-4 times; 2. The FAMER DOSEMETER 2570/1B with the ionization chamber NE 2575 C of the NRI Radiation Calibration Laboratory was calibrated at SSDL (Hanoi); 3. Dose rates at 4 positions around a high activity Co-60 source were determined; 4. Dose rates at 3 positions around a low activity Co-60 source were determined; 5. Dose rates at 3 positions around a low activity Cs-137 source were determined; 6. Dose rate at 1 position of a X-rays beam (Eaverage = 48 keV) was determined; 7. Dose rate at 1 position of a X-rays beam (Eaverage = 65 keV) was determined. (author)

  20. Automatic Phase Calibration for RF Cavities using Beam-Loading Signals

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P. [Fermilab; Chase, B. E. [Fermilab

    2017-10-01

    Precise calibration of the cavity phase signals is necessary for the operation of any particle accelerator. For many systems this requires human in the loop adjustments based on measurements of the beam parameters downstream. Some recent work has developed a scheme for the calibration of the cavity phase using beam measurements and beam-loading however this scheme is still a multi-step process that requires heavy automation or human in the loop. In this paper we analyze a new scheme that uses only RF signals reacting to beam-loading to calculate the phase of the beam relative to the cavity. This technique could be used in slow control loops to provide real-time adjustment of the cavity phase calibration without human intervention thereby increasing the stability and reliability of the accelerator.

  1. Health Physics Society program for accreditation of calibration laboratories

    International Nuclear Information System (INIS)

    West, L.; Masse, F.X.; Swinth, K.L.

    1988-01-01

    The Health Physics Society has instituted a new program for accreditation of organizations that calibrate radiation survey instruments. The purpose of the program is to provide radiation protection professionals with an expanded means of direct and indirect access to national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. Secondary accredited laboratories are expected to provide a regional support basis. Tertiary accredited laboratories are expected to operate on a more local basis and provide readily available expertise to end users. The accreditation process is an effort to provide better measurement assurance for surveys of radiation fields. The status of the accreditation program, general criteria, gamma-ray calibration criteria, and x-ray calibration criteria are reviewed

  2. Immediate needs for MQA testing at state secondary calibration laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Cline, R. [Radiation Instrument Calibration Laboratory, Springfield, IL (United States)

    1993-12-31

    The Calibration Laboratory attempts to provide services that satisfy the needs and requests for a variety of customers. New needs and requests have resulted in calibration of instrumentation outside the original laboratory designs. These tasks require several changes at the laboratory and a need for new support services, especially measurement quality assurance (MQA). The MQA tests are gamma (Cs-137) below 0.5 mrem (5{mu}Sv) per hour and x-ray kVp. Modification to the current gamma (Cs-137) MQA test is recommended because lower intensity fields are commonly measured.

  3. Immediate needs for MQA testing at state secondary calibration laboratories

    International Nuclear Information System (INIS)

    Cline, R.

    1993-01-01

    The Calibration Laboratory attempts to provide services that satisfy the needs and requests for a variety of customers. New needs and requests have resulted in calibration of instrumentation outside the original laboratory designs. These tasks require several changes at the laboratory and a need for new support services, especially measurement quality assurance (MQA). The MQA tests are gamma (Cs-137) below 0.5 mrem (5μSv) per hour and x-ray kVp. Modification to the current gamma (Cs-137) MQA test is recommended because lower intensity fields are commonly measured

  4. Inter-laboratory project q calibration of SANS instruments using silver behenate

    International Nuclear Information System (INIS)

    Ikram, Abarrul; Gunawan; Edy Giri, Putra; Suzuki, Jun-ichi; Knott, Robert

    2000-01-01

    The inter-laboratory project for q-calibration of SANS (small angle neutron scattering) using silver behenate was carried out among Indonesia National Nuclear Energy Agency (BATAN), Japan Atomic Energy Research Institute (JAERI) and Australian Nuclear Science and Technology Organization (ANSTO). The standard sample of silver behenate, [CH 3 (CH 2 ) 20 COOAg](AgBE), has been assessed as an international standard for the calibration of both x-ray and neutron scattering instruments. The results indicate excellent agreement for q calibration obtained among the three laboratories, BATAN, JAERI and ANSTO. (Y. Kazumata)

  5. Calibration Laboratory for Medical Physics towards ISO/ IEC 17025 accreditation: Experience and challenges

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Abdul Aziz Ramli; Muhammad Jamal Isa; Sharul Azlan Azizan

    2011-01-01

    Medical Physics Calibration Laboratory is laboratory where placed under Medical Physics Group, Radiation Healthy and Safety Division. This laboratory offers calibration services to their customers that covered doses calibration, tube voltan (kVp), exposure doses, sensitometer and densitometer. After 12 years of operation, it is the right time for this laboratory to upgrade their quality services based on ISO/ IEC 17025. Accreditation scope covered calibration for diagnostic doses only. Starting from 2009, serious effort was done to prepare the quality documents that covered quality manual, quality procedure and work orders. Meanwhile, several series of audit were done by Quality Management Center (QMC), now Innovation Management Center (IMC) with collaboration with Standard Department. This paper works revealed challenges and experience during the process toward ISO/ IEC 17025 accreditation. (author)

  6. Laboratory panel and radiometer calibration

    CSIR Research Space (South Africa)

    Deadman, AJ

    2011-07-01

    Full Text Available stream_source_info Griffith1_2011.pdf.txt stream_content_type text/plain stream_size 16659 Content-Encoding ISO-8859-1 stream_name Griffith1_2011.pdf.txt Content-Type text/plain; charset=ISO-8859-1 LABORATORY PANEL... of Land surface imaging through a ground reference standard test site?, on http://qa4eo.org/documentation.html, 2009. [2] K. J. Thome, D. L. Helder, D. Aaron, and J. D. Dewald, ?Landsat-5 TM and Landsat-7 ETM+ Absolute Radiometric Calibration Using...

  7. Practice for characterization and performance of a high-dose radiation dosimetry calibration laboratory

    International Nuclear Information System (INIS)

    2003-01-01

    This practice addresses the specific requirements for laboratories engaged in dosimetry calibrations involving ionizing radiation, namely, gamma-radiation, electron beams or X-radiation (bremsstrahlung) beams. It specifically describes the requirements for the characterization and performance criteria to be met by a high-dose radiation dosimetry calibration laboratory. The absorbed-dose range is typically between 10 and 10 5 Gy. This practice addresses criteria for laboratories seeking accreditation for performing high-dose dosimetry calibrations, and is a supplement to the general requirements described in ISO/IEC 17025. By meeting these criteria and those in ISO/IEC 17025, the laboratory may be accredited by a recognized accreditation organization. Adherence to these criteria will help to ensure high standards of performance and instill confidence regarding the competency of the accredited laboratory with respect to the services it offers

  8. High dose calibrations at the Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    McDonald, J.C.; Fox, R.A.

    1988-10-01

    The need is increasing for both high radiation exposures and calibration measurements that provide traceability of such exposures to national standards. The applications of high exposures include: electronic component damage studies, sterilization of medical products and food irradiation. Accurate high exposure measurements are difficult to obtain and cannot, in general, be carried out with a single dose measurement system or technique because of the wide range of doses and the variety of materials involved. This paper describes the dosimetric measurement and calibration techniques used at the Pacific Northwest Laboratory (PNL) that make use of radiochromic dye films, thermoluminescent dosimeters (TLDs), ionization chambers, and calorimetric dosimeters. The methods used to demonstrate the consistency of PNL calibrations with national standards will also be discussed. 4 refs

  9. The Mars Science Laboratory APXS calibration target: Comparison of Martian measurements with the terrestrial calibration

    International Nuclear Information System (INIS)

    Campbell, J.L.; King, P.L.; Burkemper, L.; Berger, J.A.; Gellert, R.; Boyd, N.I.; Perrett, G.M.; Pradler, I.; Thompson, L.; Edgett, K.S.; Yingst, R.A.

    2014-01-01

    The Mars Science Laboratory Curiosity rover carries a basalt calibration target for monitoring the performance of the alpha particle X-ray spectrometer. The spectrum acquired on Sol 34 shows increased contributions from Mg, S, Cl and Fe relative to laboratory spectra recorded before launch. Mars Hand Lens Imager images confirm changes in the appearance of the surface. Spectra taken on Sols 179 and 411 indicate some loss of the deposited material. The observations suggest deposition of a surface film likely consisting of dust mobilized by impingement of the sky crane’s terminal descent engine plumes with surface fines during Curiosity’s landing. New APXS software has been used to model the thin film that coated the calibration target on landing. The results suggest that a film of about 100 nm thickness, and containing predominantly MgO, Fe 2 O 3 , SO 3 , Cl and Na 2 O could give rise to the observed spectral changes. If this film is also present on the alpha particle sources within the APXS, then its effect is negligible and the terrestrial calibration remains appropriate

  10. Standardization of the calibration of brachytherapy sources at the IAEA dosimetry laboratory

    International Nuclear Information System (INIS)

    Shanta, A.; Andreo, P.

    1996-01-01

    A new service to SSDLs has been initiated at the IAEA Dosimetry Laboratory for providing calibrations of well-type ionisation chambers, used in brachytherapy applications, which are traceable to the International Measurement System. Considering that the most common radionuclide used in the developing countries is 137 Cs, two such sources of the type used for gynaecological intracavitary applications have been purchased by the Agency and calibrated at the National Institute of Standards and Technology (NIST), USA. These 137 Cs reference sources together with a well-type ionization chamber constitute the IAEA brachytherapy dosimetry standard. Based on the recommendations by a group of experts, a method has been developed for transferring calibrations to SSDLs which is described in this paper. The method is based on the acquisition by the SSDLs of sources and equipment similar to those at the IAEA. The well-type chamber is to be calibrated at the IAEA Dosimetry Laboratory, and this will be used at the SSDL to calibrate its own reference sources. These sources can in turn by used to calibrate well-type chambers from hospital users and to calibrate other type of sources by performing measurements in air. In order to standardize the procedures for the two methods and to provide guidance to the SSDLs, measurements have been carried out at the IAEA Dosimetry Laboratory. The reproducibility of the two type of measurements has been found to be better than 0.5%, and the uncertainty of calibrations estimated to be less than 1.5% (one standard deviation). (author). 8 refs, 8 figs, 2 tabs

  11. A report from the AVS Standards Committee - Comparison of ion gauge calibrations by several standards laboratories

    Science.gov (United States)

    Warshawsky, I.

    1982-01-01

    Calibrations by four U.S. laboratories of four hot-cathode ion gauges, in the range 0.07-13 mPa, showed systematic differences among laboratories that were much larger than the expected error of any one calibration. They also suggested that any of the four gauges tested, if properly packaged and shipped, was able to serve as a transfer standard with probable error of 2%. A second comparison was made of the calibrations by two U.S. laboratories of some other gauges that had also been calibrated by the National Physical Laboratory, England. Results did not permit conclusive determination of whether differences were due to the laboratories or to changes in the gauges.

  12. Implementation of ISO guide 25 in a medical dosimetry secondary standards calibration laboratory

    International Nuclear Information System (INIS)

    DeWerd, L.A.

    1995-01-01

    Currently, there is a great deal of discussion among industry and government agencies about ISO 9000 accreditation. U.S. manufacturers with ISO 9000 accreditation are regarded more favorably by European countries. The principles behind the ISO 9000 accreditation are based on the Total Quality Management (TQM) principles that are being implemented in many U.S. industries. This paper will deal only with the calibration issue. There is a difference in the areas covered by ISO 9000 and ISO Guide 25 documents. ISO 9000, in particular ISO 9001 - ISO 9003, cover the open-quotes calibrationclose quotes of inspection, measuring and test equipment. This equipment is basically used for open-quotes factory calibrationsclose quotes to determine that equipment is performing within manufacturer specifications. ISO Guide 25 is specifically for open-quotes calibration and testing laboratories,close quotes generally laboratories that have painstaking procedures to reduce uncertainties and establish high accuracy of the transfer of calibration. The experience of the University of Wisconsin Accredited Dosimetry Calibration Laboratory in conforming to ISO Guide 25 will be outlined. The entire laboratory staff must become familiar with the process and an individual with direct authority must become the one to maintain the quality of equipment and calibrations in the role of open-quotes quality-assurance manager.close quotes

  13. The Mars Science Laboratory APXS calibration target: Comparison of Martian measurements with the terrestrial calibration

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Ontario N1G2W1 (Canada); King, P.L. [Guelph-Waterloo Physics Institute, University of Guelph, Ontario N1G2W1 (Canada); Institute of Meteoritics, University of New Mexico, NM 87131 (United States); Department of Earth Sciences, Western University, London, Ontario N6A3K7 (Canada); Burkemper, L. [Institute of Meteoritics, University of New Mexico, NM 87131 (United States); Berger, J.A. [Institute of Meteoritics, University of New Mexico, NM 87131 (United States); Department of Earth Sciences, Western University, London, Ontario N6A3K7 (Canada); Gellert, R.; Boyd, N.I.; Perrett, G.M.; Pradler, I. [Guelph-Waterloo Physics Institute, University of Guelph, Ontario N1G2W1 (Canada); Thompson, L. [Planetary and Space Science Centre, University of New Brunswick, Fredericton, NB E3B5A3 (Canada); Edgett, K.S. [Malin Space Science Systems, San Diego, CA 92191-0148 (United States); Yingst, R.A. [Planetary Science Institute, Tucson, AZ 85719-2395 (United States)

    2014-03-15

    The Mars Science Laboratory Curiosity rover carries a basalt calibration target for monitoring the performance of the alpha particle X-ray spectrometer. The spectrum acquired on Sol 34 shows increased contributions from Mg, S, Cl and Fe relative to laboratory spectra recorded before launch. Mars Hand Lens Imager images confirm changes in the appearance of the surface. Spectra taken on Sols 179 and 411 indicate some loss of the deposited material. The observations suggest deposition of a surface film likely consisting of dust mobilized by impingement of the sky crane’s terminal descent engine plumes with surface fines during Curiosity’s landing. New APXS software has been used to model the thin film that coated the calibration target on landing. The results suggest that a film of about 100 nm thickness, and containing predominantly MgO, Fe{sub 2}O{sub 3}, SO{sub 3}, Cl and Na{sub 2}O could give rise to the observed spectral changes. If this film is also present on the alpha particle sources within the APXS, then its effect is negligible and the terrestrial calibration remains appropriate.

  14. Proficiency Testing Activities of Frequency Calibration Laboratories in Taiwan, 2009

    Science.gov (United States)

    2009-11-01

    cht.com.tw Abstract In order to meet the requirements of ISO 17025 and the demand of TAF (Taiwan Accreditation Foundation) for calibration inter... IEC 17025 General requirements for the competence of testing and calibration laboratories. The proficiency testing results are then important...on-site evaluation, an assessment team is organized to examine the technical competence of the labs and their compliance with the requirements of ISO

  15. Calibration Device Designed for proof ring used in SCC Experiment

    Science.gov (United States)

    Hu, X. Y.; Kang, Z. Y.; Yu, Y. L.

    2017-11-01

    In this paper, a calibration device for proof ring used in SCC (Stress Corrosion Cracking) experiment was designed. A compact size loading device was developed to replace traditional force standard machine or a long screw nut. The deformation of the proof ring was measured by a CCD (Charge-Coupled Device) during the calibration instead of digital caliper or a dial gauge. The calibration device was verified at laboratory that the precision of force loading is ±0.1% and the precision of deformation measurement is ±0.002mm.

  16. Collimation system for a laboratory of primary and secondary ionizing radiation calibration

    International Nuclear Information System (INIS)

    Oliveira, S.R.; David, M.G.

    2003-01-01

    This work is part of a cooperation plan between the LNMRI/IRD and the LCR/UERJ, for the a primary calibration at the IRD and a secondary laboratory at the LCR, both calibrated for mammographic beams which will be part a Calibration National Network. For the mounting of the primary laboratory, the first step was to install two additional collimators in order to guarantee that the beam area over the ionization chamber to satisfy the calibration international standards. So, the collimators were constructed obeying the geometric rules, the first being of conic format and the second of the cylindrical format, therefore avoiding the effects of the scattering radiation on the edges. By using this collimation system it was possible to verify the uniformity of the radiation field incident the ionization chamber to be over 98% of the total area, guaranteeing better precision of the measurement

  17. Determination of the scattered radiation at the Neutron Calibration Laboratory of IPEN using the shadow cone method

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Tallyson S.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Freitas, Bruno M. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Fonseca, Evaldo S.; Pereira, Walsan W., E-mail: talvarenga@ipen.br, E-mail: lcaldas@ipen.br, E-mail: bfreitas@con.ufrj.br, E-mail: walsan@ird.gov.br, E-mail: evaldo@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Because of the increase in the demand for the calibration of neutron detectors, there is a need for new calibration services. In this context, the Calibration Laboratory of Instituto de Pesquisas Energéticas e Nucleares (IPEN), São Paulo, which already offers calibration services of radiation detectors with standard X, gamma, beta and alpha beams, has recently projected a new test laboratory for neutron detectors. This work evaluated the contribution of dispersed neutron radiation in this laboratory, using the cone shadow method and a Bonner sphere spectrometer to take the measurements at a distance of 100 cm from the neutron source. The dosimetric quantities H⁎(10) and H⁎(10) were obtained at the laboratory, allowing the calibration of detectors. (author)

  18. Determination of the scattered radiation at the Neutron Calibration Laboratory of IPEN using the shadow cone method

    International Nuclear Information System (INIS)

    Alvarenga, Tallyson S.; Caldas, Linda V.E.; Freitas, Bruno M.

    2017-01-01

    Because of the increase in the demand for the calibration of neutron detectors, there is a need for new calibration services. In this context, the Calibration Laboratory of Instituto de Pesquisas Energéticas e Nucleares (IPEN), São Paulo, which already offers calibration services of radiation detectors with standard X, gamma, beta and alpha beams, has recently projected a new test laboratory for neutron detectors. This work evaluated the contribution of dispersed neutron radiation in this laboratory, using the cone shadow method and a Bonner sphere spectrometer to take the measurements at a distance of 100 cm from the neutron source. The dosimetric quantities H⁎(10) and H⁎(10) were obtained at the laboratory, allowing the calibration of detectors. (author)

  19. Assessment of annual pollutant loads in combined sewers from continuous turbidity measurements: sensitivity to calibration data.

    Science.gov (United States)

    Lacour, C; Joannis, C; Chebbo, G

    2009-05-01

    This article presents a methodology for assessing annual wet weather Suspended Solids (SS) and Chemical Oxygen Demand (COD) loads in combined sewers, along with the associated uncertainties from continuous turbidity measurements. The proposed method is applied to data from various urban catchments in the cities of Paris and Nantes. The focus here concerns the impact of the number of rain events sampled for calibration (i.e. through establishing linear SS/turbidity or COD/turbidity relationships) on the uncertainty of annual pollutant load assessments. Two calculation methods are investigated, both of which rely on Monte Carlo simulations: random assignment of event-specific calibration relationships to each individual rain event, and the use of an overall relationship built from the entire available data set. Since results indicate a fairly low inter-event variability for calibration relationship parameters, an accurate assessment of pollutant loads can be derived, even when fewer than 10 events are sampled for calibration purposes. For operational applications, these results suggest that turbidity could provide a more precise evaluation of pollutant loads at lower cost than typical sampling methods.

  20. Calibration of radioprotection equipment gamma radiation at the Laboratory of Ionizing Radiation Metrology - DEN/UFPE

    International Nuclear Information System (INIS)

    Nazario, Macilene; Khoury, Helen; Hazin, Clovis

    2003-01-01

    This work presents aspects of the radioprotection equipment calibration service of the Laboratory for Metrology of Ionizing Radiations (LMRI) of the DEN/UFPE related to the calibration procedures, characteristics of the radiation beam and the evaluation of equipment calibrated in the period of 2001-2002. The LMRI-DEN/UFPE is one of the four laboratories in Brazil licensed by the Brazilian Nuclear Energy Commission for the execution of calibration services on area, surface contamination and personal monitors used by industries, hospitals, universities and research institutes using radioactive sources

  1. Services of the CDRH X-ray calibration laboratory and their traceability to National Standards

    Energy Technology Data Exchange (ETDEWEB)

    Cerra, F.; Heaton, H.T. [Center for Devices and Radiological Health, Rockville, MD (United States)

    1993-12-31

    The X-ray Calibration Laboratory (XCL) of the Center for Devices and Radiological Health (CDRH) provides calibration services for the Food and Drug Administration (FDA). The instruments calibrated are used by FDA and contract state inspectors to verify compliance with federal x-ray performance standards and for national surveys of x-ray trends. In order to provide traceability of measurements, the CDRH XCL is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for reference, diagnostic, and x-ray survey instrument calibrations. In addition to these accredited services, the CDRH XCL also calibrates non-invasive kVp meters in single- and three-phase x-ray beams, and thermoluminescent dosimeter (TLD) chips used to measure CT beam profiles. The poster illustrates these services and shows the traceability links back to the National Standards.

  2. Services of the CDRH X-ray calibration laboratory and their traceability to National Standards

    International Nuclear Information System (INIS)

    Cerra, F.; Heaton, H.T.

    1993-01-01

    The X-ray Calibration Laboratory (XCL) of the Center for Devices and Radiological Health (CDRH) provides calibration services for the Food and Drug Administration (FDA). The instruments calibrated are used by FDA and contract state inspectors to verify compliance with federal x-ray performance standards and for national surveys of x-ray trends. In order to provide traceability of measurements, the CDRH XCL is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for reference, diagnostic, and x-ray survey instrument calibrations. In addition to these accredited services, the CDRH XCL also calibrates non-invasive kVp meters in single- and three-phase x-ray beams, and thermoluminescent dosimeter (TLD) chips used to measure CT beam profiles. The poster illustrates these services and shows the traceability links back to the National Standards

  3. Tritium monitor calibration at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Bjork, C.J.; Aikin, D.J.; Houlton, T.W.

    1997-08-01

    Tritium in air is monitored at Los Alamos National Laboratory (LANL) with air breathing instruments based on ionization chambers. Stack emissions are continuously monitored from sample tubes which each connect to a Tritium bubble which differentially collects HTO and HT. A set of glass vials of glycol capture the HTO. The HT is oxidized with a palladium catalyst and the resultant HTO is captured in a second set of vials of glycol. The glycol is counted with a liquid scintillation counter. All calibrations are performed with tritium containing gas. The Radiation Instrumentation and Calibration (RIC) Team has constructed and maintains two closed loop gas handling systems based on femto TECH model U24 tritium ion chamber monitors: a fixed system housed in a fume hood and a portable system mounted on two two wheeled hand trucks. The U24 monitors are calibrated against tritium in nitrogen gas standards. They are used as standard transfer instruments to calibrate other ion chamber monitors with tritium in nitrogen, diluted with air. The gas handling systems include a circulation pump which permits a closed circulation loop to be established among the U24 monitor and typically two to four other monitors of a given model during calibration. Fixed and portable monitors can be calibrated. The stack bubblers are calibrated in the field by: blending a known concentration of tritium in air within the known volume of the two portable carts, coupled into a common loop; releasing that gas mixture into a ventilation intake to the stack; collecting oxidized tritium in the bubbler; counting the glycol; and using the stack and bubbler flow rates, computing the bubbler's efficiency. Gas calibration has become a convenient and quality tool in maintaining the tritium monitors at LANL

  4. Calibrated Properties Model

    International Nuclear Information System (INIS)

    Ahlers, C.; Liu, H.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the ''AMR Development Plan for U0035 Calibrated Properties Model REV00. These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions

  5. Optimized star sensors laboratory calibration method using a regularization neural network.

    Science.gov (United States)

    Zhang, Chengfen; Niu, Yanxiong; Zhang, Hao; Lu, Jiazhen

    2018-02-10

    High-precision ground calibration is essential to ensure the performance of star sensors. However, the complex distortion and multi-error coupling have brought great difficulties to traditional calibration methods, especially for large field of view (FOV) star sensors. Although increasing the complexity of models is an effective way to improve the calibration accuracy, it significantly increases the demand for calibration data. In order to achieve high-precision calibration of star sensors with large FOV, a novel laboratory calibration method based on a regularization neural network is proposed. A multi-layer structure neural network is designed to represent the mapping of the star vector and the corresponding star point coordinate directly. To ensure the generalization performance of the network, regularization strategies are incorporated into the net structure and the training algorithm. Simulation and experiment results demonstrate that the proposed method can achieve high precision with less calibration data and without any other priori information. Compared with traditional methods, the calibration error of the star sensor decreased by about 30%. The proposed method can satisfy the precision requirement for large FOV star sensors.

  6. Improvement of the quality control program of the clinical dosimeters calibration laboratory of the IPEN/CNEN-SP

    Energy Technology Data Exchange (ETDEWEB)

    Damatto, Willian B.; Potiens, Maria da Penha A.; Vivolo, Vitor, E-mail: wbdamatto@ipen.br, E-mail: mppotiens@ipen.br, E-mail: vivolo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    A set of clinical dosimeters (thimble ionization chamber coupled to an electrometer) commonly used in radiotherapy in Brazil and sent to the Calibration Laboratory of IPEN were under several tests and analysis parameters for the dosimeters behaviour were established, specifying their sensitivities and operating characteristics. Applied tests were: repeatability, reproducibility and current leakage. Thus it was possible to determine the most common defects found in these equipment and the actions that could be taken to prevent it (clinical dosimeters quality control programs). The behaviour of 167 dosimeters was analyzed and in this study, 62 of them have been tested. The main problem detected during calibration tests was current leakage, i.e. electronic noise. The tests were applied to the routine measurements at the Calibration Laboratory implementing an ideal calibration procedure. New calibration criteria were established following international recommendations. Therefore, it was made the improvement of the quality control programme of the clinical dosimeters calibration laboratory, benefiting the users of such equipment with better consistent calibration measurements. (author)

  7. Improvement of the quality control program of the clinical dosimeters calibration laboratory of the IPEN/CNEN-SP

    International Nuclear Information System (INIS)

    Damatto, Willian B.; Potiens, Maria da Penha A.; Vivolo, Vitor

    2013-01-01

    A set of clinical dosimeters (thimble ionization chamber coupled to an electrometer) commonly used in radiotherapy in Brazil and sent to the Calibration Laboratory of IPEN were under several tests and analysis parameters for the dosimeters behaviour were established, specifying their sensitivities and operating characteristics. Applied tests were: repeatability, reproducibility and current leakage. Thus it was possible to determine the most common defects found in these equipment and the actions that could be taken to prevent it (clinical dosimeters quality control programs). The behaviour of 167 dosimeters was analyzed and in this study, 62 of them have been tested. The main problem detected during calibration tests was current leakage, i.e. electronic noise. The tests were applied to the routine measurements at the Calibration Laboratory implementing an ideal calibration procedure. New calibration criteria were established following international recommendations. Therefore, it was made the improvement of the quality control programme of the clinical dosimeters calibration laboratory, benefiting the users of such equipment with better consistent calibration measurements. (author)

  8. Calibrated Properties Model

    International Nuclear Information System (INIS)

    Ahlers, C.F.; Liu, H.H.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the AMR Development Plan for U0035 Calibrated Properties Model REV00 (CRWMS M and O 1999c). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions

  9. Photovoltaic Device Performance Evaluation Using an Open-Hardware System and Standard Calibrated Laboratory Instruments

    Directory of Open Access Journals (Sweden)

    Jesús Montes-Romero

    2017-11-01

    Full Text Available This article describes a complete characterization system for photovoltaic devices designed to acquire the current-voltage curve and to process the obtained data. The proposed system can be replicated for educational or research purposes without having wide knowledge about electronic engineering. Using standard calibrated instrumentation, commonly available in any laboratory, the accuracy of measurements is ensured. A capacitive load is used to bias the device due to its versatility and simplicity. The system includes a common part and an interchangeable part that must be designed depending on the electrical characteristics of each PV device. Control software, developed in LabVIEW, controls the equipment, performs automatic campaigns of measurements, and performs additional calculations in real time. These include different procedures to extrapolate the measurements to standard test conditions and methods to obtain the intrinsic parameters of the single diode model. A deep analysis of the uncertainty of measurement is also provided. Finally, the proposed system is validated by comparing the results obtained from some commercial photovoltaic modules to the measurements given by an independently accredited laboratory.

  10. History, organization, and oversight of the accredited dosimetry calibration laboratories by the AAPM

    Energy Technology Data Exchange (ETDEWEB)

    Rozenfeld, M. [St. James Hospital and Health Centers, Chicago Heights, IL (United States)

    1993-12-31

    For more than 20 years, the American Association of Physicists in Medicine (AAPM) has operated an accreditation program for secondary standards laboratories that calibrate radiation measuring instruments. Except for one short period, that program has been able to provide the facilities to satisfy the national need for accurate calibrations of such instruments. That exception, in 1981, due to the combination of the U.S. Nuclear Regulatory Commission (NRC) requiring instrument calibrations by users of cobalt-60 teletherapy units and the withdrawal of one of the three laboratories accredited at that time. However, after successful operation as a Task Group of the Radiation Therapy Committee (RTC) of the AAPM for two decades, a reorganization of this structure is now under serious consideration by the administration of the AAPM.

  11. History, organization, and oversight of the accredited dosimetry calibration laboratories by the AAPM

    International Nuclear Information System (INIS)

    Rozenfeld, M.

    1993-01-01

    For more than 20 years, the American Association of Physicists in Medicine (AAPM) has operated an accreditation program for secondary standards laboratories that calibrate radiation measuring instruments. Except for one short period, that program has been able to provide the facilities to satisfy the national need for accurate calibrations of such instruments. That exception, in 1981, due to the combination of the U.S. Nuclear Regulatory Commission (NRC) requiring instrument calibrations by users of cobalt-60 teletherapy units and the withdrawal of one of the three laboratories accredited at that time. However, after successful operation as a Task Group of the Radiation Therapy Committee (RTC) of the AAPM for two decades, a reorganization of this structure is now under serious consideration by the administration of the AAPM

  12. Challenges in application of Active Cold Loads for microwave radiometer calibration

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Balling, Jan E.; Skou, Niels

    2012-01-01

    Two Active Cold Loads (ACLs) for microwave radiometer calibration, operating at X-band, are evaluated with respect to important stability parameters. Using a stable radiometer system as test bed, absolute levels of 77 K and 55 K are found. This paper identifies and summarizes potential challenges...

  13. GESCAL: Quality management automated system for a calibration and test laboratory

    International Nuclear Information System (INIS)

    Manzano de Armas, J.; Valdes Ramos, M.; Morales Monzon, J.A.

    1998-01-01

    GESCAL is a software created to automate all elements composing the quality system in a calibration and test laboratory. It also evaluates quality according to its objectives and policies. This integrated data system decreases considerably the amount of time devoted to manage quality. It is speedier in searching and evaluating information registers thus notably in reducing the workload for laboratory staff

  14. Conception of the Instrument Calibration Laboratory of Ionizing Radiation Measurement (LACIMRI) of CTMSP - Sao Paulo, SP

    International Nuclear Information System (INIS)

    Silva, Raimundo Dias da; Kibrit, Eduardo

    2009-01-01

    The present work describes the phases of implantation of calibration laboratory of ionizing radiation measurement instruments at the CTMSP, Sao Paulo, in a priory approved by CNEN, Brazil. That laboratory will allow and enhance the present metrological capacity for the attendance to the growing demand for calibration services of the instruments

  15. A convenient calibrator for tritium survey meters

    International Nuclear Information System (INIS)

    Cutler, J.M.; Janmohamed, S.R.; Surette, R.A.; Wood, M.J.

    1993-06-01

    Staff in Ontario Hydro's CANDU nuclear power stations were having difficulty calibrating their tritium-in-air survey meters. Chalk River Laboratories suggested using a standard silica gel collector loaded with tritiated water vapour as a radiation source. The collector is a polyethylene tube with a length of rubber tubing attached to each end. The plastic tube is filled with dry silica gel, and cotton wool is stuffed into each end to retain the gel. To load the source with tritiated vapour, a bubbler containing tritiated water is connected to the collector until the gel is completely pink. The end tubes of the source are then connected to each other to seal the source. To use the source, the rubber tubes are connected to the intake and exhaust fittings of the survey meter to be calibrated. No tritium vapour is released during loading or calibration. This source not only verifies that the ion chamber and electrometer are working, but also checks whether the air sample is reaching the detector. It is more direct and credible than a gamma source, and is inexpensive and convenient to construct and calibrate at the power station. 5 figs

  16. Quality assurance programme at the National Calibration Laboratory in Tanzania

    International Nuclear Information System (INIS)

    Muhogora, W.E.; Yoloye, O.; Ngaile, J.; Lema, U.S.

    2000-01-01

    A quality assurance programme at the National Calibration Laboratory for ionizing radiation in Tanzania is described. The programme focuses mainly on regular stability check source and reference output measurements, performance testing of TLD systems as well as some external audit checks. It is found that the stability check source measurements are within ± 1%. Similarly, the air kerma rate measurements agree well with calibration uncertainties, that is ± 2% for protection level measurements and ± 1.5% for clinical dosimetry. The results of comparison of dose measurements done on site and those obtained from some external audit checks are also within requirements. This shows that the working standards have been kept with good care, and that the traceability to the international measurement system is adequately maintained. Some examples on calibration transfer activities are briefly discussed

  17. Requirements for the authorization of operation os a calibration laboratory of gamma-ray monitors

    International Nuclear Information System (INIS)

    Silva, Raimundo Dias da; Kibrit, Eduardo

    2011-01-01

    This paper describes the process for obtaining the authorization of operation of a laboratory designed to calibrate area and personal monitors with gamma radiation, by using a sealed Cs-137 source. The regulations of Comissao Nacional de Energia Nuclear (CNEN) are deeply analysed and discussed. The authorization for construction, the authorization for modification of items important to safety, the authorization for the acquisition and handling of radiation sources, the authorization for operating, and the authorization for withdrawal of operation of the laboratory are also discussed. The paper also describes the technical and managerial requirements necessary to operate a gamma radiation calibration laboratory in Brazil. . (author)

  18. Air kerma standardization for diagnostic radiology, and requirements proposal for calibration laboratories

    International Nuclear Information System (INIS)

    Ramos, Manoel Mattos Oliveira

    2009-01-01

    The demand for calibration services and quality control in diagnostic radiology has grown in the country since the publication of the governmental regulation 453, issued by the Ministry of Health in 1998. At that time, to produce results facing the new legislation, many laboratories used different standards and radiation qualities, some of which could be inadequate. The international standards neither supplied consistent radiation qualities and standardization for the different types of equipment available. This situation changed with the publication of the new edition of the IEC 61267 standard, published in 2005. A metrology network was created, but it is not yet accredited by the accreditation organism of the country, INMETRO. The objective of this work was to implement the standardization of the air kerma for the un attenuated qualities (RQR) of IEC 61267, and to develop a requirement proposal for instruments calibration laboratories. Results of interlaboratory comparisons demonstrate that the quantity is standardized and internationally traceable. A laboratory requirement proposal was finalized and it shall be submitted to INMETRO to be used as auxiliary normative document in laboratory accreditation. (author)

  19. The role of a certified calibration laboratory in a station's measuring and test equipment calibration, repair, and documentation program

    International Nuclear Information System (INIS)

    Ebenstreit, K.; MacIntosh, N.

    1995-01-01

    This paper outlines the role of a Certified Calibration Laboratory in- ensuring that the requirements of Measuring and Test Equipment calibration, identification, and traceability are met and documented. The Nuclear environment is one which is subject to influences from numerous 'quality agents'. One of the fields which comes under the scrutiny of the quality agents is that of equipment calibration and repair (both field components and M and TE). There is a responsibility to produce a superior product for the Ontario Consumer. The maintenance and calibration of Station Systems and their components have a direct impact on this output. The Measuring and Test Equipment element in each of these needs can be addressed by having a defined group of Maintenance Staff to execute a Measuring and Test Equipment Program which meets specific parameters. (author)

  20. Exercise for laboratory comparison of calibration coefficient in 137Cs beam, radiation protection - 2013/2014

    International Nuclear Information System (INIS)

    Cabral, T.S.; Potiens, M.P.A.; Soares, C.M.A.; Silveira, R.R.; Khoury, H.; Borges, J.C.

    2015-01-01

    This work deals with the preliminary results of the second exercise of comparing the radiation monitors calibration laboratories in Brazil. The exercise involved eight laboratories and the measured quantity is the air kerma in a beam of 137 Cs for radioprotection. The exercise was conducted by the LNMRI/IRD, in a star shaped arrangement from October 2013 to July 2015. The largest deviation was 2% of the calibration coefficient that is acceptable for applications in radioprotection. (author)

  1. Design and laboratory calibration of the compact pushbroom hyperspectral imaging system

    Science.gov (United States)

    Zhou, Jiankang; Ji, Yiqun; Chen, Yuheng; Chen, Xinhua; Shen, Weimin

    2009-11-01

    The designed hyperspectral imaging system is composed of three main parts, that is, optical subsystem, electronic subsystem and capturing subsystem. And a three-dimensional "image cube" can be obtained through push-broom. The fore-optics is commercial-off-the-shelf with high speed and three continuous zoom ratios. Since the dispersive imaging part is based on Offner relay configuration with an aberration-corrected convex grating, high power of light collection and variable view field are obtained. The holographic recording parameters of the convex grating are optimized, and the aberration of the Offner configuration dispersive system is balanced. The electronic system adopts module design, which can minimize size, mass, and power consumption. Frame transfer area-array CCD is chosen as the image sensor and the spectral line can be binned to achieve better SNR and sensitivity without any deterioration in spatial resolution. The capturing system based on the computer can set the capturing parameters, calibrate the spectrometer, process and display spectral imaging data. Laboratory calibrations are prerequisite for using precise spectral data. The spatial and spectral calibration minimize smile and keystone distortion caused by optical system, assembly and so on and fix positions of spatial and spectral line on the frame area-array CCD. Gases excitation lamp is used in smile calibration and the keystone calculation is carried out by different viewing field point source created by a series of narrow slit. The laboratory and field imaging results show that this pushbroom hyperspectral imaging system can acquire high quality spectral images.

  2. Construction and operation of an improved radiation calibration facility at Brookhaven National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1994-10-01

    Calibration of instruments used to detect and measure ionizing radiation has been conducted over the last 20 years at Brookhaven National Laboratory's (BNL) Radiation Calibration Facility, Building 348. Growth of research facilities, projects in progress, and more stringent Department of Energy (DOE) orders which involve exposure to nuclear radiation have placed substantial burdens on the existing radiation calibration facility. The facility currently does not meet the requirements of DOE Order 5480.4 or American National Standards Institute (ANSI) N323-1978, which establish calibration methods for portable radiation protection instruments used in the detection and measurement of levels of ionizing radiation fields or levels of radioactive surface contaminations. Failure to comply with this standard could mean instrumentation is not being calibrated to necessary levels of sensitivity. The Laboratory has also recently obtained a new neutron source and gamma beam irradiator which can not be made operational at existing facilities because of geometry and shielding inadequacies. These sources are needed to perform routine periodic calibrations of radiation detecting instruments used by scientific and technical personnel and to meet BNL's substantial increase in demand for radiation monitoring capabilities. To place these new sources into operation, it is proposed to construct an addition to the existing radiation calibration facility that would house all calibration sources and bring BNL calibration activities into compliance with DOE and ANSI standards. The purpose of this assessment is to identify potential significant environmental impacts associated with the construction and operation of an improved radiation calibration facility at BNL

  3. Laboratory implantation for well type ionization chambers calibration; Implantacao de um laboratorio para calibracao de camaras de ionizacao tipo poco

    Energy Technology Data Exchange (ETDEWEB)

    Vianello, E.A.; Dias, D.J.; Almeida, C.E. de [Laboratorio de Ciencias Radiologicas- LCR- DBB (UERJ). R. Sao Francisco Xavier, 524- Pav. HLC, sala 136 terreo- CEP 20.550-013. Rio de Janeiro (Brazil)

    1998-12-31

    The Radiological Science Laboratory is implanting a service for calibration of well type chambers by IAEA training program. The kerma rate in the air (mu Gy/h) of the linear Cs-137 reference source CDCS-J4 have been determined using a well type chamber Standard Imaging HDR-1000 model, which have been calibrated at Secondary Standard Laboratory Calibration of IAEA, whereas two HDR-1000 Plus chambers were calibrated too, following the same standards. The results were compared with Wisconsin University calibration certification and has demonstrated that well type ionization chamber calibration can be used in brachytherapy for several kinds of radionuclides. (Author)

  4. Project of an integrated calibration laboratory of instruments at IPEN; Projeto de um laboratorio integrado de calibracao de instrumentos no IPEN

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Gustavo Adolfo San Jose

    2009-07-01

    The Calibration Laboratory of Instruments of Instituto de Pesquisas Energeticas e Nucleares offers calibration services of radiation detectors used in radioprotection, diagnostic radiology and radiotherapy, for IPEN and for external facilities (public and private). One part of its facilities is located in the main building, along with other laboratories and study rooms, and another part in an isolated building called Bunker. For the optimization, modernization and specially the safety, the laboratories in the main building shall be transferred to an isolated place. In this work, a project of an integrated laboratory for calibration of instruments was developed, and it will be an expansion of the current Calibration Laboratory of Instruments of IPEN. Therefore, a series of radiometric monitoring of the chosen localization of the future laboratory was realized, and all staff needs (dimensions and disposition of the study rooms and laboratories) were defined. In this project, the laboratories with X ray equipment, alpha and beta radiation sources were located at an isolated part of the building, and the wall shielding was determined, depending on the use of each laboratory. (author)

  5. Dosimeter calibration facilities and methods at the Radiation Measurement Laboratory of the Centre d'etudes nucleaires, Grenoble

    International Nuclear Information System (INIS)

    Choudens, H. de; Herbaut, Y.; Haddad, A.; Giroux, J.; Rouillon, J.; CEA Centre d'Etudes Nucleaires de Grenoble, 38

    1975-01-01

    At the Centre d'etudes nucleaires, Grenoble, the Radiation Measurement Laboratory, which forms part of the Environmental Protection and Research Department, serves the entire Centre for purposes of dosimetry and the calibration of dose meters. The needs of radiation protection are such that one must have facilities for checking periodically the calibration of radiation-monitoring instruments and developing special dosimetry techniques. It was thought a good idea to arrange for the dosimetry and radiation protection team to assist other groups working at the Centre - in particular, the staff of the biology and radiobiology laboratories - and also bodies outside the framework of the French Commissariat a l'energie atomique. Thus, technical collaboration has been established with, for example, Grenoble's Centre hospitalier universitaire (university clinic), which makes use of the facilities and skills available at the Radiation Measurement Laboratory for solving special dosimetry problems. With the Laboratory's facilities it is possible to calibrate dose meters for gamma, beta and neutron measurements

  6. Calibration laboratories as a regional repair center: consolidate or collocate

    OpenAIRE

    Mitchell, Marquita A; Pasch, John E.

    1996-01-01

    The purpose of this thesis is to examine the integration of AIMDs Miramar and North Island, and NADEP North Island calibration laboratories. The expected benefits and weaknesses or problems resulting from integration are examined. The benefits analyzed include those in the areas of manpower, training, standards reduction, inventory reduction, streamlining facilities, and increased productivity. The problems analyzed include increased transportation costs, facilities modification costs, reduce...

  7. Quality control tests in dose calibrators used in research laboratories of IPEN

    International Nuclear Information System (INIS)

    Kuahara, Lilian T.; Junior, Amaury C.R.; Martins, Elaine W.; Dias, Carla R.; Correa, Eduardo de L.; Potiens, Maria da Penha A.

    2013-01-01

    The aim of this study was to do the intercomparison between two dose calibrators used in research laboratories at IPEN-CNEN / SP, one being the Capinted NPL-CRC, of the Laboratorio de Calibracao de Instrumentos (LCI) do IPEN, and the other Capintec CRC-15R of the Centro de Radiofarmacia (CR). The standard sources used for carrying out the comparing tests between the two laboratories were 57 Co, 133 Ba and the 13 7 C s

  8. Laboratory for the Dosimetric Equipment Calibration at the Institute of Nuclear Physics in Cracow

    International Nuclear Information System (INIS)

    Bilski, P.; Budzanowski, M.; Horwacik, T.; Marczewska, B.; Nowak, T.; Olko, P.; Ryba, E.; Zbroja, K.

    2000-12-01

    A new calibration laboratory has been developed at the INP, Cracow, Poland. The laboratory is located in a hall of dimension 9 m (length) x 4 m (wide) x 4.5 m (height). For calibration purposes the Cs-137 source of activity 185 MBq / 5 Ci / is applied, placed in the 16 cm thick lead capsule. The beam is collimated using a collimator with a constant opening of 20 o . The source is placed 2 m above the ground to avoid albedo scattering. This source covers a dose rate range from 17 mGy/h to 290 μGy/h. For low-dose calibration 0.05 Ci source is applied. The positioning of the source and opening of the collimator is pneumatically controlled. The dosimeters to be calibrated are placed onto a vehicle with DC motor positioned by PC computer. The vehicle is remotely positioned with the precision of one millimetre at the distance from the source between 1 and 7 meters. The vehicle positioning is controlled electronically and additionally checked via TV-camera. Exact dosimeter positioning is performed with a medical cross-laser and with a telescope device. The construction of the vehicle allows for performing of angular irradiations. On the axis of the vehicle 320 keV Phillips X-ray tube is installed which may be used as an irradiation source. UNIDOS dosimeter with PTW ionisation chambers is used for determination of the dose rate. This calibration stand is designed for calibration of personal dosimeters, calibration of active devices for radiation protections and for research on the newly developed thermoluminescent materials. (author)

  9. Laboratory investigation of the loading rate effects in sand

    NARCIS (Netherlands)

    Huy, N.Q.; Van Tol, A.F.; Hölscher, P.

    2006-01-01

    In order to improve the interpretation of the quasi-static (e.g. Statnamic) pile load tests, a research project has been started to investigate effects of the loading rate on the bearing capacity of a pile in sand. A series of laboratory tests has been carried out. The testing program consists of a

  10. In-Situ Load System for Calibrating and Validating Aerodynamic Properties of Scaled Aircraft in Ground-Based Aerospace Testing Applications

    Science.gov (United States)

    Commo, Sean A. (Inventor); Lynn, Keith C. (Inventor); Landman, Drew (Inventor); Acheson, Michael J. (Inventor)

    2016-01-01

    An In-Situ Load System for calibrating and validating aerodynamic properties of scaled aircraft in ground-based aerospace testing applications includes an assembly having upper and lower components that are pivotably interconnected. A test weight can be connected to the lower component to apply a known force to a force balance. The orientation of the force balance can be varied, and the measured forces from the force balance can be compared to applied loads at various orientations to thereby develop calibration factors.

  11. Ultrasound data for laboratory calibration of an analytical model to calculate crack depth on asphalt pavements

    Directory of Open Access Journals (Sweden)

    Miguel A. Franesqui

    2017-08-01

    Full Text Available This article outlines the ultrasound data employed to calibrate in the laboratory an analytical model that permits the calculation of the depth of partial-depth surface-initiated cracks on bituminous pavements using this non-destructive technique. This initial calibration is required so that the model provides sufficient precision during practical application. The ultrasonic pulse transit times were measured on beam samples of different asphalt mixtures (semi-dense asphalt concrete AC-S; asphalt concrete for very thin layers BBTM; and porous asphalt PA. The cracks on the laboratory samples were simulated by means of notches of variable depths. With the data of ultrasound transmission time ratios, curve-fittings were carried out on the analytical model, thus determining the regression parameters and their statistical dispersion. The calibrated models obtained from laboratory datasets were subsequently applied to auscultate the evolution of the crack depth after microwaves exposure in the research article entitled “Top-down cracking self-healing of asphalt pavements with steel filler from industrial waste applying microwaves” (Franesqui et al., 2017 [1].

  12. Ultrasound data for laboratory calibration of an analytical model to calculate crack depth on asphalt pavements.

    Science.gov (United States)

    Franesqui, Miguel A; Yepes, Jorge; García-González, Cándida

    2017-08-01

    This article outlines the ultrasound data employed to calibrate in the laboratory an analytical model that permits the calculation of the depth of partial-depth surface-initiated cracks on bituminous pavements using this non-destructive technique. This initial calibration is required so that the model provides sufficient precision during practical application. The ultrasonic pulse transit times were measured on beam samples of different asphalt mixtures (semi-dense asphalt concrete AC-S; asphalt concrete for very thin layers BBTM; and porous asphalt PA). The cracks on the laboratory samples were simulated by means of notches of variable depths. With the data of ultrasound transmission time ratios, curve-fittings were carried out on the analytical model, thus determining the regression parameters and their statistical dispersion. The calibrated models obtained from laboratory datasets were subsequently applied to auscultate the evolution of the crack depth after microwaves exposure in the research article entitled "Top-down cracking self-healing of asphalt pavements with steel filler from industrial waste applying microwaves" (Franesqui et al., 2017) [1].

  13. How to prepare a calibration laboratory for ionizing radiation using X rays

    International Nuclear Information System (INIS)

    Bossio, Francisco; Cardoso, Ricardo de Souza; Quaresma, Daniel da Silva; Batista Filha, Luzianete do Amaral; Peixoto, Jose Guilherme Pereira

    2013-01-01

    This work shows the main features of a system for calibration and testing of radiation detectors used in low and medium energy. It is based on pre-assembly System Laboratory of Metrology Division (DIMET) Institute of Radiation Protection and Dosimetry (IRD) of the National Commission of Nuclear Energy (CNEN). (author)

  14. Laboratory calibrations of airborne gamma-ray spectrometers. Measurements and discussions of important parameters

    International Nuclear Information System (INIS)

    Korsbech, U.

    1994-02-01

    This report is the fourth of reports from The Department of Electrophysics covering measurement and interpretation of airborne gamma-spectrometry measurements. It describes different topics concerning the construction of a suitable calibration setup in the laboratory. The goal is to build a simple and cheap laboratory setup that can produce most of the gamma-ray data needed for an interpretation of spectra measured 50 to 120 m above ground level. A simple calibration setup has been build and tested. It may produce gamma-ray spectra similar to those measured in the air - from surface contamination with artificial nuclides and from 'bulk' natural radioactivity. It is possible to investigate the influence of the air above an aircraft carrying the detector (skyshine: scattering of gamma photons in the air above the detector). In order to reduce the influence of non-detected pile-up the count rates are kept low without reaching levels where the background spectra (to be subtracted) would cause unacceptable counting statistical fluctuations. Sources selected for the calibrations are heavy minerals sand (with thorium and uranium), potassium nitrate (with 40 K). These sources are 'bulk sources' of natural radioactivity. Cesium-137 has been selected as the basic artifical surface contamination nuclide. The report also discusses methods for comparing two spectra a priori assumed equal. Finally the properties of some materials that could be used as 'air-substitutes' in the calibration setup have been tested with respect to stability against moisture sorption. (au)

  15. Radiation protection calibration facilities at the National Radiation Laboratory, New Zealand

    International Nuclear Information System (INIS)

    Foote, B.J.

    1995-01-01

    The National Radiation Laboratory (NRL), serving under the Ministry of Health, provides radiation protection services to the whole of New Zealand. Consequently it performs many functions that are otherwise spread amongst several organizations in larger countries. It is the national regulatory body for radiation protection. It writes and enforces codes of safe practice, and conducts safety inspections of all workplaces using radiation. It provides a personal monitoring service for radiation workers. It also maintains the national primary standards for x-ray exposure and 60 Co air kerma. These standards are transferred to hospitals through a calibration service. The purpose of this report is to outline the primary standards facilities at NRL, and to discuss the calibration of dosemeters using these facilities. (J.P.N.)

  16. Use of Balance Calibration Certificate to Calculate the Errors of Indication and Measurement Uncertainty in Mass Determinations Performed in Medical Laboratories

    Directory of Open Access Journals (Sweden)

    Adriana VÂLCU

    2011-09-01

    Full Text Available Based on the reference document, the article proposes the way to calculate the errors of indication and associated measurement uncertainties, by resorting to the general information provided by the calibration certificate of a balance (non-automatic weighing instruments, shortly NAWI used in medical field. The paper may be also considered a useful guideline for: operators working in laboratories accredited in medical (or other various fields where the weighing operations are part of their testing activities; test houses, laboratories, or manufacturers using calibrated non-automatic weighing instruments for measurements relevant for the quality of production subject to QM requirements (e.g. ISO 9000 series, ISO 10012, ISO/IEC 17025; bodies accrediting laboratories; accredited laboratories for the calibration of NAWI. Article refers only to electronic weighing instruments having maximum capacity up to 30 kg. Starting from the results provided by a calibration certificate it is presented an example of calculation.

  17. Dynamic size spectrometry of airborne microorganisms: Laboratory evaluation and calibration

    Science.gov (United States)

    Qian, Yinge; Willeke, Klaus; Ulevicius, Vidmantas; Grinshpun, Sergey A.; Donnelly, Jean

    Bioaerosol samplers need to be calibrated for the microorganisms of interest. The Aerosizer, a relatively new aerodynamic size spectrometer, is shown to be a suitable dynamic instrument for the evaluation and calibration of such samplers in the laboratory, prior to their use in the field. It provides the necessary reference count against which the microbiological response of the sampler can be compared. It measures the health-significant aerodynamic diameters of microorganisms down to 0.5 μm, thus including most of the bacteria, fungi and pollen found in outdoor and indoor air environments. Comparison tests with a laser size spectrometer indicate that the suspension of microorganisms needs to be washed several times before aerosolization to avoid coating of the airborne microorganisms with nutrients and microbial slime from the suspension, and to reduce the residue particles to sizes below the lowest size of the aerosolized microorganisms.

  18. Calibration of a laboratory spectrophotometer for specular light by means of stacked glass plates.

    Science.gov (United States)

    Allen, W. A.; Richardson, A. J.

    1971-01-01

    Stacked glass plates have been used to calibrate a laboratory spectrophotometer, over the spectral range 0.5-2.5 microns, for specular light. The uncalibrated instrument was characterized by systematic errors when used to measure the reflectance and transmittance of stacked glass plates. Calibration included first, a determination of the reflectance of a standard composed of barium sulfate paint deposited on an aluminum plate; second, the approximation of the reflectance and transmittance residuals between observed and computed values by means of cubic equations; and, finally, the removal of the systematic errors by a computer. The instrument, after calibration, was accurate to 1% when used to measure the reflectance and transmittance of stacked glass plates.

  19. Gearbox Reliability Collaborative High Speed Shaft Tapered Roller Bearing Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Guo, Y.; McNiff, B.

    2013-10-01

    The National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) is a project investigating gearbox reliability primarily through testing and modeling. Previous dynamometer testing focused upon acquiring measurements in the planetary section of the test gearbox. Prior to these tests, the strain gages installed on the planetary bearings were calibrated in a load frame.

  20. ISO/IEC 17025–2017 "New requirements to the competence of test and calibration laboratories"

    Directory of Open Access Journals (Sweden)

    Baranova P. O.

    2018-05-01

    Full Text Available due to the continuous improvement of the regulatory framework, there is a growing demand for laboratory centers that provide services in the field of testing. The relevance of the topic lies in the transition of laboratories to the new version of ISO/IEC 17025–2017 «General requirements for the competence of test and calibration laboratories». The article compares two versions of the standard, reveals differences and similarities. And changes in the gradation of changes are also highlighted.

  1. Characterization of the radiation field of a 137Cs source in a calibration laboratory

    International Nuclear Information System (INIS)

    Barbosa, E.F.; Freitas, C.; Freire, D.; Almeida, C.E.

    2001-01-01

    Due to the broad range of radiation levels found in practice, the calibration of radiation detector requires that the laboratory have a large range of values of air kerma rates for a reference distance to the source, in order to allow the calibration of all scales. The dosimetry performed for open beam and with the different attenuators has shown deviations smaller than 5% in relation to the data supplied by the manufacturer that is acceptable. These results are in accordance with the recommendations of the ISO/DIS 4037-2

  2. Strain Gage Load Calibration of the Wing Interface Fittings for the Adaptive Compliant Trailing Edge Flap Flight Test

    Science.gov (United States)

    Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.

    2014-01-01

    This is the presentation to follow conference paper of the same name. The adaptive compliant trailing edge (ACTE) flap experiment safety of flight requires that the flap to wing interface loads be sensed and monitored in real time to ensure that the wing structural load limits are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces will be monitored and each contains four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty one applied test load cases were developed using the predicted in-flight loads for the ACTE experiment.

  3. Calibration apparatus for precise barometers and vacuum gauges

    International Nuclear Information System (INIS)

    Woo, S.Y.; Choi, I.M.; Lee, Y.J.; Hong, S.S.; Chung, K.H.

    2004-01-01

    In order to calibrate highly accurate absolute pressure gauges, such as barometers and vacuum gauges, laser, or ultrasonic mercury manometers have been used. However, the complexity and cost of manometers have greatly reduced the use of this method in most calibration laboratories. As a substitute, a gas-operated pressure balance is used to calibrate precise gauges. In such cases, many commercially available pressure balances are unsuitable because the necessary exposure of the piston, cylinder, and masses to the atmosphere causes contamination problems and allows dust particles into the gap between the piston and cylinder. In this article, a weight-loading device is described that allows masses to be changed in situ without breaking the vacuum. This device makes it possible to add or remove weights easily during the calibration, thereby greatly reducing the time between observations. Using this device, we efficiently calibrated a precise quartz resonance barometer (Paroscientific, model 760-16B) over a pressure range of 940-1050 h Pa and a precise vacuum gauge (MKS, CDG 100 Torr) over a pressure range of 0-100 h Pa

  4. Calibration of Elasto-Magnetic Sensors on In-Service Cable-Stayed Bridges for Stress Monitoring.

    Science.gov (United States)

    Cappello, Carlo; Zonta, Daniele; Laasri, Hassan Ait; Glisic, Branko; Wang, Ming

    2018-02-05

    The recent developments in measurement technology have led to the installation of efficient monitoring systems on many bridges and other structures all over the world. Nowadays, more and more structures have been built and instrumented with sensors. However, calibration and installation of sensors remain challenging tasks. In this paper, we use a case study, Adige Bridge, in order to present a low-cost method for the calibration and installation of elasto-magnetic sensors on cable-stayed bridges. Elasto-magnetic sensors enable monitoring of cable stress. The sensor installation took place two years after the bridge construction. The calibration was conducted in two phases: one in the laboratory and the other one on site. In the laboratory, a sensor was built around a segment of cable that was identical to those of the cable-stayed bridge. Then, the sample was subjected to a defined tension force. The sensor response was compared with the applied load. Experimental results showed that the relationship between load and magnetic permeability does not depend on the sensor fabrication process except for an offset. The determination of this offset required in situ calibration after installation. In order to perform the in situ calibration without removing the cables from the bridge, vibration tests were carried out for the estimation of the cables' tensions. At the end of the paper, we show and discuss one year of data from the elasto-magnetic sensors. Calibration results demonstrate the simplicity of the installation of these sensors on existing bridges and new structures.

  5. Calibration of Elasto-Magnetic Sensors on In-Service Cable-Stayed Bridges for Stress Monitoring

    Directory of Open Access Journals (Sweden)

    Carlo Cappello

    2018-02-01

    Full Text Available The recent developments in measurement technology have led to the installation of efficient monitoring systems on many bridges and other structures all over the world. Nowadays, more and more structures have been built and instrumented with sensors. However, calibration and installation of sensors remain challenging tasks. In this paper, we use a case study, Adige Bridge, in order to present a low-cost method for the calibration and installation of elasto-magnetic sensors on cable-stayed bridges. Elasto-magnetic sensors enable monitoring of cable stress. The sensor installation took place two years after the bridge construction. The calibration was conducted in two phases: one in the laboratory and the other one on site. In the laboratory, a sensor was built around a segment of cable that was identical to those of the cable-stayed bridge. Then, the sample was subjected to a defined tension force. The sensor response was compared with the applied load. Experimental results showed that the relationship between load and magnetic permeability does not depend on the sensor fabrication process except for an offset. The determination of this offset required in situ calibration after installation. In order to perform the in situ calibration without removing the cables from the bridge, vibration tests were carried out for the estimation of the cables’ tensions. At the end of the paper, we show and discuss one year of data from the elasto-magnetic sensors. Calibration results demonstrate the simplicity of the installation of these sensors on existing bridges and new structures.

  6. Calibration

    International Nuclear Information System (INIS)

    Greacen, E.L.; Correll, R.L.; Cunningham, R.B.; Johns, G.G.; Nicolls, K.D.

    1981-01-01

    Procedures common to different methods of calibration of neutron moisture meters are outlined and laboratory and field calibration methods compared. Gross errors which arise from faulty calibration techniques are described. The count rate can be affected by the dry bulk density of the soil, the volumetric content of constitutional hydrogen and other chemical components of the soil and soil solution. Calibration is further complicated by the fact that the neutron meter responds more strongly to the soil properties close to the detector and source. The differences in slope of calibration curves for different soils can be as much as 40%

  7. Calibrations and evaluation of the quality assurance during 1999 at the National Laboratory for ionising radiation

    International Nuclear Information System (INIS)

    Grindborg, Jan-Erik; Israelsson, Karl-Erik; Kylloenen, Jan-Erik; Samuelson, Goeran

    2000-06-01

    The Swedish Radiation Protection Institute is the National Laboratory for the dosimetric quantities kerma, absorbed dose and dose equivalent. The activity is based on established calibration procedures and a quality assurance program for the used standards. This report gives a brief summary of the calibrations performed during 1999 and a more detailed description and analysis of the quality assurance during this year. The report makes it easier to draw conclusions about the long-term stability and possible malfunctions

  8. Dynamic axle and wheel loads identification: laboratory studies

    Science.gov (United States)

    Zhu, X. Q.; Law, S. S.

    2003-12-01

    Two methods have been reported by Zhu and Law to identify moving loads on the top of a bridge deck. One is based on the exact solution (ESM) and the other is based on the finite element formulation (FEM). Simulation studies on the effect of different influencing factors have been reported previously. This paper comparatively studies the performances of these two methods with experimental measurements obtained from a bridge/vehicle system in the laboratory. The strains of the bridge deck are measured when a model car moves across the bridge deck along different paths. The moving loads on the bridge deck are identified from the measured strains using these two methods, and the responses are reconstructed from the identified loads for comparison with the measured responses to verify the performances of these methods. Studies on the identification accuracy due to the effect of the number of vibration mode used, the number of measuring points and eccentricities of travelling paths are performed. Results show that the ESM could identify the moving loads individually or as axle loads when they are travelling at an eccentricity with the sensors located close to the travelling path of the forces. And the accuracy of the FEM is dependent on the amount of measured information used in the identification.

  9. Determination of the scattered radiation at the Neutron Calibration Laboratory of IPEN, SP, Brazil

    International Nuclear Information System (INIS)

    Alvarenga, Tallyson; Valeriano, Caio C.S.; Caldas, Linda V.E.; Federico, Claudio A.

    2016-01-01

    With the increased use of techniques using neutron radiation, there has been a considerable growth in the number of detectors for this kind of radiation. A neutron calibration laboratory with neutron radiation ("2"4"1AmBe) was designed. In practical situations of this type of laboratory, one of the main problems is related to the knowledge of scattered radiation. In order to evaluate this scattered radiation, simulations were carried out without the presence of structural elements and with the complete room. Fourteen measuring points were evaluated in different directions at various distances. (author)

  10. Comparison on the calibrations of hydrometers for liquids density determination between SIM laboratories

    Science.gov (United States)

    Morales, Abed; Quiroga, Aldo; Daued, Arturo; Cantero, Diana; Sequeira, Francisco; Castro, Luis Carlos; Becerra, Luis Omar; Salazar, Manuel; Vega, Maria

    2017-01-01

    A supplementary comparison was made between SIM laboratories concerning the calibration of four hydrometers within the range of 600 kg/m3 to 2000 kg/m3. The main objectives of the comparison were to evaluate the degree of equivalences SIM NMIs in the calibration of hydrometers of high accuracy. The participant NMIs were: CENAM, IBMETRO, INEN, INDECOPI, INM, INTN and LACOMET. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  11. Laboratory-Based BRDF Calibration of Radiometric Tarps

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.

    2007-01-01

    The current study provides the remote sensing community with important high accuracy laboratory-based BRDF calibration of radiometric tarps. The results illustrate the dependence of tarps' weft and warp threads orientation on BRDF. The study was done at incident angles of 0deg, 10deg, and 30deg; scatter zenith angles from 0deg to 60deg, and scatter azimuth angles of 0deg, 45deg, 90deg, 135deg, and 180deg. The wavelengths were 485nm, 550nm, 633nm and 800nm. The dependence is well defined at all measurement geometries and wavelengths. It can be as high as 8% at 0deg incident angle and 2% at 30deg incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps is reported. The backward scatter is well pronounced for the white samples. The black sample has well pronounced forward scatter. The BRDF characterization of radiometric tarps can be successfully extended to other structured surface fabric samples. The results are NIST traceable.

  12. Dosimetry through the Secondary Laboratory of Dosimetric Calibration of Mexico

    International Nuclear Information System (INIS)

    Tovar M, V.M.; Alvarez R, J.T.; Medina O, V.P.; Vergara M, F.; Anaya M, R.; Cejudo A, J.; Salinas L, B.

    2004-01-01

    In the beginnings of the sixty years an urgent necessity is presented mainly in the developing countries, of improving in important form the accuracy in the dosimetry of external faces in therapy of radiations (radiotherapy centers), mainly in the calibration of c linical dosemeters . In 1976 the International Atomic Energy Agency, (IAEA), and the World Health Organization, (WHO), they carried out a mutual agreement with regard to the establishment and operation of a net of Secondary Patron Laboratories of Dosimetry, (LSCD). The necessity to establish measure patterns in the field of the dosimetry of the ionizing radiations, is necessary, to have an accuracy but high in the dosimetry of the radiation beams in therapy which is highly dependent of the dose given to the tumor of those patient with cancer. Similar levels of accuracy are required in protection measures to the radiation with an acceptable smaller accuracy, however, when the personal dosemeters are used to determine the doses received by the individuals under work conditions, such mensurations in therapy of radiations and radiological protection will have traceability through a chain of comparisons to primary or national patterns. The traceability is necessary to assure the accuracy and acceptability of the dosimetric measures, as well as, the legal and economic implications. The traceability is also necessary in the dosimetry of high dose like in the sterilization of different products. The main function of the LSCD is to provide a service in metrology of ionizing radiations, maintaining the secondary or national patterns, which have a traceability to the International System of measures, which is based for if same in the comparison of patterns in the Primary Laboratories of Dosimetry (LPD) under the auspice of the International Office of Weights and Measure (BIPM). The secondary and national patterns in the LSCD constitute in Mexico, the national patterns of the magnitudes in the dosimetry of the

  13. Bilateral comparison of the calibration laboratories in radiodiagnosis: Technical Protocol 16/17

    International Nuclear Information System (INIS)

    Peixoto, J.G.P.; Almeida, C.E.V. de

    2016-01-01

    The need to standardize the results in diagnostic radiology conditions of calibration laboratories, taking into account the applicability to conventional radiology , mammography and computed tomography where the total demand for diagnostic imaging is ≈70 % ≈4 % and ≈2 % respectively. The objective of the technical protocol is not only the equipment used , but also in terms of reference and the evaluation worksheet measurement uncertainties . The results of stability and energy dependence of transfer chamber shows these adequacy for the propose. (author)

  14. Automation of dosimeters calibration for radiotherapy in secondary dosimetric calibration laboratory of the CPHR

    International Nuclear Information System (INIS)

    Acosta, Andy L. Romero; Lores, Stefan Gutierrez

    2013-01-01

    This paper presents the design and implementation of an automated system for measurements in the calibration of reference radiation dosimeters. It was made a software application that performs the acquisition of the measured values of electric charge, calculated calibration coefficient and automates the calibration certificate issuance. These values are stored in a log file on a PC. The use of the application improves control over the calibration process, helps to humanize the work and reduces personnel exposure. The tool developed has been applied to the calibration of dosimeters radiation patterns in the LSCD of the Centro de Proteccion e Higiene de las Radiaciones, Cuba

  15. Automatization of the Calibration Laboratory for Radiation Monitors of the IRD

    International Nuclear Information System (INIS)

    Cabral, Tania S.; Ramos, Manoel M.O.; Quaresma, Daniel S.

    2007-01-01

    This work will present the concluded stages and also the ones that are still in process to reach the full automation of the calibration system. Little by little the laboratory included in its installations the automatization of some of its operations, aiming the safety of the staff and their equipment. The automation makes the installation almost ideal for the radioprotection, that is, makes its exposure as low as possible and the routines more accurate, minimizing attributed the uncertainties and the doses received by the professionals who operated the system manually. Currently, on the operation table there is a control of the position car exists and its speed, the internal TV circuit (of the room, the position of the car and equipment that is going to be calibrated), the control of the registration is done by the Autolab program and the Irradiator Buchler OB85 control with the sources of 137Cs and 60Co.A next stage will be the implantation of the automation project of the positioning of the three used attenuators. (author)

  16. Exercise for laboratory comparison of calibration coefficient in {sup 137}Cs beam, radiation protection - 2013/2014; Exercicio de comparacao laboratorial do coeficiente de calibracao em feixe de Cesio-137, radioprotecao - 2013/2014

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, T.S. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Potiens, M.P.A., E-mail: tschirn@ird.gov.br [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Soares, C.M.A. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Silveira, R.R. [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Khoury, H. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Fernandes, E. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Laboratorio de Ciencias Radiologicas; Cardoso, W.F. [Eletrobras Termonuclear S.A. (Eletronuclear), Rio de Janeiro, RJ (Brazil); Borges, J.C. [MRA Comercio de Instrumentos Eletronicos Ltda., Ribeirao Preto, SP (Brazil)

    2015-07-01

    This work deals with the preliminary results of the second exercise of comparing the radiation monitors calibration laboratories in Brazil. The exercise involved eight laboratories and the measured quantity is the air kerma in a beam of {sup 137}Cs for radioprotection. The exercise was conducted by the LNMRI/IRD, in a star shaped arrangement from October 2013 to July 2015. The largest deviation was 2% of the calibration coefficient that is acceptable for applications in radioprotection. (author)

  17. The detector calibration system for the CUORE cryogenic bolometer array

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, Jeremy S., E-mail: jeremy.cushman@yale.edu [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Dally, Adam [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Davis, Christopher J. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Ejzak, Larissa; Lenz, Daniel [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Lim, Kyungeun E. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Heeger, Karsten M., E-mail: karsten.heeger@yale.edu [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Maruyama, Reina H. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Nucciotti, Angelo [Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126 (Italy); INFN – Sezione di Milano Bicocca, Milano I-20126 (Italy); Sangiorgio, Samuele [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Wise, Thomas [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2017-02-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of {sup 130}Te and other rare events. The CUORE detector consists of 988 TeO{sub 2} bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.

  18. The biochemical estimation of age in Euphausiids: Laboratory calibration and field comparisons

    Science.gov (United States)

    Harvey, H. R.; Ju, Se-J.; Son, S.-K.; Feinberg, L. R.; Shaw, C. T.; Peterson, W. T.

    2010-04-01

    Euphausiids play a key role in many marine ecosystems as a link between primary producers and top predators. Understanding their demographic (i.e. age) structure is an essential tool to assess growth and recruitment as well as to determine how changes in environmental conditions might alter their condition and distribution. Age determination of crustaceans cannot be accomplished using traditional approaches, and here we evaluate the potential for biochemical products of tissue metabolism (termed lipofuscins) to determine the demographic structure of euphausiids in field collections . Lipofuscin was extracted from krill neural tissues (eye and eye-stalk), quantified using fluorescent intensity and normalized to tissue protein content to allow comparisons across animal sizes. Multiple fluorescent components from krill were observed, with the major product having a maximum fluorescence at excitation of 355 nm and emission of 510 nm. Needed age calibration of lipofuscin accumulation in Euphausia pacifica was accomplished using known-age individuals hatched and reared in the laboratory for over one year. Lipofuscin content extracted from neural tissues of laboratory-reared animals was highly correlated with the chronological age of animals ( r=0.87). Calibrated with laboratory lipofuscin accumulation rates, field-collected sub-adult and adult E. pacifica in the Northeast Pacific were estimated to be older than 100 days and younger than 1year. Comparative data for the Antarctic krill, E. superba showed much higher lipofuscin values suggesting a much longer lifespan than the more temperate species, E. pacifica. These regional comparisons suggest that biochemical indices allow a practical approach to estimate population age structure of diverse populations, and combined with other measurements can provide estimates of vital rates (i.e. longevity, mortality, growth) for krill populations in dynamic environments.

  19. Collection of in-Field Impact Loads Acting on a Rugby Wheelchair Frame

    Directory of Open Access Journals (Sweden)

    Francesco Bettella

    2018-02-01

    Full Text Available This work was included in a wider project oriented to the improvement of residual neuromuscular skills in disabled athletes playing wheelchair rugby: the wheelchair rugby Italian national team was involved and tests allowed to analyse the impact loads on a rugby wheelchair frame. The frame of a rugby wheelchair offensive model, made by OffCarr Company, was instrumented with four strain gauge bridges in four different points. Then, three test types were conducted in laboratory: two static calibrations with the application of known loads, the first with horizontal load and the second with vertical load, and a dynamic horizontal calibration, impacting against a fix load cell in order to validate the results of horizontal static calibration. Finally, a test session took place in the field with the collaboration of two team players. The test consisted in voluntary frontal impacts between the two players, starting from 6 meters distance each other. The opponent of the instrumented wheelchair was a defender. From this test, the value of the horizontal load received by the frame in the impact instant was quantified. Moreover, also the vertical load acting on the wheelchair during the rebound of the player after the hit was evaluated: these informations were useful to the wheelchair frame manufacturer for the proper static, impact and fatigue design.

  20. Laboratory for Calibration of Gamma Radiation Measurement Instruments (LabCal) of Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) from Brazilian Army Technology Center (CTEx)

    International Nuclear Information System (INIS)

    Amorim, Aneuri de; Balthar, Mario Cesar V.; Santos, Avelino; Vilela, Paulo Ricardo T. de; Oliveira, Luciano Santa Rita; Penha, Paulo Eduardo C. de Oliveira; Gonzaga, Roberto Neves; Andrade, Edson Ramos de; Oliveira, Celio Jorge Vasques de; Fagundes, Luiz Cesar S.

    2016-01-01

    This paper describes the calibration laboratory deployment steps (LABCAL) gamma ionizing radiation measuring instruments in the Army Technology Center, CTEx. Initially the calibration of radiation monitors will be held in the dosimetric quantity air kerma and operational quantity ambient dose equivalent H*(d). The LABCAL / CTEx has not yet authorized by CASEC / CNEN. This laboratory aims to calibrate the ionizing radiation instruments used by the Brazilian Army. (author)

  1. Load Disaggregation Technologies: Real World and Laboratory Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mayhorn, Ebony T.; Sullivan, Greg P.; Petersen, Joseph M.; Butner, Ryan S.; Johnson, Erica M.

    2016-09-28

    Low cost interval metering and communication technology improvements over the past ten years have enabled the maturity of load disaggregation (or non-intrusive load monitoring) technologies to better estimate and report energy consumption of individual end-use loads. With the appropriate performance characteristics, these technologies have the potential to enable many utility and customer facing applications such as billing transparency, itemized demand and energy consumption, appliance diagnostics, commissioning, energy efficiency savings verification, load shape research, and demand response measurement. However, there has been much skepticism concerning the ability of load disaggregation products to accurately identify and estimate energy consumption of end-uses; which has hindered wide-spread market adoption. A contributing factor is that common test methods and metrics are not available to evaluate performance without having to perform large scale field demonstrations and pilots, which can be costly when developing such products. Without common and cost-effective methods of evaluation, more developed disaggregation technologies will continue to be slow to market and potential users will remain uncertain about their capabilities. This paper reviews recent field studies and laboratory tests of disaggregation technologies. Several factors are identified that are important to consider in test protocols, so that the results reflect real world performance. Potential metrics are examined to highlight their effectiveness in quantifying disaggregation performance. This analysis is then used to suggest performance metrics that are meaningful and of value to potential users and that will enable researchers/developers to identify beneficial ways to improve their technologies.

  2. Experiences of a secondary laboratory of dosimetric calibration from the radiation protection and hygiene center CPHR in its first year of work and the procedures for quality assessment used in the calibration and quality control service

    International Nuclear Information System (INIS)

    Morales, J.A.; Campa, R.; Jova Sed, L.

    1996-01-01

    Experiences of a secondary laboratory of dosimetric calibration from the Radiation Protection and Hygiene Center (CPHR) in first year of work and the procedures for quality assessment used in the calibration and quality control service of radiotherapeutic equipment. For the yield calibration of the calibrated sources an ionometric method was used using ionizing chambers coupled to electrometers. Those determination were based on dosimetric American Association of Physicists in Medicine (AAPM)

  3. Shield calculation of project for instrument calibration integrated laboratory of IPEN-Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Barros, Gustavo A.S.J.; Caldas, Linda V.E.

    2009-01-01

    This work performed the shield calculation of the future rooms walls of the five X-ray equipment of the Instrument Calibration Laboratory of the IPEN, Sao Paulo, Brazil, which will be constructed in project of laboratory enlargement. The obtained results by application of a calculation methodology from an international regulation have shown that the largest thickness of shielding (25.7 cm of concrete or 7.1 mm of lead) will be of the wall which will receive the primary beam of the equipment with a 320 kV voltage. The cost/benefit analysis indicated the concrete as the best material option for the shielding

  4. Calibration system with cryogenically-cooled loads for cosmic microwave background polarization detectors.

    Science.gov (United States)

    Hasegawa, M; Tajima, O; Chinone, Y; Hazumi, M; Ishidoshiro, K; Nagai, M

    2011-05-01

    We present a novel system to calibrate millimeter-wave polarimeters for cosmic microwave background (CMB) polarization measurements. This technique is an extension of the conventional metal mirror rotation approach, however, it employs cryogenically-cooled blackbody absorbers. The primary advantage of this system is that it can generate a slightly polarized signal (∼100 mK) in the laboratory; this is at a similar level to that measured by ground-based CMB polarization experiments observing a ∼10 K sky. It is important to reproduce the observing condition in the laboratory for reliable characterization of polarimeters before deployment. In this paper, we present the design and principle of the system and demonstrate its use with a coherent-type polarimeter used for an actual CMB polarization experiment. This technique can also be applied to incoherent-type polarimeters and it is very promising for the next-generation CMB polarization experiments.

  5. Spectral Irradiance Calibration in the Infrared 11: Comparison of (alpha) Boo and 1 Ceres with a Laboratory Standard

    Science.gov (United States)

    Witteborn, Fred C.; Cohen, Martin; Bregman, Jess D.; Wooden, Diane; Heere, Karen; Shirley, Eric L.

    1998-01-01

    Infrared spectra of two celestial objects frequently used as flux standards are calibrated against an absolute laboratory flux standard at a spectral resolving power of 100 to 200. The spectrum of the K1.5III star, alpha Boo, is measured from 3 microns to 30 microns and that of the C-type asteroid, 1 Ceres, from 5 microns to 30 microns. While these 'standard' spectra do not have the apparent precision of those based on calculated models, they do not require the assumptions involved in theoretical models of stars and asteroids. Specifically they provide a model-independent means of calibrating celestial flux in the spectral range from 12 microns to 30 microns where accurate absolute photometry is not available. The agreement found between the spectral shapes of alpha Boo and Ceres based on laboratory standards, and those based on observed ratios to alpha CMa (Sirius) and alpha Lyr (Vega), flux calibrated by theoretical modeling of these hot stars strengthens our confidence in the applicability of the stellar models as primary irradiance standards.

  6. Quality of determinations obtained from laboratory reference samples used in the calibration of X-ray electron probe microanalysis of silicate minerals

    International Nuclear Information System (INIS)

    Pavlova, Ludmila A.; Suvorova, Ludmila F.; Belozerova, Olga Yu.; Pavlov, Sergey M.

    2003-01-01

    Nine simple minerals and oxides, traditionally used as laboratory reference samples in the electron probe microanalysis (EPMA) of silicate minerals, have been quantitatively evaluated. Three separate series of data, comprising the average concentration, standard deviation, relative standard deviation, confidence interval and the z-score of data quality, were calculated for 21 control samples derived from calibrations obtained from three sets of reference samples: (1) simple minerals; (2) oxides; and (3) certified glass reference materials. No systematic difference was observed between the concentrations obtained from these three calibration sets when analyzed results were compared to certified compositions. The relative standard deviations obtained for each element were smaller than target values for all determinations. The z-score values for all elements determined fell within acceptable limits (-2< z<2) for concentrations ranging from 0.1 to 100%. These experiments show that the quality of data obtained from laboratory reference calibration samples is not inferior to that from certified reference glasses. The quality of results obtained corresponds to the 'applied geochemistry' type of analysis (category 2) as defined in the GeoPT proficiency testing program. Therefore, the laboratory reference samples can be used for calibrating EPMA techniques in the analysis of silicate minerals and for controlling the quality of results

  7. Improving laboratory efficiencies to scale-up HIV viral load testing.

    Science.gov (United States)

    Alemnji, George; Onyebujoh, Philip; Nkengasong, John N

    2017-03-01

    Viral load measurement is a key indicator that determines patients' response to treatment and risk for disease progression. Efforts are ongoing in different countries to scale-up access to viral load testing to meet the Joint United Nations Programme on HIV and AIDS target of achieving 90% viral suppression among HIV-infected patients receiving antiretroviral therapy. However, the impact of these initiatives may be challenged by increased inefficiencies along the viral load testing spectrum. This will translate to increased costs and ineffectiveness of scale-up approaches. This review describes different parameters that could be addressed across the viral load testing spectrum aimed at improving efficiencies and utilizing test results for patient management. Though progress is being made in some countries to scale-up viral load, many others still face numerous challenges that may affect scale-up efficiencies: weak demand creation, ineffective supply chain management systems; poor specimen referral systems; inadequate data and quality management systems; and weak laboratory-clinical interface leading to diminished uptake of test results. In scaling up access to viral load testing, there should be a renewed focus to address efficiencies across the entire spectrum, including factors related to access, uptake, and impact of test results.

  8. The transfer voltage standard for calibration outside of a laboratory

    Directory of Open Access Journals (Sweden)

    Urekar Marjan

    2017-01-01

    Full Text Available The transfer voltage standard is designed for transferring the analog voltage from a calibrator to the process control workstation for multi-electrode electrolysis process in a plating plant. Transfer voltage standard is based on polypropylene capacitors and operational amplifiers with tera-ohm range input resistance needed for capacitor self-discharging effect cancellation. Dielectric absorption effect is described. An instrument for comparison of reference and control voltages is devised, based on precise window comparator. Detailed description of the main task is given, including constraints, theoretical and practical solutions. Procedure for usage of the standard outside of a laboratory conditions is explained. Comparison of expected and realized standard characteristics is given. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-32019

  9. Quality control of calibration system for area monitors at National Laboratory of Metrology from Ionizing Radiations (LNMRI)

    International Nuclear Information System (INIS)

    Ramos, M.M.O.; Freitas, L.C. de

    1992-01-01

    The quality control of equipment used in calibration from the National Laboratory of Metrology on Ionizing Radiations is presented, with results of standard measure systems and irradiation system. Tables and graphics with the quality of systems are also shown. (C.G.C.)

  10. Photovoltaic Calibrations at the National Renewable Energy Laboratory and Uncertainty Analysis Following the ISO 17025 Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Emery, Keith [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    The measurement of photovoltaic (PV) performance with respect to reference conditions requires measuring current versus voltage for a given tabular reference spectrum, junction temperature, and total irradiance. This report presents the procedures implemented by the PV Cell and Module Performance Characterization Group at the National Renewable Energy Laboratory (NREL) to achieve the lowest practical uncertainty. A rigorous uncertainty analysis of these procedures is presented, which follows the International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement. This uncertainty analysis is required for the team’s laboratory accreditation under ISO standard 17025, “General Requirements for the Competence of Testing and Calibration Laboratories.” The report also discusses additional areas where the uncertainty can be reduced.

  11. Present knowledge about Laboratory Testing of Axial Loading on Suction Caissons

    DEFF Research Database (Denmark)

    Manzotti, E.; Vaitkunaite, Evelina; Ibsen, Lars Bo

    Offshore wind turbines are increasing in both efficiency and size. More economical foundations for such light structures are under investigation, and suction caisson was shown to be particularly suitable for this purpose. In multi-pod foundation configuration, the overturning moment given by loads...... on the structure is resisted by push-pull loads on the vertical axis of each suction caisson. Relevant works where this situation is examined by means of laboratory testing are summarized in this article, then different conclusions are followed by discussion and comparison. In the initial theoretical section...

  12. In-core flow measurement and calibration of gags using on-load instrumented stringers in a C.A.G.R. at Hinkley Point 'B'

    International Nuclear Information System (INIS)

    Harrison, W.E.; Carrick, I.H.

    1982-06-01

    The initial fuel loading of the first CAGR at Hinkley Point included 5 specially instrumented stringers (OLIS) each containing a flow-measuring venturi and additional thermocouples. Venturi absolute and differential pressures were measured by transducers mounted on the pile-cap. Transducers and thermocouples were routed to a computer/logger and processed into stringer performance data. The venturi was engineered to comply closely with appropriate British Standards but compromises were made to minimise interaction with other functions of the OLIS plug unit, justifying rig calibration of venturis to check for deviation in behaviour. High accuracy and reliability of the flow measuring system were established by thorough commissioning procedures. The transducers were selected for low sensitivity to their operational environment. Nevertheless calibration of all transducers was carried out both in laboratory and in-situ. Errors introduced by signal processing were identified and zero drift monitored. Pipe-runs were scrupulously leak-tested and leak sensitivity was evaluated. After one year re-calibration and recommissioning gave confidence of long term stability. Measurements of stringer behaviour were collected in a series of tests spanning the full range of both the setting of the channel flow control gags and the reactor power. Throughout these tests comprehensive monitoring, with intercalibration between the OLIS and comparison with installed reactor instrumentation has quantified residual error. These measurements were used to check the theoretical model used by the station for channel flow assessment. The excellent agreement obtained justified proceeding to the derivation of a universal gag resistance calibration applying to all power levels. In performance tests aimed at evaluation of overall generating efficiency, the theoretical model was used to make accurate estimates of reactor power and flow which agreed well with estimates based directly on further OLIS

  13. SPRT Calibration Uncertainties and Internal Quality Control at a Commercial SPRT Calibration Facility

    Science.gov (United States)

    Wiandt, T. J.

    2008-06-01

    The Hart Scientific Division of the Fluke Corporation operates two accredited standard platinum resistance thermometer (SPRT) calibration facilities, one at the Hart Scientific factory in Utah, USA, and the other at a service facility in Norwich, UK. The US facility is accredited through National Voluntary Laboratory Accreditation Program (NVLAP), and the UK facility is accredited through UKAS. Both provide SPRT calibrations using similar equipment and procedures, and at similar levels of uncertainty. These uncertainties are among the lowest available commercially. To achieve and maintain low uncertainties, it is required that the calibration procedures be thorough and optimized. However, to minimize customer downtime, it is also important that the instruments be calibrated in a timely manner and returned to the customer. Consequently, subjecting the instrument to repeated calibrations or extensive repeated measurements is not a viable approach. Additionally, these laboratories provide SPRT calibration services involving a wide variety of SPRT designs. These designs behave differently, yet predictably, when subjected to calibration measurements. To this end, an evaluation strategy involving both statistical process control and internal consistency measures is utilized to provide confidence in both the instrument calibration and the calibration process. This article describes the calibration facilities, procedure, uncertainty analysis, and internal quality assurance measures employed in the calibration of SPRTs. Data will be reviewed and generalities will be presented. Finally, challenges and considerations for future improvements will be discussed.

  14. Predicting the performance uncertainty of a 1-MW pilot-scale carbon capture system after hierarchical laboratory-scale calibration and validation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhijie; Lai, Canhai; Marcy, Peter William; Dietiker, Jean-François; Li, Tingwen; Sarkar, Avik; Sun, Xin

    2017-05-01

    A challenging problem in designing pilot-scale carbon capture systems is to predict, with uncertainty, the adsorber performance and capture efficiency under various operating conditions where no direct experimental data exist. Motivated by this challenge, we previously proposed a hierarchical framework in which relevant parameters of physical models were sequentially calibrated from different laboratory-scale carbon capture unit (C2U) experiments. Specifically, three models of increasing complexity were identified based on the fundamental physical and chemical processes of the sorbent-based carbon capture technology. Results from the corresponding laboratory experiments were used to statistically calibrate the physical model parameters while quantifying some of their inherent uncertainty. The parameter distributions obtained from laboratory-scale C2U calibration runs are used in this study to facilitate prediction at a larger scale where no corresponding experimental results are available. In this paper, we first describe the multiphase reactive flow model for a sorbent-based 1-MW carbon capture system then analyze results from an ensemble of simulations with the upscaled model. The simulation results are used to quantify uncertainty regarding the design’s predicted efficiency in carbon capture. In particular, we determine the minimum gas flow rate necessary to achieve 90% capture efficiency with 95% confidence.

  15. Investigation on calibration parameter of mammography calibration facilities at MINT

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Wan Hazlinda Ismail; Md Saion Salikin; Muhammad Jamal Md Isa; Azuhar Ripin; Norriza Mohd Isa

    2004-01-01

    A mammography calibration facility has been established in the Medical Physics Laboratory, Malaysian Institute for Nuclear Technology Research (MINT). The calibration facility is established at the national level mainly to provide calibration services for radiation measuring test instruments or test tools used in quality assurance programme in mammography, which is being implemented in Malaysia. One of the accepted parameters that determine the quality of a radiation beam is the homogeneity coefficient. It is determined from the values of the 1 st and 2 nd Half Value Layer (HVL). In this paper, the consistency of the mammography machine beam qualities that is available in MINT, is investigated and presented. For calibration purposes, five radiation qualities namely 23, 25, 28, 30 and 35 kV, selectable from the control panel of the X-ray machine is used. Important parameters that are set for this calibration facility are exposure time, tube current, focal spot to detector distance (FDD) and beam size at specific distance. The values of homogeneity coefficient of this laboratory for the past few years tip to now be presented in this paper. Backscatter radiations are also considered in this investigation. (Author)

  16. Laboratory Test Setup for Cyclic Axially Loaded Piles in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2017-01-01

    This paper presents a comprehensive description and the considerations regarding the design of a new laboratory test setup for testing cyclic axially loaded piles in sand. The test setup aims at analysing the effect of axial one-way cyclic loading on pile capacity and accumulated displacements....... Another aim was to test a large diameter pile segment with dimensions resembling full-scale piles to model the interface properties between pile and sand correctly. The pile segment was an open-ended steel pipe pile with a diameter of 0.5 m and a length of 1 m. The sand conditions resembled the dense sand...... determined from the API RP 2GEO standard and from the test results indicated over consolidation of the sand. Two initial one-way cyclic loading tests provided results of effects on pile capacity and accumulated displacements in agreement with other researchers’ test results....

  17. X radiation qualities characterization following the standard IEC 61267 recommendations at the calibration laboratory of IPEN

    International Nuclear Information System (INIS)

    Franciscatto, Priscila Cerutti

    2009-01-01

    This work presents a methodology for the X radiation qualities characterization following the new recommendations of the standard 61267 of the International Electrotechnical Commission (IEC) to establish a new procedure for calibration of dosimetric systems used in the field of diagnostic radiology. The reference qualities radiation of IEC 61267: RQR 2 to RQR 10, RQA 2 to RQA 10, RQB 2 to RQB 10 and RQN 2 to RQN 10 were implanted at the calibration laboratory of IPEN (LCI). Their characteristics were analyzed through measurements of beam parameters such as: Practical peak voltage (PPV), specific additional filtrations for each qualities (high purity aluminum of about 99.9%), 1st and 2nd Half Value Layers, homogeneity coefficient. The inherent filtration of the X ray tube was also determined. With the establishment of these radiation qualities, the LCI will be ready to calibrate the measuring instruments of radiation in the new qualities, allowing an improvement in radiological services offered by IPEN. (author)

  18. Study for correction of neutron scattering in the calibration of the albedo individual monitor from the Neutron Laboratory (LN), IRD/CNEN-RJ, Brazil

    International Nuclear Information System (INIS)

    Freitas, B.M.; Silva, A.X. da

    2014-01-01

    The Instituto de Radioprotecao e Dosimetria (IRD) runs a neutron individual monitoring service with albedo type monitor and thermoluminescent detectors (TLD). Moreover the largest number of workers exposed to neutrons in Brazil is exposed to 241 Am-Be fields. Therefore a study of the response of albedo dosemeter due to neutron scattering from 241 Am-Be source is important for a proper calibration. In this work, it has been evaluated the influence of the scattering correction in two distances at the Low Scattering Laboratory of the Neutron Laboratory of the Brazilian National Laboratory (Lab. Nacional de Metrologia Brasileira de Radiacoes Ionizantes) in the calibration of that albedo dosemeter for a 241 Am-Be source. (author)

  19. Radiological Calibration and Standards Facility

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL maintains a state-of-the-art Radiological Calibration and Standards Laboratory on the Hanford Site at Richland, Washington. Laboratory staff provide expertise...

  20. Instrument evaluation, calibration, and installation for the heater experiments at Stripa

    International Nuclear Information System (INIS)

    Schrauf, T.; Pratt, H.; Simonson, E.; Hustrulid, W.; Nelson, P.; DuBois, A.; Binnall, E.; Haught, R.

    1979-12-01

    Borehole instrumentation for the measurement of temperature, displacement, and stress was evaluated, modified, calibrated, and installed in an underground site at Stripa, Sweden where experiments are currently underway to investigate the suitability of granite as a storage medium for nuclear waste. Three arrays of borehole instrumentation measure the thermomechanical effects caused by electrical heaters which simulate the thermal output of canisters of radioactive waste. Because most rock mechanics investigations are carried out at modest temperatures, a sustained operating temperature as high as 200 0 C was an unusual and most important criterion governing the instrumentation program. Extensive laboratory experiments were conducted to determine the effect of high temperature on instrument behavior and also to develop calibration and data-reduction procedures. The rod extensometers were tested for anchor creep, the selection of a suitable high-temperature pressurizing fluid, and the thermal stability of the grout. Four temperature corrections are incorporated into the data reduction of the USBM borehole deformation measurement: the bridge voltage offset correction, the change in calibration factor induced by temperature, and the thermal expansion of the gage and of the rock. The vibrating wire gages were calibrated in the laboratory by loading gages installed in a granite block at pressures up to 13 MPa and at temperatures ranging from 20 0 to 200 0 C. Both the slope and offset of the response equation are corrected for temperature effects. Most thermocouples were calibrated in an oven at the field site. Thermocouples were emplaced with individual gages and into holes backfilled with sand or grout

  1. Reducing cognitive load in the chemistry laboratory by using technology-driven guided inquiry experiments

    Science.gov (United States)

    Hubacz, Frank, Jr.

    The chemistry laboratory is an integral component of the learning experience for students enrolled in college-level general chemistry courses. Science education research has shown that guided inquiry investigations provide students with an optimum learning environment within the laboratory. These investigations reflect the basic tenets of constructivism by engaging students in a learning environment that allows them to experience what they learn and to then construct, in their own minds, a meaningful understanding of the ideas and concepts investigated. However, educational research also indicates that the physical plant of the laboratory environment combined with the procedural requirements of the investigation itself often produces a great demand upon a student's working memory. This demand, which is often superfluous to the chemical concept under investigation, creates a sensory overload or extraneous cognitive load within the working memory and becomes a significant obstacle to student learning. Extraneous cognitive load inhibits necessary schema formation within the learner's working memory thereby impeding the transfer of ideas to the learner's long-term memory. Cognitive Load Theory suggests that instructional material developed to reduce extraneous cognitive load leads to an improved learning environment for the student which better allows for schema formation. This study first compared the cognitive load demand, as measured by mental effort, experienced by 33 participants enrolled in a first-year general chemistry course in which the treatment group, using technology based investigations, and the non-treatment group, using traditional labware, investigated identical chemical concepts on five different exercises. Mental effort was measured via a mental effort survey, a statistical comparison of individual survey results to a procedural step count, and an analysis of fourteen post-treatment interviews. Next, a statistical analysis of achievement was

  2. Features calibration of the dynamic force transducers

    Science.gov (United States)

    Sc., M. Yu Prilepko D.; Lysenko, V. G.

    2018-04-01

    The article discusses calibration methods of dynamic forces measuring instruments. The relevance of work is dictated by need to valid definition of the dynamic forces transducers metrological characteristics taking into account their intended application. The aim of this work is choice justification of calibration method, which provides the definition dynamic forces transducers metrological characteristics under simulation operating conditions for determining suitability for using in accordance with its purpose. The following tasks are solved: the mathematical model and the main measurements equation of calibration dynamic forces transducers by load weight, the main budget uncertainty components of calibration are defined. The new method of dynamic forces transducers calibration with use the reference converter “force-deformation” based on the calibrated elastic element and measurement of his deformation by a laser interferometer is offered. The mathematical model and the main measurements equation of the offered method is constructed. It is shown that use of calibration method based on measurements by the laser interferometer of calibrated elastic element deformations allows to exclude or to considerably reduce the uncertainty budget components inherent to method of load weight.

  3. Evaluation of Load Analysis Methods for NASAs GIII Adaptive Compliant Trailing Edge Project

    Science.gov (United States)

    Cruz, Josue; Miller, Eric J.

    2016-01-01

    The Air Force Research Laboratory (AFRL), NASA Armstrong Flight Research Center (AFRC), and FlexSys Inc. (Ann Arbor, Michigan) have collaborated to flight test the Adaptive Compliant Trailing Edge (ACTE) flaps. These flaps were installed on a Gulfstream Aerospace Corporation (GAC) GIII aircraft and tested at AFRC at various deflection angles over a range of flight conditions. External aerodynamic and inertial load analyses were conducted with the intention to ensure that the change in wing loads due to the deployed ACTE flap did not overload the existing baseline GIII wing box structure. The objective of this paper was to substantiate the analysis tools used for predicting wing loads at AFRC. Computational fluid dynamics (CFD) models and distributed mass inertial models were developed for predicting the loads on the wing. The analysis tools included TRANAIR (full potential) and CMARC (panel) models. Aerodynamic pressure data from the analysis codes were validated against static pressure port data collected in-flight. Combined results from the CFD predictions and the inertial load analysis were used to predict the normal force, bending moment, and torque loads on the wing. Wing loads obtained from calibrated strain gages installed on the wing were used for substantiation of the load prediction tools. The load predictions exhibited good agreement compared to the flight load results obtained from calibrated strain gage measurements.

  4. Two laboratory methods for the calibration of GPS speed meters

    International Nuclear Information System (INIS)

    Bai, Yin; Sun, Qiao; Du, Lei; Yu, Mei; Bai, Jie

    2015-01-01

    The set-ups of two calibration systems are presented to investigate calibration methods of GPS speed meters. The GPS speed meter calibrated is a special type of high accuracy speed meter for vehicles which uses Doppler demodulation of GPS signals to calculate the measured speed of a moving target. Three experiments are performed: including simulated calibration, field-test signal replay calibration, and in-field test comparison with an optical speed meter. The experiments are conducted at specific speeds in the range of 40–180 km h −1 with the same GPS speed meter as the device under calibration. The evaluation of measurement results validates both methods for calibrating GPS speed meters. The relative deviations between the measurement results of the GPS-based high accuracy speed meter and those of the optical speed meter are analyzed, and the equivalent uncertainty of the comparison is evaluated. The comparison results justify the utilization of GPS speed meters as reference equipment if no fewer than seven satellites are available. This study contributes to the widespread use of GPS-based high accuracy speed meters as legal reference equipment in traffic speed metrology. (paper)

  5. Watershed model calibration framework developed using an influence coefficient algorithm and a genetic algorithm and analysis of pollutant discharge characteristics and load reduction in a TMDL planning area.

    Science.gov (United States)

    Cho, Jae Heon; Lee, Jong Ho

    2015-11-01

    Manual calibration is common in rainfall-runoff model applications. However, rainfall-runoff models include several complicated parameters; thus, significant time and effort are required to manually calibrate the parameters individually and repeatedly. Automatic calibration has relative merit regarding time efficiency and objectivity but shortcomings regarding understanding indigenous processes in the basin. In this study, a watershed model calibration framework was developed using an influence coefficient algorithm and genetic algorithm (WMCIG) to automatically calibrate the distributed models. The optimization problem used to minimize the sum of squares of the normalized residuals of the observed and predicted values was solved using a genetic algorithm (GA). The final model parameters were determined from the iteration with the smallest sum of squares of the normalized residuals of all iterations. The WMCIG was applied to a Gomakwoncheon watershed located in an area that presents a total maximum daily load (TMDL) in Korea. The proportion of urbanized area in this watershed is low, and the diffuse pollution loads of nutrients such as phosphorus are greater than the point-source pollution loads because of the concentration of rainfall that occurs during the summer. The pollution discharges from the watershed were estimated for each land-use type, and the seasonal variations of the pollution loads were analyzed. Consecutive flow measurement gauges have not been installed in this area, and it is difficult to survey the flow and water quality in this area during the frequent heavy rainfall that occurs during the wet season. The Hydrological Simulation Program-Fortran (HSPF) model was used to calculate the runoff flow and water quality in this basin. Using the water quality results, a load duration curve was constructed for the basin, the exceedance frequency of the water quality standard was calculated for each hydrologic condition class, and the percent reduction

  6. Field and laboratory calibration of neutron probes for soil moisture measurements on a deep loess chernozem soil

    International Nuclear Information System (INIS)

    Schaecke, B.; Schaecke, E.

    1979-01-01

    In the case of a varying profile structure it is necessary to use different calibration curves and adequate correction factors, respectively. The bulk density of the soil had the greatest influence on the calibration. An increase in bulk density by 0.2 g/cm 3 at a clay content of 18% resulted in an apparent increase in the values of moisture measurements by 1.5 to 2.0% of the volume of water. In naturally stratified soil the humus content of the chernozem horizon, being 3% higher than that of the underlying loess horizon, was found to influence the measuring results obtained by the probe. The calibration curves determined for chernozem and loess horizons in the laboratory agreed well with those obtained in the field. The measured values read from the probe and the gravimetrically determined values of the soil moisture were of great significance in all measured depths of the profile. (author)

  7. A review of the probabilistic safety assessment of the Radiation Monitor Calibration Laboratory of the Almirante Alvaro Alberto Power Plant

    International Nuclear Information System (INIS)

    Gomes, Erica Cupertino

    2005-03-01

    The main purpose of this work is to update the PSA study of the Radiation Monitor Calibration Laboratory of the Almirante Alvaro Alberto Power Station taking into account new information. It is considered in this study an evaluation of the human reliability analysis in the calibration procedure of the radiation monitors, and for such the THERP modeling is used, as well as the use of the Bayesian approach for the calculation of the equipment failure probabilities used by the operators. Some accident scenarios of external origin were incorporated for evaluating their importance for an accident that might expose a worker to gamma radiation. A catastrophic failure is analyzed in the diesel generators 3 and 4, whose building is nearby the laboratory, as well as the route of change and the transportation of the steam generator of the nuclear power plant since the laboratory is located in the plant controlled area. Although more accidents scenarios are considered in this work, a conservative approach was not used and thus a smaller radiological risk was obtained. (author)

  8. Radiation and Health Technology Laboratory Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Goles, Ronald W.; Johnson, Michelle Lynn; Piper, Roman K.; Peters, Jerry D.; Murphy, Mark K.; Mercado, Mike S.; Bihl, Donald E.; Lynch, Timothy P.

    2003-07-15

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.

  9. Guidelines on calibration of neutron measuring devices

    International Nuclear Information System (INIS)

    Burger, G.

    1988-01-01

    The International Atomic Energy Agency and the World Health Organization have agreed to establish an IAEA/WHO Network of Secondary Standard Dosimetry Laboratories (SSDLs) in order to improve accuracy in applied radiation dosimetry throughout the world. These SSDLs must be equipped with, and maintain, secondary standard instruments, which have been calibrated against primary standards, and must be nominated by their governments for membership of the network. The majority of the existing SSDLs were established primarily to work with photon radiation (X-rays and gamma rays). Neutron sources are, however, increasingly being applied in industrial processes, research, nuclear power development and radiation biology and medicine. Thus, it is desirable that the SSDLs in countries using neutron sources on a regular basis should also fulfil the minimum requirements to calibrate neutron measuring devices. It is the primary purpose of this handbook to provide guidance on calibration of instruments for radiation protection. A calibration laboratory should also be in a position to calibrate instrumentation being used for the measurement of kerma and absorbed dose and their corresponding rates. This calibration is generally done with photons. In addition, since each neutron field is usually contaminated by photons produced in the source or by scatter in the surrounding media, neutron protection instrumentation has to be tested with respect to its intrinsic photon response. The laboratory will therefore need to possess equipment for photon calibration. This publication deals primarily with methods of applying radioactive neutron sources for calibration of instrumentation, and gives an indication of the space, manpower and facilities needed to fulfil the minimum requirements of a calibration laboratory for neutron work. It is intended to serve as a guide for centres about to start on neutron dosimetry standardization and calibration. 94 refs, 8 figs, 12 tabs

  10. Laboratory Load Model Based on 150 kVA Power Frequency Converter and Simulink Real-Time – Concept, Implementation, Experiments

    Directory of Open Access Journals (Sweden)

    Robert Małkowski

    2016-09-01

    Full Text Available First section of the paper provides technical specification of laboratory load model basing on 150 kVA power frequency converter and Simulink Real-Time platform. Assumptions, as well as control algorithm structure is presented. Theoretical considerations based on criteria which load types may be simulated using discussed laboratory setup, are described. As described model contains transformer with thyristor-controlled tap changer, wider scope of device capabilities is presented. Paper lists and describes tunable parameters, both: tunable during device operation and changed only before starting the experiment. Implementation details are given in second section of paper. Hardware structure is presented and described. Information about used communication interface, data maintenance and storage solution, as well as used Simulink real-time features are presented. List and description of all measurements is provided. Potential of laboratory setup modifications is evaluated. Third section describes performed laboratory tests. Different load configurations are described and experimental results are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area and arbitrary active and reactive power regulation basing on defined schedule. Different operation modes of control algorithm are described: apparent power control, active and reactive power control, active and reactive current RMS value control.

  11. Critical issues for implementation of the standard NBR ISO/IEC 17025:2005 in Testing and Calibration Laboratory: case study at a public institution

    International Nuclear Information System (INIS)

    Castro, Denise Confar Carvalho de

    2013-01-01

    The public institution aims to promote excellence in public management to contribute to the quality of services provided to its customers and to increase competitiveness in the country, as well as its international projection. A technical barrier to trade that can lead to dissatisfaction and achieve the reputation of the institution is failing the test or calibration results and measurement data, thereby accreditation is regarded as the first essential step to facilitate the mutual acceptance of test results and calibration or measurement data. For recognition, laboratories need to demonstrate full compliance with both the sections of ISO/IEC 17025:2005, i.e. management and technical requirements. This research aims to discuss the critical aspects for implementation of ABNT NBR ISO / IEC 17025:2005 for calibration and testing of a Public Institution seeking accreditation of its laboratories with INMETRO, national accreditation body Laboratories. Besides getting preventive, corrective and improvement actions continues guidelines. Furthermore, the methodology used was to conduct a literature search and apply a questionnaire to identify the degree of agreement / disagreement of the foundations of the standard servers. Analysis of the results showed that the critical issues were: commitment, training, resources (infrastructure, human) and culture. (author)

  12. Experimental comparison between total calibration factors and components calibration factors of reference dosemeters used in secondary standard laboratory dosemeters

    International Nuclear Information System (INIS)

    Silva, T.A. da.

    1981-06-01

    A quantitative comparison of component calibration factors with the corresponding overall calibration factor was used to evaluate the adopted component calibration procedure in regard to parasitic elements. Judgement of significance is based upon the experimental uncertainty of a well established procedure for determination of the overall calibration factor. The experimental results obtained for different ionization chambers and different electrometers demonstrate that for one type of electrometer the parasitic elements have no influence on its sensitivity considering the experimental uncertainty of the calibration procedures. In this case the adopted procedure for determination of component calibration factors is considered to be equivalent to the procedure of determination of the overall calibration factor and thus might be used as a strong quality control measure in routine calibration. (Author) [pt

  13. Contribution to the RMTC in the field of tank calibration and measurements - the TAMSCA laboratory

    International Nuclear Information System (INIS)

    Hunt, B.A.; Landat, D.; Caviglia, M.; Silvapestana, L.

    1999-01-01

    The Russian Methodological and Training Centre (RMTC) is being established for training of personnel from the various Russian and CIS nuclear facilities organizations in the control and accountancy methods, utilised in EURATOM and in the IAEA. Under the project equipment and support will be provided in a number of areas, namely containment and surveillance, training, passive/active neutron assay and mass/volume methodologies. For the latter a mass/volume measurement laboratory - a Tank Measurements and Calibration Laboratory (TAMSCA) is being set-up in IPPE, Obninsk. The goal is to upgrade the methodology within the Russian Federation in the application of mass/volume measurement techniques and render a facility suitable adapted to carrying out training courses with specific orientation for the nuclear inspectors and operators of nuclear facilities for nuclear accountancy and control [ru

  14. Characterization and Simulation of a New Design Parallel-Plate Ionization Chamber for CT Dosimetry at Calibration Laboratories

    Science.gov (United States)

    Perini, Ana P.; Neves, Lucio P.; Maia, Ana F.; Caldas, Linda V. E.

    2013-12-01

    In this work, a new extended-length parallel-plate ionization chamber was tested in the standard radiation qualities for computed tomography established according to the half-value layers defined at the IEC 61267 standard, at the Calibration Laboratory of the Instituto de Pesquisas Energéticas e Nucleares (IPEN). The experimental characterization was made following the IEC 61674 standard recommendations. The experimental results obtained with the ionization chamber studied in this work were compared to those obtained with a commercial pencil ionization chamber, showing a good agreement. With the use of the PENELOPE Monte Carlo code, simulations were undertaken to evaluate the influence of the cables, insulator, PMMA body, collecting electrode, guard ring, screws, as well as different materials and geometrical arrangements, on the energy deposited on the ionization chamber sensitive volume. The maximum influence observed was 13.3% for the collecting electrode, and regarding the use of different materials and design, the substitutions showed that the original project presented the most suitable configuration. The experimental and simulated results obtained in this work show that this ionization chamber has appropriate characteristics to be used at calibration laboratories, for dosimetry in standard computed tomography and diagnostic radiology quality beams.

  15. Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 25-250 °C temperature range

    Science.gov (United States)

    Kluge, Tobias; John, Cédric M.; Jourdan, Anne-Lise; Davis, Simon; Crawshaw, John

    2015-05-01

    Many fields of Earth sciences benefit from the knowledge of mineral formation temperatures. For example, carbonates are extensively used for reconstruction of the Earth's past climatic variations by determining ocean, lake, and soil paleotemperatures. Furthermore, diagenetic minerals and their formation or alteration temperature may provide information about the burial history of important geological units and can have practical applications, for instance, for reconstructing the geochemical and thermal histories of hydrocarbon reservoirs. Carbonate clumped isotope thermometry is a relatively new technique that can provide the formation temperature of carbonate minerals without requiring a priori knowledge of the isotopic composition of the initial solution. It is based on the temperature-dependent abundance of the rare 13C-18O bonds in carbonate minerals, specified as a Δ47 value. The clumped isotope thermometer has been calibrated experimentally from 1 °C to 70 °C. However, higher temperatures that are relevant to geological processes have so far not been directly calibrated in the laboratory. In order to close this calibration gap and to provide a robust basis for the application of clumped isotopes to high-temperature geological processes we precipitated CaCO3 (mainly calcite) in the laboratory between 23 and 250 °C. We used two different precipitation techniques: first, minerals were precipitated from a CaCO3 supersaturated solution at atmospheric pressure (23-91 °C), and, second, from a solution resulting from the mixing of CaCl2 and NaHCO3 in a pressurized reaction vessel at a pressure of up to 80 bar (25-250 °C).

  16. Primary calibration in acoustics metrology

    International Nuclear Information System (INIS)

    Milhomem, T A Bacelar; Soares, Z M Defilippo

    2015-01-01

    SI unit in acoustics is realized by the reciprocity calibrations of laboratory standard microphones in pressure field, free field and diffuse field. Calibrations in pressure field and in free field are already consolidated and the Inmetro already done them. Calibration in diffuse field is not yet consolidated, however, some national metrology institutes, including Inmetro, are conducting researches on this subject. This paper presents the reciprocity calibration, the results of Inmetro in recent key comparisons and the research that is being developed for the implementation of reciprocity calibration in diffuse field

  17. Improved bolt models for use in global analyses of storage and transportation casks subject to extra-regulatory loading

    International Nuclear Information System (INIS)

    Kalan, R.J.; Ammerman, D.J.; Gwinn, K.W.

    2004-01-01

    Transportation and storage casks subjected to extra-regulatory loadings may experience large stresses and strains in key structural components. One of the areas susceptible to these large stresses and strains is the bolted joint retaining any closure lid on an overpack or a canister. Modeling this joint accurately is necessary in evaluating the performance of the cask under extreme loading conditions. However, developing detailed models of a bolt in a large cask finite element model can dramatically increase the computational time, making the analysis prohibitive. Sandia National Laboratories used a series of calibrated, detailed, bolt finite element sub-models to develop a modified-beam bolt-model in order to examine the response of a storage cask and closure to severe accident loadings. The initial sub-models were calibrated for tension and shear loading using test data for large diameter bolts. Next, using the calibrated test model, sub-models of the actual joints were developed to obtain force-displacement curves and failure points for the bolted joint. These functions were used to develop a modified beam element representation of the bolted joint, which could be incorporated into the larger cask finite element model. This paper will address the modeling and assumptions used for the development of the initial calibration models, the joint sub-models and the modified beam model

  18. Gearbox Reliability Collaborative Gearbox 3 Planet Bearing Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-24

    The Gearbox Reliability Collaborative gearbox was redesigned to improve its load-sharing characteristics and predicted fatigue life. The most important aspect of the redesign was to replace the cylindrical roller bearings with preloaded tapered roller bearings in the planetary section. Similar to previous work, the strain gages installed on the planet tapered roller bearings were calibrated in a load frame. This report describes the calibration tests and provides the factors necessary to convert the measured units from dynamometer testing to bearing loads, suitable for comparison to engineering models.

  19. Calibration of high resolution digital camera based on different photogrammetric methods

    International Nuclear Information System (INIS)

    Hamid, N F A; Ahmad, A

    2014-01-01

    This paper presents method of calibrating high-resolution digital camera based on different configuration which comprised of stereo and convergent. Both methods are performed in the laboratory and in the field calibration. Laboratory calibration is based on a 3D test field where a calibration plate of dimension 0.4 m × 0.4 m with grid of targets at different height is used. For field calibration, it uses the same concept of 3D test field which comprised of 81 target points located on a flat ground and the dimension is 9 m × 9 m. In this study, a non-metric high resolution digital camera called Canon Power Shot SX230 HS was calibrated in the laboratory and in the field using different configuration for data acquisition. The aim of the calibration is to investigate the behavior of the internal digital camera whether all the digital camera parameters such as focal length, principal point and other parameters remain the same or vice-versa. In the laboratory, a scale bar is placed in the test field for scaling the image and approximate coordinates were used for calibration process. Similar method is utilized in the field calibration. For both test fields, the digital images were acquired within short period using stereo and convergent configuration. For field calibration, aerial digital images were acquired using unmanned aerial vehicle (UAV) system. All the images were processed using photogrammetric calibration software. Different calibration results were obtained for both laboratory and field calibrations. The accuracy of the results is evaluated based on standard deviation. In general, for photogrammetric applications and other applications the digital camera must be calibrated for obtaining accurate measurement or results. The best method of calibration depends on the type of applications. Finally, for most applications the digital camera is calibrated on site, hence, field calibration is the best method of calibration and could be employed for obtaining accurate

  20. Calibration service of radiation detectors and dosemeters at IPEN/ Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Potiens, M.P.A.; Caldas, L.V.E. [IPEN, CNEN/SP, Sao Paulo (Brazil)]. e-mail: mppalbu@ipen.br

    2006-07-01

    The Calibration Laboratory of Instituto de Pesquisas Energeticas e Nucleares, IPEN, has already over 25 years been calibrating instruments used in radiation protection and therapy measurements and belonging to hospitals, industries, clinics and other users located in Sao Paulo and in other parts of Brazil. At the present time, the Calibration Laboratory is part of the Radiation Metrology Center and it acts in the Radiation Protection, Radiation Therapy, Nuclear Medicine and Diagnostic Radiology areas, using special set-ups with gamma and beta radiation sealed sources, alpha and beta radiation plane sources and low and intermediate energies of X radiation. Moreover, it has reference instruments for each calibration area with traceability to the Brazilian National Laboratory for Metrology of Ionizing Radiation (secondary standards) and international laboratories (primary standards). The number of tested instruments is increasing annually (from 170 in 1980 to 1871 in 2005), and for the development of new techniques and radiation detectors the continuous improvement of the existing calibration methods is necessary, as well as the establishment of new calibration services to be offered by the Calibration Laboratory for Brazilian and South American users. The objective of this study is to show the evolution of the calibration service developed at IPEN, describing the applied methods and the calibrated instruments types. The quality system implantation process following the basis of the NBR IEC/ISO 17025 standard is also presented with some tools used in the calibration procedures. (Author)

  1. Calibration service of radiation detectors and dosemeters at IPEN/ Sao Paulo

    International Nuclear Information System (INIS)

    Potiens, M.P.A.; Caldas, L.V.E.

    2006-01-01

    The Calibration Laboratory of Instituto de Pesquisas Energeticas e Nucleares, IPEN, has already over 25 years been calibrating instruments used in radiation protection and therapy measurements and belonging to hospitals, industries, clinics and other users located in Sao Paulo and in other parts of Brazil. At the present time, the Calibration Laboratory is part of the Radiation Metrology Center and it acts in the Radiation Protection, Radiation Therapy, Nuclear Medicine and Diagnostic Radiology areas, using special set-ups with gamma and beta radiation sealed sources, alpha and beta radiation plane sources and low and intermediate energies of X radiation. Moreover, it has reference instruments for each calibration area with traceability to the Brazilian National Laboratory for Metrology of Ionizing Radiation (secondary standards) and international laboratories (primary standards). The number of tested instruments is increasing annually (from 170 in 1980 to 1871 in 2005), and for the development of new techniques and radiation detectors the continuous improvement of the existing calibration methods is necessary, as well as the establishment of new calibration services to be offered by the Calibration Laboratory for Brazilian and South American users. The objective of this study is to show the evolution of the calibration service developed at IPEN, describing the applied methods and the calibrated instruments types. The quality system implantation process following the basis of the NBR IEC/ISO 17025 standard is also presented with some tools used in the calibration procedures. (Author)

  2. Sex differences in muscular load among house painters performing identical work tasks

    DEFF Research Database (Denmark)

    Meyland, Jacob; Heilskov-Hansen, Thomas; Alkjær, Tine

    2014-01-01

    PURPOSE: The present study aimed to estimate possible differences in upper body muscular load between male and female house painters performing identical work tasks. Sex-related differences in muscular load may help explain why women, in general, have more musculoskeletal complaints than men....... METHODS: In a laboratory setting, 16 male and 16 female house painters performed nine standardised work tasks common to house painters. Unilateral electromyography (EMG) recordings were obtained from the supraspinatus muscle by intramuscular electrodes and from the trapezius, extensor and flexor carpi...... radialis muscles by surface electrodes. Relative muscular loads in %EMGmax as well as exerted force in Newton, based on ramp calibrations, were assessed. Sex differences were tested using a mixed model approach. RESULTS: Women worked at about 50% higher relative muscular loads than men in the supraspinatus...

  3. Radiation protection dosimetry and calibrations

    International Nuclear Information System (INIS)

    Verhavere, Ph.

    2007-01-01

    At the SCK-CEN different specialised services are delivered for a whole range of external and internal customers in the radiation protection area. For the expertise group of radiation protection dosimetry and calibrations, these services are organized in four different laboratories: dosimetry, anthropogammametry, nuclear calibrations and non-nuclear calibrations. The services are given by a dedicated technical staff who has experience in the handling of routine and specialised cases. The scientific research that is performed by the expertise group makes sure that state-of-the-art techniques are being used, and that constant improvements and developments are implemented. Quality Assurance is an important aspect for the different services, and accreditation according national and international standards is achieved for all laboratories

  4. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  5. Automation of the Calibration of Reference Dosimeters Used in Radiotherapy

    International Nuclear Information System (INIS)

    Romero Acosta, A.; Gutierrez Lores, S.

    2013-01-01

    Traceability, accuracy and consistency of radiation measurements are essential in radiation dosimetry, particularly in radiotherapy, where the outcome of treatments is highly dependent on the radiation dose delivered to patients. The role of Secondary Standard Dosimetry Laboratories (SSDLs) is crucial in providing traceable calibrations to hospitals, since these laboratories disseminate calibrations at specific radiation qualities appropriate to the use of radiation measuring instruments. These laboratories follow IAEA/WHO guidelines for calibration procedures, often being current and charge measurements described in these guidelines a tedious task. However, these measurements are usually done using modern electrometers which are equipped with a RS-232 interface that allows instrument control from a PC. This paper presents the design and employment of an automated system aimed to the measurements of the radiotherapy dosimeters calibration process for Cobalt-60 gamma rays. A software was developed using Lab View, in order to achieve the acquisition of the charge values measured, calculation of the calibration coefficient and issue of a calibration certificate. A primary data report file is filled and stored in the PC's hard disk. By using this software tool, a better control over the calibration process is achieved, it reduces the need for human intervention and it also reduces the exposure of the laboratory staff. The automated system has been used for the calibration of reference dosimeters used in radiotherapy at the Cuban Secondary Standard Dosimetry Laboratory of the Center for Radiation Protection and Hygiene (Author)

  6. Dosemeter calibration in X-ray and in cobalt-60

    International Nuclear Information System (INIS)

    Silva, T.A. da

    1988-01-01

    Some tests about quality security for clinical dosemeter calibration in secondary standard dosimetry laboratory are described. The tests in gama calibration system, in X-ray calibration, in secondary standard dosimeter, in the dosemeter that will be calibrated, during the calibration and after the calibration are shown. (C.G.C.) [pt

  7. Loads as a Resource: Frequency Responsive Demand

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, Karanjit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Tess L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Marinovici, Laurentiu D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elizondo, Marcelo A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lian, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Demand-side frequency control can complement traditional generator controls to maintain the stability of large electric systems in the face of rising uncertainty and variability associated with renewable energy resources. This report presents a hierarchical frequency-based load control strategy that uses a supervisor to flexibly adjust control gains that a population of end-use loads respond to in a decentralized manner to help meet the NERC BAL-003-1 frequency response standard at both the area level and interconnection level. The load model is calibrated and used to model populations of frequency-responsive water heaters in a PowerWorld simulation of the U.S. Western Interconnection (WECC). The proposed design is implemented and demonstrated on physical water heaters in a laboratory setting. A significant fraction of the required frequency response in the WECC could be supplied by electric water heaters alone at penetration levels of less than 15%, while contributing to NERC requirements at the interconnection and area levels.

  8. Calibration and intercomparison methods of dose calibrators used in nuclear medicine facilities

    International Nuclear Information System (INIS)

    Costa, Alessandro Martins da

    1999-01-01

    Dose calibrators are used in most of the nuclear medicine facilities to determine the amount of radioactivity administered to a patient in a particular investigation or therapeutic procedure. It is therefore of vital importance that the equipment used presents good performance and is regular;y calibrated at a authorized laboratory. This occurs of adequate quality assurance procedures are carried out. Such quality control tests should be performed daily, other biannually or yearly, testing, for example, its accuracy and precision, the reproducibility and response linearity. In this work a commercial dose calibrator was calibrated with solution of radionuclides used in nuclear medicine. Simple instrument tests, such as response linearity and the response variation of the source volume increase at a constant source activity concentration, were performed. This instrument can now be used as a working standard for calibration of other dose calibrators/ An intercomparison procedure was proposed as a method of quality control of dose calibrators used in nuclear medicine facilities. (author)

  9. Improved Regression Analysis of Temperature-Dependent Strain-Gage Balance Calibration Data

    Science.gov (United States)

    Ulbrich, N.

    2015-01-01

    An improved approach is discussed that may be used to directly include first and second order temperature effects in the load prediction algorithm of a wind tunnel strain-gage balance. The improved approach was designed for the Iterative Method that fits strain-gage outputs as a function of calibration loads and uses a load iteration scheme during the wind tunnel test to predict loads from measured gage outputs. The improved approach assumes that the strain-gage balance is at a constant uniform temperature when it is calibrated and used. First, the method introduces a new independent variable for the regression analysis of the balance calibration data. The new variable is designed as the difference between the uniform temperature of the balance and a global reference temperature. This reference temperature should be the primary calibration temperature of the balance so that, if needed, a tare load iteration can be performed. Then, two temperature{dependent terms are included in the regression models of the gage outputs. They are the temperature difference itself and the square of the temperature difference. Simulated temperature{dependent data obtained from Triumph Aerospace's 2013 calibration of NASA's ARC-30K five component semi{span balance is used to illustrate the application of the improved approach.

  10. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  11. Sandia WIPP calibration traceability

    International Nuclear Information System (INIS)

    Schuhen, M.D.; Dean, T.A.

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities

  12. High-Speed Shaft Bearing Loads Testing and Modeling in the NREL Gearbox Reliability Collaborative: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McNiff, B.; Guo, Y.; Keller, J.; Sethuraman, L.

    2014-12-01

    Bearing failures in the high speed output stage of the gearbox are plaguing the wind turbine industry. Accordingly, the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) has performed an experimental and theoretical investigation of loads within these bearings. The purpose of this paper is to describe the instrumentation, calibrations, data post-processing and initial results from this testing and modeling effort. Measured HSS torque, bending, and bearing loads are related to model predictions. Of additional interest is examining if the shaft measurements can be simply related to bearing load measurements, eliminating the need for invasive modifications of the bearing races for such instrumentation.

  13. Multi-Capacity Load Cell Concept

    Directory of Open Access Journals (Sweden)

    Seif. M. OSMAN

    2014-09-01

    Full Text Available Force measuring systems are usually used to calibrate force generated systems, it is not preferable to use load cells to measure forces less than 10 % of its nominal capacity. Several load cells are required to offer calibration facilities at sites to cover different ranges, this lead to difficulties in handling procedures, through the need for several carrying cases to carry this overweight in addition to the over cost of purchasing several load cells. This article concerns with introducing a new concept for designing a multi-capacity load cell as a new force standard in the field of measuring the force. This multi-capacity load cell will replace a set of load cells and reflects economically on the total cost and on easiness of handling procedures.

  14. Pilot study to verify the calibration of electrometers

    International Nuclear Information System (INIS)

    Becker, P.; Meghzifene, A.

    2002-01-01

    Full text: The main detector used for standardization of the quantities used in measurements of ionizing radiation is the ionization chamber. The interaction of the radiation with this detector produces electrical charge, usually, in the range of pC to nC. The instrument used to measure such small charges (or currents) is the electrometer. As part of a good practice, the measured charge (current) must be traceable to a primary or secondary standard. Some calibration laboratories can only provide a system calibration coefficient, i.e. a calibration coefficient for the combination of electrometer plus ionization chamber (Gy/scale division). This practice is acceptable, but it can impose a limitation to the automation of their calibration procedures (using computerized application for the acquisition of current/charge). Not all models have the possibility of a connection to a computer and in the case of those that don't have this capability, automation is not possible without the development of a specific interface. In addition, end-users receive a calibration coefficient, which is only valid for the set ion chamber and electrometer. In case of a broken chamber, the end-user cannot connect another chamber to their electrometer without knowing its calibration coefficient. If the calibration laboratories had the capability of calibrating the chamber separately from the electrometer, for example, using an electrometer calibrated in terms of charge, all the chambers could be calibrated using this electrometer. The laboratory can also benefit from the automation of the measurements. This requires that the laboratory must be able to cross-calibrate the electrometers (associated to the chambers) also in terms of charge (Coulombs). Electrical charge is standardized by the use of a standard air capacitor and a standard voltage source (Q=CV) and the National Laboratory for Metrology of Ionizing Radiation (IRD) in Brazil has also adopted this procedure. Since the Brazilian

  15. Update of the Picker C9 irradiator control system of the gamma II room of the secondary laboratory of dosimetric calibration

    International Nuclear Information System (INIS)

    Simon S, L. E.

    2016-01-01

    The Picker C9 irradiator is responsible for the calibration of different radiological equipment and the control system that maintains it in operation is designed in the graphical programming software LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench), being its major advantages: the different types of communication, easy interconnection with other software and the recognition of different hardware devices, among others. Operation of the irradiator control system is performed with the NI-Usb-6008 (DAQ) data acquisition module of the National Instruments Company. The purpose of this work is to update the routines that make the Picker C9 control system of the gamma II room of the secondary laboratory of dosimetric calibration, using the graphic programming software LabVIEW, as well as to configure the new acquisition hardware of data that is implemented to control the Picker C9 irradiator system and ensure its operation. (Author)

  16. UNSAT-H infiltration model calibration at the Subsurface Disposal Area, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Martian, P.

    1995-10-01

    Soil moisture monitoring data from the expanded neutron probe monitoring network located at the Subsurface Disposal Area (SDA) of the Idaho National Engineering Laboratory (INEL) were used to calibrate numerical infiltration models for 15 locations within and near the SDA. These calibrated models were then used to simulate infiltration into the SDA surficial sediments and underlying basalts for the entire operational period of the SDA (1952--1995). The purpose of performing the simulations was to obtain a time variant infiltration source term for future subsurface pathway modeling efforts as part of baseline risk assessment or performance assessments. The simulation results also provided estimates of the average recharge rate for the simulation period and insight into infiltration patterns at the SDA. These results suggest that the average aquifer recharge rate below the SDA may be at least 8 cm/yr and may be as high as 12 cm/yr. These values represent 38 and 57% of the average annual precipitation occurring at the INEL, respectively. The simulation results also indicate that the maximum evaporative depth may vary between 28 and 148 cm and is highly dependent on localized lithology within the SDA

  17. Effect of contact stiffness on wedge calibration of lateral force in atomic force microscopy

    International Nuclear Information System (INIS)

    Wang Fei; Zhao Xuezeng

    2007-01-01

    Quantitative friction measurement of nanomaterials in atomic force microscope requires accurate calibration method for lateral force. The effect of contact stiffness on lateral force calibration of atomic force microscope is discussed in detail and an improved calibration method is presented. The calibration factor derived from the original method increased with the applied normal load, which indicates that separate calibration should be required for every given applied normal load to keep the accuracy of friction measurement. We improve the original method by introducing the contact factor, which is derived from the contact stiffness between the tip and the sample, to the calculation of calibration factors. The improved method makes the calculation of calibration factors under different applied normal loads possible without repeating the calibration procedure. Comparative experiments on a silicon wafer have been done by both the two methods to validate the method in this article

  18. Improvement of the calibration technique of clinical dosemeters

    International Nuclear Information System (INIS)

    Ehlin Caldas, L.V.

    1988-08-01

    Clinical dosemeters constituted of ionization chambers connected to electrometers are usually calibrated as whole systems in appropriate radiation fields against secondary standard dosemeters in calibration laboratories. This work reports on a technique of component calibration procedures separately for chambers and electrometers applied in the calibration laboratory of IPEN-CNEN, Brazil. For electrometer calibration, redundancy was established by using a standard capacitor of 1000pF (General Radio, USA) and a standard current source based on air ionization with Sr 90 (PTW, Germany). The results from both methods applied to several electrometers of clinical dosemeters agreed within 0.4%. The calibration factors for the respective chambers were determined by intercomparing their response to the response of a certified calibrated chamber in a Co 60 calibration beam using a Keithley electrometer type 617. Overall calibration factors compared with the product of the respective component calibration factors for the tested dosemeters showed an agreement better than 0.7%. This deviation has to be considered with regard to an uncertainty of 2.5% in routine calibration of clinical dosemeters. Calibration by components permits to calibrate ionization chambers one at a time for those hospitals who have several ionization chambers but only one electrometer (small hospitals, hospitals in developing countries). 6 refs, 2 figs, 2 tabs

  19. 21 CFR 58.63 - Maintenance and calibration of equipment.

    Science.gov (United States)

    2010-04-01

    ... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Equipment § 58.63 Maintenance and... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Maintenance and calibration of equipment. 58.63..., maintenance, testing, calibration, and/or standardization of equipment, and shall specify, when appropriate...

  20. Wind Tunnel Balance Calibration: Are 1,000,000 Data Points Enough?

    Science.gov (United States)

    Rhew, Ray D.; Parker, Peter A.

    2016-01-01

    Measurement systems are typically calibrated based on standard practices established by a metrology standards laboratory, for example the National Institute for Standards and Technology (NIST), or dictated by an organization's metrology manual. Therefore, the calibration is designed and executed according to an established procedure. However, for many aerodynamic research measurement systems a universally accepted standard, traceable approach does not exist. Therefore, a strategy for how to develop a calibration protocol is left to the developer or user to define based on experience and recommended practice in their respective industry. Wind tunnel balances are one such measurement system. Many different calibration systems, load schedules and procedures have been developed for balances with little consensus on a recommended approach. Especially lacking is guidance the number of calibration data points needed. Regrettably, the number of data points tends to be correlated with the perceived quality of the calibration. Often, the number of data points is associated with ones ability to generate the data rather than by a defined need in support of measurement objectives. Hence the title of the paper was conceived to challenge recent observations in the wind tunnel balance community that shows an ever increasing desire for more data points per calibration absent of guidance to determine when there are enough. This paper presents fundamental concepts and theory to aid in the development of calibration procedures for wind tunnel balances and provides a framework that is generally applicable to the characterization and calibration of other measurement systems. Questions that need to be answered are for example: What constitutes an adequate calibration? How much data are needed in the calibration? How good is the calibration? This paper will assist a practitioner in answering these questions by presenting an underlying theory on how to evaluate a calibration based on

  1. Calibration of Photon Sources for Brachytherapy

    Science.gov (United States)

    Rijnders, Alex

    Source calibration has to be considered an essential part of the quality assurance program in a brachytherapy department. Not only it will ensure that the source strength value used for dose calculation agrees within some predetermined limits to the value stated on the source certificate, but also it will ensure traceability to international standards. At present calibration is most often still given in terms of reference air kerma rate, although calibration in terms of absorbed dose to water would be closer to the users interest. It can be expected that in a near future several standard laboratories will be able to offer this latter service, and dosimetry protocols will have to be adapted in this way. In-air measurement using ionization chambers (e.g. a Baldwin—Farmer ionization chamber for 192Ir high dose rate HDR or pulsed dose rate PDR sources) is still considered the method of choice for high energy source calibration, but because of their ease of use and reliability well type chambers are becoming more popular and are nowadays often recommended as the standard equipment. For low energy sources well type chambers are in practice the only equipment available for calibration. Care should be taken that the chamber is calibrated at the standard laboratory for the same source type and model as used in the clinic, and using the same measurement conditions and setup. Several standard laboratories have difficulties to provide these calibration facilities, especially for the low energy seed sources (125I and 103Pd). Should a user not be able to obtain properly calibrated equipment to verify the brachytherapy sources used in his department, then at least for sources that are replaced on a regular basis, a consistency check program should be set up to ensure a minimal level of quality control before these sources are used for patient treatment.

  2. SPOTS Calibration Example

    Directory of Open Access Journals (Sweden)

    Patterson E.

    2010-06-01

    Full Text Available The results are presented using the procedure outlined by the Standardisation Project for Optical Techniques of Strain measurement to calibrate a digital image correlation system. The process involves comparing the experimental data obtained with the optical measurement system to the theoretical values for a specially designed specimen. The standard states the criteria which must be met in order to achieve successful calibration, in addition to quantifying the measurement uncertainty in the system. The system was evaluated at three different displacement load levels, generating strain ranges from 289 µstrain to 2110 µstrain. At the 289 µstrain range, the calibration uncertainty was found to be 14.1 µstrain, and at the 2110 µstrain range it was found to be 28.9 µstrain. This calibration procedure was performed without painting a speckle pattern on the surface of the metal. Instead, the specimen surface was prepared using different grades of grit paper to produce the desired texture.

  3. Cause analysis for unsatisfactory results in proficiency testing activities: a case study of Brazilian calibration laboratories accredited under ISO/IEC 17025:2005⋆

    Directory of Open Access Journals (Sweden)

    Silva M.A.F.

    2013-01-01

    Full Text Available This work presents the results of a survey carried out among Brazilian calibration laboratories accredited under ISO/IEC 17025:2005 with the objective to identify how these laboratories investigate the root causes of unsatisfactory results in proficiency testing. The survey was coordinated by the Brazilian accreditation body, the General Coordination for Accreditation (Cgcre, of the Institute of Metrology, Quality and Technology (Inmetro.

  4. Implementation of the Gamma Monitor Calibration Laboratory (LABCAL) of the Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) of the Technology Center of the Brazilian Army (CTEx)

    Energy Technology Data Exchange (ETDEWEB)

    Balthar, Mario Cesar V.; Amorim, Aneuri de; Santos, Avelino dos and others, E-mail: mariobalthar@gmail.com [Centro Tecnológico do Exército (IDQBRN/CTEx), Rio de Janeiro, RJ (Brazil). Instituto de Defesa Química, Biológica, Radiológica e Nuclear

    2017-07-01

    The objective of this work is to describe the implementation and adaptation stages of the Gamma Monitor Calibration Laboratory (Laboratório de Calibração de Monitores Gama - LABCAL) of the Institute of Chemical, Biological, Radiological and Nuclear Defense (Instituto de Defesa Química, Biológica, Radiológica e Nuclear - IDQBRN) of the Technology Center of the Brazilian Army (Centro Tecnológico do Exército - CTEx). Calibration of the radiation monitors used by the Brazilian Army will be performed by quantitatively measuring the ambient dose equivalent, in compliance with national legislation. LABCAL still seeks licensing from CNEN and INMETRO. The laboratory in intended to supply the total demand for calibration of ionizing radiation devices from the Brazilian Army. (author)

  5. Implementation of the Gamma Monitor Calibration Laboratory (LABCAL) of the Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) of the Technology Center of the Brazilian Army (CTEx)

    International Nuclear Information System (INIS)

    Balthar, Mario Cesar V.; Amorim, Aneuri de; Santos, Avelino dos and others

    2017-01-01

    The objective of this work is to describe the implementation and adaptation stages of the Gamma Monitor Calibration Laboratory (Laboratório de Calibração de Monitores Gama - LABCAL) of the Institute of Chemical, Biological, Radiological and Nuclear Defense (Instituto de Defesa Química, Biológica, Radiológica e Nuclear - IDQBRN) of the Technology Center of the Brazilian Army (Centro Tecnológico do Exército - CTEx). Calibration of the radiation monitors used by the Brazilian Army will be performed by quantitatively measuring the ambient dose equivalent, in compliance with national legislation. LABCAL still seeks licensing from CNEN and INMETRO. The laboratory in intended to supply the total demand for calibration of ionizing radiation devices from the Brazilian Army. (author)

  6. Implementation of a laboratory for manufacture, repair and electric calibration of dosemeters based in ionization chambers utilized in radiotherapy

    International Nuclear Information System (INIS)

    Becker, P.H.B.; Peres, M.A.L.; Moreira, A.J.C.; Nette, H.P.

    1998-01-01

    Manufacturers of ionization chamber dosimeters for radiotherapy maintain only sales representatives in Brazil with no servicing capability causing difficulties to customers/users to get broken equipment back into operation. Aiming to partially solve this problem, a laboratory for maintenance, repair and electrical calibration was started in 1995 with the support of a two year IAEA Technical Assistance Project (BRA/1/031). (Author)

  7. Status of the laboratory infrastructure for detector calibration and characterization at the European XFEL

    Science.gov (United States)

    Raab, N.; Ballak, K.-E.; Dietze, T.; Ekmedzič, M.; Hauf, S.; Januschek, F.; Kaukher, A.; Kuster, M.; Lang, P. M.; Münnich, A.; Schmitt, R.; Sztuk-Dambietz, J.; Turcato, M.

    2016-12-01

    The European X-ray Free Electron Laser (XFEL.EU) will provide unprecedented peak brilliance and ultra-short and spatially coherent X-ray pulses in an energy range of 0.25 to 25 keV . The pulse timing structure is unique with a burst of 2700 pulses of 100 fs length at a temporal distance of 220 ns followed by a 99.4 ms gap. To make optimal use of this timing structure and energy range a great variety of detectors are being developed for use at XFEL.EU, including 2D X-ray imaging cameras that are able to detect images at a rate of 4.5 MHz, provide dynamic ranges up to 105 photons per pulse per pixel under different operating conditions and covering a large range of angular resolution \\cite{requirements,Markus}. In order to characterize, commission and calibrate this variety of detectors and for testing of detector prototypes the XFEL.EU detector group is building up an X-ray test laboratory that allows testing of detectors with X-ray photons under conditions that are as similar to the future beam line conditions at the XFEL.EU as is possible with laboratory sources [1]. A total of four test environments provide the infrastructure for detector tests and calibration: two portable setups that utilize low power X-ray sources and radioactive isotopes, a test environment where a commercial high power X-ray generator is in use, and a pulsed X-ray/electron source which will provide pulses as short as 25 ns in XFEL.EU burst mode combined with target anodes of different materials. The status of the test environments, three of which are already in use while one is in commissioning phase, will be presented as well as first results from performance tests and characterization of the sources.

  8. Conception of the Instrument Calibration Laboratory of Ionizing Radiation Measurement (LACIMRI) of CTMSP - Sao Paulo, SP; Concepcao do Laboratorio de Calibracao de Instrumentos de Medicao de Radiacao Ionizante (LACIMRI) do CTMSP, Sao Paulo, SP

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Raimundo Dias da; Kibrit, Eduardo, E-mail: raimundo@ctmsp.mar.mil.b, E-mail: kibrit@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil)

    2009-07-01

    The present work describes the phases of implantation of calibration laboratory of ionizing radiation measurement instruments at the CTMSP, Sao Paulo, in a priory approved by CNEN, Brazil. That laboratory will allow and enhance the present metrological capacity for the attendance to the growing demand for calibration services of the instruments

  9. Instrumentation calibration

    International Nuclear Information System (INIS)

    Mack, D.A.

    1976-08-01

    Procedures for the calibration of different types of laboratory equipment are described. Provisions for maintaining the integrity of reference and working standards traceable back to a national standard are discussed. Methods of validation and certification methods are included. An appendix lists available publications and services of national standardizing agencies

  10. Validating and calibrating the Nintendo Wii balance board to derive reliable center of pressure measures.

    Science.gov (United States)

    Leach, Julia M; Mancini, Martina; Peterka, Robert J; Hayes, Tamara L; Horak, Fay B

    2014-09-29

    The Nintendo Wii balance board (WBB) has generated significant interest in its application as a postural control measurement device in both the clinical and (basic, clinical, and rehabilitation) research domains. Although the WBB has been proposed as an alternative to the "gold standard" laboratory-grade force plate, additional research is necessary before the WBB can be considered a valid and reliable center of pressure (CoP) measurement device. In this study, we used the WBB and a laboratory-grade AMTI force plate (AFP) to simultaneously measure the CoP displacement of a controlled dynamic load, which has not been done before. A one-dimensional inverted pendulum was displaced at several different displacement angles and load heights to simulate a variety of postural sway amplitudes and frequencies (<1 Hz). Twelve WBBs were tested to address the issue of inter-device variability. There was a significant effect of sway amplitude, frequency, and direction on the WBB's CoP measurement error, with an increase in error as both sway amplitude and frequency increased and a significantly greater error in the mediolateral (ML) (compared to the anteroposterior (AP)) sway direction. There was no difference in error across the 12 WBB's, supporting low inter-device variability. A linear calibration procedure was then implemented to correct the WBB's CoP signals and reduce measurement error. There was a significant effect of calibration on the WBB's CoP signal accuracy, with a significant reduction in CoP measurement error (quantified by root-mean-squared error) from 2-6 mm (before calibration) to 0.5-2 mm (after calibration). WBB-based CoP signal calibration also significantly reduced the percent error in derived (time-domain) CoP sway measures, from -10.5% (before calibration) to -0.05% (after calibration) (percent errors averaged across all sway measures and in both sway directions). In this study, we characterized the WBB's CoP measurement error under controlled, dynamic

  11. Validating and Calibrating the Nintendo Wii Balance Board to Derive Reliable Center of Pressure Measures

    Directory of Open Access Journals (Sweden)

    Julia M. Leach

    2014-09-01

    Full Text Available The Nintendo Wii balance board (WBB has generated significant interest in its application as a postural control measurement device in both the clinical and (basic, clinical, and rehabilitation research domains. Although the WBB has been proposed as an alternative to the “gold standard” laboratory-grade force plate, additional research is necessary before the WBB can be considered a valid and reliable center of pressure (CoP measurement device. In this study, we used the WBB and a laboratory-grade AMTI force plate (AFP to simultaneously measure the CoP displacement of a controlled dynamic load, which has not been done before. A one-dimensional inverted pendulum was displaced at several different displacement angles and load heights to simulate a variety of postural sway amplitudes and frequencies (<1 Hz. Twelve WBBs were tested to address the issue of inter-device variability. There was a significant effect of sway amplitude, frequency, and direction on the WBB’s CoP measurement error, with an increase in error as both sway amplitude and frequency increased and a significantly greater error in the mediolateral (ML (compared to the anteroposterior (AP sway direction. There was no difference in error across the 12 WBB’s, supporting low inter-device variability. A linear calibration procedure was then implemented to correct the WBB’s CoP signals and reduce measurement error. There was a significant effect of calibration on the WBB’s CoP signal accuracy, with a significant reduction in CoP measurement error (quantified by root-mean-squared error from 2–6 mm (before calibration to 0.5–2 mm (after calibration. WBB-based CoP signal calibration also significantly reduced the percent error in derived (time-domain CoP sway measures, from −10.5% (before calibration to −0.05% (after calibration (percent errors averaged across all sway measures and in both sway directions. In this study, we characterized the WBB’s CoP measurement error

  12. Brookhaven National Laboratory meteorological services instrument calibration plan and procedures

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, John [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-02-16

    This document describes the Meteorological Services (Met Services) Calibration and Maintenance Schedule and Procedures, The purpose is to establish the frequency and mechanism for the calibration and maintenance of the network of meteorological instrumentation operated by Met Services. The goal is to maintain the network in a manner that will result in accurate, precise and reliable readings from the instrumentation.

  13. Calibrations and evaluation of the quality assurance during 1999 at the National Laboratory for ionising radiation; Kalibrerings- och normalieverksamheten vid Riksmaetplats 06 under 1999

    Energy Technology Data Exchange (ETDEWEB)

    Grindborg, Jan-Erik; Israelsson, Karl-Erik; Kylloenen, Jan-Erik; Samuelson, Goeran

    2000-06-01

    The Swedish Radiation Protection Institute is the National Laboratory for the dosimetric quantities kerma, absorbed dose and dose equivalent. The activity is based on established calibration procedures and a quality assurance program for the used standards. This report gives a brief summary of the calibrations performed during 1999 and a more detailed description and analysis of the quality assurance during this year. The report makes it easier to draw conclusions about the long-term stability and possible malfunctions.

  14. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  15. LABORATORY EVALUATION OF A MICROFLUIDIC ELECTROCHEMICAL SENSOR FOR AEROSOL OXIDATIVE LOAD.

    Science.gov (United States)

    Koehler, Kirsten; Shapiro, Jeffrey; Sameenoi, Yupaporn; Henry, Charles; Volckens, John

    2014-05-01

    Human exposure to particulate matter (PM) air pollution is associated with human morbidity and mortality. The mechanisms by which PM impacts human health are unresolved, but evidence suggests that PM intake leads to cellular oxidative stress through the generation of reactive oxygen species (ROS). Therefore, reliable tools are needed for estimating the oxidant generating capacity, or oxidative load, of PM at high temporal resolution (minutes to hours). One of the most widely reported methods for assessing PM oxidative load is the dithiothreitol (DTT) assay. The traditional DTT assay utilizes filter-based PM collection in conjunction with chemical analysis to determine the oxidation rate of reduced DTT in solution with PM. However, the traditional DTT assay suffers from poor time resolution, loss of reactive species during sampling, and high limit of detection. Recently, a new DTT assay was developed that couples a Particle-Into-Liquid-Sampler with microfluidic-electrochemical detection. This 'on-line' system allows high temporal resolution monitoring of PM reactivity with improved detection limits. This study reports on a laboratory comparison of the traditional and on-line DTT approaches. An urban dust sample was aerosolized in a laboratory test chamber at three atmospherically-relevant concentrations. The on-line system gave a stronger correlation between DTT consumption rate and PM mass (R 2 = 0.69) than the traditional method (R 2 = 0.40) and increased precision at high temporal resolution, compared to the traditional method.

  16. Calibration of nuclear medicine gamma counters

    International Nuclear Information System (INIS)

    Orlic, M.; Spasic-Jokic, V.; Jovanovic, M.; Vranjes, S. . E-mail address of corresponding author: morlic@vin.bg.ac.yu; Orlic, M.)

    2005-01-01

    In this paper the practical problem of nuclear medicine gamma counters calibration has been solved by using dose calibrators CRC-15R with standard error ±5%. The samples from technetium generators have been measured both by dose calibrators CRC-15R and gamma counter ICN Gamma 3.33 taking into account decay correction. Only the linear part of the curve has practical meaning. The advantage of this procedure satisfies the requirements from international standards: the calibration of sources used for medical exposure be traceable to a standard dosimetry laboratory and radiopharmaceuticals for nuclear medicine procedures be calibrated in terms of activity of the radiopharmaceutical to be administered. (author)

  17. Calibration procedure for Slocum glider deployed optical instruments.

    Science.gov (United States)

    Cetinić, Ivona; Toro-Farmer, Gerardo; Ragan, Matthew; Oberg, Carl; Jones, Burton H

    2009-08-31

    Recent developments in the field of the autonomous underwater vehicles allow the wide usage of these platforms as part of scientific experiments, monitoring campaigns and more. The vehicles are often equipped with sensors measuring temperature, conductivity, chlorophyll a fluorescence (Chl a), colored dissolved organic matter (CDOM) fluorescence, phycoerithrin (PE) fluorescence and spectral volume scattering function at 117 degrees, providing users with high resolution, real time data. However, calibration of these instruments can be problematic. Most in situ calibrations are performed by deploying complementary instrument packages or water samplers in the proximity of the glider. Laboratory calibrations of the mounted sensors are difficult due to the placement of the instruments within the body of the vehicle. For the laboratory calibrations of the Slocum glider instruments we developed a small calibration chamber where we can perform precise calibrations of the optical instruments aboard our glider, as well as sensors from other deployment platforms. These procedures enable us to obtain pre- and post-deployment calibrations for optical fluorescence instruments, which may differ due to the biofouling and other physical damage that can occur during long-term glider deployments. We found that biofouling caused significant changes in the calibration scaling factors of fluorescent sensors, suggesting the need for consistent and repetitive calibrations for gliders as proposed in this paper.

  18. An automated calibration laboratory for flight research instrumentation: Requirements and a proposed design approach

    Science.gov (United States)

    Oneill-Rood, Nora; Glover, Richard D.

    1990-01-01

    NASA's Dryden Flight Research Facility (Ames-Dryden), operates a diverse fleet of research aircraft which are heavily instrumented to provide both real time data for in-flight monitoring and recorded data for postflight analysis. Ames-Dryden's existing automated calibration (AUTOCAL) laboratory is a computerized facility which tests aircraft sensors to certify accuracy for anticipated harsh flight environments. Recently, a major AUTOCAL lab upgrade was initiated; the goal of this modernization is to enhance productivity and improve configuration management for both software and test data. The new system will have multiple testing stations employing distributed processing linked by a local area network to a centralized database. The baseline requirements for the new AUTOCAL lab and the design approach being taken for its mechanization are described.

  19. Effects of laboratory heating, cyclic pore pressure, and cyclic loading on fracture properties of asphalt mixture.

    Science.gov (United States)

    2012-04-01

    This study involved the identification and evaluation of laboratory conditioning methods and testing protocols considering heat oxidation, moisture, and load that more effectively simulate asphalt mixture aging in the field, and thereby help to prope...

  20. 40 CFR 160.63 - Maintenance and calibration of equipment.

    Science.gov (United States)

    2010-07-01

    ...) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Equipment § 160.63 Maintenance and calibration of..., maintenance, testing, calibration, and/ or standardization of equipment, and shall specify, when appropriate... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Maintenance and calibration of...

  1. Technique for production of calibrated metal hydride films

    International Nuclear Information System (INIS)

    Langley, R.A.; Browning, J.F.; Balsley, S.D.; Banks, J.C.; Doyle, B.L.; Wampler, W.R.; Beavis, L.C.

    1999-01-01

    A technique has been developed for producing calibrated metal hydride films for use in the measurement of high-energy (5--15 MeV) particle reaction cross sections for hydrogen and helium isotopes on hydrogen isotopes. Absolute concentrations of various hydrogen isotopes in the film is expected to be determined to better than ±2% leading to the capacity of accurately measuring various reaction cross sections. Hydrogen isotope concentrations from near 100% to 5% can be made accurately and reproducibly. This is accomplished with the use of high accuracy pressure measurements coupled with high accuracy mass spectrometric measurements of each constituent partial pressure of the gas mixture during loading of the metal occluder films. Various techniques are used to verify the amount of metal present as well as the amount of hydrogen isotopes; high energy ion scattering analysis, PV measurements before, during and after loading, and thermal desorption/mass spectrometry measurements. The most appropriate metal to use for the occluder film appears to be titanium but other occluder metals are also being considered. Calibrated gas ratio samples, previously prepared, are used for the loading gas. Deviations from this calibrated gas ratio are measured using mass spectrometry during and after the loading process thereby determining the loading of the various hydrogen isotopes. These techniques are discussed and pertinent issues presented

  2. Radiation Calibration Measurements

    International Nuclear Information System (INIS)

    Omondi, C.

    2017-01-01

    KEBS Radiation Dosimetry mandate are: Custodian of Kenya Standards on Ionizing radiation, Ensure traceability to International System (SI ) and Calibration radiation equipment. RAF 8/040 on Radioisotope applications for troubleshooting and optimizing industrial process established Radiotracer Laboratory objective is to introduce and implement radiotracer technique for problem solving of industrial challenges. Gamma ray scanning technique applied is to Locate blockages, Locate liquid in vapor lines, Locate areas of lost refractory or lining in a pipe and Measure flowing densities. Equipment used for diagnostic and radiation protection must be calibrated to ensure Accuracy and Traceability

  3. Load-cell-based weighing system for weighing 9.1- and 12.7-tonne UF6 cylinders

    International Nuclear Information System (INIS)

    McAuley, W.A.; Kane, W.R.

    1986-01-01

    For the independent verification of UF 6 cylinder masses by the International Atomic Energy Agency (IAEA) at uranium enrichment facilities, an 18-tonne capacity Load-Cell-Based Weighing System (LCBWS) has been developed. The system was developed at Brookhaven National Laboratory and the Oak Ridge Gaseous Diffusion Plant and calibrated at the US National Bureau of Standards. The principal components of the LCBWS are two load cells, with readout and ancillary equipment, and a lifting fixture that couples the load cells to a cylinder. Initial experience with the system demonstrates that it has the advantages of transportability, ease of application, stability, and an attainable accuracy of 2 kg or better for a full cylinder

  4. X-ray calibration qualities

    International Nuclear Information System (INIS)

    Burns, J.E.

    1998-01-01

    Since the recent publication of IAEA Technical Reports Series No. 374 ''Calibration of Dosimeters Used in Radiotheraphy'', there have been a number of queries about the origin of, and the rationale behind, the X-ray qualities recommended for calibration purposes. The simple answer is that these are the qualities derived at the UK National Physical Laboratory (NPL) in 1971 for calibration of therapy-level dosimeters and which are still in use for that purpose. As some SSDLs may have difficulties in adopting these exact combinations of kV and filtration. This paper discusses the basic ideas involved, and how to go about deriving a different series of qualities

  5. First Interlaboratory Comparison on Calibration of Temperature-Controlled Enclosures in Turkey

    Science.gov (United States)

    Uytun, A.; Kalemci, M.

    2017-11-01

    The number of accredited laboratories in the field of calibration of temperature-controlled enclosures has been increasing in Turkey. One of the main criteria demonstrating the competence of a calibration laboratory is successful participation in interlaboratory comparisons. Therefore, TUBITAK UME Temperature Laboratory organized the first interlaboratory comparison on "Calibration of Temperature-Controlled Enclosures" in Turkey as a pilot laboratory between January and November, 2013. Forty accredited laboratories which provide routine calibration services to the industry in this field participated in the comparison. The standards used during the comparison was a climatic chamber for the measurements at -40 {°}C, -20 {°}C, 40 {°}C and 100 {°}C and an oven for the measurements at 200 {°}C. The protocol of the comparison was prepared considering guide EURAMET cg-20 and BS EN/IEC standards 600068-3-5 and 600068-3-11. During the comparison measurements, each participant had the liberty to choose the most convenient calibration points in terms of their accreditation scope among the values mentioned above and carried out on-site measurements at UME. The details and the results of this comparison are given in the paper. Determination of the statistical consistency of the results with the uncertainties given by the participants can be assessed by the method of En value assessment for each laboratory. En values for all measurement results based on the results of pilot and participating laboratories were calculated.

  6. Wind Tunnel Strain-Gage Balance Calibration Data Analysis Using a Weighted Least Squares Approach

    Science.gov (United States)

    Ulbrich, N.; Volden, T.

    2017-01-01

    A new approach is presented that uses a weighted least squares fit to analyze wind tunnel strain-gage balance calibration data. The weighted least squares fit is specifically designed to increase the influence of single-component loadings during the regression analysis. The weighted least squares fit also reduces the impact of calibration load schedule asymmetries on the predicted primary sensitivities of the balance gages. A weighting factor between zero and one is assigned to each calibration data point that depends on a simple count of its intentionally loaded load components or gages. The greater the number of a data point's intentionally loaded load components or gages is, the smaller its weighting factor becomes. The proposed approach is applicable to both the Iterative and Non-Iterative Methods that are used for the analysis of strain-gage balance calibration data in the aerospace testing community. The Iterative Method uses a reasonable estimate of the tare corrected load set as input for the determination of the weighting factors. The Non-Iterative Method, on the other hand, uses gage output differences relative to the natural zeros as input for the determination of the weighting factors. Machine calibration data of a six-component force balance is used to illustrate benefits of the proposed weighted least squares fit. In addition, a detailed derivation of the PRESS residuals associated with a weighted least squares fit is given in the appendices of the paper as this information could not be found in the literature. These PRESS residuals may be needed to evaluate the predictive capabilities of the final regression models that result from a weighted least squares fit of the balance calibration data.

  7. Calibration curves for biological dosimetry

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M. . E-mail cgc@nuclear.inin.mx

    2004-01-01

    The generated information by the investigations in different laboratories of the world, included the ININ, in which settles down that certain class of chromosomal leisure it increases in function of the dose and radiation type, has given by result the obtaining of calibrated curves that are applied in the well-known technique as biological dosimetry. In this work is presented a summary of the work made in the laboratory that includes the calibrated curves for gamma radiation of 60 Cobalt and X rays of 250 k Vp, examples of presumed exposure to ionizing radiation, resolved by means of aberration analysis and the corresponding dose estimate through the equations of the respective curves and finally a comparison among the dose calculations in those people affected by the accident of Ciudad Juarez, carried out by the group of Oak Ridge, USA and those obtained in this laboratory. (Author)

  8. Effects of gypsum and bulk density on neutron probe calibration curves

    International Nuclear Information System (INIS)

    Arslan, Awadis; Razzouk, A.K.

    1993-10-01

    The effects of gypsum and bulk density on the neutron probe calibration curve were studied in the laboratory and in the field. The effect of bulk density was negligible for the soil studied in the laboratory, while it was significant for the field calibration. An increase in the slope of moisture content on a volume basis vs. count ratio with increasing gypsum content at the soil was observed in the laboratory calibration. A simple method for correction of the calibration curve for gypsum content was adopted to obtain a specific curve for each layer. The adapted method requires the gypsum fraction to be estimated for each layer and then incorporated in the calibration curve to improve the coefficient of determination. A field calibration showed an improvement of the determination coefficient by introducing bulk density and gypsum fraction, in addition to count ratio using moisture content on a volume basis as a dependent variable in multi linear regression analysis. The same procedure was successful with variable gravel fractions. (author). 18 refs., 3 figs., 2 tabs

  9. Optimization of protection and calibration of the moisture-density gages troxler

    International Nuclear Information System (INIS)

    RAKOTONDRAVANONA, J.E.

    2011-01-01

    The purpose of this work is the implementation of the principle of optimization of the protection and calibration of moisture-density gages TROXLER. The main objectives are the application of radiation protection and the feasibility of a calibration laboratory design. The calibration of density and moisture may confirm the calibration of moisture-density gages TROXLER. The calibration of density consists of the assembly of measurements on three calibration blocks (magnesium, aluminium and magnesium/aluminium) built in the TRACKER. The value of density uncertainty is ±32 Kg.m -3 . The calibration of moisture is carried out on two calibration blocks (magnesium and magnesium/polyethylene)The value of moisture uncertainty is ±16 Kg.m -3 . The design of the laboratory returns to the dose limitation. The laboratory is designed mainly wall out of ordinary concrete, a good attenuator of the gamma radiations and neutron. For the design, the value of term source gamma is 25.77±0.20μSv.h -1 and the value of term source neutron is 7.88±0.35μSv.h -1 are used for the thickness of the walls. The importance of the design makes it possible to attenuate to the maximum doses and rates dose until the total absorption of the radiations. [fr

  10. Replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory

    International Nuclear Information System (INIS)

    1995-05-01

    The DOE-Idaho Operations Office (DOE-ID) has prepared an environmental assessment (EA) on the replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory at the Idaho National Engineering Laboratory (INEL). The purpose of this project is to replace the existing Health Physics Instrumentation Laboratory (HPIL) with a new facility to provide a safe environment for maintaining and calibrating radiation detection instruments used at the Idaho National Engineering Laboratory. The existing HPIL facility provides portable health physics monitoring instrumentation and direct reading dosimetry procurement, maintenance and calibration of radiation detection instruments, and research and development support-services to the INEL and others. However, the existing facility was not originally designed for laboratory activities and does not provide an adequate, safe environment for calibration activities. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality (CEQ) Regulations (40 CFR Parts 1500-1508). Based on the environmental analysis in the attached EA, the proposed action will not have a significant effect on the human environment within the meaning of the National Environmental Policy Act (NEPA) and 40 CFR Parts 1508.18 and 1508.27. The selected action (the proposed alternative) is composed of the following elements, each described or evaluated in the attached EA on the pages referenced. The proposed action is expected to begin in 1997 and will be completed within three years: design and construction of a new facility at the Central Facility Area of the INEL; operation of the facility, including instrument receipt, inspections and repairs, precision testing and calibration, and storage and issuance. The selected action will result in no significant environmental impacts

  11. Photon contributions from the 252Cf and 241Am–Be neutron sources at the PSI Calibration Laboratory

    International Nuclear Information System (INIS)

    Hoedlmoser, H.; Boschung, M.; Meier, K.; Stadtmann, H.; Hranitzky, C.; Figel, M.; Mayer, S.

    2012-01-01

    At the accredited PSI Calibration Laboratory neutron reference fields traceable to the national standards of the Physikalisch-Technische Bundesanstalt (PTB) in Germany are available for the calibration of ambient and personal dose equivalent (rate) meters and passive dosimeters. The photon contribution to the ambient dose equivalent in the neutron fields of the 252 Cf and 241 Am–Be sources was measured using various photon dose rate meters and active and passive dosimeters. Measuring photons from a neutron source usually involves considerable uncertainties due to the presence of neutron induced photons in the room, due to a non-zero neutron sensitivity of the photon detector, and last but not least due to the energy response of the photon detectors. Therefore eight independent detectors and methods were used to obtain a reliable estimate for the photon contribution of the two sources as an average of the individual methods. For the 241 Am–Be source a photon contribution of approximately 4.9% was determined and for the 252 Cf source a contribution of 3.6%.

  12. Calibration of farmer dosemeters

    International Nuclear Information System (INIS)

    Ahmad, S.S.; Anwar, K.; Arshed, W.; Mubarak, M.A.; Orfi, S.D.

    1984-08-01

    The Farmer Dosemeters of Atomic Energy Medical Centre (AEMC) Jamshoro were calibrated in the Secondary Standard Dosimetry Laboratory (SSDL) at PINSTECH, using the NPL Secondary Standard Therapy level X-ray exposure meter. The results are presented in this report. (authors)

  13. Calibration-free optical chemical sensors

    Science.gov (United States)

    DeGrandpre, Michael D.

    2006-04-11

    An apparatus and method for taking absorbance-based chemical measurements are described. In a specific embodiment, an indicator-based pCO2 (partial pressure of CO2) sensor displays sensor-to-sensor reproducibility and measurement stability. These qualities are achieved by: 1) renewing the sensing solution, 2) allowing the sensing solution to reach equilibrium with the analyte, and 3) calculating the response from a ratio of the indicator solution absorbances which are determined relative to a blank solution. Careful solution preparation, wavelength calibration, and stray light rejection also contribute to this calibration-free system. Three pCO2 sensors were calibrated and each had response curves which were essentially identical within the uncertainty of the calibration. Long-term laboratory and field studies showed the response had no drift over extended periods (months). The theoretical response, determined from thermodynamic characterization of the indicator solution, also predicted the observed calibration-free performance.

  14. Laboratory for Calibration of Gamma Radiation Measurement Instruments (LabCal) of Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) from Brazilian Army Technology Center (CTEx); Laboratorio de Calibracao de Instrumentode Medicao de Radiacao Gama (LabCal) do IDQBRN do CTEx

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Aneuri de; Balthar, Mario Cesar V.; Santos, Avelino; Vilela, Paulo Ricardo T. de; Oliveira, Luciano Santa Rita; Penha, Paulo Eduardo C. de Oliveira; Gonzaga, Roberto Neves; Andrade, Edson Ramos de; Oliveira, Celio Jorge Vasques de; Fagundes, Luiz Cesar S., E-mail: aneurideamorim@gmail.com [Centro Tecnologico do Exercito (DQBRN/CTEx), Rio de Janeiro, RJ (Brazil). Instituto de Defesa Quimica, Biologica, Radiologica e Nuclear

    2016-07-01

    This paper describes the calibration laboratory deployment steps (LABCAL) gamma ionizing radiation measuring instruments in the Army Technology Center, CTEx. Initially the calibration of radiation monitors will be held in the dosimetric quantity air kerma and operational quantity ambient dose equivalent H*(d). The LABCAL / CTEx has not yet authorized by CASEC / CNEN. This laboratory aims to calibrate the ionizing radiation instruments used by the Brazilian Army. (author)

  15. Improvement of the WBC calibration of the Internal Dosimetry Laboratory of the CDTN/CNEN using MCNPX code

    Energy Technology Data Exchange (ETDEWEB)

    Guerra P, F.; Heeren de O, A. [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Programa de Pos Graduacao em Ciencias e Tecnicas Nucleares, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Melo, B. M.; Lacerda, M. A. S.; Da Silva, T. A.; Ferreira F, T. C., E-mail: tcff01@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear, Programa de Pos Graduacao / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    The Plan of Radiological Protection licensed by the National Nuclear Energy Commission - CNEN in Brazil includes the risks of assessment of internal and external exposure by implementing a program of individual monitoring which is responsible of controlling exposures and ensuring the maintenance of radiation safety. The Laboratory of Internal Dosimetry of the Center for Development of Nuclear Technology - LID/CDTN is responsible for routine monitoring of internal contamination of the Individuals Occupationally Exposed (IOEs). These are, the IOEs involved in handling {sup 18}F produced by the Unit for Research and Production of Radiopharmaceuticals sources; as well a monitoring of the entire body of workers from the Research Reactor TRIGA IPR-R1/CDTN or whenever there is any risk of accidental incorporation. The determination of photon emitting radionuclides from the human body requires calibration techniques of the counting geometries, in order to obtain a curve of efficiency. The calibration process normally makes use of physical phantoms containing certified activities of the radionuclides of interest. The objective of this project is the calibration of the WBC facility of the LID/CDTN using the BOMAB physical phantom and Monte Carlo simulations. Three steps were needed to complete the calibration process. First, the BOMAB was filled with a KCl solution and several measurements of the gamma ray energy (1.46 MeV) emitted by {sup 40}K were done. Second, simulations using MCNPX code were performed to calculate the counting efficiency (Ce) for the BOMAB model phantom and compared with the measurements Ce results. Third and last step, the modeled BOMAB phantom was used to calculate the Ce covering the energy range of interest. The results showed a good agreement and are within the expected ratio between the measured and simulated results. (Author)

  16. Improvement of the WBC calibration of the Internal Dosimetry Laboratory of the CDTN/CNEN using MCNPX code

    International Nuclear Information System (INIS)

    Guerra P, F.; Heeren de O, A.; Melo, B. M.; Lacerda, M. A. S.; Da Silva, T. A.; Ferreira F, T. C.

    2015-10-01

    The Plan of Radiological Protection licensed by the National Nuclear Energy Commission - CNEN in Brazil includes the risks of assessment of internal and external exposure by implementing a program of individual monitoring which is responsible of controlling exposures and ensuring the maintenance of radiation safety. The Laboratory of Internal Dosimetry of the Center for Development of Nuclear Technology - LID/CDTN is responsible for routine monitoring of internal contamination of the Individuals Occupationally Exposed (IOEs). These are, the IOEs involved in handling 18 F produced by the Unit for Research and Production of Radiopharmaceuticals sources; as well a monitoring of the entire body of workers from the Research Reactor TRIGA IPR-R1/CDTN or whenever there is any risk of accidental incorporation. The determination of photon emitting radionuclides from the human body requires calibration techniques of the counting geometries, in order to obtain a curve of efficiency. The calibration process normally makes use of physical phantoms containing certified activities of the radionuclides of interest. The objective of this project is the calibration of the WBC facility of the LID/CDTN using the BOMAB physical phantom and Monte Carlo simulations. Three steps were needed to complete the calibration process. First, the BOMAB was filled with a KCl solution and several measurements of the gamma ray energy (1.46 MeV) emitted by 40 K were done. Second, simulations using MCNPX code were performed to calculate the counting efficiency (Ce) for the BOMAB model phantom and compared with the measurements Ce results. Third and last step, the modeled BOMAB phantom was used to calculate the Ce covering the energy range of interest. The results showed a good agreement and are within the expected ratio between the measured and simulated results. (Author)

  17. Calibration and Sequence Development Status for the Sample Analysis at Mars Investigation on the Mars Science Laboratory

    Science.gov (United States)

    Mahaffy, Paul R.

    2012-01-01

    The measurement goals of the Sample Analysis at Mars (SAM) instrument suite on the "Curiosity" Rover of the Mars Science Laboratory (MSL) include chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples [1,2]. SAM directly supports the ambitious goals of the MSL mission to provide a quantitative assessment of habitability and preservation in Gale crater by means of a range of chemical and geological measurements [3]. The SAM FM combined calibration and environmental testing took place primarily in 2010 with a limited set of tests implemented after integration into the rover in January 2011. The scope of SAM FM testing was limited both to preserve SAM consumables such as life time of its electromechanical elements and to minimize the level of terrestrial contamination in the SAM instrument. A more comprehensive calibration of a SAM-like suite of instruments will be implemented in 2012 with calibration runs planned for the SAM testbed. The SAM Testbed is nearly identical to the SAM FM and operates in a ambient pressure chamber. The SAM Instrument Suite: SAM's instruments are a Quadrupole Mass Spectrometer (QMS), a 6-column Gas Chromatograph (GC), and a 2-channel Tunable Laser Spectrometer (TLS). Gas Chromatography Mass Spectrometry is designed for identification of even trace organic compounds. The TLS [5] secures the C, H, and O isotopic composition in carbon dioxide, water, and methane. Sieved materials are delivered from the MSL sample acquisition and processing system to one of68 cups of the Sample Manipulation System (SMS). 59 of these cups are fabricated from inert quartz. After sample delivery, a cup is inserted into one of 2 ovens for evolved gas analysis (EGA ambient to >9500C) by the QMS and TLS. A portion of the gas released can be trapped and subsequently analyzed by GCMS. Nine sealed cups contain liquid solvents and chemical derivatization or thermochemolysis agents to extract and transform polar molecules

  18. Site-specific calibration of the Hanford personnel neutron dosimeter

    International Nuclear Information System (INIS)

    Endres, A.W.; Brackenbush, L.W.; Baumgartner, W.V.; Rathbone, B.A.

    1994-10-01

    A new personnel dosimetry system, employing a standard Hanford thermoluminescent dosimeter (TLD) and a combination dosimeter with both CR-39 nuclear track and TLD-albedo elements, is being implemented at Hanford. Measurements were made in workplace environments in order to verify the accuracy of the system and establish site-specific factors to account for the differences in dosimeter response between the workplace and calibration laboratory. Neutron measurements were performed using sources at Hanford's Plutonium Finishing Plant under high-scatter conditions to calibrate the new neutron dosimeter design to site-specific neutron spectra. The dosimeter was also calibrated using bare and moderated 252 Cf sources under low-scatter conditions available in the Hanford Calibration Laboratory. Dose equivalent rates in the workplace were calculated from spectrometer measurements using tissue equivalent proportional counter (TEPC) and multisphere spectrometers. The accuracy of the spectrometers was verified by measurements on neutron sources with calibrations directly traceable to the National Institute of Standards and Technology (NIST)

  19. Calibration of clinical dosemeters in the IAEA water phantom

    International Nuclear Information System (INIS)

    Caldas, L.V.E.; Albuquerque, M.P.P.

    1994-01-01

    The procedures recommended by the IAEA Code of Practice were applied at the Calibration Laboratory of Sao Paulo in order to provide in the future the clinical dosemeters users with absorbed dose to water calibration factors for Cobalt 60 radiation beams. In this work the clinical dosemeters were calibrated free in air and in water, and the results were compared, using conversion factors. The several tested clinical dosemeters of different manufacturers and models belong to the laboratory and to hospitals. For the measurements in water the IAEA cubic water phantom was used. The dosemeters were all calibrated free in air in terms of air kerma, and the calibration factors in terms of absorbed dose to water were obtained through conversion factors. the same dosemeters were also calibrated into the water phantom. Good agreement was found between the two methods, the differences were always less than 0.5%. The data obtained during this work show that when the dosemeters are used only in Cobalt 60 radiation and the users apply in the hospital routine work the IAEA Code of Practice, the calibration can be performed directly in the water phantom. This procedure provides the useful calibration factors in terms of absorbed dose to water

  20. Uncertainty Analysis of Spectral Irradiance Reference Standards Used for NREL Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Andreas, A.; Reda, I.; Campanelli, M.; Stoffel, T.

    2013-05-01

    Spectral irradiance produced by lamp standards such as the National Institute of Standards and Technology (NIST) FEL-type tungsten halogen lamps are used to calibrate spectroradiometers at the National Renewable Energy Laboratory. Spectroradiometers are often used to characterize spectral irradiance of solar simulators, which in turn are used to characterize photovoltaic device performance, e.g., power output and spectral response. Therefore, quantifying the calibration uncertainty of spectroradiometers is critical to understanding photovoltaic system performance. In this study, we attempted to reproduce the NIST-reported input variables, including the calibration uncertainty in spectral irradiance for a standard NIST lamp, and quantify uncertainty for measurement setup at the Optical Metrology Laboratory at the National Renewable Energy Laboratory.

  1. Calibration of reference KAP-meters at SSDL and cross calibration of clinical KAP-meters

    International Nuclear Information System (INIS)

    Hetland, Per O.; Friberg, Eva G.; Oevreboe, Kirsti M.; Bjerke, Hans H.

    2009-01-01

    In the summer of 2007 the secondary standard dosimetry laboratory (SSDL) in Norway established a calibration service for reference air-kerma product meter (KAP-meter). The air-kerma area product, PKA, is a dosimetric quantity that can be directly related to the patient dose and used for risk assessment associated with different x-ray examinations. The calibration of reference KAP-meters at the SSDL gives important information on parameters influencing the calibration factor for different types of KAP-meters. The use of reference KAP-meters calibrated at the SSDL is an easy and reliable way to calibrate or verify the PKA indicated by the x-ray equipment out in the clinics. Material and methods. Twelve KAP-meters were calibrated at the SSDL by use of the substitution method at five diagnostic radiation qualities (RQRs). Results. The calibration factors varied from 0.94 to 1.18. The energy response of the individual KAP-meters varied by a total of 20% between the different RQRs and the typical chamber transmission factors ranged from 0.78 to 0.91. Discussion. It is important to use a calibrated reference KAP-meter and a harmonised calibration method in the PKA calibration in hospitals. The obtained uncertainty in the PKA readings is comparable with other calibration methods if the information in the calibration certificate is correct used, corrections are made and proper positioning of the KAP-chamber is performed. This will ensure a reliable estimate of the patient dose and a proper optimisation of conventional x-ray examinations and interventional procedures

  2. Air kerma standardization for diagnostic radiology, and requirements proposal for calibration laboratories; Padronizacao da grandeza Kerma no ar para radiodiagnostico e proposta de requisitos para laboratorios de calibracao

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Manoel Mattos Oliveira

    2009-07-01

    The demand for calibration services and quality control in diagnostic radiology has grown in the country since the publication of the governmental regulation 453, issued by the Ministry of Health in 1998. At that time, to produce results facing the new legislation, many laboratories used different standards and radiation qualities, some of which could be inadequate. The international standards neither supplied consistent radiation qualities and standardization for the different types of equipment available. This situation changed with the publication of the new edition of the IEC 61267 standard, published in 2005. A metrology network was created, but it is not yet accredited by the accreditation organism of the country, INMETRO. The objective of this work was to implement the standardization of the air kerma for the un attenuated qualities (RQR) of IEC 61267, and to develop a requirement proposal for instruments calibration laboratories. Results of interlaboratory comparisons demonstrate that the quantity is standardized and internationally traceable. A laboratory requirement proposal was finalized and it shall be submitted to INMETRO to be used as auxiliary normative document in laboratory accreditation. (author)

  3. Generic System for Remote Testing and Calibration of Measuring Instruments: Security Architecture

    Science.gov (United States)

    Jurčević, M.; Hegeduš, H.; Golub, M.

    2010-01-01

    Testing and calibration of laboratory instruments and reference standards is a routine activity and is a resource and time consuming process. Since many of the modern instruments include some communication interfaces, it is possible to create a remote calibration system. This approach addresses a wide range of possible applications and permits to drive a number of different devices. On the other hand, remote calibration process involves a number of security issues due to recommendations specified in standard ISO/IEC 17025, since it is not under total control of the calibration laboratory personnel who will sign the calibration certificate. This approach implies that the traceability and integrity of the calibration process directly depends on the collected measurement data. The reliable and secure remote control and monitoring of instruments is a crucial aspect of internet-enabled calibration procedure.

  4. Development of nano-roughness calibration standards

    International Nuclear Information System (INIS)

    Baršić, Gorana; Mahović, Sanjin; Zorc, Hrvoje

    2012-01-01

    At the Laboratory for Precise Measurements of Length, currently the Croatian National Laboratory for Length, unique nano-roughness calibration standards were developed, which have been physically implemented in cooperation with the company MikroMasch Trading OU and the Ruđer Bošković Institute. In this paper, a new design for a calibration standard with two measuring surfaces is presented. One of the surfaces is for the reproduction of roughness parameters, while the other is for the traceability of length units below 50 nm. The nominal values of the groove depths on these measuring surfaces are the same. Thus, a link between the measuring surfaces has been ensured, which makes these standards unique. Furthermore, the calibration standards available on the market are generally designed specifically for individual groups of measuring instrumentation, such as interferometric microscopes, stylus instruments, scanning electron microscopes (SEM) or scanning probe microscopes. In this paper, a new design for nano-roughness standards has been proposed for use in the calibration of optical instruments, as well as for stylus instruments, SEM, atomic force microscopes and scanning tunneling microscopes. Therefore, the development of these new nano-roughness calibration standards greatly contributes to the reproducibility of the results of groove depth measurement as well as the 2D and 3D roughness parameters obtained by various measuring methods. (paper)

  5. Improvement of gamma calibration procedures with commercial management software

    International Nuclear Information System (INIS)

    Lucena, Rodrigo F.; Potiens, Maria da Penha A.; Santos, Gelson P.; Vivolo, Vitor

    2007-01-01

    In this work, the gamma calibration procedure of the Instruments Calibration Laboratory (LCI) of the IPEN-CNEN-SP was improved with the use of the commercial management software Autolab TM from Automa Company. That software was adapted for our specific use in the calibration procedures. The evaluation of the uncertainties in gamma calibration protocol was improved by the LCI staff and yet the all worksheets and final calibration report lay-out was developed in commercial software like Excell TM and Word TM from Microsft TM . (author)

  6. Calibration Variable Selection and Natural Zero Determination for Semispan and Canard Balances

    Science.gov (United States)

    Ulbrich, Norbert M.

    2013-01-01

    Independent calibration variables for the characterization of semispan and canard wind tunnel balances are discussed. It is shown that the variable selection for a semispan balance is determined by the location of the resultant normal and axial forces that act on the balance. These two forces are the first and second calibration variable. The pitching moment becomes the third calibration variable after the normal and axial forces are shifted to the pitch axis of the balance. Two geometric distances, i.e., the rolling and yawing moment arms, are the fourth and fifth calibration variable. They are traditionally substituted by corresponding moments to simplify the use of calibration data during a wind tunnel test. A canard balance is related to a semispan balance. It also only measures loads on one half of a lifting surface. However, the axial force and yawing moment are of no interest to users of a canard balance. Therefore, its calibration variable set is reduced to the normal force, pitching moment, and rolling moment. The combined load diagrams of the rolling and yawing moment for a semispan balance are discussed. They may be used to illustrate connections between the wind tunnel model geometry, the test section size, and the calibration load schedule. Then, methods are reviewed that may be used to obtain the natural zeros of a semispan or canard balance. In addition, characteristics of three semispan balance calibration rigs are discussed. Finally, basic requirements for a full characterization of a semispan balance are reviewed.

  7. Maximum respiratory pressure measuring system : calibration and evaluation of uncertainty

    NARCIS (Netherlands)

    Ferreira, J.L.; Pereira, N.C.; Oliveira Júnior, M.; Vasconcelos, F.H.; Parreira, V.F.; Tierra-Criollo, C.J.

    2010-01-01

    The objective of this paper is to present a methodology for the evaluation of uncertainties in the measurements results obtained during the calibration of a digital manovacuometer prototype (DM) with a load cell sensor pressure device incorporated. Calibration curves were obtained for both pressure

  8. AFM lateral force calibration for an integrated probe using a calibration grating

    International Nuclear Information System (INIS)

    Wang, Huabin; Gee, Michelle L.

    2014-01-01

    Atomic force microscopy (AFM) friction measurements on hard and soft materials remain a challenge due to the difficulties associated with accurately calibrating the cantilever for lateral force measurement. One of the most widely accepted lateral force calibration methods is the wedge method. This method is often used in a simplified format but in so doing sacrifices accuracy. In the present work, we have further developed the wedge method to provide a lateral force calibration method for integrated AFM probes that is easy to use without compromising accuracy and reliability. Raw friction calibration data are collected from a single scan image by continuous ramping of the set point as the facets of a standard grating are scanned. These data are analysed to yield an accurate lateral force conversion/calibration factor that is not influenced by adhesion forces or load deviation. By demonstrating this new calibration method, we illustrate its reliability, speed and ease of execution. This method makes accessible reliable boundary lubrication studies on adhesive and heterogeneous surfaces that require spatial resolution of frictional forces. - Highlights: • We develop a simple and accurate method for lateral force calibration in AFM friction measurements. • We detail the basis of the method and illustrate how to use it and its reliability with example data. • Our method is easy, accurate and accounts for the affects of adhesion on friction measurements. • The method is applicable to integrated probes, as opposed to colloidal probes. • This allows accurate AFM friction measurements on spatially heterogeneous and adhesive surfaces

  9. [Laboratory accreditation and proficiency testing].

    Science.gov (United States)

    Kuwa, Katsuhiko

    2003-05-01

    ISO/TC 212 covering clinical laboratory testing and in vitro diagnostic test systems will issue the international standard for medical laboratory quality and competence requirements, ISO 15189. This standard is based on the ISO/IEC 17025, general requirements for competence of testing and calibration laboratories and ISO 9001, quality management systems-requirements. Clinical laboratory services are essential to patient care and therefore should be available to meet the needs of all patients and clinical personnel responsible for human health care. If a laboratory seeks accreditation, it should select an accreditation body that operates according to this international standard and in a manner which takes into account the particular requirements of clinical laboratories. Proficiency testing should be available to evaluate the calibration laboratories and reference measurement laboratories in clinical medicine. Reference measurement procedures should be of precise and the analytical principle of measurement applied should ensure reliability. We should be prepared to establish a quality management system and proficiency testing in clinical laboratories.

  10. Laboratory setup for temperature and humidity measurements

    CERN Document Server

    Eimre, Kristjan

    2015-01-01

    In active particle detectors, the temperature and humidity conditions must be under constant monitoring and control, as even small deviations from the norm cause changes to detector characteristics and result in a loss of precision. To monitor the temperature and humidity, different kinds of sensors are used, which must be calibrated beforehand to ensure their accuracy. To calibrate the large number of sensors that are needed for the particle detectors and other laboratory work, a calibration system is needed. The purpose of the current work was to develop a laboratory setup for temperature and humidity sensor measurements and calibration.

  11. Secondary standard dosimetry laboratory at INFLPR

    Energy Technology Data Exchange (ETDEWEB)

    Scarlat, F.; Minea, R.; Scarisoreanu, A.; Badita, E.; Sima, E.; Dumitrascu, M.; Stancu, E.; Vancea, C., E-mail: scarlat.f@gmail.com [National Institute for Laser, Plasma and Radiation Physics - INFLPR, Bucharest (Romania)

    2011-07-01

    National Institute for Laser, Plasma and Radiation Physics (INFLPR) has constructed a High Energy Secondary Standard Dosimetry Laboratory SSDL-STARDOOR - for performing dosimetric calibrations according to ISO IEC SR/EN 17025:2005 standards. This is outfitted with UNIDOS Secondary Standard Dosimeter from PTW (Freiburg Physikalisch-Technische Werksttaten) calibrated at the PTB-Braunschweig (German Federal Institute of Physics and Metrology). A radiation beam of the quality of Q used by our laboratory as calibration source are provided by INFLPR 7 MeV electron beam linear accelerator mounted in our facility. (author)

  12. Identifying the Correlation between Water Quality Data and LOADEST Model Behavior in Annual Sediment Load Estimations

    Directory of Open Access Journals (Sweden)

    Youn Shik Park

    2016-08-01

    Full Text Available Water quality samples are typically collected less frequently than flow since water quality sampling is costly. Load Estimator (LOADEST, provided by the United States Geological Survey, is used to predict water quality concentration (or load on days when flow data are measured so that the water quality data are sufficient for annual pollutant load estimation. However, there is a need to identify water quality data requirements for accurate pollutant load estimation. Measured daily sediment data were collected from 211 streams. Estimated annual sediment loads from LOADEST and subsampled data were compared to the measured annual sediment loads (true load. The means of flow for calibration data were correlated to model behavior. A regression equation was developed to compute the required mean of flow in calibration data to best calibrate the LOADEST regression model coefficients. LOADEST runs were performed to investigate the correlation between the mean flow in calibration data and model behaviors as daily water quality data were subsampled. LOADEST calibration data used sediment concentration data for flows suggested by the regression equation. Using the mean flow calibrated by the regression equation reduced errors in annual sediment load estimation from −39.7% to −10.8% compared to using all available data.

  13. A new technique for the calibration of neutron probes by volumetric method

    International Nuclear Information System (INIS)

    Encarnacao, F.A.F. da.

    1988-01-01

    Laboratory and field studies were performed for the determination of a calibration curve of a neutron probe in three different kinds of soils: Red Yellow PODZOLIC, LITOLIC and ALLUVIAL, in the last one laboratory studies were done to determine local humidity on the calibration curve parameters. (A.C.A.S.) [pt

  14. Development of a quality assured calibration method for the PSI radon chamber reference atmosphere

    International Nuclear Information System (INIS)

    Schuler, C.; Butterweck-Dempewolf, G.; Vezzu, G.

    1997-01-01

    Radon detectors and measuring instruments are calibrated at the PSI Reference Laboratory for Radon Gas Concentration Measurements by exposing them to a calibrated radon reference atmosphere in the PSI radon chamber. A sophisticated and quality assured calibration technique was developed which guarantees the traceability of this radon chamber reference atmosphere to standards of internationally acknowledged primary laboratories. (author) 2 figs., 2 refs

  15. Calibration of the neutron scintillation counter threshold

    International Nuclear Information System (INIS)

    Noga, V.I.; Ranyuk, Yu.N.; Telegin, Yu.N.

    1978-01-01

    A method for calibrating the threshold of a neutron counter in the form of a 10x10x40 cm plastic scintillator is described. The method is based on the evaluation of the Compton boundary of γ-spectrum from the discrimination curve of counter loading. The results of calibration using 60 Co and 24 Na γ-sources are given. In order to eValuate the Compton edge rapidly, linear extrapolation of the linear part of the discrimination curve towards its intersection with the X axis is recommended. Special measurements have shown that the calibration results do not practically depend on the distance between the cathode of a photomultiplier and the place where collimated γ-radiation of the calibration source reaches the scintillator

  16. Applicability of laboratory data to large scale tests under dynamic loading conditions

    International Nuclear Information System (INIS)

    Kussmaul, K.; Klenk, A.

    1993-01-01

    The analysis of dynamic loading and subsequent fracture must be based on reliable data for loading and deformation history. This paper describes an investigation to examine the applicability of parameters which are determined by means of small-scale laboratory tests to large-scale tests. The following steps were carried out: (1) Determination of crack initiation by means of strain gauges applied in the crack tip field of compact tension specimens. (2) Determination of dynamic crack resistance curves of CT-specimens using a modified key-curve technique. The key curves are determined by dynamic finite element analyses. (3) Determination of strain-rate-dependent stress-strain relationships for the finite element simulation of small-scale and large-scale tests. (4) Analysis of the loading history for small-scale tests with the aid of experimental data and finite element calculations. (5) Testing of dynamically loaded tensile specimens taken as strips from ferritic steel pipes with a thickness of 13 mm resp. 18 mm. The strips contained slits and surface cracks. (6) Fracture mechanics analyses of the above mentioned tests and of wide plate tests. The wide plates (960x608x40 mm 3 ) had been tested in a propellant-driven 12 MN dynamic testing facility. For calculating the fracture mechanics parameters of both tests, a dynamic finite element simulation considering the dynamic material behaviour was employed. The finite element analyses showed a good agreement with the simulated tests. This prerequisite allowed to gain critical J-integral values. Generally the results of the large-scale tests were conservative. 19 refs., 20 figs., 4 tabs

  17. Automated Calibration of Dosimeters for Diagnostic Radiology

    International Nuclear Information System (INIS)

    Romero Acosta, A.; Gutierrez Lores, S.

    2015-01-01

    Calibration of dosimeters for diagnostic radiology includes current and charge measurements, which are often repetitive. However, these measurements are usually done using modern electrometers, which are equipped with an RS-232 interface that enables instrument control from a computer. This paper presents an automated system aimed to the measurements for the calibration of dosimeters used in diagnostic radiology. A software application was developed, in order to achieve the acquisition of the electric charge readings, measured values of the monitor chamber, calculation of the calibration coefficient and issue of a calibration certificate. A primary data record file is filled and stored in the computer hard disk. The calibration method used was calibration by substitution. With this system, a better control over the calibration process is achieved and the need for human intervention is reduced. the automated system will be used in the calibration of dosimeters for diagnostic radiology at the Cuban Secondary Standard Dosimetry Laboratory of the Center for Radiation Protection and Hygiene. (Author)

  18. Traceable calibration of hospital 192Ir HDR sources

    International Nuclear Information System (INIS)

    Govinda Rajan, K.N.; Bhatt, B.C.; Pendse, A.M.; Kannan, V.

    2002-01-01

    Presently, no primary standard exists for the standardization of remote afterloading 192 Ir HDR sources. These sources are, therefore, being standardized by a few Secondary Standard Dosimetry Laboratories (SSDLs), in terms of Air Kerma Strength (AKS) or Reference Air Kerma Rate (RAKR) using a 0.6 cc Farmer type chamber, set up as an Interim Standard. These SSDLs offer calibration to well type of ionization chambers that are normally used by the hospitals for calibrating the 192 lr HDR source. Presently, in many countries, including India, well chambers are not commercially available. Nor do these countries offer any calibration service for 192 lr HDR source. With the result users make use of well chambers imported from different countries with their calibration traceable to the country of origin. Since no intercomparisons between these countries have been reported, the measurement consistency between hospitals becomes questionable. The problem is compounded by the fact that these chambers are used for several years without re-calibration since no calibration service is locally available. For instance, in India, the chambers have been in use in hospitals, since 1994, without a second calibration. Not all hospitals use the well chamber for the calibration of the 192 lr HDR source. Many hospitals make use of 0.6 cc chambers, in air, at short source to chamber distances, for measuring the AKS of the source. The latter method is prone to much larger inaccuracy due to the use of very short source to chamber distances without proper calibration jigs, use of 60 Co calibration factor for 192 Ir HDR source calibrations, neglecting correction factors for room scatter, fluence non-uniformity, use of arbitrary buildup factors for the buildup cap of the chamber etc. A comparison of the procedures used at hospitals revealed that various arbitrary methods are in use at hospitals. An indigenously developed well chamber was calibrated against a Reference Standard traceable to the

  19. Evaluation of quality assurance calibration results based on repeated calibrations; Evaluacion del aseguramiento de la calidad de los resultados de calibracion en base a la repeticion de las calibraciones

    Energy Technology Data Exchange (ETDEWEB)

    Mestre de Juan, V.; Albau Albos, J.; Gomez Llobat, L.

    2011-07-01

    To ensure quality assurance of the calibration results, as indicated by the UNE-EN ISO / IEC 17025:2005 in paragraph 5.9, the laboratory has established procedures for quality control of its activity. Thus, the laboratory participates in both inter-laboratory intercomparison exercises, cycle through the entire range of radiation qualities reflected in the scope of its accreditation, such as intra-laboratory intercomparison exercises. In this case, repeat quarterly by two different operators both the calibration of an ionization chamber irradiation of a direct reading personal dosimeter.

  20. Absolute calibration in vivo measurement systems

    International Nuclear Information System (INIS)

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs

  1. Calibration of photon and beta ray sources used in brachytherapy. Guidelines on standardized procedures at Secondary Standards Dosimetry Laboratories

    International Nuclear Information System (INIS)

    2004-03-01

    It has generally been recognized that international harmonization in radiotherapy dosimetry is essential. Consequently, the IAEA has given much effort to this, for example by publishing a number of reports in the Technical Reports Series (TRS) for external beam dosimetry, most notably TRS-277 and more recently TRS-398. Both of these reports describe in detail the steps to be taken for absorbed dose determination in water and they are often referred to as 'dosimetry protocols'. Similar to TRS-277, it is expected that TRS-398 will be adopted or used as a model by a large number of countries as their national protocol. In 1996, the IAEA established a calibration service for low dose rate (LDR) 137 Cs brachytherapy sources, which is the most widely used source for treatment of gynecological cancer. To further enhance harmonization in brachytherapy dosimetry, the IAEA published in 1999 IAEA-TECDOC-1079 entitled 'Calibration of Brachytherapy Sources. Guidelines on Standardized Procedures for the Calibration of Brachytherapy Sources at Secondary Standard Dosimetry Laboratories (SSDLs) and Hospitals'. The report was well received and was distributed in a large number of copies to the members of the IAEA/WHO network of SSDLs and to medical physicists working with brachytherapy. The present report is an update of the aforementioned TECDOC. Whereas TECDOC-1079 described methods for calibrating brachytherapy sources with photon energies at or above those of 192 Ir, the current report has a wider scope in that it deals with standardization of calibration of all the most commonly used brachytherapy sources, including both photon and beta emitting sources. The latter sources have been in use for a few decades already, but their calibration methods have been unclear. Methods are also described for calibrating sources used in the rapidly growing field of cardiovascular angioplasty. In this application, irradiation of the vessel wall is done in an attempt to prevent restenosis after

  2. Absolute calibration of a hydrogen discharge lamp in the vacuum ultraviolet

    Science.gov (United States)

    Nealy, J. E.

    1975-01-01

    A low-pressure hydrogen discharge lamp was calibrated for radiant intensity in the vacuum ultraviolet spectral region on an absolute basis and was employed as a laboratory standard source in spectrograph calibrations. This calibration was accomplished through the use of a standard photodiode detector obtained from the National Bureau of Standards together with onsite measurements of spectral properties of optical components used. The stability of the light source for use in the calibration of vacuum ultraviolet spectrographs and optical systems was investigated and found to be amenable to laboratory applications. The lamp was studied for a range of operating parameters; the results indicate that with appropriate peripheral instrumentation, the light source can be used as a secondary laboratory standard source when operated under preset controlled conditions. Absolute intensity measurements were recorded for the wavelengths 127.7, 158.0, 177.5, and 195.0 nm for a time period of over 1 month, and the measurements were found to be repeatable to within 11 percent.

  3. Calibration services for medical applications of radiation

    Energy Technology Data Exchange (ETDEWEB)

    DeWerd, L.A.

    1993-12-31

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs.

  4. Calibration services for medical applications of radiation

    International Nuclear Information System (INIS)

    DeWerd, L.A.

    1993-01-01

    Calibration services for the medical community applications of radiation involve measuring radiation precisely and having traceability to the National Institute of Standards and Technology (NIST). Radiation therapy applications involve the use of ionization chambers and electrometers for external beams and well-type ionization chamber systems as well as radioactive sources for brachytherapy. Diagnostic x-ray applications involve ionization chamber systems and devices to measure other parameters of the x-ray machine, such as non-invasive kVp meters. Calibration laboratories have been established to provide radiation calibration services while maintaining traceability to NIST. New radiation applications of the medical community spur investigation to provide the future calibration needs

  5. Design, fabrication, and calibration of curved integral coils for measuring transfer function, uniformity, and effective length of LBL ALS [Lawrence Berkeley Laboratory Advanced Light Source] Booster Dipole Magnets

    International Nuclear Information System (INIS)

    Green, M.I.; Nelson, D.; Marks, S.; Gee, B.; Wong, W.; Meneghetti, J.

    1989-03-01

    A matched pair of curved integral coils has been designed, fabricated and calibrated at Lawrence Berkeley Laboratory for measuring Advanced Light Source (ALS) Booster Dipole Magnets. Distinctive fabrication and calibration techniques are described. The use of multifilar magnet wire in fabrication integral search coils is described. Procedures used and results of AC and DC measurements of transfer function, effective length and uniformity of the prototype booster dipole magnet are presented in companion papers. 8 refs

  6. Laboratory Accreditation and the Calibration of Radiologic Measuring Tools

    International Nuclear Information System (INIS)

    Vancsura, P.; Kovago, J.

    1998-01-01

    In this paper is presented that accreditation in our days is a strict requirement for a lab for its results could be accepted on international level. Accreditation itself brings to new requirements, among them some are related to the calibration of the radiological measuring equipment

  7. 40 CFR 792.63 - Maintenance and calibration of equipment.

    Science.gov (United States)

    2010-07-01

    ... SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Equipment § 792.63 Maintenance and..., maintenance, testing, calibration, and/or standardization of equipment, and shall specify, when appropriate... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Maintenance and calibration of...

  8. Cuban-Brazilian comparison of the calibration procedures for surface contamination monitors

    International Nuclear Information System (INIS)

    Salas, Gonzalo W.; Garcia, Jose A.T.; Ramos, Manoel M.O.

    2007-01-01

    The calibration laboratory of the CPHR, Centro de Proteccion e Higiene de las Radiaciones, is the only laboratory that performs calibrations of radiation protection instruments in Cuba. Recently they started a cooperation project with IAEA, code number CUB3002-01 with the task title 'Assuring and Demonstrating the safety of radioactive Waste Management'. Within the frame of this project they have a compromise to implement the calibration service for surface contamination monitors, for which they received instruments and sources. In 2006 the Laboratorio Nacional de Metrologia das Radiacoes Ionizantes (LNMRI) from the Instituto de Radioprotecao e Dosimetria, IRD/CNEN, was invited to perform a mission to CPHR in order to evaluate the level of implementation of the service trough the insertion of the service in the Quality Assurance System of their laboratory, and perform a comparison exercise to test the calibration method implemented. The results were evaluated by the methodology recommended in the ISO/IEC 43-1 standard. These results show that all values from both laboratories are comparable for most radionuclides except for Cl-36. The preliminary investigation about this situation is presented in the paper. (author)

  9. Comparison of the uncertainties of several European low-dose calibration facilities

    Science.gov (United States)

    Dombrowski, H.; Cornejo Díaz, N. A.; Toni, M. P.; Mihelic, M.; Röttger, A.

    2018-04-01

    The typical uncertainty of a low-dose rate calibration of a detector, which is calibrated in a dedicated secondary national calibration laboratory, is investigated, including measurements in the photon field of metrology institutes. Calibrations at low ambient dose equivalent rates (at the level of the natural ambient radiation) are needed when environmental radiation monitors are to be characterised. The uncertainties of calibration measurements in conventional irradiation facilities above ground are compared with those obtained in a low-dose rate irradiation facility located deep underground. Four laboratories quantitatively evaluated the uncertainties of their calibration facilities, in particular for calibrations at low dose rates (250 nSv/h and 1 μSv/h). For the first time, typical uncertainties of European calibration facilities are documented in a comparison and the main sources of uncertainty are revealed. All sources of uncertainties are analysed, including the irradiation geometry, scattering, deviations of real spectra from standardised spectra, etc. As a fundamental metrological consequence, no instrument calibrated in such a facility can have a lower total uncertainty in subsequent measurements. For the first time, the need to perform calibrations at very low dose rates (< 100 nSv/h) deep underground is underpinned on the basis of quantitative data.

  10. Inter-Laboratory Comparison for Calibration of Relative Humidity Devices Among Accredited Laboratories in Malaysia

    Science.gov (United States)

    Hussain, F.; Khairuddin, S.; Othman, H.

    2017-01-01

    An inter-laboratory comparison in relative humidity measurements among accredited laboratories has been coordinated by the National Metrology Institute of Malaysia. It was carried out to determine the performance of the participating laboratories. The objective of the comparison was to acknowledge the participating laboratories competencies and to verify the level of accuracies declared in their scope of accreditation, in accordance with the MS ISO/IEC 17025 accreditation. The measurement parameter involved was relative humidity for the range of 30-90 %rh at a nominal temperature of 50°C. Eight accredited laboratories participated in the inter-laboratory comparison. Two units of artifacts have been circulated among the participants as the transfer standards.

  11. Thermally determining flow and/or heat load distribution in parallel paths

    Science.gov (United States)

    Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.

    2016-12-13

    A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.

  12. Exercise of laboratory comparison for contamination monitor calibration between LNMRI/IRD and LCR/UERJ - 2016

    International Nuclear Information System (INIS)

    Cabral, T.S.; David, M.

    2016-01-01

    This work was motivated by the need to decide on the best methodology to be applied in the next contamination monitor calibration comparisons with the Brazilian network of calibration radiation monitors. The calibration factor was chosen as a response calibration performed in the four monitors used in this comparison because it does not require the detector area or probe thereby reducing an important variable. It was observed that the variation of the positioning system may have an influence up to 10% in calibration. The results obtained for the calibration factor showed a difference of up to 31.2%. (author)

  13. A calibration rig for multi-component internal strain gauge balance using the new design-of-experiment (DOE) approach

    Science.gov (United States)

    Nouri, N. M.; Mostafapour, K.; Kamran, M.

    2018-02-01

    In a closed water-tunnel circuit, the multi-component strain gauge force and moment sensor (also known as balance) are generally used to measure hydrodynamic forces and moments acting on scaled models. These balances are periodically calibrated by static loading. Their performance and accuracy depend significantly on the rig and the method of calibration. In this research, a new calibration rig was designed and constructed to calibrate multi-component internal strain gauge balances. The calibration rig has six degrees of freedom and six different component-loading structures that can be applied separately and synchronously. The system was designed based on the applicability of formal experimental design techniques, using gravity for balance loading and balance positioning and alignment relative to gravity. To evaluate the calibration rig, a six-component internal balance developed by Iran University of Science and Technology was calibrated using response surface methodology. According to the results, calibration rig met all design criteria. This rig provides the means by which various methods of formal experimental design techniques can be implemented. The simplicity of the rig saves time and money in the design of experiments and in balance calibration while simultaneously increasing the accuracy of these activities.

  14. Improving quantitative precision and throughput by reducing calibrator use in liquid chromatography-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Rule, Geoffrey S.; Rockwood, Alan L.

    2016-01-01

    To improve efficiency in our mass spectrometry laboratories we have made efforts to reduce the number of calibration standards utilized for quantitation over time. We often analyze three or more batches of 96 samples per day, on a single instrument, for a number of assays. With a conventional calibration scheme at six concentration levels this amounts to more than 5000 calibration points per year. Modern LC-tandem mass spectrometric instrumentation is extremely rugged however, and isotopically labelled internal standards are widely available. This made us consider whether alternative calibration strategies could be utilized to reduce the number of calibration standards analyzed while still retaining high precision and accurate quantitation. Here we demonstrate how, by utilizing a single calibration point in each sample batch, and using the resulting response factor (RF) to update an existing, historical response factor (HRF), we are able to obtain improved precision over a conventional multipoint calibration approach, as judged by quality control samples. The laboratory component of this study was conducted with an existing LC tandem mass spectrometric method for three androgen analytes in our production laboratory. Using examples from both simulated and laboratory data we illustrate several aspects of our single point alternative calibration strategy and compare it with a conventional, multipoint calibration approach. We conclude that both the cost and burden of preparing multiple calibration standards with every batch of samples can be reduced while at the same time maintaining, or even improving, analytical quality. - Highlights: • Use of a weighted single point calibration approach improves quantitative precision. • A weighted response factor approach incorporates historical calibration information. • Several scenarios are discussed with regard to their influence on quantitation.

  15. Improving quantitative precision and throughput by reducing calibrator use in liquid chromatography-tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rule, Geoffrey S., E-mail: geoffrey.s.rule@aruplab.com [ARUP Institute for Clinical and Experimental Pathology, 500 Chipeta Way, Salt Lake City, UT 84108 (United States); Rockwood, Alan L. [ARUP Institute for Clinical and Experimental Pathology, 500 Chipeta Way, Salt Lake City, UT 84108 (United States); Department of Pathology, University of Utah School of Medicine, 2100 Jones Medical Research Bldg., Salt Lake City, UT 84132 (United States)

    2016-05-05

    To improve efficiency in our mass spectrometry laboratories we have made efforts to reduce the number of calibration standards utilized for quantitation over time. We often analyze three or more batches of 96 samples per day, on a single instrument, for a number of assays. With a conventional calibration scheme at six concentration levels this amounts to more than 5000 calibration points per year. Modern LC-tandem mass spectrometric instrumentation is extremely rugged however, and isotopically labelled internal standards are widely available. This made us consider whether alternative calibration strategies could be utilized to reduce the number of calibration standards analyzed while still retaining high precision and accurate quantitation. Here we demonstrate how, by utilizing a single calibration point in each sample batch, and using the resulting response factor (RF) to update an existing, historical response factor (HRF), we are able to obtain improved precision over a conventional multipoint calibration approach, as judged by quality control samples. The laboratory component of this study was conducted with an existing LC tandem mass spectrometric method for three androgen analytes in our production laboratory. Using examples from both simulated and laboratory data we illustrate several aspects of our single point alternative calibration strategy and compare it with a conventional, multipoint calibration approach. We conclude that both the cost and burden of preparing multiple calibration standards with every batch of samples can be reduced while at the same time maintaining, or even improving, analytical quality. - Highlights: • Use of a weighted single point calibration approach improves quantitative precision. • A weighted response factor approach incorporates historical calibration information. • Several scenarios are discussed with regard to their influence on quantitation.

  16. Regression Analysis and Calibration Recommendations for the Characterization of Balance Temperature Effects

    Science.gov (United States)

    Ulbrich, N.; Volden, T.

    2018-01-01

    Analysis and use of temperature-dependent wind tunnel strain-gage balance calibration data are discussed in the paper. First, three different methods are presented and compared that may be used to process temperature-dependent strain-gage balance data. The first method uses an extended set of independent variables in order to process the data and predict balance loads. The second method applies an extended load iteration equation during the analysis of balance calibration data. The third method uses temperature-dependent sensitivities for the data analysis. Physical interpretations of the most important temperature-dependent regression model terms are provided that relate temperature compensation imperfections and the temperature-dependent nature of the gage factor to sets of regression model terms. Finally, balance calibration recommendations are listed so that temperature-dependent calibration data can be obtained and successfully processed using the reviewed analysis methods.

  17. Calibrating the neutron moisture meter: Precision and economy

    International Nuclear Information System (INIS)

    Akhter, J.; Waheed, R.A.; Hignett, C.T.; Greacen, E.L.

    2000-01-01

    Established laboratory and field calibration procedures for the neutron moisture meter are demonstrated on a uniform soil and alternative, low cost procedures on a duplex, less uniform soil. The effect of field variability on the calibration methodology is discussed with the aim of optimising calibration reliability at minimal cost. The difference between calibration for a soil material, or for a field (a range of soil materials) is considered. In particular, calibration for the estimation of water content change is shown to be a different problem from calibration for the estimation of water content in a variable field. Techniques aimed at detecting field variability problems during calibration are suggested, and methods for optimising the results for the intended use of the instrument are outlined. Pairing of calibration tubes, alternative methods of analysis of calibration data, and use of other information from the field to measure its variability, can improve the precision of calibration procedures to the point where minimal calibration effort, with careful analysis, can provide reliable results. (author)

  18. Laser Calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile Calorimeter is achieved with a set of calibration procedures. One step of the calibration procedure is based on measurements of the response stability to laser excitation of the PMTs that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the tests in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the response drifts seen with the PMT mounted on the Tile calorimeter in its normal operating during LHC run I and run II. A new statistical approach was developed to measure drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  19. Difficulties in fitting the thermal response of atomic force microscope cantilevers for stiffness calibration

    International Nuclear Information System (INIS)

    Cole, D G

    2008-01-01

    This paper discusses the difficulties of calibrating atomic force microscope (AFM) cantilevers, in particular the effect calibrating under light fluid-loading (in air) and under heavy fluid-loading (in water) has on the ability to use thermal motion response to fit model parameters that are used to determine cantilever stiffness. For the light fluid-loading case, the resonant frequency and quality factor can easily be used to determine stiffness. The extension of this approach to the heavy fluid-loading case is troublesome due to the low quality factor (high damping) caused by fluid-loading. Simple calibration formulae are difficult to realize, and the best approach is often to curve-fit the thermal response, using the parameters of natural frequency and mass ratio so that the curve-fit's response is within some acceptable tolerance of the actual thermal response. The parameters can then be used to calculate the cantilever stiffness. However, the process of curve-fitting can lead to erroneous results unless suitable care is taken. A feedback model of the fluid–structure interaction between the unloaded cantilever and the hydrodynamic drag provides a framework for fitting a modeled thermal response to a measured response and for evaluating the parametric uncertainty of the fit. The cases of uncertainty in the natural frequency, the mass ratio, and combined uncertainty are presented and the implications for system identification and stiffness calibration using curve-fitting techniques are discussed. Finally, considerations and recommendations for the calibration of AFM cantilevers are given in light of the results of this paper

  20. State-of-the art comparability of corrected emission spectra. 2. Field laboratory assessment of calibration performance using spectral fluorescence standards.

    Science.gov (United States)

    Resch-Genger, Ute; Bremser, Wolfram; Pfeifer, Dietmar; Spieles, Monika; Hoffmann, Angelika; DeRose, Paul C; Zwinkels, Joanne C; Gauthier, François; Ebert, Bernd; Taubert, R Dieter; Voigt, Jan; Hollandt, Jörg; Macdonald, Rainer

    2012-05-01

    In the second part of this two-part series on the state-of-the-art comparability of corrected emission spectra, we have extended this assessment to the broader community of fluorescence spectroscopists by involving 12 field laboratories that were randomly selected on the basis of their fluorescence measuring equipment. These laboratories performed a reference material (RM)-based fluorometer calibration with commercially available spectral fluorescence standards following a standard operating procedure that involved routine measurement conditions and the data evaluation software LINKCORR developed and provided by the Federal Institute for Materials Research and Testing (BAM). This instrument-specific emission correction curve was subsequently used for the determination of the corrected emission spectra of three test dyes, X, QS, and Y, revealing an average accuracy of 6.8% for the corrected emission spectra. This compares well with the relative standard uncertainties of 4.2% for physical standard-based spectral corrections demonstrated in the first part of this study (previous paper in this issue) involving an international group of four expert laboratories. The excellent comparability of the measurements of the field laboratories also demonstrates the effectiveness of RM-based correction procedures.

  1. 40 CFR 92.116 - Engine output measurement system calibrations.

    Science.gov (United States)

    2010-07-01

    ... manufacturer's data, actual measurement, or the value recorded from the previous calibration used for this... load-cell or transfer standard may be used to verify the in-use torque measurement system. (i) The... spaced torque values as indicated by the master load-cell for each in-use range used. (v) The in-use...

  2. AVIRIS Inflight Calibration Experiments, Analysis, and Results in 2000

    Science.gov (United States)

    Green, Robert O.; Pavri, Betina

    2001-01-01

    The NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures spectra from 370 to 2500 nm with nominally 10-nm sampling and resolution. The spectra are acquired as images with an 11 km width and up to 800 km length from the ER-2 platform or 2.1 km width and 160 km length from the Twin Otter platform. AVIRIS measurements are used for a range of Earth science research and application objectives. The molecular absorption and particle scattering properties expressed in the calibrated AVIRIS measurements are used. For both science research and application objectives, calibration of the AVIRIS spectra is required to produce useful results. Each year prior to the flight season AVIRIS is calibrated in the laboratory. However, the temperature, pressure, vibration, and observational geometry, as well as mechanical, electrical, and operational interfaces of the laboratory are different than the environment on board the airborne platform. To validate the calibration of AVIRIS in the flight environment, an inflight calibration experiment is orchestrated at the beginning of each flight season. In most years additional inflight calibration experiments occur towards the middle and end of the flight season as well. For an inflight calibration experiment, AVIRIS acquires airborne data over a designated calibration target. In concert with the airborne data acquisition, surface and atmospheric properties at the calibration target are measured in situ. These in situ measurements are used to constrain a radiative transfer code and predict the radiance incident at the AVIRIS instrument from the calibration target. This prediction is compared with the AVIRIS-measured radiance to validate the calibration of AVIRIS in the flight environment. Additional properties (such as the AVIRIS inflight measurement precision) are determined as well. This paper presents measurements, analyses, and results from the inflight calibration experiment held on the dry lake bed surface of Rogers Dry

  3. Mathematical calibration of Ge detectors, and the instruments that use them

    International Nuclear Information System (INIS)

    Bronson, F.L.; Young, B.

    1997-01-01

    Efficiency calibrations for Ge detectors are typically done with the use of multiple energy calibrations sources which are added to a bulk matrix intended to simulate the measurement sample, and then deposited in the sample container. This is rather easy for common laboratory samples. Bu, even there, for many environmental samples, waste assay samples, and operational health physics samples, accurate calibrations are difficult. For these situations, various mathematical corrections or direct calibration techniques are used at Canberra. EML has pioneered the use of mathematical calibrations following source-based detector characterization measurements for in situ measurements of environmental fallout. Canberra has expanded this by the use of MCNP for the source measurements required in EML. For other calibration situations, MCNP was used directly, as the primary calibration method. This is demonstrated to be at least as accurate as source based measurements, and probably better. Recently, a new method [ISOCS] has been developed and is nearing completion. This promises to be an easy to use calibration software that can be used by the customer for in situ gamma spectroscopy to accurately measure many large sized samples, such as boxes, drums, pipes, or to calibrate small laboratory-type samples. 8 refs., 8 figs., 5 tabs

  4. Mathematical calibration of Ge detectors, and the instruments that use them

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, F.L.; Young, B. [Canberra Industries, Meriden, CT (United States)

    1997-11-01

    Efficiency calibrations for Ge detectors are typically done with the use of multiple energy calibrations sources which are added to a bulk matrix intended to simulate the measurement sample, and then deposited in the sample container. This is rather easy for common laboratory samples. Bu, even there, for many environmental samples, waste assay samples, and operational health physics samples, accurate calibrations are difficult. For these situations, various mathematical corrections or direct calibration techniques are used at Canberra. EML has pioneered the use of mathematical calibrations following source-based detector characterization measurements for in situ measurements of environmental fallout. Canberra has expanded this by the use of MCNP for the source measurements required in EML. For other calibration situations, MCNP was used directly, as the primary calibration method. This is demonstrated to be at least as accurate as source based measurements, and probably better. Recently, a new method [ISOCS] has been developed and is nearing completion. This promises to be an easy to use calibration software that can be used by the customer for in situ gamma spectroscopy to accurately measure many large sized samples, such as boxes, drums, pipes, or to calibrate small laboratory-type samples. 8 refs., 8 figs., 5 tabs.

  5. New instrument calibration facility for the DOE Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wilkie, W.H.; Polz, E.J. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1993-12-31

    A new laboratory facility is being designed, constructed, and equipped at the Savannah River Site (SRS) as a fiscal year 1992 line item project. This facility will provide space and equipment for test, evaluation, repair, maintenance, and calibration of radiation monitoring instrumentation. The project will replace an obsolete facility and will allow implementation of program upgrades necessary to meet ANSI N323 requirements and National Voluntary Laboratory Accreditation Program (NVLAP) criteria for accreditation of federally owned secondary calibration laboratories. An outline of the project is presented including description, scope, cost, management organization, chronology, and current status. Selected design criteria and their impacts on the project are discussed. The upgraded SRS calibration program is described, and important features of the new facility and equipment that will accommodate this program are listed. The floor plan for the facility is shown, and equipment summaries and functional descriptions for each area are provided.

  6. New instrument calibration facility for the DOE Savannah River Site

    International Nuclear Information System (INIS)

    Wilkie, W.H.; Polz, E.J.

    1993-01-01

    A new laboratory facility is being designed, constructed, and equipped at the Savannah River Site (SRS) as a fiscal year 1992 line item project. This facility will provide space and equipment for test, evaluation, repair, maintenance, and calibration of radiation monitoring instrumentation. The project will replace an obsolete facility and will allow implementation of program upgrades necessary to meet ANSI N323 requirements and National Voluntary Laboratory Accreditation Program (NVLAP) criteria for accreditation of federally owned secondary calibration laboratories. An outline of the project is presented including description, scope, cost, management organization, chronology, and current status. Selected design criteria and their impacts on the project are discussed. The upgraded SRS calibration program is described, and important features of the new facility and equipment that will accommodate this program are listed. The floor plan for the facility is shown, and equipment summaries and functional descriptions for each area are provided

  7. Computational integration of the phases and procedures of calibration processes for radioprotection

    International Nuclear Information System (INIS)

    Santos, Gleice R. dos; Thiago, Bibiana dos S.; Rocha, Felicia D.G.; Santos, Gelson P. dos; Potiens, Maria da Penha A.; Vivolo, Vitor

    2011-01-01

    This work proceed the computational integration of the processes phases by using only a single computational software, from the entrance of the instrument at the Instrument Calibration Laboratory (LCI-IPEN) to the conclusion of calibration procedures. So, the initial information such as trade mark, model, manufacturer, owner, and the calibration records are digitized once until the calibration certificate emission

  8. CERN radiation protection (RP) calibration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Fabio

    2016-04-14

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelerators and at the CERN borders. A new state-of-the-art radiation protection calibration facility was designed, constructed and commissioned following the related ISO recommendations to replace the previous ageing (more than 30 years old) laboratory. In fact, the new laboratory aims also at the official accreditation according to the ISO standards in order to be able to release certified calibrations. Four radiation fields are provided: neutrons, photons and beta sources and an X-ray generator. Its construction did not only involve a pure civil engineering work; many radiation protection studies were performed to provide a facility that could answer the CERN calibration needs and fulfill all related safety requirements. Monte Carlo simulations have been confirmed to be a valuable tool for the optimization of the building design, the radiation protection aspects, e.g. shielding, and, as consequence, the overall cost. After the source and irradiator installation

  9. Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium in Mixed Oxide

    International Nuclear Information System (INIS)

    Mount, M.; O'Connell, W.; Cochran, C.; Rinard, P.; Dearborn, D.; Endres, E.

    2002-01-01

    As a follow-on to the Lawrence Livermore National Laboratory (LLNL) effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler for measurement of highly enriched uranium (HEU) oxide, a method has been developed to extend the use of the PAN shuffler to the measurement of HEU in mixed uranium-plutonium (U-Pu) oxide. This method uses the current LLNL HEU oxide calibration algorithms, appropriately corrected for the mixed U-Pu oxide assay time, and recently developed PuO 2 calibration algorithms to yield the mass of 235 U present via differences between the expected count rate for the PuO 2 and the measured count rate of the mixed U-Pu oxide. This paper describes the LLNL effort to use PAN shuffler measurements of units of certified reference material (CRM) 149 (uranium (93% Enriched) Oxide - U 3 O 8 Standard for Neutron Counting Measurements) and CRM 146 (uranium Isotopic Standard for Gamma Spectrometry Measurements) and a selected set of LLNL PuO 2 -bearing containers in consort with Monte Carlo simulations of the PAN shuffler response to each to (1) establish and validate a correction to the HEU calibration algorithm for the mixed U-Pu oxide assay time, (2) develop a PuO 2 calibration algorithm that includes the effect of PuO 2 density (2.4 g/cm 3 to 4.8 g/cm 3 ) and container size (8.57 cm to 9.88 cm inside diameter and 9.60 cm to 13.29 cm inside height) on the PAN shuffler response, and (3) develop and validate the method for establishing the mass of 235 U present in an unknown of mixed U-Pu oxide.

  10. Investigation of Calibrating Force Transducer Using Sinusoidal Force

    International Nuclear Information System (INIS)

    Zhang Li; Wang Yu; Zhang Lizhe

    2010-01-01

    Sinusoidal force calibration method was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). A similar dynamic force calibration system is developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electro-dynamic shakers to generate dynamic force in the range from 1 N to 20 kN, and heterodyne laser interferometers are used for acceleration measurement. The force transducer to be calibrated is mounted on the shaker, and a mass block is screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition. The methods of determining Spatial-dependent acceleration on mass block and measuring the end mass of force transducer in dynamic force calibration are discussed in this paper.

  11. Cryogenic Thermometer Calibration Facility at CERN

    CERN Document Server

    Balle, C; Thermeau, J P

    1998-01-01

    A cryogenic thermometer calibration facility has been designed and is being commissioned in preparation for the very stringent requirements on the temperature control of the LHC superconducting magnets. The temperature is traceable in the 1.5 to 30 K range to standards maintained in a national metrological laboratory by using a set of Rhodium-Iron temperature sensors of metrological quality. The calibration facility is designed for calibrating simultaneously 60 industrial cryogenic thermometers in the 1.5 K to 300 K temperature range, a thermometer being a device that includes both a temperature sensor and the wires heat-intercept. The thermometers can be calibrated in good and degraded vacuum or immersed in the surrounding fluid and at different Joule self-heating conditions that match those imposed by signal conditioners used in large cryogenic machinery. The calibration facility can be operated in an automatic mode and all the control and safety routines are handled by a Programmable Logic Controller (PLC)...

  12. FEM simulation of static loading test of the Omega beam

    Science.gov (United States)

    Bílý, Petr; Kohoutková, Alena; Jedlinský, Petr

    2017-09-01

    The paper deals with a FEM simulation of static loading test of the Omega beam. Omega beam is a precast prestressed high-performance concrete element with the shape of Greek letter omega. Omega beam was designed as a self-supporting permanent formwork member for construction of girder bridges. FEM program ATENA Science was exploited for simulation of load-bearing test of the beam. The numerical model was calibrated using the data from both static loading test and tests of material properties. Comparison of load-displacement diagrams obtained from the experiment and the model was conducted. Development of cracks and crack patterns were compared. Very good agreement of experimental data and the FEM model was reached. The calibrated model can be used for design of optimized Omega beams in the future without the need of expensive loading tests. The calibrated material model can be also exploited in other types of FEM analyses of bridges constructed with the use of Omega beams, such as limit state analysis, optimization of shear connectors, prediction of long-term deflections or prediction of crack development.

  13. Calibration of PKA meters against ion chambers of two geometries

    International Nuclear Information System (INIS)

    Almeida Junior, Jose N.; Terini, Ricardo A.; Pereira, Marco A.G.; Herdade, Silvio B.

    2011-01-01

    Kerma-area product (KAP or PKA) is a quantity that is independent of the distance to the X-ray tube focal spot and that can be used in radiological exams to assess the effective dose in patients. Clinical KAP meters are generally fixed in tube output and they are usually calibrated on-site by measuring the air kerma with an ion chamber and by evaluating the irradiated area by means of a radiographic image. Recently, a device was marketed (PDC, Patient Dose Calibrator, Radcal Co.), which was designed for calibrating clinical KAP meters with traceability to a standard laboratory. This paper presents a metrological evaluation of two methods that can be used in standard laboratories for the calibration of this device, namely, against a reference 30 cc ionization chamber or a reference parallel plates monitor chamber. Lower energy dependence was also obtained when the PDC calibration was made with the monitor chamber. Results are also shown of applying the PDC in hospital environment to the cross calibration of a clinical KAP meter from a radiology equipment. Results confirm lower energy dependence of the PDC relatively to the tested clinical meter. (author)

  14. Effects of Front-Loading and Stagger Angle on Endwall Losses of High Lift Low Pressure Turbine Vanes

    Science.gov (United States)

    2012-09-01

    length scale at z/H = 0.20 ………….… 131 Fig. E.1 Traverse arrangement to enable 3D movement inside the wind tunnel …..… 132 Fig. E.2 Diagram of in...2 ] USAF = United States Air Force 2D = two-dimensional 3D = three-dimensional 1 EFFECTS OF FRONT-LOADING AND STAGGER ANGLE ON ENDWALL...within the wakes. I used Druck LPM 5481 pressure transducers, calibrated using a Ruska 7250LP laboratory standard (the reported accuracy is within

  15. Variable Acceleration Force Calibration System (VACS)

    Science.gov (United States)

    Rhew, Ray D.; Parker, Peter A.; Johnson, Thomas H.; Landman, Drew

    2014-01-01

    Conventionally, force balances have been calibrated manually, using a complex system of free hanging precision weights, bell cranks, and/or other mechanical components. Conventional methods may provide sufficient accuracy in some instances, but are often quite complex and labor-intensive, requiring three to four man-weeks to complete each full calibration. To ensure accuracy, gravity-based loading is typically utilized. However, this often causes difficulty when applying loads in three simultaneous, orthogonal axes. A complex system of levers, cranks, and cables must be used, introducing increased sources of systematic error, and significantly increasing the time and labor intensity required to complete the calibration. One aspect of the VACS is a method wherein the mass utilized for calibration is held constant, and the acceleration is changed to thereby generate relatively large forces with relatively small test masses. Multiple forces can be applied to a force balance without changing the test mass, and dynamic forces can be applied by rotation or oscillating acceleration. If rotational motion is utilized, a mass is rigidly attached to a force balance, and the mass is exposed to a rotational field. A large force can be applied by utilizing a large rotational velocity. A centrifuge or rotating table can be used to create the rotational field, and fixtures can be utilized to position the force balance. The acceleration may also be linear. For example, a table that moves linearly and accelerates in a sinusoidal manner may also be utilized. The test mass does not have to move in a path that is parallel to the ground, and no re-leveling is therefore required. Balance deflection corrections may be applied passively by monitoring the orientation of the force balance with a three-axis accelerometer package. Deflections are measured during each test run, and adjustments with respect to the true applied load can be made during the post-processing stage. This paper will

  16. Metrological reliability of the calibration procedure in terms of air kerma using the ionization chamber NE2575

    International Nuclear Information System (INIS)

    Guimaraes, Margarete Cristina; Silva, Teogenes Augusto da; Rosado, Paulo H.G.

    2016-01-01

    Metrology laboratories are expected to provide X radiation beams that were established by international standardization organizations to perform calibration and testing of dosimeters. Reliable and traceable standard dosimeters should be used in the calibration procedure. The aim of this work was to study the reliability of the NE 2575 ionization chamber used as standard dosimeter for the air kerma calibration procedure adopted in the CDTN Calibration Laboratory. (author)

  17. Calibration procedures for mammography dosemeters in Poland

    International Nuclear Information System (INIS)

    Gwiazdowska, B.; Ulkowski, P.; Tolwinski, J.; Bulski, W.

    2002-01-01

    Breast cancer is the most frequent tumour in women and the effectiveness of the treatment depends dramatically on the early detection of the disease. That is the reason why in Poland the mammography control examinations are strongly supported by the Centre of Oncology. In Poland there are over 400 mammography units which account for about 300,000 examinations per year. An investigation performed by the Medical Physics Department of the Centre of Oncology in Warsaw at about 100 mammography facilities proved that in most cases the doses absorbed by the patients could be reduced without decrease of image quality. This is one of the reasons why the Polish Secondary Standard Dosimetry Laboratory (SSDL) dealing mainly with calibration of radiotherapy dosemeters is extending its activities and therefore new facilities and equipment adapted for calibration of mammographic dosemeters have been installed. The mammography dosimetry calibration equipment is permanently installed in the same laboratory room where the radiotherapy dosemeters are calibrated. A base of a mammography unit no longer in clinical use, together with its movable system has been adapted to handle ionization chamber holders. An X-ray tube with a 50 kV high frequency generator was also installed. The tube, a Varian type OEG-50-2, (designed for laboratory applications) with molybdenum anode of an anode angle 23,7 deg. and with a large focus, effective size approximately 5 mm 2 , has an inherent filtration of 0,25 mm beryllium. It is installed in a housing with 2mm lead shielding; a cone shaped beam is formed by a system of three collimators

  18. Biotrickling filter modeling for styrene abatement. Part 1: Model development, calibration and validation on an industrial scale.

    Science.gov (United States)

    San-Valero, Pau; Dorado, Antonio D; Martínez-Soria, Vicente; Gabaldón, Carmen

    2018-01-01

    A three-phase dynamic mathematical model based on mass balances describing the main processes in biotrickling filtration: convection, mass transfer, diffusion, and biodegradation was calibrated and validated for the simulation of an industrial styrene-degrading biotrickling filter. The model considered the key features of the industrial operation of biotrickling filters: variable conditions of loading and intermittent irrigation. These features were included in the model switching from the mathematical description of periods with and without irrigation. Model equations were based on the mass balances describing the main processes in biotrickling filtration: convection, mass transfer, diffusion, and biodegradation. The model was calibrated with steady-state data from a laboratory biotrickling filter treating inlet loads at 13-74 g C m -3 h -1 and at empty bed residence time of 30-15 s. The model predicted the dynamic emission in the outlet of the biotrickling filter, simulating the small peaks of concentration occurring during irrigation. The validation of the model was performed using data from a pilot on-site biotrickling filter treating styrene installed in a fiber-reinforced facility. The model predicted the performance of the biotrickling filter working under high-oscillating emissions at an inlet load in a range of 5-23 g C m -3 h -1 and at an empty bed residence time of 31 s for more than 50 days, with a goodness of fit of 0.84. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Compact Optical Technique for Streak Camera Calibration

    International Nuclear Information System (INIS)

    Curt Allen; Terence Davies; Frans Janson; Ronald Justin; Bruce Marshall; Oliver Sweningsen; Perry Bell; Roger Griffith; Karla Hagans; Richard Lerche

    2004-01-01

    The National Ignition Facility is under construction at the Lawrence Livermore National Laboratory for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses that are suitable for temporal calibrations

  20. Optimization of procedure for calibration with radiometer/photometer

    International Nuclear Information System (INIS)

    Detilly, Isabelle

    2009-01-01

    A test procedure for the radiometer/photometer calibrations mark International Light at the Laboratorio de Fotometria y Tecnologia Laser (LAFTA) de la Escuela de Ingenieria Electrica de la Universidad de Costa Rica is established. Two photometric banks are used as experimental set and two calibrations were performed of the International Light. A basic procedure established in the laboratory, is used for calibration from measurements of illuminance and luminous intensity. Some dependent variations of photometric banks used in the calibration process, the programming of the radiometer/photometer and the applied methodology showed the results. The procedure for calibration with radiometer/photometer can be improved by optimizing the programming process of the measurement instrument and possible errors can be minimized by using the recommended procedure. (author) [es

  1. Intercomparison of the air kerma and absorbed dose to water therapy calibrations provided by NRPA and CPRH SSDLs

    International Nuclear Information System (INIS)

    Morales, J.A.; Campa, R.; Bjerke, H.; Jensen, H.

    2001-01-01

    The primary goal of any calibration laboratory is to routinely provide calibration services of the highest accuracy. To this end, the laboratory should be equipped with measuring standards of the highest metrological quality traceable to the international measuring system, should establish the appropriate calibration conditions and implement good measuring and working practices. In the case of the Secondary Standard Dosimetry Laboratory (SSDL) members of the IAEA/WHO Network of SSDLs, a great deal of the service quality relies on the appropriate laboratory design and implementation of the recommended calibration practices. Different approaches have been used by SSDLs to guarantee the traceability of the reference standard to the international measurement system. These include calibration of their standards at the IAEA Dosimetry Laboratory, direct calibration at a primary standards laboratory or at a national calibration laboratory. The stability of reference and working standards is usually checked by means of radioactive check source measurements. The most comprehensive way that a laboratory could test its overall measurement competence is by taking part in comparisons with other laboratories of the same or higher metrological level. Regular efforts have been done at the regional scale by organizing such intercomparison exercises where the evaluation of the accuracy of secondary standards or the validation of new calibration methods has been the main objectives. Perhaps, the most important contribution to the assessment of SSDLs quality has been the periodical external measurement audit provided by the IAEA during the last years. Mos of these efforts have, however, only been focused on in-air and recently in-water calibration at the 60 Co radiation quality. An intercomparison of the therapy calibration services available at the SSDLs of the Norwegian Radiation Protection Authority (NRPA) and of the Center for Radiation Protection and Hygiene (CPHR) was organized

  2. Quality control of secondary standards and calibration systems, therapy level, of National Laboratory of Metrology from Ionizing Radiations (LNMRI)

    International Nuclear Information System (INIS)

    Cecatti, E.R.; Freitas, L.C. de

    1992-01-01

    The results of quality control program of secondary standards, therapy level, and the calibration system of clinical dosemeters were analysed from 1984, when a change in the laboratory installation occurred and new standards were obtained. The national and the international intercomparisons were emphasised. The results for graphite wall chambers were compared, observing a maximum variation of about 0,6%. In the case of Delrin (TK01) wall chambers, the maximum variation was 1,7%. The results of post intercomparisons with thermoluminescent dosemeters have presented derivations lesser than 1%, securing the standards consistence at LNMRI with the international metrological system. (C.G.C.)

  3. Intercomparison programme of dose calibration used in nuclear medicine center in Malaysia

    International Nuclear Information System (INIS)

    Norhayati Abdullah; Abdul Aziz Mohd Ramli; Muhammad Jamal Md Isa; Siti Sara Deraman; Shahrul Azlan Azizan; Nor Azlin Azraai; Md Khairusalih Md Zin

    2010-01-01

    Calibration of dose calibrator is significant in order to ensure that the equipment operates optimally and provides accurate and reliable measurements of the total activity of radiopharmaceuticals before being administered into the patients. Through this work, the response between the secondary standard dose calibrator and users radioactivity measurement are obtained by using standard sources such as 57 Co, 133 Ba, 1 '3 7 Cs and 60 Co. The calibration procedure is in accordance with the NPLs (National Physical Laboratory, United Kingdom) document; Guide No. 93[1] and the IAEA (International Atomic Energy Agency) Technical Report Series No. 454 [2] is used as a reference for maintaining secondary standard dose calibrator. A total of 21 units of dose calibrator from eight nuclear medicine departments comprising five hospitals, two medical centres and one production laboratory were calibrated. The measurement results were inter compared with the national standard equipment and a baseline data was established for future comparison as well as dose optimization purposes. Results showed that the overall response of all dose calibrators are within NPLs tolerance limit of ±10 % except for 5 units which exceed the tolerance limit for radionuclide 133 Ba and 57 Co.(author)

  4. Ice load reducer for dams : laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Lupien, R.; Cote, A.; Robert, A. [Institut de Recherche d' Hydro-Quebec, Varennes, PQ (Canada)

    2009-07-01

    Many studies have focused on measuring static ice loads on various hydraulic structures in Canada. This paper discussed a Hydro-Quebec research project whose main purpose was to harmonize the ice thrust value in load combinations for use in general hydraulic works or for specific cases. The objectives of the project were to obtain a better understanding of existing data and to characterize sites and their influence on ice thrust; study the structural mechanisms involved in the generation of ice thrust, their consequences on the structural behaviour of ice and the natural mitigating circumstances that may be offered by ice properties or site operating procedures; and examine the relevance of developing an ice load reducer for works that might not fit the harmonized design value. The paper presented the main research goals and ice load reducer goals, with particular focus on the four pipe samples that were planned, built and tested. The experimental program involved checking the pipe shape behaviour in terms of flexibility-stiffness; maximum deformations; maximum load reduction; permanent deformations; and, ability to shape recovering. The testing also involved examining the strength versus strain rate; creep versus strain rate; and creep capacity under biaxial state of tension and compression. It was concluded that the two phenomena involved in generation of ice thrust, notably thermal expansion and water level changes, had very low strain rates. 8 refs., 2 tabs., 16 figs.

  5. Diagnosing acute HIV infection: The performance of quantitative HIV-1 RNA testing (viral load) in the 2014 laboratory testing algorithm.

    Science.gov (United States)

    Wu, Hsiu; Cohen, Stephanie E; Westheimer, Emily; Gay, Cynthia L; Hall, Laura; Rose, Charles; Hightow-Weidman, Lisa B; Gose, Severin; Fu, Jie; Peters, Philip J

    2017-08-01

    New recommendations for laboratory diagnosis of HIV infection in the United States were published in 2014. The updated testing algorithm includes a qualitative HIV-1 RNA assay to resolve discordant immunoassay results and to identify acute HIV-1 infection (AHI). The qualitative HIV-1 RNA assay is not widely available; therefore, we evaluated the performance of a more widely available quantitative HIV-1 RNA assay, viral load, for diagnosing AHI. We determined that quantitative viral loads consistently distinguished AHI from a false-positive immunoassay result. Among 100 study participants with AHI and a viral load result, the estimated geometric mean viral load was 1,377,793copies/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Establishment of standard low energy x-ray, radioprotection levels, for calibration of instruments

    International Nuclear Information System (INIS)

    Oliveira, Eliane Carmo

    1995-01-01

    Seven standard low energy X-rays fields were established, radioprotection level, at the Calibration Laboratory of IPEN. Five of the standard calibration qualities used at the National Physical Laboratory, England, with energies between 16 and 38 keV, and two recommended by the International Standard Organization, with energies of 33 and 48 keV, were reproduced. The calibration conditions, radiotherapy level, from 14 to 21 keV, were also verified. Different portable radiation monitors as ionization chambers and Geiger-Mueller detectors were studied in relation to their energy dependence. (author)

  7. Probabilistic representation of duration of load effects in timber structures

    DEFF Research Database (Denmark)

    Svensson, Staffan

    2011-01-01

    Reliability analysis of structures for the purpose of code calibration or reliability verification of specific structures requires that the relevant failure modes are represented and analyzed. For structural timber, sustaining a life load, two failure cases for each failure mode have......-based design of timber structures in terms of a modification factor View the MathML source which is multiplied on the short-term resistance of the timber material. The scenario of a beam subject to office space life loads is analyzed and the modification factor View the MathML source is calibrated by using...... to be considered. These two cases are maximum load level exceeding load-carrying capacity and damage accumulation (caused by the load and its duration) leading to failure. The effect of both load intensity and load duration on the capacity of timber has been an area of large interest over the last decades...

  8. Mammography calibration qualities establishment in a Mo-Mo clinical system

    International Nuclear Information System (INIS)

    Correa, E.L.; Santos, L.R. dos; Vivolo, V.; Potiens, M.P.A.

    2015-01-01

    In this study the mammography calibration qualities were established in a clinical mammography system. The objective is to provide the IPEN instruments calibration laboratory with both mammography calibration methods (using a clinical and an industrial system). The results showed a good behavior of mammography equipment, in terms of kVp, PPV and exposure time. The additional filtration of molybdenum is adequate, air-kerma rates were determined and spectra were obtained. (author)

  9. Mammography calibration qualities establishment in a Mo-Mo clinical system

    Energy Technology Data Exchange (ETDEWEB)

    Correa, E.L.; Santos, L.R. dos; Vivolo, V.; Potiens, M.P.A., E-mail: educorrea1905@gmail.com [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    In this study the mammography calibration qualities were established in a clinical mammography system. The objective is to provide the IPEN instruments calibration laboratory with both mammography calibration methods (using a clinical and an industrial system). The results showed a good behavior of mammography equipment, in terms of kVp, PPV and exposure time. The additional filtration of molybdenum is adequate, air-kerma rates were determined and spectra were obtained. (author)

  10. Geomechanics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Geomechanics Laboratory allows its users to measure rock properties under a wide range of simulated service conditions up to very high pressures and complex load...

  11. HENC performance evaluation and plutonium calibration

    International Nuclear Information System (INIS)

    Menlove, H.O.; Baca, J.; Pecos, J.M.; Davidson, D.R.; McElroy, R.D.; Brochu, D.B.

    1997-10-01

    The authors have designed a high-efficiency neutron counter (HENC) to increase the plutonium content in 200-L waste drums. The counter uses totals neutron counting, coincidence counting, and multiplicity counting to determine the plutonium mass. The HENC was developed as part of a Cooperative Research and Development Agreement between the Department of Energy and Canberra Industries. This report presents the results of the detector modifications, the performance tests, the add-a-source calibration, and the plutonium calibration at Los Alamos National Laboratory (TA-35) in 1996

  12. Iterative Strain-Gage Balance Calibration Data Analysis for Extended Independent Variable Sets

    Science.gov (United States)

    Ulbrich, Norbert Manfred

    2011-01-01

    A new method was developed that makes it possible to use an extended set of independent calibration variables for an iterative analysis of wind tunnel strain gage balance calibration data. The new method permits the application of the iterative analysis method whenever the total number of balance loads and other independent calibration variables is greater than the total number of measured strain gage outputs. Iteration equations used by the iterative analysis method have the limitation that the number of independent and dependent variables must match. The new method circumvents this limitation. It simply adds a missing dependent variable to the original data set by using an additional independent variable also as an additional dependent variable. Then, the desired solution of the regression analysis problem can be obtained that fits each gage output as a function of both the original and additional independent calibration variables. The final regression coefficients can be converted to data reduction matrix coefficients because the missing dependent variables were added to the data set without changing the regression analysis result for each gage output. Therefore, the new method still supports the application of the two load iteration equation choices that the iterative method traditionally uses for the prediction of balance loads during a wind tunnel test. An example is discussed in the paper that illustrates the application of the new method to a realistic simulation of temperature dependent calibration data set of a six component balance.

  13. Friction-loaded cycle ergometers: Past, present and future

    Directory of Open Access Journals (Sweden)

    Henry Vandewalle

    2015-12-01

    Full Text Available The first friction-cycle ergometers of the end of the nineteenth century and the beginning of the 20th century are presented before the description of more recent ergometers such as Fleisch ergometer (1954, ErgomécaTM (1985, sinus-balance ergometer, and weight-basket loaded ergometer. The limits of each ergometer are debated. The interest of friction-loaded ergometers was renewed with the proposal of different protocols enabling the assessment of maximal power during short all-out sprints on a cycle ergometer. These protocols are succinctly presented: corrected peak power protocol, force-speed test during repeated all-out sprints against different loads, torque–velocity relationship during a single all-out sprint. The different calibration procedures (static, dynamic, and physiological calibrations of friction-loaded ergometers are described before the presentation of their results in the literature. Some improvements for the future friction-loaded ergometers are presented at the end of the paper.

  14. The value of point-of-care CD4+ and laboratory viral load in tailoring antiretroviral therapy monitoring strategies to resource limitations.

    Science.gov (United States)

    Hyle, Emily P; Jani, Ilesh V; Rosettie, Katherine L; Wood, Robin; Osher, Benjamin; Resch, Stephen; Pei, Pamela P; Maggiore, Paolo; Freedberg, Kenneth A; Peter, Trevor; Parker, Robert A; Walensky, Rochelle P

    2017-09-24

    To examine the clinical and economic value of point-of-care CD4 (POC-CD4) or viral load monitoring compared with current practices in Mozambique, a country representative of the diverse resource limitations encountered by HIV treatment programs in sub-Saharan Africa. We use the Cost-Effectiveness of Preventing AIDS Complications-International model to examine the clinical impact, cost (2014 US$), and incremental cost-effectiveness ratio [$/year of life saved (YLS)] of ART monitoring strategies in Mozambique. We compare: monitoring for clinical disease progression [clinical ART monitoring strategy (CLIN)] vs. annual POC-CD4 in rural settings without laboratory services and biannual laboratory CD4 (LAB-CD4), biannual POC-CD4, and annual viral load in urban settings with laboratory services. We examine the impact of a range of values in sensitivity analyses, using Mozambique's 2014 per capita gross domestic product ($620) as a benchmark cost-effectiveness threshold. In rural settings, annual POC-CD4 compared to CLIN improves life expectancy by 2.8 years, reduces time on failed ART by 0.6 years, and yields an incremental cost-effectiveness ratio of $480/YLS. In urban settings, biannual POC-CD4 is more expensive and less effective than viral load. Compared to biannual LAB-CD4, viral load improves life expectancy by 0.6 years, reduces time on failed ART by 1.0 year, and is cost-effective ($440/YLS). In rural settings, annual POC-CD4 improves clinical outcomes and is cost-effective compared to CLIN. In urban settings, viral load has the greatest clinical benefit and is cost-effective compared to biannual POC-CD4 or LAB-CD4. Tailoring ART monitoring strategies to specific settings with different available resources can improve clinical outcomes while remaining economically efficient.

  15. Update on Calibration of the Lawrence Livermore National Laboratory Passive-Active Neutron Drum Shuffler for Measurement of Highly Enriched Uranium Oxide

    International Nuclear Information System (INIS)

    Mount, M.; O'Connell, W.; Cochran, C.; Rinard, P.; Dearborn, D.; Endres, E.

    2002-01-01

    In October of 1999, Lawrence Livermore National Laboratory (LLNL) began an effort to calibrate the LLNL passive-active neutron (PAN) drum shuffler for measurement of highly enriched uranium (HEU) oxide. A single unit of certified reference material (CRM) 149 (Uranium (93% Enriched) Oxide - U 3 O 8 Standard for Neutron Counting Measurements) was used to (1) develop a mass calibration curve for HEU oxide in the nominal range of 393 g to 3144 g 235 U, and (2) perform a detailed axial and radial mapping of the detector response over a wide region of the PAN shuffler counting chamber. Results from these efforts were reported at the Institute of Nuclear Materials Management 4lSt Annual Meeting in July 2000. This paper describes subsequent efforts by LLNL to use a unit of CRM 146 (Uranium Isotopic Standard for Gamma Spectrometry Measurements) in consort with Monte Carlo simulations of the PAN shuffler response to CRM 149 and CRM 146 units and a selected set of containers with CRM 149-equivalent U 3 O 8 to (1) extend the low range of the reported mass calibration curve to 10 g 235 U, (2) evaluate the effect of U 3 O 8 density (2.4 g/cm 3 to 4.8 g/cm 3 ) and container size (5.24 cm to 12.17 cm inside diameter and 6.35 cm to 17.72 cm inside height) on the PAN shuffler response, and (3) develop mass calibration curves for U 3 O 8 enriched to 20.1 wt% 235 U and 52.5 wt% 235 U.

  16. Measurement uncertainty. A practical guide for Secondary Standards Dosimetry Laboratories

    International Nuclear Information System (INIS)

    2008-05-01

    The need for international traceability for radiation dose measurements has been understood since the early nineteen-sixties. The benefits of high dosimetric accuracy were recognized, particularly in radiotherapy, where the outcome of treatments is dependent on the radiation dose delivered to patients. When considering radiation protection dosimetry, the uncertainty may be greater than for therapy, but proper traceability of the measurements is no less important. To ensure harmonization and consistency in radiation measurements, the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) created a Network of Secondary Standards Dosimetry Laboratories (SSDLs) in 1976. An SSDL is a laboratory that has been designated by the competent national authorities to undertake the duty of providing the necessary link in the traceability chain of radiation dosimetry to the international measurement system (SI, for Systeme International) for radiation metrology users. The role of the SSDLs is crucial in providing traceable calibrations; they disseminate calibrations at specific radiation qualities appropriate for the use of radiation measuring instruments. Historically, although the first SSDLs were established mainly to provide radiotherapy level calibrations, the scope of their work has expanded over the years. Today, many SSDLs provide traceability for radiation protection measurements and diagnostic radiology in addition to radiotherapy. Some SSDLs, with the appropriate facilities and expertise, also conduct quality audits of the clinical use of the calibrated dosimeters - for example, by providing postal dosimeters for dose comparisons for medical institutions or on-site dosimetry audits with an ion chamber and other appropriate equipment. The requirements for traceable and reliable calibrations are becoming more important. For example, for international trade where radiation products are manufactured within strict quality control systems, it is

  17. Laboratory test of an APS-based sun sensor prototype

    Science.gov (United States)

    Rufino, Giancarlo; Perrotta, Alessandro; Grassi, Michele

    2017-11-01

    This paper deals with design and prototype development of an Active Pixel Sensor - based miniature sun sensor and a laboratory facility for its indoor test and calibration. The miniature sun sensor is described and the laboratory test facility is presented in detail. The major focus of the paper is on tests and calibration of the sensor. Two different calibration functions have been adopted. They are based, respectively, on a geometrical model, which has required least-squares optimisation of system physical parameters estimates, and on neural networks. Calibration results are presented for the above solutions, showing that accuracy in the order of 0.01° has been achieved. Neural calibration functions have attained better performance thanks to their intrinsic auto-adaptive structure.

  18. In-Flight Spectral Calibration of the APEX Imaging Spectrometer Using Fraunhofer Lines

    Science.gov (United States)

    Kuhlmann, Gerrit; Hueni, Andreas; Damm, Aalexander; Brunner, Dominik

    2015-11-01

    The Airborne Prism EXperiment (APEX) is an imaging spectrometer which allows to observe atmospheric trace gases such as nitrogen dioxide (NO2). Using a high resolution spectrum of solar Fraunhofer lines, APEX measurements collected during flight have been spectrally calibrated for centre wavelength positions (CW) and instrument slit function (ISF) and compared to the laboratory calibration. We find that CWs depend strongly on both across- and along-track position due to spectral smile and CWs dependency on ambient pressure. The width of the ISF is larger than estimated from the laboratory calibration but can be described by a linear scaling of the laboratory values. The ISF width depends on across- but not on along-track direction. The results demonstrate the importance of characterizing and monitoring the instrument performance during flight and will be used to improve the Empa APEX NO2 retrieval algorithm.

  19. Performance of the Opalinus Clay under thermal loading: experimental results from Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Gens, A. [Universitat Politència de Catalunya, Barcelona (Spain); Wieczorek, K. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) GmbH, Braunschweig (Germany); Gaus, I. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); and others

    2017-04-15

    The paper presents an overview of the behaviour of Opalinus Clay under thermal loading as observed in three in situ heating tests performed in the Mont Terri rock laboratory: HE-B, HE-D and HE-E. The three tests are summarily described; they encompass a broad range of test layouts and experimental conditions. Afterwards, the following topics are examined: determination of thermal conductivity, thermally-induced pore pressure generation and thermally-induced mechanical effects. The mechanisms underlying pore pressure generation and dissipation are discussed in detail and the relationship between rock damage and thermal loading is examined using an additional in situ test: SE-H. The paper concludes with an evaluation of the various thermo-hydro-mechanical (THM) interactions identified in the heating tests. (authors)

  20. Tests and calibration of NIF neutron time of flight detectors.

    Science.gov (United States)

    Ali, Z A; Glebov, V Yu; Cruz, M; Duffy, T; Stoeckl, C; Roberts, S; Sangster, T C; Tommasini, R; Throop, A; Moran, M; Dauffy, L; Horsefield, C

    2008-10-01

    The National Ignition Facility (NIF) neutron time of flight (NTOF) diagnostic will measure neutron yield and ion temperature in all NIF campaigns in DD, DT, and THD(*) implosions. The NIF NTOF diagnostic is designed to measure neutron yield from 1x10(9) to 2x10(19). The NTOF consists of several detectors of varying sensitivity located on the NIF at about 5 and 20 m from the target. Production, testing, and calibration of the NIF NTOF detectors have begun at the Laboratory for Laser Energetics (LLE). Operational tests of the NTOF detectors were performed on several facilities including the OMEGA laser at LLE and the Titan laser at Lawrence Livermore National Laboratory. Neutron calibrations were carried out on the OMEGA laser. Results of the NTOF detector tests and calibration will be presented.

  1. Bayesian calibration of power plant models for accurate performance prediction

    International Nuclear Information System (INIS)

    Boksteen, Sowande Z.; Buijtenen, Jos P. van; Pecnik, Rene; Vecht, Dick van der

    2014-01-01

    Highlights: • Bayesian calibration is applied to power plant performance prediction. • Measurements from a plant in operation are used for model calibration. • A gas turbine performance model and steam cycle model are calibrated. • An integrated plant model is derived. • Part load efficiency is accurately predicted as a function of ambient conditions. - Abstract: Gas turbine combined cycles are expected to play an increasingly important role in the balancing of supply and demand in future energy markets. Thermodynamic modeling of these energy systems is frequently applied to assist in decision making processes related to the management of plant operation and maintenance. In most cases, model inputs, parameters and outputs are treated as deterministic quantities and plant operators make decisions with limited or no regard of uncertainties. As the steady integration of wind and solar energy into the energy market induces extra uncertainties, part load operation and reliability are becoming increasingly important. In the current study, methods are proposed to not only quantify various types of uncertainties in measurements and plant model parameters using measured data, but to also assess their effect on various aspects of performance prediction. The authors aim to account for model parameter and measurement uncertainty, and for systematic discrepancy of models with respect to reality. For this purpose, the Bayesian calibration framework of Kennedy and O’Hagan is used, which is especially suitable for high-dimensional industrial problems. The article derives a calibrated model of the plant efficiency as a function of ambient conditions and operational parameters, which is also accurate in part load. The article shows that complete statistical modeling of power plants not only enhances process models, but can also increases confidence in operational decisions

  2. Bayesian model calibration of ramp compression experiments on Z

    Science.gov (United States)

    Brown, Justin; Hund, Lauren

    2017-06-01

    Bayesian model calibration (BMC) is a statistical framework to estimate inputs for a computational model in the presence of multiple uncertainties, making it well suited to dynamic experiments which must be coupled with numerical simulations to interpret the results. Often, dynamic experiments are diagnosed using velocimetry and this output can be modeled using a hydrocode. Several calibration issues unique to this type of scenario including the functional nature of the output, uncertainty of nuisance parameters within the simulation, and model discrepancy identifiability are addressed, and a novel BMC process is proposed. As a proof of concept, we examine experiments conducted on Sandia National Laboratories' Z-machine which ramp compressed tantalum to peak stresses of 250 GPa. The proposed BMC framework is used to calibrate the cold curve of Ta (with uncertainty), and we conclude that the procedure results in simple, fast, and valid inferences. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Calibration of sources for alpha spectroscopy systems

    International Nuclear Information System (INIS)

    Freitas, I.S.M.; Goncalez, O.L.

    1992-01-01

    This paper describes the calibration methodology for measuring the total alpha activity of plane and thin sources with the Alpha Spectrometer for Silicon Detector in the Nuclear Measures and Dosimetry laboratory at IEAv/CTA. (author)

  4. CAMAC-controlled calibration system for nuclear reactor instruments

    International Nuclear Information System (INIS)

    McDowell, W.P.; Cornella, R.J.

    1977-01-01

    The hardware and the software which have been developed to implement a nuclear instrument calibration system for the Argonne National Laboratory ZPR-VI and ZPR-IX reactor complex are described. The system is implemented using an SEL-840 computer with its associated CAMAC crates and a hardware interface to generate input parameters and measure the required outputs on the instrument under test. Both linear and logarithmic instruments can be calibrated by the system and output parameters can be measured at various automatically selected values of ac line voltage. A complete report on each instrument is printed as a result of the calibration and out-of-tolerance readings are flagged. Operator interface is provided by a CAMAC-controlled Hazeltine terminal. The terminal display leads the operator through the complete calibration procedure. This computer-controlled system is a significant improvement over previously used methods of calibrating nuclear instruments since it reduces reactor downtime and allows rapid detection of long-term changes in instrument calibration

  5. A Dynamic Calibration Method for Experimental and Analytical Hub Load Comparison

    Science.gov (United States)

    2017-03-01

    computed at various pitch angles through changes in actuator length. The linear spring stiffness was estimated by using the internal volume of the...Vehicle Technology Directorate Mechanics Division (ATTN: RDRL-VTM) Aberdeen Proving Ground, MD 21005-5066 8. PERFORMING ORGANIZATION REPORT NUMBER...Finally, the balance loads are not only induced by the rotor hub loads, but also by loads transmitted via the pitch links to the swashplate. Thus

  6. Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings

    Directory of Open Access Journals (Sweden)

    Dibble Clare J

    2009-11-01

    Full Text Available Abstract Background Screening new lignocellulosic biomass pretreatments and advanced enzyme systems at process relevant conditions is a key factor in the development of economically viable lignocellulosic ethanol. Shake flasks, the reaction vessel commonly used for screening enzymatic saccharifications of cellulosic biomass, do not provide adequate mixing at high-solids concentrations when shaking is not supplemented with hand mixing. Results We identified roller bottle reactors (RBRs as laboratory-scale reaction vessels that can provide adequate mixing for enzymatic saccharifications at high-solids biomass loadings without any additional hand mixing. Using the RBRs, we developed a method for screening both pretreated biomass and enzyme systems at process-relevant conditions. RBRs were shown to be scalable between 125 mL and 2 L. Results from enzymatic saccharifications of five biomass pretreatments of different severities and two enzyme preparations suggest that this system will work well for a variety of biomass substrates and enzyme systems. A study of intermittent mixing regimes suggests that mass transfer limitations of enzymatic saccharifications at high-solids loadings are significant but can be mitigated with a relatively low amount of mixing input. Conclusion Effective initial mixing to promote good enzyme distribution and continued, but not necessarily continuous, mixing is necessary in order to facilitate high biomass conversion rates. The simplicity and robustness of the bench-scale RBR system, combined with its ability to accommodate numerous reaction vessels, will be useful in screening new biomass pretreatments and advanced enzyme systems at high-solids loadings.

  7. Standards in radiation protection at the IAEA Dosimetry Laboratory

    International Nuclear Information System (INIS)

    Czap, L.; Pernicka, F.; Matscheko, G.; Andreo, P.

    1999-01-01

    Approximately 90% of the Secondary Standard Dosimetry Laboratories (SSDLs) provide users with calibrations of radiation protection instruments, and the Agency is making every necessary effort to insure that SSDLs measurements in radiation protection are traceable to Primary Standards. The IAEA provides traceable calibrations of ionization chambers in terms of air kerma at radiation protection levels and ambient dose equivalent calibrations. SSDLs are encouraged to use the calibrations available from the Agency to provide traceability for their radiation protection measurements. Measurements on diagnostic X ray generators have become increasingly important in radiation protection and some SSDLs are involved in such measurements. The IAEA has proper radiation sources available to provide traceable calibrations to the SSDLs in this field, including an X ray unit specifically for mammography dedicated to standardization procedures. The different photon beam qualities and calibration procedures available in the Agency's Dosimetry Laboratory will be described. (author)

  8. Calibration and uncertainties in gas microflow measurement in the range of 2–200 µg s−1 of nitrogen

    International Nuclear Information System (INIS)

    Barbe, J; Dijoux, F; Yardin, C; Macé, T; Vaslin-Reimann, S

    2010-01-01

    Today the field of chemistry needs calibration in gas microflow measurement for applications such as thin film deposition, catalysis or the automotive industry. Few European metrology laboratories conduct this type of calibration. In France no laboratory can calibrate below 20 µg s −1 . To meet this growing need, LNE has developed a calibration bench using the method of 'traced gas' in the range of 2–200 µg s −1 . The method and the uncertainty estimation of the calibration bench and calibration results of three laminar flowmeters of Molbloc type and industrial flowmeters are presented in this paper

  9. STRUCTURAL RESPONSE OF THE DIII-D TOROIDAL FIELD COIL TO INCREASED LATERAL LOADS

    International Nuclear Information System (INIS)

    REIS, E.E; CHIN, E.

    2004-03-01

    OAK-B135 Recent calibration shots in which full toroidal field (TF) coil current interacted with the maximum poloidal field coils have produced increased lateral loads on the outer sections of the TF-coil. The increased lateral loads have resulted in deflections that have been sufficient to cause the TF-coil to contact adjacent equipment and produce a transient short to ground within the coil. The six outer turns of each TF-coil bundle are clamped together by insulated preloaded studs to provide increased bending stiffness. These sections of the outer bundles depend on friction to react the lateral loads as a bundle rather than six individual turns. A major concern is that the increased loads will produce slip between turns resulting in excessive lateral deflections and possible damage to the insulating sleeve on the preloaded studs. A finite element structural model of the TF-coil was developed for the calculation of deflections and the shear load distribution throughout the coil for the applied lateral loads from a full current calibration shot. The purpose of the updated structural model is to correlate the applied lateral loads to the total shear force between the unbonded sections of the outer turns. An allowable integrated lateral load applied to the outer turns is established based on the maximum shear force that can be reacted by friction. A program that calculates the magnetic fields and integrated lateral load along the outer turns can be incorporated into the plasma control system. The integrated load can then be compared to the calculated allowable value prior to execution of calibration shots. Calibration shots with a calculated total lateral load greater than the allowable value will be prevented

  10. Optimization of shadow cone length and mass for determination the amount of scattered radiation dose in the calibration laboratory of Am/Be neutron source

    International Nuclear Information System (INIS)

    Raisali, G.; Hamidi, S.; Hallajfard, E.; Shahvar, A.; Hajiloo, N.

    2007-01-01

    The shadow cone technique is one of the methods which is used for determining the contribution of scattered particles on the response of neutron detectors. This technique is used for neutron field calibration in Agriculture, Medicine and Industry Research School. In this investigation, we have designed and constructed an optimized shadow cone. According to the calculated neutron dose equivalent attenuation factors, a cone with 20 cm of iron and 30 cm of polyethylene has been found as optimum. For this cone, the neutron dose equivalent attenuation factor for 241 Am/Be neutron source, is 0.00035 for which the contribution of scattered neutrons in Agriculture, Medicine and Industry Research School neutron calibration laboratory according to the calculation and measurement results, can be evaluated with less than 0.5% of error

  11. UNIVERSAL AUTO-CALIBRATION FOR A RAPID BATTERY IMPEDANCE SPECTRUM MEASUREMENT DEVICE

    Energy Technology Data Exchange (ETDEWEB)

    Jon P. Christophersen; John L. Morrison; William H. Morrison

    2014-03-01

    Electrochemical impedance spectroscopy has been shown to be a valuable tool for diagnostics and prognostics of energy storage devices such as batteries and ultra-capacitors. Although measurements have been typically confined to laboratory environments, rapid impedance spectrum measurement techniques have been developed for on-line, embedded applications as well. The prototype hardware for the rapid technique has been validated using lithium-ion batteries, but issues with calibration had also been identified. A new, universal automatic calibration technique was developed to address the identified issues while also enabling a more simplified approach. A single, broad-frequency range is used to calibrate the system and then scaled to the actual range and conditions used when measuring a device under test. The range used for calibration must be broad relative to the expected measurement conditions for the scaling to be successful. Validation studies were performed by comparing the universal calibration approach with data acquired from targeted calibration ranges based on the expected range of performance for the device under test. First, a mid-level shunt range was used for calibration and used to measure devices with lower and higher impedance. Next, a high excitation current level was used for calibration, followed by measurements using lower currents. Finally, calibration was performed over a wide frequency range and used to measure test articles with a lower set of frequencies. In all cases, the universal calibration approach compared very well with results acquired following a targeted calibration. Additionally, the shunts used for the automated calibration technique were successfully characterized such that the rapid impedance measurements compare very well with laboratory-scale measurements. These data indicate that the universal approach can be successfully used for onboard rapid impedance spectra measurements for a broad set of test devices and range of

  12. Quality control at the Regional Centre of Nuclear Sciences chemical dosimetry laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne L.B. de; Melo, Roberto T. de; Silva, Danubia B. da; Pedroza, Eryka H.; Rodrigues, Kelia R.G.; Cunha, Manuela S. da; Figueiredo, Marcela D.C. de [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Oliveira, Aristides, E-mail: vlsouza@cnen.gov.b, E-mail: rtmelo@cnen.gov.b [Hospital de Cancer de Pernambuco, Recife, PE (Brazil)

    2011-07-01

    Standards for accreditation of laboratories as in ISO 9001 in section: 4.11 require inspection, measuring and equipment testing; likewise, IEC 17025: 2005 in section: 5.5.2 requires the equipment to be calibrated or verified before being put into use. In our laboratory, quality control is often accomplished by standards set done by the laboratory scientists themselves; however, at present, Hellma secondary calibration standards (4026 - Holmium oxide - Filters: F0, F2, F3, F4 and filter didymium - F7) have been used in order to verify if errors in the laboratory have been close to the 1-2% margin. Control graphs were made by using the results of synthetically prepared standards and standardized spectral calibration certificates. The set of secondary calibration standards permits to check the accuracy of the spectrophotometers used in research for both the absorbance in the visible spectrum (at 440, 465, 546, 590 and 635 nm wavelengths) and for the wavelengths (270, 280, 300, 320 nm) of the ultraviolet light. Filters (F0, F2, F3, F4 and F7) are stable and do not suffer the influence of temperature (the influence is negligible), the F0 filter was being used as a blank. The purpose is to verify whether the spectrometer needs adjustments, an important procedure to check absorbance stability, baseline flatness, slit width accuracy and stray radiation. The calibration tests are performed annually in our laboratory and recalibration of Hellma secondary standards is recommended every two years. The results show that the Chemical Dosimetry Laboratory in CRCN has a calibrated spectrophotometer and their synthetic standards for Fricke dosimetry could be used as an alternative method for testing the proficiency and competence of calibration laboratories in accordance with the regulations and standards. (author)

  13. Establishment of 137Cs radiation fields for instrument calibration

    International Nuclear Information System (INIS)

    Albuquerque, M. da P.P.; Caldas, L.V.E.; Xavier, M.

    1988-09-01

    In order to study the energy dependence of clinical dosemeters, systems constituted of ionization chambers connected to special electrometers, many times their calibration with the gamma radiation of 137 Cs is necessary. In this case, the radiation field characterization is fundamental. The source used presents and activity of 38,8 Tbq and belongs to the Calibration Laboratory of IPEN. Dosimetric films, gammagraphy films, ionization chambers and Lucite phantons were used. At the calibration distance, 80 cm (detector-source detection), the homogeneity of a 10 X 10 cm 2 radiation field was equal 68%. (author) [pt

  14. Calibration of dosimeters used in radiotherapy. A manual

    International Nuclear Information System (INIS)

    1994-01-01

    The present manual is a revision of IAEA Technical Reports Series No.185, published in 1979. This manual is intended for use by the network of Secondary Standard Dosimetry Laboratories (SSDLs) which was set up by the IAEA and the World Health Organization (WHO). The objectives of the SSDL network are to: calibrate radiation dosimeters and ancillary instruments; serve as a link between primary standard laboratories and radiation users; and provide advice and assistance in all aspects of radiation metrology. The various calibration procedures are described, their relative advantages and disadvantages are discussed, and criteria are put forward to help an SSDL decide which procedure is the best to use in order to meet a particular requirement. The information in this manual should also be of value to other similar laboratories, usually associated with hospitals, which are not formally part of the IAEA/WHO network of SSDLs. 26 refs, 6 figs, 6 tabs

  15. parameters affecting the calibration uniformity and traceability of gamma measuring devices

    International Nuclear Information System (INIS)

    Youssef, S.K.; Henaish, B.A.

    1985-01-01

    One of the problems which usually defeats the dosimetric evaluations performed by the health and safety experts is the absence of the reproducibility and accuracy of the used measuring devices systems. Furthermore, the traceability of the dose evaluation done by the users themselves are not achieved. Also the uniformity and homogeneity between the various users dosimeters and that available at specified central organization are not maintained. The present manuscript is scoping to deal with such various problems such as: a) dosimeter accuracy, b) traceability of the various users dosimeters and measuring devices. This paper also suggests a programme for the minimum facilities which are required for operating a central calibration laboratory. the responsibility of that central calibration lab., beside the linking chain between the different users and that calibration lab. are stated and discussed in detail. Furthermore, the authors experiences gained in operating the secondary standards calibration laboratory are also reviewed. 2 fig

  16. KEY COMPARISON: Final report of comparison of the calibrations of hydrometers for liquid density determination between SIM laboratories: SIM.M.D-K4

    Science.gov (United States)

    Becerra, Luis Omar

    2009-01-01

    This SIM comparison on the calibration of high accuracy hydrometers was carried out within fourteen laboratories in the density range from 600 kg/m3 to 1300 kg/m3 in order to evaluate the degree of equivalence among participant laboratories. This key comparison anticipates the planned key comparison CCM.D-K4, and is intended to be linked with CCM.D-K4 when results are available. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  17. Use of beam probes for rigidity calibration of the A1900 fragment separator

    Energy Technology Data Exchange (ETDEWEB)

    Ginter, T.N. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Farinon, F. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Baumann, T. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Hausmann, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Kwan, E.; Naviliat Cuncic, O. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Portillo, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Rogers, A.M.; Stetson, J.; Sumithrarachchi, C. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Villari, A.C.C. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Williams, S.J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)

    2016-06-01

    Use of a beam-based approach is presented for establishing a rigidity calibration for the A1900 fragment separator located at the National Superconducting Cyclotron Laboratory. Also presented is why an alternative approach to the rigidity calibration – using detailed field maps of individual magnetic components – is not a feasible basis for deriving an accurate calibration. The level of accuracy achieved for the rigidity calibration is ±0.1%.

  18. Quantitative comparison of two independent lateral force calibration techniques for the atomic force microscope

    International Nuclear Information System (INIS)

    Barkley, Sarice S.; Cannara, Rachel J.; Deng Zhao; Gates, Richard S.; Reitsma, Mark G.

    2012-01-01

    Two independent lateral-force calibration methods for the atomic force microscope (AFM)--the hammerhead (HH) technique and the diamagnetic lateral force calibrator (D-LFC)--are systematically compared and found to agree to within 5% or less, but with precision limited to about 15%, using four different tee-shaped HH reference probes. The limitations of each method, both of which offer independent yet feasible paths toward traceable accuracy, are discussed and investigated. We find that stiff cantilevers may produce inconsistent D-LFC values through the application of excessively high normal loads. In addition, D-LFC results vary when the method is implemented using different modes of AFM feedback control, constant height and constant force modes, where the latter is more consistent with the HH method and closer to typical experimental conditions. Specifically, for the D-LFC apparatus used here, calibration in constant height mode introduced errors up to 14 %. In constant force mode using a relatively stiff cantilever, we observed an ≅ 4 % systematic error per μN of applied load for loads ≤ 1 μN. The issue of excessive load typically emerges for cantilevers whose flexural spring constant is large compared with the normal spring constant of the D-LFC setup (such that relatively small cantilever flexural displacements produce relatively large loads). Overall, the HH method carries a larger uncertainty, which is dominated by uncertainty in measurement of the flexural spring constant of the HH cantilever as well as in the effective length dimension of the cantilever probe. The D-LFC method relies on fewer parameters and thus has fewer uncertainties associated with it. We thus show that it is the preferred method of the two, as long as care is taken to perform the calibration in constant force mode with low applied loads.

  19. Calibration of a scintillation dosemeter for beta rays using an extrapolation ionization chamber

    International Nuclear Information System (INIS)

    Hakanen, A.T.; Sipilae, P.M.; Kosunen, A.

    2004-01-01

    A scintillation dosemeter is calibrated for 90 Sr/ 90 Y beta rays from an ophthalmic applicator, using an extrapolation ionization chamber as a reference instrument. The calibration factor for the scintillation dosemeter agrees with that given by the manufacturer of the dosemeter within ca. 2%. The estimated overall uncertainty of the present calibration is ca. 6% (2 sd). A calibrated beta-ray ophthalmic applicator can be used as a reference source for further calibrations performed in the laboratory or in the hospital

  20. Structure and Calibration of Constitutive Equations for Granular Soils

    Directory of Open Access Journals (Sweden)

    Sawicki Andrzej

    2015-02-01

    Full Text Available The form of incremental constitutive equations for granular soils is discussed for the triaxial configuration. The classical elasto-plastic approach and the semi-empirical model are discussed on the basis of constitutive relations determined directly from experimental data. First, the general structure of elasto-plastic constitutive equations is presented. Then, the structure of semiempirical constitutive equations is described, and a method of calibrating the model is presented. This calibration method is based on a single experiment, performed in the triaxial apparatus, which also involves a partial verification of the model, on an atypical stress path. The model is shown to give reasonable predictions. An important feature of the semi-empirical incremental model is the definition of loading and unloading, which is different from that assumed in elasto-plasticity. This definition distinguishes between spherical and deviatoric loading/unloading. The definition of deviatoric loading/unloading has been subject to some criticism. It was therefore discussed and clarified in this paper on the basis of the experiment presented.

  1. Calibration of ratemeters used for gamma radiation detection

    International Nuclear Information System (INIS)

    Hantanirina, P.A.

    2017-01-01

    The Secondary Standard Dosimetry Laboratory (SSDL) of INSTN-Madagascar is in charge of the calibration of every dosimetry measurement instrument in hospitals and companies using radioactive sources in Madagascar. It has a secondary standard delivered and calibrated by a Primary Standard Laboratory in Dosimetry (PSLD). This standard is used to compare its reference values with those displayed on the instruments to be calibrated. During our training period, three (3) ratemeters were calibrated, the Graetz X5DE, the Graetz X5C and the Identifinder 2. We have determined the calibration factor for every ratemeter by doing calculation with the reference value. By using the three surveymeters for direct radiations measurements, it has been found that the difference between the displayed values and the real values for every ratemeter does not exceed the tolerance limit which is 20 %. Then we can conclude that these ratemeters are still in good condition of functioning. Concerning the calibration factor curve N_k with the K_a_i_r , we can observe that for the Graetz X5C ratemeter, this curve is almost constant. As well as for the linearity, it is still the Graetz X5C ratemeter which is linear almost integrally for the measured and calculated dose rate values. So we can say that this ratemeter is the most recommended for the radiations measurements.This work which has been carried within the framework of collaboration between the section PNAE (Physique Nucléaire Appliquée et Environnement) of the University of Antananarivo and INSTN-Madagascar has been a good and rewarding experience which allowed us to put into practice all knowledges acquired during our years of studies. [fr

  2. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1998-01-01

    The two tasks of the Dosimetry and Calibration Section at CERN are the Individual Dosimetry Service which assures the personal monitoring of about 5000 persons potentially exposed to ionizing radiation at CERN, and the Calibration Laboratory which verifies all the instruments and monitors. This equipment is used by the sections of the RP Group for assuring radiation protection around CERN's accelerators, and by the Environmental Section of TISTE. In addition, nearly 250 electronic and 300 quartz fibre dosimeters, employed in operational dosimetry, are calibrated at least once a year. The Individual Dosimetry Service uses an extended database (INDOS) which contains information about all the individual doses ever received at CERN. For most of 1997 it was operated without the support of a database administrator as the technician who had assured this work retired. The Software Support Section of TIS-TE took over the technical responsibility of the database, but in view of the many other tasks of this Section and the lack of personnel, only a few interventions for solving immediate problems were possible

  3. SCALA: In situ calibration for integral field spectrographs

    Science.gov (United States)

    Lombardo, S.; Küsters, D.; Kowalski, M.; Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Barbary, K.; Baugh, D.; Bongard, S.; Boone, K.; Buton, C.; Chen, J.; Chotard, N.; Copin, Y.; Dixon, S.; Fagrelius, P.; Feindt, U.; Fouchez, D.; Gangler, E.; Hayden, B.; Hillebrandt, W.; Hoffmann, A.; Kim, A. G.; Leget, P.-F.; McKay, L.; Nordin, J.; Pain, R.; Pécontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Reif, K.; Rigault, M.; Rubin, D.; Runge, K.; Saunders, C.; Smadja, G.; Suzuki, N.; Taubenberger, S.; Tao, C.; Thomas, R. C.; Nearby Supernova Factory

    2017-11-01

    Aims: The scientific yield of current and future optical surveys is increasingly limited by systematic uncertainties in the flux calibration. This is the case for type Ia supernova (SN Ia) cosmology programs, where an improved calibration directly translates into improved cosmological constraints. Current methodology rests on models of stars. Here we aim to obtain flux calibration that is traceable to state-of-the-art detector-based calibration. Methods: We present the SNIFS Calibration Apparatus (SCALA), a color (relative) flux calibration system developed for the SuperNova integral field spectrograph (SNIFS), operating at the University of Hawaii 2.2 m (UH 88) telescope. Results: By comparing the color trend of the illumination generated by SCALA during two commissioning runs, and to previous laboratory measurements, we show that we can determine the light emitted by SCALA with a long-term repeatability better than 1%. We describe the calibration procedure necessary to control for system aging. We present measurements of the SNIFS throughput as estimated by SCALA observations. Conclusions: The SCALA calibration unit is now fully deployed at the UH 88 telescope, and with it color-calibration between 4000 Å and 9000 Å is stable at the percent level over a one-year baseline.

  4. Measurement quality assurance for beta particle calibrations at NIST

    Energy Technology Data Exchange (ETDEWEB)

    Soares, C.G.; Pruitt, J.S. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1993-12-31

    Standardized beta-particle fields have been established in an international standard and have been adopted for use in several U.S. dosimeter and instrument testing standards. Calibration methods and measurement quality assurance procedures employed at the National Institute of Standards and Technology (NIST) for beta-particle calibrations in these reference fields are discussed. The calibration facility including the NIST-automated extrapolation ionization chamber is described, and some sample results of calibrations are shown. Methods for establishing and maintaining traceability to NIST of secondary laboratories are discussed. Currently, there are problems in finding a good method for routine testing of traceability to NIST. Some examples of past testing methods are given and solutions to this problem are proposed.

  5. Measurement quality assurance for beta particle calibrations at NIST

    International Nuclear Information System (INIS)

    Soares, C.G.; Pruitt, J.S.

    1993-01-01

    Standardized beta-particle fields have been established in an international standard and have been adopted for use in several U.S. dosimeter and instrument testing standards. Calibration methods and measurement quality assurance procedures employed at the National Institute of Standards and Technology (NIST) for beta-particle calibrations in these reference fields are discussed. The calibration facility including the NIST-automated extrapolation ionization chamber is described, and some sample results of calibrations are shown. Methods for establishing and maintaining traceability to NIST of secondary laboratories are discussed. Currently, there are problems in finding a good method for routine testing of traceability to NIST. Some examples of past testing methods are given and solutions to this problem are proposed

  6. Low-cost programmable pulse generator for particle telescope calibration

    CERN Document Server

    Sanchez, S; Seisdedos, M; Meziat, D; Carbajo, M; Medina, J; Bronchalo, E; Peral, L D; Rodríguez-Pacheco, J

    1999-01-01

    In this paper we present a new calibration system for particle telescopes including multipulse generator and digital controller. The calibration system generates synchronized pulses of variable height for every detector channel on the telescope. The control system is based on a commercial microcontroller linked to a personal computer through an RS-232 bidirectional line. The aim of the device is to perform laboratory calibration of multi-detector telescopes prior to calibration at accelerator. This task includes evaluation of linearity and resolution of each detector channel, as well as coincidence logic. The heights of the pulses sent to the detectors are obtained by Monte Carlo simulation of telescope response to a particle flux of any desired geometry and composition.

  7. Comparison of infusion pumps calibration methods

    Science.gov (United States)

    Batista, Elsa; Godinho, Isabel; do Céu Ferreira, Maria; Furtado, Andreia; Lucas, Peter; Silva, Claudia

    2017-12-01

    Nowadays, several types of infusion pump are commonly used for drug delivery, such as syringe pumps and peristaltic pumps. These instruments present different measuring features and capacities according to their use and therapeutic application. In order to ensure the metrological traceability of these flow and volume measuring equipment, it is necessary to use suitable calibration methods and standards. Two different calibration methods can be used to determine the flow error of infusion pumps. One is the gravimetric method, considered as a primary method, commonly used by National Metrology Institutes. The other calibration method, a secondary method, relies on an infusion device analyser (IDA) and is typically used by hospital maintenance offices. The suitability of the IDA calibration method was assessed by testing several infusion instruments at different flow rates using the gravimetric method. In addition, a measurement comparison between Portuguese Accredited Laboratories and hospital maintenance offices was performed under the coordination of the Portuguese Institute for Quality, the National Metrology Institute. The obtained results were directly related to the used calibration method and are presented in this paper. This work has been developed in the framework of the EURAMET projects EMRP MeDD and EMPIR 15SIP03.

  8. Calibration of photon and beta ray sources used in brachytherapy. Guidelines on standardized procedures at Secondary Standards Dosimetry Laboratories (SSDLs) and hospitals

    International Nuclear Information System (INIS)

    2002-03-01

    It has generally been recognized that international harmonization in radiotherapy dosimetry is essential. Consequently, the IAEA has given much effort to this, for example by publishing a number of reports in the Technical Reports Series (TRS) for external beam dosimetry, most notably TRS-277 and more recently TRS-398. Both of these reports describe in detail the steps to be taken for absorbed dose determination in water and they are often referred to as 'dosimetry protocols'. Similar to TRS-277, it is expected that TRS-398 will be adopted or used as a model by a large number of countries as their national protocol. In 1996, the IAEA established a calibration service for low dose rate (LDR) 137 Cs brachytherapy sources, which is the most widely used source for treatment of gynecological cancer. To further enhance harmonization in brachytherapy dosimetry, the IAEA published in 1999 IAEA-TECDOC-1079 entitled 'Calibration of Brachytherapy Sources. Guidelines on Standardized Procedures for the Calibration of Brachytherapy Sources at Secondary Standard Dosimetry Laboratories (SSDLs) and Hospitals'. The report was well received and was distributed in a large number of copies to the members of the IAEA/WHO network of SSDLs and to medical physicists working with brachytherapy. The present report is an update of the aforementioned TECDOC. Whereas TECDOC-1079 described methods for calibrating brachytherapy sources with photon energies at or above those of 192 Ir, the current report has a wider scope in that it deals with standardization of calibration of all the most commonly used brachytherapy sources, including both photon and beta emitting sources. The latter sources have been in use for a few decades already, but their calibration methods have been unclear. Methods are also described for calibrating sources used in the rapidly growing field of cardiovascular angioplasty. In this application, irradiation of the vessel wall is done in an attempt to prevent restenosis after

  9. Characterization of a 137Cs standard source for calibration purposes at CRCN-NE

    International Nuclear Information System (INIS)

    Oliveira, Mercia L.; Santos, Marcus A.P. dos; Benvides, Clayton A.

    2008-01-01

    Radiation protection monitoring instruments should be calibrated by accredited calibration laboratories. To offer calibration services, a laboratory must accomplish all requirements established by the national regulatory agency. The Calibration Service of the Centro Regional de Ciencias Nucleares (CRCN-NE), Comissao Nacional de Energia Nuclear, Recife, Brazil, is trying to achieve this accreditation. In the present work, a 137 Cs standard source was characterized following the national and international recommendations and the results are presented. This source is a commercially available single source irradiator model 28-8A, manufactured by J.L. Shepherd and Associates, with initial activity of 444 GBq (05/13/03). To provide different air kerma rates, as required for the calibration of portable radiation monitors, this irradiator have a set of four lead attenuators with different thickness, providing attenuation factors equal to 2, 4, 10 and 100 times (nominally). The performed tests included: size and uniformity of the radiation standard field at calibration reference position, variation of the air kerma rate for different lead attenuators, determination of attenuation factors for each lead attenuator configuration, and determination of the radiation scattering at the calibration reference position. The results showed the usefulness of the 137 Cs standard source for the calibration of radiation protection monitoring detectors. (author)

  10. Preliminary Results of BTDF Calibration of Transmissive Solar Diffusers for Remote Sensing

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.

  11. Preliminary results of BTDF calibration of transmissive solar diffusers for remote sensing

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-09-01

    Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their onboard transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.

  12. Calibration of the SNO+ experiment

    Science.gov (United States)

    Maneira, J.; Falk, E.; Leming, E.; Peeters, S.; SNO+ Collaboration.

    2017-09-01

    The main goal of the SNO+ experiment is to perform a low-background and high-isotope-mass search for neutrinoless double-beta decay, employing 780 tonnes of liquid scintillator loaded with tellurium, in its initial phase at 0.5% by mass for a total mass of 1330 kg of 130Te. The SNO+ physics program includes also measurements of geo- and reactor neutrinos, supernova and solar neutrinos. Calibrations are an essential component of the SNO+ data-taking and analysis plan. The achievement of the physics goals requires both an extensive and regular calibration. This serves several goals: the measurement of several detector parameters, the validation of the simulation model and the constraint of systematic uncertainties on the reconstruction and particle identification algorithms. SNO+ faces stringent radiopurity requirements which, in turn, largely determine the materials selection, sealing and overall design of both the sources and deployment systems. In fact, to avoid frequent access to the inner volume of the detector, several permanent optical calibration systems have been developed and installed outside that volume. At the same time, the calibration source internal deployment system was re-designed as a fully sealed system, with more stringent material selection, but following the same working principle as the system used in SNO. This poster described the overall SNO+ calibration strategy, discussed the several new and innovative sources, both optical and radioactive, and covered the developments on source deployment systems.

  13. Calibrations of pocket dosemeters using a comparison method

    International Nuclear Information System (INIS)

    Somarriba V, I.

    1996-01-01

    This monograph is dedicated mainly to the calibration of pocket dosemeters. Various types of radiation sources used in hospitals and different radiation detectors with emphasis on ionization chambers are briefly presented. Calibration methods based on the use of a reference dosemeter were developed to calibrate all pocket dosemeters existing at the Radiation Physics and Metrology Laboratory. Some of these dosemeters were used in personnel dosimetry at hospitals. Moreover, a study was realized about factors that affect the measurements with pocket dosemeters in the long term, such as discharges due to cosmic radiation. A DBASE IV program was developed to store the information included in the hospital's registry

  14. Accurate KAP meter calibration as a prerequisite for optimisation in projection radiography

    International Nuclear Information System (INIS)

    Malusek, A.; Sandborg, M.; Alm Carlsson, G.

    2016-01-01

    Modern X-ray units register the air kerma-area product, PKA, with a built-in KAP meter. Some KAP meters show an energy-dependent bias comparable with the maximum uncertainty articulated by the IEC (25 %), adversely affecting dose-optimisation processes. To correct for the bias, a reference KAP meter calibrated at a standards laboratory and two calibration methods described here can be used to achieve an uncertainty of <7 % as recommended by IAEA. A computational model of the reference KAP meter is used to calculate beam quality correction factors for transfer of the calibration coefficient at the standards laboratory, Q 0 , to any beam quality, Q, in the clinic. Alternatively, beam quality corrections are measured with an energy-independent dosemeter via a reference beam quality in the clinic, Q 1 , to beam quality, Q. Biases up to 35 % of built-in KAP meter readings were noted. Energy-dependent calibration factors are needed for unbiased PKA. Accurate KAP meter calibration as a prerequisite for optimisation in projection radiography. (authors)

  15. Construction and calibration of a simple scintillation counter for monitoring radioactive gases in ducts

    International Nuclear Information System (INIS)

    Johnston, M.S.

    1984-07-01

    A report is given of the practical construction, laboratory calibration and simple-in-situ calibration check of scintillation detectors used for monitoring radioactive inert gases in gaseous effluents. The βγ-ray and γ-ray detectors are identical except for an absorber which is placed over the window of the γ-ray detector after calibration. The construction and calibration of both detectors is therefore identical. (author)

  16. Variability of creatinine measurements in clinical laboratories: results from the CRIC study.

    Science.gov (United States)

    Joffe, Marshall; Hsu, Chi-yuan; Feldman, Harold I; Weir, Matthew; Landis, J R; Hamm, L Lee

    2010-01-01

    Estimating equations using serum creatinine (SCr) are often used to assess glomerular filtration rate (GFR). Such creatinine (Cr)-based formulae may produce biased estimates of GFR when using Cr measurements that have not been calibrated to reference laboratories. In this paper, we sought to examine the degree of this variation in Cr assays in several laboratories associated with academic medical centers affiliated with the Chronic Renal Insufficiency Cohort (CRIC) Study; to consider how best to correct for this variation, and to quantify the impact of such corrections on eligibility for participation in CRIC. Variability of Cr is of particular concern in the conduct of CRIC, a large multicenter study of subjects with chronic renal disease, because eligibility for the study depends on Cr-based assessment of GFR. A library of 5 large volume plasma specimens from apheresis patients was assembled, representing levels of plasma Cr from 0.8 to 2.4 mg/dl. Samples from this library were used for measurement of Cr at each of the 14 CRIC laboratories repetitively over time. We used graphical displays and linear regression methods to examine the variability in Cr, and used linear regression to develop calibration equations. We also examined the impact of the various calibration equations on the proportion of subjects screened as potential participants who were actually eligible for the study. There was substantial variability in Cr assays across laboratories and over time. We developed calibration equations for each laboratory; these equations varied substantially among laboratories and somewhat over time in some laboratories. The laboratory site contributed the most to variability (51% of the variance unexplained by the specimen) and variation with time accounted for another 15%. In some laboratories, calibration equations resulted in differences in eligibility for CRIC of as much as 20%. The substantial variability in SCr assays across laboratories necessitates calibration

  17. Effects of temporal and spatial resolution of calibration data on integrated hydrologic water quality model identification

    Science.gov (United States)

    Jiang, Sanyuan; Jomaa, Seifeddine; Büttner, Olaf; Rode, Michael

    2014-05-01

    Hydrological water quality modeling is increasingly used for investigating runoff and nutrient transport processes as well as watershed management but it is mostly unclear how data availablity determins model identification. In this study, the HYPE (HYdrological Predictions for the Environment) model, which is a process-based, semi-distributed hydrological water quality model, was applied in two different mesoscale catchments (Selke (463 km2) and Weida (99 km2)) located in central Germany to simulate discharge and inorganic nitrogen (IN) transport. PEST and DREAM(ZS) were combined with the HYPE model to conduct parameter calibration and uncertainty analysis. Split-sample test was used for model calibration (1994-1999) and validation (1999-2004). IN concentration and daily IN load were found to be highly correlated with discharge, indicating that IN leaching is mainly controlled by runoff. Both dynamics and balances of water and IN load were well captured with NSE greater than 0.83 during validation period. Multi-objective calibration (calibrating hydrological and water quality parameters simultaneously) was found to outperform step-wise calibration in terms of model robustness. Multi-site calibration was able to improve model performance at internal sites, decrease parameter posterior uncertainty and prediction uncertainty. Nitrogen-process parameters calibrated using continuous daily averages of nitrate-N concentration observations produced better and more robust simulations of IN concentration and load, lower posterior parameter uncertainty and IN concentration prediction uncertainty compared to the calibration against uncontinuous biweekly nitrate-N concentration measurements. Both PEST and DREAM(ZS) are efficient in parameter calibration. However, DREAM(ZS) is more sound in terms of parameter identification and uncertainty analysis than PEST because of its capability to evolve parameter posterior distributions and estimate prediction uncertainty based on global

  18. Influence of Loading Rate on the Calibration of Instrumented Charpy Strikers

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.; Scibetta, M.; McColskey, D.; McCowan, C.

    2009-01-15

    One of the key factors for obtaining reliable instrumented Charpy results is the calibration of the instrumented striker. The conventional approach for establishing an analytical relationship between strain gage output and force applied to the transducer is the static calibration, which is preferably performed with the striker installed in the pendulum assembly. However, the response of an instrumented striker under static force application may sometimes differ significantly from its dynamic performance during an actual Charpy test. This is typically reflected in a large difference between absorbed energy returned by the pendulum encoder (KV) and calculated under the instrumented force/displacement test record (Wt). Such difference can be either minimized by optimizing the striker design or analytically removed by adjusting forces and displacements until KV = Wt (the so-called 'Dynamic Force Adjustment'). This study investigates the influence of increasing force application rates on the force/voltage characteristics of two instrumented strikers, one at NIST in Boulder, CO and one at SCK-CEN in Mol, Belgium.

  19. The Fundamentals of the Air Sampler Calibration-Verification Process

    International Nuclear Information System (INIS)

    Gavila, F.M.

    2011-01-01

    The calibration of an air sampling instrument using a reference air flow calibrator requires attention to scientific detail in order to establish that the instrument's reported values are correctly stated and valid under the actual operating conditions of the air sampling instrument. The primary objective of an air flow calibration-verification is to ensure that the device under test (DUT) is within the manufacturer's stated accuracy range of temperature, pressure and humidity conditions under which the instrument was designed to operate. The DUT output values are compared to those obtained from a reference instrument (REF) measuring the sample physical parameter that the DUT is measuring. An accurate comparison of air flow rates or air volumes requires that the comparison of the DUT and REF values be made under the same temperature and pressure conditions. It is absolutely necessary that the REF be more accurate than the DUT; otherwise, it can not be considered a reference instrument. The REF should be at least twice as accurate and, if possible, it should be four times as accurate as the DUT. Upon confirmation that the DUT meets the manufacturer's accuracy criteria, the technician must place a calibration sticker or label indicating the date of calibration, the expiration date of the calibration and an authorized signature. If it is a limited-use instrument, the label should state the limited-use operating range. The serial number and model number of the instrument should also be shown on the calibration sticker. A specific calibration file for each instrument by serial number should be kept in the calibration laboratory file records. Instruments that display gas flow or gas volume values corrected to a reference temperature and pressure are very desirable. The ideal situation is when both the DUT and the REF output flow rate or volume values are at the same conditions of T and P. The calibration-verification is, then, a simple process. The credibility of an air

  20. DOE radiological calibrations intercomparison program: Results of fiscal year 1986

    International Nuclear Information System (INIS)

    Cummings, F.M.; Roberson, P.L.; McDonald, J.C.

    1987-05-01

    The Department of Energy Radiological Calibration Intercomparison Program was initiated in January 1986, under the research portion of the DOE Laboratory Accreditation Program. The program operates via the exchange of transfer standards, consisting of instrument sets and standard secondary beta sources. There are two instrument sets and the scheduled use has been staggered such that one set is available for use during each month. One set of secondary standard beta sources is available for use bimonthly. During the 1986 fiscal year, five laboratories used the instrument sets and three laboratories used the beta source set. Results were reported for all the measurements. The average and one standard deviation of the ratios of participant results to Pacific Northwest Laboratory calibration values were 1.12 +- 0.17 for gamma measurements. Those ratios for the gamma measurements varied from 0.98 to 3.06. The larger differences of results from measurements performed at two facilities were directly attributable to unfamiliarity with the intercomparison instruments. The average and one standard deviation of the ratios of participant results to PNL calibration values obtained using the secondary 90 Sr beta source was 1.02 +- 0.05, which is well within measurement uncertainties. The one participant who performed measurements using 147 Pm and 204 Tl sources obtained ratios of 0.68 and 1.11, respectively. No measurements were performed using neutron or x-ray sources

  1. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  2. Laboratory for Structural Acoustics

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where acoustic radiation, scattering, and surface vibration measurements of fluid-loaded and non-fluid-loaded structures are...

  3. Calibration factor or calibration coefficient?

    International Nuclear Information System (INIS)

    Meghzifene, A.; Shortt, K.R.

    2002-01-01

    Full text: The IAEA/WHO network of SSDLs was set up in order to establish links between SSDL members and the international measurement system. At the end of 2001, there were 73 network members in 63 Member States. The SSDL network members provide calibration services to end-users at the national or regional level. The results of the calibrations are summarized in a document called calibration report or calibration certificate. The IAEA has been using the term calibration certificate and will continue using the same terminology. The most important information in a calibration certificate is a list of calibration factors and their related uncertainties that apply to the calibrated instrument for the well-defined irradiation and ambient conditions. The IAEA has recently decided to change the term calibration factor to calibration coefficient, to be fully in line with ISO [ISO 31-0], which recommends the use of the term coefficient when it links two quantities A and B (equation 1) that have different dimensions. The term factor should only be used for k when it is used to link the terms A and B that have the same dimensions A=k.B. However, in a typical calibration, an ion chamber is calibrated in terms of a physical quantity such as air kerma, dose to water, ambient dose equivalent, etc. If the chamber is calibrated together with its electrometer, then the calibration refers to the physical quantity to be measured per electrometer unit reading. In this case, the terms referred have different dimensions. The adoption by the Agency of the term coefficient to express the results of calibrations is consistent with the 'International vocabulary of basic and general terms in metrology' prepared jointly by the BIPM, IEC, ISO, OIML and other organizations. The BIPM has changed from factor to coefficient. The authors believe that this is more than just a matter of semantics and recommend that the SSDL network members adopt this change in terminology. (author)

  4. SWAT Model Configuration, Calibration and Validation for Lake Champlain Basin

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) model was used to develop phosphorus loading estimates for sources in the Lake Champlain Basin. This document describes the model setup and parameterization, and presents calibration results.

  5. Calibration of radiation protection area monitoring instruments in Sudan

    International Nuclear Information System (INIS)

    Suliman, I.I.; Youssif, B.E.; Beineen, A.A.; Hassan, M.

    2010-01-01

    This article presents results of measurements for the calibration of radiation protection area monitoring instruments carried out during the period 2006-2008 at Secondary Standard Dosimetry Laboratory of Sudan. The work performed included quality assurance measurements, measurements for the dosimeter calibrations and uncertainty analysis. Calibrations were performed using 137 Cs gamma ray sources produced by OB 85 and OB 34/1 gamma calibrators producing air kerma rate that ranged from 10 μGy/h to 50 mGy/h. Area monitoring instruments were calibrated in terms of ambient dose equivalent, H*(10) derived using air kerma to ambient dose equivalent conversion coefficients. Results are presented for 78 area monitoring instruments representing most commonly used types in Sudan. Radioactive check source measurements for the reference chamber showed deviation within 1% limit. The accuracy in the beam output measurements was within 5% internationally considered as acceptable. The results highlighted the importance of radiation protection calibrations. Regulations are further need to ensure safety aspect really meet the required international standards.

  6. Quality Management and Calibration

    Science.gov (United States)

    Merkus, Henk G.

    Good specification of a product’s performance requires adequate characterization of relevant properties. Particulate products are usually characterized by some PSD, shape or porosity parameter(s). For proper characterization, adequate sampling, dispersion, and measurement procedures should be available or developed and skilful personnel should use appropriate, well-calibrated/qualified equipment. The characterization should be executed, in agreement with customers, in a wellorganized laboratory. All related aspects should be laid down in a quality handbook. The laboratory should provide proof for its capability to perform the characterization of stated products and/or reference materials within stated confidence limits. This can be done either by internal validation and audits or by external GLP accreditation.

  7. Qualification of testing laboratories of Comision Nacional de Energia Atomica - CNEA

    International Nuclear Information System (INIS)

    Casa, Adriana; Palacios, Tulio; Peretti, Matilde; Pucci, Gladys; Resnizki, Sara

    1996-01-01

    Testing and calibration laboratories of the Argentine Atomic Energy Commission which made services for the nuclear and conventional industries must prove the reliability of their results. It is achieved implanting at the laboratories, a management quality system, to proof the capacity and technical aptitude, with the establish minimal requirements. When the requirement are fulfilled, the laboratory would be in conditions for a national level accreditation within the National System of Standards, Quality and Certification, recently created for our national government. The Laboratories Calibration Board of CNEA had made some assessments of a group of laboratories in order to determine their quality level. (author)

  8. Establishment of a procedure to calculate the measurement uncertainties in radiation survey meters calibration

    International Nuclear Information System (INIS)

    Manzoli, J.E.; Potiens, M.P.A.

    2000-01-01

    The Calibration Laboratory of Sao Paulo calibrates more than one thousand gamma ray survey meters a year; beside other kinds of radiotherapy, radiodiagnostic and radiation protection instruments. It has a standard (600 cm 3 ) cylinder ionization chamber (Nuclear Enterprises Ltd. model 2511/3) traceable to the Brazilian Secondary Standard Dosimetry Laboratory (SSDL) whose instruments are traceable to the BIPM. Annually the beam dosimetry is performed using this chamber and the results are used as the true values for calibration purposes. The uncertainties present in every direct or indirect measurement during the calibration procedure must be evaluated for purposes of laboratory quality control. All calculation steps in the propagation of errors are presented in this work staging from the ionization chamber charge measured with the standard instrument. Such a propagation was made in space and time, considering even the environmental quantities uncertainties. The propagation was necessary in space, because the ionization chamber measurements were performed at only one space position. The time propagation was essential due to the fact that the activity is a peculiar physical quantity which changes with time according to precise relations for a specific radionuclide. The clear indication of every measurement uncertainty is always important to quantify the quality of this measurement. Nowadays the achievement of calibration laboratory quality systems requires the expression of all uncertainties and the procedure used to evaluate it. An example of this procedure in the case of the calibration of a typical portable radiation survey meter is presented. The direct exposure rate instrument measurement was compared with the true value given by the standard instrument properly propagated and all quantities used have their uncertainties shown. (author)

  9. IAEA/SSDL intercomparison of calibration factors for therapy level ionization chambers

    International Nuclear Information System (INIS)

    Lu Jilong; Cheng Jinsheng; Guo Zhaohui; Li Kaibao

    2005-01-01

    Objective: By participating in IAEA-SSDL intercomparison, a dose to water calibration factor was introduced in order to check the measuring accuracy of 60 Co radiotherapy dose level standard and ensure the reliability and consistency of our calibration. Methods: The authors carried out both air kerma and absorbed dose to water calibrations against 60 Co γ-rays for one of our field class ionization chambers, and sent the results together with the chamber to IAEA dosimetry laboratory for calibration, then IAEA calibrated it and gave the deviation of the intercomparison. Results: The deviation of our air kerma calibration factors is -0.5%, and the deviation of our absorbed dose to water calibration factors is 0.4%. Conclusion: The deviation of calibration factors between IAEA and SSDL should be no more than ±1.5%. Therefore, the result of this intercomparison is considered satisfactory. (authors)

  10. Development of a Web-Based L-THIA 2012 Direct Runoff and Pollutant Auto-Calibration Module Using a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Chunhwa Jang

    2013-11-01

    Full Text Available The Long-Term Hydrology Impact Assessment (L-THIA model has been used as a screening evaluation tool in assessing not only urbanization, but also land-use changes on hydrology in many countries. However, L-THIA has limitations due to the number of available land-use data that can represent a watershed and the land surface complexity causing uncertainties in manually calibrating various input parameters of L-THIA. Thus, we modified the L-THIA model so that could use various (twenty three land-use categories by considering various hydrologic responses and nonpoint source (NPS pollutant loads. Then, we developed a web-based auto-calibration module by integrating a Genetic-Algorithm (GA into the L-THIA 2012 that can automatically calibrate Curve Numbers (CNs for direct runoff estimations. Based on the optimized CNs and Even Mean Concentrations (EMCs, our approach calibrated surface runoff and nonpoint source (NPS pollution loads by minimizing the differences between the observed and simulated data. Here, we used default EMCs of biochemical oxygen demand (BOD, total nitrogen (TN, and total phosphorus-TP (as the default values to L-THIA collected at various local regions in South Korea corresponding to the classifications of different rainfall intensities and land use for improving predicted NPS pollutions. For assessing the model performance, the Yeoju-Gun and Icheon-Si sites in South Korea were selected. The calibrated runoff and NPS (BOD, TN, and TP pollutions matched the observations with the correlation (R2: 0.908 for runoff and R2: 0.882–0.981 for NPS and Nash-Sutcliffe Efficiency (NSE: 0.794 for runoff and NSE: 0.882–0.981 for NPS for the sites. We also compared the NPS pollution differences between the calibrated and averaged (default EMCs. The calibrated TN and TP (only for Yeoju-Gun EMCs-based pollution loads identified well with the measured data at the study sites, but the BOD loads with the averaged EMCs were slightly better than

  11. Tests and Calibration of the NIF Neutron Time of Flight Detectors

    International Nuclear Information System (INIS)

    Ali, Z.A.; Glebov, V.Yu.; Cruz, M.; Duffy, T.; Stoeckl, C.; Roberts, S.; Sangster, T.C.; Tommasini, R.; Throop, A; Moran, M.; Dauffy, L.; Horsefield, C.

    2008-01-01

    The National Ignition Facility (NIF) Neutron Time of Flight (NTOF) diagnostic will measure neutron yield and ion temperature in all NIF campaigns in DD, DT, and THD (D = deuterium, T = tritium, H = hydrogen) implosions. The NIF NTOF diagnostic is designed to measure neutron yield from 10 9 to 2 x 10 19 . The NTOF consists of several detectors of varying sensitivity located on the NIF at about 5 m and 20 m from the target. Production, testing, and calibration of the NIF NTOF detectors have begun at the Laboratory for Laser Energetics (LLE). Operational tests of the NTOF detectors were performed on several facilities including the OMEGA laser at LLE and the Titan laser at Lawrence Livermore National Laboratory (LLNL). Neutron calibrations were carried out on the OMEGA laser. Results of the NTOF detectors tests and calibration will be presented

  12. Traceable calibration of hospital 192Ir HDR sources

    International Nuclear Information System (INIS)

    Govinda Rajan, K.N.; Sharma, S.D.; Palaniselvam, T.; Vandana, S.; Bhatt, B.C.; Vinatha, S.; Patki, V.S.; Pendse, A.M.; Kannan, V.

    2004-01-01

    A HDR 1000 PLUS well type ionization chamber, procured from Standard Imaging, USA, and maintained by medical Physics and Safety Section (MPSS), Bhabha Atomic Research Centre (BARC), India, as a reference well chamber 1 (RWCH1), was traceably calibrated against the primary standard established by Radiological Standards Laboratory (RSL), BARC for 192 Ir HDR source, in terms of air kerma strength (AKS). An indigenously developed well-type ionization chamber, reference well chamber 2 (RWCH2) and electrometer system, fabricated by CD High Tech (CDHT) Instruments Private Ltd., Bangalore, India, was in turn calibrated against RWCH1. The CDHT system (i.e. RWCH2 and CDHT electrometer system) was taken to several hospitals, in different regions of the country, to check the calibration status of 192 Ir HDR sources. The result of this calibration audit work is reported here. (author)

  13. Calibration methodology for instruments utilized in X radiation beams, diagnostic level

    International Nuclear Information System (INIS)

    Penha, M. da; Potiens, A.; Caldas, L.V.E.

    2004-01-01

    Methodologies for the calibration of diagnostic radiology instruments were established at the Calibration Laboratory of IPEN. The methods may be used in the calibration procedures of survey meters used in radiation protection measurements (scattered radiation), instruments used in direct beams (attenuated and non attenuated beams) and quality control instruments. The established qualities are recommended by the international standards IEC 1267 and ISO 4037-3. Two ionization chambers were used as reference systems, one with a volume of 30 cm 3 for radiation protection measurements, and the other with a volume of 1 cm 3 for direct beam measurements. Both are traceable to the German Primary Laboratory of Physikalisch-Technische Bundesanstalt (PTB). In the case of calibration of quality control instruments, a non-invasive method using the measurement of the spectrum endpoint was established with a portable gamma and X-ray Intertechnique spectrometer system. The methods were applied to survey meters (radiation protection measurements), ionization chambers (direct beam measurements) and k Vp meters (invasive and non-invasive instruments). (Author)

  14. Calibration methodology for instruments utilized in X radiation beams, diagnostic level

    Energy Technology Data Exchange (ETDEWEB)

    Penha, M. da; Potiens, A.; Caldas, L.V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear, Sao Paulo (Brazil)]. E-mail: mppalbu@ipen.br

    2004-07-01

    Methodologies for the calibration of diagnostic radiology instruments were established at the Calibration Laboratory of IPEN. The methods may be used in the calibration procedures of survey meters used in radiation protection measurements (scattered radiation), instruments used in direct beams (attenuated and non attenuated beams) and quality control instruments. The established qualities are recommended by the international standards IEC 1267 and ISO 4037-3. Two ionization chambers were used as reference systems, one with a volume of 30 cm{sup 3} for radiation protection measurements, and the other with a volume of 1 cm{sup 3} for direct beam measurements. Both are traceable to the German Primary Laboratory of Physikalisch-Technische Bundesanstalt (PTB). In the case of calibration of quality control instruments, a non-invasive method using the measurement of the spectrum endpoint was established with a portable gamma and X-ray Intertechnique spectrometer system. The methods were applied to survey meters (radiation protection measurements), ionization chambers (direct beam measurements) and k Vp meters (invasive and non-invasive instruments). (Author)

  15. Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related to radiative feedback processes in the atmosphere, particularly the interactions among clouds and aerosols. ARM obtains continuous measurements and conducts field campaigns to provide data products that aid in the improvement and further development of climate models. All of the measurement campaigns include a suite of solar measurements. The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory supports ARM's full suite of stations in a number of ways, including troubleshooting issues that arise as part of the data-quality reviews; managing engineering changes to the standard setup; and providing calibration services and assistance to the full fleet of solar-related instruments, including pyranometers, pyrgeometers, pyrheliometers, as well as the temperature/relative humidity probes, multimeters, and data acquisition systems that are used in the calibrations performed at the Southern Great Plains Radiometer Calibration Facility. This paper discusses all aspects related to the support provided to the calibration of the instruments in the solar monitoring fleet.

  16. Calibration of hydrometers

    Science.gov (United States)

    Lorefice, Salvatore; Malengo, Andrea

    2006-10-01

    After a brief description of the different methods employed in periodic calibration of hydrometers used in most cases to measure the density of liquids in the range between 500 kg m-3 and 2000 kg m-3, particular emphasis is given to the multipoint procedure based on hydrostatic weighing, known as well as Cuckow's method. The features of the calibration apparatus and the procedure used at the INRiM (formerly IMGC-CNR) density laboratory have been considered to assess all relevant contributions involved in the calibration of different kinds of hydrometers. The uncertainty is strongly dependent on the kind of hydrometer; in particular, the results highlight the importance of the density of the reference buoyant liquid, the temperature of calibration and the skill of operator in the reading of the scale in the whole assessment of the uncertainty. It is also interesting to realize that for high-resolution hydrometers (division of 0.1 kg m-3), the uncertainty contribution of the density of the reference liquid is the main source of the total uncertainty, but its importance falls under about 50% for hydrometers with a division of 0.5 kg m-3 and becomes somewhat negligible for hydrometers with a division of 1 kg m-3, for which the reading uncertainty is the predominant part of the total uncertainty. At present the best INRiM result is obtained with commercially available hydrometers having a scale division of 0.1 kg m-3, for which the relative uncertainty is about 12 × 10-6.

  17. A Compact Laboratory Spectro-Goniometer (CLabSpeG) to Assess the BRDF of Materials. Presentation, Calibration and Implementation on Fagus sylvatica L. Leaves.

    Science.gov (United States)

    Biliouris, Dimitrios; Verstraeten, Willem W; Dutré, Phillip; Van Aardt, Jan A N; Muys, Bart; Coppin, Pol

    2007-09-07

    The design and calibration of a new hyperspectral Compact Laboratory Spectro-Goniometer (CLabSpeG) is presented. CLabSpeG effectively measures the bidirectionalreflectance Factor (BRF) of a sample, using a halogen light source and an AnalyticalSpectral Devices (ASD) spectroradiometer. The apparatus collects 4356 reflectance datareadings covering the spectrum from 350 nm to 2500 nm by independent positioning of thesensor, sample holder, and light source. It has an azimuth and zenith resolution of 30 and15 degrees, respectively. CLabSpeG is used to collect BRF data and extract BidirectionalReflectance Distribution Function (BRDF) data of non-isotropic vegetation elements suchas bark, soil, and leaves. Accurate calibration has ensured robust geometric accuracy of theapparatus, correction for the conicality of the light source, while sufficient radiometricstability and repeatability between measurements are obtained. The bidirectionalreflectance data collection is automated and remotely controlled and takes approximatelytwo and half hours for a BRF measurement cycle over a full hemisphere with 125 cmradius and 2.4 minutes for a single BRF acquisition. A specific protocol for vegetative leafcollection and measurement was established in order to investigate the possibility to extractBRDF values from Fagus sylvatica L. leaves under laboratory conditions. Drying leafeffects induce a reflectance change during the BRF measurements due to the laboratorySensors 2007, 7 1847 illumination source. Therefore, the full hemisphere could not be covered with one leaf. Instead 12 BRF measurements per leaf were acquired covering all azimuth positions for a single light source zenith position. Data are collected in radiance format and reflectance is calculated by dividing the leaf cycle measurement with a radiance cycle of a Spectralon reference panel, multiplied by a Spectralon reflectance correction factor and a factor to correct for the conical effect of the light source. BRF results

  18. A Compact Laboratory Spectro-Goniometer (CLabSpeG to Assess the BRDF of Materials. Presentation, Calibration and Implementation on Fagus sylvatica L. Leaves

    Directory of Open Access Journals (Sweden)

    Pol Coppin

    2007-09-01

    Full Text Available The design and calibration of a new hyperspectral Compact Laboratory Spectro-Goniometer (CLabSpeG is presented. CLabSpeG effectively measures the bidirectionalreflectance Factor (BRF of a sample, using a halogen light source and an AnalyticalSpectral Devices (ASD spectroradiometer. The apparatus collects 4356 reflectance datareadings covering the spectrum from 350 nm to 2500 nm by independent positioning of thesensor, sample holder, and light source. It has an azimuth and zenith resolution of 30 and15 degrees, respectively. CLabSpeG is used to collect BRF data and extract BidirectionalReflectance Distribution Function (BRDF data of non-isotropic vegetation elements suchas bark, soil, and leaves. Accurate calibration has ensured robust geometric accuracy of theapparatus, correction for the conicality of the light source, while sufficient radiometricstability and repeatability between measurements are obtained. The bidirectionalreflectance data collection is automated and remotely controlled and takes approximatelytwo and half hours for a BRF measurement cycle over a full hemisphere with 125 cmradius and 2.4 minutes for a single BRF acquisition. A specific protocol for vegetative leafcollection and measurement was established in order to investigate the possibility to extractBRDF values from Fagus sylvatica L. leaves under laboratory conditions. Drying leafeffects induce a reflectance change during the BRF measurements due to the laboratorySensors 2007, 7 1847 illumination source. Therefore, the full hemisphere could not be covered with one leaf. Instead 12 BRF measurements per leaf were acquired covering all azimuth positions for a single light source zenith position. Data are collected in radiance format and reflectance is calculated by dividing the leaf cycle measurement with a radiance cycle of a Spectralon reference panel, multiplied by a Spectralon reflectance correction factor and a factor to correct for the conical effect of the light

  19. Interlaboratory beta source calibration using TL and OSL on natural quartz

    DEFF Research Database (Denmark)

    Goksu. H.Y.; Bailiff, I.K.; Bøtter-Jensen, L.

    1995-01-01

    Laboratory at GSF using a Go-60 source as well as the in situ measurements with an ionization chamber, calibrated to the primary standards of PTB Braunschweig. Irradiated and unirradiated quartz was distributed to the five laboratories and although different procedures were used for thermoluminescence...

  20. Fabrication of a set of realistic torso phantoms for calibration of transuranic nuclide lung counting facilities

    International Nuclear Information System (INIS)

    Griffith, R.V.; Anderson, A.L.; Sundbeck, C.W.; Alderson, S.W.

    1983-01-01

    A set of 16 tissue equivalent torso phantoms has been fabricated for use by major laboratories involved in counting transuranic nuclides in the lung. These phantoms, which have bone equivalent plastic rib cages, duplicate the performance of the DOE Realistic Phantom set. The new phantoms (and their successors) provide the user laboratories with a highly realistic calibration tool. Moreover, use of these phantoms will allow participating laboratories to intercompare calibration information, both on formal and informal bases. 3 refs., 2 figs

  1. Experimental procedures for the calibration of scintillation cells used in the determination of radon gas concentrations

    International Nuclear Information System (INIS)

    Grenier, M; Bigu, J.

    1982-02-01

    Experimental and analytical procedures are described for the calibration of scintillation cells used for the determination of radon gas concentration. In-house designed and built scintillation cells, used routinely in the monitoring of radon gas in uranium mine underground environments and in the laboratory, were calibrated. The cells had a volume of approximately 158 cm 3 and an α-counting efficiency ranging from 50% to 64%. Calibration factors for the cells were determined. Values ranged approximately from 0.177 cpm/pCiL -1 (4.77 cpm/BqL -1 ) to 0.224 cpm/pCiL -1 (6.05 cpm/BqL -1 ). The calibration facilities at the Elliot Lake Laboratory are briefly described

  2. The ENEA calibration service for ionising radiations. Part 1: Photons

    International Nuclear Information System (INIS)

    Monteventi, F.; Sermenghi, I.

    1999-01-01

    The ENEA (National Agency for New Technology, Energy and the Environment) calibration service for ionizing radiations has been active for 40 years in the secondary standard dosimetry laboratory web. It has been the first center, in 1985, to be acknowledges by the Italian calibration service (SIT) for the two quantities for photons: exposure and air kerma. Since the Institute for the Radiation Protection of ENEA has moved to the new site in Montecuccolino (Bologna, Italy) in 1995, the whole laboratory has been renovated and all irradiation rooms together with radiation source and equipment have been reorganized according to the Χ, γ, β and neutron fields metrology requirements. The aim of this report, as the first part of a report describing all facilities available at the service, is to give a detailed description of all equipment s qualified for photon fields metrology including the secondary standards and the calibration procedures performed for radiation monitoring devices and dosemeters [it

  3. Performance assessment of an LNA used as active cold load

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Balling, Jan E.; Skou, Niels

    2015-01-01

    in various campaigns in very different environments. Primary calibration sources are a traditional hot load along with a noise diode, and the calibration quality is verified prior to almost each flight using a liquid Nitrogen cooled target. EMIRAD-2 also features a commercial-off-the-shelf (Miteq) low noise...

  4. Issues ignored in laboratory quality surveillance

    International Nuclear Information System (INIS)

    Zeng Jing; Li Xingyuan; Zhang Tingsheng

    2008-01-01

    According to the work requirement of the related laboratory quality surveillance in ISO17025, this paper analyzed and discussed the issued ignored in the laboratory quality surveillance. In order to solve the present problem, it is required to understand the work responsibility in the quality surveillance correctly, to establish the effective working routine in the quality surveillance, and to conduct, the quality surveillance work. The object in the quality surveillance shall be 'the operator' who engaged in the examination/calibration directly in the laboratory, especially the personnel in training (who is engaged in the examination/calibration). The quality supervisors shall be fully authorized, so that they can correctly understand the work responsibility in quality surveillance, and are with the rights for 'full supervision'. The laboratory also shall arrange necessary training to the quality supervisor, so that they can obtain sufficient guide in time and are with required qualification or occupation prerequisites. (authors)

  5. Quality control for dose calibrators

    International Nuclear Information System (INIS)

    Mendes, L.C.G.

    1984-01-01

    Nuclear medicine laboratories are required to assay samples of radioactivity to be administered to patients. Almost universally, these assays are accomplished by use of a well ionization chamber isotope calibrator. The Instituto de Radioprotecao e Dosimetria (Institute for Radiological Protection and Dosimetry) of the Comissao Nacional de Energia Nuclear (National Commission for Nuclear Energy) is carrying out a National Quality Control Programme in Nuclear Medicine, supported by the International Atomic Energy Agency. The assessment of the current needs and practices of quality control in the entire country of Brazil includes Dose Calibrators and Scintillation Cameras, but this manual is restricted to the former. Quality Control Procedures for these Instruments are described in this document together with specific recommendations and assessment of its accuracy. (author)

  6. Calibration of radon-222 detectors using closed circuit radium-226 sources

    International Nuclear Information System (INIS)

    Perna, Allan Felipe Nunes; Paschuk, Sergei Anatolyevich; Correa, Janine Nicolosi; Del Claro, Flavia

    2012-01-01

    This paper presents the results of the calibration of the Radon-222 detectors used by the Laboratories specializing in measuring natural radiation from this gas. The research was conducted in collaboration between UTFPR, CDTN/CNEN, UFRN and IRD/CNEN. During the calibration the detectors were exposed in isolated chambers with radioactive calibrated sources. The calibration procedure was supported with four instant radon monitors AlphaGUARD (SAPHYMO Co.) responsible for radon activity measurements in the experimental chamber. The calibration procedure resulted an equation that relates the number of tracks found in solid-state detector CR-39 (Track-Etch detector) with the concentration of radon in the atmosphere. Obtained results are compatible with previously performed calibration at the National Institute of Radiological Sciences (NIRS, Japan) using high activity levels of radon in air. Present results of calibration give the possibility to expand the calibration curve of CR-39 for medium and low activity levels of radon. (author)

  7. Calibration and Data Analysis of the MC-130 Air Balance

    Science.gov (United States)

    Booth, Dennis; Ulbrich, N.

    2012-01-01

    Design, calibration, calibration analysis, and intended use of the MC-130 air balance are discussed. The MC-130 balance is an 8.0 inch diameter force balance that has two separate internal air flow systems and one external bellows system. The manual calibration of the balance consisted of a total of 1854 data points with both unpressurized and pressurized air flowing through the balance. A subset of 1160 data points was chosen for the calibration data analysis. The regression analysis of the subset was performed using two fundamentally different analysis approaches. First, the data analysis was performed using a recently developed extension of the Iterative Method. This approach fits gage outputs as a function of both applied balance loads and bellows pressures while still allowing the application of the iteration scheme that is used with the Iterative Method. Then, for comparison, the axial force was also analyzed using the Non-Iterative Method. This alternate approach directly fits loads as a function of measured gage outputs and bellows pressures and does not require a load iteration. The regression models used by both the extended Iterative and Non-Iterative Method were constructed such that they met a set of widely accepted statistical quality requirements. These requirements lead to reliable regression models and prevent overfitting of data because they ensure that no hidden near-linear dependencies between regression model terms exist and that only statistically significant terms are included. Finally, a comparison of the axial force residuals was performed. Overall, axial force estimates obtained from both methods show excellent agreement as the differences of the standard deviation of the axial force residuals are on the order of 0.001 % of the axial force capacity.

  8. The Utilization of Background Spectrum to Calibrate Gamma Spectrometry

    International Nuclear Information System (INIS)

    Mahrouka, M. M.; Mutawa, A. M.

    2004-01-01

    Many developed countries have very poor reference standards to calibrate their nuclear instrumentations or may find some difficulties to obtain a reference standard. In this work a simple way for Gamma spectrometry calibration was developed. The method depends on one reference point and additional points from the background. The two derived equations were applied to the analyses of radioactive nuclides in soil and liquid samples prepared by IAEA laboratories through AL MERA Project. The results showed the precision of the methodology used, as well as, the possibility of using some points in the background spectrum as a replacement for reference standards of Gamma spectrometry calibration. (authors)

  9. Calibration of measurement instruments in industrial irradiation environment

    International Nuclear Information System (INIS)

    Cadiou, A.

    2009-01-01

    After having recalled the activities of the AREVA NC site in La Hague and its organization, the author describes the missions of the Calibration Laboratory within this establishment, its methods, its metrological means, and outlines the traceability of results

  10. Laser calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile calorimeter is achieved with a set of calibration procedures. One step of the calibrtion procedure is based on measurements of the response stability to laser excitation of the photomultipliers (PMTs) that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the test in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the resonse drifts seen with the PMT mounted on the Tile calorimeter in its normal operation during LHC run I and run II. A new statistical approach was developed to measure the drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to the data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  11. Bilateral comparison of the calibration laboratories in radiodiagnosis: Technical Protocol 16/17; Comparacao bilateral dos laboratorios de calibracao em radiodiagnostico: Protocolo Tecnico 16/17

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, J.G.P., E-mail: guilherm@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Almeida, C.E.V. de [Universidade do Estado do Rio de Janeiro (LCR/IBRAG/UERJ), RJ (Brazil). Lab. de Ciencias Radiologicas

    2016-07-01

    The need to standardize the results in diagnostic radiology conditions of calibration laboratories, taking into account the applicability to conventional radiology , mammography and computed tomography where the total demand for diagnostic imaging is ≈70 % ≈4 % and ≈2 % respectively. The objective of the technical protocol is not only the equipment used , but also in terms of reference and the evaluation worksheet measurement uncertainties . The results of stability and energy dependence of transfer chamber shows these adequacy for the propose. (author)

  12. Laboratory Testing of Cyclic Laterally Loaded Pile in Cohesionless Soil

    DEFF Research Database (Denmark)

    Roesen, Hanne Ravn; Ibsen, Lars Bo; Hansen, Mette

    2013-01-01

    Offshore wind turbines are normally founded with large diameter monopiles and placed in rough environments subjected to variable lateral loads from wind and waves. A long-term lateral loading may create rotation (tilt) of the pile by change in the pile-soil system which is critical in the service......Offshore wind turbines are normally founded with large diameter monopiles and placed in rough environments subjected to variable lateral loads from wind and waves. A long-term lateral loading may create rotation (tilt) of the pile by change in the pile-soil system which is critical...... in the serviceability limit state. In this paper small-scale testing of a pile subjected to cyclic, lateral loading is treated in order to investigate the effect of cyclic loading. The test setup, which is an improvement of a previous setup, is described and the first results of testing are compared with previous...

  13. Evaluation of the energy dependence of ionization chambers pencil type calibrated beam tomography standards

    International Nuclear Information System (INIS)

    Fontes, Ladyjane Pereira; Potiens, Maria da Penha A.

    2015-01-01

    The Instrument Calibration Laboratory of IPEN (LCI - IPEN) performs calibrations of pencil-type ionization chambers (IC) used in measures of dosimetric survey on clinical systems of Computed Tomography (CT). Many users make mistakes when using a calibrated ionization chamber in their CT dosimetry systems. In this work a methodology for determination of factors of correction for quality (Kq) through the calibration curve that is specific for each ionization chamber was established. Furthermore, it was possible to demonstrate the energy dependence on an pencil-type Ionization Chamber(IC) calibrated at the LCI - IPEN. (author)

  14. Using satellite fire detection to calibrate components of the fire weather index system in Malaysia and Indonesia.

    Science.gov (United States)

    Dymond, Caren C; Field, Robert D; Roswintiarti, Orbita; Guswanto

    2005-04-01

    Vegetation fires have become an increasing problem in tropical environments as a consequence of socioeconomic pressures and subsequent land-use change. In response, fire management systems are being developed. This study set out to determine the relationships between two aspects of the fire problems in western Indonesia and Malaysia, and two components of the Canadian Forest Fire Weather Index System. The study resulted in a new method for calibrating components of fire danger rating systems based on satellite fire detection (hotspot) data. Once the climate was accounted for, a problematic number of fires were related to high levels of the Fine Fuel Moisture Code. The relationship between climate, Fine Fuel Moisture Code, and hotspot occurrence was used to calibrate Fire Occurrence Potential classes where low accounted for 3% of the fires from 1994 to 2000, moderate accounted for 25%, high 26%, and extreme 38%. Further problems arise when there are large clusters of fires burning that may consume valuable land or produce local smoke pollution. Once the climate was taken into account, the hotspot load (number and size of clusters of hotspots) was related to the Fire Weather Index. The relationship between climate, Fire Weather Index, and hotspot load was used to calibrate Fire Load Potential classes. Low Fire Load Potential conditions (75% of an average year) corresponded with 24% of the hotspot clusters, which had an average size of 30% of the largest cluster. In contrast, extreme Fire Load Potential conditions (1% of an average year) corresponded with 30% of the hotspot clusters, which had an average size of 58% of the maximum. Both Fire Occurrence Potential and Fire Load Potential calibrations were successfully validated with data from 2001. This study showed that when ground measurements are not available, fire statistics derived from satellite fire detection archives can be reliably used for calibration. More importantly, as a result of this work, Malaysia and

  15. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    Science.gov (United States)

    Guimarães, M. C.; Silva, C. R. E.; Rosado, P. H. G.; Cunha, P. G.; Da Silva, T. A.

    2018-03-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work.

  16. Precision and accuracy control of dose calibrator: CAPINTEC CRC 12 in laboratory for radiopharmacy of Nuclear Medicine Institute of Sucre, Bolivia

    International Nuclear Information System (INIS)

    Huanca Sardinas, E; Castro Sacci, O; Torrez Cabero, M; Vasquez Ibanez, M.R; Zambrana Zelada, AJ.

    2013-01-01

    The dose calibrator is one of the indispensable tools in radiopharmacy laboratories of a nuclear medicine department also is mandated to provide accurate readings. A very high doses produce unnecessary radiation exposure to the patient or a very low dose, prolong the acquisition time of the studies affecting the quality of the image. In the present work we did a retrospective analysis of the results of quality checks performed at precision accuracy of the Gauge CRC12 CAPINTEC dose calibrator over a period of 16 years, using sealed certified sources with low power, medium and high: Ba 133 , Cs 137 , Co 60 and Co 57 . The results showed that the lowest standard deviation value was 0.17 for Ba133, relative to Co 57 of 2.97 in the control of accuracy. Accuracy over control values were also lower standard deviation for Ba 133 1.00, relative to Co 57 10.06. Being stated that the CRC12 CAPINTEC activimeter reliability is acceptable during the reporting period and under the conditions indicated. Therefore, we continue to make these quality control procedures and the professional must feel confident that the measurements obtained with it are reliable

  17. Calibration-measurement unit for the automation of vector network analyzer measurements

    Directory of Open Access Journals (Sweden)

    I. Rolfes

    2008-05-01

    Full Text Available With the availability of multi-port vector network analyzers, the need for automated, calibrated measurement facilities increases. In this contribution, a calibration-measurement unit is presented which realizes a repeatable automated calibration of the measurement setup as well as a user-friendly measurement of the device under test (DUT. In difference to commercially available calibration units, which are connected to the ports of the vector network analyzer preceding a measurement and which are then removed so that the DUT can be connected, the presented calibration-measurement unit is permanently connected to the ports of the VNA for the calibration as well as for the measurement of the DUT. This helps to simplify the calibrated measurement of complex scattering parameters. Moreover, a full integration of the calibration unit into the analyzer setup becomes possible. The calibration-measurement unit is based on a multiport switch setup of e.g. electromechanical relays. Under the assumption of symmetry of a switch, on the one hand the unit realizes the connection of calibration standards like one-port reflection standards and two-port through connections between different ports and on the other hand it enables the connection of the DUT. The calibration-measurement unit is applicable for two-port VNAs as well as for multiport VNAs. For the calibration of the unit, methods with completely known calibration standards like SOLT (short, open, load, through as well as self-calibration procedures like TMR or TLR can be applied.

  18. Effectiveness of oxytetracycline in reducing the bacterial load in rohu fish (Labeo rohita, Hamilton) under laboratory culture condition

    OpenAIRE

    Syed Ariful Haque; Md. Shaheed Reza; Md. Rajib Sharker; Md. Mokhlasur Rahman; Md. Ariful Islam

    2014-01-01

    Objective: To observe the effectiveness of most widely used antibiotic, oxytetracycline (OTC) in reducing the bacterial load in rohu fish under artificial culture condition in the laboratory. Methods: The experiment was conducted in the Faculty Fisheries, Bangladesh Agricultural University, Mymensingh-2202. The fish were reared in 8 aquaria where fish in 5 aquaria were used for replication of the treatment (experimental group) and fish in remaining 3 aquaria were considered...

  19. Calibration of dosemeters and survey instruments for photon

    International Nuclear Information System (INIS)

    Alamares, A.L.; Caseria, E.S.

    1995-01-01

    The Philippine Nuclear Research Institute (PNRI), the country's regulatory agency, through its Radiation Protection Unit of the Nuclear Regulations Licensing and Safeguard Division provides the calibration services of nuclear instruments used by various institutions. The periodic calibration and standardization of radiation and protection survey instruments are done to insure correct and valid radiation readings. It is also a regulatory requirement for radiation workers to use only operable and precalibrated survey instruments for their work with radioactive materials. The PNRI maintains and operates the Secondary Standard Dosimetry Laboratory (SSDL). It provides the periodic calibration and standardization of radiation monitoring and protection survey instruments, and also the radiological hazard and performance evaluation surveys of radiotherapy facilities and others. For the calibration of survey instruments, the standard sources of Cs-137 and Co-60 are used. The calibration procedures for survey meters and pocket dosimeters are explained. The clients served are shown. The personnel dosimetry using film badges, the application of ICRU operational quantities, and the problems encountered and recommendations are reported. (K.I.)

  20. Monitoring stream sediment loads in response to agriculture in Prince Edward Island, Canada.

    Science.gov (United States)

    Alberto, Ashley; St-Hilaire, Andre; Courtenay, Simon C; van den Heuvel, Michael R

    2016-07-01

    Increased agricultural land use leads to accelerated erosion and deposition of fine sediment in surface water. Monitoring of suspended sediment yields has proven challenging due to the spatial and temporal variability of sediment loading. Reliable sediment yield calculations depend on accurate monitoring of these highly episodic sediment loading events. This study aims to quantify precipitation-induced loading of suspended sediments on Prince Edward Island, Canada. Turbidity is considered to be a reasonably accurate proxy for suspended sediment data. In this study, turbidity was used to monitor suspended sediment concentration (SSC) and was measured for 2 years (December 2012-2014) in three subwatersheds with varying degrees of agricultural land use ranging from 10 to 69 %. Comparison of three turbidity meter calibration methods, two using suspended streambed sediment and one using automated sampling during rainfall events, revealed that the use of SSC samples constructed from streambed sediment was not an accurate replacement for water column sampling during rainfall events for calibration. Different particle size distributions in the three rivers produced significant impacts on the calibration methods demonstrating the need for river-specific calibration. Rainfall-induced sediment loading was significantly greater in the most agriculturally impacted site only when the load per rainfall event was corrected for runoff volume (total flow minus baseflow), flow increase intensity (the slope between the start of a runoff event and the peak of the hydrograph), and season. Monitoring turbidity, in combination with sediment modeling, may offer the best option for management purposes.

  1. Color calibration and color-managed medical displays: does the calibration method matter?

    Science.gov (United States)

    Roehrig, Hans; Rehm, Kelly; Silverstein, Louis D.; Dallas, William J.; Fan, Jiahua; Krupinski, Elizabeth A.

    2010-02-01

    Our laboratory has investigated the efficacy of a suite of color calibration and monitor profiling packages which employ a variety of color measurement sensors. Each of the methods computes gamma correction tables for the red, green and blue color channels of a monitor that attempt to: a) match a desired luminance range and tone reproduction curve; and b) maintain a target neutral point across the range of grey values. All of the methods examined here produce International Color Consortium (ICC) profiles that describe the color rendering capabilities of the monitor after calibration. Color profiles incorporate a transfer matrix that establishes the relationship between RGB driving levels and the International Commission on Illumination (CIE) XYZ (tristimulus) values of the resulting on-screen color; the matrix is developed by displaying color patches of known RGB values on the monitor and measuring the tristimulus values with a sensor. The number and chromatic distribution of color patches varies across methods and is usually not under user control. In this work we examine the effect of employing differing calibration and profiling methods on rendition of color images. A series of color patches encoded in sRGB color space were presented on the monitor using color-management software that utilized the ICC profile produced by each method. The patches were displayed on the calibrated monitor and measured with a Minolta CS200 colorimeter. Differences in intended and achieved luminance and chromaticity were computed using the CIE DE2000 color-difference metric, in which a value of ▵E = 1 is generally considered to be approximately one just noticeable difference (JND) in color. We observed between one and 17 JND's for individual colors, depending on calibration method and target.

  2. Analysis of Camera Parameters Value in Various Object Distances Calibration

    International Nuclear Information System (INIS)

    Yusoff, Ahmad Razali; Ariff, Mohd Farid Mohd; Idris, Khairulnizam M; Majid, Zulkepli; Setan, Halim; Chong, Albert K

    2014-01-01

    In photogrammetric applications, good camera parameters are needed for mapping purpose such as an Unmanned Aerial Vehicle (UAV) that encompassed with non-metric camera devices. Simple camera calibration was being a common application in many laboratory works in order to get the camera parameter's value. In aerial mapping, interior camera parameters' value from close-range camera calibration is used to correct the image error. However, the causes and effects of the calibration steps used to get accurate mapping need to be analyze. Therefore, this research aims to contribute an analysis of camera parameters from portable calibration frame of 1.5 × 1 meter dimension size. Object distances of two, three, four, five, and six meters are the research focus. Results are analyzed to find out the changes in image and camera parameters' value. Hence, camera calibration parameter's of a camera is consider different depend on type of calibration parameters and object distances

  3. Design and Calibration of a Flowfield Survey Rake for Inlet Flight Research

    Science.gov (United States)

    Flynn, Darin C.; Ratnayake, Nalin A.; Frederick, Michael

    2009-01-01

    Flowfield rake was designed to quantify the flowfield for inlet research underneath NASA DFRC s F-15B airplane. Detailed loads and stress analysis performed using CFD and empirical methods to assure structural integrity. Calibration data were generated through wind tunnel testing of the rake. Calibration algorithm was developed to determine the local Mach and flow angularity at each probe. RAGE was flown November, 2008. Data is currently being analyzed.

  4. Providing primary standard calibrations beyond 20 MHz

    International Nuclear Information System (INIS)

    Bickley, C J; Zeqiri, B; Robinson, S P

    2004-01-01

    The number of applications of medical ultrasound utilising frequencies in excess of 20 MHz has shown a consistent increase over recent years. Coupled with the commercial availability of wide-bandwidth hydrophones whose response extends beyond 40 MHz, this has driven a growing need to develop hydrophone calibration techniques at elevated frequencies. The current National Physical Laboratory primary standard method of calibrating hydrophones is based on an optical interferometer. This has been in operation for around 20 years and provides traceability over the frequency range of 0.3 to 20 MHz. More recently, calibrations carried out using the interferometer have been extended to 60 MHz, although the uncertainties associated with these calibrations are poor, being in excess of ±20% at high frequencies. Major contributions to the degraded calibration uncertainties arise from poor signal-to-noise at higher frequencies, the frequency response of the photodiodes used and the noise floor of the instrument. To improve the uncertainty of hydrophone calibrations above 20 MHz, it has been necessary to build and commission a new interferometer. Important features of the new primary standard are its use of a higher power laser to improve the signal-to-noise ratio, along with photodiodes whose greater bandwidth to improve the overall frequency response. This paper describes the design of key aspects of the new interferometer. It also presents some initial results of the performance assessment, including a detailed comparison of calibrations of NPL reference membrane hydrophones, undertaken using old and new interferometers for calibration up to 40 MHz

  5. A Cryogenic Infrared Calibration Target

    Science.gov (United States)

    Wollack, E. J.; Kinzer, R. E., Jr.; Rinehart, S. A.

    2014-01-01

    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to approx.4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials-Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder-are characterized and presented

  6. Dosimetry through the Secondary Laboratory of Dosimetric Calibration of Mexico; Dosimetria a traves del Laboratorio Secundario de Calibracion Dosimetrica de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tovar M, V.M.; Alvarez R, J.T.; Medina O, V.P.; Vergara M, F.; Anaya M, R.; Cejudo A, J.; Salinas L, B. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2004-07-01

    In the beginnings of the sixty years an urgent necessity is presented mainly in the developing countries, of improving in important form the accuracy in the dosimetry of external faces in therapy of radiations (radiotherapy centers), mainly in the calibration of ''clinical dosemeters''. In 1976 the International Atomic Energy Agency, (IAEA), and the World Health Organization, (WHO), they carried out a mutual agreement with regard to the establishment and operation of a net of Secondary Patron Laboratories of Dosimetry, (LSCD). The necessity to establish measure patterns in the field of the dosimetry of the ionizing radiations, is necessary, to have an accuracy but high in the dosimetry of the radiation beams in therapy which is highly dependent of the dose given to the tumor of those patient with cancer. Similar levels of accuracy are required in protection measures to the radiation with an acceptable smaller accuracy, however, when the personal dosemeters are used to determine the doses received by the individuals under work conditions, such mensurations in therapy of radiations and radiological protection will have traceability through a chain of comparisons to primary or national patterns. The traceability is necessary to assure the accuracy and acceptability of the dosimetric measures, as well as, the legal and economic implications. The traceability is also necessary in the dosimetry of high dose like in the sterilization of different products. The main function of the LSCD is to provide a service in metrology of ionizing radiations, maintaining the secondary or national patterns, which have a traceability to the International System of measures, which is based for if same in the comparison of patterns in the Primary Laboratories of Dosimetry (LPD) under the auspice of the International Office of Weights and Measure (BIPM). The secondary and national patterns in the LSCD constitute in Mexico, the national patterns of the magnitudes in the

  7. Inertial Sensor Error Reduction through Calibration and Sensor Fusion

    Directory of Open Access Journals (Sweden)

    Stefan Lambrecht

    2016-02-01

    Full Text Available This paper presents the comparison between cooperative and local Kalman Filters (KF for estimating the absolute segment angle, under two calibration conditions. A simplified calibration, that can be replicated in most laboratories; and a complex calibration, similar to that applied by commercial vendors. The cooperative filters use information from either all inertial sensors attached to the body, Matricial KF; or use information from the inertial sensors and the potentiometers of an exoskeleton, Markovian KF. A one minute walking trial of a subject walking with a 6-DoF exoskeleton was used to assess the absolute segment angle of the trunk, thigh, shank, and foot. The results indicate that regardless of the segment and filter applied, the more complex calibration always results in a significantly better performance compared to the simplified calibration. The interaction between filter and calibration suggests that when the quality of the calibration is unknown the Markovian KF is recommended. Applying the complex calibration, the Matricial and Markovian KF perform similarly, with average RMSE below 1.22 degrees. Cooperative KFs perform better or at least equally good as Local KF, we therefore recommend to use cooperative KFs instead of local KFs for control or analysis of walking.

  8. Measuring Systems for Thermometer Calibration in Low-Temperature Range

    Science.gov (United States)

    Szmyrka-Grzebyk, A.; Lipiński, L.; Manuszkiewicz, H.; Kowal, A.; Grykałowska, A.; Jancewicz, D.

    2011-12-01

    The national temperature standard for the low-temperature range between 13.8033 K and 273.16 K has been established in Poland at the Institute of Low Temperature and Structure Research (INTiBS). The standard consists of sealed cells for realization of six fixed points of the International Temperature Scale of 1990 (ITS-90) in the low-temperature range, an adiabatic cryostat and Isotech water and mercury triple-point baths, capsule standard resistance thermometers (CSPRT), and AC and DC bridges with standard resistors for thermometers resistance measurements. INTiBS calibrates CSPRTs at the low-temperature fixed points with uncertainties less than 1 mK. In lower temperature range—between 2.5 K and about 25 K — rhodium-iron (RhFe) resistance thermometers are calibrated by comparison with a standard which participated in the EURAMET.T-K1.1 comparison. INTiBS offers a calibration service for industrial platinum resistance thermometers and for digital thermometers between 77 K and 273 K. These types of thermometers may be calibrated at INTiBS also in a higher temperature range up to 550°C. The Laboratory of Temperature Standard at INTiBS acquired an accreditation from the Polish Centre for Accreditation. A management system according to EN ISO/IEC 17025:2005 was established at the Laboratory and presented on EURAMET QSM Forum.

  9. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, M.C.; Silva, C.R.E.; Silva, T.A. da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Rosado, P.H.G.; Cunha, P.G. [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work. (author)

  10. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    International Nuclear Information System (INIS)

    Guimarães, M.C.; Silva, C.R.E.; Silva, T.A. da; Rosado, P.H.G.; Cunha, P.G.

    2017-01-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work. (author)

  11. Calibration and Validation of the National Ecological Observatory Network's Airborne Imaging Spectrometers

    Science.gov (United States)

    Leisso, N.

    2015-12-01

    The National Ecological Observatory Network (NEON) is being constructed by the National Science Foundation and is slated for completion in 2017. NEON is designed to collect data to improve the understanding of changes in observed ecosystems. The observatory will produce data products on a variety of spatial and temporal scales collected from individual sites strategically located across the U.S. including Alaska, Hawaii, and Puerto Rico. Data sources include standardized terrestrial, instrumental, and aquatic observation systems in addition to three airborne remote sensing observation systems installed into leased Twin Otter aircraft. The Airborne Observation Platforms (AOP) are designed to collect 3-band aerial imagery, waveform and discrete LiDAR, and high-fidelity imaging spectroscopy data over the NEON sites annually at or near peak-greenness. The NEON Imaging Spectrometer (NIS) is a Visible and Shortwave Infrared (VSWIR) sensor designed by NASA JPL for ecological applications. Spectroscopic data is collected at 5-nm intervals across the solar-reflective spectral region (380-nm to 2500-nm) in a 34-degree FOV swath. A key uncertainty driver to the derived remote sensing NEON data products is the calibration of the imaging spectrometers. In addition, the calibration and accuracy of the higher-level data product algorithms is essential to the overall NEON mission to detect changes in the collected ecosystems over the 30-year expected lifetime. The typical calibration workflow of the NIS consists of the characterizing the focal plane, spectral calibration, and radiometric calibration. Laboratory spectral calibration is based on well-defined emission lines in conjunction with a scanning monochromator to define the individual spectral response functions. The radiometric calibration is NIST traceable and transferred to the NIS with an integrating sphere calibrated through the use of transfer radiometers. The laboratory calibration is monitored and maintained through

  12. Calibration of Load Duration Factor kmod

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Stang, Birgitte Friis Dela; Svensson, Staffan

    and the stochastic models are formulated in accordance with the load models in the Danish structural codes, DS 409, and DS 410. three damage accumulation models are considered, namely Gerhards model, Barret & Foschi's model, and Foschi & Yao's model. The parameters in these moels are fitted using data relevant...

  13. Lateral force calibration in atomic force microscopy: A new lateral force calibration method and general guidelines for optimization

    International Nuclear Information System (INIS)

    Cannara, Rachel J.; Eglin, Michael; Carpick, Robert W.

    2006-01-01

    Proper force calibration is a critical step in atomic and lateral force microscopies (AFM/LFM). The recently published torsional Sader method [C. P. Green et al., Rev. Sci. Instrum. 75, 1988 (2004)] facilitates the calculation of torsional spring constants of rectangular AFM cantilevers by eliminating the need to obtain information or make assumptions regarding the cantilever's material properties and thickness, both of which are difficult to measure. Complete force calibration of the lateral signal in LFM requires measurement of the lateral signal deflection sensitivity as well. In this article, we introduce a complete lateral force calibration procedure that employs the torsional Sader method and does not require making contact between the tip and any sample. In this method, a colloidal sphere is attached to a 'test' cantilever of the same width, but different length and material as the 'target' cantilever of interest. The lateral signal sensitivity is calibrated by loading the colloidal sphere laterally against a vertical sidewall. The signal sensitivity for the target cantilever is then corrected for the tip length, total signal strength, and in-plane bending of the cantilevers. We discuss the advantages and disadvantages of this approach in comparison with the other established lateral force calibration techniques, and make a direct comparison with the 'wedge' calibration method. The methods agree to within 5%. The propagation of errors is explicitly considered for both methods and the sources of disagreement discussed. Finally, we show that the lateral signal sensitivity is substantially reduced when the laser spot is not centered on the detector

  14. Replication and load balancing strategy of STAR's relational database management system (RDBM)

    International Nuclear Information System (INIS)

    DePhillips, M; Lauret, J; Kopytine, M

    2008-01-01

    Database demand resulting from offline analysis and production of data at the STAR experiment at Brookhaven National Laboratory's Relativistic Heavy-Ion Collider has steadily increased over the last six years of data taking activities. With each year, STAR more than doubles the number of events recorded with an anticipation of reaching a billion event capabilities as early as next year. The challenges faced from producing and analyzing this magnitude of events in parallel have raised issues with regard to the distribution of calibrations and geometry data, via databases, to STAR's growing global collaboration. Rapid distribution, availability, ensured synchronization and load balancing have become paramount considerations. Both conventional technology and novel approaches are used in parallel to realize these goals. This paper discusses how STAR uses load balancing to optimize database usage. It discusses distribution methods via MySQL master slave replication; the synchronization issues that arise from this type of distribution and solutions, mostly homegrown, put forth to overcome these issues. A novel approach toward load balancing between slave nodes that assists in maintaining a high availability rate for a veracious community is discussed in detail. This load balancing addresses both, pools of nodes internal to a given location, as well as balancing the load for remote users between different available locations. Challenges, trade-offs, rationale for decisions and paths forward will be discussed in all cases, presenting a solid production environment with a vision for scalable growth

  15. Summing coincidence errors using Eu-152 lungs to calibrate a lung-counting system: are they significant?

    International Nuclear Information System (INIS)

    Kramer, Gary H.; Lynch, Timothy P.; Lopez, Maria A.; Hauck, Brian

    2004-01-01

    The use of a lung phantom containing 152Eu/241Am activity can provide a sufficient number of energy lines to generate an efficiency calibration for the in vivo measurements of radioactive materials in the lungs. However, due to the number of energy lines associated with 152Eu, coincidence summing occurs and can present a problem when using such a phantom for calibrating lung-counting systems. A Summing Peak Effect Study was conducted at three laboratories to determine the effect of using an efficiency calibration based on a 152Eu/241Am lung phantom. The measurement data at all three laboratories showed the presence of sum peaks. However, two of the three laboratories found only small biases (<5%) when using the 152Eu/241Am calibration. The third facility noted a 25% to 30% positive bias in the 140-keV to 190-keV energy range that prevents the use of the 152Eu/241Am lung phantom for routine calibrations. Although manufactured by different vendors, the three facilities use similar types of detectors (38 cm2 by 25 mm thick or 38 cm2 by 30 mm thick) for counting. These study results underscore the need to evaluate the coincidence summing effect when using a nuclide such as 152Eu for the calibration of low energy lung counting systems

  16. Effects of Stress on the Electrical Resistance of Ytterbium and Calibration of Ytterbium Stress Transducers

    Science.gov (United States)

    1973-08-01

    loading and unloading calibration data are no more difficult to perform than experiments that produce only loading data, but the selection ol...carefully with a small glass fiber brush, and the grid photoetched on an epoxy- fiberglass or strippable mylar substrate using a mixture of

  17. Response of monopiles under cyclic lateral loading in sand

    DEFF Research Database (Denmark)

    Nicolai, Giulio; Ibsen, Lars Bo

    2015-01-01

    Currently the main design guidelines propose to reduce the lateral resistance of offshore piles when accounting for cyclic loading. The present work provides results from laboratory tests in which such reduction has not occurred. The experimental investigation is based on testing a small......-scale monopile model in dense saturated sand. The experimental setup used to carry out the laboratory tests is able to apply thousands of load cycles and static loading to the monopile model. The purpose of the laboratory tests is to investigate the effects of cyclic loading on the lateral resistance...... of the monopile. It is shown that the soil-pile system becomes stiffer and more resistant after applying cyclic loading, depending on the number of cycles....

  18. Statistical design of mass spectrometry calibration procedures

    International Nuclear Information System (INIS)

    Bayne, C.K.

    1996-11-01

    The main objective of this task was to agree on calibration procedures to estimate the system parameters (i.e., dead-time correction, ion-counting conversion efficiency, and detector efficiency factors) for SAL's new Finnigan MAT-262 mass spectrometer. SAL will use this mass spectrometer in a clean-laboratory which was opened in December 1995 to measure uranium and plutonium isotopes on environmental samples. The Finnigan MAT-262 mass spectrometer has a multi-detector system with seven Faraday cup detectors and one ion- counter for the measurement of very small signals (e.g. 10 -17 Ampere range). ORNL has made preliminary estimates of the system parameters based on SAL's experimental data measured in late 1994 when the Finnigan instrument was relatively new. SAL generated additional data in 1995 to verify the calibration procedures for estimating the dead-time correction factor, the ion-counting conversion factor and the Faraday cup detector efficiency factors. The system parameters estimated on the present data will have to be reestablished when the Finnigan MAT-262 is moved-to the new clean- laboratory. Different methods will be used to analyzed environmental samples than the current measurement methods being used. For example, the environmental samples will be electroplated on a single filament rather than using the current two filament system. An outline of the calibration standard operating procedure (SOP) is included

  19. Air kerma standard for calibration of well-type chambers in Brazil using {sup 192}Ir HDR sources and its traceability

    Energy Technology Data Exchange (ETDEWEB)

    Di Prinzio, Renato; Almeida, Carlos Eduardo de [Laboratorio de Ciencias Radiologicas-Universidade do Estado do Rio de Janeiro (LCR/UERJ), R. Sao Francisco Xavier, 524, Pavilhao Haroldo Lisboa da Cunha, Terreo, Sala 136-Maracana, CEP 20550-900-Rio de Janeiro/RJ-Rio de Janeiro, RJ (Brazil) and Instituto de Radioprotecao e Dosimetria-Comissao Nacional de Energia Nuclear (IRD/CNEN), Av. Salvador Allende, s/n, Jacarepagua-CE22780-160-Rio de Janeiro, RJ (Brazil); Laboratorio de Ciencias Radiologicas-Universidade do Estado do Rio de Janeiro (LCR/UERJ), R. Sao Francisco Xavier, 524, Pavilhao Haroldo Lisboa da Cunha, Terreo, Sala 136-Maracana, CEP 20550-900-Rio de Janeiro/RJ-Rio de Janeiro, RJ (Brazil)

    2009-03-15

    In Brazil there are over 100 high dose rate (HDR) brachytherapy facilities using well-type chambers for the determination of the air kerma rate of {sup 192}Ir sources. This paper presents the methodology developed and extensively tested by the Laboratorio de Ciencias Radiologicas (LCR) and presently in use to calibrate those types of chambers. The system was initially used to calibrate six well-type chambers of brachytherapy services, and the maximum deviation of only 1.0% was observed between the calibration coefficients obtained and the ones in the calibration certificate provided by the UWADCL. In addition to its traceability to the Brazilian National Standards, the whole system was taken to University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) for a direct comparison and the same formalism to calculate the air kerma was used. The comparison results between the two laboratories show an agreement of 0.9% for the calibration coefficients. Three Brazilian well-type chambers were calibrated at the UWADCL, and by LCR, in Brazil, using the developed system and a clinical HDR machine. The results of the calibration of three well chambers have shown an agreement better than 1.0%. Uncertainty analyses involving the measurements made both at the UWADCL and LCR laboratories are discussed.

  20. Study of the performance of diagnostic radiology instruments during calibration

    International Nuclear Information System (INIS)

    Freitas, Rodrigo N. de; Vivolo, Vitor; Potiens, Maria da Penha A.

    2008-01-01

    Full text: The instruments used in diagnostic radiology measurements represent 8 % of the tested instruments by the calibration laboratory of IPEN annually (approximately 1600 in 2007). Considering that the calibration of this kind of instrument is performed biannually it is possible to conclude that almost 300 instruments are being used to measure the air kerma in diagnostic radiology clinics to determine the in beam values (in front of the patient), attenuated measurements (behind the patient) and scattered radiation. This work presents the results of the calibration of the instruments used in mammography, computed tomography, dental and conventional diagnostic radiology dosimetry, performed during the period of 2005 to 2007. Their performances during the calibrations measurements were evaluated. Although at the calibration laboratory there are three available series of radiation quality to this type of calibration (RQR, N and M, according to standards IEC 61267 and ISO 4037-1.), the applications can be assorted (general radiology, computed tomography, mammography, radiation protection and fluoroscopy). Depending on its design and behaviour , one kind of instrument can be used for one or more type of applications. The instruments normally used for diagnostic radiology measurements are ionization chambers with volumes varying from 3 to 1800 cm 3 , and can be cylindrical, spherical or plane parallel plates kind. They usually are sensitive to photon particles, with energies greater than 15 keV and can be used up to 1200 keV. In this work they were tested in X radiation fields from 25 to 150 kV, in specific qualities depending on the utilization of the instrument. The calibration results of 390 instruments received from 2005 to 2007 were analyzed. About 20 instruments were not able to be calibrated due to bad functioning. The calibration coefficients obtained were between 0.88 and 1.24. The uncertainties were always less than ± 3.6% to instruments used in scattered

  1. Improving integrity of on-line grammage measurement with traceable basic calibration.

    Science.gov (United States)

    Kangasrääsiö, Juha

    2010-07-01

    The automatic control of grammage (basis weight) in paper and board production is based upon on-line grammage measurement. Furthermore, the automatic control of other quality variables such as moisture, ash content and coat weight, may rely on the grammage measurement. The integrity of Kr-85 based on-line grammage measurement systems was studied, by performing basic calibrations with traceably calibrated plastic reference standards. The calibrations were performed according to the EN ISO/IEC 17025 standard, which is a requirement for calibration laboratories. The observed relative measurement errors were 3.3% in the first time calibrations at the 95% confidence level. With the traceable basic calibration method, however, these errors can be reduced to under 0.5%, thus improving the integrity of on-line grammage measurements. Also a standardised algorithm, based on the experience from the performed calibrations, is proposed to ease the adjustment of the different grammage measurement systems. The calibration technique can basically be applied to all beta-radiation based grammage measurements. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Accreditation of laboratories in the field of radiation protection

    International Nuclear Information System (INIS)

    Galjanic, S.; Franic, Z.

    2005-01-01

    This paper gives a review of requirements and procedures for the accreditation of test and calibration laboratories in the field of radiation protection, paying particular attention to Croatia. General requirements to be met by a testing or calibration laboratory to be accredited are described in the standard HRN EN ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories. The quality of a radiation protection programme can only be as good as the quality of the measurements made to support it. Measurement quality can be assured by participation in measurement assurance programmes that evaluate the appropriateness of procedures, facilities, and equipment and include periodic checks to assure adequate performance. These also include internal consistency checks, proficiency tests, intercomparisons and site visits by technical experts to review operations. In Croatia, laboratories are yet to be accredited in the field of radiation protection. However, harmonisation of technical legislation with the EU legal system will require some changes in laws and regulations in the field of radiation protection, including the ones dealing with the notification of testing laboratories and connected procedures. Regarding the notification procedures for testing laboratories in Croatia, in the regulated area, the existing accreditation infrastructure, i.e. Croatian Accreditation Agency is ready for its implementation, as it has already established and further developed a consistent accreditation system, compatible with international requirements and procedures.(author)

  3. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-07-01

    Accurate solar radiation data sets are critical to reducing the expenses associated with mitigating performance risk for solar energy conversion systems, and they help utility planners and grid system operators understand the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of calibration methodologies and the resulting calibration responsivities provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these radiometers are calibrated indoors, and some are calibrated outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The reference radiometer calibrations are traceable to the World Radiometric Reference. These different methods of calibration demonstrated 1% to 2% differences in solar irradiance measurement. Analyzing these values will ultimately assist in determining the uncertainties of the radiometer data and will assist in developing consensus on a standard for calibration.

  4. CRCPD`S laboratory accrediation program

    Energy Technology Data Exchange (ETDEWEB)

    Dukes, P.M. [South Carolina Department of Health and Environmental Control, Columbia, SC (United States)

    1993-12-31

    The Conference of Radiation Control Program Directors, or CRCPD, first became involved in a calibration laboratory accreditation program about 17 years ago. Since that time, the CRCPD has formed a Committee on Ionizing Measurements which writes criteria for the accreditation of laboratories, and performs the accreditation review process. To become accredited, a laboratory must agree to an administrative review, and an onsite review, and participate in measurement quality assurance (MQA) testing with the National Institute of Standards and Technology (NIST). The CRCPD currently has four accredited laboratories. All the laboratories are working with the Conference in promoting the improvement of MQA in radiation control programs.

  5. Quantitative assessment of contact and non-contact lateral force calibration methods for atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tran Khac, Bien Cuong; Chung, Koo-Hyun, E-mail: khchung@ulsan.ac.kr

    2016-02-15

    Atomic Force Microscopy (AFM) has been widely used for measuring friction force at the nano-scale. However, one of the key challenges faced by AFM researchers is to calibrate an AFM system to interpret a lateral force signal as a quantifiable force. In this study, five rectangular cantilevers were used to quantitatively compare three different lateral force calibration methods to demonstrate the legitimacy and to establish confidence in the quantitative integrity of the proposed methods. The Flat-Wedge method is based on a variation of the lateral output on a surface with flat and changing slopes, the Multi-Load Pivot method is based on taking pivot measurements at several locations along the cantilever length, and the Lateral AFM Thermal-Sader method is based on determining the optical lever sensitivity from the thermal noise spectrum of the first torsional mode with a known torsional spring constant from the Sader method. The results of the calibration using the Flat-Wedge and Multi-Load Pivot methods were found to be consistent within experimental uncertainties, and the experimental uncertainties of the two methods were found to be less than 15%. However, the lateral force sensitivity determined by the Lateral AFM Thermal-Sader method was found to be 8–29% smaller than those obtained from the other two methods. This discrepancy decreased to 3–19% when the torsional mode correction factor for an ideal cantilever was used, which suggests that the torsional mode correction should be taken into account to establish confidence in Lateral AFM Thermal-Sader method. - Highlights: • Quantitative assessment of three lateral force calibration methods for AFM. • Advantages and disadvantages of three different lateral force calibration method. • Implementation of Multi-Load Pivot method as non-contact calibration technique. • The torsional mode correction for Lateral AFM Thermal-Sader method.

  6. Quantitative assessment of contact and non-contact lateral force calibration methods for atomic force microscopy

    International Nuclear Information System (INIS)

    Tran Khac, Bien Cuong; Chung, Koo-Hyun

    2016-01-01

    Atomic Force Microscopy (AFM) has been widely used for measuring friction force at the nano-scale. However, one of the key challenges faced by AFM researchers is to calibrate an AFM system to interpret a lateral force signal as a quantifiable force. In this study, five rectangular cantilevers were used to quantitatively compare three different lateral force calibration methods to demonstrate the legitimacy and to establish confidence in the quantitative integrity of the proposed methods. The Flat-Wedge method is based on a variation of the lateral output on a surface with flat and changing slopes, the Multi-Load Pivot method is based on taking pivot measurements at several locations along the cantilever length, and the Lateral AFM Thermal-Sader method is based on determining the optical lever sensitivity from the thermal noise spectrum of the first torsional mode with a known torsional spring constant from the Sader method. The results of the calibration using the Flat-Wedge and Multi-Load Pivot methods were found to be consistent within experimental uncertainties, and the experimental uncertainties of the two methods were found to be less than 15%. However, the lateral force sensitivity determined by the Lateral AFM Thermal-Sader method was found to be 8–29% smaller than those obtained from the other two methods. This discrepancy decreased to 3–19% when the torsional mode correction factor for an ideal cantilever was used, which suggests that the torsional mode correction should be taken into account to establish confidence in Lateral AFM Thermal-Sader method. - Highlights: • Quantitative assessment of three lateral force calibration methods for AFM. • Advantages and disadvantages of three different lateral force calibration method. • Implementation of Multi-Load Pivot method as non-contact calibration technique. • The torsional mode correction for Lateral AFM Thermal-Sader method.

  7. Bed Load Variability and Morphology of Gravel Bed Rivers Subject to Unsteady Flow: A Laboratory Investigation

    Science.gov (United States)

    Redolfi, M.; Bertoldi, W.; Tubino, M.; Welber, M.

    2018-02-01

    Measurement and estimation of bed load transport in gravel bed rivers are highly affected by its temporal fluctuations. Such variability is primarily driven by the flow regime but is also associated with a variety of inherent channel processes, such as flow turbulence, grain entrainment, and bed forms migration. These internal and external controls often act at comparable time scales, and are therefore difficult to disentangle, thus hindering the study of bed load variability under unsteady flow regime. In this paper, we report on laboratory experiments performed in a large, mobile bed flume where typical hydromorphological conditions of gravel bed rivers were reproduced. Data from a large number of replicated runs, including triangular and square-wave hydrographs, were used to build a statistically sound description of sediment transport processes. We found that the inherent variability of bed load flux strongly depends on the sampling interval, and it is significantly higher in complex, wandering or braided channels. This variability can be filtered out by computing the mean response over the experimental replicates, which allows us to highlight two distinctive phenomena: (i) an overshooting (undershooting) response of the mean bed load flux to a sudden increase (decrease) of discharge, and (ii) a clockwise hysteresis in the sediment rating curve. We then provide an interpretation of these findings through a conceptual mathematical model, showing how both phenomena are associated with a lagging morphological adaptation to unsteady flow. Overall, this work provides basic information for evaluating, monitoring, and managing gravel transport in morphologically active rivers.

  8. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fabre, C., E-mail: cecile.fabre@g2r.uhp-nancy.fr [G2R, Nancy Universite (France); Maurice, S.; Cousin, A. [IRAP, Toulouse (France); Wiens, R.C. [LANL, Los Alamos, NM (United States); Forni, O. [IRAP, Toulouse (France); Sautter, V. [MNHN, Paris (France); Guillaume, D. [GET, Toulouse (France)

    2011-03-15

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD < 5% for concentration variations > 0.1 wt.% using electronic microprobe, and < 10% for concentration variations > 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor

  9. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    International Nuclear Information System (INIS)

    Fabre, C.; Maurice, S.; Cousin, A.; Wiens, R.C.; Forni, O.; Sautter, V.; Guillaume, D.

    2011-01-01

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD 0.1 wt.% using electronic microprobe, and 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor elements.

  10. Calibration curves for biological dosimetry; Curvas de calibracion para dosimetria biologica

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Brena V, M. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)]. E-mail cgc@nuclear.inin.mx

    2004-07-01

    The generated information by the investigations in different laboratories of the world, included the ININ, in which settles down that certain class of chromosomal leisure it increases in function of the dose and radiation type, has given by result the obtaining of calibrated curves that are applied in the well-known technique as biological dosimetry. In this work is presented a summary of the work made in the laboratory that includes the calibrated curves for gamma radiation of {sup 60} Cobalt and X rays of 250 k Vp, examples of presumed exposure to ionizing radiation, resolved by means of aberration analysis and the corresponding dose estimate through the equations of the respective curves and finally a comparison among the dose calculations in those people affected by the accident of Ciudad Juarez, carried out by the group of Oak Ridge, USA and those obtained in this laboratory. (Author)

  11. Reliability Based Calibration of Fatigue Design Guidelines for Ship Structures

    DEFF Research Database (Denmark)

    Folsø, Rasmus; Otto, S.; Parmentier, G.

    2002-01-01

    A simple reliability based framework is applied to calibrate a new set of fatigue design guidelines. This new guideline considers two different approaches for the assessment of both loads, stresses and local stress raising effects, and partial safety factors must be given for any combination...

  12. The role of the Secondary Laboratory of Dosimetric calibration in the implementation of the dosimetric magnitudes with radiological protection aims

    International Nuclear Information System (INIS)

    Perez Medina O, V.; Alvarez R, J.T.; Tovar M, V.M.

    2006-01-01

    It is very well-known the paper of the net of secondary laboratories of dosimetric calibration of the OAS in the dissemination of the traceability of the dosimetric magnitudes: kerma in air and absorbed dose in water, to the radiotherapy departments, given the high accuracy and precision that require the radiotherapy treatments. However the LSCD has other important areas at least for the development, implementation and evaluation of dosimetric magnitudes denominated operative magnitudes with ends of radiological protection: environmental equivalent dose H*(10), directional equivalent dose H'(0.07) and personal equivalent dose Hp. In the case of radiological protection the LSCD-ININ has been implementing the infrastructure to give service of personal dosimetry for photons and beta particles in terms of the operative magnitudes. For photons: X and gamma rays, it account with a secondary pattern camera PTW T34035 gauged in H * and Hp in the primary laboratory of Germany PTB. For the case of beta radiation its account with an extrapolation camera PTW 23392 with a secondary pattern kit of sources of the type I, gauged in terms of H'(0.07) in the PTB. (Author)

  13. Experimental comparison among the laboratories accredited within the framework of the European Co-operation for Accreditation on the calibration of a radiation protection dosimeters in the terms of the quantity air Kerma

    International Nuclear Information System (INIS)

    Bovi, M.; Toni, M.P.; Tricomi, G.

    2002-01-01

    The European co-operation for Accreditation (EA) formalises the collaboration of the Accreditation Bodies of the Member States of the European Union and the European Free Trade Association covering all conformity assessment activities. This collaboration is based on a Memorandum of Understanding dated the 27 November 1997 and aims at developing and maintain Multilateral Agreements (MLAs) within EA and with non-members accreditation bodies. MLAs Signatories guarantee uniformity of accreditation by continuous and rigorous evaluation. Based on mutual confidence, the MLAs recognise the equivalence of the accreditation systems administered by EA Members and of certificates and reports issued by bodies accredited under these systems. A basic element of the program to establish and maintain mutual confidence among calibration services is the participation of the accredited laboratories in experimental interlaboratory comparisons (ILC) organised by EA members or other international organisations. The aim of these ILC is to verify the technical equivalence of calibration services within the EA. The ILC which it is dealt with in the present work was recently carried out over a period of two years, ending in May 2002. It interested the laboratories accredited in the ionising radiation field for calibration of dosimeters at radiation protection levels in terms of the quantity air kerma (K air ) due to 6 0C o and 1 37C s gamma radiation. The ILC was planned by the EA expert group on Ionising radiation and radioactivity and approved by the EA General Assembly in December 1999 with the title Calibration of a Radiation Protection Dosimeter under the code IR3. The need of this comparison also resulted from an inquiry carried out in 1998 by the expert group among the different Accreditation Bodies members of EA and associated to EA. The organization of the ILC was carried out according to the EA rules by the Italian Accreditation Body in the ionising radiation field, the SIT

  14. Calibration and intercomparison methods of dose calibrators used in nuclear medicine facilities; Metodos de calibracao e de intercomparacao de calibradores de dose utilizados em servicos de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Alessandro Martins da

    1999-07-01

    Dose calibrators are used in most of the nuclear medicine facilities to determine the amount of radioactivity administered to a patient in a particular investigation or therapeutic procedure. It is therefore of vital importance that the equipment used presents good performance and is regular;y calibrated at a authorized laboratory. This occurs of adequate quality assurance procedures are carried out. Such quality control tests should be performed daily, other biannually or yearly, testing, for example, its accuracy and precision, the reproducibility and response linearity. In this work a commercial dose calibrator was calibrated with solution of radionuclides used in nuclear medicine. Simple instrument tests, such as response linearity and the response variation of the source volume increase at a constant source activity concentration, were performed. This instrument can now be used as a working standard for calibration of other dose calibrators/ An intercomparison procedure was proposed as a method of quality control of dose calibrators used in nuclear medicine facilities. (author)

  15. Laboratory Assessment of the Infiltration Capacity Reduction in Clogged Porous Mixture Surfaces

    Directory of Open Access Journals (Sweden)

    Valerio C. Andrés-Valeri

    2016-08-01

    Full Text Available Permeable pavements have been used widely across the world to manage urban stormwater. The hydrological behaviour of permeable surfaces is a complex process affected by many factors, such as rainfall intensity, rainfall duration, pavement geometrical conditions, and clogging level of the permeable surface, amongst others. This laboratory study was carried out to assess the influence of clogging level and rainfall intensity on the infiltration capacity of porous mixture surfaces used in Permeable Pavement Systems (PPS. Porous Concrete (PC and Porous Asphalt (PA mixtures with different air void contents (15%, 20%, and 25% were subject to different clogging scenarios by using varying sediment loads (0, 500, and 1000 g/m2. Permeability experiments were carried out for each clogging scenario through a new rainfall simulator specially developed, tailored, and calibrated for the laboratory simulation of a wide range of rainfall events. Permeability measurements were taken under all different scenarios as a result of the combination of the different rainfall events (50, 100, and 150 mm/h simulated over the specimens of porous mixtures and the sediment loads applied to them. The results showed that the PC mixtures tested perform better than the PA ones in terms of infiltration capacity, showing less potential for clogging and being more easily cleaned by the wash-off produced by the simulated rainfall events.

  16. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  17. The design and realization of calibration apparatus for measuring the concentration of radon in three models

    Energy Technology Data Exchange (ETDEWEB)

    Huiping, Guo [The Second Artillery Engineering College, Xi' an (China)

    2007-06-15

    For satisfying calibration request of radon measure in the laboratory, the calibration apparatus for radon activity measure is designed and realized. The calibration apparatus can auto-control and auto-measure in three models. sequent mode, pulse mode and constant mode. The stability and reliability of the calibration apparatus was tested under the three models. The experimental result shows that the apparatus can provides an adjustable and steady radon activity concentration environment for the research of radon and its progeny and for the calibration of its measure. (authors)

  18. PLEIADES ABSOLUTE CALIBRATION : INFLIGHT CALIBRATION SITES AND METHODOLOGY

    Directory of Open Access Journals (Sweden)

    S. Lachérade

    2012-07-01

    Full Text Available In-flight calibration of space sensors once in orbit is a decisive step to be able to fulfil the mission objectives. This article presents the methods of the in-flight absolute calibration processed during the commissioning phase. Four In-flight calibration methods are used: absolute calibration, cross-calibration with reference sensors such as PARASOL or MERIS, multi-temporal monitoring and inter-bands calibration. These algorithms are based on acquisitions over natural targets such as African deserts, Antarctic sites, La Crau (Automatic calibration station and Oceans (Calibration over molecular scattering or also new extra-terrestrial sites such as the Moon and selected stars. After an overview of the instrument and a description of the calibration sites, it is pointed out how each method is able to address one or several aspects of the calibration. We focus on how these methods complete each other in their operational use, and how they help building a coherent set of information that addresses all aspects of in-orbit calibration. Finally, we present the perspectives that the high level of agility of PLEIADES offers for the improvement of its calibration and a better characterization of the calibration sites.

  19. Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source

    Science.gov (United States)

    Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.

    2013-01-01

    The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.

  20. Building 772 - CERN’s new calibration facility for radiation protection instruments is ready to go

    CERN Document Server

    2014-01-01

    Building 772 is becoming the new home of CERN’s calibration facility for radiation protection instrumentation. The new laboratory in Prévessin will be a state-of-the-art calibration facility and the first of its kind in both France and Switzerland, offering a wide range of possibilities with respect to radiation fields and instrumentation.   New four-axis calibration bench for radiation protection instruments.   Civil engineering work started in November 2013 in Prévessin and Building 772 is now finished and ready for inauguration. CERN’s calibration facility was previously located in Building 172 in Meyrin. Although still very accurate, the technology used was becoming obsolete and needed replacement. “Having considered different options, the decision was taken to build a new facility fully designed and conceived to meet all international safety and technical requirements of such a laboratory,” says Pie...

  1. Sub-keV x-ray calibration of plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Day, R.H.; Lier, D.W.; Elsberry, T.L.

    1976-01-01

    Several types of x-ray detectors have found widespread use for plasma diagnostic applications in the energy range below a few keV. Silicon diodes, photoelectric diodes, and plastic scintillators have been used to obtain diagnostic information in this region. Sub-keV calibration data for plastic scintillator detectors are reported, and the advantages and limitations of these three detectors in diagnostic measurements are compared. In a previous paper calibration data for plastic scintillators from 1.5 to 20 keV were given. In this paper the data are extended to the C-K/sub α/ line (277 eV). These data represent one application of a new sub-keV x-ray calibration facility at the Los Alamos Scientific Laboratory

  2. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Science.gov (United States)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  3. Analysis of results from intercomparison among Spanish laboratories involved of photon energy ''137 Cs for environmental dosimetry laboratories

    International Nuclear Information System (INIS)

    Gonzalez, A.M.; Brosed, A.; Salas, R.

    2003-01-01

    Any environmental thermoluminescent dosemeter (TLD) system must be periodically calibrated at a calibration laboratory. In this frame, the Consejo de Seguridad Nuclear (CSN) has performed an intercomparison among Spanish laboratories involved in environmental monitoring, by means of TLD, in order to verify the traceability of the whole dosimeter and reader to the national standard for the protection quantities of interest for a given photon energy (''137Cs). To achieve this goal the CSN asked the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT) to carry out the reference irradiations in the energy above mentioned at the lonising Radiations Metrology Unit headquarters. Nine laboratories have participated. All the dosemeters were irradiated with the same air kerma rate. The radiological quantity used was the ambient dose equivalent, H (10), and the values of this quantity assigned to each laboratory were between 210 and 360 μSv. All the dosemeters of the participating laboratories met the two analysis criteria used. All of them demonstrated a satisfactory fulfilment of the requirements established by so called trumpet curves and of the requirements established by the ANSI 1311. (Author) 7 refs

  4. Calibration of Resistance Factors Needed in the LRFD Design of Driven Piles

    Science.gov (United States)

    2009-05-01

    This research project presents the calibration of resistance factors for the Load and Resistance Factor Design (LRFD) method of driven : piles driven into Louisiana soils based on reliability theory. Fifty-three square Precast-Prestressed-Concrete (P...

  5. Recognition of the dosimetric calibration capacities of Cuba by the International Bureau of Weights and Measures

    International Nuclear Information System (INIS)

    Walwyn S, G.; Gutierrez L, S.; Tamayo G, J.A.; Gonzalez R, N.; Alonso V, G.

    2006-01-01

    The declared mission of the International Bureau of Weights and Measures are the world uniformity of the measurement, however until some years ago a formal mechanism didn't exist for its complete implementation. With this end arose the Mutual Recognition Agreement whose specific objective is to establish the grade of equivalence of the national standards, the one of mutually recognizing the calibration and measurement certificates and the one of providing to the governments of a sure technical tool in its commercial negotiations and regulatory matters at international level. Cuba like an associated country to the Meter Convention, signed the agreement and it intended to demonstrate the international equivalence of its standards. The best measurement and calibration capacities of the country in the dosimetric magnitudes are in the Secondary Laboratory of Dosimetric Calibration of the Protection and Hygiene of Radiations Center. This capacities were included in the Regional Metrological Organization COOMET in the year 2003. In June of the 2005 the metrological capacities have been approved and published in the databases of the International Bureau of Weights and Measures as demonstration of the high competition of the calibration works that its are carried out in the laboratory. This approval is one of the maximum international recognitions that the patterns of a country can receive and its are the result of 10 years of work of the laboratory like part of the international net OIEA/OMS, which has given it the possibility to gauge the patterns and of adopting internationally validated calibration methodologies. On the other hand, it has been decisive the participation of the laboratory in multiple international comparisons of their patterns, as well as the implementation of a system of administration of the quality credited by the competent national organ. The article reviews the technical work of the laboratory during several years that it gave as result this

  6. Dynamic photogrammetric calibration of industrial robots

    Science.gov (United States)

    Maas, Hans-Gerd

    1997-07-01

    Today's developments in industrial robots focus on aims like gain of flexibility, improvement of the interaction between robots and reduction of down-times. A very important method to achieve these goals are off-line programming techniques. In contrast to conventional teach-in-robot programming techniques, where sequences of actions are defined step-by- step via remote control on the real object, off-line programming techniques design complete robot (inter-)action programs in a CAD/CAM environment. This poses high requirements to the geometric accuracy of a robot. While the repeatability of robot poses in the teach-in mode is often better than 0.1 mm, the absolute pose accuracy potential of industrial robots is usually much worse due to tolerances, eccentricities, elasticities, play, wear-out, load, temperature and insufficient knowledge of model parameters for the transformation from poses into robot axis angles. This fact necessitates robot calibration techniques, including the formulation of a robot model describing kinematics and dynamics of the robot, and a measurement technique to provide reference data. Digital photogrammetry as an accurate, economic technique with realtime potential offers itself for this purpose. The paper analyzes the requirements posed to a measurement technique by industrial robot calibration tasks. After an overview on measurement techniques used for robot calibration purposes in the past, a photogrammetric robot calibration system based on off-the- shelf lowcost hardware components will be shown and results of pilot studies will be discussed. Besides aspects of accuracy, reliability and self-calibration in a fully automatic dynamic photogrammetric system, realtime capabilities are discussed. In the pilot studies, standard deviations of 0.05 - 0.25 mm in the three coordinate directions could be achieved over a robot work range of 1.7 X 1.5 X 1.0 m3. The realtime capabilities of the technique allow to go beyond kinematic robot

  7. Secondary calibration laboratory for dosimetry in levels of therapy at the University of Santiago

    International Nuclear Information System (INIS)

    Gomez Rodriguez, F.; Gonzalez Castano, D. M.; Pazos Alvarez, A.

    2011-01-01

    A basic inherent benefits provided by the existence of a traceability chain radiation in any application, add the legal requirement for hospitals as pointed to by the RO. 1566/1998, which sets quality standards in radiotherapy. The decree attributed to hospital specialists radio physics in article 10 the responsibility for determining the acceptance and initial reference state of radiation generating equipment for therapeutic purposes, and the establishment and implementation of quality control programs associated and technical and physical aspects of radiation dosimetry. Different international organizations such as ICRU and IAEA recommendations on maintaining the accuracy of the dose delivered to patients in general, should be placed at least 5% considering the whole chain irradiation. In order to achieve this purpose it is necessary to establish programs of quality control and calibration dosimetric regular basis. The protocol of the IAEA TRS398 recommended dose calibration in water because it is a quantity of interest closest to clinical use and allows a relative uncertainty in the calibration environment reduced to 1%.. (Author)

  8. Reflectance of Mercury's Polar Regions: Calibration and Implications for Mercury's Volatiles

    Science.gov (United States)

    Neumann, G. A.; Sun, X.; Cao, A.; Deutsch, A. N.; Head, J. W.

    2018-05-01

    Calibration of laser altimeter reflectances under widely varying conditions is supported by laboratory data from an engineering simulator to address the distribution of volatile deposits in Mercury's polar cold traps.

  9. A new systematic calibration method of ring laser gyroscope inertial navigation system

    Science.gov (United States)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Xiong, Zhenyu; Long, Xingwu

    2016-10-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Before the INS is put into application, it is supposed to be calibrated in the laboratory in order to compensate repeatability error caused by manufacturing. Discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed theories of error inspiration and separation in detail and presented a new systematic calibration method for ring laser gyroscope inertial navigation system. Error models and equations of calibrated Inertial Measurement Unit are given. Then proper rotation arrangement orders are depicted in order to establish the linear relationships between the change of velocity errors and calibrated parameter errors. Experiments have been set up to compare the systematic errors calculated by filtering calibration result with those obtained by discrete calibration result. The largest position error and velocity error of filtering calibration result are only 0.18 miles and 0.26m/s compared with 2 miles and 1.46m/s of discrete calibration result. These results have validated the new systematic calibration method and proved its importance for optimal design and accuracy improvement of calibration of mechanically dithered ring laser gyroscope inertial navigation system.

  10. Hand-eye calibration for rigid laparoscopes using an invariant point.

    Science.gov (United States)

    Thompson, Stephen; Stoyanov, Danail; Schneider, Crispin; Gurusamy, Kurinchi; Ourselin, Sébastien; Davidson, Brian; Hawkes, David; Clarkson, Matthew J

    2016-06-01

    Laparoscopic liver resection has significant advantages over open surgery due to less patient trauma and faster recovery times, yet it can be difficult due to the restricted field of view and lack of haptic feedback. Image guidance provides a potential solution but one current challenge is in accurate "hand-eye" calibration, which determines the position and orientation of the laparoscope camera relative to the tracking markers. In this paper, we propose a simple and clinically feasible calibration method based on a single invariant point. The method requires no additional hardware, can be constructed by theatre staff during surgical setup, requires minimal image processing and can be visualised in real time. Real-time visualisation allows the surgical team to assess the calibration accuracy before use in surgery. In addition, in the laboratory, we have developed a laparoscope with an electromagnetic tracking sensor attached to the camera end and an optical tracking marker attached to the distal end. This enables a comparison of tracking performance. We have evaluated our method in the laboratory and compared it to two widely used methods, "Tsai's method" and "direct" calibration. The new method is of comparable accuracy to existing methods, and we show RMS projected error due to calibration of 1.95 mm for optical tracking and 0.85 mm for EM tracking, versus 4.13 and 1.00 mm respectively, using existing methods. The new method has also been shown to be workable under sterile conditions in the operating room. We have proposed a new method of hand-eye calibration, based on a single invariant point. Initial experience has shown that the method provides visual feedback, satisfactory accuracy and can be performed during surgery. We also show that an EM sensor placed near the camera would provide significantly improved image overlay accuracy.

  11. SWAT application in intensive irrigation systems: Model modification, calibration and validation

    Science.gov (United States)

    Dechmi, Farida; Burguete, Javier; Skhiri, Ahmed

    2012-11-01

    SummaryThe Soil and Water Assessment Tool (SWAT) is a well established, distributed, eco-hydrologic model. However, using the study case of an agricultural intensive irrigated watershed, it was shown that all the model versions are not able to appropriately reproduce the total streamflow in such system when the irrigation source is outside the watershed. The objective of this study was to modify the SWAT2005 version for correctly simulating the main hydrological processes. Crop yield, total streamflow, total suspended sediment (TSS) losses and phosphorus load calibration and validation were performed using field survey information and water quantity and quality data recorded during 2008 and 2009 years in Del Reguero irrigated watershed in Spain. The goodness of the calibration and validation results was assessed using five statistical measures, including the Nash-Sutcliffe efficiency (NSE). Results indicated that the average annual crop yield and actual evapotranspiration estimations were quite satisfactory. On a monthly basis, the values of NSE were 0.90 (calibration) and 0.80 (validation) indicating that the modified model could reproduce accurately the observed streamflow. The TSS losses were also satisfactorily estimated (NSE = 0.72 and 0.52 for the calibration and validation steps). The monthly temporal patterns and all the statistical parameters indicated that the modified SWAT-IRRIG model adequately predicted the total phosphorus (TP) loading. Therefore, the model could be used to assess the impacts of different best management practices on nonpoint phosphorus losses in irrigated systems.

  12. Design and calibration of a scanning tunneling microscope for large machined surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01

    During the last year the large sample STM has been designed, built and used for the observation of several different samples. Calibration of the scanner for prope dimensional interpretation of surface features has been a chief concern, as well as corrections for non-linear effects such as hysteresis during scans. Several procedures used in calibration and correction of piezoelectric scanners used in the laboratorys STMs are described.

  13. New approach for calibration and interpretation of IRAD GAGE vibrating-wire stressmeters

    International Nuclear Information System (INIS)

    Mao, N.

    1986-05-01

    IRAD GAGE vibrating-wire stressmeters were installed in the Spent Fuel Facility at the Nevada Test Site to measure the change in in-situ stress during the Spent Fuel Test-Climax (SFT-C). This paper discusses the results of removing a cylindrical section of rock and gages as a unit through overcoring, and the subsequent post-test calibration of the stressmeters in the laboratory. The estimated in-situ stresses based on post test calibration data are quite consistent with those directly measured in nearby holes. The magnitude of stress change calculated from pre-test calibration data is generally much smaller than that estimated from post test calibration data. 11 refs., 5 figs., 2 tabs

  14. Assay of cortisol with a radioimmunoassay method calibrated by isotope dilution-mass spectrometry. A Nordic collaborative study

    International Nuclear Information System (INIS)

    Lantto, O.; Lindback, B.; Aakvaag, A.; Bjoerkhem, I.; Damkjaer-Nielsen, M.; Pomoell, U.M.; Helsinki University Hospital

    1983-01-01

    A reference method for serum cortisol, based on isotope dilution-mass spectrometry (ID-MS), was compared with a modified commercial RIA method. The modification solely concerned the calibration standards used in the RIA method. These were replaced by a series of human serum samples, in which the concentration of cortisol had been determined by the reference ID-MS method. Samples were selected to cover the whole range of the standard curve. Serum samples from healthy, untreated subjects with cortisol concentrations 270-1134 nmol/l were analysed with the ID-MS calibrated RIA method in four laboratories, one in each of the four Nordic countries. Mean values based on results from all four laboratories were almost identical with the values obtained with the reference method. Serum samples from 11 patients with endocrine disorders with cortisol concentrations 31-916 nmol/l were analysed in three of the four laboratories. In three of the samples significant differences were observed between the values obtained with the ID-MS and the ID-MS calibrated RIA method. The value obtained with the ID-MS calibrated RIA was however always more accurate than the corresponding value obtained with RIA with the use of a commercial calibration standard. (author)

  15. Laboratory studies and model simulations of sorbent material behavior for an in-situ passive treatment barrier

    International Nuclear Information System (INIS)

    Aloysius, D.; Fuhrmann, M.

    1995-01-01

    This paper presents a study combining laboratory experiments and model simulations in support of the design and construction of a passive treatment barrier (or filter wall) for retarding the migration of Sr-90 within a water-bearing surficial sand and gravel layer. Preliminary evaluation was used to select materials for column testing. A one-dimensional finite-difference model was used to simulate the laboratory column results and extrapolation of the calibrated model was then used to assess barrier performance over extended time frames with respect to Sr-90 breakthrough and loading on the filter media. The final results of the study showed that 20 by 50 mesh clinoptilolite will attenuate Sr-90 with a maximum life expentancy of approximately 10 years. This time period is based on allowable limits of Sr-90 activity on the filter media and is also a function of site-specific conditions

  16. Radioactive sources for ATLAS hadron tile calorimeter calibration

    International Nuclear Information System (INIS)

    Budagov, Yu.; Cavalli-Sforza, M.; Ivanyushenkov, Yu.

    1997-01-01

    The main requirements for radioactive sources applied in the TileCal calibration systems are formulated; technology of the sources production developed in the Laboratory of Nuclear Problems, JINR is described. Design and characteristics of the prototype sources manufactured in Dubna and tested on ATLAS TileCal module 0 are presented

  17. New radiation protection calibration facility at CERN.

    Science.gov (United States)

    Brugger, Markus; Carbonez, Pierre; Pozzi, Fabio; Silari, Marco; Vincke, Helmut

    2014-10-01

    The CERN radiation protection group has designed a new state-of-the-art calibration laboratory to replace the present facility, which is >20 y old. The new laboratory, presently under construction, will be equipped with neutron and gamma sources, as well as an X-ray generator and a beta irradiator. The present work describes the project to design the facility, including the facility placement criteria, the 'point-zero' measurements and the shielding study performed via FLUKA Monte Carlo simulations. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Calibration of ADRET voltage generator type CV102. Program CODAV

    International Nuclear Information System (INIS)

    Lagarde, Gerard.

    1978-07-01

    The CODAV programm studied by the Metrology SES/SME laboratory is used for the calibration of ADRET voltage generator type CV.102. A JCAM.10 microcomputer run the measurement cycle and the printout of the results [fr

  19. Improvements in world-wide intercomparison of PV module calibration

    OpenAIRE

    Salis, E.; Pavanello, D.; Field, M.; Kräling, U.; Neuberger, F.; Kiefer, K.; Osterwald, C.; Rummel, S.; Levi, D.; Hishikawa, Y.; Yamagoe, K.; Ohshima, H.; Yoshita, M.; Müllejans, H.

    2017-01-01

    The calibration of the electrical performance for seven photovoltaic (PV) modules was compared between four reference laboratories on three continents. The devices included two samples in standard and two in high-efficiency crystalline silicon technology, two CI(G)S and one CdTe module. The reference value for each PV module parameter was calculated from the average of the results of all four laboratories, weighted by the respective measurement uncertainties. All single results were then anal...

  20. Neutron Standards Laboratory of the CIEMAT

    International Nuclear Information System (INIS)

    Guzman G, K. A.; Mendez V, R.; Vega C, H. R.

    2014-08-01

    By means of a calculation series with Monte Carlo methods and the code MCNPX was characterized the neutrons field produced by the existent calibration sources in the Neutron Standards Laboratory of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT). The laboratory has two neutron calibration sources one of 241 AmBe and other 252 Cf that are stored in a water pool. A detailed three-dimensional model of the room was built with the base of stainless steel remarking in the selector to the sources that situates them to 4 m of the floor to be irradiated on the irradiation table and the storage pool. Each one of the sources was defined on the model in its double steel encapsulated. The spectra were calculated with different cases with the purpose of to calculate the contribution of each element that impacts to the neutrons transport. The spectra of the calibration sources were calculated to different distances regarding the source from 0, 15, 35, 50 to 300 cm on the base and in a same way the values of the ambient dose equivalent using the approaches of the ICRP-74. The results show clearly that the great contribution in the modification of the spectrum is attributed to the walls, and floor of the Neutron Standards Laboratory installations. (Author)

  1. An Analysis on a Dynamic Amplifier and Calibration Methods for a Pseudo-Differential Dynamic Comparator

    Science.gov (United States)

    Paik, Daehwa; Miyahara, Masaya; Matsuzawa, Akira

    This paper analyzes a pseudo-differential dynamic comparator with a dynamic pre-amplifier. The transient gain of a dynamic pre-amplifier is derived and applied to equations of the thermal noise and the regeneration time of a comparator. This analysis enhances understanding of the roles of transistor's parameters in pre-amplifier's gain. Based on the calculated gain, two calibration methods are also analyzed. One is calibration of a load capacitance and the other is calibration of a bypass current. The analysis helps designers' estimation for the accuracy of calibration, dead-zone of a comparator with a calibration circuit, and the influence of PVT variation. The analyzed comparator uses 90-nm CMOS technology as an example and each estimation is compared with simulation results.

  2. CALIBRATED HYDRODYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    Sezar Gülbaz

    2015-01-01

    Full Text Available The land development and increase in urbanization in a watershed affect water quantityand water quality. On one hand, urbanization provokes the adjustment of geomorphicstructure of the streams, ultimately raises peak flow rate which causes flood; on theother hand, it diminishes water quality which results in an increase in Total SuspendedSolid (TSS. Consequently, sediment accumulation in downstream of urban areas isobserved which is not preferred for longer life of dams. In order to overcome thesediment accumulation problem in dams, the amount of TSS in streams and inwatersheds should be taken under control. Low Impact Development (LID is a BestManagement Practice (BMP which may be used for this purpose. It is a land planningand engineering design method which is applied in managing storm water runoff inorder to reduce flooding as well as simultaneously improve water quality. LID includestechniques to predict suspended solid loads in surface runoff generated over imperviousurban surfaces. In this study, the impact of LID-BMPs on surface runoff and TSS isinvestigated by employing a calibrated hydrodynamic model for Sazlidere Watershedwhich is located in Istanbul, Turkey. For this purpose, a calibrated hydrodynamicmodel was developed by using Environmental Protection Agency Storm WaterManagement Model (EPA SWMM. For model calibration and validation, we set up arain gauge and a flow meter into the field and obtain rainfall and flow rate data. Andthen, we select several LID types such as retention basins, vegetative swales andpermeable pavement and we obtain their influence on peak flow rate and pollutantbuildup and washoff for TSS. Consequently, we observe the possible effects ofLID on surface runoff and TSS in Sazlidere Watershed.

  3. Experiences in Automated Calibration of a Nickel Equation of State

    Science.gov (United States)

    Carpenter, John H.

    2017-06-01

    Wide availability of large computers has led to increasing incorporation of computational data, such as from density functional theory molecular dynamics, in the development of equation of state (EOS) models. Once a grid of computational data is available, it is usually left to an expert modeler to model the EOS using traditional techniques. One can envision the possibility of using the increasing computing resources to perform black-box calibration of EOS models, with the goal of reducing the workload on the modeler or enabling non-experts to generate good EOSs with such a tool. Progress towards building such a black-box calibration tool will be explored in the context of developing a new, wide-range EOS for nickel. While some details of the model and data will be shared, the focus will be on what was learned by automatically calibrating the model in a black-box method. Model choices and ensuring physicality will also be discussed. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Calibration of the 90Sr+90Y ophthalmic and dermatological applicators with an extrapolation ionization minichamber

    International Nuclear Information System (INIS)

    Antonio, Patrícia L.; Oliveira, Mércia L.; Caldas, Linda V.E.

    2014-01-01

    90 Sr+ 90 Y clinical applicators are used for brachytherapy in Brazilian clinics even though they are not manufactured anymore. Such sources must be calibrated periodically, and one of the calibration methods in use is ionometry with extrapolation ionization chambers. 90 Sr+ 90 Y clinical applicators were calibrated using an extrapolation minichamber developed at the Calibration Laboratory at IPEN. The obtained results agree satisfactorily with the data provided in calibration certificates of the sources. - Highlights: • 90 Sr+ 90 Y clinical applicators were calibrated using a mini-extrapolation chamber. • An extrapolation curve was obtained for each applicator during its calibration. • The results were compared with those provided by the calibration certificates. • All results of the dermatological applicators presented lower differences than 5%

  5. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units

    Directory of Open Access Journals (Sweden)

    Qingzhong Cai

    2016-06-01

    Full Text Available An inertial navigation system (INS has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10−6°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs using common turntables, has a great application potential in future atomic gyro INSs.

  6. Comparison of ionization chamber calibration for mimeographs in W/Mo and W/Al qualities

    International Nuclear Information System (INIS)

    Pereira, Lara; Macedo, Eric; Navarro, Marcus; Ferreira, Mario; Garcia, Igor; Pires, Evandro; Leite, Handerson; Navarro, Valeria

    2016-01-01

    The calibration of ionization chambers for mammography laboratories seek to keep pace with technological advancement of manufacturers who have used new combinations anode/filter in mammography beyond the classic combinations of molybdenum and rhodium. This paper proposes to investigate the equivalence between calibrations of chambers different using the combinations W/Mo and W/Al at LABPROSAUD. The results showed a variation less than 1% on relationship between the calibration coefficients obtained in the evaluated combinations anode/filter for an uncertainty of 2.4%. The excellent performance of the chambers suggests a new possibility of calibration in the mammography quality at LABPROSAUD. (author)

  7. Ultra-portable field transfer radiometer for vicarious calibration of earth imaging sensors

    Science.gov (United States)

    Thome, Kurtis; Wenny, Brian; Anderson, Nikolaus; McCorkel, Joel; Czapla-Myers, Jeffrey; Biggar, Stuart

    2018-06-01

    A small portable transfer radiometer has been developed as part of an effort to ensure the quality of upwelling radiance from test sites used for vicarious calibration in the solar reflective. The test sites are used to predict top-of-atmosphere reflectance relying on ground-based measurements of the atmosphere and surface. The portable transfer radiometer is designed for one-person operation for on-site field calibration of instrumentation used to determine ground-leaving radiance. The current work describes the detector- and source-based radiometric calibration of the transfer radiometer highlighting the expected accuracy and SI-traceability. The results indicate differences between the detector-based and source-based results greater than the combined uncertainties of the approaches. Results from recent field deployments of the transfer radiometer using a solar radiation based calibration agree with the source-based laboratory calibration within the combined uncertainties of the methods. The detector-based results show a significant difference to the solar-based calibration. The source-based calibration is used as the basis for a radiance-based calibration of the Landsat-8 Operational Land Imager that agrees with the OLI calibration to within the uncertainties of the methods.

  8. Replication and load balancing strategy of STAR's relational database management system (RDBM)

    Energy Technology Data Exchange (ETDEWEB)

    DePhillips, M; Lauret, J; Kopytine, M [Brookhaven National Laboratory, Upton NY 11973 (United States); Kent State University, Kent Ohio 44242 (United States)], E-mail: jlauret@bnl.gov

    2008-07-15

    Database demand resulting from offline analysis and production of data at the STAR experiment at Brookhaven National Laboratory's Relativistic Heavy-Ion Collider has steadily increased over the last six years of data taking activities. With each year, STAR more than doubles the number of events recorded with an anticipation of reaching a billion event capabilities as early as next year. The challenges faced from producing and analyzing this magnitude of events in parallel have raised issues with regard to the distribution of calibrations and geometry data, via databases, to STAR's growing global collaboration. Rapid distribution, availability, ensured synchronization and load balancing have become paramount considerations. Both conventional technology and novel approaches are used in parallel to realize these goals. This paper discusses how STAR uses load balancing to optimize database usage. It discusses distribution methods via MySQL master slave replication; the synchronization issues that arise from this type of distribution and solutions, mostly homegrown, put forth to overcome these issues. A novel approach toward load balancing between slave nodes that assists in maintaining a high availability rate for a veracious community is discussed in detail. This load balancing addresses both, pools of nodes internal to a given location, as well as balancing the load for remote users between different available locations. Challenges, trade-offs, rationale for decisions and paths forward will be discussed in all cases, presenting a solid production environment with a vision for scalable growth.

  9. Calibration Curves for Biological Dosimetry by Fluorescence In situ Hybridisation

    International Nuclear Information System (INIS)

    Stonati, L.; Durante, M.; Gensabella, G.; Gialanella, G.; Grossi, G.F.; Pugliese, M.; Scampoli, P.; Sgura, A.; Testa, A.; Tanzarella, C.

    2001-01-01

    Dose-response curves were measured for the induction of chromosomal aberrations in peripheral blood lymphocytes after acute exposure in vitro to 60 Co γ rays. Blood was obtained from four different healthy donors, and chromosomes were either observed at metaphase, following colcemid accumulation, or prematurely condensed by calyculin A. Cells were analysed in three different Italian laboratories. Chromosomes 1, 2, and 4 were painted, and simple-type interchanges between painted and non-painted chromosomes were scored in cells exposed in the dose range 0.1-3.0 Gy. The chemical-induced premature chromosome condensation method was also used combined with chromosome painting (chromosome 4 only) to determine calibration curves for high dose exposures (up to 20 Gy X rays). Calibration curves described in this paper will be used in our laboratories for biological dosimetry by fluorescence in situ hybridisation. (author)

  10. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    Otto, T.

    1997-01-01

    In 1996, the Dosimetry and Calibration Section was, as in previous years, mainly engaged in routine tasks: the distribution of over 6000 dosimeters (with a total of more than 10,000 films) every two months and the calibration of about 900 fixed and mobile instruments used in the radiation survey sections of RP group. These tasks were, thanks to an experienced team, well mastered. Special efforts had to be made in a number of areas to modernize the service or to keep it in line with new prescriptions. The Individual Dosimetry Service had to assure that CERN's contracting firms comply with the prescriptions in the Radiation Safety Manual (1996) that had been inspired by the Swiss Ordinance of 1994: Companies must file for authorizations with the Swiss Federal Office for Public Health requiring that in every company an 'Expert in Radiation Protection' be nominated and subsequently trained. CERN's Individual Dosimetry Service is accredited by the Swiss Federal Authorities and works closely together with other, similar services on a rigorous quality assurance programme. Within this framework, CERN was mandated to organize this year the annual Swiss 'Intercomparison of Dosimeters'. All ten accredited dosimetry services - among others those of the Paul Scherrer Institute (PSI) in Villigen and of the four Swiss nuclear power stations - sent dosimeters to CERN, where they were irradiated in CERN's calibration facility with precise photon doses. After return to their origin they were processed and evaluated. The results were communicated to CERN and were compared with the originally given doses. A report on the results was subsequently prepared and submitted to the Swiss 'Group of Experts on Personal Dosimetry'. Reference monitors for photon and neutron radiation were brought to standard laboratories to assure the traceability of CERN's calibration service to the fundamental quantities. For photon radiation, a set of ionization chambers was calibrated in the reference field

  11. Viability study of a construction of invasive high voltage meter for the National Reference Laboratory of the Brazilian Net Calibration in Diagnostic Radiology, the National Laboratory of Metrology of the Ionizing Radiation - LNMRI

    International Nuclear Information System (INIS)

    Quaresma, D.S.; Peixoto, J.G.P.; Pereira, M.A.G.

    2007-01-01

    This work has studied the parameters for the construction of an invasive high voltage meter for the National Reference Laboratory of the Brazilian Net Calibration in Diagnostic Radiology, the National Laboratory of Metrology of the Ionizing Radiation - LNMRI. This study took into consideration the necessity of quality control of the of X-rays equipment required by Ministry of Health - MS, through the regulation N.453. To satisfy the demands of the MS, the recommendation of the norm IEC 61676 was analyzed by using the quantity of Practical Peak Voltage (PPV) in the measurements of the voltage discharge applied to the X-rays tubes, the infra structures of metrology available in the country to offer tracking the components of the high voltage meter through INMETRO and the difficulty of adaptation of the high voltage meter analyser III U in relation to the Pan tak HF160 equipment in which respect the connection of the high voltage cable and the voltage limitations due to the electric configuration of the high voltage generator of the constant potential Pantak HF160 equipment. (author)

  12. Accreditation experience of radioisotope metrology laboratory of Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Iglicki, A. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina)]. E-mail: iglicki@cae.cnea.gov.ar; Mila, M.I. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina)]. E-mail: mila@cae.cnea.gov.ar; Furnari, J.C. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Arenillas, P. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Cerutti, G. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Carballido, M. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Guillen, V. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Araya, X. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Bianchini, R. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina)

    2006-10-15

    This work presents the experience developed by the Radioisotope Metrology Laboratory (LMR), of the Argentine National Atomic Energy Commission (CNEA), as result of the accreditation process of the Quality System by ISO 17025 Standard. Considering the LMR as a calibration laboratory, services of secondary activity determinations and calibration of activimeters used in Nuclear Medicine were accredited. A peer review of the ({alpha}/{beta})-{gamma} coincidence system was also carried out. This work shows in detail the structure of the quality system, the results of the accrediting audit and gives the number of non-conformities detected and of observations made which have all been resolved.

  13. Accreditation experience of radioisotope metrology laboratory of Argentina

    International Nuclear Information System (INIS)

    Iglicki, A.; Mila, M.I.; Furnari, J.C.; Arenillas, P.; Cerutti, G.; Carballido, M.; Guillen, V.; Araya, X.; Bianchini, R.

    2006-01-01

    This work presents the experience developed by the Radioisotope Metrology Laboratory (LMR), of the Argentine National Atomic Energy Commission (CNEA), as result of the accreditation process of the Quality System by ISO 17025 Standard. Considering the LMR as a calibration laboratory, services of secondary activity determinations and calibration of activimeters used in Nuclear Medicine were accredited. A peer review of the (α/β)-γ coincidence system was also carried out. This work shows in detail the structure of the quality system, the results of the accrediting audit and gives the number of non-conformities detected and of observations made which have all been resolved

  14. Laboratory Performance of Five Selected Soil Moisture Sensors Applying Factory and Own Calibration Equations for Two Soil Media of Different Bulk Density and Salinity Levels

    Science.gov (United States)

    Matula, Svatopluk; Báťková, Kamila; Legese, Wossenu Lemma

    2016-01-01

    Non-destructive soil water content determination is a fundamental component for many agricultural and environmental applications. The accuracy and costs of the sensors define the measurement scheme and the ability to fit the natural heterogeneous conditions. The aim of this study was to evaluate five commercially available and relatively cheap sensors usually grouped with impedance and FDR sensors. ThetaProbe ML2x (impedance) and ECH2O EC-10, ECH2O EC-20, ECH2O EC-5, and ECH2O TE (all FDR) were tested on silica sand and loess of defined characteristics under controlled laboratory conditions. The calibrations were carried out in nine consecutive soil water contents from dry to saturated conditions (pure water and saline water). The gravimetric method was used as a reference method for the statistical evaluation (ANOVA with significance level 0.05). Generally, the results showed that our own calibrations led to more accurate soil moisture estimates. Variance component analysis arranged the factors contributing to the total variation as follows: calibration (contributed 42%), sensor type (contributed 29%), material (contributed 18%), and dry bulk density (contributed 11%). All the tested sensors performed very well within the whole range of water content, especially the sensors ECH2O EC-5 and ECH2O TE, which also performed surprisingly well in saline conditions. PMID:27854263

  15. The isotope laboratory

    International Nuclear Information System (INIS)

    Anon.

    The various research projects and investigations carried out at the laboratory are briefly described. These include:- hormone investigations (thyroxine and triiodothyronine) by radioimmunology in cattle and swine; the synthesis of fatty acids in sheep digestive juices; vitamin E in pigs; the uptake of phosphorus in cloudberries; the uptake and breaking down of glyphosate in spruce and wild oats; transport and assimilation of MCPA; ground water pollution from sewage; process investigations in fish oil production; cleaning process in dairy piping; soil humidity radiometric gage calibration; mass spectroscopy. The courses held by the laboratory for students and the consumption of radioisotope tracers are summarised. (JIW)

  16. Moving Aerospace Structural Design Practice to a Load and Resistance Factor Approach

    Science.gov (United States)

    Larsen, Curtis E.; Raju, Ivatury S.

    2016-01-01

    Aerospace structures are traditionally designed using the factor of safety (FOS) approach. The limit load on the structure is determined and the structure is then designed for FOS times the limit load - the ultimate load. Probabilistic approaches utilize distributions for loads and strengths. Failures are predicted to occur in the region of intersection of the two distributions. The load and resistance factor design (LRFD) approach judiciously combines these two approaches by intensive calibration studies on loads and strength to result in structures that are efficient and reliable. This paper discusses these three approaches.

  17. Detection and measurement equipment of gases, its calibration and certification; Aparatos de deteccion y medida de gases, su calibracion y certificacion

    Energy Technology Data Exchange (ETDEWEB)

    Navarro Izquierdo, A.; Prado Herrero, M. D.; Lorenzo Bayona, L.

    2003-07-01

    The equipment for detection and measurement of gases must be certified by a laboratory recognized by the competent Administration. For it is needed to dispose of patters, instrumentation and procedures in order to get adequate calibration. Inside of the Madariaga Official Laboratory (LOM) it has been developed a laboratory for calibration of apparatus for detection and measurement of gasses. The procurement of mix of gasses pattern was realized by means of the volumetric dynamic method, and it is the first laboratory in Spain that uses this technique, that has been credited by ENAC. (Author)

  18. The radiation metrology network related to the field of mammography: implementation and uncertainty analysis of the calibration system

    Science.gov (United States)

    Peixoto, J. G. P.; de Almeida, C. E.

    2001-09-01

    It is recognized by the international guidelines that it is necessary to offer calibration services for mammography beams in order to improve the quality of clinical diagnosis. Major efforts have been made by several laboratories in order to establish an appropriate and traceable calibration infrastructure and to provide the basis for a quality control programme in mammography. The contribution of the radiation metrology network to the users of mammography is reviewed in this work. Also steps required for the implementation of a mammography calibration system using a constant potential x-ray and a clinical mammography x-ray machine are presented. The various qualities of mammography radiation discussed in this work are in accordance with the IEC 61674 and the AAPM recommendations. They are at present available at several primary standard dosimetry laboratories (PSDLs), namely the PTB, NIST and BEV and a few secondary standard dosimetry laboratories (SSDLs) such as at the University of Wisconsin and at the IAEA's SSDL. We discuss the uncertainties involved in all steps of the calibration chain in accord with the ISO recommendations.

  19. Broadband standard dipole antenna for antenna calibration

    Science.gov (United States)

    Koike, Kunimasa; Sugiura, Akira; Morikawa, Takao

    1995-06-01

    Antenna calibration of EMI antennas is mostly performed by the standard antenna method at an open-field test site using a specially designed dipole antenna as a reference. In order to develop broadband standard antennas, the antenna factors of shortened dipples are theoretically investigated. First, the effects of the dipole length are analyzed using the induced emf method. Then, baluns and loads are examined to determine their influence on the antenna factors. It is found that transformer-type baluns are very effective for improving the height dependence of the antenna factors. Resistive loads are also useful for flattening the frequency dependence. Based on these studies, a specification is developed for a broadband standard antenna operating in the 30 to 150 MHz frequency range.

  20. Neutron dosemeter responses in workplace fields and the implications of using realistic neutron calibration fields

    International Nuclear Information System (INIS)

    Thomas, D.J.; Horwood, N.; Taylor, G.C.

    1999-01-01

    The use of realistic neutron calibration fields to overcome some of the problems associated with the response functions of presently available dosemeters, both area survey instruments and personal dosemeters, has been investigated. Realistic calibration fields have spectra which, compared to conventional radionuclide source based calibration fields, more closely match those of the workplace fields in which dosemeters are used. Monte Carlo simulations were performed to identify laboratory systems which would produce appropriate workplace-like calibration fields. A detailed analysis was then undertaken of the predicted under- and over-responses of dosemeters in a wide selection of measured workplace field spectra assuming calibration in a selection of calibration fields. These included both conventional radionuclide source calibration fields, and also several proposed realistic calibration fields. The present state of the art for dosemeter performance, and the possibilities of improving accuracy by using realistic calibration fields are both presented. (author)

  1. Comparison of theoretical and experimental determinations of calibration factors for cylindrical and parallel plates ionization chambers

    International Nuclear Information System (INIS)

    Vallejos, Matias; Montano, Gustavo A.; Stefanic, Amalia; Saravi, Margarita

    2009-01-01

    The Ionizing Radiation Dosimetry Section of CNEA is the National Laboratory of Dosimeter Reference, having been designated by the National Institute of Industrial Technology (INTI, deposit taker by Law 19,511/72 of the national standards for metrology) for the safekeeping and operation of the national standards for dosimetry (Agreement INTI - CNEA, February 2004). From their creation, the CRRD provides, among other services, the calibration of dosemeters used in radiotherapy, in terms of Kerma in air, and since year 2002 provides calibration in terms of absorbed dose in water. In this work, those elements appear whereupon it counts the laboratory and that they tend to consolidate the securing of the quality of the results obtained in the calibrations of dosemeters. (author)

  2. Experimental validation and calibration of pedestrian loading models for footbridges

    DEFF Research Database (Denmark)

    Ricciardelli, Fransesco; Briatico, C; Ingólfsson, Einar Thór

    2006-01-01

    Different patterns of pedestrian loading of footbridges exist, whose occurrence depends on a number of parameters, such as the bridge span, frequency, damping and mass, and the pedestrian density and activity. In this paper analytical models for the transient action of one walker and for the stat...

  3. Optimisation and calibration of the polarimeter Polder at Saturne. Experiment t20 at the Jefferson Laboratory: Measurement of the deuteron form factors

    International Nuclear Information System (INIS)

    Eyraud, Laurent

    1998-01-01

    The topic of this thesis is the made for the upgrade of the deuteron tensor polarimeter Polder, and its use in the so-called t 20 experiment at the Jefferson Laboratory (USA). The Polder polarimeter is based on the analysing reaction H(d → ,2p)n which makes possible the measurement of the tensor polarization of deuterons in the kinetic energy range 160 MeV - 520 MeV. The first part of this thesis describes the polarimeter and its performances as obtained during the calibration experiment at Saturne (Saclay, France). Specific developments of this polarimeter for the t 20 experiment (Wire Chambers with 3 detections planes, target, hodoscopes) are described. An acquisition system based on Fastbus-VME standard was developed and used during the calibration runs. The second part of the thesis is devoted to the t 20 experiment. The experimental devices, the CEBAF accelerator and the data analysis are presented. Finally the preliminary results for the polarization t 20 and the extraction of the electromagnetic form factors of the deuteron (G c , G q and G m ) for six values of the transferred momentum Q in the range of 4.11 - 6.8 fm -1 are presented and discussed along various theoretical models predictions. (author) [fr

  4. Recent developments in the specification and achievement of realistic neutron calibration fields

    International Nuclear Information System (INIS)

    Chartier, J.L.; Kluges, H.; Wiegel, B.; Schraube, H.

    1997-01-01

    In order to calibrate more accurately the neutron dosemeters involved in radiation protection, the concept of 'Realistic Neutron Calibration Fields' is considered as an appropriate alternative solution, making necessary new irradiation facilities which generate well-characterised neutron fields with energy and angular distribution replicating more closely practical workplace conditions. Several experienced laboratories have collaborated on a European project and proposed various approaches which are reviewed in this paper. A short description of the facilities currently in operation is given as well as a few characteristics of the available radiation fields. This description of the state of art is followed by a discussion of the problems to be solved for using such facilities for calibration purposes according to well-specified calibration procedures. (author)

  5. Radiation Measurements Laboratory (RML) calibration and assessment of the ATR SPING-3 stack effluent monitor

    International Nuclear Information System (INIS)

    Koeppen, L.D.; Rogers, J.W.; Simpson, O.D.

    1983-12-01

    An evaluation, calibration and assessment of the Eberline SPING-3 ATR stack effluent monitor was conducted. This unit which monitors particulate, iodine and noble gas effluents was producing abnormal results following the initial installation and operational testing. The purposes of this work were to find the causes of the abnormal results and correct them if possible; check the calibrations and adjust them if necessary; and to provide a better in-depth understanding of what the unit is monitoring and how well it performs under this application. Results have shown that there were some problems associated with the unit as initially installed and tested. These problems have been identified and suggested alternatives shown, the monitor was found to be applicable to some extent under the current conditions. The calibrations have been checked and adjustments made. More operation testing and evaluation is needed to assess how well this works under a variety of ATR operating conditions. 2 references, 10 figures, 3 tables

  6. Calibration of a radiation survey meter using Cs-137 gamma source

    International Nuclear Information System (INIS)

    Khalid, R. O.

    2005-07-01

    The survey instrument smartIon was calibrated at the Secondary Standard Dosimetry Laboratory, Sudan Atomic Energy Commission, in terms of kerma, free in air using Cs-137 gamma radiation. All the calibrations were performed using the reference instrument spherical ionization chamber LS-01. This reference instrument has been calibrated at the International Atomic Energy Agency, Vienna for x-rays, 137 Cs and 60 Co gamma radiation. The air kerma calibration factors for the instrument were determined as the ratio of the dose rates obtained with the reference standard chamber LS-01 and the dose rates of the instrument under calibration. The uncertainties for the survey meter smartIon and another survey meter RADOS were obtained and the results compared with the uncertainty for the reference standard chamber. Also, the values of dose rates were obtained for various angles of the incident beam, by changing the angle by which the radiation was incident on the sensitive point of the instrument.(Author)

  7. TIMED solar EUV experiment: preflight calibration results for the XUV photometer system

    Science.gov (United States)

    Woods, Thomas N.; Rodgers, Erica M.; Bailey, Scott M.; Eparvier, Francis G.; Ucker, Gregory J.

    1999-10-01

    The Solar EUV Experiment (SEE) on the NASA Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics (TIMED) mission will measure the solar vacuum ultraviolet (VUV) spectral irradiance from 0.1 to 200 nm. To cover this wide spectral range two different types of instruments are used: a grating spectrograph for spectra between 25 and 200 nm with a spectral resolution of 0.4 nm and a set of silicon soft x-ray (XUV) photodiodes with thin film filters as broadband photometers between 0.1 and 35 nm with individual bandpasses of about 5 nm. The grating spectrograph is called the EUV Grating Spectrograph (EGS), and it consists of a normal- incidence, concave diffraction grating used in a Rowland spectrograph configuration with a 64 X 1024 array CODACON detector. The primary calibrations for the EGS are done using the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF-III) in Gaithersburg, Maryland. In addition, detector sensitivity and image quality, the grating scattered light, the grating higher order contributions, and the sun sensor field of view are characterized in the LASP calibration laboratory. The XUV photodiodes are called the XUV Photometer System (XPS), and the XPS includes 12 photodiodes with thin film filters deposited directly on the silicon photodiodes' top surface. The sensitivities of the XUV photodiodes are calibrated at both the NIST SURF-III and the Physikalisch-Technische Bundesanstalt (PTB) electron storage ring called BESSY. The other XPS calibrations, namely the electronics linearity and field of view maps, are performed in the LASP calibration laboratory. The XPS and solar sensor pre-flight calibration results are primarily discussed as the EGS calibrations at SURF-III have not yet been performed.

  8. Electromedical devices test laboratories accreditation

    International Nuclear Information System (INIS)

    Murad, C; Rubio, D; Ponce, S; Alvarez Abri, A; Terron, A; Vicencio, D; Fascioli, E

    2007-01-01

    In the last years, the technology and equipment at hospitals have been increase in a great way as the risks of their implementation. Safety in medical equipment must be considered an important issue to protect patients and their users. For this reason, test and calibrations laboratories must verify the correct performance of this kind of devices under national and international standards. Is an essential mission for laboratories to develop their measurement activities taking into account a quality management system. In this article, we intend to transmit our experience working to achieve an accredited Test Laboratories for medical devices in National technological University

  9. Optimization-Based Calibration of FAST.Farm Parameters Against SOWFA

    Energy Technology Data Exchange (ETDEWEB)

    Doubrawa Moreira, Paula [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Annoni, Jennifer [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ghate, Aditya [Stanford University

    2018-01-12

    FAST.Farm is a medium-delity wind farm modeling tool that can be used to assess power and loads contributions of wind turbines in a wind farm. The objective of this paper is to undertake a calibration procedure to set the user parameters of FAST.Farm to accurately represent results from large-eddy simulations. The results provide an in- depth analysis of the comparison of FAST.Farm and large-eddy simulations before and after calibration. The comparison of FAST.Farm and large-eddy simulation results are presented with respect to streamwise and radial velocity components as well as wake-meandering statistics (mean and standard deviation) in the lateral and vertical directions under different atmospheric and turbine operating conditions.

  10. Plug Load Behavioral Change Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, I.; Kandt, A.; VanGeet, O.

    2011-08-01

    This report documents the methods and results of a plug load study of the Environmental Protection Agency's Region 8 Headquarters in Denver, Colorado, conducted by the National Renewable Energy Laboratory. The study quantified the effect of mechanical and behavioral change approaches on plug load energy reduction and identified effective ways to reduce plug load energy. Load reduction approaches included automated energy management systems and behavioral change strategies.

  11. Solar Cell Calibration and Measurement Techniques

    Science.gov (United States)

    Bailey, Sheila; Brinker, Dave; Curtis, Henry; Jenkins, Phillip; Scheiman, Dave

    2004-01-01

    The increasing complexity of space solar cells and the increasing international markets for both cells and arrays has resulted in workshops jointly sponsored by NASDA, ESA and NASA. These workshops are designed to obtain international agreement on standardized values for the AMO spectrum and constant, recommend laboratory measurement practices and establish a set of protocols for international comparison of laboratory measurements. A working draft of an ISO standard, WD15387, "Requirements for Measurement and Calibration Procedures for Space Solar Cells" was discussed with a focus on the scope of the document, a definition of primary standard cell, and required error analysis for all measurement techniques. Working groups addressed the issues of Air Mass Zero (AMO) solar constant and spectrum, laboratory measurement techniques, and te international round robin methodology. A summary is presented of the current state of each area and the formulation of the ISO document.

  12. Preliminary measurements of the establishment of a quality control programme for the activimeter calibration reference system

    International Nuclear Information System (INIS)

    Martins, Elaine W.; Potiens, Maria da Penha A.

    2009-01-01

    The nuclear medicine techniques efficiency and safety depends on, beside other factors, a quality control programme, mainly regards to the nuclides activimeter utilization. The Calibration Laboratory of IPEN uses as a work standard, a tertiary standard system Capintec, calibrated at the Accredited Dosimetry Calibration Laboratory of the Medical radiation Research Center - University of Wisconsin. In this work, as preliminary measurements to establish a quality control programme for the activimeter calibration procedures, initially the repeatability and reproducibility (long term stability) tests were performed using a sealed check source of 133 Ba. Later on, to complete this quality control programme other check sources ( 137 Cs, 57 Co, 60 Co) will be used to perform the same tests. A series of 80 experiments of 10 measurements each has been carried out. The reference system showed a good behaviour to the repeatability test, considering the tolerance limits of 5%. The percent deviations of all tested sources in the activity measurements were lower 1% to 133 Ba. (author)

  13. Comparison of two methods of therapy level calibration at 60Co gamma beams

    International Nuclear Information System (INIS)

    Bjerke, H.; Jaervinen, H.; Grimbergen, T.W.M.; Grindborg, J.E.; Chauvenet, B.; Czap, L.; Ennow, K.; Moretti, C.; Rocha, P.

    1998-01-01

    The accuracy and traceability of the calibration of radiotherapy dosimeters is of great concern to those involved in the delivery of radiotherapy. It has been proposed that calibration should be carried out directly in terms of absorbed dose to water, instead of using the conventional and widely applied quantity of air kerma. In this study, the faithfulness in disseminating standards of both air kerma and absorbed dose to water were evaluated, through comparison of both types of calibration for three types of commonly used radiotherapy dosimeters at 60 Co gamma beams at a few secondary and primary standard dosimetry laboratories (SSDLs and PSDLs). A supplementary aim was to demonstrate the impact which the change in the method of calibration would have on clinical dose measurements at the reference point. Within the estimated uncertainties, both the air kerma and absorbed dose to water calibration factors obtained at different laboratories were regarded as consistent. As might be expected, between the SSDLs traceable to the same PSDL the observed differences were smaller (less than 0.5%) than between PSDLs or SSDLs traceable to different PSDLs (up to 1.5%). This can mainly be attributed to the reported differences between the primary standards. The calibration factors obtained by the two methods differed by up to about 1.5% depending on the primary standards involved and on the parameters of calculation used for 60 Co gamma radiation. It is concluded that this discrepancy should be settled before the new method of calibration at 60 Co gamma beams in terms of absorbed dose to water is taken into routine use. (author)

  14. Comparison of two methods of therapy level calibration at 60Co gamma beams

    International Nuclear Information System (INIS)

    Bjerke, H; Jaervinen, H; Grimbergen, T W M; Grindborg, J-E; Chauvenet, B; Czap, L; Ennow, K; Moretti, C; Rocha, P

    1998-01-01

    The accuracy and traceability of the calibration of radiotherapy dosimeters is of great concern to those involved in the delivery of radiotherapy. It has been proposed that calibration should be carried out directly in terms of absorbed dose to water, instead of using the conventional and widely applied quantity of air kerma. In this study, the faithfulness in disseminating standards of both air kerma and absorbed dose to water were evaluated, through comparison of both types of calibration for three types of commonly used radiotherapy dosimeters at 60 Co gamma beams at a few secondary and primary standard dosimetry laboratories (SSDLs and PSDLs). A supplementary aim was to demonstrate the impact which the change in the method of calibration would have on clinical dose measurements at the reference point. Within the estimated uncertainties, both the air kerma and absorbed dose to water calibration factors obtained at different laboratories were regarded as consistent. As might be expected, between the SSDLs traceable to the same PSDL the observed differences were smaller (less than 0.5%) than between PSDLs or SSDLs traceable to different PSDLs (up to 1.5%). This can mainly be attributed to the reported differences between the primary standards. The calibration factors obtained by the two methods differed by up to about 1.5% depending on the primary standards involved and on the parameters of calculation used for 60 Co gamma radiation. It is concluded that this discrepancy should be settled before the new method of calibration at 60 Co gamma beams in terms of absorbed dose to water is taken into routine use

  15. The role of the IAEA Dosimetry Laboratory in the dissemination of standards for radiation protection

    International Nuclear Information System (INIS)

    Czap, L.; Andreo, P.; Matscheko, G.

    1998-01-01

    Approximately 90% of the Secondary Standard Dosimetry Laboratories (SSDLs) provide users with calibrations of radiation protection instruments, and the IAEA is taking every necessary effort to insure that SSDLs measurements are traceable to Primary Standards. The Agency has proper radiation sources available to provide traceable calibrations to the SSDLs involved in measurements on diagnostic x-ray generators, including an x-ray unit specifically for mammography dedicated to standardization procedures. The different photon beam qualities and calibration procedures available in the Agency's Dosimetry Laboratory are described

  16. Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies.

    Science.gov (United States)

    Norman, Stephanie C; Wagner, David W; Beaupre, Gary S; Castillo, Alesha B

    2015-01-02

    Axial compression of mouse limbs is commonly used to induce bone formation in a controlled, non-invasive manner. Determination of peak strains caused by loading is central to interpreting results. Load-strain calibration is typically performed using uniaxial strain gauges attached to the diaphyseal, periosteal surface of a small number of sacrificed animals. Strain is measured as the limb is loaded to a range of physiological loads known to be anabolic to bone. The load-strain relationship determined by this subgroup is then extrapolated to a larger group of experimental mice. This method of strain calculation requires the challenging process of strain gauging very small bones which is subject to variability in placement of the strain gauge. We previously developed a method to estimate animal-specific periosteal strain during axial ulnar loading using an image-based computational approach that does not require strain gauges. The purpose of this study was to compare the relationship between load-induced bone formation rates and periosteal strain at ulnar midshaft using three different methods to estimate strain: (A) Nominal strain values based solely on load-strain calibration; (B) Strains calculated from load-strain calibration, but scaled for differences in mid-shaft cross-sectional geometry among animals; and (C) An alternative image-based computational method for calculating strains based on beam theory and animal-specific bone geometry. Our results show that the alternative method (C) provides comparable correlation between strain and bone formation rates in the mouse ulna relative to the strain gauge-dependent methods (A and B), while avoiding the need to use strain gauges. Published by Elsevier Ltd.

  17. Analysis of load monitoring system in hydraulic mobile cranes

    Science.gov (United States)

    Kalairassan, G.; Boopathi, M.; Mohan, Rijo Mathew

    2017-11-01

    Load moment limiters or safe load control systems or are very important in crane safety. The system detects the moment of lifting load and compares this actual moment with the rated moment. The system uses multiple sensors such as boom angle sensor, boom length sensor for telescopic booms, pressure transducers for measuring the load, anti-two block switch and roller switches. The system works both on rubber and on outriggers. The sensors measure the boom extension, boom angle and load to give as inputs to the central processing, which calculate the safe working load range for that particular configuration of the crane and compare it with the predetermined safe load. If the load exceeds the safe load, actions will be taken which will reduce the load moment, which is boom telescopic retraction and boom lifting. Anti-two block switch is used to prevent the two blocking condition. The system is calibrated and load tested for at most precision.

  18. ESTABLISHING BRDF CALIBRATION CAPABILITIES THROUGH SHORTWAVE INFRARED

    OpenAIRE

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2017-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laborato...

  19. Automation of dosimeters calibration for radiotherapy in secondary dosimetric calibration laboratory of the CPHR; Automatizacion de la calibracion de dosimetros de radioterapia en el laboratorio secundario de calibracion dosimetrica del CPHR

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, Andy L. Romero; Lores, Stefan Gutierrez, E-mail: c19btm@frcuba.co.cu [Centro de Proteccion e Higiene de las Radiaciones (CPHR), La Habana (Cuba)

    2013-11-01

    This paper presents the design and implementation of an automated system for measurements in the calibration of reference radiation dosimeters. It was made a software application that performs the acquisition of the measured values of electric charge, calculated calibration coefficient and automates the calibration certificate issuance. These values are stored in a log file on a PC. The use of the application improves control over the calibration process, helps to humanize the work and reduces personnel exposure. The tool developed has been applied to the calibration of dosimeters radiation patterns in the LSCD of the Centro de Proteccion e Higiene de las Radiaciones, Cuba.

  20. Multidetector calibration for mass spectrometers

    International Nuclear Information System (INIS)

    Bayne, C.K.; Donohue, D.L.; Fiedler, R.

    1994-06-01

    The International Atomic Energy Agency's Safeguards Analytical Laboratory has performed calibration experiments to measure the different efficiencies among multi-Faraday detectors for a Finnigan-MAT 261 mass spectrometer. Two types of calibration experiments were performed: (1) peak-shift experiments and (2) peak-jump experiments. For peak-shift experiments, the ion intensities were measured for all isotopes of an element in different Faraday detectors. Repeated measurements were made by shifting the isotopes to various Faraday detectors. Two different peak-shifting schemes were used to measure plutonium (UK Pu5/92138) samples. For peak-jump experiments, ion intensities were measured in a reference Faraday detector for a single isotope and compared with those measured in the other Faraday detectors. Repeated measurements were made by switching back-and-forth between the reference Faraday detector and a selected Faraday detector. This switching procedure is repeated for all Faraday detectors. Peak-jump experiments were performed with replicate measurements of 239 Pu, 187 Re, and 238 U. Detector efficiency factors were estimated for both peak-jump and peak-shift experiments using a flexible calibration model to statistically analyze both types of multidetector calibration experiments. Calculated detector efficiency factors were shown to depend on both the material analyzed and the experimental conditions. A single detector efficiency factor is not recommended for each detector that would be used to correct routine sample analyses. An alternative three-run peak-shift sample analysis should be considered. A statistical analysis of the data from this peak-shift experiment can adjust the isotopic ratio estimates for detector differences due to each sample analysis

  1. X-ray calibration facility for plasma diagnostics of the MegaJoule laser

    International Nuclear Information System (INIS)

    Hubert, S.; Prevot, V.

    2013-01-01

    The Laser MegaJoule (LMJ) located at CEA-CESTA will be equipped with x-ray plasma diagnostics using different kinds of x-ray components such as filters, mirrors, crystals, detectors and cameras. To guarantee LMJ measurements, detectors such as x-ray cameras need to be regularly calibrated. An x-ray laboratory is devoted to this task and performs absolute x-ray calibrations for similar x-ray cameras running on Laser Integration Line (LIL). This paper presents the x-ray calibration bench with its x-ray tube based High Energy x-ray Source (HEXS) and some calibration results. By mean of an ingenious transposition system under vacuum absolute x-ray calibration of x-ray cameras, like streak and stripline ones, can be carried out. Coupled to a new collimation system with micrometric accuracy on aperture sensitivity quantum efficiency measurements can be achieved with reduced uncertainties. (authors)

  2. Development and implementation of an automated system for antiquated of the process of gamma radiation monitors calibration

    International Nuclear Information System (INIS)

    Silva Junior, Iremar Alves

    2012-01-01

    In this study it was carried out the development and implementation of a system for the appropriate process of gamma radiation monitors calibration, constituted by a pneumatic dispositive to exchange the attenuators and a positioning table, both actuated through a control panel. We also implemented a System of Caesa-Gammatron Irradiator, which increased the range of the air kerma rates, due to its higher activity comparing with the current system of gamma radiation in use in the calibration laboratory of gamma irradiation. Hence, it was necessary the installation of an attenuator dispositive remotely controlled in this irradiator system. Lastly, it was carried out an evaluation of the reduction in the rates of the occupational dose. This dissertation was developed with the aim of improving the quality of the services of calibration and tests of gamma radiation monitors - provided by the IPEN Laboratory of Instrument Calibration - as well as decreasing the occupational dose of the technicians involved in the process of calibration, following thus the principles of radiation protection. (author)

  3. Traceability in laboratories; Trazabilidad en laboratorios

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, Tulio [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Centro Atomico Constituyentes; Peretti, Matilde; Saravi, Margarita [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Centro Atomico Ezeiza

    1996-07-01

    The testing and/or calibration laboratories main concern in to obtain reliability in the results delivered, therefore the accuracy and precision should be guaranteed. The regulations with respect to the quality systems makes special mention to the traceability in the equipment and in the measurements. In order to obtain that goal the laboratories are organized in national as well as in international nets to maintain the traceability to the primary standards. In the present work will be given the example of a particular laboratory in this regard. (author)

  4. Corrected direct force balance method for atomic force microscopy lateral force calibration

    International Nuclear Information System (INIS)

    Asay, David B.; Hsiao, Erik; Kim, Seong H.

    2009-01-01

    This paper reports corrections and improvements of the previously reported direct force balance method (DFBM) developed for lateral calibration of atomic force microscopy. The DFBM method employs the lateral force signal obtained during a force-distance measurement on a sloped surface and relates this signal to the applied load and the slope of the surface to determine the lateral calibration factor. In the original publication [Rev. Sci. Instrum. 77, 043903 (2006)], the tip-substrate contact was assumed to be pinned at the point of contact, i.e., no slip along the slope. In control experiments, the tip was found to slide along the slope during force-distance curve measurement. This paper presents the correct force balance for lateral force calibration.

  5. The Geostationary Lightning Mapper: Its Performance and Calibration

    Science.gov (United States)

    Christian, H. J., Jr.

    2015-12-01

    The Geostationary Lightning Mapper (GLM) has been developed to be an operational instrument on the GOES-R series of spacecraft. The GLM is a unique instrument, unlike other meteorological instruments, both in how it operates and in the information content that it provides. Instrumentally, it is an event detector, rather than an imager. While processing almost a billion pixels per second with 14 bits of resolution, the event detection process reduces the required telemetry bandwidth by almost 105, thus keeping the telemetry requirements modest and enabling efficient ground processing that leads to rapid data distribution to operational users. The GLM was designed to detect about 90 percent of the total lightning flashes within its almost hemispherical field of view. Based on laboratory calibration, we expect the on-orbit detection efficiency to be closer to 85%, making it the highest performing, large area coverage total lightning detector. It has a number of unique design features that will enable it have near uniform special resolution over most of its field of view and to operate with minimal impact on performance during solar eclipses. The GLM has no dedicated on-orbit calibration system, thus the ground-based calibration provides the bases for the predicted radiometric performance. A number of problems were encountered during the calibration of Flight Model 1. The issues arouse from GLM design features including its wide field of view, fast lens, the narrow-band interference filters located in both object and collimated space and the fact that the GLM is inherently a event detector yet the calibration procedures required both calibration of images and events. The GLM calibration techniques were based on those developed for the Lightning Imaging Sensor calibration, but there are enough differences between the sensors that the initial GLM calibration suggested that it is significantly more sensitive than its design parameters. The calibration discrepancies have

  6. Results of the PEP`93 intercomparison of reference cell calibrations and newer technology performance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Osterwald, C.R.; Emery, K. [National Renewable Energy Lab., Golden, CO (United States); Anevsky, S. [All-Union Research Inst. for Optophysical Measurements, Moscow (Russian Federation)] [and others

    1996-05-01

    This paper presents the results of an international intercomparison of photovoltaic (PV) performance measurements and calibrations. The intercomparison, which was organized and operated by a group of experts representing national laboratories from across the globe (i.e., the authors of this paper), was accomplished by circulating two sample sets. One set consisted of twenty silicon reference cells that would, hopefully, form the basis of an international PV reference scale. A qualification procedure applied to the calibration results gave average calibration numbers with an overall standard deviation of less than 2% for the entire set. The second set was assembled from a wide range of newer technologies that present unique problems for PV measurements. As might be expected, these results showed much larger differences among laboratories. Methods were then identified that should be used to measure such devices, along with problems to avoid.

  7. Validation of dose-response calibration curve for X-Ray field of CRCN-NE/CNEN: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Laís Melo; Mendonç, Julyanne Conceição de Goes; Andrade, Aida Mayra Guedes de; Hwang, Suy F.; Mendes, Mariana Esposito; Lima, Fabiana F., E-mail: falima@cnen.gov.br, E-mail: mendes_sb@hotmail.com [Centro Regional de Ciências Nucleares, (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Melo, Ana Maria M.A., E-mail: july_cgm@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão, PE (Brazil). Centro Acadêmico de Vitória

    2017-07-01

    It is very important in accident investigations that accurate estimating of absorbed dose takes place, so that it contributes to medical decisions and overall assessment of long-term health consequences. Analysis of chromosome aberrations is the most developed method for biological monitoring, and frequencies of dicentric chromosomes are related to absorbed dose of human peripheral blood lymphocytes using calibration curves. International Atomic Energy Agency (IAEA) recommends that each biodosimetry laboratory sets its own calibration curves, given that there are intrinsic differences in protocols and dose interpretations when using calibration curves produced in other laboratories, which could add further uncertainties to dose estimations. The Laboratory for Biological Dosimetry CRCN-NE recently completed dose-response calibration curves for X ray field. Curves of chromosomes dicentrics and dicentrics plus rings were made using Dose Estimate. This study aimed to validate the calibration curves dose-response for X ray with three irradiated samples. Blood was obtained by venipuncture from healthy volunteer and three samples were irradiated by x-rays of 250 kVp with different absorbed doses (0,5Gy, 1Gy and 2Gy). The irradiation was performed at the CRCN-NE/CNEN Metrology Service with PANTAK X-ray equipment, model HF 320. The frequency of dicentric and centric rings chromosomes were determined in 500 metaphases per sample after cultivation of lymphocytes, and staining with Giemsa 5%. Results showed that the estimated absorbed doses are included in the confidence interval of 95% of real absorbed dose. These Dose-response calibration curves (dicentrics and dicentrics plus rings) seems valid, therefore other tests will be done with different volunteers. (author)

  8. Validation of dose-response calibration curve for X-Ray field of CRCN-NE/CNEN: preliminary results

    International Nuclear Information System (INIS)

    Silva, Laís Melo; Mendonç, Julyanne Conceição de Goes; Andrade, Aida Mayra Guedes de; Hwang, Suy F.; Mendes, Mariana Esposito; Lima, Fabiana F.; Melo, Ana Maria M.A.

    2017-01-01

    It is very important in accident investigations that accurate estimating of absorbed dose takes place, so that it contributes to medical decisions and overall assessment of long-term health consequences. Analysis of chromosome aberrations is the most developed method for biological monitoring, and frequencies of dicentric chromosomes are related to absorbed dose of human peripheral blood lymphocytes using calibration curves. International Atomic Energy Agency (IAEA) recommends that each biodosimetry laboratory sets its own calibration curves, given that there are intrinsic differences in protocols and dose interpretations when using calibration curves produced in other laboratories, which could add further uncertainties to dose estimations. The Laboratory for Biological Dosimetry CRCN-NE recently completed dose-response calibration curves for X ray field. Curves of chromosomes dicentrics and dicentrics plus rings were made using Dose Estimate. This study aimed to validate the calibration curves dose-response for X ray with three irradiated samples. Blood was obtained by venipuncture from healthy volunteer and three samples were irradiated by x-rays of 250 kVp with different absorbed doses (0,5Gy, 1Gy and 2Gy). The irradiation was performed at the CRCN-NE/CNEN Metrology Service with PANTAK X-ray equipment, model HF 320. The frequency of dicentric and centric rings chromosomes were determined in 500 metaphases per sample after cultivation of lymphocytes, and staining with Giemsa 5%. Results showed that the estimated absorbed doses are included in the confidence interval of 95% of real absorbed dose. These Dose-response calibration curves (dicentrics and dicentrics plus rings) seems valid, therefore other tests will be done with different volunteers. (author)

  9. BRDF Calibration of Sintered PTFE in the SWIR

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.

    2009-01-01

    Satellite instruments operating in the reflective solar wavelength region often require accurate and precise determination of the Bidirectional Reflectance Distribution Function (BRDF) of laboratory-based diffusers used in their pre-flight calibrations and ground-based support of on-orbit remote sensing instruments. The Diffuser Calibration Facility at NASA's Goddard Space Flight Center is a secondary diffuser calibration standard after NEST for over two decades, providing numerous NASA projects with BRDF data in the UV, Visible and the NIR spectral regions. Currently the Diffuser Calibration Facility extended the covered spectral range from 900 nm up to 1.7 microns. The measurements were made using the existing scatterometer by replacing the Si photodiode based receiver with an InGaAs-based one. The BRDF data was recorded at normal incidence and scatter zenith angles from 10 to 60 deg. Tunable coherent light source was setup. Broadband light source application is under development. Gray-scale sintered PTFE samples were used at these first trials, illuminated with P and S polarized incident light. The results are discussed and compared to empirically generated BRDF data from simple model based on 8 deg directional/hemispherical measurements.

  10. Software System for the Calibration of X-Ray Measuring Instruments

    International Nuclear Information System (INIS)

    Gaytan-Gallardo, E.; Tovar-Munoz, V. M.; Cruz-Estrada, P.; Vergara-Martinez, F. J.; Rivero-Gutierrez, T.

    2006-01-01

    A software system that facilities the calibration of X-ray measuring instruments used in medical applications is presented. The Secondary Standard Dosimetry Laboratory (SSDL) of the Nuclear Research National Institute in Mexico (ININ in Spanish), supports activities concerning with ionizing radiations in medical area. One of these activities is the calibration of X-ray measuring instruments, in terms of air kerma or exposure by substitution method in an X-ray beam at a point where the rate has been determined by means of a standard ionization chamber. To automatize this process, a software system has been developed, the calibration system is composed by an X-ray unit, a Dynalizer IIIU X-ray meter by RADCAL, a commercial data acquisition card, the software system and the units to be tested and calibrated. A quality control plan has been applied in the development of the software system, ensuring that quality assurance procedures and standards are being followed

  11. Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration

    Directory of Open Access Journals (Sweden)

    Jandro L. Abot

    2018-02-01

    Full Text Available Carbon nanotube yarns are micron-scale fibers comprised by tens of thousands of carbon nanotubes in their cross section and exhibiting piezoresistive characteristics that can be tapped to sense strain. This paper presents the details of novel foil strain gauge sensor configurations comprising carbon nanotube yarn as the piezoresistive sensing element. The foil strain gauge sensors are designed using the results of parametric studies that maximize the sensitivity of the sensors to mechanical loading. The fabrication details of the strain gauge sensors that exhibit the highest sensitivity, based on the modeling results, are described including the materials and procedures used in the first prototypes. Details of the calibration of the foil strain gauge sensors are also provided and discussed in the context of their electromechanical characterization when bonded to metallic specimens. This characterization included studying their response under monotonic and cyclic mechanical loading. It was shown that these foil strain gauge sensors comprising carbon nanotube yarn are sensitive enough to capture strain and can replicate the loading and unloading cycles. It was also observed that the loading rate affects their piezoresistive response and that the gauge factors were all above one order of magnitude higher than those of typical metallic foil strain gauges. Based on these calibration results on the initial sensor configurations, new foil strain gauge configurations will be designed and fabricated, to increase the strain gauge factors even more.

  12. Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration

    Science.gov (United States)

    Góngora-Rubio, Mário R.; Kiyono, César Y.; Mello, Luis A. M.; Cardoso, Valtemar F.; Rosa, Reinaldo L. S.; Kuebler, Derek A.; Brodeur, Grace E.; Alotaibi, Amani H.; Coene, Marisa P.; Coene, Lauren M.; Jean, Elizabeth; Santiago, Rafael C.; Oliveira, Francisco H. A.; Rangel, Ricardo; Thomas, Gilles P.; Belay, Kalayu; da Silva, Luciana W.; Moura, Rafael T.; Seabra, Antonio C.; Silva, Emílio C. N.

    2018-01-01

    Carbon nanotube yarns are micron-scale fibers comprised by tens of thousands of carbon nanotubes in their cross section and exhibiting piezoresistive characteristics that can be tapped to sense strain. This paper presents the details of novel foil strain gauge sensor configurations comprising carbon nanotube yarn as the piezoresistive sensing element. The foil strain gauge sensors are designed using the results of parametric studies that maximize the sensitivity of the sensors to mechanical loading. The fabrication details of the strain gauge sensors that exhibit the highest sensitivity, based on the modeling results, are described including the materials and procedures used in the first prototypes. Details of the calibration of the foil strain gauge sensors are also provided and discussed in the context of their electromechanical characterization when bonded to metallic specimens. This characterization included studying their response under monotonic and cyclic mechanical loading. It was shown that these foil strain gauge sensors comprising carbon nanotube yarn are sensitive enough to capture strain and can replicate the loading and unloading cycles. It was also observed that the loading rate affects their piezoresistive response and that the gauge factors were all above one order of magnitude higher than those of typical metallic foil strain gauges. Based on these calibration results on the initial sensor configurations, new foil strain gauge configurations will be designed and fabricated, to increase the strain gauge factors even more. PMID:29401745

  13. Cytomegalovirus sequence variability, amplicon length, and DNase-sensitive non-encapsidated genomes are obstacles to standardization and commutability of plasma viral load results.

    Science.gov (United States)

    Naegele, Klaudia; Lautenschlager, Irmeli; Gosert, Rainer; Loginov, Raisa; Bir, Katia; Helanterä, Ilkka; Schaub, Stefan; Khanna, Nina; Hirsch, Hans H

    2018-04-22

    Cytomegalovirus (CMV) management post-transplantation relies on quantification in blood, but inter-laboratory and inter-assay variability impairs commutability. An international multicenter study demonstrated that variability is mitigated by standardizing plasma volumes, automating DNA extraction and amplification, and calibration to the 1st-CMV-WHO-International-Standard as in the FDA-approved Roche-CAP/CTM-CMV. However, Roche-CAP/CTM-CMV showed under-quantification and false-negative results in a quality assurance program (UK-NEQAS-2014). To evaluate factors contributing to quantification variability of CMV viral load and to develop optimized CMV-UL54-QNAT. The UL54 target of the UK-NEQAS-2014 variant was sequenced and compared to 329 available CMV GenBank sequences. Four Basel-CMV-UL54-QNAT assays of 361 bp, 254 bp, 151 bp, and 95 bp amplicons were developed that only differed in reverse primer positions. The assays were validated using plasmid dilutions, UK-NEQAS-2014 sample, as well as 107 frozen and 69 prospectively collected plasma samples from transplant patients submitted for CMV QNAT, with and without DNase-digestion prior to nucleic acid extraction. Eight of 43 mutations were identified as relevant in the UK-NEQAS-2014 target. All Basel-CMV-UL54 QNATs quantified the UK-NEQAS-2014 but revealed 10-fold increasing CMV loads as amplicon size decreased. The inverse correlation of amplicon size and viral loads was confirmed using 1st-WHO-International-Standard and patient samples. DNase pre-treatment reduced plasma CMV loads by >90% indicating the presence of unprotected CMV genomic DNA. Sequence variability, amplicon length, and non-encapsidated genomes obstruct standardization and commutability of CMV loads needed to develop thresholds for clinical research and management. Besides regular sequence surveys, matrix and extraction standardization, we propose developing reference calibrators using 100 bp amplicons. Copyright © 2018 Elsevier B.V. All

  14. Calibration of the ORNL two-dimensional Thomson scattering system

    International Nuclear Information System (INIS)

    Thomas, C.E. Jr.; Lazarus, E.A.; Kindsfather, R.R.; Murakami, M.; Stewart, K.A.

    1985-10-01

    A unified presentation of the calibrations needed for accurate calculation of electron temperature and density from Thomson scattering data for the Oak Ridge National Laboratory two-dimensional Thomson scattering system (SCATPAK II) is made. Techniques are described for measuring the range of wavelengths to which each channel is responsive. A statistical method for calibrating the gain of each channel in the system is given, and methods of checking for internal consistency and accuracy are presented. The relationship between the constants describing the relative light collection efficiency of each channel and plasma light-scattering theory is developed, methods for measuring the channel efficiencies and evaluating their accuracy are described, and the effect on these constants of bending fiber optics is discussed. The use of Rayleigh or Raman scattering for absolute efficiency (density) calibration, stray light measurement, and system efficiency evaluation is discussed; the relative merits of Rayleigh vs Raman scattering are presented; and the relationship among the Rayleigh/Raman calibrations, relative channel efficiency constants, and absolute efficiencies is developed

  15. Remote calibration system of a smart electrical energy meter

    Directory of Open Access Journals (Sweden)

    Zakariae Jebroni

    2017-12-01

    Full Text Available The need to control the power grid in real time has opened a new field of research, today researchers are trying to design electrical meters that are completely remote controlled, to create an advanced metering infrastructure. One of the most important processes in the field of measurement is the calibration of measuring instruments. The calibration process of the electrical meters was performed at laboratories. However, the new directives, now, require a regular test of accuracy. Nevertheless, moving each time on site to check the accuracy of a meter can be annoying. To solve this problem our contribution is to propose a new structure of a smart meter that integrates a calibration card, so that, this process is carried out remotely. To be able to calibrate the meter or test its accuracy, we have included an AC-AC converter powered by the electrical grid and that provides a stable voltage independent of the electrical grid in term of frequency and amplitude. The output voltage of the converter is used as the reference signal during calibration or accuracy testing. In this paper, we will present the structure of the calibration card, the study and dimensioning of the converter, as well as the control technique used to eliminate variations of the input voltage. At the end, we will present the results of simulations and experiments.

  16. A portable, automated, inexpensive mass and balance calibration system

    International Nuclear Information System (INIS)

    Maxwell, S.L. III; Clark, J.P.

    1987-01-01

    Reliable mass measurements are essential for a nuclear production facility or process control laboratory. DOE Order 5630.2 requires that traceable standards be used to calibrate and monitor equipment used for nuclear material measurements. To ensure the reliability of mass measurements and to comply with DOE traceability requirements, a portable, automated mass and balance calibration system is used at the Savannah River Plant. Automation is achieved using an EPSON HX-20 notebook computer, which can be operated via RS232C interfacing to electronic balances or function with manual data entry if computer interfacing is not feasible. This economical, comprehensive, user-friendly system has three main functions in a mass measurement control program (MMCP): balance certification, calibration of mass standards, and daily measurement of traceable standards. The balance certification program tests for accuracy, precision, sensitivity, linearity, and cornerloading versus specific requirements. The mass calibration program allows rapid calibration of inexpensive mass standards traceable to certified Class S standards. This MMCP permits daily measurement of traceable standards to monitor the reliability of balances during routine use. The automated system verifies balance calibration, stores results for future use, and provides a printed control chart of the stored data. Another feature of the system permits three different weighing routines that accommodate their need for varying degrees of reliability in routine weighing operations

  17. A portable, automated, inexpensive mass and balance calibration system

    International Nuclear Information System (INIS)

    Maxwell, S.L. III; Clark, J.P.

    1987-01-01

    Reliable mass measurements are essential for a nuclear production facility or process control laboratory. DOE Order 5630.2 requires that traceable standards be used to calibrate and monitor equipment used for nuclear material measurements. To ensure the reliability of mass measurements and to comply with DOE traceable requirements, a portable, automated mass and balance calibration system is used at the Savannah River Plant. Automation is achieved using an EPSON HX-20 notebook computer, which can be operated via RS232C interfacing to electronic balances or function with manual data entry if computer interfacing is not feasible. This economical, comprehensive, user-friendly system has three main functions in a mass measurement control program (MMCP): balance certification, calibration of mass standards, and daily measurement of traceable standards. The balance certification program tests for accuracy, precision, sensitivity, linearity, and cornerloading versus specific requirements. The mass calibration program allows rapid calibration of inexpensive mass standards traceable to certified Class S standards. This MMCP permits daily measurement of traceable standards to monitor the reliability of balances during routine use. The automated system verifies balance calibration, stores results for future use, and provides a printed control chart of the stored data. Another feature of the system permits three different weighing routines that accommodate our need for varying degrees of reliability in routine weighing operations. 1 ref

  18. Investigation of factors affecting the calibration of strain gage based transducers (''Goodzeit gages'') for SSC magnets

    International Nuclear Information System (INIS)

    Davidson, M.; Gilbertson, A.; Dougherty, M.

    1991-03-01

    These transducers are designed to measure stresses on SSC collared coils. They are individually calibrated with a bonded ten-stack of SSC inner coil cable by applying a known load and reading corresponding output from the gages. The transducer is supported by a notched ''backing plate'' that allows for bending of the gage beam during calibration or in use with an actual coil. Several factors affecting the calibration and use of the transducers are: the number of times a ''backing plate'' is used, the similarities or difficulties between bonded ten-stacks, and the differences between the ten-stacks and the coil they represent. The latter is probably the most important because a calibration curve is a model of how a transducer should react within a coil. If the model is wrong, the calibration curve is wrong. Information will be presented regarding differences in calibrations between Brookhaven National Labs (also calibrating these transducers) and Fermilab -- what caused these differences, the investigation into the differences between coils and ten-stacks and how they relate to transducer calibration, and some suggestions for future calibrations

  19. Ten years of a National Service of Dosimetric calibration at radiation protection

    International Nuclear Information System (INIS)

    Morales, J.A.; Jova, L.; Hernandez, E.; Campa, R.; Walwyn, G.

    1996-01-01

    Since 1986, the CPHR has offered a national service of calibration of dosimetric instruments at levels of radiation protection. The history of such a service is the chronology of efforts to reduce the uncertainties of the calibration process, expand the ranges of useful dose rates, and enhance the radiological safety when using the sources. The crowning of those efforts is the complement and start-up of the secondary la laboratory of dosimetric calibration (SLDC), which is currently a member of the IAEA/WHO. SLDC international network. As a result of this service, 256 instruments have been calibration and 867 personal dosimeters film badges and TLD and 72 environmental TLD dosimeters have been irradiated at known doses. The service rendered has benefited 62 national institutions which are users of ionizing radiations

  20. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Zhao, H. L.; Liu, Y., E-mail: liuyong@ipp.ac.cn; Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California at Davis, Davis, California 95616 (United States)

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.