WorldWideScience

Sample records for loading method transdermal

  1. Effect of Drug Loading Method and Drug Physicochemical Properties on the Material and Drug Release Properties of Poly (Ethylene Oxide Hydrogels for Transdermal Delivery

    Directory of Open Access Journals (Sweden)

    Rachel Shet Hui Wong

    2017-07-01

    Full Text Available Novel poly (ethylene oxide (PEO hydrogel films were synthesized via UV cross-linking with pentaerythritol tetra-acrylate (PETRA as cross-linking agent. The purpose of this work was to develop a novel hydrogel film suitable for passive transdermal drug delivery via skin application. Hydrogels were loaded with model drugs (lidocaine hydrochloride (LID, diclofenac sodium (DIC and ibuprofen (IBU via post-loading and in situ loading methods. The effect of loading method and drug physicochemical properties on the material and drug release properties of medicated film samples were characterized using scanning electron microscopy (SEM, swelling studies, differential scanning calorimetry (DSC, fourier transform infrared spectroscopy (FT-IR, tensile testing, rheometry, and drug release studies. In situ loaded films showed better drug entrapment within the hydrogel network and also better polymer crystallinity. High drug release was observed from all studied formulations. In situ loaded LID had a plasticizing effect on PEO hydrogel, and films showed excellent mechanical properties and prolonged drug release. The drug release mechanism for the majority of medicated PEO hydrogel formulations was determined as both drug diffusion and polymer chain relaxation, which is highly desirable for controlled release formulations.

  2. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers.

    Science.gov (United States)

    Chen, Z X; Li, B; Liu, T; Wang, X; Zhu, Y; Wang, L; Wang, X H; Niu, X; Xiao, Y; Sun, Q

    2017-03-01

    Paeonol shows effective anti-allergic, anti-inflammatory and analgesic activities. However, because of its poor solubility in water and high volatility at room temperature, the application of this drug is restricted in the clinic. The objective of this research was to develop a biocompatible paeonol formulation with improved stability, skin delivery and pharmacokinetic efficiency. In this paper, paeonol-loaded vesicles were prepared using an ethanol injection method. Nano-vesicles were characterized for their physical properties and encapsulation efficiency (EE). Drug permeation behavior in vitro and deposition quantity in porcine ear skin were measured with a Valia-Chien (V-C) diffusion device. Additionally, a validated and sensitive high performance liquid chromatography (HPLC) method was developed to analyze paeonol concentrations in rat plasma after transdermal administration. The results showed that the particle-size order of the nano-vesicles was the following: transethosomes (122.5±7.5nm)transethosomes had a higher EE (85.5±5.2%), and they showed a spherical morphology with a smooth surface when viewed under a transmission electron microscope (TEM). In an in vitro permeation study, the paeonol transethosomes showed an enhanced transdermal flux of 95.7±8.8μg/cm 2 /h and a higher deposition quantity in porcine ear skin compared to the transfersomes. A one-compartment first-order absorption model could be used to describe the pharmacokinetics of paeonol in rats after transdermal administration. The AUC of the paeonol transethosomes was approximately 1.57- and 3.52-fold higher than those of the transfersomes and a saturated solution of paeonol in 35% ethanol, respectively. The results demonstrated that the paeonol transethosomes had a narrow size distribution, high encapsulation efficiency, and long residence in the plasma. This formulation remarkably enhanced the bioavailability of paeonol. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. TRANSDERMAL DRUG DELIVERY AND METHODS TO ENHANCE IT

    Directory of Open Access Journals (Sweden)

    E. G. Kuznetsova

    2016-01-01

    Full Text Available The paper presents the common methods employed in recent years for enhancing transdermal delivery of drug substances when applying transdermal therapeutic delivery systems. The chemical, physical and mechanical methods to enhance the transport of macromolecular compounds through the skin are considered in details. 

  4. Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis.

    Science.gov (United States)

    Toyoda, Mao; Hama, Susumu; Ikeda, Yutaka; Nagasaki, Yukio; Kogure, Kentaro

    2015-04-10

    Transdermal vaccination with cancer antigens is expected to become a useful anti-cancer therapy. However, it is difficult to accumulate enough antigen in the epidermis for effective exposure to Langerhans cells because of diffusion into the skin and muscle. Carriers, such as liposomes and nanoparticles, may be useful for the prevention of antigen diffusion. Iontophoresis, via application of a small electric current, is a noninvasive and efficient technology for transdermal drug delivery. Previously, we succeeded in the iontophoretic transdermal delivery of liposomes encapsulating insulin, and accumulation of polymer-based nanoparticle nanogels in the stratum corneum of the skin. Therefore, in the present study, we examined the use of iontophoresis with cancer antigen gp-100 peptide KVPRNQDWL-loaded nanogels for anti-cancer vaccination. Iontophoresis resulted in the accumulation of gp-100 peptide and nanogels in the epidermis, and subsequent increase in the number of Langerhans cells in the epidermis. Moreover, tumor growth was significantly suppressed by iontophoresis of the antigen peptide-loaded nanogels. Thus, iontophoresis of the antigen peptide-loaded nanogels may serve as an effective transdermal delivery system for anti-cancer vaccination. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Hydrogels containing redispersible spray-dried melatonin-loaded nanocapsules: a formulation for transdermal-controlled delivery

    Science.gov (United States)

    Hoffmeister, Cristiane RD; Durli, Taís L.; Schaffazick, Scheila R.; Raffin, Renata P.; Bender, Eduardo A.; Beck, Ruy CR; Pohlmann, Adriana R.; Guterres, Sílvia S.

    2012-05-01

    The aim of the present study was to develop a transdermal system for controlled delivery of melatonin combining three strategies: nanoencapsulation of melatonin, drying of melatonin-loaded nanocapsules, and incorporation of nanocapsules in a hydrophilic gel. Nanocapsules were prepared by interfacial deposition of the polymer and were spray-dried using water-soluble excipients. In vitro drug release profiles were evaluated by the dialysis bag method, and skin permeation studies were carried out using Franz cells with porcine skin as the membrane. The use of 10% ( w/ v) water-soluble excipients (lactose or maltodextrin) as spray-drying adjuvants furnished redispersible powders (redispersibility index approximately 1.0) suitable for incorporation into hydrogels. All formulations showed a better controlled in vitro release of melatonin compared with the melatonin solution. The best controlled release results were achieved with hydrogels prepared with dried nanocapsules (hydrogels > redispersed dried nanocapsules > nanocapsule suspension > melatonin solution). The skin permeation studies demonstrated a significant modulation of the transdermal melatonin permeation for hydrogels prepared with redispersible nanocapsules. In this way, the additive effect of the different approaches used in this study (nanoencapsulation, spray-drying, and preparation of semisolid dosage forms) allows not only the control of melatonin release, but also transdermal permeation.

  6. Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application

    Directory of Open Access Journals (Sweden)

    Mahmood S

    2014-09-01

    Full Text Available Syed Mahmood, Muhammad Taher, Uttam Kumar Mandal Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM, Pahang Darul Makmur, Malaysia Abstract: Raloxifene hydrochloride, a highly effective drug for the treatment of invasive breast cancer and osteoporosis in post-menopausal women, shows poor oral bioavailability of 2%. The aim of this study was to develop, statistically optimize, and characterize raloxifene hydrochloride-loaded transfersomes for transdermal delivery, in order to overcome the poor bioavailability issue with the drug. A response surface methodology experimental design was applied for the optimization of transfersomes, using Box-Behnken experimental design. Phospholipon® 90G, sodium deoxycholate, and sonication time, each at three levels, were selected as independent variables, while entrapment efficiency, vesicle size, and transdermal flux were identified as dependent variables. The formulation was characterized by surface morphology and shape, particle size, and zeta potential. Ex vivo transdermal flux was determined using a Hanson diffusion cell assembly, with rat skin as a barrier medium. Transfersomes from the optimized formulation were found to have spherical, unilamellar structures, with a ­homogeneous distribution and low polydispersity index (0.08. They had a particle size of 134±9 nM, with an entrapment efficiency of 91.00%±4.90%, and transdermal flux of 6.5±1.1 µg/cm2/hour. Raloxifene hydrochloride-loaded transfersomes proved significantly superior in terms of amount of drug permeated and deposited in the skin, with enhancement ratios of 6.25±1.50 and 9.25±2.40, respectively, when compared with drug-loaded conventional liposomes, and an ethanolic phosphate buffer saline. Differential scanning calorimetry study revealed a greater change in skin structure, compared with a control sample, during the ex vivo drug diffusion study. Further, confocal laser

  7. Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles

    Science.gov (United States)

    Elnaggar, Yosra SR; El-Massik, Magda A; Abdallah, Ossama Y

    2011-01-01

    Although sildenafil citrate (SC) is used extensively for erectile dysfunction, oral delivery of SC encounters many obstacles. Furthermore, the physicochemical characteristics of this amphoteric drug are challenging for delivery system formulation and transdermal permeation. This article concerns the assessment of the potential of nanomedicine for improving SC delivery and transdermal permeation. SC-loaded nanostructured lipid carriers (NLCs) and solid lipid nanoparticles (SLNs) were fabricated using a modified high-shear homogenization technique. Nanoparticle optimization steps included particle size analysis, entrapment efficiency (EE) determination, freeze-drying and reconstitution, differential scanning calorimetry, in vitro release, stability study and high-performance liquid chromatography analysis. Transdermal permeation of the nanocarriers compared with SC suspension across human skin was assessed using a modified Franz diffusion cell assembly. Results revealed that SLNs and NLCs could be optimized in the nanometric range (180 and 100 nm, respectively) with excellent EE (96.7% and 97.5%, respectively). Nanoparticles have significantly enhanced in vitro release and transdermal permeation of SC compared with its suspensions. Furthermore, transdermal permeation of SC exhibited higher initial release from both SLN and NLC formulations followed by controlled release, with promising implications for faster onset and longer drug duration. Nanomedicines prepared exhibited excellent physical stability for the study period. Solid nanoparticles optimized in this study successfully improved SC characteristics, paving the way for an efficient topical Viagra® product. PMID:22238508

  8. Efficient Transdermal Delivery of Alendronate, a Nitrogen-Containing Bisphosphonate, Using Tip-Loaded Self-Dissolving Microneedle Arrays for the Treatment of Osteoporosis.

    Science.gov (United States)

    Katsumi, Hidemasa; Tanaka, Yutaro; Hitomi, Kaori; Liu, Shu; Quan, Ying-Shu; Kamiyama, Fumio; Sakane, Toshiyasu; Yamamoto, Akira

    2017-08-17

    To improve the transdermal bioavailability and safety of alendronate (ALN), a nitrogen-containing bisphosphonate, we developed self-dissolving microneedle arrays (MNs), in which ALN is loaded only at the tip portion of micron-scale needles by a dip-coating method (ALN(TIP)-MN). We observed micron-scale pores in rat skin just after application of ALN(TIP)-MN, indicating that transdermal pathways for ALN were created by MN. ALN was rapidly released from the tip of MNs as observed in an in vitro release study. The tip portions of MNs completely dissolved in the rat skin within 5 min after application in vivo. After application of ALN(TIP)-MN in mice, the plasma concentration of ALN rapidly increased, and the bioavailability of ALN was approximately 96%. In addition, the decrease in growth plate was effectively suppressed by this efficient delivery of ALN in a rat model of osteoporosis. Furthermore, no skin irritation was observed after application of ALN(TIP)-MN and subcutaneous injection of ALN, while mild skin irritation was induced by whole-ALN-loaded MN (ALN-MN)-in which ALN is contained in the whole of the micron-scale needles fabricated from hyaluronic acid-and intradermal injection of ALN. These findings indicate that ALN(TIP)-MN is a promising transdermal formulation for the treatment of osteoporosis without skin irritation.

  9. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route.

    Science.gov (United States)

    Mangalathillam, Sabitha; Rejinold, N Sanoj; Nair, Amrita; Lakshmanan, Vinoth-Kumar; Nair, Shantikumar V; Jayakumar, Rangasamy

    2012-01-07

    In this study, curcumin loaded chitin nanogels (CCNGs) were developed using biocompatible and biodegradable chitin with an anticancer curcumin drug. Chitin, as well as curcumin, is insoluble in water. However, the developed CCNGs form a very good and stable dispersion in water. The CCNGs were analyzed by DLS, SEM and FTIR and showed spherical particles in a size range of 70-80 nm. The CCNGs showed higher release at acidic pH compared to neutral pH. The cytotoxicity of the nanogels were analyzed on human dermal fibroblast cells (HDF) and A375 (human melanoma) cell lines and the results show that CCNGs have specific toxicity on melanoma in a concentration range of 0.1-1.0 mg mL(-1), but less toxicity towards HDF cells. The confocal analysis confirmed the uptake of CCNGs by A375. The apoptotic effect of CCNGs was analyzed by a flow-cytometric assay and the results indicate that CCNGs at the higher concentration of the cytotoxic range showed comparable apoptosis as the control curcumin, in which there was negligible apoptosis induced by the control chitin nanogels. The CCNGs showed a 4-fold increase in steady state transdermal flux of curcumin as compared to that of control curcumin solution. The histopathology studies of the porcine skin samples treated with the prepared materials showed loosening of the horny layer of the epidermis, facilitating penetration with no observed signs of inflammation. These results suggest that the formulated CCNGs offer specific advantage for the treatment of melanoma, the most common and serious type of skin cancer, by effective transdermal penetration.

  10. Dual-functional transdermal drug delivery system with controllable drug loading based on thermosensitive poloxamer hydrogel for atopic dermatitis treatment

    Science.gov (United States)

    Wang, Wenyi; Wat, Elaine; Hui, Patrick C. L.; Chan, Ben; Ng, Frency S. F.; Kan, Chi-Wai; Wang, Xiaowen; Hu, Huawen; Wong, Eric C. W.; Lau, Clara B. S.; Leung, Ping-Chung

    2016-04-01

    The treatment of atopic dermatitis (AD) has long been viewed as a problematic issue by the medical profession. Although a wide variety of complementary therapies have been introduced, they fail to combine the skin moisturizing and drug supply for AD patients. This study reports the development of a thermo-sensitive Poloxamer 407/Carboxymethyl cellulose sodium (P407/CMCs) composite hydrogel formulation with twin functions of moisture and drug supply for AD treatment. It was found that the presence of CMCs can appreciably improve the physical properties of P407 hydrogel, which makes it more suitable for tailored drug loading. The fabricated P407/CMCs composite hydrogel was also characterized in terms of surface morphology by field emission scanning electron microscopy (FE-SEM), rheological properties by a rheometer, release profile in vitro by dialysis method and cytotoxicity test. More importantly, the findings from transdermal drug delivery behavior revealed that P407/CMCs showed desirable percutaneous performance. Additionally, analysis of cytotoxicity test suggested that P407/CMCs composite hydrogel is a high-security therapy for clinical trials and thus exhibits a promising way to treat AD with skin moisturizing and medication.

  11. Improvement of Transdermal Delivery of Exendin-4 Using Novel Tip-Loaded Microneedle Arrays Fabricated from Hyaluronic Acid.

    Science.gov (United States)

    Liu, Shu; Wu, Dan; Quan, Ying-Shu; Kamiyama, Fumio; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-01-04

    The purpose of this study was to evaluate the characteristics of exendin-4 tip-loaded microneedle arrays and to compare their acute efficacy with subcutaneous injections in type 2 diabetic GK/Slc rats. Fluorescein isothiocyanate labeled dextran with an average molecular weight of 4,000 (FD4) was selected as a model drug, and FD4 tip-loaded microneedle arrays were prepared in this study. In addition, intraperitoneal glucose tolerance tests after application of exendin-4 tip-loaded microneedle arrays were also compared with those after subcutaneous injection in type 2 diabetic GK/Slc rats. The release of FD4 from the tip-loaded microneedle arrays was very rapid, particularly in the initial 30 s, and most of the FD4 was released within 5 min. In addition, glucose tolerance was improved and the insulin secretion was enhanced after application of exendin-4 tip-loaded microneedle arrays, and these effects were comparable to those after subcutaneous injection of exendin-4. Similar plasma concentration profiles were seen after application of exendin-4 tip-loaded microneedle arrays, as was the case with subcutaneous injection in type 2 diabetic GK/Slc rats. These findings indicate that exendin-4 tip-loaded microneedle arrays can be used as an alternative to achieve sufficient delivery of exendin-4 for treatment of type 2 diabetes. To our knowledge, this is the first report of transdermal exendin-4 delivery using tip-loaded microneedle arrays.

  12. Dry Gel Containing Optimized Felodipine-Loaded Transferosomes: a Promising Transdermal Delivery System to Enhance Drug Bioavailability.

    Science.gov (United States)

    Kassem, Mohammed Ali; Aboul-Einien, Mona Hassan; El Taweel, Mai Magdy

    2018-04-30

    Felodipine has a very low bioavailability due to first-pass metabolism. The aim of this study was to enhance its bioavailability by transdermal application. Felodipine-loaded transferosomes were prepared by thin-film hydration using different formulation variables. An optimized formula was designed using statistical experimental design. The independent variables were the used edge activator, its molar ratio to phosphatidylcholine, and presence or absence of cholesterol. The responses were entrapment efficiency of transferosomes, their size, polydispersity index, zeta potential, and percent drug released after 8 h. The optimized formula was subjected to differential scanning calorimetry studies and its stability on storage at 4°C for 6 months was estimated. This formula was improved by incorporation of different permeation enhancers where ex vivo drug flux through mice skin was estimated and the best improved formula was formulated in a gel and lyophilized. The prepared gel was subjected to in vivo study using Plendil® tablets as a reference. According to the calculated desirability, the optimized transferosome formula was that containing sodium deoxycholate as edge activator at 5:1 M ratio to phosphatidylcholine and no cholesterol. The thermograms of this formula indicated the incorporation of felodipine inside the prepared vesicles. None of the tested parameters differed significantly on storage. The lyophilized gel of labrasol-containing formula was chosen for in vivo study. The relative bioavailability of felodipine from the designed gel was 1.7. In conclusion, topically applied lyophilized gel containing felodipine-loaded transferosomes is a promising transdermal delivery system to enhance its bioavailability.

  13. A New Drug Release Method in Early Development of Transdermal Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Bing Cai

    2012-01-01

    Full Text Available In vitro drug release tests are a widely used tool to measure the variance between transdermal product performances and required by many authorities. However, the result cannot provide a good estimation of the in vivo drug release. In the present work, a new method for measuring drug release from patches has been explored and compared with the conventional USP apparatus 2 and 5 methods. Durogesic patches, here used as a model patch, were placed on synthetic skin simulator and three moisture levels (29, 57, 198 μL cm−2 were evaluated. The synthetic skin simulators were collected after 1, 2, 3, 4, 6, and 24 hours and extracted with pH 1.0 hydrochloric acid solution. The drug concentrations in the extractions were measured by isocratic reverse phase high-pressure liquid chromatography. The results showed that, with the increasing moisture level on the synthetic skin simulator, the drug release rate increased. In comparison with the conventional USP method, the drug release results performed by the new method were in more correlation to the release rate claimed in the product label. This new method could help to differentiate the drug release rates among assorted formulations of transdermal drug delivery systems in the early stage of development.

  14. Encapsulated Curcumin for Transdermal Administration

    African Journals Online (AJOL)

    Purpose: To develop a proniosomal carrier system of curcumin for transdermal delivery. Methods: Proniosomes of curcumin were prepared by encapsulation of the drug in a mixture of Span 80, cholesterol and diethyl ether by ether injection method, and then investigated as a transdermal drug delivery system (TDDS).

  15. "INTRODUCING A FULL VALIDATED ANALYTICAL PROCEDURE AS AN OFFICIAL COMPENDIAL METHOD FOR FENTANYL TRANSDERMAL PATCHES"

    Directory of Open Access Journals (Sweden)

    Amir Mehdizadeh

    2005-04-01

    Full Text Available A simple, sensitive and specific HPLC method and also a simple and fast extraction procedure were developed for quantitative analysis of fentanyl transdermal patches. Chloroform, methanol and ethanol were used as extracting solvents with recovery percent of 92.1, 94.3 and 99.4% respectively. Fentanyl was extracted with ethanol and the eluted fentanyl through the C18 column was monitored by UV detection at 230 nm. The linearity was at the range of 0.5-10 µg/mL with correlation coefficient (r2 of 0.9992. Both intra and inter-day accuracy and precision were within acceptable limits. The detection limit (DL and quantitation limit (QL were 0.15 and 0.5 µg/mL, respectively. Other validation characteristics such as selectivity, robustness and ruggedness were evaluated. Following method validation, a system suitability test (SST including capacity factor (k´, plate number (N, tailing factor (T, and RSD was defined for routine test.

  16. Promotion of the transdermal delivery of protein drugs by N-trimethyl chitosan nanoparticles combined with polypropylene electret.

    Science.gov (United States)

    Tu, Ye; Wang, Xinxia; Lu, Ying; Zhang, He; Yu, Yuan; Chen, Yan; Liu, Junjie; Sun, Zhiguo; Cui, Lili; Gao, Jing; Zhong, Yanqiang

    We recently reported that electret, which was prepared by a corona charging system with polypropylene film, could enhance the transdermal delivery of several drugs of low molecular weight. The aim of this study was to investigate whether electret could enhance the transdermal delivery of protein drugs by N -trimethyl chitosan nanoparticles (TMC NPs) prepared by an ionic gelation method. A series of experiments were performed, including in vitro skin permeation assays and anti-inflammatory effects, to evaluate the transdermal delivery of protein drugs by TMC NPs in the presence of electret. The results showed that in the presence of electret, the transdermal delivery of protein drugs in TMC NPs was significantly enhanced, as demonstrated by in vitro permeation studies and confocal laser scanning microscopy. Notably, superoxide dismutase-loaded TMC NPs combined with electret exhibited the best inhibitory effect on the edema of the mouse ear. TMC NPs combined with electret represent a novel platform for the transdermal delivery of protein drugs.

  17. Transdermal granisetron.

    Science.gov (United States)

    Duggan, Sean T; Curran, Monique P

    2009-01-01

    Granisetron is a highly selective serotonin 5-HT(3) receptor antagonist for the prevention of chemotherapy-induced nausea and vomiting. The transdermal granisetron system delivers continuous granisetron (3.1 mg/day) into the systemic circulation (via passive diffusion) for up to 7 days. In a large phase III trial in cancer patients receiving multi-day (3-5 days) moderately or highly emetogenic chemotherapy, transdermal granisetron applied 24-48 hours prior to chemotherapy and remaining in place for 7 days was noninferior to oral granisetron 2 mg once daily administered for 3-5 days 1 hour prior to chemotherapy. Efficacy was assessed according to the proportion of patients achieving complete response (no vomiting and/or retching, no more than mild nausea, no rescue medication) from the first day, until 24 hours after the start of the last day, of administration of the chemotherapy regimen. In a phase II trial in patients with cancer receiving single-day, moderately-emetogenic chemotherapy, transdermal granisetron applied at least 24 hours prior to chemotherapy and removed after 5 days was as effective as a single oral dose of granisetron 2 mg in achieving total control (no nausea, no vomiting/retching, no use of rescue medication and no study withdrawal) during the delayed (24-120 hours; primary endpoint) period after chemotherapy. Transdermal granisetron was generally well tolerated in clinical trials, with few adverse events being treatment related.

  18. Method for loading resin beds

    International Nuclear Information System (INIS)

    Notz, K.J.; Rainey, R.H.; Greene, C.W.; Shockley, W.E.

    1978-01-01

    An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145 to 200 0 C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145 0 C with a second aqueous component to provide a gaseous phase containing HNO 3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate

  19. Challenges and opportunities in dermal/transdermal delivery

    OpenAIRE

    Paudel, Kalpana S; Milewski, Mikolaj; Swadley, Courtney L; Brogden, Nicole K; Ghosh, Priyanka; Stinchcomb, Audra L

    2010-01-01

    Transdermal drug delivery is an exciting and challenging area. There are numerous transdermal delivery systems currently available on the market. However, the transdermal market still remains limited to a narrow range of drugs. Further advances in transdermal delivery depend on the ability to overcome the challenges faced regarding the permeation and skin irritation of the drug molecules. Emergence of novel techniques for skin permeation enhancement and development of methods to lessen skin i...

  20. Chemical Penetration Enhancers for Transdermal Drug Delivery ...

    African Journals Online (AJOL)

    for transdermal administration. The permeation of drug through skin can be enhanced by both chemical penetration enhancement and physical methods. In this review, we have discussed the chemical penetration enhancement technology for transdermal drug delivery as well as the probable mechanisms of action.

  1. Effect of liquid-to-solid lipid ratio on characterizations of flurbiprofen-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) for transdermal administration.

    Science.gov (United States)

    Song, Aihua; Zhang, Xiaoshu; Li, Yanting; Mao, Xinjuan; Han, Fei

    2016-08-01

    The aim of this study is to evaluate the effect of liquid-to-solid lipid ratio on properties of flurbiprofen-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), and to clarify the superiority of NLCs over SLNs for transdermal administration. Particle size, zeta potential, drug encapsulation efficiency, in vitro occlusion factor, differential scanning calorimetry, X-ray diffractometry, in vitro percutaneous permeation profile, and stability of SLNs and NLCs were compared. Particle size, zeta potential, drug encapsulation efficiency, in vitro occlusion factor, and in vitro percutaneous permeation amount of the developed NLCs were all 78%, >35, and >240 μg/cm(2), respectively, however, for SLNs were 280 nm, -29.11 mV, 63.2%, 32.54, and 225.9 μg/cm(2), respectively. After 3 months storage at 4 °C and 25 °C, almost no significant differences between the evaluated parameters of NLCs were observed. However, for SLNs, particle size was increased to higher than 300 nm (4 °C and 25 °C), drug encapsulation efficiency was decreased to 51.2 (25 °C), in vitro occlusion factor was also decreased to lower than 25 (4 °C and 25 °C), and the cumulative amount was decreased to 148.9 μg/cm(2) (25 °C) and 184.4 μg/cm(2) (4 °C), respectively. And DSC and XRD studies indicated that not only the crystalline peaks of the encapsulated flurbiprofen disappeared but also obvious difference between samples and bulk Compritol® ATO 888 was seen. It could be concluded that liquid-to-solid lipid ratio has significant impact on the properties of SLNs and NLCs, and NLCs showed better stability than SLNs. Therefore, NLCs might be a better option than SLNs for transdermal administration.

  2. Formulation, in vitro and in vivo evaluation of transdermal patches containing risperidone.

    Science.gov (United States)

    Aggarwal, Geeta; Dhawan, Sanju; Hari Kumar, S L

    2013-01-01

    The efficacy of oral risperidone treatment in prevention of schizophrenia is well known. However, oral side effects and patient compliance is always a problem for schizophrenics. In this study, risperidone was formulated into matrix transdermal patches to overcome these problems. The formulation factors for such patches, including eudragit RL 100 and eudragit RS 100 as matrix forming polymers, olive oil, groundnut oil and jojoba oil in different concentrations as enhancers and amount of drug loaded were investigated. The transdermal patches containing risperidone were prepared by solvent casting method and characterized for physicochemical and in vitro permeation studies through excised rat skin. Among the tested preparations, formulations with 20% risperidone, 3:2 ERL 100 and ERS 100 as polymers, mixture of olive oil and jojoba oil as enhancer, exhibited greatest cumulative amount of drug permeated (1.87 ± 0.09 mg/cm(2)) in 72 h, so batch ROJ was concluded as optimized formulation and assessed for pharmacokinetic, pharmacodynamic and skin irritation potential. The pharmacokinetic characteristics of the optimized risperidone patch were determined using rabbits, while orally administered risperidone in solution was used for comparison. The calculated relative bioavailability of risperidone transdermal patch was 115.20% with prolonged release of drug. Neuroleptic efficacy of transdermal formulation was assessed by rota-rod and grip test in comparison with control and marketed oral formulations with no skin irritation. This suggests the transdermal application of risperidone holds promise for improved bioavailability and better management of schizophrenia in long-term basis.

  3. Efficient Load Scheduling Method For Power Management

    Directory of Open Access Journals (Sweden)

    Vijo M Joy

    2015-08-01

    Full Text Available An efficient load scheduling method to meet varying power supply needs is presented in this paper. At peak load times the power generation system fails due to its instability. Traditionally we use load shedding process. In load shedding process disconnect the unnecessary and extra loads. The proposed method overcomes this problem by scheduling the load based on the requirement. Artificial neural networks are used for this optimal load scheduling process. For generate economic scheduling artificial neural network has been used because generation of power from each source is economically different. In this the total load required is the inputs of this network and the power generation from each source and power losses at the time of transmission are the output of the neural network. Training and programming of the artificial neural networks are done using MATLAB.

  4. Spray-on transdermal drug delivery systems.

    Science.gov (United States)

    Ibrahim, Sarah A

    2015-02-01

    Transdermal drug delivery possesses superior advantages over other routes of administration, particularly minimizing first-pass metabolism. Transdermal drug delivery is challenged by the barrier nature of skin. Numerous technologies have been developed to overcome the relatively low skin permeability, including spray-on transdermal systems. A transdermal spray-on system (TSS) usually consists of a solution containing the drug, a volatile solvent and in many cases a chemical penetration enhancer. TSS promotes drug delivery via the complex interplay between solvent evaporation and drug-solvent drag into skin. The volatile solvent carries the drug into the upper layers of the stratum corneum, and as the volatile solvent evaporates, an increase in the thermodynamic activity of the drug occurs resulting in an increased drug loading in skin. TSS is easily applied, delivering flexible drug dosage and associated with lower incidence of skin irritation. TSS provides a fast-drying product where the volatile solvent enables uniform drug distribution with minimal vehicle deposition on skin. TSS ensures precise dose administration that is aesthetically appealing and eliminates concerns of residual drug associated with transdermal patches. Furthermore, it provides a better alternative to traditional transdermal products due to ease of product development and manufacturing.

  5. Alfuzosin hydrochloride transdermal films: evaluation of physicochemical, in vitro human cadaver skin permeation and thermodynamic parameters

    Directory of Open Access Journals (Sweden)

    Satyanarayan Pattnaik

    2009-12-01

    Full Text Available Purpose: The main objective of the investigation was to develop a transdermal therapeutic system for alfuzosin hydrochloride and to study the effects of polymeric system and loading dose on the in vitro skin permeation pattern. Materials and methods: Principles of experimental design have been exploited to develop the dosage form. Ratio of ethyl cellulose (EC and polyvinyl pyrrolidone (PVP and loading dose were selected as independent variables and their influence on the cumulative amount of alfuzosin hydrochloride permeated per cm2 of human cadaver skin at 24 h (Q24, permeation flux (J and steady state permeability coefficient (P SS were studied using experimental design. Various physicochemical parameters of the transdermal films were also evaluated. Activation energy for in vitro transdermal permeation has been estimated. Results: Ratio of EC and PVP was found to be the main influential factor for all the dependent variables studied. Drug loading dose was also found to influence the dependent variables but to a lesser extent. Physicochemical parameters of the prepared films were evaluated and found satisfactory. Activation energy for alfuzosin permeation has also been estimated and reported. Conclusion: The therapeutic system was found to be dermatologically non-irritant and hence, a therapeutically effective amount of alfuzosin hydrochloride can be delivered via a transdermal route.

  6. Effects of transdermally administered nicotine on aspects of attention, task load, and mood in women and men.

    Science.gov (United States)

    Trimmel, Michael; Wittberger, Susanne

    2004-07-01

    This double-blind placebo-controlled study was conducted to determine nicotine effects on diverse types of attentional performance, task load, and mood considering sex effects as suggested by animal studies. Twelve smokers, 12 deprived smokers and 12 nonsmokers (6 females, 6 males in each group) were investigated. Participants were treated either by 5 mg/16 h nicotine patches (Nicorette) or placebo. Effects of treatment were examined by a computerized attention-test battery; mood was assessed by the Berliner-Alltagssprachliches-Stimmungs-Inventar and task load by the NASA Task Load Index (NASA-TLX). Results showed that nicotine significantly increased the number of hits and decreased reaction time (RT) in the vigilance task. In the selective attention task combined with irrelevant speech as background noise, nicotine enhanced rate of hits. Although it was indicated that nicotine leads to a generally higher accuracy in attention tasks, response time of visual search was prolonged, contradicting a universal facilitation by nicotine. Participants experienced mental demand and temporal demand lower and rated alertness higher when in the nicotine condition. These effects were independent of smoking status, indicating "true" nicotine effects. Females took significant advantage of nicotine in the vigilance task, reaching the performance level of males, accompanied by a higher rated alertness. Results indicate task- and sex-dependent nicotine effects.

  7. Quality by design approach for formulation, evaluation and statistical optimization of diclofenac-loaded ethosomes via transdermal route.

    Science.gov (United States)

    Jain, Shashank; Patel, Niketkumar; Madan, Parshotam; Lin, Senshang

    2015-06-01

    The objective of this study was to fabricate and understand ethosomal formulations of diclofenac (DF) for enhanced anti-inflammatory activity using quality by design approach. DF-loaded ethosomal formulations were prepared using 4 × 5 full-factorial design with phosphatidylcholine:cholesterol (PC:CH) ratios ranging between 50:50 and 90:10, and ethanol concentration ranging between 0% and 30% as formulation variables. These formulations were characterized in terms of physicochemical properties and skin permeation kinetics. The interaction of formulation variables had a significant effect on both physicochemical properties and permeation kinetics. The results of multivariate regression analysis illustrated that vesicle size and elasticity of ethosomes were the dominating physicochemical properties affecting skin permeation, and could be suitably controlled by manipulation of formulation variables to optimize the formulation and enhance the skin permeation of DF-loaded ethosomes. The optimized formulation had ethanol concentration of 22.9% and PC:CH ratio of 88.4:11.6, with vesicle size of 144 ± 5 nm, zeta potential of -23.0 ± 3.76 mV, elasticity of 2.48 ± 0.75 and entrapment efficiency of 71 ± 4%. Permeation flux for the optimized formulation was 12.9 ± 1.0 µg/h cm(2), which was significantly higher than the drug-loaded conventional liposome, ethanolic or aqueous solution. The in vivo study indicated that optimized ethosomal hydrogel exhibited enhanced anti-inflammatory activity compared with liposomal and plain drug hydrogel formulations.

  8. Challenges and opportunities in dermal/transdermal delivery

    Science.gov (United States)

    Paudel, Kalpana S; Milewski, Mikolaj; Swadley, Courtney L; Brogden, Nicole K; Ghosh, Priyanka; Stinchcomb, Audra L

    2010-01-01

    Transdermal drug delivery is an exciting and challenging area. There are numerous transdermal delivery systems currently available on the market. However, the transdermal market still remains limited to a narrow range of drugs. Further advances in transdermal delivery depend on the ability to overcome the challenges faced regarding the permeation and skin irritation of the drug molecules. Emergence of novel techniques for skin permeation enhancement and development of methods to lessen skin irritation would widen the transdermal market for hydrophilic compounds, macromolecules and conventional drugs for new therapeutic indications. As evident from the ongoing clinical trials of a wide variety of drugs for various clinical conditions, there is a great future for transdermal delivery of drugs. PMID:21132122

  9. Granisetron Transdermal Patch

    Science.gov (United States)

    Granisetron transdermal patches are used to prevent nausea and vomiting caused by chemotherapy. Granisetron is in a class of medications called 5HT3 ... Granisetron transdermal comes as a patch to apply to the skin. It is usually applied 24 to ...

  10. Reliability of Estimation Pile Load Capacity Methods

    Directory of Open Access Journals (Sweden)

    Yudhi Lastiasih

    2014-04-01

    Full Text Available None of numerous previous methods for predicting pile capacity is known how accurate any of them are when compared with the actual ultimate capacity of piles tested to failure. The author’s of the present paper have conducted such an analysis, based on 130 data sets of field loading tests. Out of these 130 data sets, only 44 could be analysed, of which 15 were conducted until the piles actually reached failure. The pile prediction methods used were: Brinch Hansen’s method (1963, Chin’s method (1970, Decourt’s Extrapolation Method (1999, Mazurkiewicz’s method (1972, Van der Veen’s method (1953, and the Quadratic Hyperbolic Method proposed by Lastiasih et al. (2012. It was obtained that all the above methods were sufficiently reliable when applied to data from pile loading tests that loaded to reach failure. However, when applied to data from pile loading tests that loaded without reaching failure, the methods that yielded lower values for correction factor N are more recommended. Finally, the empirical method of Reese and O’Neill (1988 was found to be reliable enough to be used to estimate the Qult of a pile foundation based on soil data only.

  11. Pile Load Capacity – Calculation Methods

    Directory of Open Access Journals (Sweden)

    Wrana Bogumił

    2015-12-01

    Full Text Available The article is a review of the current problems of the foundation pile capacity calculations. The article considers the main principles of pile capacity calculations presented in Eurocode 7 and other methods with adequate explanations. Two main methods are presented: α – method used to calculate the short-term load capacity of piles in cohesive soils and β – method used to calculate the long-term load capacity of piles in both cohesive and cohesionless soils. Moreover, methods based on cone CPTu result are presented as well as the pile capacity problem based on static tests.

  12. Loading method of core constituting elements

    International Nuclear Information System (INIS)

    Kasai, Shigeo

    1976-01-01

    Purpose: To provide a remote-controlled replacing method for core constituting elements in a liquid-metal cooling fast breeder, wherein particularly, the core constituting elements are prevented from being loaded on the core position other than as designated. Constitution: The method comprises a first step which determines a position of a suitable neutron shielding body in order to measure a reference level of complete insertion of the core constituting elements, a second step which inserts a gripper for a fuel exchanger, a third step which decides stroke dimensions of the complete insertion, and a fourth step which discriminates the core constituting elements to begin handling of fuel rods. The method further comprises a fifth step which determines a loading position of fuel rod, and a sixth step which inserts and loads fuel rods into the core. The method still further comprises a seventh step which compares and judges the dimension of loading stroke and the dimension of complete inserting stroke so that when coincided, loading is completed, and when not coincided, loading is not completed and then the cycle of the fourth step is repeated. (Kawakami, Y.)

  13. Transdermal fentanyl matrix patches Matrifen and Durogesic DTrans are bioequivalent

    DEFF Research Database (Denmark)

    Kress, Hans G; Boss, Hildegard; Delvin, Thomas

    2010-01-01

    AIM: The pharmacokinetic profiles of the two commercially available transdermal fentanyl patches Matrifen (100 microg/h) and Durogesic DTrans (100 microg/h), used to manage severe chronic pain, were compared regarding their systemic exposure, rate of absorption, and safety. METHODS: Transdermal m...

  14. Estradiol Transdermal Patch

    Science.gov (United States)

    ... menopause (change of life; the end of monthly menstrual periods). Transdermal estradiol is also used to prevent ... patch. Ask your pharmacist or doctor for a copy of the manufacturer's information for the patient.

  15. Transdermal drug delivery

    OpenAIRE

    Prausnitz, Mark R.; Langer, Robert

    2008-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability ...

  16. Alghedon Fentanyl Transdermal System.

    Science.gov (United States)

    Romualdi, Patrizia; Santi, Patrizia; Candeletti, Sanzio

    2017-04-01

    The efficacy of transdermal fentanyl for cancer pain and chronic non-cancer pain (chronic lower back pain, rheumatoid arthritis, osteoarthritis, neuropathic pain) is well established. Several formulations of fentanyl transdermal systems have been developed to improve the drug delivery and prevent misuse of the active principle. The addition of a rate controlling membrane to the matrix system represented an important advance. The design and functional features of Alghedon patch are compared with other approved generic fentanyl transdermal systems, emphasizing the distinctiveness of Alghedon patch. Alghedon patch has no liquid component in the finished product, therefore no leakage of active ingredient from the system can occur. A rate-controlling membrane provides controlled release of the active substance from the matrix reservoir, ensuring that fentanyl delivery and entry into the microcirculation is not solely controlled by the skin's permeability to this active substance. Alghedon patch contains part of the drug (approximately 15%) in the skin-contact adhesive: this innovative solution allows to overcome a typical drawback of transdermal patches, i.e. the long lag-time before the drug appears in plasma after the first administration, and provides rapid analgesia during the first hours of administration. Alghedon Fentanyl Transdermal System employs materials commonly used in other transdermal applications and having established safety profiles. For each strength level, the fentanyl content - and, thus, the resulting residual fentanyl remaining in the patch after use - is at the lowest end of the range used in commercially available fentanyl patches, minimizing the potential for abuse and misuse.

  17. Curable off-loading footwear and methods

    DEFF Research Database (Denmark)

    2007-01-01

    Custom footbed devices, methods of constructing the devices and kits for constructing custom footbeds are disclosed that may be particularly advantageous in the treatment of plantar ulcers. The devices offer the advantage of off-loading pressure from the plantar ulcers in a device that is easy to...

  18. TRANSDERMAL DRUG DELIVERY SYSTEM: REVIEW

    OpenAIRE

    Vishvakarama Prabhakar; Agarwal Shivendra; Sharma Ritika; Saurabh Sharma

    2012-01-01

    Various new technologies have been developed for the transdermal delivery of some important drugs. Today about 74% of drugs are taken orally and are found not to be as effective as desired. To improve such characters transdermal drug delivery system was emerged. Drug delivery through the skin to achieve a systemic effect of a drug is commonly known as transdermal drug delivery and differs from traditional topical drug delivery. Transdermal drug delivery systems (TDDS) are dosage forms involve...

  19. From the Cover: Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies

    Science.gov (United States)

    McAllister, Devin V.; Wang, Ping M.; Davis, Shawn P.; Park, Jung-Hwan; Canatella, Paul J.; Allen, Mark G.; Prausnitz, Mark R.

    2003-11-01

    Arrays of micrometer-scale needles could be used to deliver drugs, proteins, and particles across skin in a minimally invasive manner. We therefore developed microfabrication techniques for silicon, metal, and biodegradable polymer microneedle arrays having solid and hollow bores with tapered and beveled tips and feature sizes from 1 to 1,000 μm. When solid microneedles were used, skin permeability was increased in vitro by orders of magnitude for macromolecules and particles up to 50 nm in radius. Intracellular delivery of molecules into viable cells was also achieved with high efficiency. Hollow microneedles permitted flow of microliter quantities into skin in vivo, including microinjection of insulin to reduce blood glucose levels in diabetic rats. transdermal drug delivery | skin | microelectromechanical systems | solid microneedle | hollow needle injection

  20. Formulation optimization of transdermal meloxicam potassium-loaded mesomorphic phases containing ethanol, oleic acid and mixture surfactant using the statistical experimental design methodology.

    Science.gov (United States)

    Huang, Chi-Te; Tsai, Chia-Hsun; Tsou, Hsin-Yeh; Huang, Yaw-Bin; Tsai, Yi-Hung; Wu, Pao-Chu

    2011-01-01

    Response surface methodology (RSM) was used to develop and optimize the mesomorphic phase formulation for a meloxicam transdermal dosage form. A mixture design was applied to prepare formulations which consisted of three independent variables including oleic acid (X(1)), distilled water (X(2)) and ethanol (X(3)). The flux and lag time (LT) were selected as dependent variables. The result showed that using mesomorphic phases as vehicles can significantly increase flux and shorten LT of drug. The analysis of variance showed that the permeation parameters of meloxicam from formulations were significantly influenced by the independent variables and their interactions. The X(3) (ethanol) had the greatest potential influence on the flux and LT, followed by X(1) and X(2). A new formulation was prepared according to the independent levels provided by RSM. The observed responses were in close agreement with the predicted values, demonstrating that RSM could be successfully used to optimize mesomorphic phase formulations.

  1. Transdermal drug delivery

    Science.gov (United States)

    Prausnitz, Mark R.; Langer, Robert

    2009-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin’s barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase impact on medicine. PMID:18997767

  2. Lipid Nanocapsule-Based Gels for Enhancement of Transdermal Delivery of Ketorolac Tromethamine

    Directory of Open Access Journals (Sweden)

    Jaleh Varshosaz

    2011-01-01

    Full Text Available Previous reports show ineffective transdermal delivery of ketorolac by nanostructured lipid carriers (NLCs. The aim of the present work was enhancement of transdermal delivery of ketorolac by another colloidal carriers, lipid nanocapsules (LNCs. LNCs were prepared by emulsification with phase transition method and mixed in a Carbomer 934P gel base with oleic acid or propylene glycol as penetration enhancers. Permeation studies were performed by Franz diffusion cell using excised rat abdominal skin. Aerosil-induced rat paw edema model was used to investigate the in vivo performance. LNCs containing polyethylene glycol hydroxyl stearate, lecithin in Labrafac as the oily phase, and dilution of the primary emulsion with 3.5-fold volume of cold water produced the optimized nanoparticles. The 1% Carbomer gel base containing 10% oleic acid loaded with nanoparticles enhanced and prolonged the anti-inflammatory effects of this drug to more than 12 h in Aerosil-induced rat paw edema model.

  3. Perspectives on Transdermal Electroporation

    Science.gov (United States)

    Ita, Kevin

    2016-01-01

    Transdermal drug delivery offers several advantages, including avoidance of erratic absorption, absence of gastric irritation, painlessness, noninvasiveness, as well as improvement in patient compliance. With this mode of drug administration, there is no pre-systemic metabolism and it is possible to increase drug bioavailability and half-life. However, only a few molecules can be delivered across the skin in therapeutic quantities. This is because of the hindrance provided by the stratum corneum. Several techniques have been developed and used over the last few decades for transdermal drug delivery enhancement. These include sonophoresis, iontophoresis, microneedles, and electroporation. Electroporation, which refers to the temporary perturbation of the skin following the application of high voltage electric pulses, has been used to increase transcutaneous flux values by several research groups. In this review, transdermal electroporation is discussed and the use of the technique for percutaneous transport of low and high molecular weight compounds described. This review also examines our current knowledge regarding the mechanisms of electroporation and safety concerns arising from the use of this transdermal drug delivery technique. Safety considerations are especially important because electroporation utilizes high voltage pulses which may have deleterious effects in some cases. PMID:26999191

  4. Hyaluronan-Based Nanohydrogels as Effective Carriers for Transdermal Delivery of Lipophilic Agents: Towards Transdermal Drug Administration in Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Seong Uk Son

    2017-12-01

    Full Text Available We suggest a convenient nanoemulsion fabrication method to create hyaluronan (HA-based nanohydrogels for effective transdermal delivery. First, hyaluronan-conjugated dodecylamine (HA–Do HA-based polymers to load the lipophilic agents were synthesized with hyaluronan (HA and dodecylamine (Do by varying the substitution ratio of Do to HA. The synthetic yield of HA–Do was more than 80% (HA–Do (A: 82.7 ± 4.7%, HA–Do (B: 87.1 ± 3.9% and HA–Do (C: 81.4 ± 4.5%. Subsequently, nanohydrogels were fabricated using the nanoemulsion method. Indocyanine green (ICG simultaneously self-assembled with HA–Do, and the size depended on the substitution ratio of Do in HA–Do (nanohydrogel (A: 118.0 ± 2.2 nm, nanohydrogel (B: 121.9 ± 11.4 nm, and nanohydrogel (C: 142.2 ± 3.8 nm. The nanohydrogels were delivered into cells, and had excellent biocompatibility. Especially, nanohydrogel (A could deliver and permeate ICG into the deep skin layer, the dermis. This suggests that nanohydrogels can be potent transdermal delivery systems.

  5. Load forecasting method considering temperature effect for distribution network

    Directory of Open Access Journals (Sweden)

    Meng Xiao Fang

    2016-01-01

    Full Text Available To improve the accuracy of load forecasting, the temperature factor was introduced into the load forecasting in this paper. This paper analyzed the characteristics of power load variation, and researched the rule of the load with the temperature change. Based on the linear regression analysis, the mathematical model of load forecasting was presented with considering the temperature effect, and the steps of load forecasting were given. Used MATLAB, the temperature regression coefficient was calculated. Using the load forecasting model, the full-day load forecasting and time-sharing load forecasting were carried out. By comparing and analyzing the forecast error, the results showed that the error of time-sharing load forecasting method was small in this paper. The forecasting method is an effective method to improve the accuracy of load forecasting.

  6. Load power device, system and method of load control and management employing load identification

    Science.gov (United States)

    Yang, Yi; Luebke, Charles John; Schoepf, Thomas J.

    2018-01-09

    A load power device includes a power input, at least one power output for at least one load, a plurality of sensors structured to sense voltage and current at the at least one power output, and a processor. The processor provides: (a) load identification based upon the sensed voltage and current, and (b) load control and management based upon the load identification.

  7. Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy

    Directory of Open Access Journals (Sweden)

    Sudipta Chatterjee

    2018-04-01

    Full Text Available Various natural and synthetic polymers are capable of showing thermoresponsive properties and their hydrogels are finding a wide range of biomedical applications including drug delivery, tissue engineering and wound healing. Thermoresponsive hydrogels use temperature as external stimulus to show sol-gel transition and most of the thermoresponsive polymers can form hydrogels around body temperature. The availability of natural thermoresponsive polymers and multiple preparation methods of synthetic polymers, simple preparation method and high functionality of thermoresponsive hydrogels offer many advantages for developing drug delivery systems based on thermoresponsive hydrogels. In textile field applications of thermoresponsive hydrogels, textile based transdermal therapy is currently being applied using drug loaded thermoresponsive hydrogels. The current review focuses on the preparation, physico-chemical properties and various biomedical applications of thermoresponsive hydrogels based on natural and synthetic polymers and especially, their applications in developing functionalized textiles for transdermal therapies. Finally, future prospects of dual responsive (pH/temperature hydrogels made by these polymers for textile based transdermal treatments are mentioned in this review.

  8. Recent trends in challenges and opportunities of Transdermal drug delivery system

    OpenAIRE

    P.M.Patil; P.D.Chaudhari; Jalpa K.Patel; K.A.Kedar; P.P.Katolkar

    2012-01-01

    Drug delivery system relates to the production of a drug, its delivery medium, and the way of administration. Drug delivery systems are even used for administering nitroglycerin. Transdermal drug delivery system is the system in which the delivery of the active ingredients of the drug occurs by the means of skin. Various types of transdermal patches are used. There are various methods to enhance the transdermal drug delivery system. But using microfabricated microneedles drugs are delivered v...

  9. Microneedle-mediated transdermal delivery of nanostructured lipid carriers for alkaloids from Aconitum sinomontanum.

    Science.gov (United States)

    Guo, Teng; Zhang, Yongtai; Li, Zhe; Zhao, Jihui; Feng, Nianping

    2017-09-12

    A combination method using microneedle (MN) pretreatment and nanostructured lipid carriers (NLCs) was developed to improve the transdermal delivery of therapeutics. The MN treatment of the skin and co-administration of NLCs loaded with total alkaloids isolated from Aconitum sinomontanum (AAS-NLCs) significantly increased the skin permeation of the drugs. Fluorescence imaging confirmed that MNs could provide microchannels penetrating the stratum corneum, and delivery of NLCs through the channels led to their deeper permeation. In vivo studies showed that combination of AAS-NLCs with MNs (AAS-NLCs-MN) in transdermal delivery could improve the bioavailability and maintain stable drug concentrations in the blood. Moreover, AAS-NLCs-MN showed benefits in eliminating paw swelling, decreasing inflammation and pain, and regulating immune function in adjuvant arthritis rats. After administration of AAS-NLCs-MN, no skin irritation was observed in rabbits, and electrocardiograms of rats showed improved arrhythmia. These results indicated that the dual approach combining MN insertion and NLCs has the potential to provide safe transdermal delivery and to improve the therapeutic efficacy through sustained release of AAS.

  10. Transdermic absorption of Melagenina II

    International Nuclear Information System (INIS)

    Hernandez Gonzalez, I.; Martinez Lopez, B.; Ruiz Pena, M.; Caso Pena, R.

    1997-01-01

    The transdermic absorption of Melagenina II (MII) was evaluated. MII was a labelled with 125I by the yodogen method and purified by column chromatography with Sephadex LH-20 in ethanol: water (7:3). In vitro absorption of ( 125I ) - MII thought human skin was carried out in Keshary-Chien modified diffusion cells. Tape stripping method was applied after 24 hours to evaluate the accumulated activity in dermis and epidermis. In vivo assays were performed in Sprague Dawley rats to analyze absorption of MII until 24 hours after a single application and for five days a low penetrability of the drug while in vivo there were not found blood levels significantly greater than zero , nevertheless and important amount of radioactivity was found in feces and urine. The activity was concentrated mainly in the application site in both models

  11. Transdermal hyoscine induced unilateral mydriasis.

    LENUS (Irish Health Repository)

    Hannon, Breffni

    2012-03-20

    The authors present a case of unilateral mydriasis in a teenager prescribed transdermal hyoscine hydrobromide (scopolamine) for chemotherapy induced nausea and vomiting. The authors discuss the ocular side-effects associated with this particular drug and delivery system and the potential use of transdermal hyoscine as an antiemetic agent in this group.

  12. Load management in electrical networks. Objectives, methods, prospects

    International Nuclear Information System (INIS)

    Gabioud, D.

    2008-01-01

    This illustrated article takes up the problems related to the variation of the load in electricity networks. How to handle the peak load? Different solutions in the energy demand management are discussed. Method based on the price, method based on the reduction of the load by electric utilities. Information systems are presented which gives the consumer the needed data to participate in the local load management.

  13. Methods for Analyzing Electric Load Shape and its Variability

    Energy Technology Data Exchange (ETDEWEB)

    Price, Philip

    2010-05-12

    Current methods of summarizing and analyzing electric load shape are discussed briefly and compared. Simple rules of thumb for graphical display of load shapes are suggested. We propose a set of parameters that quantitatively describe the load shape in many buildings. Using the example of a linear regression model to predict load shape from time and temperature, we show how quantities such as the load?s sensitivity to outdoor temperature, and the effectiveness of demand response (DR), can be quantified. Examples are presented using real building data.

  14. Efficacy of a single dose of a transdermal diclofenac patch as pre ...

    African Journals Online (AJOL)

    Background: We compared the analgesic efficacy of a transdermal diclofenac patch 100 mg (NuPatch® 100, Zydus Cadila, Ahmedabad, India) and intramuscular diclofenac sodium 75 mg (Voveran®, Novartis, India) for postoperative analgesia, and the associated side-effects of the transdermal diclofenac patch. Method: ...

  15. Conductive polymer nanotube patch for fast and controlled in vivo transdermal drug delivery

    Science.gov (United States)

    Nguyen, Thao M.

    Transdermal drug delivery has created new applications for existing therapies and offered an alternative to the traditional oral route where drugs can prematurely metabolize in the liver causing adverse side effects. Opening the transdermal delivery route to large hydrophilic drugs is one of the greatest challenges due to the hydrophobicity of the skin. However, the ability to deliver hydrophilic drugs using a transdermal patch would provide a solution to problems of other delivery methods for hydrophilic drugs. The switching of conductive polymers (CP) between redox states cause simultaneous changes in the polymer charge, conductivity, and volume—properties that can all be exploited in the biomedical field of controlled drug delivery. Using the template synthesis method, poly(3,4-ethylenedioxythiophene (PEDOT) nanotubes were synthesized electrochemically and a transdermal drug delivery patch was successfully designed and developed. In vitro and in vivo uptake and release of hydrophilic drugs were investigated. The relationship between the strength of the applied potential and rate of drug release were also investigated. Results revealed that the strength of the applied potential is proportional to the rate of drug release; therefore one can control the rate of drug release by controlling the applied potential. The in vitro studies focused on the kinetics of the drug delivery system. It was determined that the drug released mainly followed zero-order kinetics. In addition, it was determined that applying a releasing potential to the transdermal drug delivery system lead to a higher release rate constant (up to 7 times greater) over an extended period of time (˜24h). In addition, over 24 hours, an average of 80% more model drug molecules were released with an applied potential than without. The in vivo study showed that the drug delivery system was capable of delivering model hydrophilic drugs molecules through the dermis layer of the skin within 30 minutes

  16. System and method employing a minimum distance and a load feature database to identify electric load types of different electric loads

    Science.gov (United States)

    Lu, Bin; Yang, Yi; Sharma, Santosh K; Zambare, Prachi; Madane, Mayura A

    2014-12-23

    A method identifies electric load types of a plurality of different electric loads. The method includes providing a load feature database of a plurality of different electric load types, each of the different electric load types including a first load feature vector having at least four different load features; sensing a voltage signal and a current signal for each of the different electric loads; determining a second load feature vector comprising at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the different electric loads; and identifying by a processor one of the different electric load types by determining a minimum distance of the second load feature vector to the first load feature vector of the different electric load types of the load feature database.

  17. [Analysis on preparation and characterization of asiaticoside-loaded flexible nanoliposomes].

    Science.gov (United States)

    Ren, Yan; He, Xing-Dong; Shang, Bei-Cheng; Bao, Xiu-Kun; Wang, Yan-Fang; Ma, Ji-Sheng

    2013-10-01

    Asiaticoside is a compound extracted from traditional Chinese medicine Centella asiatica, and mainly used in wound healing and scar repair in clinical, with notable efficacy. However, its poor transdermal absorption and short action time restrict its wide application. In this experiment, the reserve-phase-extrusion-lyophilization method was conducted to prepare the lyophilized asiaticoside-loaded flexible nanoliposomes (LAFL). Its characteristics including electron microscope structure, particle size, Zeta potential, entrapment rate, drug-loading rate, stability and drug release were determined with the intelligent transdermal absorption instrument. LAFL were white spheroids, with pH, particle size and zeta potential of 7. 03, 70. 14 nm and - 36. 5 mV, respectively. The average entrapment rate of the 3 batch samples were 31. 43% , and the average asiaticoside content in 1 mg lyophilized simple was 0. 134 mg. The results indicated that LAFL have good physicochemical properties and pharmaceutical characteristics, with an improved transdermal performance.

  18. Pharmacokinetic characteristics of formulated alendronate transdermal delivery systems in rats and humans.

    Science.gov (United States)

    Choi, Ahyoung; Gang, Hyesil; Whang, Jiae; Gwak, Hyesun

    2010-05-01

    The objective of this study was to examine the absorption of alendronate from formulated transdermal delivery systems in rats and humans. When alendronate was applied to rats by transdermal delivery systems (7.2 mg) and oral administration (30 mg/kg), a statistically significant difference was found in the amount remaining to be excreted at time t (Ae(t)) and the amount remaining to be excreted at time 0 (Ae(infinity)) (p transdermal delivery systems. There was a linear relationship (r(2) = 0.9854) between the drug loading dose and Ae(infinity). The Ae(infinity) values from the transdermal delivery system containing 6% caprylic acid (53.8 mg as alendronate) and an oral product (Fosamax), 70 mg as alendronate) in humans were 127.0 +/- 34.2 microg and 237.2 +/- 56.3 microg, respectively. The dose-adjusted relative Ae(infinity) ratio of the transdermal delivery system to oral product was calculated to be 69.7%. The long half-life of alendronate in the transdermal delivery system (50.6 +/- 6.4 h), compared to that of the oral product (3.5 +/- 1.1 h) could allow less-frequent dosing. In conclusion, this study showed that a transdermal delivery system containing 6% caprylic acid in PG could be a favorable alternative for alendronate administration.

  19. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation

    Directory of Open Access Journals (Sweden)

    Abdulbaqi IM

    2018-04-01

    Full Text Available Ibrahim M Abdulbaqi, Yusrida Darwis, Reem Abou Assi, Nurzalina Abdul Karim Khan School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia Introduction: Colchicine is used for the treatment of gout, pseudo-gout, familial Mediterranean fever, and many other illnesses. Its oral administration is associated with poor bioavailability and severe gastrointestinal side effects. The drug is also known to have a low therapeutic index. Thus to overcome these drawbacks, the transdermal delivery of colchicine was investigated using transethosomal gels as potential carriers.Methods: Colchicine-loaded transethosomes (TEs were prepared by the cold method and statistically optimized using three sets of 24 factorial design experiments. The optimized formulations were incorporated into Carbopol 940® gel base. The prepared colchicine-loaded transethosomal gels were further characterized for vesicular size, dispersity, zeta potential, drug content, pH, viscosity, yield, rheological behavior, and ex vivo skin permeation through Sprague Dawley rats’ back skin.Results: The results showed that the colchicine-loaded TEs had aspherical irregular shape, nanometric size range, and high entrapment efficiency. All the formulated gels exhibited non-Newtonian plastic flow without thixotropy. Colchicine-loaded transethosomal gels were able to significantly enhance the skin permeation parameters of the drug in comparison to the non-ethosomal gel.Conclusion: These findings suggested that the transethosomal gels are promising carriers for the transdermal delivery of colchicine, providing an alternative route for drug administration. Keywords: transethosomes, ethosomal nanocarriers, colchicine, factorial design, skin permeation, rheology

  20. Transdermal Delivery of Drugs with Microneedles—Potential and Challenges

    Directory of Open Access Journals (Sweden)

    Kevin Ita

    2015-06-01

    Full Text Available Transdermal drug delivery offers a number of advantages including improved patient compliance, sustained release, avoidance of gastric irritation, as well as elimination of pre-systemic first-pass effect. However, only few medications can be delivered through the transdermal route in therapeutic amounts. Microneedles can be used to enhance transdermal drug delivery. In this review, different types of microneedles are described and their methods of fabrication highlighted. Microneedles can be fabricated in different forms: hollow, solid, and dissolving. There are also hydrogel-forming microneedles. A special attention is paid to hydrogel-forming microneedles. These are innovative microneedles which do not contain drugs but imbibe interstitial fluid to form continuous conduits between dermal microcirculation and an attached patch-type reservoir. Several microneedles approved by regulatory authorities for clinical use are also examined. The last part of this review discusses concerns and challenges regarding microneedle use.

  1. System and method employing a self-organizing map load feature database to identify electric load types of different electric loads

    Science.gov (United States)

    Lu, Bin; Harley, Ronald G.; Du, Liang; Yang, Yi; Sharma, Santosh K.; Zambare, Prachi; Madane, Mayura A.

    2014-06-17

    A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; employing a weight vector for each of the neurons; sensing a voltage signal and a current signal for each of the loads; determining a load feature vector including at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the loads; and identifying by a processor one of the load types by relating the load feature vector to the neurons of the database by identifying the weight vector of one of the neurons corresponding to the one of the load types that is a minimal distance to the load feature vector.

  2. Increased skin permeation efficiency of imperatorin via charged ultradeformable lipid vesicles for transdermal delivery

    Directory of Open Access Journals (Sweden)

    Lin HW

    2018-02-01

    Full Text Available Hongwei Lin,1,2 Qingchun Xie,1,2 Xin Huang,1,2 Junfeng Ban,1,2 Bo Wang,1,2 Xing Wei,3 Yanzhong Chen,1,2 Zhufen Lu1,2 1Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China; 2Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China; 3Guangdong Shennong Chinese Medicine Research Institute, Guangzhou, People’s Republic of China Aim: The aim of this work was to develop a novel vesicular carrier, ultradeformable liposomes (UDLs, to expand the applications of the Chinese herbal medicine, imperatorin (IMP, and increase its transdermal delivery. Methods: In this study, we prepared IMP-loaded UDLs using the thin-film hydration method and evaluated their encapsulation efficiency, vesicle deformability, skin permeation, and the amounts accumulated in different depths of the skin in vitro. The influence of different charged surfactants on the properties of the UDLs was also investigated. Results: The results showed that the UDLs containing cationic surfactants had high entrapment efficiency (60.32%±2.82%, an acceptable particle size (82.4±0.65 nm, high elasticity, and prolonged drug release. The penetration rate of IMP in cationic-UDLs was 3.45-fold greater than that of IMP suspension, which was the highest value among the vesicular carriers. UDLs modified with cationic surfactant also showed higher fluorescence intensity in deeper regions of the epidermis. Conclusion: The results of our study suggest that cationic surfactant-modified UDLs could increase the transdermal flux, prolong the release of the drug, and serve as an effective dermal delivery system for IMP. Keywords: ultradeformable liposomes, cationic, imperatorin, skin permeation, transdermal drug delivery

  3. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation.

    Science.gov (United States)

    Abdulbaqi, Ibrahim M; Darwis, Yusrida; Assi, Reem Abou; Khan, Nurzalina Abdul Karim

    2018-01-01

    Colchicine is used for the treatment of gout, pseudo-gout, familial Mediterranean fever, and many other illnesses. Its oral administration is associated with poor bioavailability and severe gastrointestinal side effects. The drug is also known to have a low therapeutic index. Thus to overcome these drawbacks, the transdermal delivery of colchicine was investigated using transethosomal gels as potential carriers. Colchicine-loaded transethosomes (TEs) were prepared by the cold method and statistically optimized using three sets of 24 factorial design experiments. The optimized formulations were incorporated into Carbopol 940 ® gel base. The prepared colchicine-loaded transethosomal gels were further characterized for vesicular size, dispersity, zeta potential, drug content, pH, viscosity, yield, rheological behavior, and ex vivo skin permeation through Sprague Dawley rats' back skin. The results showed that the colchicine-loaded TEs had aspherical irregular shape, nanometric size range, and high entrapment efficiency. All the formulated gels exhibited non-Newtonian plastic flow without thixotropy. Colchicine-loaded transethosomal gels were able to significantly enhance the skin permeation parameters of the drug in comparison to the non-ethosomal gel. These findings suggested that the transethosomal gels are promising carriers for the transdermal delivery of colchicine, providing an alternative route for drug administration.

  4. An alternative method for centrifugal compressor loading factor modelling

    Science.gov (United States)

    Galerkin, Y.; Drozdov, A.; Rekstin, A.; Soldatova, K.

    2017-08-01

    The loading factor at design point is calculated by one or other empirical formula in classical design methods. Performance modelling as a whole is out of consideration. Test data of compressor stages demonstrates that loading factor versus flow coefficient at the impeller exit has a linear character independent of compressibility. Known Universal Modelling Method exploits this fact. Two points define the function - loading factor at design point and at zero flow rate. The proper formulae include empirical coefficients. A good modelling result is possible if the choice of coefficients is based on experience and close analogs. Earlier Y. Galerkin and K. Soldatova had proposed to define loading factor performance by the angle of its inclination to the ordinate axis and by the loading factor at zero flow rate. Simple and definite equations with four geometry parameters were proposed for loading factor performance calculated for inviscid flow. The authors of this publication have studied the test performance of thirteen stages of different types. The equations are proposed with universal empirical coefficients. The calculation error lies in the range of plus to minus 1,5%. The alternative model of a loading factor performance modelling is included in new versions of the Universal Modelling Method.

  5. Short term load forecasting of anomalous load using hybrid soft computing methods

    Science.gov (United States)

    Rasyid, S. A.; Abdullah, A. G.; Mulyadi, Y.

    2016-04-01

    Load forecast accuracy will have an impact on the generation cost is more economical. The use of electrical energy by consumers on holiday, show the tendency of the load patterns are not identical, it is different from the pattern of the load on a normal day. It is then defined as a anomalous load. In this paper, the method of hybrid ANN-Particle Swarm proposed to improve the accuracy of anomalous load forecasting that often occur on holidays. The proposed methodology has been used to forecast the half-hourly electricity demand for power systems in the Indonesia National Electricity Market in West Java region. Experiments were conducted by testing various of learning rate and learning data input. Performance of this methodology will be validated with real data from the national of electricity company. The result of observations show that the proposed formula is very effective to short-term load forecasting in the case of anomalous load. Hybrid ANN-Swarm Particle relatively simple and easy as a analysis tool by engineers.

  6. Design and Development of a Proniosomal Transdermal Drug ...

    African Journals Online (AJOL)

    Purpose: The aim of the study was to develop a proniosomal carrier system for captopril for the treatment of hypertension that is capable of efficiently delivering entrapped drug over an extended period of time. Method: The potential of proniosomes as a transdermal drug delivery system for captopril was investigated by ...

  7. Analysis of nifedipine content in transdermal drug delivery system using non-destructive visible spectrophotometry technique

    International Nuclear Information System (INIS)

    Normaizira Hamidi; Normaizira Hamidi; Normaizira Hamidi; Mohd Nasir Taib; Mohd Nasir Taib; Wui, Wong Tin; Wui, Wong Tin

    2008-01-01

    The applicability of visible spectrophotometry technique as a tool to determine the drug content of polymeric film for use as a transdermal drug delivery system was investigated. Hydroxypropylmethycellulose (HPMC) was selected as the matrix polymer and nifedipine as the model drug. Blank and nifedipine-loaded HPMC films were prepared using the solvent evaporation method. The absorbance spectra of these films under the visible wavelengths between 400 and 800 nm were assessed and compared against the drug content values obtained by means of the conventional destructive UV- spectrophotometry technique. The latter required the use of a solvent system which contained methanol, a harmful organic component in pharmaceutical applications. The results indicated that the absorbance values, attributed to nifedipine, at the wavelengths of 545, 585, 638 and 755nm were significantly correlated to the drug content values obtained using the chemical assay method (Pearson correlation value: r = 0.990 and p < 0.01). The visible spectrophotometry technique is potentially suitable for use to determine the nifedipine content of films owing to its nature of characterization of transdermal drug delivery system which does not require sample destruction during the process of measurement. The samples are recoverable from test and analysis of the entire batch of samples is possible without the need of solvents and chemical reagents. (author)

  8. Dorzolamide Loaded Niosomal Vesicles: Comparison of Passive and Remote Loading Methods.

    Science.gov (United States)

    Hashemi Dehaghi, Mohadeseh; Haeri, Azadeh; Keshvari, Hamid; Abbasian, Zahra; Dadashzadeh, Simin

    2017-01-01

    Glaucoma is a common progressive eye disorder and the treatment strategies will benefit from nanoparticulate delivery systems with high drug loading and sustained delivery of intraocular pressure lowering agents. Niosomes have been reported as a novel approach to improve drug low corneal penetration and bioavailability characteristics. Along with this, poor entrapment efficiency of hydrophilic drug in niosomal formulation remains as a major formulation challenge. Taking this perspective into consideration, dorzolamide niosomes were prepared employing two different loading methodologies (passive and remote loading methods) and the effects of various formulation variables (lipid to drug ratio, cholesterol percentage, drug concentration, freeze/thaw cycles, TPGS content, and external and internal buffer molarity and pH) on encapsulation efficiency were assessed. Encapsulation of dorzolamide within niosomes increased remarkably by the incorporation of higher cholesterol percentage as well as increasing the total lipid concentration. Remote loading method showed higher efficacy for drug entrapment compared to passive loading technique. Incorporation of TPGS in bilayer led to decrease in EE; however, retarded drug release rate. Scanning electron microscopy (SEM) studies confirmed homogeneous particle distribution, and spherical shape with smooth surface. In conclusion, the highest encapsulation can be obtained using phosphate gradient method and 50% cholesterol in Span 60 niosomal formulation.

  9. Assessment of load extrapolation methods for wind turbines

    DEFF Research Database (Denmark)

    Toft, H.S.; Sørensen, John Dalsgaard; Veldkamp, D.

    2010-01-01

    an approximate analytical solution for the distribution of the peaks is given by Rice. In the present paper three different methods for statistical load extrapolation are compared with the analytical solution for one mean wind speed. The methods considered are global maxima, block maxima and the peak over...

  10. Assessment of Load Extrapolation Methods for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard; Veldkamp, Dick

    2011-01-01

    , an approximate analytical solution for the distribution of the peaks is given by Rice. In the present paper, three different methods for statistical load extrapolation are compared with the analytical solution for one mean wind speed. The methods considered are global maxima, block maxima, and the peak over...

  11. Transdermal Spray in Hormone Delivery

    African Journals Online (AJOL)

    market for the delivery system and ongoing development of transdermal sprays for hormone ... (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts ... patches and gels have been very popular owing ... This product was developed for ... In a safety announcement, the US Food and.

  12. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine

    Science.gov (United States)

    Hong, Xiaoyun; Wei, Liangming; Wu, Fei; Wu, Zaozhan; Chen, Lizhu; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    Microneedles were first conceptualized for drug delivery many decades ago, overcoming the shortages and preserving the advantages of hypodermic needle and conventional transdermal drug-delivery systems to some extent. Dissolving and biodegradable microneedle technologies have been used for transdermal sustained deliveries of different drugs and vaccines. This review describes microneedle geometry and the representative dissolving and biodegradable microneedle delivery methods via the skin, followed by the fabricating methods. Finally, this review puts forward some perspectives that require further investigation. PMID:24039404

  13. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation

    Directory of Open Access Journals (Sweden)

    Reshmy Rajan

    2011-01-01

    Full Text Available Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era.

  14. Increased skin permeation efficiency of imperatorin via charged ultradeformable lipid vesicles for transdermal delivery.

    Science.gov (United States)

    Lin, Hongwei; Xie, Qingchun; Huang, Xin; Ban, Junfeng; Wang, Bo; Wei, Xing; Chen, Yanzhong; Lu, Zhufen

    2018-01-01

    The aim of this work was to develop a novel vesicular carrier, ultradeformable liposomes (UDLs), to expand the applications of the Chinese herbal medicine, imperatorin (IMP), and increase its transdermal delivery. In this study, we prepared IMP-loaded UDLs using the thin-film hydration method and evaluated their encapsulation efficiency, vesicle deformability, skin permeation, and the amounts accumulated in different depths of the skin in vitro. The influence of different charged surfactants on the properties of the UDLs was also investigated. The results showed that the UDLs containing cationic surfactants had high entrapment efficiency (60.32%±2.82%), an acceptable particle size (82.4±0.65 nm), high elasticity, and prolonged drug release. The penetration rate of IMP in cationic-UDLs was 3.45-fold greater than that of IMP suspension, which was the highest value among the vesicular carriers. UDLs modified with cationic surfactant also showed higher fluorescence intensity in deeper regions of the epidermis. The results of our study suggest that cationic surfactant-modified UDLs could increase the transdermal flux, prolong the release of the drug, and serve as an effective dermal delivery system for IMP.

  15. Short-term electric load forecasting using computational intelligence methods

    OpenAIRE

    Jurado, Sergio; Peralta, J.; Nebot, Àngela; Mugica, Francisco; Cortez, Paulo

    2013-01-01

    Accurate time series forecasting is a key issue to support individual and organizational decision making. In this paper, we introduce several methods for short-term electric load forecasting. All the presented methods stem from computational intelligence techniques: Random Forest, Nonlinear Autoregressive Neural Networks, Evolutionary Support Vector Machines and Fuzzy Inductive Reasoning. The performance of the suggested methods is experimentally justified with several experiments carried out...

  16. Hermitian Mindlin Plate Wavelet Finite Element Method for Load Identification

    Directory of Open Access Journals (Sweden)

    Xiaofeng Xue

    2016-01-01

    Full Text Available A new Hermitian Mindlin plate wavelet element is proposed. The two-dimensional Hermitian cubic spline interpolation wavelet is substituted into finite element functions to construct frequency response function (FRF. It uses a system’s FRF and response spectrums to calculate load spectrums and then derives loads in the time domain via the inverse fast Fourier transform. By simulating different excitation cases, Hermitian cubic spline wavelets on the interval (HCSWI finite elements are used to reverse load identification in the Mindlin plate. The singular value decomposition (SVD method is adopted to solve the ill-posed inverse problem. Compared with ANSYS results, HCSWI Mindlin plate element can accurately identify the applied load. Numerical results show that the algorithm of HCSWI Mindlin plate element is effective. The accuracy of HCSWI can be verified by comparing the FRF of HCSWI and ANSYS elements with the experiment data. The experiment proves that the load identification of HCSWI Mindlin plate is effective and precise by using the FRF and response spectrums to calculate the loads.

  17. Research on a Method of Geographical Information Service Load Balancing

    Science.gov (United States)

    Li, Heyuan; Li, Yongxing; Xue, Zhiyong; Feng, Tao

    2018-05-01

    With the development of geographical information service technologies, how to achieve the intelligent scheduling and high concurrent access of geographical information service resources based on load balancing is a focal point of current study. This paper presents an algorithm of dynamic load balancing. In the algorithm, types of geographical information service are matched with the corresponding server group, then the RED algorithm is combined with the method of double threshold effectively to judge the load state of serve node, finally the service is scheduled based on weighted probabilistic in a certain period. At the last, an experiment system is built based on cluster server, which proves the effectiveness of the method presented in this paper.

  18. In vitro and ex vivo evaluations on transdermal delivery of the HIV inhibitor IQP-0410.

    Directory of Open Access Journals (Sweden)

    Anthony S Ham

    Full Text Available The aim of this study was to investigate the physicochemical and in vitro/ex vivo characteristics of the pyrmidinedione IQP-0410 formulated into transdermal films. IQP-0410 is a potent therapeutic anti-HIV nonnucleoside reverse transcriptase inhibitor that would be subjected to extensive first pass metabolism, through conventional oral administration. Therefore, IQP-0410 was formulated into ethyl cellulose/HPMC-based transdermal films via solvent casting. In mano evaluations were performed to evaluate gross physical characteristics. In vitro release studies were performed in both Franz cells and USP-4 dissolution vessels. Ex vivo release and permeability assays were performed on human epidermal tissue models, and the permeated IQP-0410 was collected for in vitro HIV-1 efficacy assays in CEM-SS cells and PBMCs. Film formulation D3 resulted in pliable, strong transdermal films that were loaded with 2% (w/w IQP-0410. Composed of 60% (w/w ethyl cellulose and 20% (w/w HPMC, the films contained < 1.2% (w/w of water and were hygroscopic resulting in significant swelling under humid conditions. The water permeable nature of the film resulted in complete in vitro dissolution and drug release in 26 hours. When applied to ex vivo epidermal tissues, the films were non-toxic to the tissue and also were non-toxic to HIV target cells used in the in vitro efficacy assays. Over a 3 day application, the films delivered IQP-0410 through the skin tissue at a zero-order rate of 0.94 ± 0.06 µg/cm(2/hr with 134 ± 14.7 µM collected in the basal media. The delivered IQP-0410 resulted in in vitro EC50 values against HIV-1 of 2.56 ± 0.40 nM (CEM-SS and 0.58 ± 0.03 nM (PBMC. The film formulation demonstrated no significant deviation from target values when packaged in foil pouches under standard and accelerated environmental conditions. It was concluded that the transdermal film formulation was a potentially viable method of administering IQP-0410 that warrants

  19. MICRONEEDLES AS A WAY TO INCREASE THE TRANSDERMAL INSULIN DELIVERY

    Directory of Open Access Journals (Sweden)

    E. G. Kuznetsova

    2016-01-01

    Full Text Available Aim: to prove the possibility of increasing the diffusion of insulin through the skin in vitro with pre-applying microneedles.Materials and methods. Microemulsion for transdermal therapeutic system of insulin has been used in vitro studies. Genetically engineered human insulin has been used in this research. Applicators with silicon microneedles (40 and 150 microns long have been used to enhance the diffusion fl ux of drug substance. The dynamics of insulin release from the transdermal therapeutic systems through the rabbit skin has been studied in glass Franz diffusion cells in analyzer diffusion of drugs HDT 1000 (Copley Scientifi c Ltd., UK. Insulin has been labeled with fl uorescein isothiocyanate to separate the insulin absorption spectrum from the spectra of native skin proteins at spectrophotometer measurements.Results. The amounts of insulin delivered through the skin in vitro after previous application of microneedles of 40 and 150 microns are 282.5 ± 61.1 and 372.3 ± 7.0 microgram, respectively. This is 1.4 and 1.9 times more than in the transdermal system without microneedles.Conclusion. The conditions for increasing the diffusion of insulin through the skin in a model transdermal therapeutic system with microneedles (length – 150 microns, duration of pre-application – 1 hour have been found.

  20. How can lipid nanocarriers improve transdermal delivery of olanzapine?

    Science.gov (United States)

    Iqbal, Nimra; Vitorino, Carla; Taylor, Kevin M G

    2017-06-01

    The development of a transdermal nanocarrier drug delivery system with potential for the treatment of psychiatric disorders, such as schizophrenia and bipolar disorder, is described. Lipid nanocarriers (LN), encompassing various solid:liquid lipid compositions were formulated and assessed as potential nanosystems for transdermal delivery of olanzapine. A previously optimized method of hot high pressure homogenization (HPH) was adopted for the production of the LN, which comprised solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and nanoemulsions (NE). Precirol  ® was selected as the solid lipid for progression of studies. SLN exhibited the best performance for transdermal delivery of olanzapine, based on in vitro release and permeation studies, coupled with results from physicochemical characterization of several solid:liquid lipid formulations. Stability tests, performed to give an indication of long-term storage behavior of the formulations, were in good agreement with previous studies for the best choice of solid:liquid lipid ratio. Overall, these findings highlight the SLN-based formulation as promising for the further inclusion in and production of transdermal patches, representing an innovative therapeutic approach.

  1. Acetylated cashew gum-based nanoparticles for transdermal delivery of diclofenac diethyl amine.

    Science.gov (United States)

    Dias, Sávia Francisca Lopes; Nogueira, Silvania Siqueira; de França Dourado, Flaviane; Guimarães, Maria Adelaide; de Oliveira Pitombeira, Nádia Aline; Gobbo, Graciely Gomides; Primo, Fernando Lucas; de Paula, Regina Célia Monteiro; Feitosa, Judith Pessoa Andrade; Tedesco, Antonio Claudio; Nunes, Lívio Cesar Cunha; Leite, José Roberto Souza Almeida; da Silva, Durcilene Alves

    2016-06-05

    Nanoprecipitation and dialysis methods were employed to obtain nanoparticles (NPs) of acetylated cashew gum (ACG). NPs synthesized by dialysis showed greater average size compared to those synthesized by nanoprecipitation, but they presented improved stability and yield. NPs were loaded with diclofenac diethylamine and the efficiency of the drug incorporation was over 60% for both methods, for an ACG:NP a weight ratio of 10:1. The cytotoxicity assay demonstrated that the NPs had no significant effect on the cell viability, verifying their biocompatibility. The release profile for the diclofenac diethylamine associated with the ACG-NPs showed a more controlled release compared to the free drug and a Fickian diffusion mechanism was observed. Transdermal permeation reached 90% penetration of the drug. Copyright © 2016. Published by Elsevier Ltd.

  2. Computational and experimental model of transdermal iontophorethic drug delivery system.

    Science.gov (United States)

    Filipovic, Nenad; Saveljic, Igor; Rac, Vladislav; Graells, Beatriz Olalde; Bijelic, Goran

    2017-11-30

    The concept of iontophoresis is often applied to increase the transdermal transport of drugs and other bioactive agents into the skin or other tissues. It is a non-invasive drug delivery method which involves electromigration and electroosmosis in addition to diffusion and is shown to be a viable alternative to conventional administration routs such as oral, hypodermic and intravenous injection. In this study we investigated, experimentally and numerically, in vitro drug delivery of dexamethasone sodium phosphate to porcine skin. Different current densities, delivery durations and drug loads were investigated experimentally and introduced as boundary conditions for numerical simulations. Nernst-Planck equation was used for calculation of active substance flux through equivalent model of homogeneous hydrogel and skin layers. The obtained numerical results were in good agreement with experimental observations. A comprehensive in-silico platform, which includes appropriate numerical tools for fitting, could contribute to iontophoretic drug-delivery devices design and correct dosage and drug clearance profiles as well as to perform much faster in-silico experiments to better determine parameters and performance criteria of iontophoretic drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Biodegradable 3D printed polymer microneedles for transdermal drug delivery.

    Science.gov (United States)

    Luzuriaga, Michael A; Berry, Danielle R; Reagan, John C; Smaldone, Ronald A; Gassensmith, Jeremiah J

    2018-04-17

    Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1-55 μm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.

  4. A loading pattern optimization method for nuclear fuel management

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1997-01-01

    Nuclear fuel reload of PWR core leads to the search of an optimal nuclear fuel assemblies distribution, namely of loading pattern. This large discrete optimization problem is here expressed as a cost function minimization. To deal with this problem, an approach based on gradient information is used to direct the search in the patterns discrete space. A method using an adjoint state formulation is then developed, and final results of complete patterns search tests by this method are presented. (author)

  5. Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery.

    Science.gov (United States)

    Nguyen, Thao M; Lee, Sebin; Lee, Sang Bok

    2014-10-01

    To uptake and release hydrophilic model drugs and insulin in a novel conductive polymer (CP) nanotube transdermal patch. The externally controlled transdermal delivery of model drugs and insulin were tested ex vivo and results were compared with CP films. The unique intrinsic properties of CPs provide electrostatic interaction between the model drugs and polymer backbone. When a pulsed potential was applied, the drug delivery release profile mimics that of injection delivery. With a constant potential applied, the release rate constants of the patch system were up to three-times faster than the control (0 V) and released approximately 80% more drug molecules over 24 h. The CP nanotube transdermal patch represents a new and promising drug method, specifically for hydrophilic molecules, which have been a large obstacle for conventional transdermal drug delivery systems.

  6. Dissolving polymeric microneedle arrays for electrically assisted transdermal drug delivery.

    Science.gov (United States)

    Garland, Martin J; Caffarel-Salvador, Ester; Migalska, Katarzyna; Woolfson, A David; Donnelly, Ryan F

    2012-04-10

    It has recently been proposed that the combination of skin barrier impairment using microneedles (MNs) coupled with iontophoresis (ITP) may broaden the range of drugs suitable for transdermal delivery, as well as enabling the rate of delivery to be achieved with precise electronic control. However, no reports exist on the combination of ITP with in situ drug loaded polymeric MN delivery systems. Furthermore, although a number of studies have highlighted the importance of MN design for transdermal drug delivery enhancement, to date, there has been no systematic investigation of the influence of MN geometry on the performance of polymeric MN arrays which are designed to remain in contact with the skin during the period of drug delivery. As such, for the first time, this study reports on the effect of MN heigth and MN density upon the transdermal delivery of small hydrophilic compounds (theophylline, methylene blue, and fluorescein sodium) across neonatal porcine skin in vitro, with the optimised MN array design evaluated for its potential in the electrically faciliatated delivery of peptide (bovine insulin) and protein (fluorescein isothiocyanate-labelled bovine serum albumin (FTIC-BSA)) macromolecules. The results of the in vitro drug release investigations revealed that the extent of transdermal delivery was dependent upon the design of the MN array employed, whereby an increase in MN height and an increase in MN density led to an increase in the extent of transdermal drug delivery achieved 6h after MN application. Overall, the in vitro permeation studies revealed that the MN design containing 361 MNs/cm(2) of 600 μm height resulted in the greatest extent of transdermal drug delivery. As such, this design was evaluated for its potential in the MN mediated iontophoretic transdermal delivery. Whilst the combination of MN and ITP did not further enhance the extent of small molecular weight solute delivery, the extent of peptide/protein release was significantly

  7. Bulk Electric Load Cost Calculation Methods: Iraqi Network Comparative Study

    Directory of Open Access Journals (Sweden)

    Qais M. Alias

    2016-09-01

    Full Text Available It is vital in any industry to regain the spent capitals plus running costs and a margin of profits for the industry to flourish. The electricity industry is an everyday life touching industry which follows the same finance-economic strategy. Cost allocation is a major issue in all sectors of the electric industry, viz, generation, transmission and distribution. Generation and distribution service costing’s well documented in the literature, while the transmission share is still of need for research. In this work, the cost of supplying a bulk electric load connected to the EHV system is calculated. A sample basic lump-average method is used to provide a rough costing guide. Also, two transmission pricing methods are employed, namely, the postage-stamp and the load-flow based MW-distance methods to calculate transmission share in the total cost of each individual bulk load. The three costing methods results are then analyzed and compared for the 400kV Iraqi power grid considered for a case study.

  8. Computational methods for structural load and resistance modeling

    Science.gov (United States)

    Thacker, B. H.; Millwater, H. R.; Harren, S. V.

    1991-01-01

    An automated capability for computing structural reliability considering uncertainties in both load and resistance variables is presented. The computations are carried out using an automated Advanced Mean Value iteration algorithm (AMV +) with performance functions involving load and resistance variables obtained by both explicit and implicit methods. A complete description of the procedures used is given as well as several illustrative examples, verified by Monte Carlo Analysis. In particular, the computational methods described in the paper are shown to be quite accurate and efficient for a material nonlinear structure considering material damage as a function of several primitive random variables. The results show clearly the effectiveness of the algorithms for computing the reliability of large-scale structural systems with a maximum number of resolutions.

  9. Developing feasible loading patterns using perturbation theory methods

    International Nuclear Information System (INIS)

    White, J.R.; Avila, K.M.

    1990-01-01

    This work illustrates an approach to core reload design that combines the power of integer programming with the efficiency of generalized perturbation theory. The main use of the method is as a tool to help the design engineer identify feasible loading patterns with minimum time and effort. The technique is highly successful for the burnable poison (BP) loading problem, but the unpredictable behavior of the branch-and-bound algorithm degrades overall performance for large problems. Unfortunately, the combined fuel shuffling plus BP optimization problem falls into this latter classification. Overall, however, the method shows great promise for significantly reducing the manpower time required for the reload design process. And it may even give the further benefit of better designs and improved performance

  10. Improvement of the decision efficiency of the accuracy profile by means of a desirability function for analytical methods validation. Application to a diacetyl-monoxime colorimetric assay used for the determination of urea in transdermal iontophoretic extracts.

    Science.gov (United States)

    Rozet, E; Wascotte, V; Lecouturier, N; Préat, V; Dewé, W; Boulanger, B; Hubert, Ph

    2007-05-22

    Validation of analytical methods is a widely used and regulated step for each analytical method. However, the classical approaches to demonstrate the ability to quantify of a method do not necessarily fulfill this objective. For this reason an innovative methodology was recently introduced by using the tolerance interval and accuracy profile, which guarantee that a pre-defined proportion of future measurements obtained with the method will be included within the acceptance limits. Accuracy profile is an effective decision tool to assess the validity of analytical methods. The methodology to build such a profile is detailed here. However, as for any visual tool it has a part of subjectivity. It was then necessary to make the decision process objective in order to quantify the degree of adequacy of an accuracy profile and to allow a thorough comparison between such profiles. To achieve this, we developed a global desirability index based on the three most important validation criteria: the trueness, the precision and the range. The global index allows the classification of the different accuracy profiles obtained according to their respective response functions. A diacetyl-monoxime colorimetric assay for the determination of urea in transdermal iontophoretic extracts was used to illustrate these improvements.

  11. Pharmacokinetics of 2 Formulations of Transdermal Fentanyl in Cynomolgus Macaques (Macaca fascicularis)

    Science.gov (United States)

    Carlson, Amy M; Kelly, Richard; Fetterer, David P; Rico, Pedro J; Bailey, Emily J

    2016-01-01

    Fentanyl is a μ-opioid agonist that often is used as the analgesic component for balanced anesthesia in both human and veterinary patients. Minimal information has been published regarding appropriate dosing, and the pharmacokinetics of fentanyl are unknown in NHP. The pharmacokinetic properties of 2 transdermal fentanyl delivery methods, a solution (2.6 and 1.95 mg/kg) and a patch (25 µg/h), were determined when applied topically to the dorsal scapular area of cynomolgus macaques (Macaca fascicularis). Serum fentanyl concentrations were analyzed by using liquid chromatography–mass spectrometry. Compared with the patch, the transdermal fentanyl solution generated higher drug concentrations over longer time. Adverse reactions occurred in the macaques that received the transdermal fentanyl solution at 2.6 mg/kg. Both preparations showed significant interanimal variability in the maximal serum drug levels, time to achieve maximal fentanyl levels, elimination half-life, and AUC values. Both the maximal concentration and the time at which this concentration occurred were increased in macaques compared with most other species after application of the transdermal fentanyl patch and compared with dogs after application of the transdermal fentanyl solution. The pharmacokinetic properties of transdermal fentanyl in macaques are markedly different from those in other veterinary species and preclude its use as a long-acting analgesic drug in NHP. PMID:27423151

  12. Population pharmacokinetic model of transdermal nicotine delivered from a matrix-type patch.

    Science.gov (United States)

    Linakis, Matthew W; Rower, Joseph E; Roberts, Jessica K; Miller, Eleanor I; Wilkins, Diana G; Sherwin, Catherine M T

    2017-12-01

    Nicotine addiction is an issue faced by millions of individuals worldwide. As a result, nicotine replacement therapies, such as transdermal nicotine patches, have become widely distributed and used. While the pharmacokinetics of transdermal nicotine have been extensively described using noncompartmental methods, there are few data available describing the between-subject variability in transdermal nicotine pharmacokinetics. The aim of this investigation was to use population pharmacokinetic techniques to describe this variability, particularly as it pertains to the absorption of nicotine from the transdermal patch. A population pharmacokinetic parent-metabolite model was developed using plasma concentrations from 25 participants treated with transdermal nicotine. Covariates tested in this model included: body weight, body mass index, body surface area (calculated using the Mosteller equation) and sex. Nicotine pharmacokinetics were best described with a one-compartment model with absorption based on a Weibull distribution and first-order elimination and a single compartment for the major metabolite, cotinine. Body weight was a significant covariate on apparent volume of distribution of nicotine (exponential scaling factor 1.42). After the inclusion of body weight in the model, no other covariates were significant. This is the first population pharmacokinetic model to describe the absorption and disposition of transdermal nicotine and its metabolism to cotinine and the pharmacokinetic variability between individuals who were administered the patch. © 2017 The British Pharmacological Society.

  13. Evaluation of the Match External Load in Soccer: Methods Comparison.

    Science.gov (United States)

    Castagna, Carlo; Varley, Matthew; Póvoas, Susana C A; D'Ottavio, Stefano

    2017-04-01

    To test the interchangeability of 2 match-analysis approaches for external-load detection considering arbitrary selected speeds and metabolic power (MP) thresholds in male top-level soccer. Data analyses were performed considering match physical performance of 60 matches (1200 player cases) of randomly selected Spanish, German, and English first-division championship matches (2013-14 season). Match analysis was performed with a validated semiautomated multicamera system operating at 25 Hz. During a match, players covered 10,673 ± 348 m, of which 1778 ± 208 m and 2759 ± 241 m were performed at high intensity, as measured using speed (≥16 km/h, HI) and metabolic power (≥20 W/kg, MPHI) notations. High-intensity notations were nearly perfectly associated (r = .93, P Player high-intensity decelerations (≥-2 m/s 2 ) were very largely associated with MPHI (r = .73, P physical match-analysis methods can be independently used to track match external load in elite-level players. However, match-analyst decisions must be based on use of a single method to avoid bias in external-load determination.

  14. Electrospun polymeric nanofibers for transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Mahya Rahmani

    2017-04-01

    Full Text Available Conventional transdermal drug delivery systems (TDDS have been designed for drug delivery through the skin. These systems use the permeability property of stratum corneum, the outermost surface layer of the skin. Applying polymeric micro and nanofibers in drug delivery has recently attracted great attention and the electrospinning technique is the preferred method for polymeric micro-nanofibers fabrication with a great potential for drug delivery. More studies in the field of nanofibers containing drug are divided two categories: first, preparation and characterization of nanofibers containing drug and second, investigation of their therapeutic applications. Drugs used in electrospun nanofibers can be categorized into three main groups, including antibiotics and antimicrobial agents, anti-inflammatory agents and vitamins with therapeutic applications. In this paper, we review the application of electrospun polymeric scaffolds in TDDS and also introduce several pharmaceutical and therapeutic agents which have been used in polymer nanofibrous patches.

  15. Microneedle Coating Techniques for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Rita Haj-Ahmad

    2015-11-01

    Full Text Available Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates.

  16. Optimization of Biopolymer Based Transdermal Films of Metoclopramide as an Alternative Delivery Approach

    Directory of Open Access Journals (Sweden)

    Betül Aktar

    2014-05-01

    Full Text Available The objectives of this study were to develop and to characterize sodium alginate based matrix-type transdermal films of metoclopramide hydrochloride (MTC in order to improve patient compliance to treatment. The suitability of sodium alginate was shown to be a natural film former in terms of the physicochemical, mechanical, and bioadhesive features of the MTC loaded transdermal films. Terpinolene provided the highest drug release among the different terpenes (nerolidol, eucalyptol, dl-limonene, or terpinolene assessed as enhancer. Attenuated Total Reflectance Infrared (ATR-FTIR spectroscopy analysis performed to evaluate the effect of the transdermal films on skin barrier confirmed enhancer induced lipid bilayer disruption in stratum corneum, indicating its permeation enhancement effect.

  17. A simple method for quantifying jump loads in volleyball athletes.

    Science.gov (United States)

    Charlton, Paula C; Kenneally-Dabrowski, Claire; Sheppard, Jeremy; Spratford, Wayne

    2017-03-01

    Evaluate the validity of a commercially available wearable device, the Vert, for measuring vertical displacement and jump count in volleyball athletes. Propose a potential method of quantifying external load during training and match play within this population. Validation study. The ability of the Vert device to measure vertical displacement in male, junior elite volleyball athletes was assessed against reference standard laboratory motion analysis. The ability of the Vert device to count jumps during training and match-play was assessed via comparison with retrospective video analysis to determine precision and recall. A method of quantifying external load, known as the load index (LdIx) algorithm was proposed using the product of the jump count and average kinetic energy. Correlation between two separate Vert devices and three-dimensional trajectory data were good to excellent for all jump types performed (r=0.83-0.97), with a mean bias of between 3.57-4.28cm. When matched against jumps identified through video analysis, the Vert demonstrated excellent precision (0.995-1.000) evidenced by a low number of false positives. The number of false negatives identified with the Vert was higher resulting in lower recall values (0.814-0.930). The Vert is a commercially available tool that has potential for measuring vertical displacement and jump count in elite junior volleyball athletes without the need for time-consuming analysis and bespoke software. Subsequently, allowing the collected data to better quantify load using the proposed algorithm (LdIx). Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Deterministic methods for multi-control fuel loading optimization

    Science.gov (United States)

    Rahman, Fariz B. Abdul

    We have developed a multi-control fuel loading optimization code for pressurized water reactors based on deterministic methods. The objective is to flatten the fuel burnup profile, which maximizes overall energy production. The optimal control problem is formulated using the method of Lagrange multipliers and the direct adjoining approach for treatment of the inequality power peaking constraint. The optimality conditions are derived for a multi-dimensional multi-group optimal control problem via calculus of variations. Due to the Hamiltonian having a linear control, our optimal control problem is solved using the gradient method to minimize the Hamiltonian and a Newton step formulation to obtain the optimal control. We are able to satisfy the power peaking constraint during depletion with the control at beginning of cycle (BOC) by building the proper burnup path forward in time and utilizing the adjoint burnup to propagate the information back to the BOC. Our test results show that we are able to achieve our objective and satisfy the power peaking constraint during depletion using either the fissile enrichment or burnable poison as the control. Our fuel loading designs show an increase of 7.8 equivalent full power days (EFPDs) in cycle length compared with 517.4 EFPDs for the AP600 first cycle.

  19. Fragility assessment method of Concrete Wall Subjected to Impact Loading

    International Nuclear Information System (INIS)

    Hahm, Daegi; Shin, Sang Shup; Choi, In-Kil

    2014-01-01

    These studies have been aimed to verify and ensure the safety of the targeted walls and structures especially in the viewpoint of the deterministic approach. However, recently, the regulation and the assessment of the safety of the nuclear power plants (NPPs) against to an aircraft impact are strongly encouraged to adopt a probabilistic approach, i.e., the probabilistic risk assessment of an aircraft impact. In Korea, research to develop aircraft impact risk quantification technology was initiated in 2012 by Korea Atomic Energy Research Institute (KAERI). In this paper, for the one example of the probabilistic safety assessment approach, a method to estimate the failure probability and fragility of concrete wall subjected to impact loading caused by missiles or engine parts of aircrafts will be introduced. This method and the corresponding results will be used for the total technical roadmap and the procedure to assess the aircraft impact risk (Fig.1). A method and corresponding results of the estimation of the failure probability and fragility for a concrete wall subjected to impact loadings caused by missiles or engine parts of aircrafts was introduced. The detailed information of the target concrete wall in NPP, and the example aircraft engine model is considered safeguard information (SGI), and is not contained in this paper

  20. Resident Load Influence Analysis Method for Price Based on Non-intrusive Load Monitoring and Decomposition Data

    Science.gov (United States)

    Jiang, Wenqian; Zeng, Bo; Yang, Zhou; Li, Gang

    2018-01-01

    In the non-invasive load monitoring mode, the load decomposition can reflect the running state of each load, which will help the user reduce unnecessary energy costs. With the demand side management measures of time of using price, a resident load influence analysis method for time of using price (TOU) based on non-intrusive load monitoring data are proposed in the paper. Relying on the current signal of the resident load classification, the user equipment type, and different time series of self-elasticity and cross-elasticity of the situation could be obtained. Through the actual household load data test with the impact of TOU, part of the equipment will be transferred to the working hours, and users in the peak price of electricity has been reduced, and in the electricity at the time of the increase Electrical equipment, with a certain regularity.

  1. Transdermal optogenetic peripheral nerve stimulation

    Science.gov (United States)

    Maimon, Benjamin E.; Zorzos, Anthony N.; Bendell, Rhys; Harding, Alexander; Fahmi, Mina; Srinivasan, Shriya; Calvaresi, Peter; Herr, Hugh M.

    2017-06-01

    Objective: A fundamental limitation in both the scientific utility and clinical translation of peripheral nerve optogenetic technologies is the optical inaccessibility of the target nerve due to the significant scattering and absorption of light in biological tissues. To date, illuminating deep nerve targets has required implantable optical sources, including fiber-optic and LED-based systems, both of which have significant drawbacks. Approach: Here we report an alternative approach involving transdermal illumination. Utilizing an intramuscular injection of ultra-high concentration AAV6-hSyn-ChR2-EYFP in rats. Main results: We demonstrate transdermal stimulation of motor nerves at 4.4 mm and 1.9 mm depth with an incident laser power of 160 mW and 10 mW, respectively. Furthermore, we employ this technique to accurately control ankle position by modulating laser power or position on the skin surface. Significance: These results have the potential to enable future scientific optogenetic studies of pathologies implicated in the peripheral nervous system for awake, freely-moving animals, as well as a basis for future clinical studies.

  2. Sensitivity kernels for viscoelastic loading based on adjoint methods

    Science.gov (United States)

    Al-Attar, David; Tromp, Jeroen

    2014-01-01

    Observations of glacial isostatic adjustment (GIA) allow for inferences to be made about mantle viscosity, ice sheet history and other related parameters. Typically, this inverse problem can be formulated as minimizing the misfit between the given observations and a corresponding set of synthetic data. When the number of parameters is large, solution of such optimization problems can be computationally challenging. A practical, albeit non-ideal, solution is to use gradient-based optimization. Although the gradient of the misfit required in such methods could be calculated approximately using finite differences, the necessary computation time grows linearly with the number of model parameters, and so this is often infeasible. A far better approach is to apply the `adjoint method', which allows the exact gradient to be calculated from a single solution of the forward problem, along with one solution of the associated adjoint problem. As a first step towards applying the adjoint method to the GIA inverse problem, we consider its application to a simpler viscoelastic loading problem in which gravitationally self-consistent ocean loading is neglected. The earth model considered is non-rotating, self-gravitating, compressible, hydrostatically pre-stressed, laterally heterogeneous and possesses a Maxwell solid rheology. We determine adjoint equations and Fréchet kernels for this problem based on a Lagrange multiplier method. Given an objective functional J defined in terms of the surface deformation fields, we show that its first-order perturbation can be written δ J = int _{MS}K_{η }δ ln η dV +int _{t0}^{t1}int _{partial M}K_{dot{σ }} δ dot{σ } dS dt, where δ ln η = δη/η denotes relative viscosity variations in solid regions MS, dV is the volume element, δ dot{σ } is the perturbation to the time derivative of the surface load which is defined on the earth model's surface ∂M and for times [t0, t1] and dS is the surface element on ∂M. The `viscosity

  3. Experimental Method for Measuring Dust Load on Surfaces in Rooms

    DEFF Research Database (Denmark)

    Lengweiler, Philip; Nielsen, Peter V.; Moser, Alfred

    A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms, there is a n......A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms......, there is a need for better understanding of the mechanism of dust deposition and resuspension. With the presented experimental setup, the dust load on surfaces in a channel can be measured as a function of the environmental and surface conditions and the type of particles under controlled laboratory conditions....

  4. Dual drug-loaded nanoparticles on self-integrated scaffold for controlled delivery

    Directory of Open Access Journals (Sweden)

    Bennet D

    2012-07-01

    Full Text Available Devasier Bennet,1 Mohana Marimuthu,1 Sanghyo Kim,1 Jeongho An21Department of Bionanotechnology, Gachon University, Gyeonggi, Republic of Korea; 2Department of Polymer Science and Engineering, SunKyunKwan University, Gyeonggi, Republic of KoreaAbstract: Antioxidant (quercetin and hypoglycemic (voglibose drug-loaded poly-D,L-lactide-co-glycolide nanoparticles were successfully synthesized using the solvent evaporation method. The dual drug-loaded nanoparticles were incorporated into a scaffold film using a solvent casting method, creating a controlled transdermal drug-delivery system. Key features of the film formulation were achieved utilizing several ratios of excipients, including polyvinyl alcohol, polyethylene glycol, hyaluronic acid, xylitol, and alginate. The scaffold film showed superior encapsulation capability and swelling properties, with various potential applications, eg, the treatment of diabetes-associated complications. Structural and light scattering characterization confirmed a spherical shape and a mean particle size distribution of 41.3 nm for nanoparticles in the scaffold film. Spectroscopy revealed a stable polymer structure before and after encapsulation. The thermoresponsive swelling properties of the film were evaluated according to temperature and pH. Scaffold films incorporating dual drug-loaded nanoparticles showed remarkably high thermoresponsivity, cell compatibility, and ex vivo drug-release behavior. In addition, the hybrid film formulation showed enhanced cell adhesion and proliferation. These dual drug-loaded nanoparticles incorporated into a scaffold film may be promising for development into a transdermal drug-delivery system.Keywords: quercetin, voglibose, biocompatible materials, encapsulation, transdermal

  5. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: Preparation, characterization, in vitro, ex vivo and clinical evaluation.

    Science.gov (United States)

    Ahmed, Tarek A; El-Say, Khalid M; Aljaeid, Bader M; Fahmy, Usama A; Abd-Allah, Fathy I

    2016-03-16

    This work aimed to develop an optimized ethosomal formulation of glimepiride then loading into transdermal films to offer lower drug side effect, extended release behavior and avoid first pass effect. Four formulation factors were optimized for their effects on vesicle size (Y1), entrapment efficiency (Y2) and vesicle flexibility (Y3). Optimum desirability was identified and, an optimized formulation was prepared, characterized and loaded into transdermal films. Ex-vivo permeation study for the prepared films was conducted and, the permeation parameters and drug permeation mechanism were identified. Penetration through rat skin was studied using confocal laser microscope. In-vivo study was performed following transdermal application on human volunteers. The percent of alcohol was significantly affecting all the studied responses while the other factors and their interaction effects were varied on their effects on each response. The optimized ethosomal formulation showed observed values for Y1, Y2 and Y3 of 61 nm, 97.12% and 54.03, respectively. Ex-vivo permeation of films loaded with optimized ethosomal formulation was superior to that of the corresponding pure drug transdermal films and this finding was also confirmed after confocal laser microscope study. Permeation of glimepiride from the prepared films was in favor of Higushi-diffusion model and exhibited non-Fickian or anomalous release mechanism. In-vivo study revealed extended drug release behavior and lower maximum drug plasma level from transdermal films loaded with drug ethosomal formulation. So, the ethosomal formulation could be considered a suitable drug delivery system especially when loaded into transdermal vehicle with possible reduction in side effects and controlling the drug release. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A Transdermal Measurement Platform Based on Microfluidics

    Directory of Open Access Journals (Sweden)

    Wen-Ying Huang

    2017-01-01

    Full Text Available The Franz diffusion cell is one of the most widely used devices to evaluate transdermal drug delivery. However, this static and nonflowing system has some limitations, such as a relatively large solution volume and skin area and the development of gas bubbles during sampling. To overcome these disadvantages, this study provides a proof of concept for miniaturizing models of transdermal delivery by using a microfluidic chip combined with a diffusion cell. The proposed diffusion microchip system requires only 80 μL of sample solution and provides flow circulation. Two model compounds, Coomassie Brilliant Blue G-250 and potassium ferricyanide, were successfully tested for transdermal delivery experiments. The diffusion rate is high for a high sample concentration or a large membrane pore size. The developed diffusion microchip system, which is feasible, can be applied for transdermal measurement in the future.

  7. Functionalization of Cotton Fabrics with Polycaprolactone Nanoparticles for Transdermal Release of Melatonin

    Directory of Open Access Journals (Sweden)

    Daniele Massella

    2017-12-01

    Full Text Available Drug delivery by means of transdermal patches raised great interest as a non-invasive and sustained therapy. The present research aimed to design a patch for transdermal delivery of melatonin, which was encapsulated in polycaprolactone (PCL nanoparticles (NPs by employing flash nanoprecipitation (FNP technique. Melatonin-loaded PCL nanoparticles were successfully prepared with precise control of the particle size by effectively tuning process parameters. The effect of process parameters on the particle size was assessed by dynamic light scattering for producing particles with suitable size for transdermal applications. Quantification of encapsulated melatonin was performed by mean of UV spectrophotometry, obtaining the estimation of encapsulation efficiency (EE% and loading capacity (LC%. An EE% higher than 80% was obtained. Differential scanning calorimetry (DSC analysis of NPs was performed to confirm effective encapsulation in the solid phase. Cotton fabrics, functionalized by imbibition with the nano-suspension, were analyzed by scanning electron microscopy to check morphology, adhesion and distribution of the NPs on the surface; melatonin transdermal release from the functionalized fabric was performed via Franz’s cells by using a synthetic membrane. NPs were uniformly distributed on cotton fibres, as confirmed by SEM observations; the release test showed a continuous and controlled release whose kinetics were satisfactorily described by Baker–Lonsdale model.

  8. [Matrix transdermal systems for caffeine delivery based on polymer and emulsion compounds].

    Science.gov (United States)

    Kuznetsova, E G; Kuryleva, O M; Salomatina, L A; Sevast'ianov, V I

    2008-01-01

    The goal of this work was to develop and test transdermal therapeutic systems for caffeine delivery. In vitro experiments showed that the rate of caffeine diffusion through untreated rabbit skin from a transdermal therapeutic systems based on polymer compound containing 50 mg medicine was 67.2 (9.1 microg/cm2h; for a system based on emulsion compound it was 173 (19 microg/cm2h. Methods for studying the caffeine release rate and quantitative measurement of caffeine content in the emulsion-based transdermal therapeutic system were developed. These methods are required to obtain data for standard drug documentation. The results of in vivo experiments in rabbits showed the absence of irritating effect of the emulsion-based transdermal therapeutic system. The obtained data on the specific efficiency of the transdermal therapeutic systems for caffeine delivery (50 mg) in healthy volunteers showed that this medicine could be used as a nonnarcotic psychoactivator for improving mental and physical activities and attention concentration.

  9. Transdermal patches: history, development and pharmacology

    Science.gov (United States)

    Pastore, Michael N; Kalia, Yogeshvar N; Horstmann, Michael; Roberts, Michael S

    2015-01-01

    Transdermal patches are now widely used as cosmetic, topical and transdermal delivery systems. These patches represent a key outcome from the growth in skin science, technology and expertise developed through trial and error, clinical observation and evidence-based studies that date back to the first existing human records. This review begins with the earliest topical therapies and traces topical delivery to the present-day transdermal patches, describing along the way the initial trials, devices and drug delivery systems that underpin current transdermal patches and their actives. This is followed by consideration of the evolution in the various patch designs and their limitations as well as requirements for actives to be used for transdermal delivery. The properties of and issues associated with the use of currently marketed products, such as variability, safety and regulatory aspects, are then described. The review concludes by examining future prospects for transdermal patches and drug delivery systems, such as the combination of active delivery systems with patches, minimally invasive microneedle patches and cutaneous solutions, including metered-dose systems. PMID:25560046

  10. Selecting boundary conditions in physiological strain analysis of the femur: Balanced loads, inertia relief method and follower load.

    Science.gov (United States)

    Heyland, Mark; Trepczynski, Adam; Duda, Georg N; Zehn, Manfred; Schaser, Klaus-Dieter; Märdian, Sven

    2015-12-01

    Selection of boundary constraints may influence amount and distribution of loads. The purpose of this study is to analyze the potential of inertia relief and follower load to maintain the effects of musculoskeletal loads even under large deflections in patient specific finite element models of intact or fractured bone compared to empiric boundary constraints which have been shown to lead to physiological displacements and surface strains. The goal is to elucidate the use of boundary conditions in strain analyses of bones. Finite element models of the intact femur and a model of clinically relevant fracture stabilization by locking plate fixation were analyzed with normal walking loading conditions for different boundary conditions, specifically re-balanced loading, inertia relief and follower load. Peak principal cortex surface strains for different boundary conditions are consistent (maximum deviation 13.7%) except for inertia relief without force balancing (maximum deviation 108.4%). Influence of follower load on displacements increases with higher deflection in fracture model (from 3% to 7% for force balanced model). For load balanced models, follower load had only minor influence, though the effect increases strongly with higher deflection. Conventional constraints of fixed nodes in space should be carefully reconsidered because their type and position are challenging to justify and for their potential to introduce relevant non-physiological reaction forces. Inertia relief provides an alternative method which yields physiological strain results. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Development, characterization & invivo evaluation of proniosomal based transdermal delivery system of Atenolol

    Directory of Open Access Journals (Sweden)

    S. Ramkanth

    2018-06-01

    Full Text Available The potential of proniosomes as a transdermal drug delivery system for Atenolol was investigated by encapsulating the drug in various formulations of proniosomal gel composed of various ratios of sorbitan fatty acid esters, cholesterol, lecithin prepared by Coacervation-phase separation method. The objectives of the present study were to define effects on the antihypertension activity and pharmacokinetics of a novel transdermal Proniosomal gel incorporating Atenolol. The formulated systems were characterized in vitro for size, drug entrapment, In vitro and in vivo drug permeation profiles and vesicular stability at different storage conditions. The optimized Atenolol proniosomes (AT8 showed nanometric vesicle size, high entrapment efficiency and marked enhancement in transdermal permeation. The prepared Proniosomal gel showed the relative bioavailability of 365.38 fold increased for AT8 than oral. The maximal concentrations (Cmax, of drug were significantly reduced while the areas under the plasma concentration–time curve (AUC, and mean residence times (MRT, t1/2 were evidently increased and extended, respectively. The results suggest that proniosomes can act as promising carrier which offers an alternative approach for transdermal delivery of Atenolol. Keywords: Proniosomes, Atenolol, Niosomes, Pharmacokinetic study, Transdermal delivery

  12. Optimization of Microemulsion Based Transdermal Gel of Triamcinolone.

    Science.gov (United States)

    Jagdale, Swati; Chaudhari, Bhagyashree

    2017-01-01

    Triamcinolone is a long acting corticosteroid used in the treatment of arthritis, eczema, psoriasis and similar conditions which cause inflammation. Triamcinolone has half-life of 88min. Prolonged oral use is associated with gastrointestinal adverse effects as peptic ulcer, abdominal distention and ulcerative esophagitis as described in various patents. Microemulgel offers advantage of better stability, better loading capacity and controlled release especially for drug with short half life. Objective of the present study was to optimize microemulgel based transdermal delivery of triamcinolone. Saturated solubility of triamcinolone in various oils, surfactants and co-surfactants is estimated. Pseudo-ternary phase diagrams were constructed to determine the region of transparent microemulsion. Microemulsion was evaluated for globule size (FE-SEM, zetasizer), % transmittance, pH, viscosity, conductivity etc. Design of experiment was used to optimize microemulsion based gel. Carbopol 971P and HPMC K100M were used as independent variables. Microemulsion based gel was evaluated for in-vitro as well as ex-vivo parameters. Microemulsion was formulated with oleic acid, lauroglycol FCC and propylene glycol. PDI 0.197 indicated microemulsion is mono-disperse. 32 factorial design gave batch F8 as optimized. Design expert suggested drug release; gel viscosity and bio-adhesive strength were three significant dependant factors affecting the transdermal delivery. F8 showed drug release 92.62.16±1.22% through egg membrane, 95.23±1.44% through goat skin after 8hr and Korsmeyer-Peppas release model was followed. It can be concluded that a stable, effective controlled release transdermal microemulgel was optimised for triamcinolone. This would be a promising tool to deliver triamcinolone with enhanced bioavailability and reduced dosing frequency. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. A program for calculating load coefficient matrices utilizing the force summation method, L218 (LOADS). Volume 1: Engineering and usage

    Science.gov (United States)

    Miller, R. D.; Anderson, L. R.

    1979-01-01

    The LOADS program L218, a digital computer program that calculates dynamic load coefficient matrices utilizing the force summation method, is described. The load equations are derived for a flight vehicle in straight and level flight and excited by gusts and/or control motions. In addition, sensor equations are calculated for use with an active control system. The load coefficient matrices are calculated for the following types of loads: translational and rotational accelerations, velocities, and displacements; panel aerodynamic forces; net panel forces; shears and moments. Program usage and a brief description of the analysis used are presented. A description of the design and structure of the program to aid those who will maintain and/or modify the program in the future is included.

  14. Methods of qualifying electrical cabinets for the load case earthquake

    International Nuclear Information System (INIS)

    Henkel, F.-O.; Kennerknecht, H.; Haefeli, T.; Jorgensen, F.

    2005-01-01

    With the qualification of electrical system cabinets for the load case earthquake it is differentiated between the two objectives: a) stability of the cabinet, and b) functionality of the built-in electrical modules during and after the earthquake. There are three methods to attain these goals: analyses, tests and proof by analogy. A common method is the shaking of a complete cabinet on a shaking table, with the advantage that stability and functionality can be proved at the same time, but with the disadvantage that quite expensive test equipment, especially a multi-axle shaking table, is necessary and that generally a cabinet which was proved for SSE is pre-affected and thus may not be incorporated into the plant offhand, i.e. the extreme example would be that the cabinet must be built twice. As a rule, analyses are currently carried out by means of Finite-Element-Models of the supporting structure with consideration of the electrical components at least with their masses. This analysis can prove the stability and pursue the excitation until the anchoring point of the electrical components (Henkel et al., 1987). The combination of the aforementioned two methods often constitutes the best way. The stability of the cabinet is proved by calculations, the functionality of the safety-relevant modules by tests. Once tested, modules identical in construction can be used for cabinets without further testing for earthquakes of similar or lower levels. Proof by analogy is possible only if tests or analyses of similar cabinets were done in advance. By means of the comparison of supporting structure, mass allocation and distribution, level and shape of the earthquake excitation it can be shown that the cabinet planned is covered by cabinets already tested or analysed (Katona et al., 1995). All facets of the various methods with advantages and disadvantages are discussed and explained on the basis of numerous examples. (authors)

  15. Study on Determination Method of Fatigue Testing Load for Wind Turbine Blade

    Science.gov (United States)

    Liao, Gaohua; Wu, Jianzhong

    2017-07-01

    In this paper, the load calculation method of the fatigue test was studied for the wind turbine blade under uniaxial loading. The characteristics of wind load and blade equivalent load were analyzed. The fatigue property and damage theory of blade material were studied. The fatigue load for 2MW blade was calculated by Bladed, and the stress calculated by ANSYS. Goodman modified exponential function S-N curve and linear cumulative damage rule were used to calculate the fatigue load of wind turbine blades. It lays the foundation for the design and experiment of wind turbine blade fatigue loading system.

  16. Some Recent Advances in Transdermal Drug Delivery Systems ...

    African Journals Online (AJOL)

    Some Recent Advances in Transdermal Drug Delivery Systems. ... Advances in Transdermal Drug Delivery Systems. EC Ibezim, B Kabele-Toge, CO Anie, C Njoku. Abstract. Transdermal delivery systems are forms of drug delivery involving the dermis, as distinct from topical, oral or other forms of parenteral dosage forms.

  17. Carbon nanotubes buckypapers for potential transdermal drug delivery

    International Nuclear Information System (INIS)

    Schwengber, Alex; Prado, Héctor J.; Zilli, Darío A.; Bonelli, Pablo R.

    2015-01-01

    Drug loaded buckypapers based on different types of carbon nanotubes (CNTs) were prepared and characterized in order to evaluate their potentialities for the design of novel transdermal drug delivery systems. Lab-synthesized CNTs as well as commercial samples were employed. Clonidine hydrochloride was used as model drug, and the influence of composition of the drug loaded buckypapers and processing variables on in vitro release profiles was investigated. To examine the influence of the drug nature the evaluation was further extended to buckypapers prepared with flurbiprofen and one type of CNTs, their selection being based on the results obtained with the former drug. Scanning electronic microscopy images indicated that the model drugs were finely dispersed on the CNTs. Differential scanning calorimetry, and X-ray diffraction pointed to an amorphous state of both drugs in the buckypapers. A higher degree of CNT–drug superficial interactions resulted in a slower release of the drug. These interactions were in turn affected by the type of CNTs employed (single wall or multiwall CNTs), their functionalization with hydroxyl or carboxyl groups, the chemical structure of the drug, and the CNT:drug mass ratio. Furthermore, the application of a second layer of drug free CNTs on the loaded buckypaper, led to decelerate the drug release and to reduce the burst effect. - Highlights: • Drug loaded buckypapers from carbon nanotubes were prepared and characterized. • Their potentialities for transdermal drug delivery applications were evaluated. • Characteristics of carbon nanotubes and the structure of the drug affected release • A higher carbon nanotube:drug mass ratio decelerated release • Up to one week controlled release profiles were obtained for the drug flurbiprofen

  18. Carbon nanotubes buckypapers for potential transdermal drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Schwengber, Alex [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Prado, Héctor J. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Cátedra de Tecnología Farmacéutica II, Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Zilli, Darío A. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Bonelli, Pablo R. [PINMATE-Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); and others

    2015-12-01

    Drug loaded buckypapers based on different types of carbon nanotubes (CNTs) were prepared and characterized in order to evaluate their potentialities for the design of novel transdermal drug delivery systems. Lab-synthesized CNTs as well as commercial samples were employed. Clonidine hydrochloride was used as model drug, and the influence of composition of the drug loaded buckypapers and processing variables on in vitro release profiles was investigated. To examine the influence of the drug nature the evaluation was further extended to buckypapers prepared with flurbiprofen and one type of CNTs, their selection being based on the results obtained with the former drug. Scanning electronic microscopy images indicated that the model drugs were finely dispersed on the CNTs. Differential scanning calorimetry, and X-ray diffraction pointed to an amorphous state of both drugs in the buckypapers. A higher degree of CNT–drug superficial interactions resulted in a slower release of the drug. These interactions were in turn affected by the type of CNTs employed (single wall or multiwall CNTs), their functionalization with hydroxyl or carboxyl groups, the chemical structure of the drug, and the CNT:drug mass ratio. Furthermore, the application of a second layer of drug free CNTs on the loaded buckypaper, led to decelerate the drug release and to reduce the burst effect. - Highlights: • Drug loaded buckypapers from carbon nanotubes were prepared and characterized. • Their potentialities for transdermal drug delivery applications were evaluated. • Characteristics of carbon nanotubes and the structure of the drug affected release • A higher carbon nanotube:drug mass ratio decelerated release • Up to one week controlled release profiles were obtained for the drug flurbiprofen.

  19. Carbon Nanotube Membranes for use in the Transdermal Treatment of Nicotine Addiction and Opioid Withdrawal Symptoms

    Directory of Open Access Journals (Sweden)

    Audra L. Stinchcomb

    2009-01-01

    Full Text Available Transdermal systems are attractive methods of drug administration specifically when treating patients for drug addiction. Current systems however are deficient in therapies that allow variable flux values of drug, such as nicotine for smoking cessation or complex dosing regimens using clonidine when treating opioid withdrawal symptoms. Through the use of functionalized carbon nanotube (CNT membranes, drug delivery to the skin can be controlled by applying a small electrical bias to create a programmable drug delivery system. Clearly, a transdermal patch system that can be tailored to an individual’s needs will increase patient compliance as well as provide much more efficient therapy. The purpose of this paper is to discuss the applicability of using carbon nanotube membranes in transdermal systems for treatment of drug abuse.

  20. Biomaterials as novel penetration enhancers for transdermal and dermal drug delivery systems.

    Science.gov (United States)

    Chen, Yang; Wang, Manli; Fang, Liang

    2013-01-01

    The highly organized structure of the stratum corneum provides an effective barrier to the drug delivery into or across the skin. To overcome this barrier function, penetration enhancers are always used in the transdermal and dermal drug delivery systems. However, the conventional chemical enhancers are often limited by their inability to delivery large and hydrophilic molecules, and few to date have been routinely incorporated into the transdermal formulations due to their incompatibility and local irritation issues. Therefore, there has been a search for the compounds that exhibit broad enhancing activity for more drugs without producing much irritation. More recently, the use of biomaterials has emerged as a novel method to increase the skin permeability. In this paper, we present an overview of the investigations on the feasibility and application of biomaterials as penetration enhancers for transdermal or dermal drug delivery systems.

  1. Carbon Nanotube Membranes for use in the Transdermal Treatment of Nicotine Addiction and Opioid Withdrawal Symptoms

    Directory of Open Access Journals (Sweden)

    Caroline L. Strasinger

    2009-01-01

    Full Text Available Transdermal systems are attractive methods of drug administration specifically when treating patients for drug addiction. Current systems however are deficient in therapies that allow variable flux values of drug, such as nicotine for smoking cessation or complex dosing regimens using clonidine when treating opioid withdrawal symptoms. Through the use of functionalized carbon nanotube (CNT membranes, drug delivery to the skin can be controlled by applying a small electrical bias to create a programmable drug delivery system. Clearly, a transdermal patch system that can be tailored to an individual's needs will increase patient compliance as well as provide much more efficient therapy. The purpose of this paper is to discuss the applicability of using carbon nanotube membranes in transdermal systems for treatment of drug abuse.

  2. Pharmacokinetics of the transdermal delivery of benfotiamine.

    Science.gov (United States)

    Zhu, Zhen; Varadi, Gyula; Carter, Stephen G

    2016-04-01

    Accumulation of advanced glycation endpoints is a trigger to the development of diabetic peripheral neuropathy, which is a common complication of diabetes. Oral administration of benfotiamine (BFT) has shown some preclinical and clinical promise as a treatment for diabetic peripheral neuropathy. The purpose of this study was to evaluate the method of transdermal delivery of BFT as a possible, viable route of administration for the treatment of diabetic peripheral neuropathy. A single application of 10 mg of BFT was given to guinea pigs topically. The levels of thiamine (T), thiamine monophosphate, thiamine diphosphate, S-benzoylthiamine and BFT were measured in the blood, skin and muscle at different time points within 24 h. At the 24-h time point, following the single BFT dose, the T level was increased 10× in the blood, more than 7× in the skin and almost 4× in the muscle compared to the untreated animals. The total T content (total) was increased 7× in the blood, 17× in the skin and 3× in the muscle compared to the untreated animals. This strong increase in the tissue levels of T and the associated metabolic derivatives levels found in the blood and local tissues following a single dose indicate that topically applied BFT may be a viable and advantageous delivery method for the treatment of diabetic peripheral neuropathy.

  3. Load reduction test method of similarity theory and BP neural networks of large cranes

    Science.gov (United States)

    Yang, Ruigang; Duan, Zhibin; Lu, Yi; Wang, Lei; Xu, Gening

    2016-01-01

    Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.

  4. Nanostructured lipid carriers for transdermal delivery of acid labile lansoprazole.

    Science.gov (United States)

    Lin, Wen Jen; Duh, Yi Shein

    2016-11-01

    The aim of this study was to develop nanostructured lipid carriers (NLCs) for transdermal delivery of acid-labile lansoprazole (LPZ). The drug loading, particle size, zeta potential, thermal behavior and stability of NLCs were evaluated. The particle size of NLCs was in the range of 90-210nm and the zeta potential was -61.9 to +3.2mV dependent of the compositions. Stearylamine (SA) prevented lansoprazole degradation and maintained drug stable in NLCs. The anionic sodium dodecyl sulfate (SDS) adsorbed on the lipid surface and formed complex with cationic SA to prevent NLCs aggregation. The effects of type (e.g., isopropyl myristate (IPM), menthol) and concentration (e.g., 1.25, 2.50, 3.75%w/w) of enhancers on penetration of lansoprazole NLC hydrogels were investigated in vitro using Wistar rat skin. The steady-state flux of lansoprazole NLC hydrogel containing 3.75% IPM was the highest which was enhanced by 2.7 folds as compared to enhancer-free NLC hydrogel. In vivo pharmacokinetics of lansoprazole following transdermal delivery of NLC hydrogel showed that the elimination of drug was significantly reduced and the mean residence time of drug was prominently prolonged as compared to intravenous drug solution (p<0.005). The accumulation of drug in the skin and continuous penetration of drug through the skin accounted for the maintenance of drug concentration for at least 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Permeation enhancer strategies in transdermal drug delivery.

    Science.gov (United States)

    Marwah, Harneet; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Today, ∼74% of drugs are taken orally and are not found to be as effective as desired. To improve such characteristics, transdermal drug delivery was brought to existence. This delivery system is capable of transporting the drug or macromolecules painlessly through skin into the blood circulation at fixed rate. Topical administration of therapeutic agents offers many advantages over conventional oral and invasive techniques of drug delivery. Several important advantages of transdermal drug delivery are prevention from hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady plasma level of the drug. Human skin surface, as a site of drug application for both local and systemic effects, is the most eligible candidate available. New controlled transdermal drug delivery systems (TDDS) technologies (electrically-based, structure-based and velocity-based) have been developed and commercialized for the transdermal delivery of troublesome drugs. This review article covers most of the new active transport technologies involved in enhancing the transdermal permeation via effective drug delivery system.

  6. Myth or Reality-Transdermal Magnesium?

    Science.gov (United States)

    Gröber, Uwe; Werner, Tanja; Vormann, Jürgen; Kisters, Klaus

    2017-07-28

    In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract.

  7. Transdermal delivery of curcumin via microemulsion.

    Science.gov (United States)

    Sintov, Amnon C

    2015-03-15

    The objective of this study was to evaluate the transdermal delivery potential of a new curcumin-containing microemulsion system. Three series of experiments were carried out to comprehend the system characteristics: (a) examining the influence of water content on curcumin permeation, (b) studying the effect of curcumin loading on its permeability, and (c) assessing the contribution of the vesicular nature of the microemulsion on permeability. The skin permeability of curcumin from microemulsions, which contained 5%, 10%, and 20% of water content (1% curcumin), was measured in vitro using excised rat skin. It has been shown that the permeability coefficient of CUR in a formulation containing 10% aqueous phase (ME-10) was twofold higher than the values obtained for formulations with 5% and 20% water (Papp=0.116 × 10(-3)± 0.052 × 10(-3)vs. 0.043 × 10(-3)± 0.022 × 10(-3) and 0.047 × 10(-3)± 0.025 × 10(-3)cm/h, respectively. A reasonable explanation for this phenomenon may be the reduction of both droplet size and droplets' concentration in the microemulsion as the aqueous phase decreased from 20% to 5%. It has also been shown that a linear correlation exists between the decrease in droplet size and the increase of curcumin loading in the microemulsion. In addition, it has been demonstrated that a micellar system, S/O-mix, and a plain solution of curcumin resulted in a significantly lower curcumin permeation relative to that presented by the microemulsion, Papp=0.018 × 10(-3)± 0.011 × 10(-3), 0.005 × 10(-3)± 0.002 × 10(-3), and 0.002 × 10(-3)± 0.000 × 10(-3)cm/h, respectively, vs. 0.110 × 10(-3)± 0.021 × 10(-3)cm/h for the microemulsion. The enhancement ratio (ER=Jss-ME/Jss-solution) of CUR permeated via 1% loaded microemulsion was 55. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Influence of sampling frequency and load calculation methods on quantification of annual river nutrient and suspended solids loads.

    Science.gov (United States)

    Elwan, Ahmed; Singh, Ranvir; Patterson, Maree; Roygard, Jon; Horne, Dave; Clothier, Brent; Jones, Geoffrey

    2018-01-11

    Better management of water quality in streams, rivers and lakes requires precise and accurate estimates of different contaminant loads. We assessed four sampling frequencies (2 days, weekly, fortnightly and monthly) and five load calculation methods (global mean (GM), rating curve (RC), ratio estimator (RE), flow-stratified (FS) and flow-weighted (FW)) to quantify loads of nitrate-nitrogen (NO 3 - -N), soluble inorganic nitrogen (SIN), total nitrogen (TN), dissolved reactive phosphorus (DRP), total phosphorus (TP) and total suspended solids (TSS), in the Manawatu River, New Zealand. The estimated annual river loads were compared to the reference 'true' loads, calculated using daily measurements of flow and water quality from May 2010 to April 2011, to quantify bias (i.e. accuracy) and root mean square error 'RMSE' (i.e. accuracy and precision). The GM method resulted into relatively higher RMSE values and a consistent negative bias (i.e. underestimation) in estimates of annual river loads across all sampling frequencies. The RC method resulted in the lowest RMSE for TN, TP and TSS at monthly sampling frequency. Yet, RC highly overestimated the loads for parameters that showed dilution effect such as NO 3 - -N and SIN. The FW and RE methods gave similar results, and there was no essential improvement in using RE over FW. In general, FW and RE performed better than FS in terms of bias, but FS performed slightly better than FW and RE in terms of RMSE for most of the water quality parameters (DRP, TP, TN and TSS) using a monthly sampling frequency. We found no significant decrease in RMSE values for estimates of NO 3 - N, SIN, TN and DRP loads when the sampling frequency was increased from monthly to fortnightly. The bias and RMSE values in estimates of TP and TSS loads (estimated by FW, RE and FS), however, showed a significant decrease in the case of weekly or 2-day sampling. This suggests potential for a higher sampling frequency during flow peaks for more precise

  9. Measuring Cognitive Load: A Comparison of Self-Report and Physiological Methods

    Science.gov (United States)

    Joseph, Stacey

    2013-01-01

    This study explored three methods to measure cognitive load in a learning environment using four logic puzzles that systematically varied in level of intrinsic cognitive load. Participants' perceived intrinsic load was simultaneously measured with a self-report measure-a traditional subjective measure-and two objective, physiological measures…

  10. Iontophoretic transdermal drug delivery: a multi-layered approach.

    Science.gov (United States)

    Pontrelli, Giuseppe; Lauricella, Marco; Ferreira, José A; Pena, Gonçalo

    2017-12-11

    We present a multi-layer mathematical model to describe the transdermal drug release from an iontophoretic system. The Nernst-Planck equation describes the basic convection-diffusion process, with the electric potential obtained by solving the Laplace's equation. These equations are complemented with suitable interface and boundary conditions in a multi-domain. The stability of the mathematical problem is discussed in different scenarios and a finite-difference method is used to solve the coupled system. Numerical experiments are included to illustrate the drug dynamics under different conditions. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  11. A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin.

    Science.gov (United States)

    Seong, Keum-Yong; Seo, Min-Soo; Hwang, Dae Youn; O'Cearbhaill, Eoin D; Sreenan, Seamus; Karp, Jeffrey M; Yang, Seung Yun

    2017-11-10

    Proteins are important biologic therapeutics used for the treatment of various diseases. However, owing to low bioavailability and poor skin permeability, transdermal delivery of protein therapeutics poses a significant challenge. Here, we present a new approach for transdermal protein delivery using bullet-shaped double-layered microneedle (MN) arrays with water-swellable tips. This design enabled the MNs to mechanically interlock with soft tissues by selective distal swelling after skin insertion. Additionally, prolonged release of loaded proteins by passive diffusion through the swollen tips was obtained. The bullet-shaped MNs provided an optimal geometry for mechanical interlocking, thereby achieving significant adhesion strength (~1.6Ncm -2 ) with rat skin. By harnessing the MN's reversible swelling/deswelling property, insulin, a model protein drug, was loaded in the swellable tips using a mild drop/dry procedure. The insulin-loaded MN patch released 60% of insulin when immersed in saline over the course of 12h and approximately 70% of the released insulin appeared to have preserved structural integrity. An in vivo pilot study showed a prolonged release of insulin from swellable MN patches, leading to a gradual decrease in blood glucose levels. This self-adherent transdermal MN platform can be applied to a variety of protein drugs requiring sustained release kinetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Application of SVM methods for mid-term load forecasting

    Directory of Open Access Journals (Sweden)

    Božić Miloš

    2011-01-01

    Full Text Available This paper presents an approach for the medium-term load forecasting using Support Vector Machines (SVMs. The proposed SVM model was employed to predict the maximum daily load demand for the period of a month. Analyses of available data were performed and the most important features for the construction of SVM model are selected. It was shown that the size and the structure of the training set may significantly affect the accuracy of predictions. The presented model was tested by applying it on real-life load data obtained from distribution company 'ED Jugoistok' for the territory of city Niš and its surroundings. Experimental results show that the proposed approach gives acceptable results for the entire period of prediction, which are in range with other solutions in this area.

  13. Dry method for recycling iodine-loaded silver zeolite

    International Nuclear Information System (INIS)

    Thomas, T.R.; Staples, B.A.; Murphy, L.P.

    1978-01-01

    Fission product iodine is removed from a waste gas stream and stored by passing the gas stream through a bed of silver-exchanged zeolite until the zeolite is loaded with iodine, passing dry hydrogen gas through the bed to remove the iodine and regenerate the bed, and passing the hydrogen stream containing the hydrogen iodide thus formed through a lead-exchanged zeolite which absorbs the radioactive iodine from the gas stream and permanently storing the lead-exchanged zeolite loaded with radioactive iodine

  14. Objective and subjective methods for quantifying training load in wheelchair basketball small-sided games.

    Science.gov (United States)

    Iturricastillo, Aitor; Granados, Cristina; Los Arcos, Asier; Yanci, Javier

    2017-04-01

    The aim of the present study was to analyse the training load in wheelchair basketball small-sided games and determine the relationship between heart rate (HR)-based training load and perceived exertion (RPE)-based training load methods among small-sided games bouts. HR-based measurements of training load included Edwards' training load and Stagno's training impulses (TRIMP MOD ) while RPE-based training load measurements included cardiopulmonary (session RPEres) and muscular (session RPEmus) values. Data were collected from 12 wheelchair basketball players during five consecutive weeks. The total load for the small-sided games sessions was 67.5 ± 6.7 and 55.3 ± 12.5 AU in HR-based training load (Edwards' training load and TRIMP MOD ), while the RPE-based training loads were 99.3 ± 26.9 (session RPEres) and 100.8 ± 31.2 AU (session RPEmus). Bout-to-bout analysis identified greater session RPEmus in the third [P training loads. It is suggested that HR-based and RPE-based training loads provide different information, but these two methods could be complementary because one method could help us to understand the limitations of the other.

  15. Dorzolamide Loaded Niosomal Vesicles: Comparison of Passive and Remote Loading Methods

    OpenAIRE

    Hashemi Dehaghi, Mohadeseh; Haeri, Azadeh; Keshvari, Hamid; Abbasian, Zahra; Dadashzadeh, Simin

    2017-01-01

    Glaucoma is a common progressive eye disorder and the treatment strategies will benefit from nanoparticulate delivery systems with high drug loading and sustained delivery of intraocular pressure lowering agents. Niosomes have been reported as a novel approach to improve drug low corneal penetration and bioavailability characteristics. Along with this, poor entrapment efficiency of hydrophilic drug in niosomal formulation remains as a major formulation challenge. Taking this perspective into ...

  16. Methylphenidate Transdermal System in Adults with Past Stimulant Misuse: An Open-Label Trial

    Science.gov (United States)

    McRae-Clark, Aimee L.; Brady, Kathleen T.; Hartwell, Karen J.; White, Kathleen; Carter, Rickey E.

    2011-01-01

    Objective: This 8-week, open-label trial assessed the efficacy of methylphenidate transdermal system (MTS) in 14 adult individuals diagnosed with ADHD and with a history of stimulant misuse, abuse, or dependence. Method: The primary efficacy endpoint was the Wender-Reimherr Adult ADHD Scale (WRAADS), and secondary efficacy endpoints included the…

  17. Transdermal uptake of diethyl phthalate and di(n-butyl) phthalate directly from air: Experimental verification

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Bekö, Gabriel; Koch, Holger M.

    2015-01-01

    of phthalate esters. Objectives: This study investigated transdermal uptake, directly from air, of diethyl phthalate (DEP) and di(n-butyl) phthalate (DnBP) in humans. Methods: In a series of experiments, six human participants were exposed for 6 hr in a chamber containing deliberately elevated air...

  18. Methylphenidate Transdermal System in Adult ADHD and Impact on Emotional and Oppositional Symptoms

    Science.gov (United States)

    Marchant, Barrie K.; Reimherr, Frederick W.; Robison, Reid J.; Olsen, John L.; Kondo, Douglas G.

    2011-01-01

    Objective: This trial evaluated the effect of methylphenidate transdermal system (MTS) on the full spectrum of adult symptoms (attention-disorganization, hyperactivity-impulsivity, emotional dysregulation [ED], and oppositional-defiant disorder [ODD]) found in this disorder. Method: This placebo-controlled, double-blind, flexible-dose, crossover…

  19. A Simple Method for Static Load Balancing of Parallel FDTD Codes

    DEFF Research Database (Denmark)

    Franek, Ondrej

    2016-01-01

    A static method for balancing computational loads in parallel implementations of the finite-difference timedomain method is presented. The procedure is fairly straightforward and computationally inexpensive, thus providing an attractive alternative to optimization techniques. The method is descri...

  20. Optimisation models and solution methods for load management

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Stig-Inge [Linkoeping Univ. (Sweden). Div. of Wood Science and Technology; Roennqvist, Mikael; Claesson, Marcus [Linkoeping Univ. (Sweden). Div. of Optimisation

    2001-02-01

    The electricity market in Sweden has changed during recent years. Electricity for industrial use can nowadays be purchased from a number of competing electricity suppliers. Hence, the price for each kilowatt-hour is significantly lower than just two years ago and the interest for electricity conservation measures has declined. Part of the electricity tariff is, however, almost the same as before, i.e. the demand cost expressed in Swedish Kronor, SEK, for each kilowatt. This has put focus on load management measures in order to decrease this specific cost. Saving one kWh might lead to monetary savings between 0.22 to 914 SEK and this paper shows how to save only those kWh which really save money. A load management system has been installed in a small carpentry factory and the device can turn off equipment due to a certain priority and for a number of minutes each hour. The question is now, what level on the electricity load is optimal in a strict mathematical sense, i.e. how many kW should be set in the load management computer in order to get the best profitability? In this paper we develop a mathematical model which can be used both as a tool to find a best profitable subscription level and as a tool to control the turn of choices. Numerical results from a case study are presented.

  1. Load calculation methods for offshore wind turbine foundations

    DEFF Research Database (Denmark)

    Passon, Patrik; Branner, Kim

    2014-01-01

    Calculation of design loads for offshore wind turbine (OWT) foundations is typically performed in a joint effort between wind turbine manufactures and foundation designers (FDs). Ideally, both parties would apply the same fully integrated design tool and model for that purpose. However, such solu...

  2. Optimisation models and solution methods for load management

    International Nuclear Information System (INIS)

    Gustafsson, Stig-Inge; Roennqvist, Mikael; Claesson, Marcus

    2001-02-01

    The electricity market in Sweden has changed during recent years. Electricity for industrial use can nowadays be purchased from a number of competing electricity suppliers. Hence, the price for each kilowatt-hour is significantly lower than just two years ago and the interest for electricity conservation measures has declined. Part of the electricity tariff is, however, almost the same as before, i.e. the demand cost expressed in Swedish Kronor, SEK, for each kilowatt. This has put focus on load management measures in order to decrease this specific cost. Saving one kWh might lead to monetary savings between 0.22 to 914 SEK and this paper shows how to save only those kWh which really save money. A load management system has been installed in a small carpentry factory and the device can turn off equipment due to a certain priority and for a number of minutes each hour. The question is now, what level on the electricity load is optimal in a strict mathematical sense, i.e. how many kW should be set in the load management computer in order to get the best profitability? In this paper we develop a mathematical model which can be used both as a tool to find a best profitable subscription level and as a tool to control the turn of choices. Numerical results from a case study are presented

  3. Successful transdermal allergen delivery and allergen-specific immunotherapy using biodegradable microneedle patches.

    Science.gov (United States)

    Kim, Ji Hye; Shin, Jung U; Kim, Seo Hyeong; Noh, Ji Yeon; Kim, Hye Ran; Lee, Jungsoo; Chu, Howard; Jeong, Kyoung Yong; Park, Kyung Hee; Kim, Jung Dong; Kim, Hong Kee; Jeong, Do Hyeon; Yong, Tai-Soon; Park, Jung-Won; Lee, Kwang Hoon

    2018-01-01

    Allergen-specific immunotherapy (SIT) is an effective treatment modality for allergic diseases such as atopic dermatitis (AD). However, frequent visits over a 3-year period as well as looming adverse events tend to discourage patient compliance. Therefore, a more convenient, effective, and safe method of SIT is needed. For several decades, use of microneedles has been promoted as an efficient and precise transdermal drug delivery method. In this study, we developed Dermatophagoides farinae (D. farinae) extract (DfE)-loaded microneedle patches, and evaluated their safety and efficacy as a novel SIT method. After 4 weeks of patch application, efficient allergen delivery and successful induction of immune response to DfE were demonstrated in mice, with no apparent adverse events. AD-induced NC/Nga mice received microneedle immunotherapy (MNIT) (10 μg), subcutaneous immunotherapy (SCIT) (10 μg), SCIT (100 μg), or placebo. Both MNIT (10 μg) and SCIT (100 μg) treatments improved clinical and histologic manifestations of AD skin lesions, altered immunoglobulin production, dampened Th2 cellular response, and boosted Treg infiltrates, without significant side effects; whereas SCIT (10 μg) or placebo subsets failed to show any effects. Based on the favorable safety and efficacy profiles demonstrated in mice by MNIT in the current study, we believe that MNIT may serve as a new SIT modality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Recent developments in skin mimic systems to predict transdermal permeation.

    Science.gov (United States)

    Waters, Laura J

    2015-01-01

    In recent years there has been a drive to create experimental techniques that can facilitate the accurate and precise prediction of transdermal permeation without the use of in vivo studies. This review considers why permeation data is essential, provides a brief summary as to how skin acts as a natural barrier to permeation and discusses why in vivo studies are undesirable. This is followed by an in-depth discussion on the extensive range of alternative methods that have been developed in recent years. All of the major 'skin mimic systems' are considered including: in vitro models using synthetic membranes, mathematical models including quantitative structure-permeability relationships (QSPRs), human skin equivalents and chromatographic based methods. All of these model based systems are ideally trying to achieve the same end-point, namely a reliable in vitro-in vivo correlation, i.e. matching non-in vivo obtained data with that from human clinical trials. It is only by achieving this aim, that any new method of obtaining permeation data can be acknowledged as a potential replacement for animal studies, for the determination of transdermal permeation. In this review, the relevance and potential applicability of the various models systems will also be discussed.

  5. Systems and methods for providing power to a load based upon a control strategy

    Science.gov (United States)

    Perisic, Milun; Kajouke, Lateef A; Ransom, Ray M

    2013-12-24

    Systems and methods are provided for an electrical system. The electrical system includes a load, an interface configured to receive a voltage from a voltage source, and a controller configured to receive the voltage from the voltage source through the interface and to provide a voltage and current to the load. Wherein, when the controller is in a constant voltage mode, the controller provides a constant voltage to the load, when the controller is in a constant current mode, the controller provides a constant current to the load, and when the controller is in a constant power mode, the controller provides a constant power to the load.

  6. Studies on transdermal delivery enhancement of zidovudine.

    Science.gov (United States)

    Takmaz, Evrim Atilay; Inal, Ozge; Baykara, Tamer

    2009-01-01

    The purpose of this study was to investigate physicochemical characteristics and in vitro release of zidovudine from monolithic film of Eudragit RL 100 and ethyl cellulose. Films included 2.5% or 5% (w/w) zidovudine of the dry polymer weight were prepared in various ratios of polymers by solvent evaporation method from methanol/acetone solvent mixture. The release studies were carried out by vertical Franz cells (2.2 cm(2) area, 20 ml receptor fluid). Ex vivo studies were done on Wistar rat skin within the films F6 (Eudragit RL100) and F7 (Eudragit RL100/Ethylcellulose, 1:1) consisting 5% (w/w) zidovudine in comparison with the same amount of free drug. Either iontophoresis (0.1 and 0.5 mA/cm(2) direct currents, Ag/AgCl electrodes) or dimethyl sulfoxide (pretreatment of 1% and 5%, w/w, solutions) were used as enhancers. Films consisting of ethyl cellulose under the ratio of 50% (w/w) gave similar release profiles, and the highest in vitro cumulative released amount was achieved with F6 film which gave the closest results with the free drug. This result could be due to the high swelling capacity and re-crystallization inhibition effect of RL 100 polymer which also influenced the film homogenization. All the films were fitted to Higuchi release kinetics. It was also observed that both 0.5-mA/cm(2) current and 5% (w/w) dimethyl sulfoxide applications significantly increased the cumulative permeated amount of zidovudine after 8 h; however, the flux enhancement ratio was higher for 0.5-mA/cm(2) current application, especially within F6 film. Thus, it was concluded that Eudragit RL100 film (F6) could be further evaluated for the transdermal application of zidovudine.

  7. Online Voltage Stability Assessment for Load Areas Based on the Holomorphic Embedding Method

    DEFF Research Database (Denmark)

    Liu, Chengxi; Wang, Bin; Hu, Fengkai

    2018-01-01

    This paper proposes an online steady-state voltage stability assessment scheme to evaluate the proximity to voltage collapse at each bus of a load area. Using a non-iterative holomorphic embedding method (HEM) with a proposed physical germ solution, an accurate loading limit at each load bus can...... be calculated based on online state estimation on the entire load area and a measurement-based equivalent for the external system. The HEM employs a power series to calculate an accurate Power-Voltage (P-V) curve at each load bus and accordingly evaluates the voltage stability margin considering load variations...... and then demonstrated on a load area of the Northeast Power Coordinating Council (NPCC) 48-generator, 140-bus power system....

  8. A commentary on transdermal drug delivery systems in clinical trials.

    Science.gov (United States)

    Watkinson, Adam C

    2013-09-01

    The number of drugs available as marketed transdermal products is limited to those that exhibit the correct physicochemical and pharmacokinetic properties that enable their effective delivery across the skin. In this respect, there are less than 20 drugs that are currently marketed in the US and EU as products that deliver systemic levels of their active ingredients. An analysis of clinical trials conducted in the transdermal sector shows a similar picture with only nine drugs accounting for approximately 80% of all transdermal clinical trials listed on ClinicalTrials.gov. Those drugs for which there are very few transdermal trials listed consist mostly of molecules that are inherently unsuitable for transdermal delivery and serve as a clear warning to drug developers that the science that governs transdermal drug delivery is well reflected by the successes and failures of drugs in development as well as those that make it to the market. Copyright © 2013 Wiley Periodicals, Inc.

  9. A Comprehensive Review on: Transdermal drug delivery systems.

    OpenAIRE

    Kharat, Rekha; Bathe, Ritesh Suresh

    2016-01-01

    Transdermal drug delivery system was introduced to overcome the difficulties of drug delivery through oral route. Despite their relatively higher costs, transdermal delivery systems have proved advantageous for delivery of selected drugs, such as estrogens, testosterone, clonidine and nitro-glycerine. Transdermal delivery provides a leading edge over injectable and oral routes by increasing patient compliance and avoiding first pass metabolism respectively. Topical  administration  of  therap...

  10. Methods for monitoring the initial load to critical in the fast test reactor

    International Nuclear Information System (INIS)

    Johnson, D.L.

    1975-08-01

    Conventional symmetric fuel loadings for the initial loading to critical of the Fast Test Reactor (FTR) are predicted to be more time consuming than asymmetric or trisector loadings. Potentially significant time savings can be realized by the latter, since adequate intermediate assessments of neutron multiplication can be made periodically without control rod reconnection in all trisectors. Experimental simulation of both loading schemes was carried out in the Reverse Approach to Critical (RAC) experiments in the Fast Test Reactor-Engineering Mockup Critical facility. Analyses of these experiments indicated that conventional source multiplication methods can be applied for monitoring either a symmetric or asymmetric fuel loading scheme equally well provided that detection efficiency corrections are employed. Methods for refining predictions of reactivity and count rates for the stages in a load to critical were also investigated. (auth)

  11. Wind load design methods for ground-based heliostats and parabolic dish collectors

    Energy Technology Data Exchange (ETDEWEB)

    Peterka, J A; Derickson, R G [Colorado State Univ., Fort Collins, CO (United States). Fluid Dynamics and Diffusion Lab.

    1992-09-01

    The purpose of this design method is to define wind loads on flat heliostat and parabolic dish collectors in a simplified form. Wind loads are defined for both mean and peak loads accounting for the protective influence of upwind collectors, wind protective fences, or other wind-blockage elements. The method used to define wind loads was to generalize wind load data obtained during tests on model collectors, heliostats or parabolic dishes, placed in a modeled atmospheric wind in a boundary-layer wind-tunnel at Colorado State University. For both heliostats and parabolic dishes, loads are reported for solitary collectors and for collectors as elements of a field. All collectors were solid with negligible porosity; thus the effects of porosity in the collectors is not addressed.

  12. Efficacy and safety of a transdermal contraceptive system.

    Science.gov (United States)

    Smallwood, G H; Meador, M L; Lenihan, J P; Shangold, G A; Fisher, A C; Creasy, G W

    2001-11-01

    To evaluate the efficacy, cycle control, compliance, and safety of a transdermal contraceptive system that delivers norelgestromin 150 microg and ethinyl estradiol 20 microg daily. In this open-label, 73-center study, 1672 healthy, ovulatory, sexually active women received ORTHO EVRA/EVRA for six (n = 1171) or 13 cycles (n = 501). The treatment regimen for each cycle was three consecutive 7-day patches (21 days) followed by 1 patch-free week. The overall and method-failure probabilities of pregnancy through 13 cycles were 0.7% and 0.4%, respectively. The incidence of breakthrough bleeding was low throughout the study. Perfect compliance (21 consecutive days of dosing, followed by a 7-day drug-free interval; no patch could be worn for more than 7 days) was achieved in 90% of subject cycles; only 1.9% of patches detached completely. Adverse events were typical of hormonal contraception, and most were mild-to-moderate in severity and not treatment limiting. The most common adverse events resulting in discontinuation were application site reactions (1.9%), nausea (1.8%), emotional lability (1.5%), headache (1.1%), and breast discomfort (1.0%). The transdermal contraceptive patch provides effective contraception and cycle control, and is well tolerated. The weekly change schedule for the contraceptive patch is associated with excellent compliance and wearability characteristics.

  13. Dissolving Microneedle Arrays for Transdermal Delivery of Amphiphilic Vaccines.

    Science.gov (United States)

    An, Myunggi; Liu, Haipeng

    2017-07-01

    Amphiphilic vaccine based on lipid-polymer conjugates is a new type of vaccine capable of self-delivering to the immune system. When injected subcutaneously, amphiphilic vaccines efficiently target antigen presenting cells in the lymph nodes (LNs) via a unique albumin-mediated transport and uptake mechanism and induce potent humoral and cellular immune responses. However, whether this new type of vaccine can be administrated via a safe, convenient microneedle-based transdermal approach remains unstudied. For such skin barrier-disruption systems, a simple application of microneedle arrays (MNs) is desired to disrupt the stratum corneum, and for rapid and pain-free self-administration of vaccines into the skin, the anatomic place permeates with an intricate mesh of lymphatic vessels draining to LNs. Here the microneedle transdermal approach is combined with amphiphilic vaccines to create a simple delivery approach which efficiently traffic molecular vaccines into lymphatics and draining LNs. The rapid release of amphiphilic vaccines into epidermis upon application of dissolving MNs to the skin of mice generates potent cellular and humoral responses, comparable or superior to those elicited by traditional needle-based immunizations. The results suggest that the amphiphilic vaccines delivered by dissolving MNs can provide a simple and safer vaccination method with enhanced vaccine efficacy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Contingency Management for Alcohol Use Reduction: A Pilot Study using a Transdermal Alcohol Sensor*

    Science.gov (United States)

    Barnett, Nancy P.; Tidey, Jennifer; Murphy, James G.; Swift, Robert; Colby, Suzanne M.

    2011-01-01

    Background Contingency management (CM) has not been thoroughly evaluated as a treatment for alcohol abuse or dependence, in part because verification of alcohol use reduction requires frequent in-person breath tests. Transdermal alcohol sensors detect alcohol regularly throughout the day, providing remote monitoring and allowing for rapid reinforcement of reductions in use. Methods The purpose of this study was to evaluate the efficacy of CM for reduction in alcohol use, using a transdermal alcohol sensor to provide a continuous measure of alcohol use. Participants were 13 heavy drinking adults who wore the Secure Continuous Remote Alcohol Monitoring (SCRAM) bracelet for three weeks and provided reports of alcohol and drug use using daily web-based surveys. In Week 1, participants were asked to drink as usual; in Weeks 2 and 3, they were reinforced on an escalating schedule with values ranging from $5-$17 per day on days when alcohol use was not reported or detected by the SCRAM. Results Self-reports of percent days abstinent and drinks per week, and transdermal measures of average and peak transdermal alcohol concentration and area under the curve declined significantly in Weeks 2-3. A nonsignificant but large effect size for reduction in days of tobacco use also was found. An adjustment to the SCRAM criteria for detecting alcohol use provided an accurate but less conservative method for use with non-mandated clients. Conclusion Results support the efficacy of CM for alcohol use reductions and the feasibility of using transdermal monitoring of alcohol use for clinical purposes. PMID:21665385

  15. Method for compensating bellows pressure loads while accommodating thermal deformations

    International Nuclear Information System (INIS)

    Woodle, M.H.

    1985-01-01

    Many metal bellows are used on storage ring vacuum chambers. They allow the ring to accommodate deformations associated with alignment, mechanical assembly and thermal expansion. The NSLS has two such electron storage rings, the vuv ring and the x-ray ring. Both rings utilize a number of welded metal bellows within the ring and at every beam port. There are provisions for 16 beam ports on the vuv and 28 ports in the x-ray ring. At each of these locations the bellows are acted on by an external pressure of 1 atmosphere, which causes a 520 lb reaction at the vacuum chamber beam port and at the beamline flange downstream of the bellows. The use of rigid tie rods across the bellows flanges to support this load is troublesome because most storage ring vacuum chambers are baked in situ to achieve high internal vacuum. Significant forces can develop on components if thermal deformation is restrained and damage could occur

  16. A knowledge based method for nuclear plant loading pattern determination

    International Nuclear Information System (INIS)

    Dauboin, P.

    1990-01-01

    This paper deals with the design of a knowledge based system for solving an industrial problem which occurs in nuclear fuel management. The problem lies in determining satisfactory loading patterns for nuclear plants. Its primary feature consists in the huge search space involved. Conventional resolution processes are formally defined and analyzed: there is no general algorithm which guarantees to always provide a reasonable solution in each situation. We propose a new approach to solve this constrained search problem using domain-specific knowledge and general constraint-based heuristics. During a preprocessing step, a problem dependent search algorithm is designed. This procedure is then automatically implemented in FORTRAN. The generated routines have proved to be very efficient finding solutions which could not have been provided using logic programming. A prototype expert system has already been applied to actual reload pattern searches. While combining efficiency and flexibility, this knowledge based system enables human experts to rapidly match new constraints and requirements

  17. Multiscale modeling of transdermal drug delivery

    Science.gov (United States)

    Rim, Jee Eun

    2006-04-01

    This study addresses the modeling of transdermal diffusion of drugs, to better understand the permeation of molecules through the skin, and especially the stratum corneum, which forms the main permeation barrier of the skin. In transdermal delivery of systemic drugs, the drugs diffuse from a patch placed on the skin through the epidermis to the underlying blood vessels. The epidermis is the outermost layer of the skin and can be further divided into the stratum corneum (SC) and the viable epidermis layers. The SC consists of keratinous cells (corneocytes) embedded in the lipid multi-bilayers of the intercellular space. It is widely accepted that the barrier properties of the skin mostly arises from the ordered structure of the lipid bilayers. The diffusion path, at least for lipophilic molecules, seems to be mainly through the lipid bilayers. Despite the advantages of transdermal drug delivery compared to other drug delivery routes such as oral dosing and injections, the low percutaneous permeability of most compounds is a major difficulty in the wide application of transdermal drug delivery. In fact, many transdermal drug formulations include one or more permeation enhancers that increase the permeation of the drug significantly. During the last two decades, many researchers have studied percutaneous absorption of drugs both experimentally and theoretically. However, many are based on pharmacokinetic compartmental models, in which steady or pseudo-steady state conditions are assumed, with constant diffusivity and partitioning for single component systems. This study presents a framework for studying the multi-component diffusion of drugs coupled with enhancers through the skin by considering the microstructure of the stratum corneum (SC). A multiscale framework of modeling the transdermal diffusion of molecules is presented, by first calculating the microscopic diffusion coefficient in the lipid bilayers of the SC using molecular dynamics (MD). Then a

  18. Preparation, characterization and permeation studies of a nanovesicular system containing diclofenac for transdermal delivery.

    Science.gov (United States)

    Gaur, Praveen Kumar; Purohit, Suresh; Kumar, Yatendra; Mishra, Shikha; Bhandari, Anil

    2014-02-01

    Transdermal formulations contain permeation enhancer which causes skin damage. Ceramide 2 is natural lipid found in stratum corneum (SC). Drug-loaded nanovesicles of ceramide-2, cholesterol, palmitic acid, cholesteryl sulfate were formulated and analyzed for physical and biological properties. Diclofenac was used as a model drug. The vesicles were prepared using the film hydration method and characterized for physical parameters, in vitro drug release, accelerated stability studies and formulated into gel. Respective gels were compared with a commercial formulation (CEG) and plain carbopol gel (CG) containing drug for ex vivo, in vivo drug permeation and anti-inflammatory activity. The vesicles were stable with optimum physical parameters. DCG-1 showed 92.89% in vitro drug release. Ceramide vesicles showed drug release between 18 and 25 μg/cm(2) whereas CG and CEG released 0.33 and 1.35 μg/cm(2) drug, respectively. DCG-1 and CEG showed corresponding Cmax at 6 and 4 h, respectively. DCG-1 showed six times AUC than CEG. DCG-1 inhibited edema by 86.37% by 4th hour of application. The presence of ceramide 2 specifically promotes the drug permeation through SC and dermis and also contribute towards stability and non-irritancy. The composition of the nanovesicle played an important role in physical properties and drug permeation.

  19. Study on erbium loading method to improve reactivity coefficients for low radiotoxic spent fuel HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Fukaya, Y., E-mail: fukaya.yuji@jaea.go.jp; Goto, M.; Nishihara, T.

    2015-11-15

    Highlights: • We attempted and optimized erbium loading methods to improve reactivity coefficients for LRSF-HTGR. • We elucidated the mechanism of the improvements for each erbium loading method by using the Bondarenko approach. • We concluded the erbium loading method by embedding into graphite shaft is preferable. - Abstract: Erbium loading methods are investigated to improve reactivity coefficients of Low Radiotoxic Spent Fuel High Temperature Gas-cooled Reactor (LRSF-HTGR). Highly enriched uranium is used for fuel to reduce the generation of toxicity from uranium-238. The power coefficients are positive without the use of any additive. Then, the erbium is loaded into the core to obtain negative reactivity coefficients owing to the large resonance the peak of neutron capture reaction of erbium-167. The loading methods are attempted to find the suitable method for LRSF-HTGR. The erbium is mixed in a CPF fuel kernel, loaded by binary packing with fuel particles and erbium particles, and embedded into the graphite shaft deployed in the center of the fuel compact. It is found that erbium loading causes negative reactivity as moderator temperature reactivity, and from the viewpoint of heat transfer, it should be loaded into fuel pin elements for pin-in-block type fuel. Moreover, the erbium should be incinerated slowly to obtain negative reactivity coefficients even at the End Of Cycle (EOC). A loading method that effectively causes self-shielding should be selected to avoid incineration with burn-up. The incineration mechanism is elucidated using the Bondarenko approach. As a result, it is concluded that erbium embedded into graphite shaft is preferable for LRSF-HTGR to ensure that the reactivity coefficients remain negative at EOC.

  20. Rapidly Dissolving Microneedle Patches for Transdermal Iron Replenishment Therapy.

    Science.gov (United States)

    Maurya, Abhijeet; Nanjappa, Shivakumar H; Honnavar, Swati; Salwa, M; Murthy, S Narasimha

    2018-02-17

    The prevalence of iron deficiency anemia (IDA) is predominant in women and children especially in developing countries. The disorder affects cognitive functions and physical activity. Although oral iron supplementation and parenteral therapy remains the preferred choice of treatment, gastric side effects and risk of iron overload decreases adherence to therapy. Transdermal route is an established approach, which circumvents the side effects associated with conventional therapy. In this project, an attempt was made to investigate the use of rapidly dissolving microneedles loaded with ferric pyrophosphate (FPP) as a potential therapeutic approach for management of IDA. Microneedle array patches were made using the micromolding technique and tested in vitro using rat skin to check the duration required for dissolution/disappearance of needles. The ability of FPP-loaded microneedles to replenish iron was investigated in anemic rats. Rats were fed iron-deficient diet for 5 weeks to induce IDA following which microneedle treatment was initiated. Recovery of rats from anemic state was monitored by measuring hematological and biochemical parameters. Results from in vivo study displayed significant improvements in hemoglobin and serum iron levels after 2-week treatment with FPP-loaded microneedles. The study effectively demonstrated the potential of microneedle-mediated iron replenishment for treatment of IDA. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Advanced progress of microencapsulation technologies: in vivo and in vitro models for studying oral and transdermal drug deliveries.

    Science.gov (United States)

    Lam, P L; Gambari, R

    2014-03-28

    This review provides an overall discussion of microencapsulation systems for both oral and transdermal drug deliveries. Clinically, many drugs, especially proteins and peptides, are susceptible to the gastrointestinal tract and the first-pass metabolism after oral administration while some drugs exhibit low skin permeability through transdermal delivery route. Medicated microcapsules as oral and transdermal drug delivery vehicles are believed to offer an extended drug effect at a relatively low dose and provide a better patient compliance. The polymeric microcapsules can be produced by different microencapsulation methods and the drug microencapsulation technology provides the quality preservation for drug stabilization. The release of the entrapped drug is controlled and prolonged for specific usages. Some recent studies have focused on the evaluation of drug containing microcapsules on potential biological and therapeutic applications. For the oral delivery, in vivo animal models were used for evaluating possible treatment effects of drug containing microcapsules. For the transdermal drug delivery, skin delivery models were introduced to investigate the potential skin delivery of medicated microcapsules. Finally, the challenges and limitations of drug microencapsulation in real life are discussed and the commercially available drug formulations using microencapsulation technology for oral and transdermal applications are shown. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Direct strength method for web crippling—Lipped channels under EOF and IOF loading

    NARCIS (Netherlands)

    Heurkens, R.A.J.; Hofmeyer, H.; Mahendran, M.; Snijder, H.H.

    2018-01-01

    To apply the Direct Strength Method (DSM) to web crippling of lipped channel sections, experiments were recently conducted under EOF and IOF loading conditions. In the research presented here, finite element models were first developed to predict the elastic buckling loads and the elasto-plastic

  3. Note: A novel method for in situ loading of gases via x-ray induced chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Pravica, Michael; Bai, Ligang; Park, Changyong; Liu, Yu; Galley, Martin; Robinson, John; Bhattacharya, Neelanjan (UNLV); (CIW)

    2011-12-14

    We have developed and demonstrated a novel method to load oxygen in a sealed diamond anvil cell via the x-ray induced decomposition of potassium chlorate. By irradiating a pressurized sample of an oxidizer (KClO{sub 3}) with either monochromatic or white beam x-rays from the Advanced Photon Source at ambient temperature and variable pressure, we succeeded in creating a localized region of molecular oxygen surrounded by unreacted sample which was confirmed via Raman spectroscopy. We anticipate that this technique will be useful in loading even more challenging, difficult-to-load gases such as hydrogen and also to load multiple gases.

  4. Note: A novel method for in situ loading of gases via x-ray induced chemistry

    Science.gov (United States)

    Pravica, Michael; Bai, Ligang; Park, Changyong; Liu, Yu; Galley, Martin; Robinson, John; Bhattacharya, Neelanjan

    2011-10-01

    We have developed and demonstrated a novel method to load oxygen in a sealed diamond anvil cell via the x-ray induced decomposition of potassium chlorate. By irradiating a pressurized sample of an oxidizer (KClO3) with either monochromatic or white beam x-rays from the Advanced Photon Source at ambient temperature and variable pressure, we succeeded in creating a localized region of molecular oxygen surrounded by unreacted sample which was confirmed via Raman spectroscopy. We anticipate that this technique will be useful in loading even more challenging, difficult-to-load gases such as hydrogen and also to load multiple gases.

  5. Contingency management for alcohol use reduction: a pilot study using a transdermal alcohol sensor.

    Science.gov (United States)

    Barnett, Nancy P; Tidey, Jennifer; Murphy, James G; Swift, Robert; Colby, Suzanne M

    2011-11-01

    Contingency management (CM) has not been thoroughly evaluated as a treatment for alcohol abuse or dependence, in part because verification of alcohol use reduction requires frequent in-person breath tests. Transdermal alcohol sensors detect alcohol regularly throughout the day, providing remote monitoring and allowing for rapid reinforcement of reductions in use. The purpose of this study was to evaluate the efficacy of CM for reduction in alcohol use, using a transdermal alcohol sensor to provide a continuous measure of alcohol use. Participants were 13 heavy drinking adults who wore the Secure Continuous Remote Alcohol Monitoring (SCRAM) bracelet for three weeks and provided reports of alcohol and drug use using daily web-based surveys. In Week 1, participants were asked to drink as usual; in Weeks 2 and 3, they were reinforced on an escalating schedule with values ranging from $5 to $17 per day on days when alcohol use was not reported or detected by the SCRAM. Self-reports of percent days abstinent and drinks per week, and transdermal measures of average and peak transdermal alcohol concentration and area under the curve declined significantly in Weeks 2-3. A nonsignificant but large effect size for reduction in days of tobacco use also was found. An adjustment to the SCRAM criteria for detecting alcohol use provided an accurate but less conservative method for use with non-mandated clients. Results support the efficacy of CM for alcohol use reductions and the feasibility of using transdermal monitoring of alcohol use for clinical purposes. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Comparison of Design Methods for Axially Loaded Driven Piles in Cohesionless Soil

    DEFF Research Database (Denmark)

    Thomassen, Kristina; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2012-01-01

    For offshore wind turbines on deeper waters, a jacket sub-structure supported by axially loaded piles is thought to be the most suitable solution. The design method recommended by API and two CPT-based design methods are compared for two uniform sand profiles. The analysis show great difference...... in the predictions of bearing capacities calculated by means of the three methods for piles loaded in both tension and compression. This implies that further analysis of the bearing capacity of axially loaded piles in sand should be conducted....

  7. Prediction method for cavitation erosion based on measurement of bubble collapse impact loads

    International Nuclear Information System (INIS)

    Hattori, S; Hirose, T; Sugiyama, K

    2009-01-01

    The prediction of cavitation erosion rates is important in order to evaluate the exact life of components. The measurement of impact loads in bubble collapses helps to predict the life under cavitation erosion. In this study, we carried out erosion tests and the measurements of impact loads in bubble collapses with a vibratory apparatus. We evaluated the incubation period based on a cumulative damage rule by measuring the impact loads of cavitation acting on the specimen surface and by using the 'constant impact load - number of impact loads curve' similar to the modified Miner's rule which is employed for fatigue life prediction. We found that the parameter Σ(F i α xn i ) (F i : impact load, n i : number of impacts and α: constant) is suitable for the evaluation of the erosion life. Moreover, we propose a new method that can predict the incubation period under various cavitation conditions.

  8. Load assumption for fatigue design of structures and components counting methods, safety aspects, practical application

    CERN Document Server

    Köhler, Michael; Pötter, Kurt; Zenner, Harald

    2017-01-01

    Understanding the fatigue behaviour of structural components under variable load amplitude is an essential prerequisite for safe and reliable light-weight design. For designing and dimensioning, the expected stress (load) is compared with the capacity to withstand loads (fatigue strength). In this process, the safety necessary for each particular application must be ensured. A prerequisite for ensuring the required fatigue strength is a reliable load assumption. The authors describe the transformation of the stress- and load-time functions which have been measured under operational conditions to spectra or matrices with the application of counting methods. The aspects which must be considered for ensuring a reliable load assumption for designing and dimensioning are discussed in detail. Furthermore, the theoretical background for estimating the fatigue life of structural components is explained, and the procedures are discussed for numerous applications in practice. One of the prime intentions of the authors ...

  9. Transdermal microneedles for drug delivery applications

    International Nuclear Information System (INIS)

    Teo, Ai Ling; Shearwood, Christopher; Ng, Kian Chye; Lu Jia; Moochhala, Shabbir

    2006-01-01

    Transdermal drug delivery (TDD) has many advantages, the main one being the ability to maintain the prolonged release of drugs to attain optimal blood concentrations. Unfortunately, nature has provided a very effective protective barrier, the stratum corneum (sc), which limits TDD to certain types of drugs with specific properties. In order to enhance TDD, the idea of using microneedles to painlessly penetrate the sc barrier has previously been proposed. In this paper, we will review the different microneedles that are currently being developed as well as our own efforts in this area. Based on our experiences, we will offer our view on the key parameters for effective transdermal microneedle design as well as future directions in this area

  10. Transdermal microneedles for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Teo, Ai Ling [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore); Shearwood, Christopher [School of Mechanical and Aerospace Engineering, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ng, Kian Chye [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore); Lu Jia [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore); Moochhala, Shabbir [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117510 (Singapore)]. E-mail: mshabbir@dso.org.sg

    2006-07-25

    Transdermal drug delivery (TDD) has many advantages, the main one being the ability to maintain the prolonged release of drugs to attain optimal blood concentrations. Unfortunately, nature has provided a very effective protective barrier, the stratum corneum (sc), which limits TDD to certain types of drugs with specific properties. In order to enhance TDD, the idea of using microneedles to painlessly penetrate the sc barrier has previously been proposed. In this paper, we will review the different microneedles that are currently being developed as well as our own efforts in this area. Based on our experiences, we will offer our view on the key parameters for effective transdermal microneedle design as well as future directions in this area.

  11. Transdermal drug delivery: approaches and significance

    OpenAIRE

    Murthy, SATHYANARAYANA

    2012-01-01

    S Narasimha MurthyDepartment of Pharmaceutics, The University of Mississippi, USATransdermal drug delivery systems deliver drugs through the skin as an alternative to oral, intravascular, subcutaneous, and transmucosal routes. Potential advantages of transdermal delivery include, but are not limited to, elimination of first-pass metabolism, steady delivery/blood levels, better patient compliance, reduced systemic drug interactions, possible dose intervention, avoidance of medically assisted d...

  12. Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads.

    Science.gov (United States)

    Ohara, Yoshikazu; Horinouchi, Satoshi; Hashimoto, Makoto; Shintaku, Yohei; Yamanaka, Kazushi

    2011-08-01

    To improve the selectivity of closed cracks for objects other than cracks in ultrasonic imaging, we propose an extension of a novel imaging method, namely, subharmonic phased array for crack evaluation (SPACE) as well as another approach using the subtraction of responses at different external loads. By applying external static or dynamic loads to closed cracks, the contact state in the cracks varies, resulting in an intensity change of responses at cracks. In contrast, objects other than cracks are independent of external load. Therefore, only cracks can be extracted by subtracting responses at different loads. In this study, we performed fundamental experiments on a closed fatigue crack formed in an aluminum alloy compact tension (CT) specimen using the proposed method. We examined the static load dependence of SPACE images and the dynamic load dependence of linear phased array (PA) images by simulating the external loads with a servohydraulic fatigue testing machine. By subtracting the images at different external loads, we show that this method is useful in extracting only the intensity change of responses related to closed cracks, while canceling the responses of objects other than cracks. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Evaluation of Stress Loaded Steel Samples Using Selected Electromagnetic Methods

    International Nuclear Information System (INIS)

    Chady, T.

    2004-01-01

    In this paper the magnetic leakage flux and eddy current method were used to evaluate changes of materials' properties caused by stress. Seven samples made of ferromagnetic material with different level of applied stress were prepared. First, the leakage magnetic fields were measured by scanning the surface of the specimens with GMR gradiometer. Next, the same samples were evaluated using an eddy current sensor. A comparison between results obtained from both methods was carried out. Finally, selected parameters of the measured signal were calculated and utilized to evaluate level of the applied stress. A strong coincidence between amount of the applied stress and the maximum amplitude of the derivative was confirmed

  14. Stress and deflection analyses of floating roofs based on a load-modifying method

    International Nuclear Information System (INIS)

    Sun Xiushan; Liu Yinghua; Wang Jianbin; Cen Zhangzhi

    2008-01-01

    This paper proposes a load-modifying method for the stress and deflection analyses of floating roofs used in cylindrical oil storage tanks. The formulations of loads and deformations are derived according to the equilibrium analysis of floating roofs. Based on these formulations, the load-modifying method is developed to conduct a geometrically nonlinear analysis of floating roofs with the finite element (FE) simulation. In the procedure with the load-modifying method, the analysis is carried out through a series of iterative computations until a convergence is achieved within the error tolerance. Numerical examples are given to demonstrate the validity and reliability of the proposed method, which provides an effective and practical numerical solution to the design and analysis of floating roofs

  15. Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies.

    Science.gov (United States)

    Norman, Stephanie C; Wagner, David W; Beaupre, Gary S; Castillo, Alesha B

    2015-01-02

    Axial compression of mouse limbs is commonly used to induce bone formation in a controlled, non-invasive manner. Determination of peak strains caused by loading is central to interpreting results. Load-strain calibration is typically performed using uniaxial strain gauges attached to the diaphyseal, periosteal surface of a small number of sacrificed animals. Strain is measured as the limb is loaded to a range of physiological loads known to be anabolic to bone. The load-strain relationship determined by this subgroup is then extrapolated to a larger group of experimental mice. This method of strain calculation requires the challenging process of strain gauging very small bones which is subject to variability in placement of the strain gauge. We previously developed a method to estimate animal-specific periosteal strain during axial ulnar loading using an image-based computational approach that does not require strain gauges. The purpose of this study was to compare the relationship between load-induced bone formation rates and periosteal strain at ulnar midshaft using three different methods to estimate strain: (A) Nominal strain values based solely on load-strain calibration; (B) Strains calculated from load-strain calibration, but scaled for differences in mid-shaft cross-sectional geometry among animals; and (C) An alternative image-based computational method for calculating strains based on beam theory and animal-specific bone geometry. Our results show that the alternative method (C) provides comparable correlation between strain and bone formation rates in the mouse ulna relative to the strain gauge-dependent methods (A and B), while avoiding the need to use strain gauges. Published by Elsevier Ltd.

  16. Comparison of design methods for axially loaded buckets in sand

    DEFF Research Database (Denmark)

    Vaitkunaite, Evelina; Nielsen, Benjaminn Nordahl; Ibsen, Lars Bo

    2015-01-01

    . Itwas found that bearing capacity from the surcharge increases approximately twice if the foundation skirt is two times longer. However, the predicted compressive soil capacity can differ by 3.6 times depending on the chosen bearing capacity parameters. Few methods are available for the estimation...

  17. Nanoethosomes for transdermal delivery of tropisetron HCl: multi-factorial predictive modeling, characterization, and ex vivo skin permeation.

    Science.gov (United States)

    Abdel Messih, Hanaa A; Ishak, Rania A H; Geneidi, Ahmed S; Mansour, Samar

    2017-06-01

    The aim of the present work is to exclusively optimize and model the effect of phospholipid type either egg phosphatidylcholine (EPC) or soybean phosphatidylcholine (SPC), together with other formulation variables, on the development of nano-ethosomal systems for transdermal delivery of a water-soluble antiemetic drug. Tropisetron HCl (TRO) is available as hard gelatin capsules and IV injections. The transdermal delivery of TRO is considered as a novel alternative route supposing to improve BAV as well as patient convenience. TRO-loaded ethanolic vesicular systems were prepared by hot technique. The effect of formulation variables were optimized through a response surface methodology using 3 × 2 2 -level full factorial design. The concentrations of both PC (A) and ethanol (B) and PC type (C) were the factors, while entrapment efficiency (Y 1 ), vesicle size (Y 2 ), polydispersity index (Y 3 ), and zeta potential (Y 4 ) were the responses. The drug permeation across rat skin from selected formulae was studied. Particle morphology, drug-excipient interactions, and vesicle stability were also investigated. The results proved the critical role of all formulation variables on ethosomal characteristics. The suggested models for all responses showed good predictability. Only the concentration of phospholipid, irrespective to PC type, had a significant effect on the transdermal flux (p transdermal TRO delivery.

  18. Superiority of liquid crystalline cubic nanocarriers as hormonal transdermal vehicle: comparative human skin permeation-supported evidence.

    Science.gov (United States)

    Mohyeldin, Salma M; Mehanna, Mohammed M; Elgindy, Nazik A

    2016-08-01

    The aim of this investigation was to explore the feasibility of various nanocarriers to enhance progesterone penetration via the human abdominal skin. Four progesterone-loaded nanocarriers; cubosomes, nanoliposomes, nanoemulsions and nanomicelles were formulated and characterized regarding particle size, zeta potential, % drug encapsulation and in vitro release. Structural elucidation of each nanoplatform was performed using transmission electron microscopy. Ex vivo skin permeation, deposition ability and histopathological examination were evaluated using Franz diffusion cells. Each nanocarrier was fabricated with a negative surface, nanometric size (≤ 270 nm), narrow size distribution and reasonable encapsulation efficiency. In vitro progesterone release showed a sustained release pattern for 24 h following a non-Fickian transport diffusion mechanism. All nanocarriers exhibited higher transdermal flux relative to free progesterone. Cubosomes revealed a higher skin penetration with transdermal steady flux of 48.57.10(-2) ± 0.7 µg/cm(2) h. Nanoliposomes offered a higher percentage of skin progesterone deposition compared to other nanocarriers. Based on the histopathological examination, cubosomes and nanoliposomes were found to be biocompatible for transdermal application. Confocal laser scanning microscopy confirmed the ability of fluoro-labeled cubosomes to penetrate through the whole skin layers. The elaborated cubosomes proved to be a promising non-invasive nanocarrier for transdermal hormonal delivery.

  19. Mixed price and load forecasting of electricity markets by a new iterative prediction method

    International Nuclear Information System (INIS)

    Amjady, Nima; Daraeepour, Ali

    2009-01-01

    Load and price forecasting are the two key issues for the participants of current electricity markets. However, load and price of electricity markets have complex characteristics such as nonlinearity, non-stationarity and multiple seasonality, to name a few (usually, more volatility is seen in the behavior of electricity price signal). For these reasons, much research has been devoted to load and price forecast, especially in the recent years. However, previous research works in the area separately predict load and price signals. In this paper, a mixed model for load and price forecasting is presented, which can consider interactions of these two forecast processes. The mixed model is based on an iterative neural network based prediction technique. It is shown that the proposed model can present lower forecast errors for both load and price compared with the previous separate frameworks. Another advantage of the mixed model is that all required forecast features (from load or price) are predicted within the model without assuming known values for these features. So, the proposed model can better be adapted to real conditions of an electricity market. The forecast accuracy of the proposed mixed method is evaluated by means of real data from the New York and Spanish electricity markets. The method is also compared with some of the most recent load and price forecast techniques. (author)

  20. Current advances in the fabrication of microneedles for transdermal delivery

    NARCIS (Netherlands)

    Indermun, S.; Luttge, R.; Choonara, Y.E.; Kumar, Pradeep; Toit, Du L.C.; Modi, G.; Pillay, V.

    2014-01-01

    The transdermal route is an excellent site for drug delivery due to the avoidance of gastric degradation and hepatic metabolism, in addition to easy accessibility. Although offering numerous attractive advantages, many available transdermal systems are not able to deliver drugs and other compounds

  1. A finite element method for flow problems in blast loading

    International Nuclear Information System (INIS)

    Forestier, A.; Lepareux, M.

    1984-06-01

    This paper presents a numerical method which describes fast dynamic problems in flow transient situations as in nuclear plants. A finite element formulation has been chosen; it is described by a preprocessor in CASTEM system: GIBI code. For these typical flow problems, an A.L.E. formulation for physical equations is used. So, some applications are presented: the well known problem of shock tube, the same one in 2D case and a last application to hydrogen detonation

  2. Amphiphilic poly{[α-maleic anhydride-ω-methoxypoly(ethylene glycol]-co-(ethyl cyanoacrylate} graft copolymer nanoparticles as carriers for transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Jinfeng Xing

    2009-10-01

    Full Text Available Jinfeng Xing, Liandong Deng, Jun Li, Anjie DongDepartment of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of ChinaAbstract: In this study, the transdermal drug delivery properties of D,L-tetrahydropalmatine (THP-loaded amphiphilic poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate} (PEGECA graft copolymer nanoparticles (PEGECAT NPs were evaluated by skin penetration experiments in vitro. The transdermal permeation experiments in vitro were carried out in Franz diffusion cells using THP-loaded PEGECAT NPs as the donor system. Transmission electron microscopy and Fourier transform infrared spectroscopy were used to characterize the receptor fluid. The results indicate that the THP-loaded PEGECAT NPs are able to penetrate the rat skin. Fluorescent microscopy measurements demonstrate that THP-loaded PEGECAT NPs can penetrate the skin not only via appendage routes but also via epidermal routes. This nanotechnology has potential application in transdermal drug delivery. Keywords: poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate}, nanoparticles, transdermal drug delivery, D,L-tetrahydropalmatine

  3. Development of a method to estimate coal pillar loading

    CSIR Research Space (South Africa)

    Roberts, DP

    2002-09-01

    Full Text Available to the panel width to depth ratio, the percentage extraction and the stiffness of the surrounding strata influence the validity of the tributary area method. An underground test was conducted to assess the magnitude of changes in pillar stress. Various... stress measurement devices were installed in test pillars just prior to mining. The stress changes were monitored and compared with numerical modelling results. It was found that stresses increased by between 0.3 MPa and 0.5 MPa and that the stresses...

  4. Optimization of structures subjected to dynamic load: deterministic and probabilistic methods

    Directory of Open Access Journals (Sweden)

    Élcio Cassimiro Alves

    Full Text Available Abstract This paper deals with the deterministic and probabilistic optimization of structures against bending when submitted to dynamic loads. The deterministic optimization problem considers the plate submitted to a time varying load while the probabilistic one takes into account a random loading defined by a power spectral density function. The correlation between the two problems is made by one Fourier Transformed. The finite element method is used to model the structures. The sensitivity analysis is performed through the analytical method and the optimization problem is dealt with by the method of interior points. A comparison between the deterministic optimisation and the probabilistic one with a power spectral density function compatible with the time varying load shows very good results.

  5. Damage evolution analysis of coal samples under cyclic loading based on single-link cluster method

    Science.gov (United States)

    Zhang, Zhibo; Wang, Enyuan; Li, Nan; Li, Xuelong; Wang, Xiaoran; Li, Zhonghui

    2018-05-01

    In this paper, the acoustic emission (AE) response of coal samples under cyclic loading is measured. The results show that there is good positive relation between AE parameters and stress. The AE signal of coal samples under cyclic loading exhibits an obvious Kaiser Effect. The single-link cluster (SLC) method is applied to analyze the spatial evolution characteristics of AE events and the damage evolution process of coal samples. It is found that a subset scale of the SLC structure becomes smaller and smaller when the number of cyclic loading increases, and there is a negative linear relationship between the subset scale and the degree of damage. The spatial correlation length ξ of an SLC structure is calculated. The results show that ξ fluctuates around a certain value from the second cyclic loading process to the fifth cyclic loading process, but spatial correlation length ξ clearly increases in the sixth loading process. Based on the criterion of microcrack density, the coal sample failure process is the transformation from small-scale damage to large-scale damage, which is the reason for changes in the spatial correlation length. Through a systematic analysis, the SLC method is an effective method to research the damage evolution process of coal samples under cyclic loading, and will provide important reference values for studying coal bursts.

  6. Application of Classification Methods for Forecasting Mid-Term Power Load Patterns

    Science.gov (United States)

    Piao, Minghao; Lee, Heon Gyu; Park, Jin Hyoung; Ryu, Keun Ho

    Currently an automated methodology based on data mining techniques is presented for the prediction of customer load patterns in long duration load profiles. The proposed approach in this paper consists of three stages: (i) data preprocessing: noise or outlier is removed and the continuous attribute-valued features are transformed to discrete values, (ii) cluster analysis: k-means clustering is used to create load pattern classes and the representative load profiles for each class and (iii) classification: we evaluated several supervised learning methods in order to select a suitable prediction method. According to the proposed methodology, power load measured from AMR (automatic meter reading) system, as well as customer indexes, were used as inputs for clustering. The output of clustering was the classification of representative load profiles (or classes). In order to evaluate the result of forecasting load patterns, the several classification methods were applied on a set of high voltage customers of the Korea power system and derived class labels from clustering and other features are used as input to produce classifiers. Lastly, the result of our experiments was presented.

  7. A piezoelectric-based infinite stiffness generation method for strain-type load sensors

    International Nuclear Information System (INIS)

    Zhang, Shuwen; Shao, Shubao; Xu, Minglong; Chen, Jie

    2015-01-01

    Under certain application conditions like nanoindentation technology and the mechanical property measurement of soft materials, the elastic deformation of strain-type load sensors affects their displacement measurement accuracy. In this work, a piezoelectric-based infinite stiffness generation method for strain-type load sensors that compensates for this elastic deformation is presented. The piezoelectric material-based deformation compensation method is proposed. An Hottinger Baldwin Messtechnik GmbH (HBM) Z30A/50N load sensor acts as the foundation of the method presented in this work. The piezoelectric stack is selected based on its size, maximum deformation value, blocking force and stiffness. Then, a clamping and fixing structure is designed to integrate the HBM sensor with the piezoelectric stack. The clamping and fixing structure, piezoelectric stack and HBM load sensor comprise the sensing part of the enhanced load sensor. The load-deformation curve and the voltage-deformation curve of the enhanced load sensor are then investigated experimentally. Because a hysteresis effect exists in the piezoelectric structure, the relationship between the control signal and the deformation value of the piezoelectric material is nonlinear. The hysteresis characteristic in a quasi-static condition is studied and fitted using a quadratic polynomial, and its coefficients are analyzed to enable control signal prediction. Applied arithmetic based on current theory and the fitted data is developed to predict the control signal. Finally, the experimental effects of the proposed method are presented. It is shown that when a quasi-static load is exerted on this enhanced strain-type load sensor, the deformation is reduced and the equivalent stiffness appears to be almost infinite. (paper)

  8. Determining the optimal load for jump squats: a review of methods and calculations.

    Science.gov (United States)

    Dugan, Eric L; Doyle, Tim L A; Humphries, Brendan; Hasson, Christopher J; Newton, Robert U

    2004-08-01

    There has been an increasing volume of research focused on the load that elicits maximum power output during jump squats. Because of a lack of standardization for data collection and analysis protocols, results of much of this research are contradictory. The purpose of this paper is to examine why differing methods of data collection and analysis can lead to conflicting results for maximum power and associated optimal load. Six topics relevant to measurement and reporting of maximum power and optimal load are addressed: (a) data collection equipment, (b) inclusion or exclusion of body weight force in calculations of power, (c) free weight versus Smith machine jump squats, (d) reporting of average versus peak power, (e) reporting of load intensity, and (f) instructions given to athletes/ participants. Based on this information, a standardized protocol for data collection and reporting of jump squat power and optimal load is presented.

  9. A comparison of methods for the assessment of postural load and duration of computer use

    NARCIS (Netherlands)

    Heinrich, J.; Blatter, B.M.; Bongers, P.M.

    2004-01-01

    Aim: To compare two different methods for assessment of postural load and duration of computer use in office workers. Methods: The study population existed of 87 computer workers. Questionnaire data about exposure were compared with exposures measured by a standardised or objective method. Measuring

  10. Study on inelastic analysis method for structural design (1). Estimation method of loading history effect

    International Nuclear Information System (INIS)

    Tanaka, Yoshihiko; Kasahara, Naoto

    2003-05-01

    The advanced loop-type reactor system, one of the promising concepts in the Feasibility study of the FBR Cycle, adopts many innovative ideas to meet the challenging requirements for safety and economy. As a results, it seems that the structures of the reactor system would be subjected to severer loads than the predecessors. One of the countermeasures to them is the design by inelastic analysis. In the past, many studies showed that structural design by inelastic analysis is much more reasonable than one by conservative elastic analysis. However, inelastic analysis has hardly been adopted in nuclear design so far. One of the reasons is that inelastic analysis has loading history effect, that is, the analysis result would differ depending on the order of loads. It seems to be difficult to find the general solution for the loading history effect. Consequently, inelastic analysis output from the four deferent thermal load histories which consists of the thermal load cycle including the severest cold shock ('C') and the one including the severest hot shock ('H') were compared with each other. From this comparison, it was revealed that the thermal load history with evenly distributed 'H's among 'C's tend to give the most conservative damage estimation derived from inelastic analysis output. Therefore, such thermal load history pattern is proposed for the structural design by inelastic analysis. (author)

  11. Methods for computing water-quality loads at sites in the U.S. Geological Survey National Water Quality Network

    Science.gov (United States)

    Lee, Casey J.; Murphy, Jennifer C.; Crawford, Charles G.; Deacon, Jeffrey R.

    2017-10-24

    The U.S. Geological Survey publishes information on concentrations and loads of water-quality constituents at 111 sites across the United States as part of the U.S. Geological Survey National Water Quality Network (NWQN). This report details historical and updated methods for computing water-quality loads at NWQN sites. The primary updates to historical load estimation methods include (1) an adaptation to methods for computing loads to the Gulf of Mexico; (2) the inclusion of loads computed using the Weighted Regressions on Time, Discharge, and Season (WRTDS) method; and (3) the inclusion of loads computed using continuous water-quality data. Loads computed using WRTDS and continuous water-quality data are provided along with those computed using historical methods. Various aspects of method updates are evaluated in this report to help users of water-quality loading data determine which estimation methods best suit their particular application.

  12. Solid‐in‐oil nanodispersions for transdermal drug delivery systems

    Science.gov (United States)

    Kitaoka, Momoko; Wakabayashi, Rie; Kamiya, Noriho

    2016-01-01

    Abstract Transdermal administration of drugs has advantages over conventional oral administration or administration using injection equipment. The route of administration reduces the opportunity for drug evacuation before systemic circulation, and enables long‐lasting drug administration at a modest body concentration. In addition, the skin is an attractive route for vaccination, because there are many immune cells in the skin. Recently, solid‐in‐oil nanodisperison (S/O) technique has demonstrated to deliver cosmetic and pharmaceutical bioactives efficiently through the skin. S/O nanodispersions are nanosized drug carriers designed to overcome the skin barrier. This review discusses the rationale for preparation of efficient and stable S/O nanodispersions, as well as application examples in cosmetic and pharmaceutical materials including vaccines. Drug administration using a patch is user‐friendly, and may improve patient compliance. The technique is a potent transcutaneous immunization method without needles. PMID:27529824

  13. Monitoring of Pre-Load on Rock Bolt Using Piezoceramic-Transducer Enabled Time Reversal Method.

    Science.gov (United States)

    Huo, Linsheng; Wang, Bo; Chen, Dongdong; Song, Gangbing

    2017-10-27

    Rock bolts ensure structural stability for tunnels and many other underground structures. The pre-load on a rock bolt plays an important role in the structural reinforcement and it is vital to monitor the pre-load status of rock bolts. In this paper, a rock bolt pre-load monitoring method based on the piezoceramic enabled time reversal method is proposed. A lead zirconate titanate (PZT) patch transducer, which works as an actuator to generate stress waves, is bonded onto the anchor plate of the rock bolt. A smart washer, which is fabricated by sandwiching a PZT patch between two metal rings, is installed between the hex nut and the anchor plate along the rock bolt. The smart washer functions as a sensor to detect the stress wave. With the increase of the pre-load values on the rock bolt, the effective contact surface area between the smart washer and the anchor plate, benefiting the stress wave propagation crossing the contact surface. With the help of time reversal technique, experimental results reveal that the magnitude of focused signal clearly increases with the increase of the pre-load on a rock bolt before the saturation which happens beyond a relatively high value of the pre-load. The proposed method provides an innovative and real time means to monitor the pre-load level of a rock bolt. By employing this method, the pre-load degradation process on a rock bolt can be clearly monitored. Please note that, currently, the proposed method applies to only new rock bolts, on which it is possible to install the PZT smart washer.

  14. Diclofenac Loaded Lipid Nanovesicles Prepared by Double Solvent Displacement for Skin Drug Delivery.

    Science.gov (United States)

    Sala, M; Locher, F; Bonvallet, M; Agusti, G; Elaissari, A; Fessi, H

    2017-09-01

    Herein, we detail a promising strategy of nanovesicle preparation based on control of phospholipid self-assembly: the Double Solvent Displacement. A systematic study was conducted and diclofenac as drug model encapsulated. In vitro skin studies were carried out to identify better formulation for dermal/transdermal delivery. This method consists in two solvent displacements. The first one, made in a free water environment, has allowed triggering a phospholipid pre-organization. The second one, based on the diffusion into an aqueous phase has led to liposome formation. Homogeneous liposomes were obtained with a size close to 100 nm and a negative zeta potential around -40 mV. After incorporation of acid diclofenac, we obtained nanoliposomes with a size between 101 ± 45 and 133 ± 66 nm, a zeta potential between 34 ± 2 and 49 ± 3 mV, and the encapsulation efficiency (EE%) was between 58 ± 3 and 87 ± 5%. In vitro permeation studies showed that formulation with higher EE% dispayed the higher transdermal passage (18,4% of the applied dose) especially targeting dermis and beyond. Our results suggest that our diclofenac loaded lipid vesicles have significant potential as transdermal skin drug delivery system. Here, we produced cost effective lipid nanovesicles in a merely manner according to a process easily transposable to industrial scale. Graphical Abstract ᅟ.

  15. Test method research on weakening interface strength of steel - concrete under cyclic loading

    Science.gov (United States)

    Liu, Ming-wei; Zhang, Fang-hua; Su, Guang-quan

    2018-02-01

    The mechanical properties of steel - concrete interface under cyclic loading are the key factors affecting the rule of horizontal load transfer, the calculation of bearing capacity and cumulative horizontal deformation. Cyclic shear test is an effective method to study the strength reduction of steel - concrete interface. A test system composed of large repeated direct shear test instrument, hydraulic servo system, data acquisition system, test control software system and so on is independently designed, and a set of test method, including the specimen preparation, the instrument preparation, the loading method and so on, is put forward. By listing a set of test results, the validity of the test method is verified. The test system and the test method based on it provide a reference for the experimental study on mechanical properties of steel - concrete interface.

  16. A damage cumulation method for crack initiation prediction under non proportional loading and overloading

    International Nuclear Information System (INIS)

    Taheri, S.

    1992-04-01

    For a sequence of constant amplitude cyclic loading containing overloads, we propose a method for damage cumulation in non proportional loading. This method uses as data cyclic stabilized states at non proportional loading and initiation or fatigue curve in uniaxial case. For that, we take into account the dependence of Cyclic Strain Stress Curves (C.S.S.C.) and mean cell size on prehardening and we define a stabilized uniaxial state cyclically equivalent to a non proportional stabilized state through a family of C.S.S.C. Although simple assumptions like linear damage function and linear cumulation is used we obtain a sequence effect for difficult cross slip materials as 316 stainless steel, but the Miner rule for easy cross-slip materials. We show then differences between a load-controlled test and a strain controlled test: for a 316 stainless steel in a load controlled test, the non proportional loading at each cycle is less damaging than the uniaxial one for the same equivalent stress, while the result is opposite in a strain controlled test. We show also that an overloading retards initiation in a load controlled test while it accelerates initiation in a strain controlled test. (author). 26 refs., 8 figs

  17. A method for calculation of finite fatigue life under multiaxial loading in high-cycle domain

    Directory of Open Access Journals (Sweden)

    M. Malnati

    2014-04-01

    Full Text Available A method for fatigue life assessment in high-cycle domain under multiaxial loading is presented in this paper. This approach allows fatigue assessment under any kind of load history, without limitations. The methodology lies on the construction - at a macroscopic level - of an “indicator” in the form of a set of cycles, representing plasticity that can arise at mesoscopic level throughout fatigue process. During the advancement of the loading history new cycles are created and a continuous evaluation of the damage is made.

  18. A STUDY ON DYNAMIC LOAD HISTORY RECONSTRUCTION USING PSEUDO-INVERSE METHODS

    OpenAIRE

    Santos, Ariane Rebelato Silva dos; Marczak, Rogério José

    2017-01-01

    Considering that the vibratory forces generally cannot be measured directly at the interface of two bodies, an inverse method is studied in the present work to recover the load history in such cases. The proposed technique attempts to reconstruct the dynamic loads history by using a frequency domain analysis and Moore-Penrose pseudo-inverses of the frequency response function (FRF) of the system. The methodology consists in applying discrete dynamic loads on a finite element model in the time...

  19. Frequency domain fatigue damage estimation methods suitable for deterministic load spectra

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, A.R.; Patel, M.H. [University Coll., Dept. of Mechanical Engineering, London (United Kingdom)

    2000-07-01

    The evaluation of fatigue damage due to load spectra, directly in the frequency domain, is a complex phenomena but with the benefit of significant computation time savings. Various formulae have been suggested but have usually relating to a specific application only. The Dirlik method is the exception and is applicable to general cases of continuous stochastic spectra. This paper describes three approaches for evaluating discrete deterministic load spectra generated by the floating wind turbine model developed the UCL/RAL research project. (Author)

  20. Rainfall Deduction Method for Estimating Non-Point Source Pollution Load for Watershed

    OpenAIRE

    Cai, Ming; Li, Huai-en; KAWAKAMI, Yoji

    2004-01-01

    The water pollution can be divided into point source pollution (PSP) and non-point source pollution (NSP). Since the point source pollution has been controlled, the non-point source pollution is becoming the main pollution source. The prediction of NSP load is being increasingly important in water pollution controlling and planning in watershed. Considering the monitoring data shortage of NPS in China, a practical estimation method of non-point source pollution load --- rainfall deduction met...

  1. A Discrete Element Method Centrifuge Model of Monopile under Cyclic Lateral Loads

    OpenAIRE

    Nuo Duan; Yi Pik Cheng

    2016-01-01

    This paper presents the data of a series of two-dimensional Discrete Element Method (DEM) simulations of a large-diameter rigid monopile subjected to cyclic loading under a high gravitational force. At present, monopile foundations are widely used to support the tall and heavy wind turbines, which are also subjected to significant from wind and wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these loadings conditions. Design guidance ...

  2. A new cascade NN based method to short-term load forecast in deregulated electricity market

    International Nuclear Information System (INIS)

    Kouhi, Sajjad; Keynia, Farshid

    2013-01-01

    Highlights: • We are proposed a new hybrid cascaded NN based method and WT to short-term load forecast in deregulated electricity market. • An efficient preprocessor consist of normalization and shuffling of signals is presented. • In order to select the best inputs, a two-stage feature selection is presented. • A new cascaded structure consist of three cascaded NNs is used as forecaster. - Abstract: Short-term load forecasting (STLF) is a major discussion in efficient operation of power systems. The electricity load is a nonlinear signal with time dependent behavior. The area of electricity load forecasting has still essential need for more accurate and stable load forecast algorithm. To improve the accuracy of prediction, a new hybrid forecast strategy based on cascaded neural network is proposed for STLF. This method is consists of wavelet transform, an intelligent two-stage feature selection, and cascaded neural network. The feature selection is used to remove the irrelevant and redundant inputs. The forecast engine is composed of three cascaded neural network (CNN) structure. This cascaded structure can be efficiently extract input/output mapping function of the nonlinear electricity load data. Adjustable parameters of the intelligent feature selection and CNN is fine-tuned by a kind of cross-validation technique. The proposed STLF is tested on PJM and New York electricity markets. It is concluded from the result, the proposed algorithm is a robust forecast method

  3. Discrimination methods between neutron and gamma rays for boron loaded plastic scintillators

    CERN Document Server

    Normand, S; Haan, S; Louvel, M

    2002-01-01

    Boron loaded plastic scintillators exhibit interesting properties for neutron detection in nuclear waste management and especially in investigating the amount of fissile materials when enclosed in waste containers. Combining a high thermal neutron efficiency and a low mean neutron lifetime, they are suitable in neutron multiplicity counting. However, due to their high sensitivity to gamma rays, pulse shape discrimination methods need to be developed in order to optimize the passive neutron assay measurement. From the knowledge of their physical properties, it is possible to separate the three kinds of particles that have interacted in the boron loaded plastic scintillator (gamma, fast neutron and thermal neutron). For this purpose, we have developed and compared the two well known discrimination methods (zero crossing and charge comparison) applied for the first time to boron loaded plastic scintillator. The setup for the zero crossing discrimination method and the charge comparison methods is thoroughly expl...

  4. Comparison of estrus synchronization by controlled internal drug release device (CIDR) and adhesive transdermal progestin patch in postpartum beef cows.

    Science.gov (United States)

    Kajaysri, Jatuporn; Chumchoung, Chaiwat; Wutthiwitthayaphong, Supphathat; Suthikrai, Wanvipa; Sangkamanee, Praphai

    2017-09-15

    these two protocols had similar pregnancy rates (50.00%) following fixed time artificial insemination. It is concluded that transdermal progestin patch was equally effective in estrus synchronization as compared with traditional CIDR. However, the transdermal patch demonstrated less complication. This device should therefore be considered as an alternative method for estrus synchronization in postpartum beef cattle. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Comparative analysis of different methods of modelling of most loaded fuel pin in transients

    International Nuclear Information System (INIS)

    Ovdiyenko, Y.; Khalimonchuk, V.; Ieremenko, M.

    2007-01-01

    Different methods of modeling of most loaded fuel pin are presented at the work. Calculation studies are performed on example of accident related to WWER-1000 cluster rod ejection with using of spatial kinetic code DYN3D that uses nodal method to calculate distribution of neutron flux in the core. Three methods of modeling of most loaded fuel pin are considered - flux reconstruction in fuel macrocell, pin-by-pin calculation by using of DYN3D/DERAB package and by introducing of additional 'hot channel'. Obtained results of performed studies could be used for development of calculation kinetic models during preparing of safety analysis report (Authors)

  6. In vitro evaluation of transdermal nicotine delivery systems commercially available in Brazil

    Directory of Open Access Journals (Sweden)

    André Luís Morais Ruela

    2013-09-01

    Full Text Available The aim of this study was to develop and validate a method for evaluating the release and skin permeation from transdermal nicotine patches using the vertical diffusion cell (VDC. The VDC is an experimental apparatus employed in research, development, and the pharmaceutical field because it can simulate conditions closest to those established in clinical trials. Two transdermal nicotine delivery systems marketed in Brazil to release 14 mg over 24 hours were evaluated. Release studies were carried out using a regenerated cellulose dialysis membrane and permeation studies were carried out using excised porcine ear skin. The results indicated that nicotine release from both evaluated patches follows Higuchi's release kinetics, while skin permeation studies indicated zero-order release kinetics. Nicotine release rates were different between both evaluated patches, but drug permeation rates were not significantly different. According to validation studies, the method was appropriate for evaluating in vitro performance of nicotine patches. The proposed method can be applied to in vitro comparative studies between different commercial nicotine patches and may be used as an auxiliary tool in the design of new transdermal nicotine delivery systems.

  7. Method for exciting inductive-resistive loads with high and controllable direct current

    International Nuclear Information System (INIS)

    Hill, H.M. Jr.

    1976-01-01

    The apparatus and method for transmitting dc power to a load circuit by applying a dc voltage from a standard waveform synthesizer to duration modulate a bipolar rectangular wave generator are described. As the amplitude of the dc voltage increases, the widths of the rectangular wave generator output pulses increase, and as the amplitude of the dc voltage decreases, the widths of the rectangular wave generator output pulses decrease. Thus, the waveform synthesizer selectively changes the durations of the rectangular wave generator bipolar output pulses so as to produce a rectangular wave ac carrier that is duration modulated in accordance with and in direct proportion to the voltage amplitude from the synthesizer. Thereupon, by transferring the carrier to the load circuit through an amplifier and a rectifier, the load current also corresponds directly to the voltage amplitude from the synthesizer. To this end, the rectified wave at less than 100 percent duty factor amounts to a doubled frequency direct voltage pulse train for applying a direct current to the load, while the current ripple is minimized by a high L/R in the load circuit. In one embodiment, a power transmitting power amplifier means having a dc power supply is matched to the load circuit through a transformer for current magnification without sacrificing load current duration capability, while negative voltage and current feedback are provided in order to insure good output fidelity. 4 Claims, 18 Drawing Figures

  8. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    Science.gov (United States)

    Lee, Hongchul

    This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From

  9. Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods

    NARCIS (Netherlands)

    Suryanarayana, Gowri; Lago Garcia, J.; Geysen, Davy; Aleksiejuk, Piotr; Johansson, Christian

    2018-01-01

    Recent research has seen several forecasting methods being applied for heat load forecasting of district heating networks. This paper presents two methods that gain significant improvements compared to the previous works. First, an automated way of handling non-linear dependencies in linear

  10. In vivo studies of transdermal nanoparticle delivery with microneedles using photoacoustic microscopy

    Science.gov (United States)

    Moothanchery, Mohesh; Seeni, Razina Z.; Xu, Chenjie; Pramanik, Manojit

    2017-01-01

    Microneedle technology allows micron-sized conduits to be formed within the outermost skin layers for both localized and systemic delivery of therapeutics including nanoparticles. Histological methods are often employed for characterization, and unfortunately do not allow for the in vivo visualization of the delivery process. This study presents the utilization of optical resolution-photoacoustic microscopy to characterize the transdermal delivery of nanoparticles using microneedles. Specifically, we observe the in vivo transdermal delivery of gold nanoparticles using microneedles in mice ear and study the penetration, diffusion, and spatial distribution of the nanoparticles in the tissue. The promising results reveal that photoacoustic microscopy can be used as a potential imaging modality for the in vivo characterization of microneedles based drug delivery. PMID:29296482

  11. Optimal design method to minimize users' thinking mapping load in human-machine interactions.

    Science.gov (United States)

    Huang, Yanqun; Li, Xu; Zhang, Jie

    2015-01-01

    The discrepancy between human cognition and machine requirements/behaviors usually results in serious mental thinking mapping loads or even disasters in product operating. It is important to help people avoid human-machine interaction confusions and difficulties in today's mental work mastered society. Improving the usability of a product and minimizing user's thinking mapping and interpreting load in human-machine interactions. An optimal human-machine interface design method is introduced, which is based on the purpose of minimizing the mental load in thinking mapping process between users' intentions and affordance of product interface states. By analyzing the users' thinking mapping problem, an operating action model is constructed. According to human natural instincts and acquired knowledge, an expected ideal design with minimized thinking loads is uniquely determined at first. Then, creative alternatives, in terms of the way human obtains operational information, are provided as digital interface states datasets. In the last, using the cluster analysis method, an optimum solution is picked out from alternatives, by calculating the distances between two datasets. Considering multiple factors to minimize users' thinking mapping loads, a solution nearest to the ideal value is found in the human-car interaction design case. The clustering results show its effectiveness in finding an optimum solution to the mental load minimizing problems in human-machine interaction design.

  12. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    International Nuclear Information System (INIS)

    Yun, Jumi; Lee, Dae Hoon; Im, Ji Sun; Kim, Hyung-Il

    2012-01-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: ► High performance of transdermal drug delivery system with an easy control of voltage. ► Improved thermal response of hydrogel by graphite oxide incorporation. ► Efficient micro heater fabricated by a joule heating method.

  13. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Jumi [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Dae Hoon [Environment Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yusong-gu, Daejeon 305-343 (Korea, Republic of); Im, Ji Sun [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Hyung-Il, E-mail: hikim@cnu.ac.kr [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2012-08-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: Black-Right-Pointing-Pointer High performance of transdermal drug delivery system with an easy control of voltage. Black-Right-Pointing-Pointer Improved thermal response of hydrogel by graphite oxide incorporation. Black-Right-Pointing-Pointer Efficient micro heater fabricated by a joule heating method.

  14. Numerical Simulation of the Ground Response to the Tire Load Using Finite Element Method

    Science.gov (United States)

    Valaskova, Veronika; Vlcek, Jozef

    2017-10-01

    Response of the pavement to the excitation caused by the moving vehicle is one of the actual problems of the civil engineering practice. The load from the vehicle is transferred to the pavement structure through contact area of the tires. Experimental studies show nonuniform distribution of the pressure in the area. This non-uniformity is caused by the flexible nature and the shape of the tire and is influenced by the tire inflation. Several tire load patterns, including uniform distribution and point load, were involved in the numerical modelling using finite element method. Applied tire loads were based on the tire contact forces of the lorry Tatra 815. There were selected two procedures for the calculations. The first one was based on the simplification of the vehicle to the half-part model. The characteristics of the vehicle model were verified by the experiment and by the numerical model in the software ADINA, when vehicle behaviour during the ride was investigated. Second step involved application of the calculated contact forces for the front axle as the load on the multi-layered half space representing the pavement structure. This procedure was realized in the software Plaxis and considered various stress patterns for the load. The response of the ground to the vehicle load was then analyzed. Axisymmetric model was established for this procedure. The paper presents the results of the investigation of the contact pressure distribution and corresponding reaction of the pavement to various load distribution patterns. The results show differences in some calculated quantities for different load patterns, which need to be verified by the experimental way when also ground response should be observed.

  15. High-precision solution to the moving load problem using an improved spectral element method

    Science.gov (United States)

    Wen, Shu-Rui; Wu, Zhi-Jing; Lu, Nian-Li

    2018-02-01

    In this paper, the spectral element method (SEM) is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem. In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases. Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.

  16. A RTS-based method for direct and consistent calculating intermittent peak cooling loads

    International Nuclear Information System (INIS)

    Chen Tingyao; Cui, Mingxian

    2010-01-01

    The RTS method currently recommended by ASHRAE Handbook is based on continuous operation. However, most of air-conditioning systems, if not all, in commercial buildings, are intermittently operated in practice. The application of the current RTS method to intermittent air-conditioning in nonresidential buildings could result in largely underestimated design cooling loads, and inconsistently sized air-conditioning systems. Improperly sized systems could seriously deteriorate the performance of system operation and management. Therefore, a new method based on both the current RTS method and the principles of heat transfer has been developed. The first part of the new method is the same as the current RTS method in principle, but its calculation procedure is simplified by the derived equations in a close form. The technical data available in the current RTS method can be utilized to compute zone responses to a change in space air temperature so that no efforts are needed for regenerating new technical data. Both the overall RTS coefficients and the hourly cooling loads computed in the first part are used to estimate the additional peak cooling load due to a change from continuous operation to intermittent operation. It only needs one more step after the current RTS method to determine the intermittent peak cooling load. The new RTS-based method has been validated by EnergyPlus simulations. The root mean square deviation (RMSD) between the relative additional peak cooling loads (RAPCLs) computed by the two methods is 1.8%. The deviation of the RAPCL varies from -3.0% to 5.0%, and the mean deviation is 1.35%.

  17. A GPS-Based Control Method for Load Sharing and Power Quality Improvement in Microgrids

    DEFF Research Database (Denmark)

    Golsorkhi, Mohammad; Lu, Dylan; Savaghebi, Mehdi

    2016-01-01

    This paper proposes a novel control method for accurate sharing of load current among the Distributed Energy Resources (DER) and high power quality operating in islanded ac microgrids. This control scheme is based on hierarchical structure comprising of decentralized primary controllers and a cen....... The secondary controller produces compensation signals at fundamental and dominant harmonics to improve the voltage quality at a sensitive load bus. Experimental results are presented to validate the efficacy of the proposed method.......This paper proposes a novel control method for accurate sharing of load current among the Distributed Energy Resources (DER) and high power quality operating in islanded ac microgrids. This control scheme is based on hierarchical structure comprising of decentralized primary controllers...

  18. Partially Loaded Cavity Analysis by Using the 2-D FDTD Method

    International Nuclear Information System (INIS)

    Yao Bin; Zheng Qin-Hong; Peng Jin-Hui; Zhong Ru-Neng; Xiang Tai; Xu Wan-Song

    2011-01-01

    A compact two-dimensional (2-D) finite-difference time-domain (FDTD) method is proposed to calculate the resonant frequencies and quality factors of a partially loaded cavity that is uniform in the z-direction and has an arbitrary cross section in the x—y plane. With the description of z dependence by k z , the three-dimensional (3-D) problem can be transformed into a 2-D problem. Therefore, less memory and CPU time are required as compared to the conventional 3-D FDTD method. Three representative examples, a half-loaded rectangular cavity, an inhomogeneous cylindrical cavity and a cubic cavity loaded with dielectric post, are presented to validate the utility and efficiency of the proposed method. (cross-disciplinary physics and related areas of science and technology)

  19. A cognition-based method to ease the computational load for an extended Kalman filter.

    Science.gov (United States)

    Li, Yanpeng; Li, Xiang; Deng, Bin; Wang, Hongqiang; Qin, Yuliang

    2014-12-03

    The extended Kalman filter (EKF) is the nonlinear model of a Kalman filter (KF). It is a useful parameter estimation method when the observation model and/or the state transition model is not a linear function. However, the computational requirements in EKF are a difficulty for the system. With the help of cognition-based designation and the Taylor expansion method, a novel algorithm is proposed to ease the computational load for EKF in azimuth predicting and localizing under a nonlinear observation model. When there are nonlinear functions and inverse calculations for matrices, this method makes use of the major components (according to current performance and the performance requirements) in the Taylor expansion. As a result, the computational load is greatly lowered and the performance is ensured. Simulation results show that the proposed measure will deliver filtering output with a similar precision compared to the regular EKF. At the same time, the computational load is substantially lowered.

  20. Physical, chemical and biological studies of gelatin/chitosan based transdermal fims with embedded silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Sneha Paul

    2015-12-01

    Full Text Available Objective: To study the physical, chemical and biological properties of composite chitosangelatin transdermal film along with silver nanoparticles as binding agent and determine the compatibility of the prepared amalgamation towards wound management. Methods: Transdermal film preparations were done by solvent casting method containing different concentrations of biological synthesized silver nanoparticles. The films were characterized by using scanning electron microscope for their morphology and the determination of silver metal was done by using inductively coupled plasma atomic emission spectroscopy. Then a quantity of silver nanoparticles was further proceeded by physiochemical parameters (weight, thickness, temperature, solubility, absorption, tensile strength, in vitro drug release and skin permeation and biological parameters studies (anti-microbial, cytotoxicity and reactive oxygen species. Results: The film prepared by utilizing 2 g of gelatin and 0.5 g of chitosan exhibited better results. The physiochemical parameters studies revealed higher concentration of silver nanoparticles would give better results. In vitro drug release studies through dialysis and skin permeation showed the release of drug versus time (h. These films had shown excellent inhibition against Streptococcus and Escherichia coli species. Cytotoxicity study by MTT indicated the mild toxicity existed as the concentration of silver nanoparticles increased. Reactive oxygen species generation studies of transdermal film by using 2'7'-dichlorofluorescein diacetate assay demonstrated that the fluorescent cells were found in the higher concentration, which indicated cell damage (reactive oxygen species generated. Conclusions: Based on these observations, in vitro performances against various characteristics of transdermal film, would be utilized as a distinct dressing material and patches accessible in market.

  1. Theory Study and Application of the BP-ANN Method for Power Grid Short-Term Load Forecasting

    Institute of Scientific and Technical Information of China (English)

    Xia Hua; Gang Zhang; Jiawei Yang; Zhengyuan Li

    2015-01-01

    Aiming at the low accuracy problem of power system short⁃term load forecasting by traditional methods, a back⁃propagation artifi⁃cial neural network (BP⁃ANN) based method for short⁃term load forecasting is presented in this paper. The forecast points are re⁃lated to prophase adjacent data as well as the periodical long⁃term historical load data. Then the short⁃term load forecasting model of Shanxi Power Grid (China) based on BP⁃ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP⁃ANN method is simple and with higher precision and practicality.

  2. Transdermal testosterone replacement therapy in men

    Directory of Open Access Journals (Sweden)

    Ullah MI

    2014-01-01

    Full Text Available M Iftekhar Ullah,1 Daniel M Riche,1,2 Christian A Koch1,31Department of Medicine, University of Mississippi Medical Center, 2Department of Pharmacy Practice, The University of Mississippi, 3GV (Sonny Montgomery VA Medical Center, Jackson, MS, USAAbstract: Androgen deficiency syndrome in men is a frequently diagnosed condition associated with clinical symptoms including fatigue, decreased libido, erectile dysfunction, and metabolic syndrome. Serum testosterone concentrations decline steadily with age. The prevalence of androgen deficiency syndrome in men varies depending on the age group, known and unknown comorbidities, and the respective study group. Reported prevalence rates may be underestimated, as not every man with symptoms of androgen deficiency seeks treatment. Additionally, men reporting symptoms of androgen deficiency may not be correctly diagnosed due to the vagueness of the symptom quality. The treatment of androgen deficiency syndrome or male hypogonadism may sometimes be difficult due to various reasons. There is no consensus as to when to start treating a respective man or with regards to the best treatment option for an individual patient. There is also lack of familiarity with treatment options among general practitioners. The formulations currently available on the market are generally expensive and dose adjustment protocols for each differ. All these factors add to the complexity of testosterone replacement therapy. In this article we will discuss the general indications of transdermal testosterone replacement therapy, available formulations, dosage, application sites, and recommended titration schedule.Keywords: hypogonadism, transdermal, testosterone, sexual function, testosterone replacement therapy, estradiol

  3. The application of backpropagation neural network method to estimate the sediment loads

    Directory of Open Access Journals (Sweden)

    Ari Gunawan Taufik

    2017-01-01

    Full Text Available Nearly all formulations of conventional sediment load estimation method were developed based on a review of laboratory data or data field. This approach is generally limited by local so it is only suitable for a particular river typology. From previous studies, the amount of sediment load tends to be non-linear with respect to the hydraulic parameters and parameter that accompanies sediment. The dominant parameter is turbulence, whereas turbulence flow velocity vector direction of x, y and z. They were affected by water bodies in 3D morphology of the cross section of the vertical and horizontal. This study is conducted to address the non-linear nature of the hydraulic parameter data and sediment parameter against sediment load data by applying the artificial neural network (ANN method. The method used is the backpropagation neural network (BPNN schema. This scheme used for projecting the sediment load from the hydraulic parameter data and sediment parameters that used in the conventional estimation of sediment load. The results showed that the BPNN model performs reasonably well on the conventional calculation, indicated by the stability of correlation coefficient (R and the mean square error (MSE.

  4. The effect of loading methods and parameters on defect detection in digital shearography

    Science.gov (United States)

    Yang, Fu; Ye, Xingchen; Qiu, Zisheng; Zhang, Borui; Zhong, Ping; Liang, ZhiYong; Sun, Zeyu; Zhu, Shu

    Digital Shearography Speckle Pattern Interferometry (DSSPI) is a non-destructive testing technique, which has a wide range of applications in industrial field due to the merits of non-contact, fast response, full-field measurement and high sensitivity. However, in the real application, the loading methods and parameters usually depend on the experience of the operator, which affect the effectiveness and accuracy of the test. Based on this background and the principle of DSSPI, a model using finite element analysis software and Matlab is established to simulate the defects detections of aluminum plate and composite laminates under different loading conditions. The simulation covers loading methods, shearing direction, shearing amount, loading intensity, defect size, defect depth and defect position. In order to quantify the testing effect, a parameter named the deviation D is first defined. And through the parameter D, the simulation system can evaluate the system detection ability. The work in this paper can provide systematic guidance for the choice of loading methods and parameters in the real DSSPI experiment system.

  5. A New Method for Optimal Regularization Parameter Determination in the Inverse Problem of Load Identification

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2016-01-01

    Full Text Available According to the regularization method in the inverse problem of load identification, a new method for determining the optimal regularization parameter is proposed. Firstly, quotient function (QF is defined by utilizing the regularization parameter as a variable based on the least squares solution of the minimization problem. Secondly, the quotient function method (QFM is proposed to select the optimal regularization parameter based on the quadratic programming theory. For employing the QFM, the characteristics of the values of QF with respect to the different regularization parameters are taken into consideration. Finally, numerical and experimental examples are utilized to validate the performance of the QFM. Furthermore, the Generalized Cross-Validation (GCV method and the L-curve method are taken as the comparison methods. The results indicate that the proposed QFM is adaptive to different measuring points, noise levels, and types of dynamic load.

  6. Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate.

    Science.gov (United States)

    Lopez, Renata F V; Seto, Jennifer E; Blankschtein, Daniel; Langer, Robert

    2011-01-01

    The potential of rigid nanoparticles to serve as transdermal drug carriers can be greatly enhanced by improving their skin penetration. Therefore, the simultaneous application of ultrasound and sodium lauryl sulfate (referred to as US/SLS) was evaluated as a skin pre-treatment method for enhancing the passive transdermal delivery of nanoparticles. We utilized inductively coupled plasma mass spectrometry and an improved application of confocal microscopy to compare the delivery of 10- and 20-nm cationic, neutral, and anionic quantum dots (QDs) into US/SLS-treated and untreated pig split-thickness skin. Our findings include: (a) ∼0.01% of the QDs penetrate the dermis of untreated skin (which we quantify for the first time), (b) the QDs fully permeate US/SLS-treated skin, (c) the two cationic QDs studied exhibit different extents of skin penetration and dermal clearance, and (d) the QD skin penetration is heterogeneous. We discuss routes of nanoparticle skin penetration and the application of the methods described herein to address conflicting literature reports on nanoparticle skin penetration. We conclude that US/SLS treatment significantly enhances QD transdermal penetration by 500-1300%. Our findings suggest that an optimum surface charge exists for nanoparticle skin penetration, and motivate the application of nanoparticle carriers to US/SLS-treated skin for enhanced transdermal drug delivery. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Cargo flows distribution over the loading sites of enterprises by using methods of artificial intelligence

    Directory of Open Access Journals (Sweden)

    Олександр Павлович Кіркін

    2017-06-01

    Full Text Available Development of information technologies and market requirements in effective control over cargo flows, forces enterprises to look for new ways and methods of automated control over the technological operations. For rail transportation one of the most complicated tasks of automation is the cargo flows distribution over the sites of loading and unloading. In this article the solution with the use of one of the methods of artificial intelligence – a fuzzy inference has been proposed. The analysis of the last publications showed that the fuzzy inference method is effective for the solution of similar tasks, it makes it possible to accumulate experience, it is stable to temporary impacts of the environmental conditions. The existing methods of the cargo flows distribution over the sites of loading and unloading are too simplified and can lead to incorrect decisions. The purpose of the article is to create a distribution model of cargo flows of the enterprises over the sites of loading and unloading, basing on the fuzzy inference method and to automate the control. To achieve the objective a mathematical model of the cargo flows distribution over the sites of loading and unloading has been made using fuzzy logic. The key input parameters of the model are: «number of loading sites», «arrival of the next set of cars», «availability of additional operations». The output parameter is «a variety of set of cars». Application of the fuzzy inference method made it possible to reduce loading time by 15% and to reduce costs for preparatory operations before loading by 20%. Thus this method is an effective means and holds the greatest promise for railway competitiveness increase. Interaction between different types of transportation and their influence on the cargo flows distribution over the sites of loading and unloading hasn’t been considered. These sites may be busy transshipping at that very time which is characteristic of large enterprises

  8. A Study on Assessment Method of Traffic Load Effect of Bridge in Service

    Science.gov (United States)

    Ling, Pan; Dajian, Han

    2010-05-01

    Because of overloading usually occur in highway in China today, it is found that the traffic load and the load effects given by Specification for Inspection and Evaluation of Load-bearing Capacity of Highway Bridge[1] cannot be adequately estimated. Especially, the extreme values in a service period can not be predicted. In this paper, a model is first developed for a better estimation of the actual traffic flow, as well as the service load effect level of a bridge. Based on a five-day collection data of the vehicle samples passing through the exit of Guangyuan to Shahe of the North-Ring Highway in Guangzhou, The Qiaole Bridge of the highway is taken as an example to illustrate the assessment model. Then, a threshold model is applied to estimate the tail distribution of the maximum load effect of a fleet. And threshold point process is used to infer the maximum value distribution for prediction of the load effect level of the bridge in a future time period. Finally, a 0.95 quantile is obtained to compare with the result given by specification[1]. The results show that the assessment method proposed in this paper is valid and feasible.

  9. Assessment of Postural Load Index Using LUBA Method and the Prevalence of Musculoskeletal Disorders in Dentists

    Directory of Open Access Journals (Sweden)

    Zeinab Baroonyzade

    2014-06-01

    Full Text Available Background & Objectives : High prevalence of musculoskeletal pain in dentistry represents the importance of investigation of working conditions in this profession to reduce musculoskeletal disorders.The purpose of this study was to determine the postural load on the upper limb postural using macro LUBA technique and the prevalence of musculoskeletal disorders. Methods: This study was conducted on 30 post graduate dental students of Hamadan University of Medical Sciences . LUBA technique was used to evaluate the postural load. The Nordic questionnaire was used to assess the prevalence of musculoskeletal disorders . The results were analyzed using SPSS version 16 . Results: The prevalence of musculoskeletal disorders was as follows neck( 63.3%, back ( 43.3%, back ( 30%, knee ( 20%, shoulder( 13%, wrist ( 10%, legs (10 %, elbows( 6.7% and thigh( 0%. The maximum postural load index was 23 for women and 21for men. In total, 50 % of dentists were in group 3 , 33 % of dentists in group 4 and 16.7 % in group 2 of the corrective measures . There was no significant association b etween demographic variables and presence of musculoskeletal disorders . Besides, there was no significant association between the presence of pain in upper limbs and the postural load index (Pvalue > 0.05. Conclusions: This study showed high levels of p ostural load index and musculoskeletal disorders among dental students of Hamadan University of Medical Sciences. High levels of p ostural load index indicate a high level of risk, which requires immediate corrective action and intervention.

  10. Molecular Simulations of Cyclic Loading Behavior of Carbon Nanotubes Using the Atomistic Finite Element Method

    Directory of Open Access Journals (Sweden)

    Jianfeng Wang

    2009-01-01

    Full Text Available The potential applications of carbon nanotubes (CNT in many engineered bionanomaterials and electromechanical devices have imposed an urgent need on the understanding of the fatigue behavior and mechanism of CNT under cyclic loading conditions. To date, however, very little work has been done in this field. This paper presents the results of a theoretical study on the behavior of CNT subject to cyclic tensile and compressive loads using quasi-static molecular simulations. The Atomistic Finite Element Method (AFEM has been applied in the study. It is shown that CNT exhibited extreme cyclic loading resistance with yielding strain and strength becoming constant within limited number of loading cycles. Viscoelastic behavior including nonlinear elasticity, hysteresis, preconditioning (stress softening, and large strain have been observed. Chiral symmetry was found to have appreciable effects on the cyclic loading behavior of CNT. Mechanisms of the observed behavior have been revealed by close examination of the intrinsic geometric and mechanical features of tube structure. It was shown that the accumulated residual defect-free morphological deformation was the primary mechanism responsible for the cyclic failure of CNT, while the bond rotating and stretching experienced during loading/unloading played a dominant role on the strength, strain and modulus behavior of CNT.

  11. Stability analysis of shallow tunnels subjected to eccentric loads by a boundary element method

    Directory of Open Access Journals (Sweden)

    Mehdi Panji

    2016-08-01

    Full Text Available In this paper, stress behavior of shallow tunnels under simultaneous non-uniform surface traction and symmetric gravity loading was studied using a direct boundary element method (BEM. The existing full-plane elastostatic fundamental solutions to displacement and stress fields were used and implemented in a developed algorithm. The cross-section of the tunnel was considered in circular, square, and horseshoe shapes and the lateral coefficient of the domain was assumed as unit quantity. Double-node procedure of the BEM was applied at the corners to improve the model including sudden traction changes. The results showed that the method used was a powerful tool for modeling underground openings under various external as well as internal loads. Eccentric loads significantly influenced the stress pattern of the surrounding tunnel. The achievements can be practically used in completing and modifying regulations for stability investigation of shallow tunnels.

  12. Load Disaggregation via Pattern Recognition: A Feasibility Study of a Novel Method in Residential Building

    Directory of Open Access Journals (Sweden)

    Younghoon Kwak

    2018-04-01

    Full Text Available In response to the need to improve energy-saving processes in older buildings, especially residential ones, this paper describes the potential of a novel method of disaggregating loads in light of the load patterns of household appliances determined in residential buildings. Experiments were designed to be applicable to general residential buildings and four types of commonly used appliances were selected to verify the method. The method assumes that loads are disaggregated and measured by a single primary meter. Following the metering of household appliances and an analysis of the usage patterns of each type, values of electric current were entered into a Hidden Markov Model (HMM to formulate predictions. Thereafter, the HMM repeatedly performed to output the predicted data close to the measured data, while errors between predicted and the measured data were evaluated to determine whether they met tolerance. When the method was examined for 4 days, matching rates in accordance with the load disaggregation outcomes of the household appliances (i.e., laptop, refrigerator, TV, and microwave were 0.994, 0.992, 0.982, and 0.988, respectively. The proposed method can provide insights into how and where within such buildings energy is consumed. As a result, effective and systematic energy saving measures can be derived even in buildings in which monitoring sensors and measurement equipment are not installed.

  13. A method for rapid vulnerability assessment of structures loaded by outside blasts

    International Nuclear Information System (INIS)

    Cizelj, Leon; Leskovar, Matjaz; Cepin, Marko; Mavko, Borut

    2009-01-01

    The blast loads have in most cases not been assumed as design basis loads of nuclear power plant buildings and structures. Recent developments however stimulated a number of analyses quantifying the potential effects of such loads. An effort was therefore made by the authors to revisit simple and robust structural analysis methods and to propose their use in the vulnerability assessment of blast-loaded structures. The leading idea is to break the structure into a set of typical structural elements, for which the response is estimated by the use of slightly modified handbook formulas. The proposed method includes provisions to predict the inelastic response and failure. Simplicity and versatility of the method facilitate its use in structural reliability calculations. The most important aspects of the proposed method are presented along with illustrative sample applications demonstrating: ·results comparable to full scale dynamic simulations using explicit finite element codes and ·the performance of the method in screening the existing structures and providing the structural reliability information for the vulnerability analysis.

  14. J evaluation by simplified method for cracked pipes under mechanical loading

    International Nuclear Information System (INIS)

    Lacire, M.H.; Michel, B.; Gilles, P.

    2001-01-01

    The integrity of structures behaviour is an important subject for the nuclear reactor safety. Most of assessment methods of cracked components are based on the evaluation of the parameter J. However to avoid complex elastic-plastic finite element calculations of J, a simplified method has been jointly developed by CEA, EDF and Framatome. This method, called Js, is based on the reference stress approach and a new KI handbook. To validate this method, a complete set of 2D and 3D elastic-plastic finite element calculations of J have been performed on pipes (more than 300 calculations are available) for different types of part through wall crack (circumferential or longitudinal); mechanical loading (pressure, bending moment, axial load, torsion moment, and combination of these loading); different kind of materials (austenitic or ferritic steel). This paper presents a comparison between the simplified assessment of J and finite element results on these configurations for mechanical loading. Then, validity of the method is discussed and an applicability domain is proposed. (author)

  15. Development of domperidone bilayered matrix type transdermal patches: physicochemical, in vitro and ex vivo characterization

    Directory of Open Access Journals (Sweden)

    S.K Madishetti

    2010-09-01

    Full Text Available "nBackground and the purpose of the study: Domperidone (DOM is a dopamine- receptor (D2 antagonist, which is widely used in the treatment of motion-sickness. The pharmacokinetic parameters make DOM a suitable candidate for transdermal delivery. The purpose of the present investigation was to develop transdermal delivery systems for DOM and to evaluate their physicochemical characteristics, in vitro release an ex vivo permeation through rat abdominal skin and their mechanical properties. "nMethods: Bilayered matrix type transdermal drug delivery systems (TDDS of DOM were prepared by film casting technique using hydroxypropyl methyl cellulose as primary and Eudragit RL 100 as secondary layers. Brij-35 was incorporated as a solubilizer, d-limonene and propylene glycol were employed as permeation enhancer and plasticizer respectively. The prepared TDDS were extensively evaluated for in vitro release, moisture absorption, moisture content, water vapor transmission, ex vivo permeation through rat abdominal skin, mechanical properties and stability studies. The physicochemical interaction between DOM and polymers were investigated by Differential Scanning Calorimetry (DSC and Fourier Transform Infrared Spectroscopy (FTIR. "nResults: All the formulations exhibited satisfactory physicochemical and mechanical characteristics. The optimized formulation F6 showed maximum cumulative percentage of drug release (90.7%, permeation (6806.64 μg in 24 hrs, flux (86.02 μg /hr/cm2 and permeation coefficient of 0.86x10-2 cm/hr. Values of tensile strength (4.34 kg/mm2 and elastic modulus (5.89 kg/cm2 revealed that formulation F6 was strong but not brittle. DSC and FTIR studies showed no evidence of interaction between the drug and polymers. A shelf life of 2 years is predicted for the TDDS. Conclusions: Domperidone bilayered matrix type transdermal therapeutic systems could be prepared with the required flux and suitable mechanical properties.

  16. Nonaqueous gel for the transdermal delivery of a DTPA penta-ethyl ester prodrug.

    Science.gov (United States)

    Zhang, Yong; Sadgrove, Matthew P; Sueda, Katsuhiko; Yang, Yu-Tsai; Pacyniak, Erik K; Kagel, John R; Braun, Brenda A; Zamboni, William C; Mumper, Russell J; Jay, Michael

    2013-04-01

    Diethylenetriamine pentaacetic acid penta-ethyl ester, designated as C2E5, was successfully incorporated into a nonaqueous gel for transdermal delivery. The thermal and rheological properties of a formulation containing 40% C2E5, 20% ethyl cellulose, and 40% Miglyol 840® prepared using the solvent evaporation method demonstrated that the gel had acceptable content uniformity and flow properties. In vitro studies showed that C2E5 was steadily released from the gel at a rate suitable for transdermal delivery. Topical application of the gel at a 200 mg C2E5/kg dose level in rats achieved significantly higher plasma exposures of several active metabolites compared with neat C2E5 oil at the same dose level. The results suggest that transdermal delivery of a chelator prodrug is an effective radionuclide decorporation strategy by delivering chelators to the circulation with a pharmacokinetic profile that is more consistent with the biokinetic profile of transuranic elements in contaminated individuals.

  17. Microemulsion for simultaneous transdermal delivery of benzocaine and indomethacin: in vitro and in vivo evaluation.

    Science.gov (United States)

    El Maghraby, Gamal M; Arafa, Mona F; Osman, Mohamed A

    2014-12-01

    This study investigated simultaneous transdermal delivery of indomethacin and benzocaine from microemulsion. Eucalyptus oil based microemulsion was used with Tween 80 and ethanol being employed as surfactant and cosurfactant, respectively. A microemulsion formulation comprising eucalyptus oil, polyoxyethylene sorbitan momooleate (Tween 80), ethanol and water (20:30:30:20) was selected. Indomethacin (1% w/w) and benzocaine (20% w/w) were incorporated separately or combined into this formulation before in vitro and in vivo evaluation. Application of indomethacin microemulsion enhanced the transdermal flux and reduced the lag time compared to saturated aqueous control. The same trend was evident for benzocaine microemulsion. Simultaneous application of the two drugs in microemulsion provided similar enhancement pattern. The in vivo evaluation employed the pinprick method and revealed rapid anesthesia after application of benzocaine microemulsion with the onset being 10 min and the action lasting for 50 min. For indomethacin microemulsion, the analgesic effect was recorded after 34.5 min and lasted for 70.5 min. Simultaneous application of benzocaine and indomethacin provided synergistic effect. The onset of action was achieved after 10 min and lasted for 95 min. The study highlighted the potential of microemulsion formulation in simultaneous transdermal delivery of two drugs.

  18. Nanostructured transdermal hormone replacement therapy for relieving menopausal symptoms: a confocal Raman spectroscopy study

    Directory of Open Access Journals (Sweden)

    Marco Antonio Botelho

    2014-02-01

    Full Text Available OBJECTIVE: To determine the safety and efficacy of a transdermal nanostructured formulation of progesterone (10% combined with estriol (0.1% + estradiol (0.25% for relieving postmenopausal symptoms. METHODS: A total of 66 postmenopausal Brazilian women with climacteric symptoms of natural menopause received transdermal nanostructured formulations of progesterone and estrogens in the forearm daily for 60 months to mimic the normal ovarian secretory pattern. Confocal Raman spectroscopy of hormones in skin layers was performed. Clinical parameters, serum concentrations of estradiol and follicle-stimulating hormone, blood pressure, BI-RADS classification from bilateral mammography, and symptomatic relief were compared between baseline and 60 months post-treatment. Clinicaltrials.gov: NCT02033512. RESULTS: An improvement in climacteric symptoms was reported in 92.5% of women evaluated before and after 60 months of treatment. The serum concentrations of estradiol and follicle-stimulating hormone changed significantly (p<0.05 after treatment; the values of serum follicle-stimulating hormone decreased after 60 months from 82.04±4.9 to 57.12±4.1 IU/mL. A bilateral mammography assessment of the breasts revealed normal results in all women. No adverse health-related events were attributed to this hormone replacement therapy protocol. CONCLUSION: The nanostructured formulation is safe and effective in re-establishing optimal serum levels of estradiol and follicle-stimulating hormone and relieving the symptoms of menopause. This transdermal hormone replacement therapy may alleviate climacteric symptoms in postmenopausal women.

  19. Deformable Nanovesicles Synthesized through an Adaptable Microfluidic Platform for Enhanced Localized Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Naren Subbiah

    2017-01-01

    Full Text Available Phospholipid-based deformable nanovesicles (DNVs that have flexibility in shape offer an adaptable and facile method to encapsulate diverse classes of therapeutics and facilitate localized transdermal delivery while minimizing systemic exposure. Here we report the use of a microfluidic reactor for the synthesis of DNVs and show that alteration of input parameters such as flow speeds as well as molar and flow rate ratios increases entrapment efficiency of drugs and allows fine-tuning of DNV size, elasticity, and surface charge. To determine the ability of DNV-encapsulated drug to be delivered transdermally to a local site, we synthesized, characterized, and tested DNVs carrying the fluorescently labeled hydrophilic bisphosphonate drug AF-647 zoledronate (AF647-Zol. AF647-Zol DNVs were lyophilized, resuspended, and applied topically as a paste to the calvarial skin of mice. High-resolution fluorescent imaging and confocal microscopy revealed significant increase of encapsulated payload delivery to the target tissue—cranial bone—by DNVs as compared to nondeformable nanovesicles (NVs or aqueous drug solutions. Interestingly, NV delivery was not superior to aqueous drug solution. Our studies show that microfluidic reactor-synthesized DNVs can be produced in good yield, with high encapsulation efficiency, reproducibility, and stability after storage, and represent a useful vehicle for localized transdermal drug delivery.

  20. Protection against soman and sarin exposure by transdermal physostigmine and scopolamine

    Energy Technology Data Exchange (ETDEWEB)

    Meshulam, Y.; Davidovici, R.; Levy, A.

    1993-05-13

    The purpose of this study was to evaluate the prophylactic efficacy of physostigmine (physo), administered via sustained release (SR) methods, with and without scopolamine, against soman and sarin exposure in guinea-pigs. Transdermal physo pad (3 sq cm/kg; 60-80 ug/sq cm), containing a vehicle based on propionic acid, was applied onto the dorsal back of the animals, 24 hours before exposure to the cholinesterase (ChE) inhibitors. At the time of exposure, physo concentrations in brain and plasma were 3.6 ng/g and 4.1 ng/ml respectively. Brain and whole blood ChE activity were inhibited to 70% and 57% of their original activity. Transdermal physo by itself protected up to 70% of the animals exposed to 1.5 LD(50) of soman or sarin (100% mortality was recorded in the control group). Combining transdermal physo with Scopoderm (by Ciba Geigy Inc.) provided full protection against 1.5 LD(50).

  1. Nanostructured transdermal hormone replacement therapy for relieving menopausal symptoms: a confocal Raman spectroscopy study

    International Nuclear Information System (INIS)

    Botelho, Marco Antonio; Queiroz, Dinalva Brito; Barros, Gisele; Guerreiro, Stela; Umbelino, Sonia; Lyra, Arao; Borges, Boniek; Freitas, Allan; Almeida, Jackson Guedes; Quintans Junior, Lucindo

    2014-01-01

    Objective:to determine the safety and efficacy of a transdermal nanostructured formulation of progesterone (10%) combined with estriol (0.1%) + estradiol (0.25%) for relieving postmenopausal symptoms. Methods: a total of 66 postmenopausal Brazilian women with climacteric symptoms of natural menopause received transdermal nanostructured formulations of progesterone and estrogens in the forearm daily for 60 months to mimic the normal ovarian secretory pattern. Confocal Raman spectroscopy of hormones in skin layers was performed. Clinical parameters, serum concentrations of estradiol and follicle-stimulating hormone, blood pressure, BI-RADS classification from bilateral mammography, and symptomatic relief were compared between baseline and 60 months post-treatment. Clinicaltrials.gov: NCT02033512. Results: an improvement in climacteric symptoms was reported in 92.5% of women evaluated before and after 60 months of treatment. The serum concentrations of estradiol and follicle-stimulating hormone changed significantly (p<0.05) after treatment; the values of serum follicle-stimulating hormone decreased after 60 months from 82.04 ± 4.9 to 57.12 ± 4.1 IU/mL. A bilateral mammography assessment of the breasts revealed normal results in all women. No adverse health-related events were attributed to this hormone replacement therapy protocol. Conclusion: the nanostructured formulation is safe and effective in re-establishing optimal serum levels of estradiol and follicle-stimulating hormone and relieving the symptoms of menopause. This transdermal hormone replacement therapy may alleviate climacteric symptoms in postmenopausal women. (author)

  2. Formulation, characterization and clinical evaluation of propranolol hydrochloride gel for transdermal treatment of superficial infantile hemangioma.

    Science.gov (United States)

    Zhou, Wenhu; He, Shiying; Yang, Yijun; Jian, Dan; Chen, Xiang; Ding, Jinsong

    2015-01-01

    The objective of the present study is to formulate and characterize propranolol hydrochloride (PPL · HCl) gel, and to evaluate the efficacy of this formulation in transdermal treatment for superficial infantile hemangioma (IH). The transdermal PPL · HCl gel was prepared by a direct swelling method, which chose hydroxypropyl methylcellulose (HPMC) as the matrix and used terpenes plus alcohols as permeation enhancer. Permeation studies of PPL · HCl were carried out with modified Franz diffusion cells through piglet skin. Our results pointed to that among all studied permeation enhancers, farnesol plus isopropanol was the most effective combination (Q24, 6027.4 ± 563.1 μg/cm(2), ER, 6.8), which was significantly higher than that of control gel (p homemade PPL · HCl oral solution as a control. Clinical studies also confirmed the excellent therapeutic response and few side effects of the PPL · HCl gel. These results suggest that transdermal application of the PPL · HCl gel is an effective and safe formulation in treating superficial IH.

  3. Nanostructured transdermal hormone replacement therapy for relieving menopausal symptoms: a confocal Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Marco Antonio; Queiroz, Dinalva Brito; Barros, Gisele; Guerreiro, Stela; Umbelino, Sonia; Lyra, Arao; Borges, Boniek; Freitas, Allan, E-mail: marcobotelho@pq.cnpq.br [Universidade Potiguar, Natal, RN (Brazil). Lab. de Nanotecnologia; Fechine, Pierre [Universidade Federal do Ceara (GQMAT/UFCE), Fortaleza, CE (Brazil). Dept. de Quimica Analitica. Grupo Avancado de Biomateriais em Quimica; Queiroz, Danilo Caldas de [Instituto Federal de Ciencia e Tecnologia (IFCT), Fortaleza, CE (Brazil). Lab. de Biotecnologia; Ruela, Ronaldo [Instituto de Biotecnologia Aplicada (INBIOS), Fortaleza, CE (Brazil); Almeida, Jackson Guedes [Universidade Federal do Vale de Sao Francisco (UNIVALE), Petrolina, PE (Brazil). Fac. de Ciencias Farmaceuticas; Quintans Junior, Lucindo [Universidade Federal de Sergipe (UFSE), Sao Cristovao, SE (Brazil). Dept. de Fisiologia

    2014-06-01

    Objective:to determine the safety and efficacy of a transdermal nanostructured formulation of progesterone (10%) combined with estriol (0.1%) + estradiol (0.25%) for relieving postmenopausal symptoms. Methods: a total of 66 postmenopausal Brazilian women with climacteric symptoms of natural menopause received transdermal nanostructured formulations of progesterone and estrogens in the forearm daily for 60 months to mimic the normal ovarian secretory pattern. Confocal Raman spectroscopy of hormones in skin layers was performed. Clinical parameters, serum concentrations of estradiol and follicle-stimulating hormone, blood pressure, BI-RADS classification from bilateral mammography, and symptomatic relief were compared between baseline and 60 months post-treatment. Clinicaltrials.gov: NCT02033512. Results: an improvement in climacteric symptoms was reported in 92.5% of women evaluated before and after 60 months of treatment. The serum concentrations of estradiol and follicle-stimulating hormone changed significantly (p<0.05) after treatment; the values of serum follicle-stimulating hormone decreased after 60 months from 82.04 ± 4.9 to 57.12 ± 4.1 IU/mL. A bilateral mammography assessment of the breasts revealed normal results in all women. No adverse health-related events were attributed to this hormone replacement therapy protocol. Conclusion: the nanostructured formulation is safe and effective in re-establishing optimal serum levels of estradiol and follicle-stimulating hormone and relieving the symptoms of menopause. This transdermal hormone replacement therapy may alleviate climacteric symptoms in postmenopausal women. (author)

  4. Constant Jacobian Matrix-Based Stochastic Galerkin Method for Probabilistic Load Flow

    Directory of Open Access Journals (Sweden)

    Yingyun Sun

    2016-03-01

    Full Text Available An intrusive spectral method of probabilistic load flow (PLF is proposed in the paper, which can handle the uncertainties arising from renewable energy integration. Generalized polynomial chaos (gPC expansions of dependent random variables are utilized to build a spectral stochastic representation of PLF model. Instead of solving the coupled PLF model with a traditional, cumbersome method, a modified stochastic Galerkin (SG method is proposed based on the P-Q decoupling properties of load flow in power system. By introducing two pre-calculated constant sparse Jacobian matrices, the computational burden of the SG method is significantly reduced. Two cases, IEEE 14-bus and IEEE 118-bus systems, are used to verify the computation speed and efficiency of the proposed method.

  5. Topical and transdermal drug delivery: principles and practice

    National Research Council Canada - National Science Library

    Benson, Heather A. E; Watkinson, Adam C

    2012-01-01

    .... Providing an overview of the current science in drug and cosmetic application to and through the skin, Topical and Transdermal Drug Delivery includes treatment of skin conditions, skin permeation...

  6. 3D printing applications for transdermal drug delivery.

    Science.gov (United States)

    Economidou, Sophia N; Lamprou, Dimitrios A; Douroumis, Dennis

    2018-06-15

    The role of two and three-dimensional printing as a fabrication technology for sophisticated transdermal drug delivery systems is explored in literature. 3D printing encompasses a family of distinct technologies that employ a virtual model to produce a physical object through numerically controlled apparatuses. The applicability of several printing technologies has been researched for the direct or indirect printing of microneedle arrays or for the modification of their surface through drug-containing coatings. The findings of the respective studies are presented. The range of printable materials that are currently used or potentially can be employed for 3D printing of transdermal drug delivery (TDD) systems is also reviewed. Moreover, the expected impact and challenges of the adoption of 3D printing as a manufacturing technique for transdermal drug delivery systems, are assessed. Finally, this paper outlines the current regulatory framework associated with 3D printed transdermal drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Modified Transdermal Technologies: Breaking the Barriers of Drug ...

    African Journals Online (AJOL)

    In-depth analysis, formulation approaches, applications, advantages and disadvantages of these newer technologies are discussed. Keywords: Transdermal drug delivery, microneedles, macroflux, iontophoresis, ultrasound, powderject, skin abrasion. > Tropical Journal of Pharmaceutical Research Vol. 6 (1) 2007: pp. 633- ...

  8. Penetration Enhancement Effect of Turpentine Oil on Transdermal ...

    African Journals Online (AJOL)

    inflammation drastically affect the quality of life after SCI. ... inhibitors may reduce spinal cord ischemic injury. [11]. Various .... Healthy male Wistar rats (200-250 g) were used ..... Guy RH. Transdermal science and technology an update.

  9. Impact of collection method on assessment of semen HIV RNA viral load.

    Directory of Open Access Journals (Sweden)

    Brendan J W Osborne

    Full Text Available The blood HIV RNA viral load is the best-defined predictor of HIV transmission, in part due to ease of measurement and the correlation of blood and genital tract (semen or cervico-vaginal viral load, although recent studies found semen HIV RNA concentration to be a stronger predictor of HIV transmission. There is currently no standardized method for semen collection when measuring HIV RNA concentration. Therefore, we compared two collection techniques in order to study of the impact of antiretroviral therapy on the semen viral load.Semen was collected by masturbation from HIV-infected, therapy-naïve men who have sex with men (MSM either undiluted (Visit 1 or directly into transport medium (Visit 2. Seminal plasma was then isolated, and the HIV RNA concentration obtained with each collection technique was measured and corrected for dilution if necessary. Collection of semen directly into transport medium resulted in a median HIV RNA viral load that was 0.4 log10 higher than undiluted samples.The method of semen collection is an important consideration when quantifying the HIV RNA viral load in this compartment.

  10. Simplified static method for determining seismic loads on equipment in moderate and high hazard facilities

    International Nuclear Information System (INIS)

    Scott, M.A.; Holmes, P.A.

    1991-01-01

    A simplified static analysis methodology is presented for qualifying equipment in moderate and high-hazard facility-use category structures, where the facility use is defined in Design and Evaluation Guidelines for Department of Energy Facilities Subjected to Natural Phenomena Hazards, UCRL-15910. Currently there are no equivalent simplified static methods for determining seismic loads on equipment in these facility use categories without completing dynamic analysis of the facility to obtain local floor accelerations or spectra. The requirements of UCRL-15910 specify the use of open-quotes dynamicclose quotes analysis methods, consistent with Seismic Design Guidelines for Essential Buildings, Chapter 6, open-quotes Nonstructural Elements,close quotes TM5-809-10-1, be used for determining seismic loads on mechanical equipment and components. Chapter 6 assumes that the dynamic analysis of the facility has generated either floor response spectra or model floor accelerations. These in turn are utilized with the dynamic modification factor and the actual demand and capacity ratios to determine equipment loading. This complex methodology may be necessary to determine more exacting loads for hard to qualify equipment but does not provide a simple conservative loading methodology for equipment with ample structural capacity

  11. Controlled release of optimized electroporation enhances the transdermal efficiency of sinomenine hydrochloride for treating arthritis in vitro and in clinic

    Science.gov (United States)

    Feng, Shun; Zhu, Lijun; Huang, Zhisheng; Wang, Haojia; Li, Hong; Zhou, Hua; Lu, Linlin; Wang, Ying; Liu, Zhongqiu; Liu, Liang

    2017-01-01

    Sinomenine hydrochloride (SH) is an ideal drug for the treatment of rheumatoid arthritis and osteoarthritis. However, high plasma concentration of systemically administered SH can release histamine, which can cause rash and gastrointestinal side effects. Topical delivery can increase SH concentration in the synovial fluid without high plasma level, thus minimizing systemic side effects. However, passive diffusion of SH was found to be inefficient because of the presence of the stratum corneum layer. Therefore, an effective method is required to compensate for the low efficiency of SH passive diffusion. In this study, transdermal experiments in vitro and clinical tests were utilized to explore the optimized parameters for electroporation of topical delivery for SH. Fluorescence experiment and hematoxylin and eosin staining analysis were performed to reveal the mechanism by which electroporation promoted permeation. In vitro, optimized electroporation parameters were 3 KHz, exponential waveform, and intensity 10. Using these parameters, transdermal permeation of SH was increased by 1.9–10.1 fold in mice skin and by 1.6–47.1 fold in miniature pig skin compared with passive diffusion. After the electroporation stimulation, the intercellular intervals and epidermal cracks in the skin increased. In clinical tests, SH concentration in synovial fluid was 20.84 ng/mL after treatment with electroporation. Therefore, electroporation with optimized parameters could significantly enhance transdermal permeation of SH. The mechanism by which electroporation promoted permeation was that the electronic pulses made the skin structure looser. To summarize, electroporation may be an effective complementary method for transdermal permeation of SH. The controlled release of electroporation may be a promising clinical method for transdermal drug administration. PMID:28670109

  12. Cooling load calculation by the radiant time series method - effect of solar radiation models

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Alexandre M.S. [Universidade Estadual de Maringa (UEM), PR (Brazil)], E-mail: amscosta@uem.br

    2010-07-01

    In this work was analyzed numerically the effect of three different models for solar radiation on the cooling load calculated by the radiant time series' method. The solar radiation models implemented were clear sky, isotropic sky and anisotropic sky. The radiant time series' method (RTS) was proposed by ASHRAE (2001) for replacing the classical methods of cooling load calculation, such as TETD/TA. The method is based on computing the effect of space thermal energy storage on the instantaneous cooling load. The computing is carried out by splitting the heat gain components in convective and radiant parts. Following the radiant part is transformed using time series, which coefficients are a function of the construction type and heat gain (solar or non-solar). The transformed result is added to the convective part, giving the instantaneous cooling load. The method was applied for investigate the influence for an example room. The location used was - 23 degree S and 51 degree W and the day was 21 of January, a typical summer day in the southern hemisphere. The room was composed of two vertical walls with windows exposed to outdoors with azimuth angles equals to west and east directions. The output of the different models of solar radiation for the two walls in terms of direct and diffuse components as well heat gains were investigated. It was verified that the clear sky exhibited the less conservative (higher values) for the direct component of solar radiation, with the opposite trend for the diffuse component. For the heat gain, the clear sky gives the higher values, three times higher for the peek hours than the other models. Both isotropic and anisotropic models predicted similar magnitude for the heat gain. The same behavior was also verified for the cooling load. The effect of room thermal inertia was decreasing the cooling load during the peak hours. On the other hand the higher thermal inertia values are the greater for the non peak hours. The effect

  13. The Effects of Presentation Method and Information Density on Visual Search Ability and Working Memory Load

    Science.gov (United States)

    Chang, Ting-Wen; Kinshuk; Chen, Nian-Shing; Yu, Pao-Ta

    2012-01-01

    This study investigates the effects of successive and simultaneous information presentation methods on learner's visual search ability and working memory load for different information densities. Since the processing of information in the brain depends on the capacity of visual short-term memory (VSTM), the limited information processing capacity…

  14. Ranking Method for Peak-Load Shifting Considering Different Types of Data

    DEFF Research Database (Denmark)

    Wang, Peng; Wen, Fushuan; Pinson, Pierre

    2016-01-01

    , an evaluation system for the purpose of peak-load shifting is established from three aspects: economic, social, and environmental impacts. Then a mixed-data dominance method is employed in this work to determine the comprehensive closeness degree of each user under each index, and an optimal comprehensive...

  15. A Design Method for the Tension Side of Statically Loaded, Bolted Beam-to-Column Connections

    NARCIS (Netherlands)

    Zoetemeijer, P.

    1974-01-01

    In this paper a design method for the tension side of statically loaded, bolted beam-to-column connections is developed based on the plastic behaviour of the flanges and the bolts under the assumption that the plastification is large enough to allow the adoption of the most favourable static

  16. Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: a review

    Czech Academy of Sciences Publication Activity Database

    Bormans, M.; Maršálek, Blahoslav; Jančula, Daniel

    2016-01-01

    Roč. 50, č. 3 (2016), s. 407-422 ISSN 1386-2588 Institutional support: RVO:67985939 Keywords : internal P loading * cyanobacterial control * physical in-lake restoration methods * adverse impacts on biota Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.500, year: 2016

  17. Methods to improve efficiency of four stroke, spark ignition engines at part load

    International Nuclear Information System (INIS)

    Kutlar, Osman Akin; Arslan, Hikmet; Calik, Alper Tolga

    2005-01-01

    The four stroke, spark ignition (SI) engine pressure-volume diagram (p-V) contains two main parts. They are the compression-combustion-expansion (high pressure loop) and the exhaust-intake (low pressure or gas exchange loop) parts. The main reason for efficiency decrease at part load conditions for these types of engines is the flow restriction at the cross sectional area of the intake system by partially closing the throttle valve, which leads to increased pumping losses and to increased low pressure loop area on the p-V diagram. Meanwhile, the poorer combustion quality, i.e. lower combustion speed and cycle to cycle variations, additionally influence these pressure loop areas. In this study, methods for increasing efficiency at part load conditions and their potential for practical use are investigated. The study also includes a review of the vast literature on the solution of this problem. This investigation shows that the potential for increasing the efficiency of SI engines at part load conditions is not yet exhausted. Each method has its own advantages and disadvantages. Among these, the most promising methods to decrease the fuel consumption at part load conditions are stratified charge and variable displacement engines. When used in combination, the other listed methods are more effective than their usage alone

  18. Efficient Transdermal Delivery of Benfotiamine in an Animal Model

    OpenAIRE

    Varadi, Gyula; Zhu, Zhen; G. Carter, Stephen

    2015-01-01

    We designed a transdermal system to serve as a delivery platform for benfotiamine utilizing the attributes of passive penetration enhancing molecules to penetrate through the outer layers of skin combined with the advance of incorporating various peripherally-acting vasodilators to enhance drug uptake.  Benfotiamine, incorporated into this transdermal formulation, was applied to skin in an animal model in order to determine the ability to deliver this thiamine pro-drug effectively to the sub-...

  19. Enhancement of the bioavailability of an antihypertensive drug by transdermal protransfersomal system: formulation and in vivo study.

    Science.gov (United States)

    Morsi, Nadia M; Aboelwafa, Ahmed A; Dawoud, Marwa H S

    2018-06-01

    Timolol Maleate (TiM), a nonselective β-adrenergic blocker, is a potent highly effective agent for management of hypertension. The drug suffers from poor oral bioavailability (50%) due to its first pass effect and a short elimination half-life of 4 h; resulting in its frequent administration. Transdermal formulation may circumvent these problems in the form of protransfersomes. The aim of this study is to develop and optimize transdermal protransfersomal system of Timolol Maleate by film deposition on carrier method where protransfersomes were converted to transfersomes upon skin hydration following transdermal application under occlusive conditions. Two 2 3 full factorial designs were employed to investigate the influence of three formulation variables which were; phosphatidyl choline: surfactant molar ratio, carrier: mixture and the type of SAA each on particle size, drug entrapment efficiency and release rate. The optimized formulation was evaluated regarding permeation through hairless rat skin and compared with oral administration of aqueous solution on male Wistar rats. Optimized protransfersomal system had excellent permeation rate through shaved rat skin (780.69 μg/cm 2 /h) and showed six times increase in relative bioavailability with prolonged plasma profile up to 72 h. A potential protransfresomal transdermal system was successfully developed and factorial design was found to be a smart tool in its optimization.

  20. Simulation of pore pressure accumulation under cyclic loading using Finite Volume Method

    DEFF Research Database (Denmark)

    Tang, Tian; Hededal, Ole

    2014-01-01

    This paper presents a finite volume implementation of a porous, nonlinear soil model capable of simulating pore pressure accumulation under cyclic loading. The mathematical formulations are based on modified Biot’s coupled theory by substituting the original elastic constitutive model...... with an advanced elastoplastic model suitable for describing monotonic as well as cyclic loading conditions. The finite volume method is applied to discretize these formulations. The resulting set of coupled nonlinear algebraic equations are then solved by a ’segregated’ solution procedure. An efficient return...

  1. Apparatuses and methods of determining if a person operating equipment is experiencing an elevated cognitive load

    Science.gov (United States)

    Watkins, Michael L.; Keller, Paul Edwin; Amaya, Ivan A.

    2015-06-16

    A method of, and apparatus for, determining if a person operating equipment is experiencing an elevated cognitive load, wherein the person's use of a device at a first time is monitored so as to set a baseline signature. Then, at a later time, the person's use of the device is monitored to determine the person's performance at the second time, as represented by a performance signature. This performance signature can then be compared against the baseline signature to predict whether the person is experiencing an elevated cognitive load.

  2. Higher harmonic imaging of tensile plastic deformation in loading and reloading processes by local resonance method

    International Nuclear Information System (INIS)

    Kawashima, Koichiro; Yasui, Hajime

    2015-01-01

    We have imaged plastically deformed region in a 5052 aluminum plate under tensile loading, unloading and reloading processes by using an immersion local resonance method. By transmitting large-amplitude burst wave of which frequency is a through-thickness resonant frequency of the plate, dislocation loops in plastic zone are forced to vibrate. The higher harmonic amplitude excited by the dislocation movement is mapped for the transducer position. The extension of plastic zone under monotonically increased loading, decrease in harmonic amplitude under unloading process and marked extension of plastic zone in reloading up to 0.4% plastic strain are clearly imaged. (author)

  3. Stress corrosion evaluation of powder metallurgy aluminum alloy 7091 with the breaking load test method

    Science.gov (United States)

    Domack, Marcia S.

    1987-01-01

    The stress corrosion behavior of the P/M aluminum alloy 7091 is evaluated in two overaged heat treatment conditions, T7E69 and T7E70, using an accelerated test technique known as the breaking load test method. The breaking load data obtained in this study indicate that P/M 7091 alloy is highly resistant to stress corrosion in both longitudinal and transverse orientations at stress levels up to 90 percent of the material yield strength. The reduction in mean breaking stress as a result of corrosive attack is smallest for the more overaged T7E70 condition. Details of the test procedure are included.

  4. Power control method for load-frequency control operation in BWRs

    International Nuclear Information System (INIS)

    Ie, Shin-ichiroo; Ohgo, Yu-kiharu; Itou, Tetsuo; Shida, Tooichi

    1991-01-01

    The preliminary design of an advanced power control method for fast load-following [load frequency control (LFC)] maneuvers in a boiling water reactor (BWR) is described in this paper. Application of a multivariable control method using an optimal linear quadratic (LQ) regulator theory effectively improves control system performance when system variables have significant interactions such as in BWRs. The control problem, however, demands strict constraints on system variable from the standpoint of plant operation. These constraints require the control system to have a nonlinear property for better improvement. Therefore, the effectiveness of LQ control is limited by these constraints, because it is based on a linear model. A new method is needed to compensate for the nonlinear property. In this study, the authors propose a new method using fuzzy reasoning with LQ control to achieve nonlinear compensation

  5. Rotigotine transdermal patch for the treatment of Parkinson's Disease.

    Science.gov (United States)

    Perez-Lloret, Santiago; Rey, María Verónica; Ratti, Pietro Lucca; Rascol, Olivier

    2013-02-01

    Rotigotine, a non-ergot dopamine agonist, has been developed as a novel transdermal formulation. The rotigotine transdermal patch has received EMEA marketing authorization for the treatment of adult patients with early or advanced Parkinson's disease (PD) or with moderate to severe restless legs syndrome (RLS). FDA originally granted a marketing authorization for early PD, which was later suspended, and is now studying the authorization for RLS. The aim of this review is to review the pharmacokinetics, pharmacodynamics as well as the clinical efficacy and tolerability of the rotigotine transdermal patch in PD. Source material was identified using a PubMed search for the term 'rotigotine' and PD. Articles published up to January 2011 or abstract submitted to most relevant international neurology congresses were reviewed. The rotigotine transdermal patch is efficacious for the treatment of PD. Tolerability profile appears to be well within the range of that observed with other non-ergot dopamine agonists in PD. Application-site reactions were the most frequent adverse event, and they were considered mild to moderate in the majority of cases. The rotigotine transdermal patch offers a safe and efficacious alternative for the treatment of PD. Further studies should focus on the possibility that continuous dopamine stimulation by means of the transdermal patch has any influence on levodopa-related motor complications. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique.

  6. Dynamic Loads and Wake Prediction for Large Wind Turbines Based on Free Wake Method

    Institute of Scientific and Technical Information of China (English)

    Cao Jiufa; Wang Tongguang; Long Hui; Ke Shitang; Xu Bofeng

    2015-01-01

    With large scale wind turbines ,the issue of aerodynamic elastic response is even more significant on dy-namic behaviour of the system .Unsteady free vortex wake method is proposed to calculate the shape of wake and aerodynamic load .Considering the effect of aerodynamic load ,inertial load and gravity load ,the decoupling dy-namic equations are established by using finite element method in conjunction of the modal method and equations are solved numerically by Newmark approach .Finally ,the numerical simulation of a large scale wind turbine is performed through coupling the free vortex wake modelling with structural modelling .The results show that this coupling model can predict the flexible wind turbine dynamic characteristics effectively and efficiently .Under the influence of the gravitational force ,the dynamic response of flapwise direction contributes to the dynamic behavior of edgewise direction under the operational condition of steady wind speed .The difference in dynamic response be-tween the flexible and rigid wind turbines manifests when the aerodynamics/structure coupling effect is of signifi-cance in both wind turbine design and performance calculation .

  7. Application of X-ray methods to assess grain vulnerability to damage resulting from multiple loads

    International Nuclear Information System (INIS)

    Zlobecki, A.

    1995-01-01

    The aim of the work is to describe wheat grain behavior under multiple dynamic loads with various multipliers. The experiments were conducted on Almari variety grain. Grain moisture was 11, 16, 21 and 28%. A special ram stand was used for loading the grain. The experiments were carried out using an 8 g weight, equivalent to impact energy of 4,6 x 10 -3 [J]. The X-ray method was used to assess damage. The exposure time was 8 minutes with X-ray lamp voltage equal to 15 kV. The position index was used as the measure of the damage. The investigation results were elaborated statistically. Based on the results of analysis of variance, regression analysis, the d-Duncan test and the Kolmogorov-Smirnov test, the damage number was shown to depend greatly on the number of impacts for the whole range of moisture of the grain loaded. (author)

  8. Method for measuring biaxial stress in a body subjected to stress inducing loads

    Science.gov (United States)

    Clotfelter, W. N. (Inventor)

    1977-01-01

    A method is described for measuring stress in test articles including the steps of obtaining for a calibrating specimen a series of transit time differentials between the second wave echo for a longitudinal wave and the first wave echo for each of a pair of shear waves propagated through the specimen as it is subjected to known stress load of a series of stress loads for thus establishing a series of indications of the magnitudes for stress loads induced in the specimen, and thereafter obtaining a transit time differential between the second wave echo for a longitudinal wave and the first wave echo for each of a pair of shear waves propagated in the planes of the stress axes of a test article and comparing the transit time differential thus obtained to the series of transit time differentials obtained for the specimen to determine the magnitude of biaxial stress in the test article.

  9. Novel method to dynamically load cells in 3D-hydrogels culture for blast injury studies

    Science.gov (United States)

    Sory, David R.; Areias, Anabela C.; Overby, Darryl R.; Proud, William G.

    2017-01-01

    For at least a century explosive devices have been one of the most important causes of injuries in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injuries at the organ or tissue level, few studies have investigated the mechanisms of blast injuries at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses relevant to blast loadings and blunt trauma. The experimental phase involves high strain-rate axial compression of cylindrical specimens within an hermetically sealed chamber made of biocompatible polymer. Numerical simulations were performed in order to verify the experimental loading conditions and to characterize the loading path within the sample. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injury at the cellular level.

  10. Method of bringing nuclear power plant to fractional electrical load conditions

    International Nuclear Information System (INIS)

    Iljunin, V.G.; Kuznetsoy, I.A.; Murogov, V.M.; Shmelev, A.N.

    1978-01-01

    A method is described of bringing a nuclear power plant to fractional electric load conditions, which power plant comprises at least two nuclear reactors, at least one nuclear reactor being a breeder and both reactors transferring heat to the turbine working substance, consisting in that the consumption of the turbine working substance is reduced in accordance with a predetermined fractional load. At the same time, the amount of heat being transferred from the nuclear reactors to the turbine working substance is reduced, for which purpose the reactors are included in autonomous cooling circuits to successively transfer heat to the turbine working substance. The breeding reactor is included in the cooling circuit with a lower coolant temperature, the temperature of the coolant at the inlet and outlet of the breeder being reduced to a level ensuring the operation of the nuclear power plant in predetermined fractional load conditions, due to which the power of the breeder is increased, and afterheat is removed

  11. Assessment of the reference stress method for combined tensile bending and thermal loading

    International Nuclear Information System (INIS)

    Philipp, A.; Munz, D.

    1984-01-01

    The reference stress method has been investigated for combined tensile, bending and thermal loading by considering a uniformly bent beam subjected to superimposed tensile stress and lateral temperature gradients. The creep deformation of the beam can be calculated numerically applying a Norton-type creep law. It turns out that the ratio of curvature rate to strain at the outer fiber depends on the creep exponent. Therefore, the reference stresses for these two quantities must be expected to be different in general. In most load cases, however, it is possible to determine a reference stress which can be used to describe the complete deformation of the beam. The only exception is the case of high tensile loading if the side exposed to higher tensile stress is cooler. Approximate solutions for the reference stress which rely on elastic and limit analyses, can be used only for estimates because they lead to extremely non-conservative predictions. (author)

  12. Assessment of Masonry Buildings Subjected to Landslide-Induced Settlements: From Load Path Method to Evolutionary Optimization Method

    Science.gov (United States)

    Palmisano, Fabrizio; Elia, Angelo

    2017-10-01

    One of the main difficulties, when dealing with landslide structural vulnerability, is the diagnosis of the causes of crack patterns. This is also due to the excessive complexity of models based on classical structural mechanics that makes them inappropriate especially when there is the necessity to perform a rapid vulnerability assessment at the territorial scale. This is why, a new approach, based on a ‘simple model’ (i.e. the Load Path Method, LPM), has been proposed by Palmisano and Elia for the interpretation of the behaviour of masonry buildings subjected to landslide-induced settlements. However, the LPM is very useful for rapidly finding the 'most plausible solution' instead of the exact solution. To find the solution, optimization algorithms are necessary. In this scenario, this article aims to show how the Bidirectional Evolutionary Structural Optimization method by Huang and Xie, can be very useful to optimize the strut-and-tie models obtained by using the Load Path Method.

  13. Study on simulation methods of atrium building cooling load in hot and humid regions

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yiqun; Li, Yuming; Huang, Zhizhong [Institute of Building Performance and Technology, Sino-German College of Applied Sciences, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Wu, Gang [Weldtech Technology (Shanghai) Co. Ltd. (China)

    2010-10-15

    In recent years, highly glazed atria are popular because of their architectural aesthetics and advantage of introducing daylight into inside. However, cooling load estimation of such atrium buildings is difficult due to complex thermal phenomena that occur in the atrium space. The study aims to find out a simplified method of estimating cooling loads through simulations for various types of atria in hot and humid regions. Atrium buildings are divided into different types. For every type of atrium buildings, both CFD and energy models are developed. A standard method versus the simplified one is proposed to simulate cooling load of atria in EnergyPlus based on different room air temperature patterns as a result from CFD simulation. It incorporates CFD results as input into non-dimensional height room air models in EnergyPlus, and the simulation results are defined as a baseline model in order to compare with the results from the simplified method for every category of atrium buildings. In order to further validate the simplified method an actual atrium office building is tested on site in a typical summer day and measured results are compared with simulation results using the simplified methods. Finally, appropriate methods of simulating different types of atrium buildings are proposed. (author)

  14. Validation of the Nuclear Design Method for MOX Fuel Loaded LWR Cores

    International Nuclear Information System (INIS)

    Saji, E.; Inoue, Y.; Mori, M.; Ushio, T.

    2001-01-01

    The actual batch loading of mixed-oxide (MOX) fuel in light water reactors (LWRs) is now ready to start in Japan. One of the efforts that have been devoted to realizing this batch loading has been validation of the nuclear design methods calculating the MOX-fuel-loaded LWR core characteristics. This paper summarizes the validation work for the applicability of the CASMO-4/SIMULATE-3 in-core fuel management code system to MOX-fuel-loaded LWR cores. This code system is widely used by a number of electric power companies for the core management of their commercial LWRs. The validation work was performed for both boiling water reactor (BWR) and pressurized water reactor (PWR) applications. Each validation consists of two parts: analyses of critical experiments and core tracking calculations of operating plants. For the critical experiments, we have chosen a series of experiments known as the VENUS International Program (VIP), which was performed at the SCK/CEN MOL laboratory in Belgium. VIP consists of both BWR and PWR fuel assembly configurations. As for the core tracking calculations, the operating data of MOX-fuel-loaded BWR and PWR cores in Europe have been utilized

  15. The method of measurement and synchronization control for large-scale complex loading system

    International Nuclear Information System (INIS)

    Liao Min; Li Pengyuan; Hou Binglin; Chi Chengfang; Zhang Bo

    2012-01-01

    With the development of modern industrial technology, measurement and control system was widely used in high precision, complex industrial control equipment and large-tonnage loading device. The measurement and control system is often used to analyze the distribution of stress and displacement in the complex bearing load or the complex nature of the mechanical structure itself. In ITER GS mock-up with 5 flexible plates, for each load combination, detect and measure potential slippage between the central flexible plate and the neighboring spacers is necessary as well as the potential slippage between each pre-stressing bar and its neighboring plate. The measurement and control system consists of seven sets of EDC controller and board, computer system, 16-channel quasi-dynamic strain gauge, 25 sets of displacement sensors, 7 sets of load and displacement sensors in the cylinders. This paper demonstrates the principles and methods of EDC220 digital controller to achieve synchronization control, and R and D process of multi-channel loading control software and measurement software. (authors)

  16. Mid-term load forecasting of power systems by a new prediction method

    International Nuclear Information System (INIS)

    Amjady, Nima; Keynia, Farshid

    2008-01-01

    Mid-term load forecasting (MTLF) becomes an essential tool for today power systems, mainly in those countries whose power systems operate in a deregulated environment. Among different kinds of MTLF, this paper focuses on the prediction of daily peak load for one month ahead. This kind of load forecast has many applications like maintenance scheduling, mid-term hydro thermal coordination, adequacy assessment, management of limited energy units, negotiation of forward contracts, and development of cost efficient fuel purchasing strategies. However, daily peak load is a nonlinear, volatile, and nonstationary signal. Besides, lack of sufficient data usually further complicates this problem. The paper proposes a new methodology to solve it, composed of an efficient data model, preforecast mechanism and combination of neural network and evolutionary algorithm as the hybrid forecast technique. The proposed methodology is examined on the EUropean Network on Intelligent TEchnologies (EUNITE) test data and Iran's power system. We will also compare our strategy with the other MTLF methods revealing its capability to solve this load forecast problem

  17. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery.

    Science.gov (United States)

    Blagus, Tanja; Markelc, Bostjan; Cemazar, Maja; Kosjek, Tina; Preat, Veronique; Miklavcic, Damijan; Sersa, Gregor

    2013-12-28

    Electroporation (EP) is a physical method for the delivery of molecules into cells and tissues, including the skin. In this study, in order to control the degree of transdermal and topical drug delivery, EP at different amplitudes of electric pulses was evaluated. A new in vivo real-time monitoring system based on fluorescently labeled molecules was developed, for the quantification of transdermal and topical drug delivery. EP of the mouse skin was performed with new non-invasive multi-array electrodes, delivering different amplitudes of electric pulses ranging from 70 to 570 V, between the electrode pin pairs. Patches, soaked with 4 kDa fluorescein-isothiocyanate labeled dextran (FD), doxorubicin (DOX) or fentanyl (FEN), were applied to the skin before and after EP. The new monitoring system was developed based on the delivery of FD to and through the skin. FD relative quantity was determined with fluorescence microscopy imaging, in the treated region of the skin for topical delivery and in a segment of the mouse tail for transdermal delivery. The application of electric pulses for FD delivery resulted in enhanced transdermal delivery. Depending on the amplitude of electric pulses, it increased up to the amplitude of 360 V, and decreased at higher amplitudes (460 and 570 V). Topical delivery steadily enhanced with increasing the amplitude of the delivered electric pulses, being even higher than after tape stripping used as a positive control. The non-invasive monitoring of the delivery of DOX, a fluorescent chemotherapeutic drug, qualitatively and quantitatively confirmed the effects of EP at 360 and 570 V pulse amplitudes on topical and transdermal drug delivery. Delivery of FEN at 360 and 570 V pulse amplitudes verified the observed effects as obtained with FD and DOX, by the measured physiological responses of the mice as well as FEN plasma concentration. This study demonstrates that with the newly developed non-invasive multi-array electrodes and with the

  18. [Comparative study on transdermal osmosis in vitro of Aconitum brachypodium liniment, gel and patcher].

    Science.gov (United States)

    Lin, Ya-ping; Zhao, Ying; Zhang, Yong-ping; Liang, Guang-yi

    2007-02-01

    To study the transdermal osmosis process of Aconitum brachypodum's liniment, gel and patcher to provide basis for selecting dosage form and controlling the quality. Taking the cumulate rate of transdermal as index, a imitated Fick's diffusion device was used for the investigating the transdermal osmosis course of the three preparations. The best transdermal mathematics models are obtained and the relations between the transdermal course and the release course are analysed. The three preparations have different characteristics of transdermal osmosis course. The liniment meets dynamics 0 order process, the gel and the patcher meet dynamic 0 order process of non-corroded drug system. And the relation is good cubic equation between their transdermal course and release course. The transdermal osmosis experiment in vitro for three preparations can provide basis for selecting dosage form and the quality control in future studies.

  19. A method for rapid vulnerability assessment of structures loaded by outside blasts

    International Nuclear Information System (INIS)

    Cizelj, Leon; Leskovar, Matjaz; Cepin, Marko; Mavko, Borut

    2007-01-01

    The blast have in most cases not been assumed as design basis loads of nuclear power plant buildings and structures. Recent developments however stimulated a number of analyses quantifying the potential effect of such loads. An effort was therefore made by the authors to revisit simple and robust structural analysis methods and to propose their use in the vulnerability assessment of blast-loaded structures. The leading idea is to break the structure into a set of typical structural elements, for which the response is estimated by the use of slightly modified handbook formulas. The proposed method includes provisions to predict the inelastic response and failure. Simplicity and versatility of the method facilitate its use in structural reliability calculations. The most important aspects of the proposed method are presented along with illustrative sample applications demonstrating: - results comparable to full scale dynamic simulations using explicit finite element codes and - the performance of the method in screening the existing structures and providing the structural reliability information for the vulnerability analysis. (author)

  20. Calculation of fluid (steam) hammer loading to piping systems by the response spectrum method

    International Nuclear Information System (INIS)

    Krause, G.; Schrader, W.; Leimbach, K.R.

    1983-01-01

    Today computations of fluid and steam hammer loading to piping systems are usually performed as a time-history analysis in which the transient pressure forces act as external excitations. For practical purposes it is desirable to be able to treat fluid hammer loading using the response spectrum method similarily as loads from external events. Two advantages arise from the use of spectra in the analysis of piping systems subjected to dynamic force excitations. Firstly, the response spectrum method is much less sensitive to model idealization than the time-history method. Secondly, computational efforts are reduced. In this paper the algorithm for the treatment of force excitations through the modal response spectrum method is briefly presented. The effect of the residuum accounting for higher modes which are not part of the modal decomposition is considered. In particular various methods of superposition of the responses of the dynamic forces and of the modes are investigated. Results and comparisons are presented of several response spectrum analyses and time-history analyses. (orig.)

  1. H-M bearing capacity of a modified suction caisson determined by using load-/displacement-controlled methods

    Science.gov (United States)

    Zhang, Yu-kun; Gao, Yu-feng; Li, Da-yong; Mahfouz, Ali H.

    2016-12-01

    This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values.

  2. Method to eliminate flux linkage DC component in load transformer for static transfer switch.

    Science.gov (United States)

    He, Yu; Mao, Chengxiong; Lu, Jiming; Wang, Dan; Tian, Bing

    2014-01-01

    Many industrial and commercial sensitive loads are subject to the voltage sags and interruptions. The static transfer switch (STS) based on the thyristors is applied to improve the power quality and reliability. However, the transfer will result in severe inrush current in the load transformer, because of the DC component in the magnetic flux generated in the transfer process. The inrush current which is always 2 ~ 30 p.u. can cause the disoperation of relay protective devices and bring potential damage to the transformer. The way to eliminate the DC component is to transfer the related phases when the residual flux linkage of the load transformer and the prospective flux linkage of the alternate source are equal. This paper analyzes how the flux linkage of each winding in the load transformer changes in the transfer process. Based on the residual flux linkage when the preferred source is completely disconnected, the method to calculate the proper time point to close each phase of the alternate source is developed. Simulation and laboratory experiments results are presented to show the effectiveness of the transfer method.

  3. An Analytical Method for Determining the Load Distribution of Single-Column Multibolt Connection

    Directory of Open Access Journals (Sweden)

    Nirut Konkong

    2017-01-01

    Full Text Available The purpose of this research was to investigate the effect of geometric variables on the bolt load distributions of a cold-formed steel bolt connection. The study was conducted using an experimental test, finite element analysis, and an analytical method. The experimental study was performed using single-lap shear testing of a concentrically loaded bolt connection fabricated from G550 cold-formed steel. Finite element analysis with shell elements was used to model the cold-formed steel plate while solid elements were used to model the bolt fastener for the purpose of studying the structural behavior of the bolt connections. Material nonlinearities, contact problems, and a geometric nonlinearity procedure were used to predict the failure behavior of the bolt connections. The analytical method was generated using the spring model. The bolt-plate interaction stiffness was newly proposed which was verified by the experiment and finite element model. It was applied to examine the effect of geometric variables on the single-column multibolt connection. The effects were studied of varying bolt diameter, plate thickness, and the plate thickness ratio (t2/t1 on the bolt load distribution. The results of the parametric study showed that the t2/t1 ratio controlled the efficiency of the bolt load distribution more than the other parameters studied.

  4. Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model

    International Nuclear Information System (INIS)

    Wu, Jie; Wang, Jianzhou; Lu, Haiyan; Dong, Yao; Lu, Xiaoxiao

    2013-01-01

    Highlights: ► The seasonal and trend items of the data series are forecasted separately. ► Seasonal item in the data series is verified by the Kendall τ correlation testing. ► Different regression models are applied to the trend item forecasting. ► We examine the superiority of the combined models by the quartile value comparison. ► Paired-sample T test is utilized to confirm the superiority of the combined models. - Abstract: For an energy-limited economy system, it is crucial to forecast load demand accurately. This paper devotes to 1-week-ahead daily load forecasting approach in which load demand series are predicted by employing the information of days before being similar to that of the forecast day. As well as in many nonlinear systems, seasonal item and trend item are coexisting in load demand datasets. In this paper, the existing of the seasonal item in the load demand data series is firstly verified according to the Kendall τ correlation testing method. Then in the belief of the separate forecasting to the seasonal item and the trend item would improve the forecasting accuracy, hybrid models by combining seasonal exponential adjustment method (SEAM) with the regression methods are proposed in this paper, where SEAM and the regression models are employed to seasonal and trend items forecasting respectively. Comparisons of the quartile values as well as the mean absolute percentage error values demonstrate this forecasting technique can significantly improve the accuracy though models applied to the trend item forecasting are eleven different ones. This superior performance of this separate forecasting technique is further confirmed by the paired-sample T tests

  5. Spinal Tissue Loading Created by Different Methods of Spinal Manipulative Therapy Application.

    Science.gov (United States)

    Funabashi, Martha; Nougarou, François; Descarreaux, Martin; Prasad, Narasimha; Kawchuk, Gregory N

    2017-05-01

    Comparative study using robotic replication of spinal manipulative therapy (SMT) vertebral kinematics together with serial dissection. The aim of this study was to quantify loads created in cadaveric spinal tissues arising from three different forms of SMT application. There exist many distinct methods by which to apply SMT. It is not known presently whether different forms of SMT application have different effects on spinal tissues. Should the method of SMT application modulate spinal tissue loading, quantifying this relation may help explain the varied outcomes of SMT in terms of effect and safety. SMT was applied to the third lumbar vertebra in 12 porcine cadavers using three SMT techniques: a clinical device that applies forces through a hand-held instrument (INST), a manual technique of applying SMT clinically (MAN) and a research device that applies parameters of manual SMT through a servo-controlled linear actuator motor (SERVO). The resulting kinematics from each SMT application were tracked optically via indwelling bone pins. The L3/L4 segment was then removed, mounted in a parallel robot and the resulting kinematics from SMT replayed for each SMT application technique. Serial dissection of spinal structures was conducted to quantify loading characteristics of discrete spinal tissues. In terms of load magnitude, SMT application with MAN and SERVO created greater forces than INST in all conditions (P < 0.05). Additionally, MAN and SERVO created comparable posterior forces in the intact specimen, but MAN created greater posterior forces on IVD structures compared to SERVO (P < 0.05). Specific methods of SMT application create unique vertebral loading characteristics, which may help explain the varied outcomes of SMT in terms of effect and safety. N/A.

  6. Ground reaction force comparison of controlled resistance methods to isoinertial loading of the squat exercise - biomed 2010.

    Science.gov (United States)

    Paulus, David C; Reynolds, Michael C; Schilling, Brian K

    2010-01-01

    The ground reaction force during the concentric (raising) portion of the squat exercise was compared to that of isoinertial loading (free weights) for three pneumatically controlled resistance methods: constant resistance, cam force profile, and proportional force control based on velocity. Constant force control showed lower ground reaction forces than isoinertial loading throughout the range of motion (ROM). The cam force profile exhibited slightly greater ground reaction forces than isoinertial loading at 10 and 40% ROM with fifty-percent greater loading at 70% ROM. The proportional force control consistently elicited greater ground reaction force than isoinertial loading, which progressively ranged from twenty to forty percent increase over isoinertial loading except for being approximately equal at 85% ROM. Based on these preliminary results, the proportional control shows the most promise for providing loading that is comparable in magnitude to isoinertial loading. This technology could optimize resistance exercise for sport-specific training or as a countermeasure to atrophy during spaceflight.

  7. A novel method for decomposing electricity feeder load into elementary profiles from customer information

    International Nuclear Information System (INIS)

    Gerossier, Alexis; Barbier, Thibaut; Girard, Robin

    2017-01-01

    Highlights: •Use of aggregated electricity load profiles and customer description at feeder level. •Statistical recovery of elementary load profiles with customer categorization. •Generation of load demand profiles for unknown feeders and new local areas. •Relevancy of the different categorizations. -- Abstract: To plan a distribution grid involves making a long-term forecast of sub-hourly demand, which requires modeling the demand and its dynamics with aggregated measurement data. Distribution system operators (DSOs) have been recording electricity sub-hourly demand delivered by their medium-voltage feeders (around 1000—10,000 customers) for several years. Demand profiles differ widely among the various considered feeders. This is partly due to the varying mix of customer categories from one feeder to another. To overcome this issue, elementary demand profiles are often associated with customer categories and then combined according to a mix description. This paper presents a novel method to estimate elementary profiles that only requires several feeder demand curves and a description of customers. The method relies on a statistical blind source model and a new estimation procedure based on the augmented Lagrangian method. The use of feeders to estimate elementary profiles means that measurements are fully representative and continuously updated. We illustrate the proposed method through a case study comprising around 1000 feeder demand curves operated by the main French DSO Enedis. We propose an application o that uses the obtained profiles to evaluate the contribution of any set of new customers to a feeder peak load. We show that profiles enable a simulation of new unmeasured areas with errors of around 20%. We also show how our method can be used to evaluate the relevancy of different customer categorizations.

  8. Experimental verification on limit load estimation method for pipes with an arbitrary shaped circumferential surface flaw

    International Nuclear Information System (INIS)

    Li, Yinsheng; Hasegawa, Kunio; Miura, Naoki; Hoshino, Katsuaki

    2010-01-01

    When a flaw is detected in stainless steel pipes during in-service inspection, the limit load criterion given in the codes such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI can be applied to evaluate the integrity of the pipe. However, in these codes, the limit load criterion is only provided for pipes containing a flaw with uniform depth, although many flaws with complicated shape such as stress corrosion cracking have been actually detected in pipes. In order to evaluate the integrity of the flawed pipes for general case, a limit load estimation method has been proposed by authors considering a circumferential surface flaw with arbitrary shape. The plastic collapse bending moment and corresponding stress are obtained by dividing the surface flaw into several segmented sub-flaws. In this paper, the proposed method was verified by comparing with experimental results. Four-point bending experiments were carried out for full scale stainless steel pipes with a symmetrical or non-symmetrical circumferential flaw. Estimated failure bending moments by the proposed method were found to be in good agreement with the experimental results, and the proposed method was confirmed to be effective for evaluating bending failure of pipes with flaw. (author)

  9. Enhanced method of fast re-routing with load balancing in software-defined networks

    Science.gov (United States)

    Lemeshko, Oleksandr; Yeremenko, Oleksandra

    2017-11-01

    A two-level method of fast re-routing with load balancing in a software-defined network (SDN) is proposed. The novelty of the method consists, firstly, in the introduction of a two-level hierarchy of calculating the routing variables responsible for the formation of the primary and backup paths, and secondly, in ensuring a balanced load of the communication links of the network, which meets the requirements of the traffic engineering concept. The method provides implementation of link, node, path, and bandwidth protection schemes for fast re-routing in SDN. The separation in accordance with the interaction prediction principle along two hierarchical levels of the calculation functions of the primary (lower level) and backup (upper level) routes allowed to abandon the initial sufficiently large and nonlinear optimization problem by transiting to the iterative solution of linear optimization problems of half the dimension. The analysis of the proposed method confirmed its efficiency and effectiveness in terms of obtaining optimal solutions for ensuring balanced load of communication links and implementing the required network element protection schemes for fast re-routing in SDN.

  10. Automatic Power Control for Daily Load-following Operation using Model Predictive Control Method

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Keuk Jong; Kim, Han Gon [KH, Daejeon (Korea, Republic of)

    2009-10-15

    Under the circumstances that nuclear power occupies more than 50%, nuclear power plants are required to be operated on load-following operation in order to make the effective management of electric grid system and enhanced responsiveness to rapid changes in power demand. Conventional reactors such as the OPR1000 and APR1400 have a regulating system that controls the average temperature of the reactor core relation to the reference temperature. This conventional method has the advantages of proven technology and ease of implementation. However, this method is unsuitable for controlling the axial power shape, particularly the load following operation. Accordingly, this paper reports on the development of a model predictive control method which is able to control the reactor power and the axial shape index. The purpose of this study is to analyze the behavior of nuclear reactor power and the axial power shape by using a model predictive control method when the power is increased and decreased for a daily load following operation. The study confirms that deviations in the axial shape index (ASI) are within the operating limit.

  11. A critical pressure based panel method for prediction of unsteady loading of marine propellers under cavitation

    International Nuclear Information System (INIS)

    Liu, P.; Bose, N.; Colbourne, B.

    2002-01-01

    A simple numerical procedure is established and implemented into a time domain panel method to predict hydrodynamic performance of marine propellers with sheet cavitation. This paper describes the numerical formulations and procedures to construct this integration. Predicted hydrodynamic loads were compared with both a previous numerical model and experimental measurements for a propeller in steady flow. The current method gives a substantial improvement in thrust and torque coefficient prediction over a previous numerical method at low cavitation numbers of less than 2.0, where severe cavitation occurs. Predicted pressure coefficient distributions are also presented. (author)

  12. Simplified Probabilistic Analysis of Settlement of Cyclically Loaded Soil Stratum by Point Estimate Method

    Science.gov (United States)

    Przewłócki, Jarosław; Górski, Jarosław; Świdziński, Waldemar

    2016-12-01

    The paper deals with the probabilistic analysis of the settlement of a non-cohesive soil layer subjected to cyclic loading. Originally, the settlement assessment is based on a deterministic compaction model, which requires integration of a set of differential equations. However, with the use of the Bessel functions, the settlement of a soil stratum can be calculated by a simplified algorithm. The compaction model parameters were determined for soil samples taken from subsoil near the Izmit Bay, Turkey. The computations were performed for various sets of random variables. The point estimate method was applied, and the results were verified by the Monte Carlo method. The outcome leads to a conclusion that can be useful in the prediction of soil settlement under seismic loading.

  13. The effect of axial loads on free vibration of symmetric frame structures using continuous system method

    Directory of Open Access Journals (Sweden)

    Elham Ghandi

    2016-09-01

    Full Text Available The free vibration of frame structures has been usually studied in literature without considering the effect of axial loads. In this paper, the continuous system method is employed to investigate this effect on the free flexural and torsional vibration of two and three dimensional symmetric frames. In the continuous system method, in approximate analysis of buildings, commonly, the structure is replaced by an equivalent beam which matches the dominant characteristics of the structure. Accordingly, the natural frequencies of the symmetric frame structures are obtained through solving the governing differential equation of the equivalent beam whose stiffness and mass are supposed to be uniformly distributed along the length. The corresponding axial load applied to the replaced beam is calculated based on the total weight and the number of stories of the building. A numerical example is presented to show the simplicity and efficiency of the proposed solution.

  14. Method of nuclear reactor control using a variable temperature load dependent set point

    International Nuclear Information System (INIS)

    Kelly, J.J.; Rambo, G.E.

    1982-01-01

    A method and apparatus for controlling a nuclear reactor in response to a variable average reactor coolant temperature set point is disclosed. The set point is dependent upon percent of full power load demand. A manually-actuated ''droop mode'' of control is provided whereby the reactor coolant temperature is allowed to drop below the set point temperature a predetermined amount wherein the control is switched from reactor control rods exclusively to feedwater flow

  15. Standard test method for determination of breaking strength of ceramic tiles by three-point loading

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This test method covers the determination of breaking strength of ceramic tiles by three-point loading. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  16. Determination of Rock Mass Modulus Using the Plate Loading Method at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Finley, R.E.; George, J.T.; Riggins, M.

    1999-01-01

    A suite of plate loading tests has recently been conducted by Sandia National Laboratories at the Exploratory Studies Facility at Yucca Mountain, Nevada. Fielding of these in situ tests as well as other approaches undertaken for the determination of rock mass modulus are described. The various methodologies are evaluated and their data compared. Calculation by existing empirical methods and numerical modeling are compared to each other as well as to field data

  17. Identification of Dynamic Loads Based on Second-Order Taylor-Series Expansion Method

    OpenAIRE

    Li, Xiaowang; Deng, Zhongmin

    2016-01-01

    A new method based on the second-order Taylor-series expansion is presented to identify the structural dynamic loads in the time domain. This algorithm expresses the response vectors as Taylor-series approximation and then a series of formulas are deduced. As a result, an explicit discrete equation which associates system response, system characteristic, and input excitation together is set up. In a multi-input-multi-output (MIMO) numerical simulation study, sinusoidal excitation and white no...

  18. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    The study of the ''Admissible thermal loading in geological formations and its consequence on radioactive waste disposal methods'' comprises four volumes: Volume 1. ''Synthesis report'' (English/French text). Volume 2. Granite formations (French text). Volume 3. Salt formations (German text). Volume 4. Clay formations (French text). The present ''synthesis report'' brings together the formation produced by the three specific studies dealing with granite, salt and clay

  19. Evaluation of a method of assessing faecal loading on plain abdominal radiographs in children

    International Nuclear Information System (INIS)

    Leech, S.C.; Sullivan, P.B.; McHugh, K.

    1999-01-01

    Background. Childhood constipation is common and assessment is often difficult. Plain abdominal radiography is simple and commonly used to assess constipation. The role of radiography with the use of a simple scoring system has not been fully evaluated. Objective. To assess the reliability of scoring faecal loading on plain abdominal radiographs in children with intractable constipation. Materials and methods. Plain abdominal radiographs from 33 constipated and 67 control children were independently assessed by three observers on two separate occasions. A scoring system was devised with scores from 0 (no stool) to 5 (gross faecal loading with bowel dilatation) in three areas of the colon, giving a total score of 0-15. Results. There were significant differences between the scores of the constipated and control radiographs for each observer (P = 0.05). There was no intra-observer variation (P = 0.12-0.69), but significant inter-observer variation was demonstrated (P = 0.00). Conclusions. We have found this scoring system to be a clinically useful and a reproducible tool in assessing childhood constipation. Assessment of faecal loading is subjective and varies between observers, although one observer will consistently score faecal loading on the same radiograph on successive occasions. To limit exposure to ionising radiation, we recommend that radiography be reserved for the investigation of intractable constipation, and its accuracy is improved if all radiographs are scored by the same observer. (orig.)

  20. Effective Method for Determining Environmental Loads on Supporting Structures for Offshore Wind Turbines

    Directory of Open Access Journals (Sweden)

    Dymarski Paweł

    2016-01-01

    Full Text Available This paper presents a description of an effective method for determining loads due to waves and current acting on the supporting structures of the offshore wind turbines. This method is dedicated to the structures consisting of the cylindrical or conical elements as well as (truncates pyramids of polygon with a large number of sides (8 or more. The presented computational method is based on the Morison equation, which was originally developed only for cylindrically shaped structures. The new algorithm shown here uses the coefficients of inertia and drag forces that were calculated for non-cylindrical shapes. The analysed structure consists of segments which are truncated pyramids on the basis of a hex decagon. The inertia coefficients, CM, and drag coefficients, CD, were determined using RANSE-CFD calculations. The CFD simulations were performed for a specific range of variation of the period, and for a certain range of amplitudes of the velocity. In addition, the analysis of influence of the surface roughness on the inertia and drag coefficients was performed. In the next step, the computations of sea wave, current and wind load on supporting structure for the fifty-year storm were carried out. The simulations were performed in the time domain and as a result the function of forces distribution along the construction elements was obtained. The most unfavourable distribution of forces will be used, to analyse the strength of the structure, as the design load.

  1. Iontophoretic and Microneedle Mediated Transdermal Delivery of Glycopyrrolate

    Directory of Open Access Journals (Sweden)

    Meera Gujjar

    2014-12-01

    Full Text Available Purpose: The objective of this study was to investigate the use of iontophoresis, soluble microneedles and their combination for the transdermal delivery of glycopyrrolate. Methods: In vitro permeation was tested using full thickness porcine ear skin mounted onto Franz diffusion cells. Iontophoresis (0.5 mA/cm2 was done for 4 h using Ag/AgCl electrodes. For microneedles, three line array (27 needles/line of maltose microneedles were used to microporate the skin prior to mounting. Pore uniformity was determined by taking fluorescent images of distribution of calcein into pores and processing the images using an image analysis tool, which measured the fluorescent intensity in and around each pore to provide a pore permeability index (PPI. The donor chamber contained 500 µL of a 1 mg/mL solution of glycopyrrolate, and the receptor chamber contained 5 mL of 50 mM NaCl in deionized water. Samples were collected at predetermined time points over a period of 24 h and analyzed by HPLC. Skin irritation testing was performed with a 3D cell culture kit of human skin. MTT assay determined cell viability; viability less than 50% was considered irritant. Results: A control experiment which investigated passive permeation of glycopyrrolate delivered an average cumulative amount of 24.92 ± 1.77 µg/cm2 at 24 h, while microneedle pretreatment increased permeability to 46.54 ± 6.9 µg/cm2. Both iontophoresis (158.53 ± 17.50 µg/cm2 and a combination of iontophoresis and microneedles (182.43 ± 20.06 µg/ cm2 significantly increased delivery compared to passive and microneedles alone. Glycopyrrolate solution was found to be nonirritant with cell viability of 70.4% ± 5.03%. Conclusion: Iontophoresis and a combination of iontophoresis with microneedle pretreatment can be effectively used to enhance the transdermal delivery of glycopyrrolate. Glycopyrrolate was found to be non-irritant to skin.

  2. Enhanced Transdermal Delivery by Combined Application of Dissolving Microneedle Patch on Serum-Treated Skin.

    Science.gov (United States)

    Kim, Suyong; Dangol, Manita; Kang, Geonwoo; Lahiji, Shayan F; Yang, Huisuk; Jang, Mingyu; Ma, Yonghao; Li, Chengguo; Lee, Sang Gon; Kim, Chang Hyun; Choi, Young Wook; Kim, So Jeong; Ryu, Ja Hyun; Baek, Ji Hwoon; Koh, Jaesuk; Jung, Hyungil

    2017-06-05

    Dissolving microneedle (DMN), a transdermal drug delivery system in which drugs are encapsulated in a biodegradable polymeric microstructure, is designed to dissolve after skin penetration and release the encapsulated drugs into the body. However, because of limited loading capacity of drugs within microsized structures, only a small dosage can be delivered, which is often insufficient for patients. We propose a novel DMN application that combines topical and DMN application simultaneously to improve skin permeation efficiency. Drugs in pretreated topical formulation and encapsulated drugs in DMN patch are delivered into the skin through microchannels created by DMN application, thus greatly increasing the delivered dose. We used 4-n-butylresorcinol to treat human hyperpigmentation and found that sequential application of serum formulation and DMNs was successful. In skin distribution experiments using Alexa Fluor 488 and 568 dyes as model drugs, we confirmed that the pretreated serum formulation was delivered into the skin through microchannels created by the DMNs. In vitro skin permeation and retention experiments confirmed that this novel combined application delivered more 4-n-butylresorcinol into the skin than traditional DMN-only and serum-only applications. Moreover, this combined application showed a higher efficacy in reducing patients' melanin index and hyperpigmented regions compared with the serum-only application. As combined application of DMNs on serum-treated skin can overcome both dose limitations and safety concerns, this novel approach can advance developments in transdermal drug delivery.

  3. Numerical modelling of transdermal delivery from matrix systems: parametric study and experimental validation with silicone matrices.

    Science.gov (United States)

    Snorradóttir, Bergthóra S; Jónsdóttir, Fjóla; Sigurdsson, Sven Th; Másson, Már

    2014-08-01

    A model is presented for transdermal drug delivery from single-layered silicone matrix systems. The work is based on our previous results that, in particular, extend the well-known Higuchi model. Recently, we have introduced a numerical transient model describing matrix systems where the drug dissolution can be non-instantaneous. Furthermore, our model can describe complex interactions within a multi-layered matrix and the matrix to skin boundary. The power of the modelling approach presented here is further illustrated by allowing the possibility of a donor solution. The model is validated by a comparison with experimental data, as well as validating the parameter values against each other, using various configurations with donor solution, silicone matrix and skin. Our results show that the model is a good approximation to real multi-layered delivery systems. The model offers the ability of comparing drug release for ibuprofen and diclofenac, which cannot be analysed by the Higuchi model because the dissolution in the latter case turns out to be limited. The experiments and numerical model outlined in this study could also be adjusted to more general formulations, which enhances the utility of the numerical model as a design tool for the development of drug-loaded matrices for trans-membrane and transdermal delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Peptide-chaperone-directed transdermal protein delivery requires energy.

    Science.gov (United States)

    Ruan, Renquan; Jin, Peipei; Zhang, Li; Wang, Changli; Chen, Chuanjun; Ding, Weiping; Wen, Longping

    2014-11-03

    The biologically inspired transdermal enhanced peptide TD1 has been discovered to specifically facilitate transdermal delivery of biological macromolecules. However, the biological behavior of TD1 has not been fully defined. In this study, we find that energy is required for the TD1-mediated transdermal protein delivery through rat and human skins. Our results show that the permeation activity of TD1-hEGF, a fusion protein composed of human epidermal growth factor (hEGF) and the TD1 sequence connected with a glycine-serine linker (GGGGS), can be inhibited by the energy inhibitor, rotenone or oligomycin. In addition, adenosine triphosphate (ATP), the essential energetic molecule in organic systems, can effectively facilitate the TD1 directed permeation of the protein-based drug into the skin in a dose-dependent fashion. Our results here demonstrate a novel energy-dependent permeation process during the TD1-mediated transdermal protein delivery that could be valuable for the future development of promising new transdermal drugs.

  5. Effects of gain-scheduling methods in a classical wind turbine controller on wind turbine aeroservoelastic modes and loads

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Henriksen, Lars Christian; Hansen, Morten Hartvig

    2014-01-01

    The eects of dierent gain-scheduling methods for a classical wind turbine controller, operating in full load region, on the wind turbine aeroservoelastic modes and loads are investigated in this work. The dierent techniques are derived looking at the physical problem to take into account the chan......The eects of dierent gain-scheduling methods for a classical wind turbine controller, operating in full load region, on the wind turbine aeroservoelastic modes and loads are investigated in this work. The dierent techniques are derived looking at the physical problem to take into account...

  6. Numerical-analytical method of calculating insulated double-glazed units deflection under climatic (internal load

    Directory of Open Access Journals (Sweden)

    Plotnikov Aleksandr Aleksandrovich

    Full Text Available Glass unit consists of glasses hermetically-united together. The cavity of an insulating glass unit contains a fixed volume of air (gas. In the process of production regular air with atmospheric pressure and temperature is sealed inside a glass unit. During operation the atmospheric pressure is constantly changing, but the pressure inside remains constant (at a constant temperature. A change of temperature or of the external air pressure results in a pressure difference and therefore in a load on the glass panes. The action may exceed the usual load considerably. This pressure effects the glasses of the unit, deforms them, lowers the thermotechnical properties of glass units and can lead to their destruction. The action of the inside pressure can be seen all around as convex and concaved glasses, which destroys the architectural look of buildings. It is obvious that it is incorrect to calculate thin glass plates on such a load only by classical methods of strength of materials theory. In this case we need a special calculation method. The effects of a change in temperature, altitude or meteorological pressure are easily covered by the definition of an isochore pressure. This is necessary, to determine the change of pressure due to the temperature induced gas expansion in the cavity of the insulating glass according to the ideal gas law. After the integration of the analytical plate solution and the ideal gas law, the final pressure states can easily be calculated by coupling the change of volume and the change of pressure.

  7. Analysis of submerged implant towards mastication load using 3D finite element method (FEM

    Directory of Open Access Journals (Sweden)

    Widia Hafsyah Sumarlina Ritonga

    2016-11-01

    Full Text Available Introduction: The surgical procedure for implantation of a surgical implant comprising a stage for the implant design nonsubmerged and two stages for submerged. Submerged implant design often used in Faculty of Dentistry Universitas Padjadjaran because it is safer in achieving osseointegration. This study was conducted to evaluate the failure of dental implant based on location and the value of internal tensiones as well as supporting tissues when given mastication load by using the 3D Finite Element Method (FEM. Methods: This study used a photograph of the mandibular CBCT patient and CT Scan Micro one implant submerged. Radiograph image was then converted into a digital model of the 3D computerized finite element, inputted the material properties, pedestal, then simulated the occlusion load  as much as 87N and 29N of frictional Results: The maximum tension location on the implant was located on the  exact side of the contact area between the implant and alveolar crest. The maximum tension value was 193.31MPa on the implant body. The value was below the limit value of the ability of the titanium alloy to withstand fracture (860 MPa. Conclusion: The location of the maximum tension on the body of the implant was located on the exact contact area between the implant-abutment and alveolar crest. Under the mastication load, this implant design found no failure.

  8. Effect of components (polymer, plasticizer and solvent as a variable in fabrication of diclofenac transdermal patch

    Directory of Open Access Journals (Sweden)

    Chetna Modi

    2012-01-01

    Full Text Available Transdermal drug delivery influence consumer acceptance and marked increase in bioavailability of some drugs which undergoes hepatic first-pass metabolism. Fabrication of transdermal patch requires lots of attention regarding the amount of components used for it. Because of varied nature of polymer and plasticizer, transdermal patches have different properties and different drug release. This study is on the basis to evaluate the amount to be needed for fabrication of diclofenac transdermal patch. Study shows that Hydroxy Propyl Methyl Cellulose has great influence on transdermal patch, if it is used alone in combination with glycerin or PEG-4000 plasticizer.

  9. Robust Topology Optimization Based on Stochastic Collocation Methods under Loading Uncertainties

    Directory of Open Access Journals (Sweden)

    Qinghai Zhao

    2015-01-01

    Full Text Available A robust topology optimization (RTO approach with consideration of loading uncertainties is developed in this paper. The stochastic collocation method combined with full tensor product grid and Smolyak sparse grid transforms the robust formulation into a weighted multiple loading deterministic problem at the collocation points. The proposed approach is amenable to implementation in existing commercial topology optimization software package and thus feasible to practical engineering problems. Numerical examples of two- and three-dimensional topology optimization problems are provided to demonstrate the proposed RTO approach and its applications. The optimal topologies obtained from deterministic and robust topology optimization designs under tensor product grid and sparse grid with different levels are compared with one another to investigate the pros and cons of optimization algorithm on final topologies, and an extensive Monte Carlo simulation is also performed to verify the proposed approach.

  10. Note: Loading method of molecular fluorine using x-ray induced chemistry

    International Nuclear Information System (INIS)

    Pravica, Michael; Sneed, Daniel; White, Melanie; Wang, Yonggang

    2014-01-01

    We have successfully loaded molecular fluorine into a diamond anvil cell at high pressure using the synchrotron x-ray induced decomposition of perfluorohexane (C 6 F 14 ). “White” x-ray radiation from the Advanced Photon Source was used to initiate the chemical decomposition of C 6 F 14 , which resulted in the in situ production of F 2 as verified via Raman spectroscopy. Due to the toxic nature of fluorine, this method will offer significant advantages in the ability to easily load a relatively nontoxic and inert substance into a chamber (such as a diamond anvil cell) that, when sealed with other reactants and irradiate with hard x-rays (>7 keV), releases highly reactive and toxic fluorine into the sample/reaction chamber to enable novel chemical synthesis under isolated and/or extreme conditions

  11. Side loading vault system and method for the disposal of radioactive waste

    International Nuclear Information System (INIS)

    Meess, D.C.; Jones, B.J.; Mello, R.M.; Weiss, T.G. Jr.; Wright, J.B.

    1990-01-01

    This patent describes a method for the disposal of hazardous radioactive waste. It comprises: constructing a floor slab in the earth; constructing an elongated wall assembly over the floor slab having sidewalls and a front wall and a back wall at either end the side walls being longer than the front and back walls; providing an accessway in the front wall; constructing a ceiling slab over the wall assembly that is supported at least in part by the wall assembly to form a vault cell; inspecting the vault cell for structural defects, introducing hazardous radioactive waste through the accessway in the front wall and loading the cell with the waste from the back wall to the front wall in rows, each of which is substantially parallel to the back wall to minimize radiation exposure to workers loading the cell, and closing the accessway of the vault cell by constructing a removable wall structure within the accessway

  12. Validity and reliability of the session-RPE method for quantifying training load in karate athletes.

    Science.gov (United States)

    Tabben, M; Tourny, C; Haddad, M; Chaabane, H; Chamari, K; Coquart, J B

    2015-04-24

    To test the construct validity and reliability of the session rating of perceived exertion (sRPE) method by examining the relationship between RPE and physiological parameters (heart rate: HR and blood lactate concentration: [La --] ) and the correlations between sRPE and two HR--based methods for quantifying internal training load (Banister's method and Edwards's method) during karate training camp. Eighteen elite karate athletes: ten men (age: 24.2 ± 2.3 y, body mass: 71.2 ± 9.0 kg, body fat: 8.2 ± 1.3% and height: 178 ± 7 cm) and eight women (age: 22.6 ± 1.2 y, body mass: 59.8 ± 8.4 kg, body fat: 20.2 ± 4.4%, height: 169 ± 4 cm) were included in the study. During training camp, subjects participated in eight karate--training sessions including three training modes (4 tactical--technical, 2 technical--development, and 2 randori training), during which RPE, HR, and [La -- ] were recorded. Significant correlations were found between RPE and physiological parameters (percentage of maximal HR: r = 0.75, 95% CI = 0.64--0.86; [La --] : r = 0.62, 95% CI = 0.49--0.75; P training load ( r = 0.65--0.95; P reliability of the same intensity across training sessions (Cronbach's α = 0.81, 95% CI = 0.61--0.92). This study demonstrates that the sRPE method is valid for quantifying internal training load and intensity in karate.

  13. Transdermal delivery of paeonol using cubic gel and microemulsion gel

    Science.gov (United States)

    Luo, Maofu; Shen, Qi; Chen, Jinjin

    2011-01-01

    Background The aim of this study was to develop new systems for transdermal delivery of paeonol, in particular microemulsion gel and cubic gel formulations. Methods Various microemulsion vehicles were prepared using isopropyl myristate as an oil phase, polyoxyethylated castor oil (Cremophor® EL) as a surfactant, and polyethylene glycol 400 as a cosurfactant. In the optimum microemulsion gel formulation, carbomer 940 was selected as the gel matrix, and consisted of 1% paeonol, 4% isopropyl myristate, 28% Cremophor EL/polyethylene glycol 400 (1:1), and 67% water. The cubic gel was prepared containing 3% paeonol, 30% water, and 67% glyceryl monooleate. Results A skin permeability test using excised rat skins indicated that both the cubic gel and microemulsion gel formulations had higher permeability than did the paeonol solution. An in vivo pharmacokinetic study done in rats showed that the relative bioavailability of the cubic gel and microemulsion gel was enhanced by about 1.51-fold and 1.28-fold, respectively, compared with orally administered paeonol suspension. Conclusion Both the cubic gel and microemulsion gel formulations are promising delivery systems to enhance the skin permeability of paeonol, in particular the cubic gel. PMID:21904450

  14. Solid-in-oil nanodispersions for transdermal drug delivery systems.

    Science.gov (United States)

    Kitaoka, Momoko; Wakabayashi, Rie; Kamiya, Noriho; Goto, Masahiro

    2016-11-01

    Transdermal administration of drugs has advantages over conventional oral administration or administration using injection equipment. The route of administration reduces the opportunity for drug evacuation before systemic circulation, and enables long-lasting drug administration at a modest body concentration. In addition, the skin is an attractive route for vaccination, because there are many immune cells in the skin. Recently, solid-in-oil nanodisperison (S/O) technique has demonstrated to deliver cosmetic and pharmaceutical bioactives efficiently through the skin. S/O nanodispersions are nanosized drug carriers designed to overcome the skin barrier. This review discusses the rationale for preparation of efficient and stable S/O nanodispersions, as well as application examples in cosmetic and pharmaceutical materials including vaccines. Drug administration using a patch is user-friendly, and may improve patient compliance. The technique is a potent transcutaneous immunization method without needles. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Opioids Switching with Transdermal Systems in Chronic Cancer Pain

    Directory of Open Access Journals (Sweden)

    Barbarisi M

    2009-05-01

    Full Text Available Abstract Background Due to tolerance development and adverse side effects, chronic pain patients frequently need to be switched to alternative opioid therapy Objective To assess the efficacy and tolerability of an alternative transdermally applied (TDS opioid in patients with chronic cancer pain receiving insufficient analgesia using their present treatment. Methods A total of 32 patients received alternative opioid therapy, 16 were switched from buprenorphine to fentanyl and 16 were switched from fentanyl to buprenorphine. The dosage used was 50% of that indicated in equipotency conversion tables. Pain relief was assessed at weekly intervals for the next 3 weeks Results Pain relief as assessed by VAS, PPI, and PRI significantly improved (p Conclusion Opioid switching at 50% of the calculated equianalgesic dose produced a significant reduction in pain levels and rescue medication. The incidence of side effects decreased and no new side effects were noted. Further studies are required to provide individualized treatment for patients according to their different types of cancer.

  16. Status of surfactants as penetration enhancers in transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Iti Som

    2012-01-01

    Full Text Available Surfactants are found in many existing therapeutic, cosmetic, and agro-chemical preparations. In recent years, surfactants have been employed to enhance the permeation rates of several drugs via transdermal route. The application of transdermal route to a wider range of drugs is limited due to significant barrier to penetration across the skin which is associated with the outermost stratum corneum layer. Surfactants have effects on the permeability characteristics of several biological membranes including skin. They have the potential to solubilize lipids within the stratum corneum. The penetration of the surfactant molecule into the lipid lamellae of the stratum corneum is strongly dependent on the partitioning behavior and solubility of surfactant. Surfactants ranging from hydrophobic agents such as oleic acid to hydrophilic sodium lauryl sulfate have been tested as permeation enhancer to improve drug delivery. This article reviews the status of surfactants as permeation enhancer in transdermal drug delivery of various drugs.

  17. Measurement of circumsolar ratio in high dust loading regions using a photographic method

    Science.gov (United States)

    Al-Ansary, Hany; Shafiq, Talha; Rizvi, Arslan; El-Leathy, Abdelrahman

    2017-06-01

    Performance of concentrating solar power (CSP) plants is highly affected by direct normal irradiance (DNI). However, it is also important to consider circumsolar radiation in any simulation of a CSP plant, especially in desert regions where dust loading in the atmosphere is expected. There are a number of methods to measure circumsolar radiation. However, most of them require expensive instrumentation. This work introduces a simple method to estimate circumsolar radiation. It involves taking high-resolution photographs of the sun and processing them using a computer code that identifies the sun's disk. The code then uses pixel intensities to obtain the solar intensity distribution across the sun's disk and in the aureole region. The solar intensity distribution is then used to obtain the circumsolar ratio (CSR) which represents the shape of the sun. To test this method, numerous photos of the sun were taken during the month of April and September 2016 at King Saud University in Riyadh, Saudi Arabia. Riyadh is a region that is well known for high dust-loading, especially during the summer. Two days of different atmospheric conditions were selected in September for comparative analysis. Results show that this method produces repeatable results, and that the CSR can increase significantly due to high dust loading and passing clouds. The CSR is found to be a strong function of DNI, ranging from about 4.5% at DNI values above 800 W/m2 and increasing to as much as 8.5% when DNI drops to about 400 W/m2, due to passing clouds. Furthermore, the results show that circumsolar ratio tends to be high in the early morning and late afternoon due to the high air mass, while its values tend to be lowest around solar noon when the air mass is lowest.

  18. Identification of Dynamic Loads Based on Second-Order Taylor-Series Expansion Method

    Directory of Open Access Journals (Sweden)

    Xiaowang Li

    2016-01-01

    Full Text Available A new method based on the second-order Taylor-series expansion is presented to identify the structural dynamic loads in the time domain. This algorithm expresses the response vectors as Taylor-series approximation and then a series of formulas are deduced. As a result, an explicit discrete equation which associates system response, system characteristic, and input excitation together is set up. In a multi-input-multi-output (MIMO numerical simulation study, sinusoidal excitation and white noise excitation are applied on a cantilever beam, respectively, to illustrate the effectiveness of this algorithm. One also makes a comparison between the new method and conventional state space method. The results show that the proposed method can obtain a more accurate identified force time history whether the responses are polluted by noise or not.

  19. Properties of natural rubber/attapulgite composites prepared by latex compounding method: Effect of filler loading

    International Nuclear Information System (INIS)

    Muttalib, Siti Nadzirah Abdul; Othman, Nadras; Ismail, Hanafi

    2015-01-01

    This paper reports on the effect of filler loading on properties of natural rubber (NR)/attapulgite (ATP) composites. The NR/ATP composites were prepared by latex compounding method. It is called as masterbatch. The masterbatch was subsequently added to the NR through melt mixing process. The vulcanized NR/ATP composites were subjected to mechanical, swelling and morphological tests. All the results were compared with NR/ATP composites prepared by conventional system. The composites from masterbatch method showed better results compared to composites prepared by conventional method. They have higher tensile properties, elongation at break and tear strength. The images captured through scanning electron microscopy test revealed the improvement of tensile strength in masterbatch NR/ATP composites. It can be seen clearly that masterbatch NR/ATP have better filler dispersion compared to conventional method NR/ATP composites

  20. Properties of natural rubber/attapulgite composites prepared by latex compounding method: Effect of filler loading

    Energy Technology Data Exchange (ETDEWEB)

    Muttalib, Siti Nadzirah Abdul, E-mail: sitinadzirah.amn@gmail.com; Othman, Nadras, E-mail: srnadras@usm.my; Ismail, Hanafi, E-mail: ihanafi@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2015-07-22

    This paper reports on the effect of filler loading on properties of natural rubber (NR)/attapulgite (ATP) composites. The NR/ATP composites were prepared by latex compounding method. It is called as masterbatch. The masterbatch was subsequently added to the NR through melt mixing process. The vulcanized NR/ATP composites were subjected to mechanical, swelling and morphological tests. All the results were compared with NR/ATP composites prepared by conventional system. The composites from masterbatch method showed better results compared to composites prepared by conventional method. They have higher tensile properties, elongation at break and tear strength. The images captured through scanning electron microscopy test revealed the improvement of tensile strength in masterbatch NR/ATP composites. It can be seen clearly that masterbatch NR/ATP have better filler dispersion compared to conventional method NR/ATP composites.

  1. Ultradeformable Liposomes: a Novel Vesicular Carrier For Enhanced Transdermal Delivery of Procyanidins: Effect of Surfactants on the Formation, Stability, and Transdermal Delivery.

    Science.gov (United States)

    Chen, Rencai; Li, Rongli; Liu, Qian; Bai, Chao; Qin, Benlin; Ma, Yue; Han, Jing

    2017-07-01

    The aims of this work were to develop a novel vesicular carrier, procyanidins, ultradeformable liposomes (PUDLs), to expand the applications for procyanidins, and increase their stability and transdermal delivery. In this study, we prepared procyanidins ultradeformable liposomes using thin film hydration method and evaluated their encapsulation efficiency, vesicle deformability, storage stability, and skin permeation in vitro. The influence of different surfactants on the properties of PUDLs was also investigated. The results obtained showed that the PUDLs containing Tween 80 had a high entrapment efficiency (80.27 ± 0.99%), a small particle size (140.6 ± 19 nm), high elasticity, and prolonged drug release. Compared with procyanidins solution, the stability of procyanidins in PUDLs improved significantly when stored at 4, 25, and 30°C. The penetration rate of PUDLs was 6.25-fold greater than that of procyanidins solution. Finally, the results of our study suggested that PUDLs could increase the transdermal flux, prolong the release and improve the stability of procyanidins, and could serve as an effective dermal delivery system for procyanidins.

  2. Microemulsions based transdermal drug delivery systems.

    Science.gov (United States)

    Vadlamudi, Harini C; Narendran, Hyndavi; Nagaswaram, Tejeswari; Yaga, Gowri; Thanniru, Jyotsna; Yalavarthi, Prasanna R

    2014-01-01

    Since the discovery of microemulsions by Jack H Schulman, there has been huge progress made in applying microemulsion systems in plethora of research and industrial process. Microemulsions are optically isotropic systems consisting of water, oil and amphiphile. These systems are beneficial due to their thermodynamic stability, optical clarity, ease of preparation, higher diffusion and absorption rates. Moreover, it has been reported that the ingredients of microemulsion can effectively overcome the diffusion barrier and penetrate through the stratum corneum of the skin. Hence it becomes promising for both transdermal and dermal drug delivery. However, low viscosity of microemulsion restrains its applicability in pharmaceutical industry. To overcome the above drawback, the low viscous microemulsions were added to viscous gel bases to potentiate its applications as topical drug delivery systems so that various drug related toxic effects and erratic drug absorption can be avoided. The present review deals with the microemulsions, various techniques involved in the development of organic nanoparticles. The review emphasized on microemulsion based systems such as hydrogels and organogels. The physicochemical characteristics, mechanical properties, rheological and stability principles involved in microemulsion based viscous gels were also explored.

  3. Transdermal delivery of diclofenac using microemulsions.

    Science.gov (United States)

    Kweon, Jang-Hoon; Chi, Sang-Cheol; Park, Eun-Seok

    2004-03-01

    A transdermal preparation containing diclofenac diethylammonium (DDA) was developed using an O/W microemulsion system. Of the oils tested, lauryl alcohol was chosen as the oil phase of the microemulsion, as it showed a good solubilizing capacity and excellent skin permeation rate of the drug. Pseudoternary phase diagrams were constructed to obtain the concentration range of oil, surfactant and cosurfactant for microemulsion formation, and the effect of these additives on skin permeation of DDA was evaluated with excised rat skins. The optimum formulation of the microemulsion consisted of 1.16% of DDA, 5% of lauryl alcohol, 60% of water in combination with the 34.54% of Labrasol (surfactant)/ethanol (cosurfactant) (1:2). The efficiency of formulation in the percutaneous absorption of DDA was dependent upon the contents of water and lauryl alcohol as well as Labrasol:ethanol mixing ratio. It was concluded that the percutaneous absorption of DDA from microemulsions was enhanced with increasing the lauryl alcohol and water contents, and with decreasing the Labrasol:ethanol mixing ratio in the formulation.

  4. Transdermal testosterone replacement therapy in men

    Science.gov (United States)

    Ullah, M Iftekhar; Riche, Daniel M; Koch, Christian A

    2014-01-01

    Androgen deficiency syndrome in men is a frequently diagnosed condition associated with clinical symptoms including fatigue, decreased libido, erectile dysfunction, and metabolic syndrome. Serum testosterone concentrations decline steadily with age. The prevalence of androgen deficiency syndrome in men varies depending on the age group, known and unknown comorbidities, and the respective study group. Reported prevalence rates may be underestimated, as not every man with symptoms of androgen deficiency seeks treatment. Additionally, men reporting symptoms of androgen deficiency may not be correctly diagnosed due to the vagueness of the symptom quality. The treatment of androgen deficiency syndrome or male hypogonadism may sometimes be difficult due to various reasons. There is no consensus as to when to start treating a respective man or with regards to the best treatment option for an individual patient. There is also lack of familiarity with treatment options among general practitioners. The formulations currently available on the market are generally expensive and dose adjustment protocols for each differ. All these factors add to the complexity of testosterone replacement therapy. In this article we will discuss the general indications of transdermal testosterone replacement therapy, available formulations, dosage, application sites, and recommended titration schedule. PMID:24470750

  5. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Sabine Szunerits

    2018-02-01

    Full Text Available Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs, which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum, the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section “Frontiers in Bioengineering and Biotechnology,” the advances in this field

  6. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery.

    Science.gov (United States)

    Szunerits, Sabine; Boukherroub, Rabah

    2018-01-01

    Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs), which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum , the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section "Frontiers in Bioengineering and Biotechnology," the advances in this field and the handful of

  7. Transdermal and Topical Drug Administration in the Treatment of Pain

    Directory of Open Access Journals (Sweden)

    Wojciech Leppert

    2018-03-01

    Full Text Available The comprehensive treatment of pain is multidimodal, with pharmacotherapy playing a key role. An effective therapy for pain depends on the intensity and type of pain, the patients’ age, comorbidities, and appropriate choice of analgesic, its dose and route of administration. This review is aimed at presenting current knowledge on analgesics administered by transdermal and topical routes for physicians, nurses, pharmacists, and other health care professionals dealing with patients suffering from pain. Analgesics administered transdermally or topically act through different mechanisms. Opioids administered transdermally are absorbed into vessels located in subcutaneous tissue and, subsequently, are conveyed in the blood to opioid receptors localized in the central and peripheral nervous system. Non–steroidal anti–inflammatory drugs (NSAIDs applied topically render analgesia mainly through a high concentration in the structures of the joint and a provision of local anti–inflammatory effects. Topically administered drugs such as lidocaine and capsaicin in patches, capsaicin in cream, EMLA cream, and creams containing antidepressants (i.e., doxepin, amitriptyline act mainly locally in tissues through receptors and/or ion channels. Transdermal and topical routes offer some advantages over systemic analgesic administration. Analgesics administered topically have a much better profile for adverse effects as they relieve local pain with minimal systemic effects. The transdermal route apart from the above-mentioned advantages and provision of long period of analgesia may be more convenient, especially for patients who are unable to take drugs orally. Topically and transdermally administered opioids are characterised by a lower risk of addiction compared to oral and parenteral routes.

  8. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery

    Science.gov (United States)

    Szunerits, Sabine; Boukherroub, Rabah

    2018-01-01

    Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs), which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum, the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section “Frontiers in Bioengineering and Biotechnology,” the advances in this field and the handful of

  9. Calculation Method for Load Capacity of Urban Rail Transit Station considering Cascading Failure

    Directory of Open Access Journals (Sweden)

    Jiajun Huang

    2018-01-01

    Full Text Available The load capacity of urban rail transit station is of great significance to provide reference in station design and operation management. However, it is difficult to carry out quantitative calculation quickly and accurately due to the complex interaction among passenger behaviors, facility layout, and the limit capacity of single facility. In this paper, the association network of facilities is set up based on the analysis of passenger service chain in station. Then the concept of cascading failure is introduced to the dynamic calculation model of load capacity, which is established on the user-equilibrium allocation model. The solution algorithm is optimized with node attack strategy of complex network to effectively reduce the computational complexity. Finally, a case study of Lujiabang Road Station in Shanghai is carried out and compared with the simulation results of StaPass, verifying the feasibility of this approach. The proposed method can not only search for the bottleneck of capacity, but also help to trace the loading variation of facilities network in different scenarios, providing theoretical supports on passenger flow organization.

  10. Monitoring the ammonia loading of zeolite-based ammonia SCR catalysts by a microwave method

    Energy Technology Data Exchange (ETDEWEB)

    Reiss, S.; Schoenauer, D.; Hagen, G.; Moos, R. [University of Bayreuth, Department of Functional Materials, Bayreuth (Germany); Fischerauer, G. [University of Bayreuth, Department of Metrology and Control, Bayreuth (Germany)

    2011-05-15

    Exhaust gas aftertreatment systems, which reduce nitrogen oxide emissions of heavy-duty diesel engines, commonly use a selective catalytic reduction (SCR) catalyst. Currently, emissions are controlled by evaluating NO{sub x} or NH{sub 3} in the gas phase downstream the catalyst and calculating the NH{sub 3} loading via a chemical storage model. Here, a microwave-cavity perturbation method is proposed in which electromagnetic waves are excited by probe feeds and the reflected signals are measured. At distinct resonance frequencies, the reflection coefficient shows a pronounced minimum. These resonance frequencies depend almost linearly on the NH{sub 3} loading of a zeolite-based SCR catalyst. Since the NH{sub 3} loading-dependent electrical properties of the catalyst material itself are measured, the amount of stored ammonia can be determined directly and in situ. The cross-sensitivity towards water can be reduced almost completely by selecting an appropriate frequency range. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings

    Directory of Open Access Journals (Sweden)

    Dibble Clare J

    2009-11-01

    Full Text Available Abstract Background Screening new lignocellulosic biomass pretreatments and advanced enzyme systems at process relevant conditions is a key factor in the development of economically viable lignocellulosic ethanol. Shake flasks, the reaction vessel commonly used for screening enzymatic saccharifications of cellulosic biomass, do not provide adequate mixing at high-solids concentrations when shaking is not supplemented with hand mixing. Results We identified roller bottle reactors (RBRs as laboratory-scale reaction vessels that can provide adequate mixing for enzymatic saccharifications at high-solids biomass loadings without any additional hand mixing. Using the RBRs, we developed a method for screening both pretreated biomass and enzyme systems at process-relevant conditions. RBRs were shown to be scalable between 125 mL and 2 L. Results from enzymatic saccharifications of five biomass pretreatments of different severities and two enzyme preparations suggest that this system will work well for a variety of biomass substrates and enzyme systems. A study of intermittent mixing regimes suggests that mass transfer limitations of enzymatic saccharifications at high-solids loadings are significant but can be mitigated with a relatively low amount of mixing input. Conclusion Effective initial mixing to promote good enzyme distribution and continued, but not necessarily continuous, mixing is necessary in order to facilitate high biomass conversion rates. The simplicity and robustness of the bench-scale RBR system, combined with its ability to accommodate numerous reaction vessels, will be useful in screening new biomass pretreatments and advanced enzyme systems at high-solids loadings.

  12. Perioperative analgesia with a buprenorphine transdermal patch for hallux valgus surgery: a prospective, randomized, controlled study

    Directory of Open Access Journals (Sweden)

    Xu C

    2018-04-01

    Full Text Available Can Xu, Mingqing Li, Chenggong Wang, Hui Li, Hua Liu Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China Purpose: Hallux valgus surgery often results in significant postoperative pain. Adequate control of pain is essential for patient satisfaction and improves the outcome of the procedure. This study aimed to investigate the perioperative analgesic effect of a buprenorphine transdermal patch in patients who underwent hallux valgus surgery.Patients and methods: A total of 90 patients were randomly divided into the following three groups based on the perioperative analgesic method: flurbiprofen axetil intravenous injection (Group F, oral celecoxib (Group C, and buprenorphine transdermal delivery system (BTDS (Group BTDS. The pain status, degree of satisfaction, adverse effects, and administration of tramadol hydrochloride for uncontrolled pain were recorded on the night before surgery, postoperative day 1, postoperative day 2, and postoperative day 3.Results: The BTDS could effectively control perioperative pain for patients undergoing ­hallux valgus surgery. The analgesic effect of the BTDS was better than that of oral celecoxib. In addition, statistically significant differences were not observed in the visual analog scale (VAS scores, adverse effects, and rescue analgesia between the patients who received the BTDS and the patients who received the flurbiprofen axetil intravenous injection. However, the degree of patient satisfaction of the BTDS group was significantly higher (P<0.05 than that of the other two groups.Conclusion: The BTDS (a preemptive analgesia regimen could exert an analgesic effect during the perioperative period for patients who had received hallux valgus surgery, and this effect is beneficial for sustaining postoperative physiological and psychological states and promoting functional rehabilitation. Keywords: hallux valgus, buprenorphine transdermal

  13. Transdermal carbamate poisoning – a case of misuse

    Directory of Open Access Journals (Sweden)

    Lalit Kumar Rajbanshi

    2017-01-01

    Full Text Available Acute pesticide poisoning is a common mode of intentional self harm. Oral ingestion is the usual mode of poisoning. However, inhalation, accidental or occupational transdermal exposure leading to acute or chronic poisoning can be the other route of poisoning. It has been seen that the purpose of poising is suicidal intensity in most of the cases. We report an unusual case where the victim had acute pesticide poisoning through transdermal route that was intended for non suicidal purpose. The patient was managed successfully with immediate decontamination and adequate antidote.

  14. Novel method to load multiple genes onto a mammalian artificial chromosome.

    Science.gov (United States)

    Tóth, Anna; Fodor, Katalin; Praznovszky, Tünde; Tubak, Vilmos; Udvardy, Andor; Hadlaczky, Gyula; Katona, Robert L

    2014-01-01

    Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs) was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS) cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.

  15. Novel method to load multiple genes onto a mammalian artificial chromosome.

    Directory of Open Access Journals (Sweden)

    Anna Tóth

    Full Text Available Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.

  16. Waveform control method for mitigating harmonics of inverter systems with nonlinear load

    DEFF Research Database (Denmark)

    Wang, Haoran; Zhu, Guorong; Fu, Xiaobin

    2015-01-01

    instability in the DC power system, lower its efficiency, and shorten the lifetime of the DC source. This paper presents a general waveform control method that can mitigate the injection of the low-frequency ripple current by the single-phase DC/AC inverter into the DC source. It also discusses the inhibiting......DC power systems connecting to single-phase DC/AC inverters with nonlinear loads will have their DC sources being injected with AC ripple currents containing a low-frequency component at twice the output voltage frequency of the inverter and also other current harmonics. Such a current may create...

  17. Alternative wind power modeling methods using chronological and load duration curve production cost models

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M R

    1996-04-01

    As an intermittent resource, capturing the temporal variation in windpower is an important issue in the context of utility production cost modeling. Many of the production cost models use a method that creates a cumulative probability distribution that is outside the time domain. The purpose of this report is to examine two production cost models that represent the two major model types: chronological and load duration cure models. This report is part of the ongoing research undertaken by the Wind Technology Division of the National Renewable Energy Laboratory in utility modeling and wind system integration.

  18. Direct methods of soil-structure interaction analysis for earthquake loadings (V)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J. B.; Choi, J. S.; Lee, J. J.; Park, D. U. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-07-15

    Methodologies of SSI analysis for earthquake loadings have been reviewed. Based on the finite method incorporating infinite element technique for the unbounded exterior region, a computer program for the nonlinear seismic analysis named as 'KIESSI' has been developed. The computer program has been verified using a free-field site-response problem. Post-correlation analysis for the Hualien FVT after backfill and the blind prediction of earthquake responses have been carried out utilizing the developed computer program. The earthquake response analyses for three LSST structures (Hualien, Lotung and Tepsco structure) have also been performed and compared with the measured data.

  19. Direct methods of soil-structure interaction analysis for earthquake loadings (IV)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J B; Kim, D S; Choi, J S; Kwon, K C; Kim, Y J; Lee, H J; Kim, S B; Kim, D K [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-15

    Methodologies of SSI analysis for earthquake loadings have been reviewed. Based on the finite element method incorporating infinite element technique for the unbounded exterior region, a computer program for the nonlinear seismic analysis named as 'KIESSI-QK' has been developed. The computer program has been verified using a free-field site-response problem. The Hualien FVT stochastic finite element analysis after backfill and the blind prediction of earthquake responses have been carried out utilizing the developed computer program. The earthquake response analysis for the LSST structure has also been performed and compared with the measured data.

  20. Direct methods of soil-structure interaction analysis for earthquake loadings (IV)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J. B.; Kim, D. S.; Choi, J. S.; Kwon, K. C.; Kim, Y. J.; Lee, H. J.; Kim, S. B.; Kim, D. K. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-15

    Methodologies of SSI analysis for earthquake loadings have been reviewed. Based on the finite element method incorporating infinite element technique for the unbounded exterior region, a computer program for the nonlinear seismic analysis named as 'KIESSI-QK' has been developed. The computer program has been verified using a free-field site-response problem. The Hualien FVT stochastic finite element analysis after backfill and the blind prediction of earthquake responses have been carried out utilizing the developed computer program. The earthquake response analysis for the LSST structure has also been performed and compared with the measured data.

  1. Design of a new urban wind turbine airfoil using a pressure-load inverse method

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, J.C.C.; Gato, L.M.C. [IDMEC, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Marques da Silva, F. [LNEC - Laboratorio Nacional de Engenharia Civil, Av. Brasil, 101, 1700-066 Lisboa (Portugal); Estanqueiro, A.I. [INETI - Instituto Nacional de Engenharia, Tecnologia e Inovacao Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal)

    2009-12-15

    This paper presents the design methodology of a new wind turbine airfoil that achieves high performance in urban environment by increasing the maximum lift. For this purpose, an inverse method was applied to obtain a new wind turbine blade section with constant pressure-load along the chord, at the design inlet angle. In comparison with conventional blade section designs, the new airfoil has increased maximum lift, reduced leading edge suction peak and controlled soft-stall behaviour, due to a reduction of the adverse pressure gradient on the suction side. Wind tunnel experimental results confirmed the computational results. (author)

  2. Multiobjective CVaR Optimization Model and Solving Method for Hydrothermal System Considering Uncertain Load Demand

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2015-01-01

    Full Text Available In order to solve the influence of load uncertainty on hydrothermal power system operation and achieve the optimal objectives of system power generation consumption, pollutant emissions, and first-stage hydropower station storage capacity, this paper introduced CVaR method and built a multiobjective optimization model and its solving method. In the optimization model, load demand’s actual values and deviation values are regarded as random variables, scheduling objective is redefined to meet confidence level requirement and system operation constraints and loss function constraints are taken into consideration. To solve the proposed model, this paper linearized nonlinear constraints, applied fuzzy satisfaction, fuzzy entropy, and weighted multiobjective function theories to build a fuzzy entropy multiobjective CVaR model. The model is a mixed integer linear programming problem. Then, six thermal power plants and three cascade hydropower stations are taken as the hydrothermal system for numerical simulation. The results verified that multiobjective CVaR method is applicable to solve hydrothermal scheduling problems. It can better reflect risk level of the scheduling result. The fuzzy entropy satisfaction degree solving algorithm can simplify solving difficulty and get the optimum operation scheduling scheme.

  3. A simplified computing method of pile group to seismic loads using thin layer element

    International Nuclear Information System (INIS)

    Masao, T.; Hama, I.

    1995-01-01

    In the calculation of pile group, it is said that the results of response by thin layer method give the correct solution with the isotropic and homogeneous soil material in each layer, on the other hand this procedure spends huge computing time. Dynamic stiffness matrix of thin layer method is obtained from inversion of flexibility matrix between pile-i and pile-j. This flexibility matrix is full matrix and its size increase in proportion to the number of piles and thin layers. The greater part of run time is taken into the inversion of flexibility matrix against point loading. We propose the method of decreasing the run time for computing by reducing to banded matrix of flexibility matrix. (author)

  4. A Scrutiny of the Equivalent Static Lateral Load Method of Design for Multistory Masonry Structures

    International Nuclear Information System (INIS)

    Touqan, A. R.; Helou, S. H.

    2008-01-01

    Building structures with a soft storey are gaining widespread popularity in urban areas due to the scarcity of land and due to the pressing need for wide open spaces at the entrance level. In earthquake prone zones dynamic analysis based on the Equivalent Static Lateral Load method is attractive to the novice and the design codes leave the choice of the analysis procedure up to the discretion of the designer. The following is a comparison of the said method with the more elaborate Response Spectrum Method of analysis as they apply to a repertoire of different structural models. The results clearly show that the former provides similar results of response in structures with gradual change in storey stiffness; while it is over conservative for a bare frame structure. It is however less conservative for structures with a soft storey

  5. Determination of the ultimate load in concrete slabs by the yield line finite element method

    International Nuclear Information System (INIS)

    Vaz, L.E.; Feijo, B.; Martha, L.F.R.; Lopes, M.M.

    1984-01-01

    A method for calculating the ultimate load in reinforced concrete slabs is proposed. The method follows the finite element aproach representating the continuum slab as an assembly of rigid triangular plates connected along their sides through yield line elements. This approach leads to the definition of the displacement configuration of the plate only as a function of the transversal displacement at the nodes of the mesh (1 DOF per node) reducing significantly the number of DOF's in relation to the conventional formulation by means of the finite element method (minimum of 3 DOF per node). Nonlinear behaviour of the reinforced concrete section is considered in the definition of the moment rotation curve of the yield lines. The effect of the in plane forces acting in the middle surface of the plate is also taken into account. The validity of the model is verified comparing the numerical solutions with the results of the classical yield line theory. (Author) [pt

  6. Study on validation method for femur finite element model under multiple loading conditions

    Science.gov (United States)

    Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu

    2018-03-01

    Acquisition of accurate and reliable constitutive parameters related to bio-tissue materials was beneficial to improve biological fidelity of a Finite Element (FE) model and predict impact damages more effectively. In this paper, a femur FE model was established under multiple loading conditions with diverse impact positions. Then, based on sequential response surface method and genetic algorithms, the material parameters identification was transformed to a multi-response optimization problem. Finally, the simulation results successfully coincided with force-displacement curves obtained by numerous experiments. Thus, computational accuracy and efficiency of the entire inverse calculation process were enhanced. This method was able to effectively reduce the computation time in the inverse process of material parameters. Meanwhile, the material parameters obtained by the proposed method achieved higher accuracy.

  7. A pollutant load hierarchical allocation method integrated in an environmental capacity management system for Zhushan Bay, Taihu Lake.

    Science.gov (United States)

    Liang, Shidong; Jia, Haifeng; Yang, Cong; Melching, Charles; Yuan, Yongping

    2015-11-15

    An environmental capacity management (ECM) system was developed to help practically implement a Total Maximum Daily Load (TMDL) for a key bay in a highly eutrophic lake in China. The ECM system consists of a simulation platform for pollutant load calculation and a pollutant load hierarchical allocation (PLHA) system. The simulation platform was developed by linking the Environmental Fluid Dynamics Code (EFDC) and Water Quality Analysis Simulation Program (WASP). In the PLHA, pollutant loads were allocated top-down in several levels based on characteristics of the pollutant sources. Different allocation methods could be used for the different levels with the advantages of each method combined over the entire allocation. Zhushan Bay of Taihu Lake, one of the most eutrophic lakes in China, was selected as a case study. The allowable loads of total nitrogen, total phosphorus, ammonia, and chemical oxygen demand were found to be 2122.2, 94.9, 1230.4, and 5260.0 t·yr(-1), respectively. The PLHA for the case study consists of 5 levels. At level 0, loads are allocated to those from the lakeshore direct drainage, atmospheric deposition, internal release, and tributary inflows. At level 1 the loads allocated to tributary inflows are allocated to the 3 tributaries. At level 2, the loads allocated to one inflow tributary are allocated to upstream areas and local sources along the tributary. At level 3, the loads allocated to local sources are allocated to the point and non-point sources from different towns. At level 4, the loads allocated to non-point sources in each town are allocated to different villages. Compared with traditional forms of pollutant load allocation methods, PLHA can combine the advantages of different methods which put different priority weights on equity and efficiency, and the PLHA is easy to understand for stakeholders and more flexible to adjust when applied in practical cases. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Session-RPE Method for Training Load Monitoring: Validity, Ecological Usefulness, and Influencing Factors

    Directory of Open Access Journals (Sweden)

    Monoem Haddad

    2017-11-01

    Full Text Available Purpose: The aim of this review is to (1 retrieve all data validating the Session-rating of perceived exertion (RPE-method using various criteria, (2 highlight the rationale of this method and its ecological usefulness, and (3 describe factors that can alter RPE and users of this method should take into consideration.Method: Search engines such as SPORTDiscus, PubMed, and Google Scholar databases in the English language between 2001 and 2016 were consulted for the validity and usefulness of the session-RPE method. Studies were considered for further analysis when they used the session-RPE method proposed by Foster et al. in 2001. Participants were athletes of any gender, age, or level of competition. Studies using languages other than English were excluded in the analysis of the validity and reliability of the session-RPE method. Other studies were examined to explain the rationale of the session-RPE method and the origin of RPE.Results: A total of 950 studies cited the Foster et al. study that proposed the session RPE-method. 36 studies have examined the validity and reliability of this proposed method using the modified CR-10.Conclusion: These studies confirmed the validity and good reliability and internal consistency of session-RPE method in several sports and physical activities with men and women of different age categories (children, adolescents, and adults among various expertise levels. This method could be used as “standing alone” method for training load (TL monitoring purposes though some recommend to combine it with other physiological parameters as heart rate.

  9. Synergistic effect of iontophoresis and chemical enhancers on transdermal permeation of tolterodine tartrate for the treatment of overactive bladder

    Directory of Open Access Journals (Sweden)

    D. Prasanthi

    2013-01-01

    Full Text Available Purpose The objective of the study was to evaluate the synergistic transdermal permeation effect of chemical enhancers and iontophoresis technique on tolterodine tartrate (TT transdermal gel and to evaluate its pharmacokinetic properties. Materials and Methods Taguchi robust design was used for optimization of formulations. Skin permeation rates were evaluated using the Keshary-chein type diffusion cells in order to optimize the gel formulation. In-vivo studies of the optimized formulation were performed in a rabbit model and histopathology studies of optimized formulation were performed on rats. Results Transdermal gels were formulated successfully using Taguchi robust design method. The type of penetration enhancer, concentration of penetration enhancer, current density and pulse on/off ratio were chosen as independent variables. Type of penetration enhancer was found to be the significant factor for all the responses. Permeation parameters were evaluated when maximum cumulative amount permeated in 24 hours (Q24 was 145.71 ± 2.00µg/cm2 by CIT4 formulation over control (91.89 ± 2.30µg/cm2. Permeation was enhanced by 1.75 fold by CIT4 formulation. Formulation CIT4 containing nerolidol (5% and iontophoretic variables applied (0.5mA/cm2 and pulse on/off ratio 3:1 was optimized. In vivo studies with optimized formulation CIT4 showed increase in AUC and T1/2 when compared to oral suspension in rabbits. The histological studies showed changes in dermis indicating the effect of penetration enhancers and as iontophoresis was continued only for two cycles in periodic fashion so it did not cause any skin damage observed in the slides. Conclusion Results indicated that iontophoresis in combination with chemical enhancers is an effective method for transdermal administration of TT in the treatment of overactive bladder.

  10. Simultaneous, noninvasive, and transdermal extraction of urea and homocysteine by reverse iontophoresis

    Directory of Open Access Journals (Sweden)

    et al

    2011-02-01

    Full Text Available Congo Tak-Shing Ching1,2,3, Tzong-Ru Chou1, Tai-Ping Sun1,2, Shiow-Yuan Huang3, Hsiu-Li Shieh21Graduate Institute of Biomedicine and Biomedical Technology; 2Department of Electrical Engineering, National Chi Nan University, Nantou, Taiwan; 3Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan, Republic of ChinaBackground: Cardiovascular and kidney diseases are a global public health problem and impose a huge economic burden on health care services. Homocysteine, an amino acid, is associated with coronary heart disease, while urea is a harmful metabolic substance which can be used to reflect kidney function. Monitoring of these two substances is therefore very important. This in vitro study aimed to determine whether homocysteine is extractable transdermally and noninvasively, and whether homocysteine and urea can be extracted simultaneously by reverse iontophoresis.Methods: A diffusion cell incorporated with porcine skin was used for all experiments with the application of a direct current (dc and four different symmetrical biphasic direct currents (SBdc for 12 minutes via Ag/AgCl electrodes. The dc and the SBdc had a current density of 0.3 mA/cm2.Results: The SBdc has four different phase durations of 15 sec, 30 sec, 60 sec, and 180 sec. It was found that homocysteine can be transdermally extracted by reverse iontophoresis. Simultaneous extraction of homocysteine and urea by reverse iontophoresis is also possible.Conclusion: These results suggest that extraction of homocysteine and urea by SBdc are phase duration-dependent, and the optimum mode for simultaneous homocysteine and urea extraction is the SBdc with the phase duration of 60 sec.Keywords: reverse iontophoresis, homocysteine, urea, monitoring, noninvasive, transdermal

  11. SELF-DIAGNOSIS METHOD FOR CHECKING THE WAYSIDE SYSTEMS FOR WHEEL-RAIL VERTICAL LOAD MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Daniele CORTIS

    2017-12-01

    Full Text Available Nowadays, wayside measurement systems of wheel-rail contact forces have acquired great relevance for the monitoring of rolling stock, especially for freight trains. Thanks to these solutions, infrastructure managers can check and monitor the status of rolling stock and, when necessary, impose corrective actions for the railway companies. On the other hand, the evaluation of contact forces is part of the rolling stock authorisation process [1] and a mainstone for the study of the running stability. The data provided by these measurements could give useful information to correlate the wear of the track with the frequency of applied loads, helping in the development of a better maintenance strategy of railway networks [2]. In this paper, the monitoring of vertical forces is based on the SMCV (Vertical Loads Monitoring System method, where shear strains of the rail web are measured with a simple combination of four electrical strain gauges, placed on both sides of the rail web along each span. The research has identified self-diagnosis methods for the SMCV system to ensure the reliability and the quality of the measurements and to extend the knowledge of the system. The recorded signals have been processed and converted into easily interpretable physical quantities by means of MATLAB® algorithm.

  12. Effects of different brazing and welding methods on the fracture load of various orthodontic joining configurations.

    Science.gov (United States)

    Bock, Jens J; Bailly, Jacqueline; Fuhrmann, Robert A

    2009-06-01

    The aim of this study was to compare the fracture load of different joints made by conventional brazing, tungston inert gas (TIG) and laser welding. Six standardized joining configurations of spring hard quality orthodontic wire were investigated: end-to-end, round, cross, 3 mm length, 9 mm length and 6.5 mm to orthodontic band. The joints were made by five different methods: brazing with universal silver solder, two TIG and two laser welding devices. The fracture loads were measured with a universal testing machine (Zwick 005). Data were analysed with the Mann-Whitney-Wilcoxon and Kruskal-Wallis tests. The significance level was set at Pwelding (Pwelding (826 N). No differences between the various TIG or laser welding devices were demonstrated, although it was not possible to join an orthodontic wire to an orthodontic band using TIG welding. For orthodontic purposes laser and TIG welding are solder free alternatives. TIG welding and laser welding showed similar results. The laser technique is an expensive, but sophisticated and simple method.

  13. A Study of a Load Cell Based High Speed Weighting Method for a Potato Sorter

    International Nuclear Information System (INIS)

    Yang, Jong Hoon

    2002-02-01

    Potatoes, together with tangerines, are one of the major agricultural products in Jeju, and the production account for more than 30 % of the domestic production. Recently some kinds of sorting machine for potatoes are available, but they are not extensively used because their performance is not satisfactory and/or they are very expensive. This paper presents a load cell based high speed weighting method for sorting the potatoes. This method is based on the fact that the linear momentum of a potato is proportional to the mass of it. To test the performance of the weighting system, we developed load cell based automatic sorting system for potatoes. The system does not adopt an additional mechanism for weighting the potato such as a cup conveyer. It uses normal flat conveyers themselves so that the cost for maintenance and establishment will be lower than other system. Through sets of experiments, the developed weighting system was proved to be very reliable, and its performance is good enough to use as a practical sorting system

  14. Determination of two capsaicinoids in analgesic transdermal patches using RP-HPLC and UV spectroscopy

    Directory of Open Access Journals (Sweden)

    F. Kobarfard

    2017-11-01

    Full Text Available Background and objectives: At the present time, a considerable frontier in the administration of therapeutic medications is transdermal drug delivery. Methods: In this study, a rapid, precise, sensitive and selective reversed-phasehigh performance liquid chromatography (RP-HPLC method has been evaluated, developed and validated to separate and quantitate capsaicin and dihydrocapsaicin (main active agents in analgesic dermal patches produced in Iran. Results: After isolation from laminated adhesive patches, capsaicinoids were analyzed on Lichrospher C18 analytical columns with reversed phase, using a mobile phase composition of methanol and distilled water (70:30 v/v and without any buffer (pH=6.5. The flow rate was 1 mL/min and the UV detector was operating at 281 nm. The assay was found to be linear over the range of 0.1-1.0 mg/mL. All validation parameters were within the acceptable range. Conclusion: It seems that the developed method was fairly sensitive and reliable in measuring capsaicinoids in commercially available analgesic transdermal patches in Iran.

  15. Generalised functions method in the boundary value problems of elastodynamics by stationary running loads

    International Nuclear Information System (INIS)

    Alexeyeva, L.A.

    2001-01-01

    Investigation of diffraction processes of seismic waves on underground tunnels and pipelines with use of mathematical methods is related to solving boundary value problems (BVP) for hyperbolic system of differential equations in domains with cylindrical cavities when seismic disturbances propagate along boundaries with subsonic or transonic speeds. Also such classes of problems appear when it's necessary to study the behavior of underground constructions and Stress-strain State of environment. But in this case the velocities of running loads are less than velocities of wave propagation in surrounding medium. At present similar problems were solved only for constructions of circular cylindrical form with use of methods of full and not full dividing of variables. For cylindrical constructions of complex cross section strong mathematical theories for solving these problems were absent.(author)

  16. Reduction method for residual stress of welded joint using harmonic vibrational load

    International Nuclear Information System (INIS)

    Aoki, Shigeru; Nishimura, Tadashi; Hiroi, Tetsumaro; Hirai, Seiji

    2007-01-01

    Welding is widely used for construction of many structures. Since welding is a process using locally given heat, residual stress is generated near the bead. Tensile residual stress degrades fatigue strength. Some reduction methods of residual stress have been presented and, for example, heat treatment and shot peening are practically used. However, those methods need special tools and are time consuming. In this paper, a new method for reduction of residual stress using harmonic vibrational load during welding is proposed. The proposed method is examined experimentally for some conditions. Two thin plates are supported on the supporting device and butt-welded using an automatic CO 2 gas shielded arc welding machine. Residual stress in the direction of the bead is measured by using a paralleled beam X-ray diffractometer with scintillation counter after removing quenched scale chemically. First, the welding of rolled steel for general structure for some excitation frequencies is examined. Specimens are welded along the groove on both sides. For all frequencies, tensile residual stress near the bead is significantly reduced. Second, welding of the specimen made of high tensile strength steel is examined. In this case, tensile residual stress near the bead is also reduced. Finally, the proposed method is examined by an analytical method. An analytical model which consists of mass and preloaded springs with elasto-plastic characteristic is used. Reduction of residual stress is demonstrated using this model

  17. Galactosyl Pentadecene Reversibly Enhances Transdermal and Topical Drug Delivery

    Czech Academy of Sciences Publication Activity Database

    Kopečná, M.; Macháček, M.; Prchalová, Eva; Štěpánek, P.; Drašar, P.; Kotora, Martin; Vávrová, K.

    2017-01-01

    Roč. 34, č. 10 (2017), s. 2097-2108 ISSN 0724-8741 Institutional support: RVO:61388963 Keywords : galactoside * penetration enhancers * sugar * topical drug delivery * transdermal drug delivery Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Pharmacology and pharmacy Impact factor: 3.002, year: 2016

  18. Assessment of simvastatin niosomes for pediatric transdermal drug delivery.

    Science.gov (United States)

    Zidan, Ahmed S; Hosny, Khaled M; Ahmed, Osama A A; Fahmy, Usama A

    2016-06-01

    The prevalence of childhood dyslipidemia increases and is considered as an important risk factor for the incidence of cardiovascular disease in the adulthood. To improve dosing accuracy and facilitate the determination of dosing regimens in function of the body weight, the proposed study aims at preparing transdermal niosomal gels of simvastatin as possible transdermal drug delivery system for pediatric applications. Twelve formulations were prepared to screen the influence of formulation and processing variables on critical niosomal characteristics. Nano-sized niosomes with 0.31 μm number-weighted size displayed highest simvastatin release rate with 8.5% entrapment capacity. The niosomal surface coverage by negative charges was calculated according to Langmuir isotherm with n = 0.42 to suggest that the surface association was site-independent, probably producing surface rearrangements. Hypolipidemic activities after transdermal administration of niosomal gels to rats showed significant reduction in cholesterol and triglyceride levels while increasing plasma high-density lipoproteins concentration. Bioavailability estimation in rats revealed an augmentation in simvastatin bioavailability by 3.35 and 2.9 folds from formulation F3 and F10, respectively, compared with oral drug suspension. Hence, this transdermal simvastatin niosomes not only exhibited remarkable potential to enhance its bioavailability and hypolipidemic activity but also considered a promising pediatric antihyperlipidemic formulation.

  19. Plasma Concentrations of Fentanyl Achieved With Transdermal Application in Chickens

    NARCIS (Netherlands)

    Delaski, Kristina M; Gehring, Ronette; Heffron, Brendan T; Negrusz, Adam; Gamble, Kathryn C

    2017-01-01

    Providing appropriate analgesia is an important concern in any species. Fentanyl, a μ-receptor specific opioid, use is common in mammalian species but has been incompletely evaluated for this purpose in avian species. Transdermal fentanyl patches were applied to domestic chickens (n = 10) of varying

  20. Transdermal Physostigmine—Absence of Effect on Topographic Brain Mapping

    Directory of Open Access Journals (Sweden)

    M. Y. Neufeld

    1993-01-01

    Full Text Available Nine patients with primary degenerative dementia (PDD participated in an open trial of transdermal physostigmine (TPh. In order to evaluate the neurophysiologic effects of TPh, EEG data were recorded and compared at baseline and following 2 months of continuous treatment. There was no significant effect of TPh on EEG spectra in patients with PDD.

  1. Efficacy and transdermal absorption of permethrin in scabies patients

    NARCIS (Netherlands)

    van der Rhee, H.J.; Farquhar, J A; Vermeulen, N P

    1989-01-01

    The clinical efficacy and transdermal absorption of permethrin, a new synthetic insecticide was investigated in ten scabies patients. All patients were successfully treated with one application of a cream, containing 5% permethrin. Apart from mild postscabies dermatitis no side-effects were

  2. Transdermal deferoxamine prevents pressure-induced diabetic ulcers.

    Science.gov (United States)

    Duscher, Dominik; Neofytou, Evgenios; Wong, Victor W; Maan, Zeshaan N; Rennert, Robert C; Inayathullah, Mohammed; Januszyk, Michael; Rodrigues, Melanie; Malkovskiy, Andrey V; Whitmore, Arnetha J; Walmsley, Graham G; Galvez, Michael G; Whittam, Alexander J; Brownlee, Michael; Rajadas, Jayakumar; Gurtner, Geoffrey C

    2015-01-06

    There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation.

  3. NMR characterisation and transdermal drug delivery potential of microemulsion systems

    DEFF Research Database (Denmark)

    Kreilgaard, Mads; Pedersen, E J; Jaroszewski, J W

    2000-01-01

    The purpose of this study was to investigate the influence of structure and composition of microemulsions (Labrasol/Plurol Isostearique/isostearylic isostearate/water) on their transdermal delivery potential of a lipophilic (lidocaine) and a hydrophilic model drug (prilocaine hydrochloride), and ...

  4. Transdermal deferoxamine prevents pressure-induced diabetic ulcers

    Science.gov (United States)

    Duscher, Dominik; Neofytou, Evgenios; Wong, Victor W.; Maan, Zeshaan N.; Rennert, Robert C.; Januszyk, Michael; Rodrigues, Melanie; Malkovskiy, Andrey V.; Whitmore, Arnetha J.; Galvez, Michael G.; Whittam, Alexander J.; Brownlee, Michael; Rajadas, Jayakumar; Gurtner, Geoffrey C.

    2015-01-01

    There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation. PMID:25535360

  5. Avanafil Liposomes as Transdermal Drug Delivery for Erectile ...

    African Journals Online (AJOL)

    Avanafil is slightly soluble in ethanol, practically insoluble in water ... transdermal permeability and bioavailability for the treatment of .... Table 1 shows that the EE had higher values for the MLVs .... reason is the lower solubility of avanafil at pH.

  6. Validation of auditory detection response task method for assessing the attentional effects of cognitive load.

    Science.gov (United States)

    Stojmenova, Kristina; Sodnik, Jaka

    2018-07-04

    There are 3 standardized versions of the Detection Response Task (DRT), 2 using visual stimuli (remote DRT and head-mounted DRT) and one using tactile stimuli. In this article, we present a study that proposes and validates a type of auditory signal to be used as DRT stimulus and evaluate the proposed auditory version of this method by comparing it with the standardized visual and tactile version. This was a within-subject design study performed in a driving simulator with 24 participants. Each participant performed 8 2-min-long driving sessions in which they had to perform 3 different tasks: driving, answering to DRT stimuli, and performing a cognitive task (n-back task). Presence of additional cognitive load and type of DRT stimuli were defined as independent variables. DRT response times and hit rates, n-back task performance, and pupil size were observed as dependent variables. Significant changes in pupil size for trials with a cognitive task compared to trials without showed that cognitive load was induced properly. Each DRT version showed a significant increase in response times and a decrease in hit rates for trials with a secondary cognitive task compared to trials without. Similar and significantly better results in differences in response times and hit rates were obtained for the auditory and tactile version compared to the visual version. There were no significant differences in performance rate between the trials without DRT stimuli compared to trials with and among the trials with different DRT stimuli modalities. The results from this study show that the auditory DRT version, using the signal implementation suggested in this article, is sensitive to the effects of cognitive load on driver's attention and is significantly better than the remote visual and tactile version for auditory-vocal cognitive (n-back) secondary tasks.

  7. Transdermal influenza immunization with vaccine-coated microneedle arrays.

    Directory of Open Access Journals (Sweden)

    Dimitrios G Koutsonanos

    Full Text Available Influenza is a contagious disease caused by a pathogenic virus, with outbreaks all over the world and thousands of hospitalizations and deaths every year. Due to virus antigenic drift and short-lived immune responses, annual vaccination is required. However, vaccine coverage is incomplete, and improvement in immunization is needed. The objective of this study is to investigate a novel method for transdermal delivery using metal microneedle arrays (MN coated with inactivated influenza virus to determine whether this route is a simpler and safer approach than the conventional immunization, capable to induce robust immune responses and confer protection against lethal virus challenge.Inactivated A/Aichi/2/68 (H3N2 influenza virus was coated on metal microneedle arrays and applied to mice as a vaccine in the caudal dorsal skin area. Substantial antibody titers with hemagglutination inhibition activity were detected in sera collected two and four weeks after a single vaccine dose. Challenge studies in mice with 5 x LD(50 of mouse adapted Aichi virus demonstrated complete protection. Microneedle vaccination induced a broad spectrum of immune responses including CD4+ and CD8+ responses in the spleen and draining lymph node, a high frequency of antigen-secreting cells in the lung and induction of virus-specific memory B-cells. In addition, the use of MN showed a dose-sparing effect and a strong Th2 bias when compared to an intramuscular (IM reference immunization.The present results show that delivery of inactivated influenza virus through the skin using metal microneedle arrays induced strong humoral and cellular immune responses capable of conferring protection against virus challenge as efficiently as intramuscular immunization, which is the standard vaccination route. In view of the convenience of delivery and the potential for self-administration, vaccine-coated metal microneedles may provide a novel and highly effective immunization method.

  8. Analysis Method for Laterally Loaded Pile Groups Using an Advanced Modeling of Reinforced Concrete Sections

    Directory of Open Access Journals (Sweden)

    Stefano Stacul

    2018-02-01

    Full Text Available A Boundary Element Method (BEM approach was developed for the analysis of pile groups. The proposed method includes: the non-linear behavior of the soil by a hyperbolic modulus reduction curve; the non-linear response of reinforced concrete pile sections, also taking into account the influence of tension stiffening; the influence of suction by increasing the stiffness of shallow portions of soil and modeled using the Modified Kovacs model; pile group shadowing effect, modeled using an approach similar to that proposed in the Strain Wedge Model for pile groups analyses. The proposed BEM method saves computational effort compared to more sophisticated codes such as VERSAT-P3D, PLAXIS 3D and FLAC-3D, and provides reliable results using input data from a standard site investigation. The reliability of this method was verified by comparing results from data from full scale and centrifuge tests on single piles and pile groups. A comparison is presented between measured and computed data on a laterally loaded fixed-head pile group composed by reinforced concrete bored piles. The results of the proposed method are shown to be in good agreement with those obtained in situ.

  9. Analysis Method for Laterally Loaded Pile Groups Using an Advanced Modeling of Reinforced Concrete Sections.

    Science.gov (United States)

    Stacul, Stefano; Squeglia, Nunziante

    2018-02-15

    A Boundary Element Method (BEM) approach was developed for the analysis of pile groups. The proposed method includes: the non-linear behavior of the soil by a hyperbolic modulus reduction curve; the non-linear response of reinforced concrete pile sections, also taking into account the influence of tension stiffening; the influence of suction by increasing the stiffness of shallow portions of soil and modeled using the Modified Kovacs model; pile group shadowing effect, modeled using an approach similar to that proposed in the Strain Wedge Model for pile groups analyses. The proposed BEM method saves computational effort compared to more sophisticated codes such as VERSAT-P3D, PLAXIS 3D and FLAC-3D, and provides reliable results using input data from a standard site investigation. The reliability of this method was verified by comparing results from data from full scale and centrifuge tests on single piles and pile groups. A comparison is presented between measured and computed data on a laterally loaded fixed-head pile group composed by reinforced concrete bored piles. The results of the proposed method are shown to be in good agreement with those obtained in situ.

  10. Assessment of Methods to Consolidate Iodine-Loaded Silver-Functionalized Silica Aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef; Engler, Robert K.

    2013-09-01

    The U.S. Department of Energy is currently investigating alternative sorbents for the removal and immobilization of radioiodine from the gas streams in a nuclear fuel reprocessing plant. One of these new sorbents, Ag0-functionalized silica aerogels, shows great promise as a potential replacement for Ag-bearing mordenites because of its high selectivity and sorption capacity for iodine. Moreover, a feasible consolidation of iodine-loaded Ag0-functionalized silica aerogels to a durable SiO2-based waste form makes this aerogel an attractive choice for sequestering radioiodine. This report provides a preliminary assessment of the methods that can be used to consolidate iodine-loaded Ag0-functionalized silica aerogels into a final waste form. In particular, it focuses on experimental investigation of densification of as prepared Ag0-functionalized silica aerogels powders, with or without organic moiety and with or without sintering additive (colloidal silica), with three commercially available techniques: 1) hot uniaxial pressing (HUP), 2) hot isostatic pressing (HIP), and 3) spark plasma sintering (SPS). The densified products were evaluated with helium gas pycnometer for apparent density, with the Archimedes method for apparent density and open porosity, and with high-resolution scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) for the extent of densification and distribution of individual elements. The preliminary investigation of HUP, HIP, and SPS showed that these sintering methods can effectively consolidate powders of Ag0-functionalized silica aerogel into products of near-theoretical density. Also, removal of organic moiety and adding 5.6 mass% of colloidal silica to Ag0-functionalized silica aerogel powders before processing provided denser products. Furthermore, the ram travel data for SPS indicated that rapid consolidation of powders can be performed at temperatures below 950°C.

  11. Force Curves to Demonstrate Methods to Increase Musculoskeletal Loading with the ARED

    Data.gov (United States)

    National Aeronautics and Space Administration — Current resistance exercises on ISS do not meet the requirements set by expert panels in that the eccentric loads are less than concentric loads, forces are variable...

  12. Test methods and load simulation at roller test stand; Pruefmethoden und Lastsimulation auf Rollenpruefstaenden

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, Juergen [BMW AG, Muenchen (Germany); Koenig, Manfred [VISPIRON AG, Muenchen (Germany)

    2012-11-01

    The development of vehicles is a time expensive process and requires a worldwide mobility, since the vehicles are tested for different environmental conditions, which only occur in specified regions and within predefined seasonal periods. To become independent of weather conditions and the local and seasonal variation, it is necessary to shift particular tests to a climatic wind tunnel. Although this offers an ideal environment for precise and reproducible results, many tests need to be performed in order to acquire knowledge about the differences between real road investigations and wind tunnel experiments. It is the work of Method developers to properly transfer specified road tests to the test facility such that comparable results are obtained. These details will be discussed in the first chapter. An important aspect, within this objective, is the realistic simulation of drive resistance on the road by dynamometers. Therefore the different forces, contributing to the drive resistance on the road, are determined in order to simulate the realistic load on the vehicle drive train by the electric drive units of the dynamometers. To increase the accuracy of the load simulation, a special feature has been added to the dyno-control. This feature includes the influence of air-density on the drive resistance at a given environmental temperature, pressure and humidity. (orig.)

  13. Automatic crack detection method for loaded coal in vibration failure process.

    Directory of Open Access Journals (Sweden)

    Chengwu Li

    Full Text Available In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM. A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically.

  14. On Advanced Control Methods toward Power Capture and Load Mitigation in Wind Turbines

    Institute of Scientific and Technical Information of China (English)

    Yuan Yuan; Jiong Tang

    2017-01-01

    This article provides a survey of recently emerged methods for wind turbine control.Multivariate control approaches to the optimization of power capture and the reduction of loads in components under time-varying turbulent wind fields have been under extensive investigation in recent years.We divide the related research activities into three categories:modeling and dynamics of wind turbines,active control of wind turbines,and passive control of wind turbines.Regarding turbine dynamics,we discuss the physical fundamentals and present the aeroelastic analysis tools.Regarding active control,we review pitch control,torque control,and yaw control strategies encompassing mathematical formulations as well as their applications toward different objectives.Our survey mostly focuses on blade pitch control,which is considered one of the key elements in facilitating load reduction while maintaining power capture performance.Regarding passive control,we review techniques such as tuned mass dampers,smart rotors,and microtabs.Possible future directions are suggested.

  15. Fuel loading method to exchangeable reactor core of BWR type reactor and its core

    International Nuclear Information System (INIS)

    Koguchi, Kazushige.

    1995-01-01

    In a fuel loading method for an exchangeable reactor core of a BWR type reactor, at least two kinds of fresh fuel assemblies having different reactivities between axial upper and lower portions are preliminarily prepared, and upon taking out fuel assemblies of advanced combustion and loading the fresh fuel assemblies dispersingly, they are disposed so as to attain a predetermined axial power distribution in the reactor. At least two kinds of fresh fuel assemblies have a content of burnable poisons different between the axial upper portion and lower portions. In addition, reactivity characteristics are made different at a region higher than the central boundary and a region lower than the central boundary which is set within a range of about 6/24 to 16/24 from the lower portion of the fuel effective length. There can be attained axial power distribution as desired such as easy optimization of the axial power distribution, high flexibility, and flexible flattening of the power distribution, and it requires no special change in view of the design and has a good economical property. (N.H.)

  16. Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Liu Dongfei; Jiang Sunmin [Nanjing Medical University, School of Pharmacy (China); Shen Hong [Nanjing Brain Hospital Affiliated to Nanjing Medical University, Neuro-Psychiatric Institute (China); Qin Shan; Liu Juanjuan; Zhang Qing; Li Rui, E-mail: chongloutougao@gmail.com; Xu Qunwei, E-mail: qunweixu@163.com [Nanjing Medical University, School of Pharmacy (China)

    2011-06-15

    The preparation of solid lipid nanoparticles (SLNs) suffers from the drawback of poor incorporation of water-soluble drugs. The aim of this study was therefore to assess various formulation and process parameters to enhance the incorporation of a water-soluble drug (diclofenac sodium, DS) into SLNs prepared by the emulsion/solvent evaporation method. Results showed that the entrapment efficiency (EE) of DS was increased to approximately 100% by lowering the pH of dispersed phase. The EE of DS-loaded SLNs (DS-SLNs) had been improved by the existence of cosurfactants and increment of PVA concentration. Stabilizers and their combination with PEG 400 in the dispersed phase also resulted in higher EE and drug loading (DL). EE increased and DL decreased as the phospholipid/DS ratio became greater, while the amount of DS had an opposite effect. Ethanol turned out to be the ideal solvent making DS-SLNs. EE and DL of DS-SLNs were not affected by either the stirring speed or the viscosity of aqueous and dispersed phase. According to the investigations, drug solubility in dispersion medium played the most important role in improving EE.

  17. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine

    Directory of Open Access Journals (Sweden)

    Hong X

    2013-09-01

    Full Text Available Xiaoyun Hong,1,2,* Liangming Wei,3,* Fei Wu,2,* Zaozhan Wu,2 Lizhu Chen,2 Zhenguo Liu,1 Weien Yuan2 1Department of Neurology, Xinhua Hospital, Shanghai, People's Republic of China; 2School of Pharmacy, Shanghai JiaoTong University, Shanghai, People's Republic of China; 3Research Institute of Micro/Nano Science and Technology, Shanghai JiaoTong University, Shanghai, People's Republic of China *These authors contributed equally to this work Abstract: Microneedles were first conceptualized for drug delivery many decades ago, overcoming the shortages and preserving the advantages of hypodermic needle and conventional transdermal drug-delivery systems to some extent. Dissolving and biodegradable microneedle technologies have been used for transdermal sustained deliveries of different drugs and vaccines. This review describes microneedle geometry and the representative dissolving and biodegradable microneedle delivery methods via the skin, followed by the fabricating methods. Finally, this review puts forward some perspectives that require further investigation. Keywords: microneedle, dissolving, biodegradable, sustained release

  18. An experimental trial exploring the impact of continuous transdermal alcohol monitoring upon alcohol consumption in a cohort of male students.

    Science.gov (United States)

    Neville, Fergus G; Williams, Damien J; Goodall, Christine A; Murer, Jeffrey S; Donnelly, Peter D

    2013-01-01

    To examine the impact of continuous transdermal alcohol monitoring upon alcohol consumption in male students at a Scottish university. Using a within-subject mixed-methods design, 60 male university students were randomly allocated into three experimental conditions using AUDIT score stratified sampling. Participants in Conditions A and B were asked not to consume alcohol for a 14-day period, with those in Condition A additionally being required to wear a continuous transdermal alcohol monitoring anklet. Condition C participants wore an anklet and were asked to continue consuming alcohol as normal. Alcohol consumption was measured through alcohol timeline follow-back, and using data collected from the anklets where available. Diaries and focus groups explored participants' experiences of the trial. Alcohol consumption during the 14-day trial decreased significantly for participants in Conditions A and B, but not in C. There was no significant relative difference in units of alcohol consumed between Conditions A and B, but significantly fewer participants in Condition A drank alcohol than in Condition B. Possible reasons for this difference identified from the focus groups and diaries included the anklet acting as a reminder of commitment to the study (and the agreement to sobriety), participants feeling under surveillance, and the use of the anklet as a tool to resist social pressure to consume alcohol. The study provided experience in using continuous transdermal alcohol monitors in an experimental context, and demonstrated ways in which the technology may be supportive in facilitating sobriety. Results from the study have been used to design a research project using continuous transdermal alcohol monitors with ex-offenders who recognise a link between their alcohol consumption and offending behaviour.

  19. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres.

    Science.gov (United States)

    Andhariya, Janki V; Choi, Stephanie; Wang, Yan; Zou, Yuan; Burgess, Diane J; Shen, Jie

    2017-03-30

    The objective of the present study was to develop a discriminatory and reproducible accelerated release testing method for naltrexone loaded parenteral polymeric microspheres. The commercially available naltrexone microsphere product (Vivitrol ® ) was used as the testing formulation in the in vitro release method development, and both sample-and-separate and USP apparatus 4 methods were investigated. Following an in vitro drug stability study, frequent media replacement and addition of anti-oxidant in the release medium were used to prevent degradation of naltrexone during release testing at "real-time" (37°C) and "accelerated" (45°C), respectively. The USP apparatus 4 method was more reproducible than the sample-and-separate method. In addition, the accelerated release profile obtained using USP apparatus 4 had a shortened release duration (within seven days), and good correlation with the "real-time" release profile. Lastly, the discriminatory ability of the developed accelerated release method was assessed using compositionally equivalent naltrexone microspheres with different release characteristics. The developed accelerated USP apparatus 4 release method was able to detect differences in the release characteristics of the prepared naltrexone microspheres. Moreover, a linear correlation was observed between the "real-time" and accelerated release profiles of all the formulations investigated, suggesting that the release mechanism(s) may be similar under both conditions. These results indicate that the developed accelerated USP apparatus 4 method has the potential to be an appropriate fast quality control tool for long-acting naltrexone PLGA microspheres. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Exploitation of sub-micron cavitation nuclei to enhance ultrasound-mediated transdermal transport and penetration of vaccines.

    Science.gov (United States)

    Bhatnagar, Sunali; Kwan, James J; Shah, Apurva R; Coussios, Constantin-C; Carlisle, Robert C

    2016-09-28

    Inertial cavitation mediated by ultrasound has been previously shown to enable skin permeabilisation for transdermal drug and vaccine delivery, by sequentially applying the ultrasound then the therapeutic in liquid form on the skin surface. Using a novel hydrogel dosage form, we demonstrate that the use of sub-micron gas-stabilising polymeric nanoparticles (nanocups) to sustain and promote cavitation activity during simultaneous application of both drug and vaccine results in a significant enhancement of both the dose and penetration of a model vaccine, Ovalbumin (OVA), to depths of 500μm into porcine skin. The nanocups themselves exceeded the penetration depth of the vaccine (up to 700μm) due to their small size and capacity to 'self-propel'. In vivo murine studies indicated that nanocup-assisted ultrasound transdermal vaccination achieved significantly (pultrasound-assisted vaccine delivery in the presence of nanocups demonstrated substantially higher specific anti-OVA IgG antibody levels compared to other transdermal methods. Further optimisation can lead to a viable, safe and non-invasive delivery platform for vaccines with potential use in a primary care setting or personalized self-vaccination at home. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. The Different Methods of Displacement Monitoring at Loading Tests of Bridges or Different Structures

    Directory of Open Access Journals (Sweden)

    Kovačič Boštjan

    2016-01-01

    Full Text Available By measuring the displacements and deformations at different structures we deal in the Faculty of Civil Engineering, transportation Engineering and Architecture in University of Maribor for about 20 years. At that time we measured over 600 structures. Most loading tests of bridges and Viaducts were made. The measurements of movements needed to be as precise and accurate as possible. To do that laboratory test of instruments were made to see which instrument gives us reliable results. Displacements can be determined by geodetic and physical methods, depends of the construction. The use of geodetic methods are still preferable. In the paper the measurements with the total station, the level and rotation level, photogrammetry and solutions on the field by physical methods with inductive transducers are presented. We need to measure displacements as quick as possible but efficiently because we can not repeat the measurements under the same conditions. Also the surveying on the bridge and in the lab with the comparison of methods is presented under the different hard terrain conditions - water beneath the construction, big height of the structure, unapproachability, large span structures.

  2. Modification of the axial offsets trajectory method to control xenon oscillation during load following operations

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro

    1996-01-01

    A new method which can give continuous guidance for controlling axial xenon oscillations in large PWRs has been presented. The method is based on two additional newly defined axial offsets, A Oi and A Ox together with the conventional axial offset of power distribution A Op. A Oi and A Ox are the axial offsets of power distributions which would give the current iodine and xenon distributions under equilibrium conditions, respectively. The information from A Oi, A Ox and A Op are used to display the trajectory of (A Op - A Ox, A Oi - A Ox) in the X-Y plane. The trajectory shows a very characteristic behavior. With the characteristics in mind the xenon oscillation can be controlled quite easily to lead the plot to the origin where three A Os are identical. The method has been proved with the power level constant. However, it is necessary to modify the definition of A Ox so as to apply this method to load following operations. A reasonable way of the modification is described and the results are presented. (author)

  3. Design and Development of Repaglinide Microemulsion Gel for Transdermal Delivery.

    Science.gov (United States)

    Shinde, Ujwala A; Modani, Sheela H; Singh, Kavita H

    2018-01-01

    Microemulsion formulation of repaglinide, a BCS class II hypoglycemic agent with limited oral bioavailability, was developed considering its solubility in various oils, surfactants, and cosurfactants. The pseudo-ternary phase diagrams for microemulsion regions were constructed by water titration method at K m 1:1 and characterized for optical birefringence, percentage transmittance, pH, refractive index, globule size, zeta potential, viscosity, drug content, and thermodynamic stability. To enhance the drug permeation and residence time, the optimized microemulsions having mean globule size of 36.15 ± 9.89 nm was gelled with xanthan gum. The developed microemulsion-based gel was characterized for globule size, zeta potential, pH, and drug content. All evaluation parameters upon gelling were found to be satisfactory. Ex vivo permeability study across rat skin demonstrated higher steady-state flux (P microemulsion of repaglinide in comparison to the repaglinide microemulsion gel. At the end of 24 h, the cumulative drug permeation from microemulsion and microemulsion gel was found to be 229.19 ± 24.34 and 180.84 ± 17.40 μg/cm 2 , respectively. The microemulsion formulation showed 12.30-fold increase in flux as compared to drug suspension with highest enhancement ratio (E r ) of 12.36. Whereas microemulsion gel exhibited 10.97-fold increase in flux (with highest E r , 11.78) as compared to repaglinide (RPG) suspension. In vivo efficacy study was performed in normal Sprague-Dawley rats by using oral glucose tolerance test. Results of RPG transdermal microemulsion gel demonstrated remarkable advantage over orally administered RPG by reducing the glucose level in controlled manner. Hence, it could be a new, alternative dosage form for effective therapy of type 2 diabetes mellitus.

  4. Mechanical Behaviour of Stainless Steels under Dynamic Loading: An Investigation with Thermal Methods

    Directory of Open Access Journals (Sweden)

    Rosa De Finis

    2016-11-01

    Full Text Available Stainless steels are the most exploited materials due to their high mechanical strength and versatility in producing different alloys. Although there is great interest in these materials, mechanical characterisation, in particular fatigue characterisation, requires the application of several standardised procedures involving expensive and time-consuming experimental campaigns. As a matter of fact, the use of Standard Test Methods does not rely on a physical approach, since they are based on a statistical evaluation of the fatigue limit with a fixed probabilistic confidence. In this regard, Infra-Red thermography, the well-known, non-destructive technique, allows for the development of an approach based on evaluation of dissipative sources. In this work, an approach based on a simple analysis of a single thermographic sequence has been presented, which is capable of providing two indices of the damage processes occurring in material: the phase shift of thermoelastic signal φ and the amplitude of thermal signal at twice the loading frequency, S2. These thermal indices can provide synergetic information about the mechanical (fatigue and fracture behaviour of austenitic AISI 316L and martensitic X4 Cr Ni Mo 16-5-1; since they are related to different thermal effects that produce damage phenomena. In particular, the use of φ and S2 allows for estimation of the fatigue limit of stainless steels at loading ratio R = 0.5 in agreement with the applied Standard methods. Within Fracture Mechanics tests, both indices demonstrate the capacity to localize the plastic zone and determine the position of the crack tip. Finally, it will be shown that the value of the thermoelastic phase signal can be correlated with the mechanical behaviour of the specific material (austenitic or martensitic.

  5. Decentralized Method for Load Sharing and Power Management in a PV/Battery Hybrid Source Islanded Microgrid

    DEFF Research Database (Denmark)

    Karimi, Yaser; Oraee, Hashem; Golsorkhi, Mohammad

    2017-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. Unlike the previous methods in the literature, there is no need to communication among the units......, the operation of each unit is divided into five states and modified active power-frequency droop functions are used according to operating states. The frequency level is used as trigger for switching between the states. Efficacy of the proposed method in different load, PV generation and battery conditions...... and the proposed method is not limited to the systems with separate PV and battery units or systems with only one hybrid unit. The proposed method takes into account the available PV power and battery conditions of the units to share the load among them. To cover all possible conditions of the microgrid...

  6. Transdermal granisetron: a guide to its use in preventing nausea and vomiting induced by chemotherapy.

    Science.gov (United States)

    Keating, Gillian M; Duggan, Sean T; Curran, Monique P

    2012-09-01

    Transdermal granisetron (Sancuso®) is effective in the prevention of nausea and vomiting in patients with cancer who are receiving moderately or highly emetogenic chemotherapy for 3-5 days. Transdermal granisetron is noninferior to oral granisetron in this indication, and is generally well tolerated in this indication. Thus, transdermal granisetron provides a convenient option for the prevention of chemotherapy-induced nausea and vomiting, with the potential to improve patient compliance.

  7. A thermal microjet system with tapered micronozzles fabricated by inclined UV lithography for transdermal drug delivery

    Science.gov (United States)

    Yoon, Yong-Kyu; Park, Jung-Hwan; Lee, Jeong-Woo; Prausnitz, Mark R.; Allen, Mark G.

    2011-02-01

    Transdermal drug delivery can be enabled by various methods that increase the permeability of the skin's outer barrier of stratum corneum, including skin exposure to heat and chemical enhancers, such as ethanol. Combining these approaches for the first time, in this study we designed a microdevice consisting of an array of microchambers filled with ethanol that is vaporized using an integrated microheater and ejected through a micronozzle contacting the skin surface. In this way, we hypothesize that the hot ethanol vapor can increase skin permeability upon contacting the skin surface. The tapered micronozzle and the microchamber designed for this application were realized using proximity-mode inclined rotational ultraviolet lithography, which facilitates easy fabrication of complex three-dimensional structures, convenient integration with other functional layers, low fabrication cost, and mass production. The resulting device had a micronozzle with an orifice inner and outer diameter of 220 and 320 µm, respectively, and an extruded height of 250 µm. When the microchamber was filled with an ethanol gel and activated, the resulting ethanol vapor jet increased the permeability of human cadaver epidermis to a model compound, calcein, by approximately 17 times, which is attributed to thermal and chemical disruption of stratum corneum structure. This thermal microjet system can serve as a tool not only for transdermal drug delivery, but also for a variety of biomedical applications.

  8. A thermal microjet system with tapered micronozzles fabricated by inclined UV lithography for transdermal drug delivery

    International Nuclear Information System (INIS)

    Yoon, Yong-Kyu; Park, Jung-Hwan; Lee, Jeong-Woo; Prausnitz, Mark R; Allen, Mark G

    2011-01-01

    Transdermal drug delivery can be enabled by various methods that increase the permeability of the skin's outer barrier of stratum corneum, including skin exposure to heat and chemical enhancers, such as ethanol. Combining these approaches for the first time, in this study we designed a microdevice consisting of an array of microchambers filled with ethanol that is vaporized using an integrated microheater and ejected through a micronozzle contacting the skin surface. In this way, we hypothesize that the hot ethanol vapor can increase skin permeability upon contacting the skin surface. The tapered micronozzle and the microchamber designed for this application were realized using proximity-mode inclined rotational ultraviolet lithography, which facilitates easy fabrication of complex three-dimensional structures, convenient integration with other functional layers, low fabrication cost, and mass production. The resulting device had a micronozzle with an orifice inner and outer diameter of 220 and 320 µm, respectively, and an extruded height of 250 µm. When the microchamber was filled with an ethanol gel and activated, the resulting ethanol vapor jet increased the permeability of human cadaver epidermis to a model compound, calcein, by approximately 17 times, which is attributed to thermal and chemical disruption of stratum corneum structure. This thermal microjet system can serve as a tool not only for transdermal drug delivery, but also for a variety of biomedical applications.

  9. Electroporation-delivered transdermal neostigmine in rats: equivalent action to intravenous administration.

    Science.gov (United States)

    Berkó, Szilvia; Szűcs, Kálmán F; Balázs, Boglárka; Csányi, Erzsébet; Varju, Gábor; Sztojkov-Ivanov, Anita; Budai-Szűcs, Mária; Bóta, Judit; Gáspár, Róbert

    2016-01-01

    Transdermal electroporation has become one of the most promising noninvasive methods for drug administration, with greatly increased transport of macromolecules through the skin. The cecal-contracting effects of repeated transdermal electroporation delivery and intravenous administration of neostigmine were compared in anesthetized rats. The cecal contractions were detected with implantable strain gauge sensors, and the plasma levels of neostigmine were followed by high-performance liquid chromatography. Both intravenously and EP-administered neostigmine (0.2-66.7 μg/kg) increased the cecal contractions in a dose-dependent manner. For both the low doses and the highest dose, the neostigmine plasma concentrations were the same after the two modes of administration, while an insignificantly higher level was observed at a dose of 20 μg/kg after intravenous administration as compared with the electroporation route. The contractile responses did not differ significantly after the two administration routes. The results suggest that electroporation-delivered neostigmine elicits action equivalent to that observed after intravenous administration as concerning both time and intensity. Electroporation permits the delivery of even lower doses of water-soluble compounds through the skin, which is very promising for clinical practice.

  10. Rapid, low cost prototyping of transdermal devices for personal healthcare monitoring

    Directory of Open Access Journals (Sweden)

    Sanjiv Sharma

    2017-04-01

    Full Text Available The next generation of devices for personal healthcare monitoring will comprise molecular sensors to monitor analytes of interest in the skin compartment. Transdermal devices based on microneedles offer an excellent opportunity to explore the dynamics of molecular markers in the interstitial fluid, however good acceptability of these next generation devices will require several technical problems associated with current commercially available wearable sensors to be overcome. These particularly include reliability, comfort and cost. An essential pre-requisite for transdermal molecular sensing devices is that they can be fabricated using scalable technologies which are cost effective.We present here a minimally invasive microneedle array as a continuous monitoring platform technology. Method for scalable fabrication of these structures is presented. The microneedle arrays were characterised mechanically and were shown to penetrate human skin under moderate thumb pressure. They were then functionalised and evaluated as glucose, lactate and theophylline biosensors. The results suggest that this technology can be employed in the measurement of metabolites, therapeutic drugs and biomarkers and could have an important role to play in the management of chronic diseases. Keywords: Microneedles, Minimally invasive sensors, Continuous glucose monitoring (CGM, Continuous lactate monitoring (CLM, Interstitial therapeutic drug monitoring (iTDM

  11. Analyzing polymeric matrix for fabrication of a biodegradable microneedle array to enhance transdermal delivery.

    Science.gov (United States)

    Hwa, Kuo-Yuan; Chang, Vincent H S; Cheng, Yao-Yi; Wang, Yue-Da; Jan, Pey-Shynan; Subramani, Boopathi; Wu, Min-Ju; Wang, Bo-Kai

    2017-09-19

    Traditional drug delivery systems, using invasive, transdermal, and oral routes, are limited by various factors, such as the digestive system environment, skin protection, and sensory nerve stimulation. To improve the drug delivery system, we fabricated a polysaccharide-based, dissolvable microneedle-based array, which combines the advantages of both invasive and transdermal delivery systems, and promises to be an innovative solution for minimally invasive drug delivery. In this study, we designed a reusable aluminum mold that greatly improved the efficiency and convenience of microneedle fabrication. Physical characterization of the polysaccharides, individual or mixed at different ratios, was performed to identify a suitable molecule to fabricate the dissolvable microneedle. We used a vacuum deposition-based micro-molding method at low temperature to fabricate the model. Using a series of checkpoints from material into product, a systematic feedback mechanism was built into the "all-in-one" fabrication step, which helped to improve production yields. The physical properties of the fabricated microneedle were assessed. The cytotoxicity analysis and animal testing of the microneedle demonstrated the safety and compatibility of the microneedle, and the successful penetration and effective release of a model protein.

  12. Development of Novel Formulations to Enhance in Vivo Transdermal Permeation of Tocopherol

    Directory of Open Access Journals (Sweden)

    Nada Aly H.

    2014-09-01

    Full Text Available Tocopherol represents a big challenge for transdermal permeation owing to its extreme hydrophobicity and large molecular mass. The aim of the present study was to develop alpha-tocopherol (T topical formulations and evaluate their ex vivo and in vivo permeation. Franz diffusion cells were used for ex vivo permeation, and neonatal rats were used for in vivo permeation. Seven gel formulations and 21 liquid formulations were investigated for physical stability, viscosity and permeation of T. Analysis of T was performed by a validated HPLC method using a UV detector. The ex vivo permeation from gel and emulsion formulations was very poor (0.001-0.015 %. Highest permeation was observed from monophasic liquid formulations containing dimethyl sulfoxide (DMSO, tocopheryl polyethylene glycols (TPGs, propylene glycol, ethanol and 9.5 % T. The in vivo results demonstrated higher retention in the epidermis compared to subcutaneous tissues, 1377 and 1.13 μg g-1, respectively. Increasing T concentration from 4.8 to 9.5 % did not increase the amount permeated or % of T retained. It was concluded that simple solutions of T in the presence of DMSO and TPGs were more promising systems for effective transdermal permeation compared to gel, emulsion or oleaginous systems.

  13. Patient considerations in the use of transdermal iontophoretic fentanyl for acute postoperative pain

    Directory of Open Access Journals (Sweden)

    Hartrick CT

    2016-04-01

    Full Text Available Craig T Hartrick,1 Cecile R Pestano,1 Li Ding,2 Hassan Danesi,2 James B Jones,2 1Beaumont Health System, Troy, MI, 2The Medicines Company, Parsippany, NJ, USA Abstract: Opioids are commonly used in the management of moderate-to-severe postoperative pain. Patient-controlled analgesic techniques are recognized as preferred administration methods. Previously, research has focused on intravenously administered opioids via a programmable pump. More recently, an iontophoretic transdermal system (ITS, which is patient controlled, has been developed. The focus of this review is on pain management using the fentanyl ITS during the 24–72-hour time period immediately following surgery. Fentanyl ITS offers a needle-free alternative to traditional intravenous (IV patient-controlled analgesia (PCA system that is as effective and safe as IV PCA. This system is easy to use for both patients and nurses. The use of fentanyl ITS is generally associated with a better ease-of-care profile, including a greater ease of mobility, from a patients' perspective when compared with morphine IV PCA. Keywords: patient-controlled analgesia, fentanyl iontophoretic transdermal system, ease of care, mobility, patient perspective, review

  14. Impact of two different commercial DNA extraction methods on BK virus viral load

    Directory of Open Access Journals (Sweden)

    Massimiliano Bergallo

    2016-03-01

    Full Text Available Background and aim: BK virus, a member of human polyomavirus family, is a worldwide distributed virus characterized by a seroprevalence rate of 70-90% in adult population. Monitoring of viral replication is made by evaluation of BK DNA by quantitative polymerase chain reaction. Many different methods can be applied for extraction of nucleic acid from several specimens. The aim of this study was to assess the impact of two different DNA extraction procedure on BK viral load. Materials and methods: DNA extraction procedure including the Nuclisens easyMAG platform (bioMerieux, Marcy l’Etoile, France and manual QIAGEN extraction (QIAGEN Hilden, Germany. BK DNA quantification was performed by Real Time TaqMan PCR using a commercial kit. Result and discussion: The samples capacity, cost and time spent were compared for both systems. In conclusion our results demonstrate that automated nucleic acid extraction method using Nuclisense easyMAG was superior to manual protocol (QIAGEN Blood Mini kit, for the extraction of BK virus from serum and urine specimens.

  15. Effect of microemulsions on transdermal delivery of citalopram: optimization studies using mixture design and response surface methodology

    Directory of Open Access Journals (Sweden)

    Huang CT

    2013-06-01

    Full Text Available Chi-Te Huang,1 Ming-Jun Tsai,2,3 Yu-Hsuan Lin,1 Yaw-Sya Fu,4 Yaw-Bin Huang,5 Yi-Hung Tsai,5 Pao-Chu Wu11School of Pharmacy, Kaohsiung Medical University, Kaohsiung City, 2Department of Neurology, China Medical University Hospital, Taichung, 3School of Medicine, Medical College, China Medical University, Taichung, 4Faculty of Biomedical Science and Environmental Biology, 5Graduate Institute of Clinical Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan, Republic of ChinaAbstract: The aim of this study was to evaluate the potential of microemulsions as a drug vehicle for transdermal delivery of citalopram. A computerized statistical technique of response surface methodology with mixture design was used to investigate and optimize the influence of the formulation compositions including a mixture of Brij 30/Brij 35 surfactants (at a ratio of 4:1, 20%–30%, isopropyl alcohol (20%–30%, and distilled water (40%–50% on the properties of the drug-loaded microemulsions, including permeation rate (flux and lag time. When microemulsions were used as a vehicle, the drug permeation rate increased significantly and the lag time shortened significantly when compared with the aqueous control of 40% isopropyl alcohol solution containing 3% citalopram, demonstrating that microemulsions are a promising vehicle for transdermal application. With regard to the pharmacokinetic parameters of citalopram, the flux required for the transdermal delivery system was about 1280 µg per hour. The microemulsions loaded with citalopram 3% and 10% showed respective flux rates of 179.6 µg/cm2 and 513.8 µg/cm2 per hour, indicating that the study formulation could provide effective therapeutic concentrations over a practical application area. The animal study showed that the optimized formulation (F15 containing 3% citalopram with an application area of 3.46 cm2 is able to reach a minimum effective therapeutic concentration with no erythematous reaction

  16. A study of two kinds of electromagnetic pulse antennas with a continuous resistive loading using the FDTD method

    International Nuclear Information System (INIS)

    Mao Congguang; Zhou Hui

    2003-01-01

    The cylindrical and conical monopole antenna with a continuous resistive loading is considered as a radiator in the experiments of the electromagnetic pulse compatibility. The various principle of the resistive loading is discussed in details and the characters of the antennas are studied using the Finite-Difference Time-Domain (FDTD) method. The key techniques of the calculating are presented. The results are in good agreement with the documents and the theory

  17. Evaluation of Load Analysis Methods for NASAs GIII Adaptive Compliant Trailing Edge Project

    Science.gov (United States)

    Cruz, Josue; Miller, Eric J.

    2016-01-01

    The Air Force Research Laboratory (AFRL), NASA Armstrong Flight Research Center (AFRC), and FlexSys Inc. (Ann Arbor, Michigan) have collaborated to flight test the Adaptive Compliant Trailing Edge (ACTE) flaps. These flaps were installed on a Gulfstream Aerospace Corporation (GAC) GIII aircraft and tested at AFRC at various deflection angles over a range of flight conditions. External aerodynamic and inertial load analyses were conducted with the intention to ensure that the change in wing loads due to the deployed ACTE flap did not overload the existing baseline GIII wing box structure. The objective of this paper was to substantiate the analysis tools used for predicting wing loads at AFRC. Computational fluid dynamics (CFD) models and distributed mass inertial models were developed for predicting the loads on the wing. The analysis tools included TRANAIR (full potential) and CMARC (panel) models. Aerodynamic pressure data from the analysis codes were validated against static pressure port data collected in-flight. Combined results from the CFD predictions and the inertial load analysis were used to predict the normal force, bending moment, and torque loads on the wing. Wing loads obtained from calibrated strain gages installed on the wing were used for substantiation of the load prediction tools. The load predictions exhibited good agreement compared to the flight load results obtained from calibrated strain gage measurements.

  18. Minimization of CYP2D6 Polymorphic Differences and Improved Bioavailability via Transdermal Administration: Latrepirdine Example.

    Science.gov (United States)

    Chew, Marci L; Mordenti, Joyce; Yeoh, Thean; Ranade, Gautam; Qiu, Ruolun; Fang, Juanzhi; Liang, Yali; Corrigan, Brian

    2016-08-01

    Transdermal delivery has the potential to offer improved bioavailability by circumventing first-pass gut and hepatic metabolism. This study evaluated the pharmacokinetics of oral immediate release and transdermal latrepirdine in extensive and poor CYP2D6 metabolizers (EM/PM). Latrepirdine transdermal solution was prepared extemporaneously. The solution was applied with occlusive dressing to upper or middle back for 24 h. Each subject received a single dose of 8.14 mg oral, 5 mg transdermal, and 10 mg transdermal (EMs only) latrepirdine free base in a fixed sequence. Twelve EMs and 7 PMs (50-79 years) enrolled and completed the study. Latrepirdine was well tolerated following both routes of administration. Dose-normalized latrepirdine total exposures were approximately 11-fold and 1.5-fold higher in EMs and PMs, respectively following administration of transdermal relative to oral. Differences between EM and PM latrepirdine exposures were decreased, with PMs having 1.9- and 2.7-fold higher peak and total exposures, respectively, following transdermal administration compared to 11- and 20-fold higher exposures, respectively, following oral administration. Transdermal delivery can potentially mitigate the large intersubject differences observed with compounds metabolized primarily by CYP2D6. Transdermal delivery was readily accomplished in the clinic using an extemporaneously prepared solution [NCT00990613].

  19. Transdermal and intradermal delivery of therapeutic agents: application of physical technologies

    National Research Council Canada - National Science Library

    Banga, Ajay K

    2011-01-01

    .... Commercialization of transdermal drug delivery requires technology from many disciplines beyond pharmaceutical sciences, such as polymer chemistry, adhesion sciences, mass transport, web film coating...

  20. Stresses from pressure, radial, and moment loads in cylinder-to-cylinder vessel by a finite plate method

    International Nuclear Information System (INIS)

    Brown, S.J.; Fox, M.E.

    1977-08-01

    A structural problem that has received continued interest and development over the last several decades is the determination of stresses in two normally intersecting cylindrical shells subjected to internal pressure and external loading. In nuclear pressure vessels the external loading of the vessel through the attachment is encountered in thermal interaction, seismic loading and various postulated rupture or failure mechanisms. A simple technique, the Finite Plate Method, (FPM) is presented to analyze stresses in cylinder-to-cylinder junctures. The approach uses shallow shell formulations and a three term series expansion plate formulation, which limits the range of applicability. It is felt that the value of the method is its accuracy, economy, and ease in modeling a structure which falls within the range of applicability. Another appealing feature of the method is that its simplistic approach of superposition of results permits an easy extension to include additional loads not treated. For those mechanical loadings not developed, it is felt that their effect can either be accounted for by the mechanisms discussed or by simple calculations. Generally, the stresses resulting from torsional or transverse shear are small compared to the loads discussed, however, these shear effects may be included. Finally, in the instance of thermal stress within the cylinder-to-cylinder structure, it has been shown in an unpublished study by Brown that the FPM yields very good results for the range of curvatures discussed

  1. Fracture Failure of Reinforced Concrete Slabs Subjected to Blast Loading Using the Combined Finite-Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Z. M. Jaini

    Full Text Available Abstract Numerical modeling of fracture failure is challenging due to various issues in the constitutive law and the transition of continuum to discrete bodies. Therefore, this study presents the application of the combined finite-discrete element method to investigate the fracture failure of reinforced concrete slabs subjected to blast loading. In numerical modeling, the interaction of non-uniform blast loading on the concrete slab was modeled using the incorporation of the finite element method with a crack rotating approach and the discrete element method to model crack, fracture onset and its post-failures. A time varying pressure-time history based on the mapping method was adopted to define blast loading. The Mohr-Coulomb with Rankine cut-off and von-Mises criteria were applied for concrete and steel reinforcement respectively. The results of scabbing, spalling and fracture show a reliable prediction of damage and fracture.

  2. Acceptability of a transdermal gel-based male hormonal contraceptive in a randomized controlled trial☆, ☆☆, ★

    Science.gov (United States)

    Roth, Mara Y.; Shih, Grace; Ilani, Niloufar; Wang, Christina; Page, Stephanie T.; Bremner, William J.; Swerdloff, Ronald S.; Sitruk-Ware, Regine; Blithe, Diana L.; Amory, John K.

    2014-01-01

    Objective Fifty percent of pregnancies in the United States are unintended despite numerous contraceptive methods available to women. The only male contraceptive methods, vasectomy and condoms, are used by 10% and 16% of couples, respectively. Prior studies have shown efficacy of male hormonal contraceptives in development, but few have evaluated patient acceptability and potential use if commercially available. The objective of this study is to determine if a transdermal gel-based male hormonal contraceptive regimen, containing testosterone and Nestorone® gels, would be acceptable to study participants as a primary contraceptive method. Study Design As part of a three-arm, 6-month, double-blind, randomized controlled trial of testosterone and nestorone gels at two academic medical centers, subjects completed a questionnaire to assess the acceptability of the regimen. Of the 99 men randomized, 79 provided data for analysis. Results Overall, 56% (44/79) of men were satisfied or extremely satisfied with this gel-based method of contraception, and 51% (40/79) reported that they would recommend this method to others. One third of subjects (26/79) reported that they would use this as their primary method of contraception if it were commercially available today. However, men with concerns about sexually transmitted disease were significantly less satisfied than men without such concerns (p=0.03). Conclusions A majority of the men who volunteered to participate in this trial of an experimental male hormonal contraceptive were satisfied with this transdermal male hormonal contraceptive. If commercially available, a combination of topical nesterone and testosterone gels could provide a reversible, effective method of contraception that is appealing to men. Implications A substantial portion of men report they would use this transdermal male contraceptive regimen if commercially available. This method would provide a novel, reversible method of contraception for men, whose

  3. A Dynamic Calibration Method for Experimental and Analytical Hub Load Comparison

    Science.gov (United States)

    2017-03-01

    computed at various pitch angles through changes in actuator length. The linear spring stiffness was estimated by using the internal volume of the...Vehicle Technology Directorate Mechanics Division (ATTN: RDRL-VTM) Aberdeen Proving Ground, MD 21005-5066 8. PERFORMING ORGANIZATION REPORT NUMBER...Finally, the balance loads are not only induced by the rotor hub loads, but also by loads transmitted via the pitch links to the swashplate. Thus

  4. Enhanced transdermal bioavailability of testosterone propionate via surfactant-modified ethosomes

    Directory of Open Access Journals (Sweden)

    Meng S

    2013-08-01

    Full Text Available Shu Meng,1 Zaixing Chen,2 Liqun Yang,1 Wei Zhang,1 Danhua Liu,1 Jing Guo,1 Yanmin Guan,1 Jianxin Li11Liaoning Research Institute of Family Planning, Shenyang, Liaoning Province, People's Republic of China; 2School of Pharmacy, China Medical University, Shenyang, Liaoning Province, People's Republic of ChinaAbstract: The current investigation aimed to evaluate the transdermal potential of novel testosterone propionate (TP ethosomes and liposomes prepared by surfactant modification. The effect of hexadecyl trimethyl ammonium bromide and cremophor EL-35 on the particle size and zeta potential of the prepared vesicles was investigated. The entrapment efficiency and stability, as well as in vitro and in vivo skin permeation, were studied with the various techniques, such as differential scanning calorimetry, confocal laser scanning microscopy, transmission electron microscopy, dynamic light scattering, and so on. The results indicated that the ethosomes were defined as spherical, unilamellar structures with low polydispersity (0.100 ± 0.015 and nanometric size (156.5 ± 3.5 nm. The entrapment efficiency of TP in ethosomal and liposomal carriers was 92.7% ± 3.7% and 64.7% ± 2.1%, respectively. The stability profile of the prepared TP ethosomal system assessed for 120 days revealed very low aggregation and very low growth in vesicular size. TP ethosomes also provided an enhanced transdermal flux of 37.85 ± 2.8 µg/cm2/hour and a decreased lag time of 0.18 hours across mouse skin. The skin permeation efficiency of the TP ethosomes as further assessed by confocal laser scanning microscopy revealed enhanced permeation of rhodamine red-loaded formulations to the deeper layers of the skin (260 µm than that of the liposomal formation (120 µm.Keywords: testosterone propionate, surfactant-modified ethosomes, liposomes, confocal laser scanning microscopy

  5. A new optimization method based on cellular automata for VVER-1000 nuclear reactor loading pattern

    International Nuclear Information System (INIS)

    Fadaei, Amir Hosein; Setayeshi, Saeed

    2009-01-01

    This paper presents a new and innovative optimization technique, which uses cellular automata for solving multi-objective optimization problems. Due to its ability in simulating the local information while taking neighboring effects into account, the cellular automata technique is a powerful tool for optimization. The fuel-loading pattern in nuclear reactor cores is a major optimization problem. Due to the immensity of the search space in fuel management optimization problems, finding the optimum solution requires a huge amount of calculations in the classical method. The cellular automata models, based on local information, can reduce the computations significantly. In this study, reducing the power peaking factor, while increasing the initial excess reactivity inside the reactor core of VVER-1000, which are two apparently contradictory objectives, are considered as the objective functions. The result is an optimum configuration, which is in agreement with the pattern proposed by the designer. In order to gain confidence in the reliability of this method, the aforementioned problem was also solved using neural network and simulated annealing, and the results and procedures were compared.

  6. Calculation of load-bearing capacity of prestressed reinforced concrete trusses by the finite element method

    Science.gov (United States)

    Agapov, Vladimir; Golovanov, Roman; Aidemirov, Kurban

    2017-10-01

    The technique of calculation of prestressed reinforced concrete trusses with taking into account geometrical and physical nonlinearity is considered. As a tool for solving the problem, the finite element method has been chosen. Basic design equations and methods for their solution are given. It is assumed that there are both a prestressed and nonprestressed reinforcement in the bars of the trusses. The prestress is modeled by setting the temperature effect on the reinforcement. The ways of taking into account the physical and geometrical nonlinearity for bars of reinforced concrete trusses are considered. An example of the analysis of a flat truss is given and the behavior of the truss on various stages of its loading up to destruction is analyzed. A program for the analysis of flat and spatial concrete trusses taking into account the nonlinear deformation is developed. The program is adapted to the computational complex PRINS. As a part of this complex it is available to a wide range of engineering, scientific and technical workers

  7. Development and implementation of a novel measure for quantifying training loads in rowing: the T2minute method.

    Science.gov (United States)

    Tran, Jacqueline; Rice, Anthony J; Main, Luana C; Gastin, Paul B

    2014-04-01

    The systematic management of training requires accurate training load measurement. However, quantifying the training of elite Australian rowers is challenging because of (a) the multicenter, multistate structure of the national program; (b) the variety of training undertaken; and (c) the limitations of existing methods for quantifying the loads accumulated from varied training formats. Therefore, the purpose of this project was to develop a new measure for quantifying training loads in rowing (the T2minute method). Sport scientists and senior coaches at the National Rowing Center of Excellence collaborated to develop the measure, which incorporates training duration, intensity, and mode to quantify a single index of training load. To account for training at different intensities, the method uses standardized intensity zones (T zones) established at the Australian Institute of Sport. Each zone was assigned a weighting factor according to the curvilinear relationship between power output and blood lactate response. Each training mode was assigned a weighting factor based on whether coaches perceived it to be "harder" or "easier" than on-water rowing. A common measurement unit, the T2minute, was defined to normalize sessions in different modes to a single index of load; one T2minute is equivalent to 1 minute of on-water single scull rowing at T2 intensity (approximately 60-72% VO2max). The T2minute method was successfully implemented to support national training strategies in Australian high performance rowing. By incorporating duration, intensity, and mode, the T2minute method extends the concepts that underpin current load measures, providing 1 consistent system to quantify loads from varied training formats.

  8. Evaluation of the Percutaneous Absorption of Ketamine HCl, Gabapentin, Clonidine HCl, and Baclofen, in Compounded Transdermal Pain Formulations, Using the Franz Finite Dose Model.

    Science.gov (United States)

    Bassani, August S; Banov, Daniel

    2016-02-01

    This study evaluates the ability of four commonly used analgesics (ketamine HCl, gabapentin, clonidine HCl, and baclofen), when incorporated into two transdermal compounding bases, Lipoderm and Lipoderm ActiveMax, to penetrate human cadaver trunk skin in vitro, using the Franz finite dose model. In vitro experimental study. Methods. Ketamine HCl 5% w/w, gabapentin 10% w/w, clonidine HCl 0.2% w/w, and baclofen 2% w/w were compounded into two transdermal bases, Lipoderm and Lipoderm ActiveMax. Each compounded drug formulation was tested on skin from three different donors and three replicate skin sections per donor. The Franz finite dose model was used in this study to evaluate the percutaneous absorption and distribution of drugs within each formulation. Rapid penetration to peak flux was detected for gabapentin and baclofen at approximately 1 hour after application. Clonidine HCl also had a rapid penetration to peak flux occurring approximately 1 hour after application and had a secondary peak at approximately 40 hours. Ketamine HCl exhibited higher overall absorption rates than the other drugs, and peaked at 6–10 hours. Similar patterns of drug distribution within the skin were also observed using both transdermal bases. This study suggests that the combination of these 4 analgesic drugs can be successfully delivered transdermally, using either Lipoderm or Lipoderm ActiveMax. Compounded transdermal drug preparations may then provide physicians with an alternative to traditional oral pain management regimens that can be personalized to the specific patient with the potential for enhanced pain control.

  9. A prospective randomized comparative study of the effects of intranasal and transdermal 17 β-estradiol on postmenopausal symptoms and vaginal cytology

    Directory of Open Access Journals (Sweden)

    Odabasi A

    2007-01-01

    Full Text Available Context: Investigating the adverse effects of oral hormone replacement therapy (HRT, the clinical effectiveness of alternative combinations and route of administrations. Aim: To compare the effects of intranasal and transdermal 17β-estradiol combined with vaginal progesterone on vasomotor symptoms and vaginal cytology. Settings and Design: A 12-week, prospective, randomized comparative study was conducted between July 2005 and September 2006. Materials and Methods: Eighty postmenopausal women aged between 42-57 years, who had scores of ≥1.7 on the menopause rating scale-I (MRS-I items "1-6", were randomly assigned to receive intranasal (300 µg/day, n =40 or transdermal (50 µg/day, n =40 17β-estradiol continuously. All patients also received a vaginal progesterone gel twice weekly. Vasomotor symptoms were evaluated at weeks 0, 4, 8 and 12. Vaginal maturation index (VMI was evaluated at weeks 0 and 12 of the study. Statistical Analyses: The Mann-Whitney U and the Wilcoxon tests were used. P < 0.05 was regarded as significant. Results: Thirty-two women in the intranasal and 29 women in the transdermal group completed the study. The total score of the MRS, the sum-scores of Factor 1 "HOT FLUSHES" and Factor 2 "PSYCHE" significantly decreased in both groups at week 4. Factor 3 "ATROPHY" scores significantly decreased only in the transdermal group at week 12. The VMI showed no changes within and between the two groups at the end of the study. Conclusion: Intranasal and transdermal 17β-estradiol combined with vaginal progesterone gel as a continuous HRT caused a similar decrease in vasomotor symptoms but did not have any significant effect on VMI after 12 weeks of treatment in this study population.

  10. Analysis and Assessment of Environmental Load of Vending Machines by a LCA Method, and Eco-Improvement Effect

    Science.gov (United States)

    Kimura, Yukio; Sadamichi, Yucho; Maruyama, Naoki; Kato, Seizo

    These days the environmental impact due to vending machines'(VM) diffusion has greatly been discussed. This paper describes the numerical evaluation of the environmental impact by using the LCA (Life Cycle Assessment) scheme and then proposes eco-improvements' strategy toward environmentally conscious products(ECP). A new objective and universal consolidated method for the LCA-evaluation, so-called LCA-NETS(Numerical Eco-load Standardization ) developed by the authors is applied to the present issue. As a result, the environmental loads at the 5years' operation and the material procurement stages are found to dominate others over the life cycle. Further eco-improvement is realized by following the order of the LCA-NETS magnitude; namely, energy saving, materials reducing, parts' re-using, and replacing with low environmental load material. Above all, parts' re-using is specially recommendable for significant reduction of the environmental loads toward ECP.

  11. Use of electroporation and reverse iontophoresis for extraction of transdermal multibiomarkers

    Directory of Open Access Journals (Sweden)

    Ching CTS

    2012-02-01

    Full Text Available Congo Tak-Shing Ching1,2, Lin-Shien Fu3-5, Tai-Ping Sun1, Tzu-Hsiang Hsu1, Kang-Ming Chang21Department of Electrical Engineering, National Chi Nan University, Puli, Nantou County, 2Department of Photonics and Communication Engineering, Asia University, Wufeng, Taichung, 3Department of Pediatrics, National Yang Ming University, Taipei, 4Institute of Technology, National Chi Nan University, Puli, 5Department of Pediatrics, Taichung Veterans General Hospital, Taichung City, TaiwanBackground: Monitoring of biomarkers, like urea, prostate-specific antigen (PSA, and osteopontin, is very important because they are related to kidney disease, prostate cancer, and ovarian cancer, respectively. It is well known that reverse iontophoresis can enhance transdermal extraction of small molecules, and even large molecules if reverse iontophoresis is used together with electroporation. Electroporation is the use of a high-voltage electrical pulse to create nanochannels within the stratum corneum, temporarily and reversibly. Reverse iontophoresis is the use of a small current to facilitate both charged and uncharged molecule transportation across the skin. The objectives of this in vitro study were to determine whether PSA and osteopontin are extractable transdermally and noninvasively and whether urea, PSA, and osteopontin can be extracted simultaneously by electroporation and reverse iontophoresis.Methods: All in vitro experiments were conducted using a diffusion cell assembled with the stratum corneum of porcine skin. Three different symmetrical biphasic direct currents (SBdc, five various electroporations, and a combination of the two techniques were applied to the diffusion cell via Ag/AgCl electrodes. The three different SBdc had the same current density of 0.3 mA/cm2, but different phase durations of 0 (ie, no current, control group, 30, and 180 seconds. The five different electroporations had the same pulse width of 1 msec and number of pulses per second

  12. Enhancement of transdermal delivery of ibuprofen using microemulsion vehicle.

    Science.gov (United States)

    Hu, Liandong; Hu, Qiaofeng; Yang, Jianxue

    2014-10-01

    The objective of this study was to find a stable microemulsion vehicle for transdermal delivery of ibuprofen to improve the skin permeability. Microemulsion was prepared using different sorts of oils, surfactants and co-surfactants. Pseudo-ternary phase diagrams were used to evaluate the microemulsion domain. The effects of oleic acid and surfactant mixture on skin permeation of ibuprofen were evaluated with excised skins. The optimum formulation F3 consisting of 6% oleic acid, 30% Cremophor RH40/Transcutol P (2:1, w/w) and 59% water phase, showed a high permeation rate of 42.98 µg/cm(2)/hr. The mean droplet size of microemulsion was about 43 nm and no skin irritation signs were observed on the skin of rabbits. These results indicated that this novel microemulsion is a useful formulation for the transdermal delivery of ibuprofen.

  13. Novel engineered systems for oral, mucosal and transdermal drug delivery.

    Science.gov (United States)

    Li, Hairui; Yu, Yuan; Faraji Dana, Sara; Li, Bo; Lee, Chi-Ying; Kang, Lifeng

    2013-08-01

    Technological advances in drug discovery have resulted in increasing number of molecules including proteins and peptides as drug candidates. However, how to deliver drugs with satisfactory therapeutic effect, minimal side effects and increased patient compliance is a question posted before researchers, especially for those drugs with poor solubility, large molecular weight or instability. Microfabrication technology, polymer science and bioconjugate chemistry combine to address these problems and generate a number of novel engineered drug delivery systems. Injection routes usually have poor patient compliance due to their invasive nature and potential safety concerns over needle reuse. The alternative non-invasive routes, such as oral, mucosal (pulmonary, nasal, ocular, buccal, rectal, vaginal), and transdermal drug delivery have thus attracted many attentions. Here, we review the applications of the novel engineered systems for oral, mucosal and transdermal drug delivery.

  14. Current advances in transdermal delivery of drugs for Alzheimer's disease

    Science.gov (United States)

    Nguyen, Thuy Trang; Giau, Vo Van; Vo, Tuong Kha

    2017-01-01

    Alzheimer's disease (AD) is a common, progressive, fatal neurodegenerative disorder, which will play an increasingly important role both socially and financially in the aging populations. Treatments for AD show modest improvements in cognition and global functioning among patients. Furthermore, the oral administration of treating AD has had some drawbacks that decrease the medication adherence and efficacy of the therapy. Transdermal drugs are proposed as an alternative remedy to overcome the disadvantages of current pharmaceutical dosage options for this chronic disorder. They could have different strengths, such as offering a stable diffusion of active substance, avoiding the first pass metabolism, and reducing system adverse reactions. This article reviews the technical principles, novel techniques of transdermal delivery drug, and prospects for future development for the management of cognitive and behavioral dysfunctions in AD patients. PMID:28706327

  15. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Gorzelanny, Christian; Halter, Natalia

    2016-01-01

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248 +/- 94 nm to 600 +/- 201 nm, depending on the amount of phospholipids...... used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7 days in Phosphate Buffer...... culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system....

  16. Inkjet printing of insulin microneedles for transdermal delivery.

    Science.gov (United States)

    Ross, Steven; Scoutaris, Nicolaos; Lamprou, Dimitrios; Mallinson, David; Douroumis, Dennis

    2015-08-01

    Inkjet printing technology was used to apply insulin polymeric layers on metal microneedles for transdermal delivery. A range of various polymers such as gelatin (GLN), polyvinyl caprolactame-polyvinyl acetate-polyethylene glycol (SOL), poly(2-ethyl-2-oxazoline) (POX) and trehalose (THL) were assessed for their capacity to form thin uniform and homogeneous layers that preserve insulin intact. Atomic force microscopy (AFM) showed homogeneous insulin-polymer layers without any phase separation while SOL demonstrated the best performance. Circular discroism (CD) analysis of rehydrated films showed that insulin's alpha helices and β-sheet were well preserved for THL and SOL. In contrast, GLN and POX insulin layers revealed small band shifts indicating possible conformational changes. Insulin release in Franz diffusion cells from MNs inserted into porcine skin showed rapid release rates for POX and GLN within the first 20 min. Inkjet printing was proved an effective approach for transdermal delivery of insulin in solid state.

  17. Current advances in transdermal delivery of drugs for Alzheimer's disease.

    Science.gov (United States)

    Nguyen, Thuy Trang; Giau, Vo Van; Vo, Tuong Kha

    2017-01-01

    Alzheimer's disease (AD) is a common, progressive, fatal neurodegenerative disorder, which will play an increasingly important role both socially and financially in the aging populations. Treatments for AD show modest improvements in cognition and global functioning among patients. Furthermore, the oral administration of treating AD has had some drawbacks that decrease the medication adherence and efficacy of the therapy. Transdermal drugs are proposed as an alternative remedy to overcome the disadvantages of current pharmaceutical dosage options for this chronic disorder. They could have different strengths, such as offering a stable diffusion of active substance, avoiding the first pass metabolism, and reducing system adverse reactions. This article reviews the technical principles, novel techniques of transdermal delivery drug, and prospects for future development for the management of cognitive and behavioral dysfunctions in AD patients.

  18. A Simplified Short Term Load Forecasting Method Based on Sequential Patterns

    DEFF Research Database (Denmark)

    Kouzelis, Konstantinos; Bak-Jensen, Birgitte; Mahat, Pukar

    2014-01-01

    Load forecasting is an essential part of a power system both for planning and daily operation purposes. As far as the latter is concerned, short term load forecasting has been broadly used at the transmission level. However, recent technological advancements and legislation have facilitated the i...... in comparison with an ARIMA model....

  19. Numerical methods for analysis of structure and ground vibration from moving loads

    DEFF Research Database (Denmark)

    Andersen, L.; Nielsen, S.R.K.; Krenk, Steen

    2007-01-01

    An overview of the main theoretical aspects of finite-element and boundary-element modelling of the response to moving loads is given. The moving loads represent sources of noise and vibration generated by moving vehicles, and the analysis describes the propagation of the disturbances generated i...

  20. A generalized modal shock spectra method for spacecraft loads analysis. [internal loads in a spacecraft structure subjected to a dynamic launch environment

    Science.gov (United States)

    Trubert, M.; Salama, M.

    1979-01-01

    Unlike an earlier shock spectra approach, generalization permits an accurate elastic interaction between the spacecraft and launch vehicle to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis with or without a dummy spacecraft - is exploited to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces. Greater accuracy is achieved with the present method over the earlier shock spectra, while saving much computational effort over the transient analysis.

  1. Evaluation of Diclofenac Prodrugs for Enhancing Transdermal Delivery

    OpenAIRE

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2013-01-01

    The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD), and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates, and bioconversion rates. ...

  2. Current advances in transdermal delivery of drugs for alzheimer's disease

    OpenAIRE

    Thuy Trang Nguyen; Vo Van Giau; Tuong Kha Vo

    2017-01-01

    Alzheimer's disease (AD) is a common, progressive, fatal neurodegenerative disorder, which will play an increasingly important role both socially and financially in the aging populations. Treatments for AD show modest improvements in cognition and global functioning among patients. Furthermore, the oral administration of treating AD has had some drawbacks that decrease the medication adherence and efficacy of the therapy. Transdermal drugs are proposed as an alternative remedy to overcome the...

  3. Optimization of transdermal delivery using magainin pore-forming peptide

    OpenAIRE

    Kim, Yeu-Chun; Ludovice, Peter J.; Prausnitz, Mark R.

    2008-01-01

    The skin's outer layer of stratum corneum, which is a thin tissue containing multilamellar lipid bilayers, is the main barrier to drug delivery to the skin. To increase skin permeability, our previous work has shown large enhancement of transdermal permeation using a pore-forming peptide, magainin, which was formulated with N-lauroyl sarcosine (NLS) in 50% ethanol-in-PBS. Mechanistic analysis suggested that magainin and NLS can increase skin permeability by disrupting stratum corneum lipid st...

  4. Microneedle-based drug delivery systems for transdermal route.

    Science.gov (United States)

    Pierre, Maria Bernadete Riemma; Rossetti, Fabia Cristina

    2014-03-01

    Transdermal delivery offers an attractive, noninvasive administration route but it is limited by the skin's barrier to penetration. Minimally invasive techniques, such as the use of microneedles (MNs), bypass the stratum corneum (SC) barrier to permit the drug's direct access to the viable epidermis. These novel micro devices have been developed to puncture the skin for the transdermal delivery of hydrophilic drugs and macromolecules, including peptides, DNA and other molecules, that would otherwise have difficulty passing the outermost layer of the skin, the SC. Using the tools of the microelectronics industry, MNs have been fabricated with a range of sizes, shapes and materials. MNs have been shown to be robust enough to penetrate the skin and dramatically increase the skin permeability of several drugs. Moreover, MNs have reduced needle insertion pain and tissue trauma and provided controlled delivery across the skin. This review focuses on the current state of the art in the transdermal delivery of drugs using various types of MNs and developments in the field of microscale devices, as well as examples of their uses and clinical safety.

  5. Evaluation of mesotherapy as a transdermal drug delivery tool.

    Science.gov (United States)

    Kim, S; Kye, J; Lee, M; Park, B

    2016-05-01

    There has been no research about the exact mechanism of transdermal drug delivery during mesotherapy. We aimed to evaluate whether the commercial mesogun can be an appropriate technique for a transdermal drug delivery. We injected blue ink into the polyurethane foam or pig skin with three types of mesotherapy using a commercial mesogun, or local made intradermal injector, or a manual injection of syringe. To assess the internal pressure of the cylinder and drug delivery time, we designed the evaluation setup using a needle tip pressure transducer. All types of injectors induced adequate penetration of blue ink into the polyurethane foam without backflow. In the pig skin, blue ink leaked out rapidly with the backward movement of the needle in the commercial mesogun in contrast to the local made injector or the manual injection of syringe. When the time for backward movement of the syringe approaches 1000 ms, the cylinder pressure of the syringe is saturated at around 25 mmHg which can be translated into the dermal pressure of the pig skin. There should be sufficient time between the insertion and withdrawal of the needle of injector for the adequate transdermal drug delivery and it must be considered for mesotherapy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Microneedles for Transdermal Biosensing: Current Picture and Future Direction.

    Science.gov (United States)

    Ventrelli, Letizia; Marsilio Strambini, Lucanos; Barillaro, Giuseppe

    2015-12-09

    A novel trend is rapidly emerging in the use of microneedles, which are a miniaturized replica of hypodermic needles with length-scales of hundreds of micrometers, aimed at the transdermal biosensing of analytes of clinical interest, e.g., glucose, biomarkers, and others. Transdermal biosensing via microneedles offers remarkable opportunities for moving biosensing technologies and biochips from research laboratories to real-field applications, and envisages easy-to-use point-of-care microdevices with pain-free, minimally invasive, and minimal-training features that are very attractive for both developed and emerging countries. In addition to this, microneedles for transdermal biosensing offer a unique possibility for the development of biochips provided with end-effectors for their interaction with the biological system under investigation. Direct and efficient collection of the biological sample to be analyzed will then become feasible in situ at the same length-scale of the other biochip components by minimally trained personnel and in a minimally invasive fashion. This would eliminate the need for blood extraction using hypodermic needles and reduce, in turn, related problems, such as patient infections, sample contaminations, analysis artifacts, etc. The aim here is to provide a thorough and critical analysis of state-of-the-art developments in this novel research trend, and to bridge the gap between microneedles and biosensors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development and evaluation of transdermal organogels containing nicorandil.

    Science.gov (United States)

    Madan, J R; Sagar, Banode; Chellappan, Dinesh K; Dua, Kamal

    2013-01-01

    The objective of the study was to formulate a transdermal product containing Nicorandil as a model drug, because it has been first drug of choice to treat angina and hypertension. A further objective was to reduce its side effects. The transdermal product was prepared using various synthetic and natural gelling agents such as Carbopol 934p, Carbopol 974p, HPMC K15M and HPMC K100M. Various penetration enhancers were incorporated to enhance the diffusion across the rat skin. A further objective was to formulate organogels and minimize the concentration of penetration enhancer to 50% of the concentration used in gels and yet to achieve the maximum drug release. The prepared formulations were evaluated for their physical appearance, viscosity, spreadability, drug content and freeze thaw cycle. Based on in vitro studies across rat skin and human cadaver skin it was concluded that Nicrorandil transdermal organogel formulation using HPMC K100M with 2% w/w Transcutol-P shows increase in cumulative diffusion of Nicorandil amongst all other formulations.

  8. Microneedles array with biodegradable tips for transdermal drug delivery

    Science.gov (United States)

    Iliescu, Ciprian; Chen, Bangtao; Wei, Jiashen; Tay, Francis E. H.

    2008-12-01

    The paper presented an enhancement solution for transdermal drug delivery using microneedles array with biodegradable tips. The microneedles array was fabricated by using deep reactive ion etching (DRIE) and the biodegradable tips were made to be porous by electrochemical etching process. The porous silicon microneedle tips can greatly enhance the transdermal drug delivery in a minimum invasion, painless, and convenient manner, at the same time; they are breakable and biodegradable. Basically, the main problem of the silicon microneedles consists of broken microneedles tips during the insertion. The solution proposed is to fabricate the microneedle tip from a biodegradable material - porous silicon. The silicon microneedles are fabricated using DRIE notching effect of reflected charges on mask. The process overcomes the difficulty in the undercut control of the tips during the classical isotropic silicon etching process. When the silicon tips were formed, the porous tips were then generated using a classical electrochemical anodization process in MeCN/HF/H2O solution. The paper presents the experimental results of in vitro release of calcein and BSA with animal skins using a microneedle array with biodegradable tips. Compared to the transdermal drug delivery without any enhancer, the microneedle array had presented significant enhancement of drug release.

  9. Transient Analysis of Lumped Circuit Networks Loaded Thin Wires By DGTD Method

    KAUST Repository

    Li, Ping

    2016-03-31

    With the purpose of avoiding very fine mesh cells in the proximity of a thin wire, the modified telegrapher’s equations (MTEs) are employed to describe the thin wire voltage and current distributions, which consequently results in reduced number of unknowns and augmented Courant-Friedrichs-Lewy (CFL) number. As hyperbolic systems, both the MTEs and the Maxwell’s equations are solved by the discontinuous Galerkin time-domain (DGTD) method. In realistic situations, the thin wires could be either driven or loaded by circuit networks. The thin wire-circuit interface performs as a boundary condition for the thin wire solver, where the thin wire voltage and current used for the incoming flux evaluation involved in the DGTD analyzed MTEs are not available. To obtain this voltage and current, an auxiliary current flowing through the thin wire-circuit interface is introduced at each interface. Corresponding auxiliary equations derived from the invariable property of characteristic variable for hyperbolic systems are developed and solved together with the circuit equations established by the modified nodal analysis (MNA) modality. Furthermore, in order to characterize the field and thin wire interactions, a weighted electric field and a volume current density are added into the MTEs and Maxwell-Ampere’s law equation, respectively. To validate the proposed algorithm, three representative examples are presented.

  10. A Failure Estimation Method of Steel Pipe Elbows under In-plane Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Bub-Gyu Jeon

    2017-02-01

    Full Text Available The relative displacement of a piping system installed between isolated and nonisolated structures in a severe earthquake might be larger when without a seismic isolation system. As a result of the relative displacement, the seismic risks of some components in the building could increase. The possibility of an increase in seismic risks is especially high in the crossover piping system in the buildings. Previous studies found that an elbow which could be ruptured by low-cycle ratcheting fatigue is one of the weakest elements. Fatigue curves for elbows were suggested based on component tests. However, it is hard to find a quantitative evaluation of the ultimate state of piping elbows. Generally, the energy dissipation of a solid structure can be calculated from the relation between displacement and force. Therefore, in this study, the ultimate state of the pipe elbow, normally considered as failure of the pipe elbow, is defined as leakage under in-plane cyclic loading tests, and a failure estimation method is proposed using a damage index based on energy dissipation.

  11. Transient Analysis of Lumped Circuit Networks Loaded Thin Wires By DGTD Method

    KAUST Repository

    Li, Ping; Shi, Yifei; Jiang, Li Jun; Bagci, Hakan

    2016-01-01

    With the purpose of avoiding very fine mesh cells in the proximity of a thin wire, the modified telegrapher’s equations (MTEs) are employed to describe the thin wire voltage and current distributions, which consequently results in reduced number of unknowns and augmented Courant-Friedrichs-Lewy (CFL) number. As hyperbolic systems, both the MTEs and the Maxwell’s equations are solved by the discontinuous Galerkin time-domain (DGTD) method. In realistic situations, the thin wires could be either driven or loaded by circuit networks. The thin wire-circuit interface performs as a boundary condition for the thin wire solver, where the thin wire voltage and current used for the incoming flux evaluation involved in the DGTD analyzed MTEs are not available. To obtain this voltage and current, an auxiliary current flowing through the thin wire-circuit interface is introduced at each interface. Corresponding auxiliary equations derived from the invariable property of characteristic variable for hyperbolic systems are developed and solved together with the circuit equations established by the modified nodal analysis (MNA) modality. Furthermore, in order to characterize the field and thin wire interactions, a weighted electric field and a volume current density are added into the MTEs and Maxwell-Ampere’s law equation, respectively. To validate the proposed algorithm, three representative examples are presented.

  12. A failure estimation method of steel pipe elbows under in-plane cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Bub Gyu; Kim, Sung Wan; Choi, Hyoung Suk; Park, Dong Uk [Seismic Simulation Tester Center, Pusan National University, Yangsan (Korea, Republic of); Kim, Nam Sik [Dept. of Civil and Environmental Engineering, Pusan National University, Busan (Korea, Republic of)

    2017-02-15

    The relative displacement of a piping system installed between isolated and nonisolated structures in a severe earthquake might be larger when without a seismic isolation system. As a result of the relative displacement, the seismic risks of some components in the building could increase. The possibility of an increase in seismic risks is especially high in the crossover piping system in the buildings. Previous studies found that an elbow which could be ruptured by low-cycle ratcheting fatigue is one of the weakest elements. Fatigue curves for elbows were suggested based on component tests. However, it is hard to find a quantitative evaluation of the ultimate state of piping elbows. Generally, the energy dissipation of a solid structure can be calculated from the relation between displacement and force. Therefore, in this study, the ultimate state of the pipe elbow, normally considered as failure of the pipe elbow, is defined as leakage under in-plane cyclic loading tests, and a failure estimation method is proposed using a damage index based on energy dissipation.

  13. A failure estimation method of steel pipe elbows under in-plane cyclic loading

    International Nuclear Information System (INIS)

    Jeon, Bub Gyu; Kim, Sung Wan; Choi, Hyoung Suk; Park, Dong Uk; Kim, Nam Sik

    2017-01-01

    The relative displacement of a piping system installed between isolated and nonisolated structures in a severe earthquake might be larger when without a seismic isolation system. As a result of the relative displacement, the seismic risks of some components in the building could increase. The possibility of an increase in seismic risks is especially high in the crossover piping system in the buildings. Previous studies found that an elbow which could be ruptured by low-cycle ratcheting fatigue is one of the weakest elements. Fatigue curves for elbows were suggested based on component tests. However, it is hard to find a quantitative evaluation of the ultimate state of piping elbows. Generally, the energy dissipation of a solid structure can be calculated from the relation between displacement and force. Therefore, in this study, the ultimate state of the pipe elbow, normally considered as failure of the pipe elbow, is defined as leakage under in-plane cyclic loading tests, and a failure estimation method is proposed using a damage index based on energy dissipation

  14. Equivalent glycemic load (EGL: a method for quantifying the glycemic responses elicited by low carbohydrate foods

    Directory of Open Access Journals (Sweden)

    Spolar Matt

    2006-08-01

    Full Text Available Abstract Background Glycemic load (GL is used to quantify the glycemic impact of high-carbohydrate (CHO foods, but cannot be used for low-CHO foods. Therefore, we evaluated the accuracy of equivalent-glycemic-load (EGL, a measure of the glycemic impact of low-CHO foods defined as the amount of CHO from white-bread (WB with the same glycemic impact as one serving of food. Methods Several randomized, cross-over trials were performed by a contract research organization using overnight-fasted healthy subjects drawn from a pool of 63 recruited from the general population by newspaper advertisement. Incremental blood-glucose response area-under-the-curve (AUC elicited by 0, 5, 10, 20, 35 and 50 g CHO portions of WB (WB-CHO and 3, 5, 10 and 20 g glucose were measured. EGL values of the different doses of glucose and WB and 4 low-CHO foods were determined as: EGL = (F-B/M, where F is AUC after food and B is y-intercept and M slope of the regression of AUC on grams WB-CHO. The dose-response curves of WB and glucose were used to derive an equation to estimate GL from EGL, and the resulting values compared to GL calculated from the glucose dose-response curve. The accuracy of EGL was assessed by comparing the GL (estimated from EGL values of the 4 doses of oral-glucose with the amounts actually consumed. Results Over 0–50 g WB-CHO (n = 10, the dose-response curve was non-linear, but over the range 0–20 g the curve was indistinguishable from linear, with AUC after 0, 5, 10 and 20 g WB-CHO, 10 ± 1, 28 ± 2, 58 ± 5 and 100 ± 6 mmol × min/L, differing significantly from each other (n = 48. The difference between GL values estimated from EGL and those calculated from the dose-response curve was 0 g (95% confidence-interval, ± 0.5 g. The difference between the GL values of the 4 doses of glucose estimated from EGL, and the amounts of glucose actually consumed was 0.2 g (95% confidence-interval, ± 1 g. Conclusion EGL, a measure of the glycemic impact of

  15. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method

    Science.gov (United States)

    Kashi, Tahereh Sadat Jafarzadeh; Eskandarion, Solmaz; Esfandyari-Manesh, Mehdi; Marashi, Seyyed Mahmoud Amin; Samadi, Nasrin; Fatemi, Seyyed Mostafa; Atyabi, Fatemeh; Eshraghi, Saeed; Dinarvand, Rassoul

    2012-01-01

    Background Low drug entrapment efficiency of hydrophilic drugs into poly(lactic-co-glycolic acid) (PLGA) nanoparticles is a major drawback. The objective of this work was to investigate different methods of producing PLGA nanoparticles containing minocycline, a drug suitable for periodontal infections. Methods Different methods, such as single and double solvent evaporation emulsion, ion pairing, and nanoprecipitation were used to prepare both PLGA and PEGylated PLGA nanoparticles. The resulting nanoparticles were analyzed for their morphology, particle size and size distribution, drug loading and entrapment efficiency, thermal properties, and antibacterial activity. Results The nanoparticles prepared in this study were spherical, with an average particle size of 85–424 nm. The entrapment efficiency of the nanoparticles prepared using different methods was as follows: solid/oil/water ion pairing (29.9%) > oil/oil (5.5%) > water/oil/water (4.7%) > modified oil/water (4.1%) > nano precipitation (0.8%). Addition of dextran sulfate as an ion pairing agent, acting as an ionic spacer between PEGylated PLGA and minocycline, decreased the water solubility of minocycline, hence increasing the drug entrapment efficiency. Entrapment efficiency was also increased when low molecular weight PLGA and high molecular weight dextran sulfate was used. Drug release studies performed in phosphate buffer at pH 7.4 indicated slow release of minocycline from 3 days to several weeks. On antibacterial analysis, the minimum inhibitory concentration and minimum bactericidal concentration of nanoparticles was at least two times lower than that of the free drug. Conclusion Novel minocycline-PEGylated PLGA nanoparticles prepared by the ion pairing method had the best drug loading and entrapment efficiency compared with other prepared nanoparticles. They also showed higher in vitro antibacterial activity than the free drug. PMID:22275837

  16. Transdermic absorption of Melagenina II; Evaluacion de la absorcion transdermica de la Melagenina II

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Gonzalez, I; Martinez Lopez, B; Ruiz Pena, M; Caso Pena, R [Centro de Isotopos, La Habana (Cuba)

    1998-12-31

    The transdermic absorption of Melagenina II (MII) was evaluated. MII was a labelled with {sup 125I} by the yodogen method and purified by column chromatography with Sephadex LH-20 in ethanol: water (7:3). In vitro absorption of ({sup 125I}) - MII thought human skin was carried out in Keshary-Chien modified diffusion cells. Tape stripping method was applied after 24 hours to evaluate the accumulated activity in dermis and epidermis. In vivo assays were performed in Sprague Dawley rats to analyze absorption of MII until 24 hours after a single application and for five days a low penetrability of the drug while in vivo there were not found blood levels significantly greater than zero , nevertheless and important amount of radioactivity was found in feces and urine. The activity was concentrated mainly in the application site in both models

  17. Future of the transdermal drug delivery market--have we barely touched the surface?

    Science.gov (United States)

    Watkinson, Adam C; Kearney, Mary-Carmel; Quinn, Helen L; Courtenay, Aaron J; Donnelly, Ryan F

    2016-01-01

    Transdermal drug delivery is the movement of drugs across the skin for absorption into the systemic circulation. Transfer of the drug can occur via passive or active means; passive transdermal products do not disrupt the stratum corneum to facilitate delivery whereas active technologies do. Due to the very specific physicochemical properties necessary for successful passive transdermal drug delivery, this sector of the pharmaceutical industry is relatively small. There are many well-documented benefits of this delivery route however, and as a result there is great interest in increasing the number of therapeutic substances that can be delivered transdermally. This review discusses the various transdermal products that are currently/have been marketed, and the paths that led to their success, or lack of. Both passive and active transdermal technologies are considered with the advantages and limitations of each highlighted. In addition to marketed products, technologies that are in the investigative stages by various pharmaceutical companies are reviewed. Passive transdermal drug delivery has made limited progress in recent years, however with the ongoing intense research into active technologies, there is great potential for growth within the transdermal delivery market. A number of active technologies have already been translated into marketed products, with other platforms including microneedles, rapidly progressing towards commercialisation.

  18. Transdermal administration of radiolabelled [14C]rotigotine by a patch formulation: A mass balance trial

    NARCIS (Netherlands)

    Cawello, W.; Wolff, H.M.; Meuling, W.J.A.; Horstmann, R.; Braun, M.

    2007-01-01

    Background and objective: The dopamine agonist rotigotine has been formulated in a silicone-based transdermal system for once-daily administration. The objective of the present study was to characterise the mass balance of rotigotine in humans after administration of a single transdermal patch

  19. The LG-bank control concept: An improved method for PWR load-following operation

    International Nuclear Information System (INIS)

    Park, Won Seok; Christenson, J.M.

    1990-01-01

    In this paper the authors present the results of an investigation of a new pressurized water reactor load-following control concept that utilizes light gray (LG) banks in combination with a single high-worth bank. The investigation determined a control strategy and a set of nuclear design parameters for the control banks that permits unrestricted load-following operation over a wide power range at both beginning-of-cycle and end-of-cycle conditions. Advantages of the LG-bank control concept are that flexible load-following maneuvers can be performed without either making changes in the boron concentration or requiring the continuous insertion of a high-worth control bank. These features remove both of the disadvantages of current gray-bank load-following designs, which generally require the continuous insertion of a high-worth bank and in some cases also involve changes in the boron concentration

  20. Review of Improved Methods for Analysing Load Attraction and Thermal Effects in Bonded Composite Repair Design

    National Research Council Canada - National Science Library

    Harman, A

    2003-01-01

    .... Recent work, however, has identified improved equations to account for load attraction into the stiffened repaired area, and evaluate the thermally induced stresses in the repaired structure and the patch...

  1. Generation Following with Thermostatically Controlled Loads via Alternating Direction Method of Multipliers Sharing Algorithm

    OpenAIRE

    Burger, Eric M.; Moura, Scott J.

    2015-01-01

    A fundamental requirement of the electric power system is to maintain a continuous and instantaneous balance between generation and load. The intermittency and uncertainty introduced by renewable energy generation requires the expansion of ancillary power system services to maintain such a balance. In this paper, we examine the potential of thermostatically controlled loads (TCLs), such as refrigerators and electric water heaters, to provide generation following services in real-time energy m...

  2. Formulation Optimization and Ex Vivo and In Vivo Evaluation of Celecoxib Microemulsion-Based Gel for Transdermal Delivery.

    Science.gov (United States)

    Cao, Mengyuan; Ren, Lili; Chen, Guoguang

    2017-08-01

    Celecoxib (CXB) is a poorly aqueous solubility sulfonamide non-steroidal anti-inflammatory drug (NSAID). Hence, the formulation of CXB was selected for solubilization and bioavailability. To find out suitable formulation for microemulsion, the solubility of CXB in triacetin (oil phase), Tween 80 (surfactant), and Transcutol-P (co-surfactant) was screened respectively and optimized by using orthogonal experimental design. The Km value and concentration of oil, S mix , and water were confirmed by pseudo-ternary phase diagram studies and central composite design. One percent carbopol 934 was added to form CXB microemulsion-based gel. The final formulation was evaluated for its appearance, pH, viscosity, stability, drug content determination, globule size, and zeta potential. Its ex vivo drug permeation and the in vivo pharmacokinetic was investigated. Further research was performed to ensure the safety and validity by skin irritation study and in vivo anti-inflammatory activity study. Ex vivo permeation study in mice was designed to compare permeation and transdermal ability between microemulsion formulation and conventional gel. The results revealed that optimized microemulsion-based gel gained higher permeation based on smaller globule size and high drug loading of microemulsion. Transdermal ability was also greatly improved. Bioavailability was compared to market Celebrex® by the in vivo pharmacokinetic study in rabbits. The results indicated that CXB microemulsion-based gel had better bioavailability than Celebrex®.

  3. Electroporation-delivered transdermal neostigmine in rats: equivalent action to intravenous administration

    Directory of Open Access Journals (Sweden)

    Berkó S

    2016-05-01

    Full Text Available Szilvia Berkó,1,* Kálmán F Szűcs,2,* Boglárka Balázs,1,3 Erzsébet Csányi,1 Gábor Varju,4 Anita Sztojkov-Ivanov,2 Mária Budai-Szűcs,1 Judit Bóta,2 Róbert Gáspár2 1Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Szeged, Szeged, Hungary; 2Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary; 3Gedeon Richter Plc., Budapest, 4Dr Derm Clinic of Anti-Aging Dermatology, Aesthetic Laser and Plastic Surgery, Budapest, Hungary *These authors contributed equally to this work Purpose: Transdermal electroporation has become one of the most promising noninvasive methods for drug administration, with greatly increased transport of macromolecules through the skin. The cecal-contracting effects of repeated transdermal electroporation delivery and intravenous administration of neostigmine were compared in anesthetized rats. Methods: The cecal contractions were detected with implantable strain gauge sensors, and the plasma levels of neostigmine were followed by high-performance liquid chromatography. Results: Both intravenously and EP-administered neostigmine (0.2–66.7 µg/kg increased the cecal contractions in a dose-dependent manner. For both the low doses and the highest dose, the neostigmine plasma concentrations were the same after the two modes of administration, while an insignificantly higher level was observed at a dose of 20 µg/kg after intravenous administration as compared with the electroporation route. The contractile responses did not differ significantly after the two administration routes. Conclusion: The results suggest that electroporation-delivered neostigmine elicits action equivalent to that observed after intravenous administration as concerning both time and intensity. Electroporation permits the delivery of even lower doses of water-soluble compounds through the skin, which is very promising for clinical practice. Keywords: transdermal

  4. Evaluation of transdermal delivery of nanoemulsions in ex vivo porcine skin using two-photon microscopy and confocal laser-scanning microscopy

    Science.gov (United States)

    Choi, Sanghoon; Kim, Jin Woong; Lee, Yong Joong; Delmas, Thomas; Kim, Changhwan; Park, Soyeun; Lee, Ho

    2014-10-01

    This study experimentally evaluates the self-targeting ability of asiaticoside-loaded nanoemulsions compared with nontargeted nanoemulsions in ex vivo experiments with porcine skin samples. Homebuilt two-photon and confocal laser-scanning microscopes were employed to noninvasively examine the transdermal delivery of two distinct nanoemulsions. Prior to the application of nanoemulsions, we noninvasively observed the morphology of porcine skin using two-photon microscopy. We have successfully visualized the distributions of the targeted and nontargeted nanoemulsions absorbed into the porcine skin samples. Asiaticoside-loaded nanoemulsions showed an improved ex vivo transdermal delivery through the stratum corneum compared with nonloaded nanoemulsions. As a secondary measure, nanoemulsions-applied samples were sliced in the depth direction with a surgical knife in order to obtain the complete depth-direction distribution profile of Nile red fluorescence. XZ images demonstrated that asiaticoside-loaded nanoemulsion penetrated deeper into the skin compared with nontargeted nanoemulsions. The basal layer boundary is clearly visible in the case of the asiaticoside-loaded skin sample. These results reaffirm the feasibility of using self-targeting ligands to improve permeation through the skin barrier for cosmetics and topical drug applications.

  5. Reliability Analysis of Offshore Jacket Structures with Wave Load on Deck using the Model Correction Factor Method

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Friis-Hansen, P.; Nielsen, J.S.

    2006-01-01

    failure/collapse of jacket type platforms with wave in deck loads using the so-called Model Correction Factor Method (MCFM). A simple representative model for the RSR measure is developed and used in the MCFM technique. A realistic example is evaluated and it is seen that it is possible to perform...

  6. Relationships Between Results Of An Internal And External Match Load Determining Method In Male, Singles Badminton Players.

    Science.gov (United States)

    Abdullahi, Yahaya; Coetzee, Ben; Van den Berg, Linda

    2017-07-03

    The study purpose was to determine relationships between results of internal and external match load determining methods. Twenty-one players, who participated in selected badminton championships during the 2014/2015 season served as subjects. The heart rate (HR) values and GPS data of each player were obtained via a fix Polar HR Transmitter Belt and MinimaxX GPS device. Moderate significant Spearman's rank correlations were found between HR and absolute duration (r = 0.43 at a low intensity (LI) and 0.44 at a high intensity (HI)), distance covered (r = 0.42 at a HI) and player load (PL) (r = 0.44 at a HI). Results also revealed an opposite trend for external and internal measures of load as the average relative HR value was found to be the highest for the HI zone (54.1%) compared to the relative measures of external load where average values (1.29-9.89%) were the lowest for the HI zone. In conclusion, our findings show that results of an internal and external badminton match load determining method are more related to each other in the HI zone than other zones and that the strength of relationships depend on the duration of activities that are performed in especially LI and HI zones. Overall, trivial to moderate relationships between results of an internal and external match load determining method in male, singles badminton players reaffirm the conclusions of others that these constructs measure distinctly different demands and should therefore be measured concurrently to fully understand the true requirements of badminton match play.

  7. In vitro transdermal delivery of propranolol hydrochloride through rat skin from various niosomal formulations

    Directory of Open Access Journals (Sweden)

    Eskandar Moghimipour

    2013-09-01

    Full Text Available   Objective(s: The purpose of the present study was to prepare and to evaluate a novel niosome as transdermal drug delivery system for propranolol hydrochloride and to compare the in vitro efficiency of niosome by either thin film hydration or hand shaking method.   Materials and Methods: Niosomes were prepared by Thin Film Hydration (TFH or Hand Shaking (HS method. Propranolol niosomes were prepared using different surfactants (span20, 80 ratios and a constant cholesterol concentration. In vitro characterization of niosomes included microscopical observation, size distribution, laser light scattering evaluation, stability of propranolol niosomes and permeability of formulations in phosphate buffer (pH=7 through rat abdominal skin. Results: The percentage of entrapment efficiency (%EE increased with increase in surfactant concentration in all formulations. Among them, F3 formulation (containing span80:cholesterol ratio of 3:1 showed the highest entrapment efficiency (86.74±2.01%, Jss (6.33μg/cm2.h and permeability coefficient ( . By increasing the percentage of entrapment efficiency (resulting in increase in surfactant concentration, the drug released time is not prolonged. Among all the formulations, F4 needed more time for maximum drug release. Among these formulations, F4 was also found to have the maximum vesicle size as compared to other formulations. It was observed that niosomal suspension prepared from span 80 was more stable than span 20. Conclusion: This study demonstrates that niosomal formulations may offer a promise transdermal delivery of propranolol which improves drug efficiency and can be used for controlled delivery of propranolol

  8. Applicability of the mα-tangent Method to Estimate Plastic Limit Loads of Elbows and Branch Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Gim, Jae-Min; Kim, Sang-Hyun; Bae, Kyung-Dong; Kim, Yun-Jae [Korea Univ., Seoul (Korea, Republic of); Kim, Jong-Sung [Sejong Univ., Seoul (Korea, Republic of)

    2017-06-15

    In this study, the limit loads calculated by the mα-tangent method based on the linear finite element analysis are compared with the closed form solutions that are proposed by various authors. The objects of the analysis is to select the elbow and the branch pipe which are representative structure of piping system. The applicability of the mα-tangent method are investigated by applying it to cases with various geometries. The internal pressure and the in-plane bending moment are considered and the mα-tangent method is in good agreement with the existing solutions in case of elbows. However, the limit loads calculated by the mα-tangent method for branch junctions do not agree well with the existing solutions and do not show any tendency. The reason is a biased result due to the stress concentration of the discontinuous parts.

  9. Spray-loading: A cryogenic deposition method for diamond anvil cell

    Science.gov (United States)

    Scelta, Demetrio; Ceppatelli, Matteo; Ballerini, Riccardo; Hajeb, Ahmed; Peruzzini, Maurizio; Bini, Roberto

    2018-05-01

    An efficient loading technique has been developed for flammable, toxic, or explosive gases which can be condensed at liquid nitrogen temperature and ambient pressure in membrane diamond anvil cells (DACs). This cryogenic technique consists in a deposition of small quantities of the desired gas directly into the sample chamber. The deposition is performed using a capillary that reaches the space between the diamond anvils. The DAC is kept under inert gas overpressure during the whole process, in order to avoid contamination from atmospheric O2, CO2, and H2O. This technique provides significant advantages over standard cryo-loading and gas-loading when the condensation of dangerous samples at liquid nitrogen temperature raises safety concerns because it allows dealing with minimum quantities of condensed gases. The whole procedure is particularly fast and efficient. The "spray-loading" has been successfully used in our laboratory to load several samples including acetylene, ammonia, ethylene, and carbon dioxide/water or red phosphorus/NH3 mixtures.

  10. Nanocrystal cellulose as drug excipient in transdermal patch for wound healing: an overview

    Science.gov (United States)

    Zuki, S. A. Mohd; Rahman, N. Abd; Abu Bakar, N. F.

    2018-03-01

    Wound must be carefully treated to avoid serious infection that needs costly treatment. Method to enhance the recovery of the wound is crucial to have effective wound treatment. One of the technologies in wound treatment is transdermal patch that has the benefits of being non-invasive, easy to handle and permits constant drug dosage. In order to obtain a good controlled drug release, drug excipient needs to be investigated. Recently, natural Nanocrystal Cellulose (NCC) which can be synthesized from animal, algae, microorganism or plant has been actively used in drug delivery system as excipient. The application of NCC is advantageous due to its large surface area, biodegradable, non-toxic and abundance source.

  11. Effect of Electron-Beam Irradiation on Bacterial Cellulose Membranes Used as Transdermal Drug Delivery Systems

    International Nuclear Information System (INIS)

    Stoica-Guzun, A.

    2006-01-01

    Multiple methods are used to modify material surfaces. Radiation is an effective tool for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. Bacterial cellulose is a promising biomaterial synthesized by Acetobacter xylinum. It has a distinctive ultrafine reticulated structure that may become a perfect matrix as an optimal wound healing environment. In this work, high energy irradiation (γ rays from 137 C s) was applied to modify bacterial cellulose membranes. The effect of varying irradiation doses on membranes permeability was studied. Tetracycline was involved in the study of diffusivity as model drug. Release and permeation of drug from irradiated and non-irradiated membranes were done using a diffusion cell. The membrane permeability was determined using a psudo-steady state analysis based on Fick's law

  12. Study on a method for loading a Li compound to produce tritium using high-temperature gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, Hiroyuki, E-mail: nakaya@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Matsuura, Hideaki [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Katayama, Kazunari [Department of Advanced Energy Engineering Science, Kyushu University, 6-1 Kasuga-koen, Kasuga 8168580 (Japan); Goto, Minoru; Nakagawa, Shigeaki [Japan Atomic Energy Agency, 4002 Oarai, Ibaraki (Japan)

    2015-10-15

    Highlights: • Tritium production by a high-temperature gas-cooled reactor was studied. • The loading method considering tritium outflow suppression was estimated. • A reactor with 600 MWt produced 400–600 g of tritium for 180 days. • A possibility that tritium outflow can be sufficiently suppressed was shown. - Abstract: Tritium production using high-temperature gas-cooled reactors and its outflow from the region loading Li compound into the helium coolant are estimated when considering the suppression of tritium outflow. A Li rod containing a cylindrical Li compound placed in an Al{sub 2}O{sub 3} cladding tube is assumed as a method for loading Li compound. A gas turbine high-temperature reactor of 300 MW electrical nominal capacity (GTHTR300) with 600 MW thermal output power is considered and modeled using the continuous-energy Monte Carlo transport code MVP-BURN, where burn-up simulations are carried out. Tritium outflow is estimated from equilibrium solution for the tritium diffusion equation in the cladding tube. A GTHTR300 can produce 400–600 g of tritium over a 180-day operation using the chosen method of loading the Li compound while minimizing tritium outflow from the cladding tube. Optimizing tritium production while suppressing tritium outflow is discussed.

  13. Development of reliability-based load and resistance factor design methods for piping

    International Nuclear Information System (INIS)

    Ayyub, Bilal M.; Hill, Ralph S. III; Balkey, Kenneth R.

    2003-01-01

    Current American Society of Mechanical Engineers (ASME) nuclear codes and standards rely primarily on deterministic and mechanistic approaches to design. The American Institute of Steel Construction and the American Concrete Institute, among other organizations, have incorporated probabilistic methodologies into their design codes. ASME nuclear codes and standards could benefit from developing a probabilistic, reliability-based, design methodology. This paper provides a plan to develop the technical basis for reliability-based, load and resistance factor design of ASME Section III, Class 2/3 piping for primary loading, i.e., pressure, deadweight and seismic. The plan provides a proof of concept in that LRFD can be used in the design of piping, and could achieve consistent reliability levels. Also, the results from future projects in this area could form the basis for code cases, and additional research for piping secondary loads. (author)

  14. Prediction of fatigue life under service loading using the relative method

    International Nuclear Information System (INIS)

    Buch, A.

    1982-01-01

    Fatigue life estimates obtained with the local strain approach (LSA) and with the conventional nominal stress approach (NSA) were compared with experimental results obtained on notched AlCuMg2 aircraft material specimens with flight simulation random tensile loading. The effect of change of the reference stress, of the loading program and of some changes in the loading frequency distribution, on the ratio Nsub(exp)/Nsub(pred) was investigated. A material strain-life curve, a cyclic stress-strain curve. The Neuber-Topper rule Ksub(sigma) x Ksub(epsilon) = K 2 = const. and a K value estimated with an exact two-parameter notch factor formula for the case R = 0, N = 10 7 were used for life predictions. (orig./RW) [de

  15. Evaluation of Bearing Capacity of Strip Foundation Subjected to Eccentric Inclined Loads Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Ahmed Majeed Ali

    2016-08-01

    Full Text Available In real conditions of structures, foundations like retaining walls, industrial machines and platforms in offshore areas are commonly subjected to eccentrically inclined loads. This type of loading significantly affects the overall stability of shallow foundations due to exposing the foundation into two components of loads (horizontal and vertical and consequently reduces the bearing capacity Based on a numerical analysis performed using finite element software (Plaxis 3D Foundation, the behavior of model strip foundation rested on dry sand under the effect of eccentric inclined loads with different embedment ratios (D/B ranging from (0-1 has been explored. The results display that, the bearing capacity of strip foundation is noticeably decreased with the increase of inclination angle (α and eccentricity ratio (e/B. As well as, a reduction factor (RF expression was appointed to measure the degree of decreasing in the bearing capacity when the model footing is subjected to eccentric inclined load. It was observed that, the (RF decreases as the embedment ratio increases. Moreover, the test results also exhibit that, the model footing bearing capacity is reduced by about (69% when the load inclination is varied from (0° to 20° and the model footing is on the surface. While, the rate of decreasing in the bearing capacity was found to be (58%, for both cases of footing when they are at embedment ratios of (0.5 and 1.0. Also, a comparative study was carried out between the present results and previous experimental test results under the same conditions (soil properties and boundary condition. A good agreement was obtained between the predicted bearing capacities for the two related studies.

  16. RPI and RPL clasp masticatory load distribution in lower free end denture case with photoelastic methods

    Directory of Open Access Journals (Sweden)

    Dahlia Sutanto

    2007-03-01

    Full Text Available The extent and direction of movement of removable partial dentures during function are influenced by the nature of supporting structures and the design of the prosthesis since forces are transmitted to abutment teeth by rest, guide planes, and direct retainers during functional movements. Because of the lack of tooth support distally, the denture base will have tissueward underfunction proportionate to the quality (displaceability of the supporting soft tissue, the accuracy of the denture base, and the total occlusal load applied. The movement of the base under function determines the occlusal efficiency of the partial denture and the degree to which the abutment teeth are subjected to torque and tipping stresses.The purpose of this study is to know the functional load exerts with RPI and RPL direct retainer in bilateral distal extension. This study is a laboratory experiment employing samples of 5 frames using RPI and 5 frames using RPL direct retainer design. Testing was conducted by Vishay Teaching Polariscope type 080. The result was noted and analyzed statistically using ANOVA.The result of this study indicates that F calculation value for frame with RPI and RPL direct retainer design is 5,35 and 6,11 Mpa; F calculation for the occlusal load distribution on first premolar and edentulous area is 276,90 Mpa and 171,53 Mpa; F calculation for occlusal load distribution on first premolar and edentulous area employing RPI and RPL direct retainer design is 9,17 and 11,96 Mpa. This statistical calculation shows that there is a significant difference between RPI and RPL direct retainer design, the occlusal load concentrated at edentulous area either RPI or RPL direct retainer, and the occlusal load distribution between the first premolar and edentulous area are more uniform on RPI direct retainer design.

  17. Psychophysiological methods and criteria for the selection of individual metered loads in athletes of taekwondo section

    Directory of Open Access Journals (Sweden)

    G. V. Ohromiy

    2014-12-01

    Full Text Available Purpose: scientific rationale approaches Express-diagnostics for athletes of taekwondo section by psychophysiological parameters. Material: Total surveyed 84 people, including 68 boys and 16 girls. Were defined backup capabilities, exercise tolerance and selection of adequate individual dose of loads in preparation for the international competition, participants - taekwondo athletes. Was attended by representatives of Ukraine, Russia and Lithuania. Age groups of participants: 6 - 16 years. Athletes have different levels and different schools of training. Results: evaluation of exercise tolerance and definition of an adequate level of motor mode in taekwondo athletes in terms of the difference of lability (DL before and after training, revealed: high and very high nervous system (NS lability. These figures correspond to high and very high tolerance to physical loads. The respondents who had difference of liability (DL <0, were well-trained athletes and their high points of strength of nervous system testified about good backup capabilities (withstand great and continuous loads. In 78 % of the tested load was chosen adequately. Less than 20% of the respondents noted the average backup capabilities. They need individual correction dose loads to increase adaptive capacity. Insignificant 10%, the share of respondents had low exercise tolerance at the average values NS strength, which indicates a good backup capabilities. The direct dependence: respondents with high levels on state of health, activity and mood - low levels of anxiety, frustration, aggression and rigidity. Conclusions The proposed optimized approach Express-diagnostics according to psychophysiological parameters allow you to determine the level of physical endurance, speed adaptation athletes in the sections taekwondo and adequate response to the loads.

  18. Dynamic characterization of hydrophobic and hydrophilic solutes in oleic-acid enhanced transdermal delivery using two-photon fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Te-Yu; Yang, Chiu-Sheng; Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Tsai, Tsung-Hua [Department of Dermatology, Far Eastern Memorial Hospital, New Taipei City, Taiwan (China); Dong, Chen-Yuan, E-mail: cydong@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Center for Quantum Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Center for Optoelectronic Biomedicine, National Taiwan University, Taipei, Taiwan (China)

    2014-10-20

    In this letter, we propose an efficient methodology of investigating dynamic properties of sulforhodamine B and rhodamine B hexyl ester molecules transporting across ex-vivo human stratum corneum with and without oleic acid enhancement. Three-dimensional, time-lapse fluorescence images of the stratum corneum can be obtained using two-photon fluorescence microscopy. Furthermore, temporal quantifications of transport enhancements in diffusion parameters can be achieved with the use of Fick's second law. Dynamic characterization of solutes transporting across the stratum corneum is an effective method for understanding transient phenomena in transdermal delivery of probe molecules, leading to improved delivery strategies of molecular species for therapeutic purposes.

  19. Applicability and safety of dual-frequency ultrasonic treatment for the transdermal delivery of drugs

    Science.gov (United States)

    Schoellhammer, Carl M.; Srinivasan, Sharanya; Barman, Ross; Mo, Stacy H.; Polat, Baris E.; Langer, Robert; Blankschtein, Daniel

    2016-01-01

    Low-frequency ultrasound presents an attractive method for transdermal drug delivery. The controlled, yet nonspecific nature of enhancement broadens the range of therapeutics that can be delivered, while minimizing necessary reformulation efforts for differing compounds. Long and inconsistent treatment times, however, have partially limited the attractiveness of this method. Building on recent advances made in this area, the simultaneous use of low- and high-frequency ultrasound is explored in a physiologically relevant experimental setup to enable the translation of this treatment to testing in vivo. Dual-frequency ultrasound, utilizing 20 kHz and 1 MHz wavelengths simultaneously, was found to significantly enhance the size of localized transport regions (LTRs) in both in vitro and in vivo models while decreasing the necessary treatment time compared to 20 kHz alone. Additionally, LTRs generated by treatment with 20 kHz + 1 MHz were found to be more permeable than those generated with 20 kHz alone. This was further corroborated with pore-size estimates utilizing hindered-transport theory, in which the pores in skin treated with 20 kHz + 1 MHz were calculated to be significantly larger than the pores in skin treated with 20 kHz alone. This demonstrates for the first time that LTRs generated with 20 kHz + 1 MHz are also more permeable than those generated with 20 kHz alone, which could broaden the range of therapeutics and doses administered transdermally. With regard to safety, treatment with 20 kHz + 1 MHz both in vitro and in vivo appeared to result in no greater skin disruption than that observed in skin treated with 20 kHz alone, an FDA-approved modality. This study demonstrates that dual-frequency ultrasound is more efficient and effective than single-frequency ultrasound and is well-tolerated in vivo. PMID:25662228

  20. Selection of Hidden Layer Neurons and Best Training Method for FFNN in Application of Long Term Load Forecasting

    Science.gov (United States)

    Singh, Navneet K.; Singh, Asheesh K.; Tripathy, Manoj

    2012-05-01

    For power industries electricity load forecast plays an important role for real-time control, security, optimal unit commitment, economic scheduling, maintenance, energy management, and plant structure planning etc. A new technique for long term load forecasting (LTLF) using optimized feed forward artificial neural network (FFNN) architecture is presented in this paper, which selects optimal number of neurons in the hidden layer as well as the best training method for the case study. The prediction performance of proposed technique is evaluated using mean absolute percentage error (MAPE) of Thailand private electricity consumption and forecasted data. The results obtained are compared with the results of classical auto-regressive (AR) and moving average (MA) methods. It is, in general, observed that the proposed method is prediction wise more accurate.

  1. The Effect and Mechanism of Transdermal Penetration Enhancement of Fu's Cupping Therapy: New Physical Penetration Technology for Transdermal Administration with Traditional Chinese Medicine (TCM) Characteristics.

    Science.gov (United States)

    Xie, Wei-Jie; Zhang, Yong-Ping; Xu, Jian; Sun, Xiao-Bo; Yang, Fang-Fang

    2017-03-27

    In this paper, a new type of physical penetration technology for transdermal administration with traditional Chinese medicine (TCM) characteristics is presented. Fu's cupping therapy (FCT), was established and studied using in vitro and in vivo experiments and the penetration effect and mechanism of FCT physical penetration technology was preliminarily discussed. With 1-(4-chlorobenzoyl)-5-methoxy-2-methylindole-3-ylacetic acid (indomethacin, IM) as a model drug, the establishment of high, medium, and low references was completed for the chemical permeation system via in vitro transdermal tests. Furthermore, using chemical penetration enhancers (CPEs) and iontophoresis as references, the percutaneous penetration effect of FCT for IM patches was evaluated using seven species of in vitro diffusion kinetics models and in vitro drug distribution; the IM quantitative analysis method in vivo was established using ultra-performance liquid chromatography-tandem mass spectrometry technology (UPLC-MS/MS), and pharmacokinetic parameters: area under the zero and first moment curves from 0 to last time t (AUC 0-t , AUMC 0-t ), area under the zero and first moment curves from 0 to infinity (AUC 0-∞ , AUMC 0-∞ ), maximum plasma concentration (C max ) and mean residence time (MRT), were used as indicators to evaluate the percutaneous penetration effect of FCT in vivo. Additionally, we used the 3 K factorial design to study the joint synergistic penetration effect on FCT and chemical penetration enhancers. Through scanning electron microscopy (SEM) and transmission electron microscope (TEM) imaging, micro- and ultrastructural changes on the surface of the stratum corneum (SC) were observed to explore the FCT penetration mechanism. In vitro and in vivo skin permeation experiments revealed that both the total cumulative percutaneous amount and in vivo percutaneous absorption amount of IM using FCT were greater than the amount using CPEs and iontophoresis. Firstly, compared with

  2. A comparison of methods to quantify the in-season training load of professional soccer players.

    Science.gov (United States)

    Scott, Brendan R; Lockie, Robert G; Knight, Timothy J; Clark, Andrew C; Janse de Jonge, Xanne A K

    2013-03-01

    To compare various measures of training load (TL) derived from physiological (heart rate [HR]), perceptual (rating of perceived exertion [RPE]), and physical (global positioning system [GPS] and accelerometer) data during in-season field-based training for professional soccer. Fifteen professional male soccer players (age 24.9 ± 5.4 y, body mass 77.6 ± 7.5 kg, height 181.1 ± 6.9 cm) were assessed in-season across 97 individual training sessions. Measures of external TL (total distance [TD], the volume of low-speed activity [LSA; 14.4 km/h], very high-speed running [VHSR; >19.8 km/h], and player load), HR and session-RPE (sRPE) scores were recorded. Internal TL scores (HR-based and sRPE-based) were calculated, and their relationships with measures of external TL were quantified using Pearson product-moment correlations. Physical measures of TD, LSA volume, and player load provided large, significant (r = .71-.84; P physical-performance measures of TD, LSA volume, and player load appear to be more acceptable indicators of external TL, due to the greater magnitude of their correlations with measures of internal TL.

  3. A Facile Method for Loading CeO2 Nanoparticles on Anodic TiO2 Nanotube Arrays.

    Science.gov (United States)

    Liao, Yulong; Yuan, Botao; Zhang, Dainan; Wang, Xiaoyi; Li, Yuanxun; Wen, Qiye; Zhang, Huaiwu; Zhong, Zhiyong

    2018-04-03

    In this paper, a facile method was proposed to load CeO 2 nanoparticles (NPs) on anodic TiO 2 nanotube (NT) arrays, which leads to a formation of CeO 2 /TiO 2 heterojunctions. Highly ordered anatase phase TiO 2 NT arrays were fabricated by using anodic oxidation method, then these individual TiO 2 NTs were used as tiny "nano-containers" to load a small amount of Ce(NO 3 ) 3 solutions. The loaded anodic TiO 2 NTs were baked and heated to a high temperature of 450 °C, under which the Ce(NO 3 ) 3 would be thermally decomposed inside those nano-containers. After the thermal decomposition of Ce(NO 3 ) 3 , cubic crystal CeO 2 NPs were obtained and successfully loaded into the anodic TiO 2 NT arrays. The prepared CeO 2 /TiO 2 heterojunction structures were characterized by a variety of analytical technologies, including XRD, SEM, and Raman spectra. This study provides a facile approach to prepare CeO 2 /TiO 2 films, which could be very useful for environmental and energy-related areas.

  4. STRAP-2, Stress Analysis of Structure with Static Loading by Finite Elements Method. STRAP-D, Stress Analysis of Structure with Time-Dependent Loading by Finite Elements Method

    International Nuclear Information System (INIS)

    Dearien, J.A.; Uldrich, E.D.

    1975-01-01

    1 - Description of problem or function: The code STRAP (Structural Analysis Package) was developed to analyze the response of structural systems to static and dynamic loading conditions. STRAP-S solves for the displacements and member forces of structural systems under static loads and temperature gradients. STRAP-D will solve numerically a given structural dynamics problem. 2 - Method of solution: STRAP-S generates the stiffness matrix of a structure by the finite element method and solves the resulting equations for structural displacements and member forces. STRAP-D generates the stiffness matrix, solves for eigenvalues and eigenvectors, uncouples and solves the series of second-order ordinary differential equations, and then calculates and plots the requested member forces. 3 - Restrictions on the complexity of the problem: STRAP-S maxima: 250 degrees of freedom, 100 members; STRAP-D maxima: 100 degrees of freedom, 80 time-steps in the forcing function input

  5. Chemistry, manufacturing and controls in passive transdermal drug delivery systems.

    Science.gov (United States)

    Goswami, Tarun; Audett, Jay

    2015-01-01

    Transdermal drug delivery systems (TDDS) are used for the delivery of the drugs through the skin into the systemic circulation by applying them to the intact skin. The development of TDDS is a complex and multidisciplinary affair which involves identification of suitable drug, excipients and various other components. There have been numerous problems reported with respect to TDDS quality and performance. These problems can be reduced by appropriately addressing chemistry, manufacturing and controls requirements, which would thereby result in development of robust TDDS product and processes. This article provides recommendations on the chemistry, manufacturing and controls focusing on the unique technical aspects of TDDS.

  6. Treatment of Severe Cancer Pain by Transdermal Fentanyl

    Directory of Open Access Journals (Sweden)

    Dženita Ljuca

    2010-05-01

    Full Text Available The goal of research was to determine the frequency, intensity, time of occurrence, duration and causes of breakthrough pain (BTP in patients whose carcinoma pain was treated by transdermal fentanyl. (TDF. A prospective study was conducted in a hospice for recumbent patients of the Centre for Palliative Care (hospice University Clinical Centre Tuzla from October 2009 to December 2010. 33 patients in terminal stage of carcinoma, who had been treated by transdermal fentanyl due to their excruciating pain (7-10 mark on numerica! scale with initial dosage of 25 μg as a strong opiate analgesic, were monitored within the time period of 10 days. In the statistics we used the even T - test, the Wilcox test and Mann -Whitney test. The difference was seen to be significant at p < 0,05. Treatment by transdermal fentanyl significantly reduces the intensity of strong carcinoma pain (p < 0.0001, with a frequent requirement for dose increase with bone metastasis. The intensity of BTP is higher compared to the pain experienced upon reception. The frequency and intensity of BTP are significantly reduced already in the second day of treatment by transdermal fentanyl (p = 0,0024. The BTP is most intense in patients with neck and head tumours (9,26 ± 0,66, and most frequent with abdomen and pelvic tumour. The biggest number of BTP (68.3 % occurs within first three days of treatment. BTP most frequently occurs in the evening or at night (between 18:00 and 06:00 h in 62,2 % of the cases, with the duration of usually less than 15 minutes (65,2% of the cases. In 61,6 % cases the occurrence of BTP is related to physical activities or psychosocial incidents, while the cause is undetermined in 38,4 % of examinees.BTP is most frequent within first three days of treatment by TDF. Using the optimal dosage a good control of carcinoma pain is enabled, regardless of the occurrence of bone metastasis, while it also helps reduce the frequency and intensity of BTP.

  7. Transdermal hormone therapy in postmenopausal women: A review of metabolic effects and drug delivery technologies

    Directory of Open Access Journals (Sweden)

    Nathan W Kopper

    2008-10-01

    Full Text Available Nathan W Kopper, Jennifer Gudeman, Daniel J ThompsonKV Pharmaceutical, St. Louis, MO, USAAbstract: Vasomotor symptoms (VMS associated with menopause can cause significant discomfort and decrease the quality of life for women in the peri-menopausal and post-menopausal stages of life. Hormone therapy (HT is the mainstay of treatment for menopausal symptoms and is currently the only therapy proven effective for VMS. Numerous HT options are available to treat VMS, including estrogen-only and estrogen-progestogen combination products to meet the needs of both hysterectomized and nonhysterectomized women. In addition to selecting an appropriate estrogen or estrogen-progestogen combination, consideration should be given to the route of administration to best suit the needs of the patient. Delivery systems for hormone therapy include oral tablets, transdermal patches, transdermal topical (nonpatch products, and intravaginal preparations. Oral is currently the most commonly utilized route of administration in the United States. However, evidence suggests that oral delivery may lead to some undesirable physiologic effects caused by significant gut and hepatic metabolism. Transdermal drug delivery may mitigate some of these effects by avoiding gut and hepatic first-pass metabolism. Advantages of transdermal delivery include the ability to administer unmetabolized estradiol directly to the blood stream, administration of lower doses compared to oral products, and minimal stimulation of hepatic protein production. Several estradiol transdermal delivery technologies are available, including various types of patches, topical gels, and a transdermal spray.Keywords: estradiol, hormone therapy, menopause, transdermal drug delivery, vasomotor symptoms

  8. Development of Microemulsion Based Nabumetone Transdermal Delivery For Treatment of Arthritis.

    Science.gov (United States)

    Jagdale, Swati; Deore, Gokul; Chabukswar, Anuruddha

    2018-02-26

    Background Nabumetone is biopharmaceutics classification system (BCS) class II drug, widely used in the treatment of osteoarthritis and rheumatoid arthritis. The most frequently reported adverse reactions for the drug involve disturbance in gastrointestinal tract , diarrhea, dyspepsia and abdominal pain. Microemulgel has advantages of microemulsion for improving solubility for hydrophobic drug. Patent literature had shown that the work for drug has been carried on spray chilling, enteric coated tablet, and topical formulation which gave idea for present research work for development of transdermal delivery. Objective Objective of the present research work was to optimize transdermal microemulgel delivery for Nabumetone for treatment of arthritis. Method Oil, surfactant and co-surfactant were selected based on solubility study for the drug. Gelling agents used were Carbopol 934 and HPMC K100M. Optimization was carried out using 32 factorial design. Characterization and evaluation were carried out for microemulsion and microemulsion based gel. Results Field emission-scanning electron microscopy (FE-SEM) study of the microemulsion revealed globules of 50-200 nm size . Zeta potential -9.50 mV indicated good stability of microemulsion. Globule size measured by dynamic light scattering (zetasizer) was 160 nm. Design expert gave optimized batch as F7 which contain 0.2% w/w drug, 4.3% w/w liquid paraffin, 0.71% w/w tween 80, 0.35% w/w propylene glycol, 0.124% w/w Carbopol 934, 0.187% w/w HPMC K100M and 11.68% w/w water. In-vitro diffusion study for F7 batch showed 99.16±2.10 % drug release through egg membrane and 99.15±2.73% drug release in ex-vivo study. Conclusion Nabumetone microemulgel exhibiting good in-vitro and ex-vivo controlled drug release was optimized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. The application of anethole, menthone, and eugenol in transdermal penetration of valsartan: Enhancement and mechanistic investigation.

    Science.gov (United States)

    Ahad, Abdul; Aqil, Mohd; Ali, Asgar

    2016-01-01

    The main barrier for transdermal delivery is the obstacle property of the stratum corneum. Many types of chemical penetration enhancers have been used to breach the skin barrier; among the penetration enhancers, terpenes are found as the most highly advanced, safe, and proven category. In the present investigation, the terpenes anethole, menthone, and eugenol were used to enhance the permeation of valsartan through rat skin in vitro and their enhancement mechanism was investigated. Skin permeation studies of valsartan across rat skin in the absence and the presence of terpenes at 1% w/v, 3% w/v, and 5% w/v in vehicle were carried out using the transdermal diffusion cell sampling system across rat skin and samples were withdrawn from the receptor compartment at 1, 2, 3, 4, 6, 8, 10, 12, and 24 h and analysed for drug content by the HPLC method. The mechanism of skin permeation enhancement of valsartan by terpenes treatment was evaluated by Fourier transform infrared spectroscopy (FTIR) analysis and differential scanning calorimetry (DSC). All the investigated terpenes provided a significant (p valsartan flux at a concentration of 1%, and less so at 3% and 5%. The effectiveness of terpenes at 1% concentration was in the following order: anethole > menthone > eugenol with 4.4-, 4.0-, and 3.0-fold enhancement ratio over control, respectively. DSC study showed that the treatment of stratum corneum with anethole shifted endotherm down to lower melting point while FTIR studies revealed that anethole produced maximum decrease in peak height and area than other two terpenes. The investigated terpenes can be successfully used as potential enhancers for the enhancement of skin permeation of lipophilic drug.

  10. Transdermal delivery of gentamicin using dissolving microneedle arrays for potential treatment of neonatal sepsis.

    Science.gov (United States)

    González-Vázquez, Patricia; Larrañeta, Eneko; McCrudden, Maelíosa T C; Jarrahian, Courtney; Rein-Weston, Annie; Quintanar-Solares, Manjari; Zehrung, Darin; McCarthy, Helen; Courtenay, Aaron J; Donnelly, Ryan F

    2017-11-10

    Neonatal infections are a leading cause of childhood mortality in low-resource settings. World Health Organization guidelines for outpatient treatment of possible serious bacterial infection (PSBI) in neonates and young infants when referral for hospital treatment is not feasible include intramuscular gentamicin (GEN) and oral amoxicillin. GEN is supplied as an aqueous solution of gentamicin sulphate in vials or ampoules and requires health care workers to be trained in dose calculation or selection of an appropriate dose based on the patient's weight band and to have access to safe injection supplies and appropriate sharps disposal. A simplified formulation, packaging, and delivery method to treat PSBI in low-resource settings could decrease user error and expand access to lifesaving outpatient antibiotic treatment for infants with severe infection during the neonatal period. We developed dissolving polymeric microneedles (MN) arrays to deliver GEN transdermally. MN arrays were produced from aqueous blends containing 30% (w/w) of GEN and two polymers approved by the US Food and Drug Administration: sodium hyaluronate and poly(vinylpyrrolidone). The arrays (19×19 needles and 500μm height) were mechanically strong and were able to penetrate a skin simulant to a depth of 378μm. The MN arrays were tested in vitro using a Franz Cell setup delivering approximately 4.45mg of GEN over 6h. Finally, three different doses (low, medium, and high) of GEN delivered by MN arrays were tested in an animal model. Maximum plasma levels of GEN were dose-dependent and ranged between 2 and 5μg/mL. The time required to reach these levels post-MN array application ranged between 1 and 6h. This work demonstrated the potential of dissolving MN arrays to deliver GEN transdermally at therapeutic levels in vivo. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. A mechanics approach to the study of pressure sensitive adhesives and human skin for transdermal drug delivery applications

    Science.gov (United States)

    Taub, Marc Barry

    Transdermal drug delivery is an alternative approach to the systemic delivery of pharmaceuticals where drugs are administered through the skin and absorbed percutaneously. This method of delivery offers several advantages over more traditional routes; most notably, the avoidance of the fast-pass metabolism of the liver and gut, the ability to offer controlled release rates, and the possibility for novel devices. Pressure sensitive adhesives (PSAs) are used to bond transdermal drug delivery devices to the skin because of their good initial and long-term adhesion, clean removability, and skin and drug compatibility. However, an understanding of the mechanics of adhesion to the dermal layer, together with quantitative and reproducible test methods for measuring adhesion, have been lacking. This study utilizes a mechanics-based approach to quantify the interfacial adhesion of PSAs bonded to selected substrates, including human dermal tissue. The delamination of PSA layers is associated with cavitation in the PSA followed by the formation of an extensive cohesive zone behind the debond tip. A quantitative metrology was developed to assess the adhesion and delamination of PSAs, such that it could be possible to easily distinguish between the adhesive characteristics of different PSA compositions and to provide a quantitative basis from which the reliability of adhesive layers bonded to substrates could be studied. A mechanics-based model was also developed to predict debonding in terms of the relevant energy dissipation mechanisms active during this process. As failure of transdermal devices may occur cohesively within the PSA layer, adhesively at the interface between the PSA and the skin, or cohesively between the corneocytes that comprise the outermost layer of the skin, it was also necessary to explore the mechanical and fracture properties of human skin. The out-of-plane delamination of corneocytes was studied by determining the strain energy release rate during

  12. Evaluation of the effect of transdermal nitroglycerine patch on intrathecal dexmedetomidine as additive, on postoperative analgesia after abdominal hysterectomy

    Directory of Open Access Journals (Sweden)

    Rama Chatterji

    2017-01-01

    Full Text Available Aim: The aim of this study is to evaluate the effect of transdermal nitroglycerin on intrathecal dexmedetomidine as additive, on postoperative analgesia after abdominal hysterectomy. Materials and Methods: Totally 140 patients of the American Society of Anesthesiologists Grade I or II, posted for abdominal hysterectomy under spinal anesthesia, were randomized to four groups using computer-generated random number list. Group B received 3 ml of 0.5% hyperbaric bupivacaine with 0.5 ml normal saline and placebo patch, Group BN received 3 ml of 0.5% hyperbaric bupivacaine with 0.5 ml NS and transdermal nitroglycerin (t-NTG, Group BD received 3 ml of 0.5% hyperbaric bupivacaine with 5 mcg (0.5 ml dexmedetomidine and placebo patch and Group BDN received 3 ml of 0.5% hyperbaric bupivacaine with 5 μg (0.5 ml dexmedetomidine and t-NTG patch. Outcomes measured include the total duration of analgesia, onset, and duration of sensory and motor block and any adverse effects. Results: The total duration of analgesia was longest in Group BDN (349.9 ± 40.6 min. It was significantly longer than Group BD (252.3 ± 34.0 min and Group B and BN (130.5 ± 18.8, 138.3 ± 19.2 min. Time taken for two segment regression was comparable in Group B (79.9 ± 14.4 min and Group BN (87.1 ± 22.6 min, but it was significantly longer in Group BD (122.5 ± 17.2 min and Group BDN (136.4 ± 25.5 min. There was no significant difference in other variables between the groups. Conclusion: Transdermal nitroglycerine itself does not exhibit any analgesic potential of its own but, it enhances the analgesic potential of intrathecal dexmedetomidine.

  13. Treatment with subcutaneous and transdermal fentanyl: results from a population pharmacokinetic study in cancer patients.

    Science.gov (United States)

    Oosten, Astrid W; Abrantes, João A; Jönsson, Siv; de Bruijn, Peter; Kuip, Evelien J M; Falcão, Amílcar; van der Rijt, Carin C D; Mathijssen, Ron H J

    2016-04-01

    Transdermal fentanyl is effective for the treatment of moderate to severe cancer-related pain but is unsuitable for fast titration. In this setting, continuous subcutaneous fentanyl may be used. As data on the pharmacokinetics of continuous subcutaneous fentanyl are lacking, we studied the pharmacokinetics of subcutaneous and transdermal fentanyl. Furthermore, we evaluated rotations from the subcutaneous to the transdermal route. Fifty-two patients treated with subcutaneous and/or transdermal fentanyl for moderate to severe cancer-related pain participated. A population pharmacokinetic model was developed and evaluated using non-linear mixed-effects modelling. For rotations from subcutaneous to transdermal fentanyl, a 1:1 dose conversion ratio was used while the subcutaneous infusion was continued for 12 h (with a 50 % tapering after 6 h). A 6-h scheme with 50 % tapering after 3 h was simulated using the final model. A one-compartment model with first-order elimination and separate first-order absorption processes for each route adequately described the data. The estimated apparent clearance of fentanyl was 49.6 L/h; the absorption rate constant for subcutaneous and transdermal fentanyl was 0.0358 and 0.0135 h(-1), respectively. Moderate to large inter-individual and inter-occasion variability was found. Around rotation from subcutaneous to transdermal fentanyl, measured and simulated plasma fentanyl concentrations rose and increasing side effects were observed. We describe the pharmacokinetics of subcutaneous and transdermal fentanyl in one patient cohort and report several findings that are relevant for clinical practice. Further research is warranted to study the optimal scheme for rotations from the subcutaneous to the transdermal route.

  14. The investigation of fatigue load on a PSD using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Mood Duck; Cho, Chong Du; Choi, Won June [Inha Univ., Incheon (Korea, Republic of); Kim, Jung Yup [Korea Institute of Construction Technology, Goyang (Korea, Republic of)

    2008-07-01

    Subway railway systems are being increasingly adopted in metro cities to ease the passenger transportation. But there are some concerns related to the safety of the passengers. Nowadays, PSD(Platform Screen Doors) are commonly used to assure the safety of passengers. PSD is used to prevent the fire disasters, air turbulence, and dust which may pose a threat to the passenger's safety. Moreover the design of PSD itself has to take some parameters into consideration, crowd loading, wind pressure, etc. In our present study we perform a fatigue analysis considering these parameters. Commercial finite element software package ANSYS Workbench 11.0 has been used for the structural analysis. In correlation with this analysis, the structural safety of the testing PSD equipment was confirmed, and the critical load condition was found.

  15. The investigation of fatigue load on a PSD using finite element method

    International Nuclear Information System (INIS)

    Choi, Mood Duck; Cho, Chong Du; Choi, Won June; Kim, Jung Yup

    2008-01-01

    Subway railway systems are being increasingly adopted in metro cities to ease the passenger transportation. But there are some concerns related to the safety of the passengers. Nowadays, PSD(Platform Screen Doors) are commonly used to assure the safety of passengers. PSD is used to prevent the fire disasters, air turbulence, and dust which may pose a threat to the passenger's safety. Moreover the design of PSD itself has to take some parameters into consideration, crowd loading, wind pressure, etc. In our present study we perform a fatigue analysis considering these parameters. Commercial finite element software package ANSYS Workbench 11.0 has been used for the structural analysis. In correlation with this analysis, the structural safety of the testing PSD equipment was confirmed, and the critical load condition was found

  16. Failure analysis of natural gas buried X65 steel pipeline under deflection load using finite element method

    International Nuclear Information System (INIS)

    Liu, P.F.; Zheng, J.Y.; Zhang, B.J.; Shi, P.

    2010-01-01

    A 3D parametric finite element model of the pipeline and soil is established using finite element method to perform the failure analysis of natural gas buried X65 steel pipeline under deflection load. The pipeline is assumed to be loaded in a parabolic deflection displacement along the axial direction. Based on the true stress-strain constitutive relationship of X65 steel, the elastic-plastic finite element analysis employs the arc-length algorithm and non-linear stabilization algorithm respectively to simulate the strain softening properties of pipeline after plastic collapse. Besides, effects of the soil types and model sizes on the maximum deflection displacement of pipeline are investigated. The proposed finite element method serves as a base available for the safety design and evaluation as well as engineering acceptance criterion for the failure of pipeline due to deflection.

  17. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load

    Science.gov (United States)

    Zhang, Wei; Li, Chuanhao; Peng, Gaoliang; Chen, Yuanhang; Zhang, Zhujun

    2018-02-01

    In recent years, intelligent fault diagnosis algorithms using machine learning technique have achieved much success. However, due to the fact that in real world industrial applications, the working load is changing all the time and noise from the working environment is inevitable, degradation of the performance of intelligent fault diagnosis methods is very serious. In this paper, a new model based on deep learning is proposed to address the problem. Our contributions of include: First, we proposed an end-to-end method that takes raw temporal signals as inputs and thus doesn't need any time consuming denoising preprocessing. The model can achieve pretty high accuracy under noisy environment. Second, the model does not rely on any domain adaptation algorithm or require information of the target domain. It can achieve high accuracy when working load is changed. To understand the proposed model, we will visualize the learned features, and try to analyze the reasons behind the high performance of the model.

  18. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    The thermal loading in salt formation is studied for the disposal of high-level radioactive waste embedded in glass. Temperature effect on glass leaching, stability of gel layer on glass surface, quantity of leaching solution available in the borehole and corrosion resistance of materials used for containers are examined. The geological storage medium must satisfy particularly complex requirements: stratigraphy, brine migration, permeability, fissuring, mechanical strength, creep, thermal expansion, cavity structure ..

  19. Methods for Solving a Stress Behaviour of Welded Joints under Repeated Loads

    Directory of Open Access Journals (Sweden)

    Semrád K.

    2016-05-01

    Full Text Available The article processes issue of strength of cyclically loaded welded joints with a focus on fillet welds. The data for used steels and basic information were obtained at U.S. Steel Research Laboratory and from articles by Lehigh University and the University of Illinois in USA. The practical application of the solution is presented for crane car body to crawler connection.

  20. Analysis of submerged implant towards mastication load using 3D finite element method (FEM)

    OpenAIRE

    Widia Hafsyah Sumarlina Ritonga; Janti Rusjanti; Nunung Rusminah; Aldilla Miranda; Tatacipta Dirgantara

    2016-01-01

    Introduction: The surgical procedure for implantation of a surgical implant comprising a stage for the implant design nonsubmerged and two stages for submerged. Submerged implant design often used in Faculty of Dentistry Universitas Padjadjaran because it is safer in achieving osseointegration. This study was conducted to evaluate the failure of dental implant based on location and the value of internal tensiones as well as supporting tissues when given mastication load by using the 3D Finite...

  1. Comparison of Methods to Predict Lower Bound Buckling Loads of Cylinders Under Axial Compression

    Science.gov (United States)

    Haynie, Waddy T.; Hilburger, Mark W.

    2010-01-01

    Results from a numerical study of the buckling response of two different orthogrid stiffened circular cylindrical shells with initial imperfections and subjected to axial compression are used to compare three different lower bound buckling load prediction techniques. These lower bound prediction techniques assume different imperfection types and include an imperfection based on a mode shape from an eigenvalue analysis, an imperfection caused by a lateral perturbation load, and an imperfection in the shape of a single stress-free dimple. The STAGS finite element code is used for the analyses. Responses of the cylinders for ranges of imperfection amplitudes are considered, and the effect of each imperfection is compared to the response of a geometrically perfect cylinder. Similar behavior was observed for shells that include a lateral perturbation load and a single dimple imperfection, and the results indicate that the predicted lower bounds are much less conservative than the corresponding results for the cylinders with the mode shape imperfection considered herein. In addition, the lateral perturbation technique and the single dimple imperfection produce response characteristics that are physically meaningful and can be validated via testing.

  2. Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology

    Science.gov (United States)

    Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu

    2013-08-01

    From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.

  3. A novel indirect method for capturing involuntary musical imagery under varying cognitive load.

    Science.gov (United States)

    Floridou, Georgia A; Williamson, Victoria J; Stewart, Lauren

    2017-11-01

    Involuntary musical imagery (INMI), i.e the internal experience of a repetitive musical fragment, is one of the most ubiquitous forms of spontaneous cognition. Findings regarding the relationship between INMI and cognitive load are conflicting. In the present study, 200 participants watched and evaluated two non-dialogue, music-only film trailers. Subsequently, they either closed their eyes for 5 min (baseline), or engaged in one of three dot tasks of varying challenge and attentional demand (low, medium, and high cognitive load). Finally, they completed a novel "Mind Activity Questionnaire", which allows for indirect INMI sampling rather than direct questioning. The same questionnaire was completed 24 hours later. Overall, a significant negative linear trend was found. At baseline, 65% of people reported experiencing INMI. This rate decreased to 32.5% in the low load condition with further reductions observed in the medium and high conditions, which did not differ significantly from each other. INMI frequency and duration followed the same pattern as the induction rates. In the 24-hour follow-up, 21% of participants reported INMI experiences. This study supports the hypothesis that INMI occurrence, frequency, and duration relate to spare cognitive capacity and demonstrates an ecologically valid laboratory paradigm for covertly inducing and documenting INMI experiences.

  4. METHOD OF COMPENSATING LOADS FOR SOLVING OF A PROBLEM OF UNSYMMETRIC BENDING OF INFINITE ICE SLAB WITH CIRCULAR OPENING

    Directory of Open Access Journals (Sweden)

    Elena B. Koreneva

    2017-06-01

    Full Text Available Unsymmetric flexure of an infinite ice slab with circular opening is under examination. The men-tioned construction is considered as an infinite plate of constant thickness resting on an elastic subgrade which properties are described by Winkler’s model. The plate’s thickness is variable in the area ajoining to the opening. Method of compensating loads is used. Basic and compensating solutions are received. The obtained solutions are produced in closed form in terms of Bessel functions.

  5. Comparison of R6 and A16 J estimation methods under combined mechanical and thermal loads with FE results

    International Nuclear Information System (INIS)

    Nam, Hyun-Suk; Oh, Chang-Young; Kim, Yun-Jae; Jerng, Dong Wook; Ainsworth, Robert A.; Budden, Peter J.; Marie, Stéphane

    2015-01-01

    This paper compares elastic–plastic values of J calculated using the methods in the UK R6 and the French A16 fitness-for-service procedures with FE results for a vessel with a circumferential surface crack under axial tension and a radial thermal gradient. In the FE analyses, the relative magnitudes and loading sequence of mechanical and thermal loads are systematically varied, together with the material strain hardening exponent. Fully circumferential and semi-elliptical surface crack with two relative crack depths are considered. It is found that the R6 estimates are overall accurate but can be non-conservative at large L_r. The A16 estimates are more conservative than the R6 estimates at small L_r but are conservative even at large L_r. Possible sources of conservatism and non-conservatism in R6 and A16 are discussed. - Highlights: • Accuracy of existing J estimation methods for combined mechanical and thermal loading are compared with FE results. • The methods in the UK R6 and the French A16 procedures are considered. • The R6 estimates are overall accurate but can be non-conservative at large L_r. • The A16 estimates are more conservative than the R6 estimates at small L_r but are conservative even at large L_r. • Possible sources of conservatism and non-conservatism in R6 and A16 are discussed.

  6. An Adaptive Model Predictive Load Frequency Control Method for Multi-Area Interconnected Power Systems with Photovoltaic Generations

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Zeng

    2017-11-01

    Full Text Available As the penetration level of renewable distributed generations such as wind turbine generator and photovoltaic stations increases, the load frequency control issue of a multi-area interconnected power system becomes more challenging. This paper presents an adaptive model predictive load frequency control method for a multi-area interconnected power system with photovoltaic generation by considering some nonlinear features such as a dead band for governor and generation rate constraint for steam turbine. The dynamic characteristic of this system is formulated as a discrete-time state space model firstly. Then, the predictive dynamic model is obtained by introducing an expanded state vector, and rolling optimization of control signal is implemented based on a cost function by minimizing the weighted sum of square predicted errors and square future control values. The simulation results on a typical two-area power system consisting of photovoltaic and thermal generator have demonstrated the superiority of the proposed model predictive control method to these state-of-the-art control techniques such as firefly algorithm, genetic algorithm, and population extremal optimization-based proportional-integral control methods in cases of normal conditions, load disturbance and parameters uncertainty.

  7. Effectiveness and tolerability of transdermal rivastigmine in the treatment of Alzheimer’s disease in daily practice

    Directory of Open Access Journals (Sweden)

    Seibert J

    2012-04-01

    Full Text Available Johannes Seibert1, Ferenc Tracik2,3, Konstantin Articus2, Stefan Spittler41Outpatient Clinic, Heidelberg, Germany; 2Novartis Pharma, Nürnberg, Germany; 3Department of Neurology, Heinrich-Heine University, Düsseldorf, Germany; 4Alexianer Krefeld, Maria Hilf Clinic, Krefeld, GermanyBackground: Oral cholinesterase inhibitors at doses efficacious for the treatment of Alzheimer’s disease (AD are often prematurely discontinued due to gastrointestinal side effects. In controlled clinical trials, transdermal rivastigmine demonstrated less such effects at similar efficacy. The current study aimed to verify the validity of this data in daily practice.Methods: This was a prospective, multicenter, observational study on transdermal rivastigmine in Germany. Eligible patients were those with AD who had not yet been treated with rivastigmine. Outcome measures were changes in clock-drawing test, Mini-Mental State Examination (MMSE, Caregiver Burden Scale, Clinical Global Impression (CGI, physicians’ assessments of tolerability, and the incidence of adverse events (AEs over 4 months of treatment.Results: In 257 centers 1113 patients were enrolled; 614 women and 499 men, mean age 76.5 years. In 58% of patients AD was treated for the first time and in 42% therapy was switched to transdermal rivastigmine, mostly due to lack of tolerability (13.6% or effectiveness (26.9%. After 4 months, 67.4% of patients were on the target dose of 9.5 mg/day and 21.8% were still on 4.6 mg/day. MMSE significantly improved in patients with and without pretreatment (ΔMMSE, 0.9 ± 3.4 and 0.8 ± 3.4, respectively, both P < 0.001; the CGI score improved in 60.9% and 61.3% of patients, respectively. Overall 11.7% of patients had AEs, mainly affecting the skin or the gastrointestinal tract; in 1.1% of cases AEs were serious; 14.7% of patients discontinued therapy, 6.0% due to AEs. With rivastigmine treatment the percentage of patients taking psychotropic comedication decreased

  8. Film forming systems for topical and transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Kashmira Kathe

    2017-11-01

    Full Text Available Skin is considered as an important route of administration of drugs for both local and systemic effects. The effectiveness of topical therapy depends on the physicochemical properties of the drug and adherence of the patient to the treatment regimen as well as the system's ability to adhere to skin during the therapy so as to promote drug penetration through the skin barrier. Conventional formulations for topical and dermatological administration of drugs have certain limitations like poor adherence to skin, poor permeability and compromised patient compliance. For the treatment of diseases of body tissues and wounds, the drug has to be maintained at the site of treatment for an effective period of time. Topical film forming systems are such developing drug delivery systems meant for topical application to the skin, which adhere to the body, forming a thin transparent film and provide delivery of the active ingredients to the body tissue. These are intended for skin application as emollient or protective and for local action or transdermal penetration of medicament for systemic action. The transparency is an appreciable feature of this polymeric system which greatly influences the patient acceptance. In the current discussion, the film forming systems are described as a promising choice for topical and transdermal drug delivery. Further the various types of film forming systems (sprays/solutions, gels and emulsions along with their evaluation parameters have also been reviewed.

  9. Development of antimigraine transdermal delivery systems of pizotifen malate.

    Science.gov (United States)

    Serna-Jiménez, C E; del Rio-Sancho, S; Calatayud-Pascual, M A; Balaguer-Fernández, C; Femenía-Font, A; López-Castellano, A; Merino, V

    2015-08-15

    The aim of this study was to develop and evaluate a transdermal delivery system of pizotifen malate. Pizotifen is frequently used in the preventive treatment of migraine, but is also indicated in eating disorders. In the course of the project, the effects of chemical enhancers such as ethanol, 1,8-cineole, limonene, azone and different fatty acids (decanoic, decenoic, dodecanoic, linoleic and oleic acids) were determined, first using a pizotifen solution. Steady state flux, diffusion and partition parameters were estimated by fitting the Scheuplein equation to the data obtained. Among the chemical enhancers studied, decenoic acid showed the highest enhancement activity, which seemed to be due to the length of its alkyl chain and unsaturation at the 9th carbon. The influence of iontophoresis and the involvement of electrotransport in said process was determined. The absorption profile obtained with iontophoresis was similar to that obtained with fatty acids and terpenes, though skin deposition of the drug was lower with the former. Transdermal delivery systems (TDS) of pizotifen were manufactured by including chemical enhancers, decenoic acid or oleic acid, and were subsequently characterized. When the results obtained with solutions were compared with those obtained with the TDS, a positive enhancement effect was observed with the latter with respect to the partitioning and diffusion of the drug across the skin. Our findings endorse the suitability of our TDS for delivering therapeutic amounts of pizotifen malate. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery.

    Science.gov (United States)

    Mendes, Ana C; Gorzelanny, Christian; Halter, Natalia; Schneider, Stefan W; Chronakis, Ioannis S

    2016-08-20

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248±94nm to 600±201nm, depending on the amount of phospholipids used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7days in Phosphate Buffer Saline (PBS) solution. Cytotoxicity studies (WST-1 and LDH assays) demonstrated that the hybrid nanofibers have suitable biocompatibility. Fluorescence microscopy, also suggested that L929 cells seeded on top of the CH/P hybrid have similar metabolic activity comparatively to the cells seeded on tissue culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Tolterodine Tartrate Proniosomal Gel Transdermal Delivery for Overactive Bladder

    Directory of Open Access Journals (Sweden)

    Rajan Rajabalaya

    2016-08-01

    Full Text Available The goal of this study was to formulate and evaluate side effects of transdermal delivery of proniosomal gel compared to oral tolterodine tartrate (TT for the treatment of overactive bladder (OAB. Proniosomal gels are surfactants, lipids and soy lecithin, prepared by coacervation phase separation. Formulations were analyzed for drug entrapment efficiency (EE, vesicle size, surface morphology, attenuated total reflectance Fourier transform infrared (ATR-FTIR spectroscopy, in vitro skin permeation, and in vivo effects. The EE was 44.87%–91.68% and vesicle size was 253–845 nm for Span formulations and morphology showed a loose structure. The stability and skin irritancy test were also carried out for the optimized formulations. Span formulations with cholesterol-containing formulation S1 and glyceryl distearate as well as lecithin containing S3 formulation showed higher cumulative percent of permeation such as 42% and 35%, respectively. In the in vivo salivary secretion model, S1 proniosomal gel had faster recovery, less cholinergic side effect on the salivary gland compared with that of oral TT. Histologically, bladder of rats treated with the proniosomal gel formulation S1 showed morphological improvements greater than those treated with S3. This study demonstrates the potential of proniosomal vesicles for transdermal delivery of TT to treat OAB.

  12. Evaluation of diclofenac prodrugs for enhancing transdermal delivery.

    Science.gov (United States)

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2014-03-01

    Abstract Objective: The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD) and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates and bioconversion rates. In vitro fluxes across human epidermal membrane (HEM) in the Franz diffusion cell were determined on DA-, MD-, ED-, GD- and PD-saturated aqueous solutions. The formation of GD and ED led to the prodrugs with higher aqueous solubilities and lower partition coefficients than those of the parent drug. Prodrugs with improved aqueous solubility showed better fluxes across HEM in aqueous solution than that of the parent drug, with GD showing the highest aqueous solubility and also the highest flux. There is a linear relationship between the aqueous solubility and flux for DA, ED and PD, but GD and MD deviated from the linear line. Diclofenac prodrugs with improved hydrophilicity than the parent drug could be utilized for enhancing transdermal diclofenac delivery.

  13. Evaluation of Diclofenac Prodrugs for Enhancing Transdermal Delivery

    Science.gov (United States)

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2016-01-01

    The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD), and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates, and bioconversion rates. In vitro fluxes across human epidermal membrane (HEM) in Franz diffusion cell were determined on DA, MD, ED, GD, and PD saturated aqueous solutions. The formation of GD and ED led to the prodrugs with higher aqueous solubilities and lower partition coefficients than those of the parent drug. Prodrugs with improved aqueous solubility showed better fluxes across HEM in aqueous solution than that of the parent drug, with GD showing the highest aqueous solubility and also the highest flux. There is a linear relationship between the aqueous solubility and flux for DA, ED and PD, but GD and MD deviated from the linear line. Overall, diclofenac prodrugs with improved hydrophilicity than the parent drug could be utilized for enhancing transdermal diclofenac delivery. PMID:24517636

  14. Efficient Transdermal Delivery of Benfotiamine in an Animal Model

    Directory of Open Access Journals (Sweden)

    Gyula Varadi

    2015-01-01

    Full Text Available We designed a transdermal system to serve as a delivery platform for benfotiamine utilizing the attributes of passive penetration enhancing molecules to penetrate through the outer layers of skin combined with the advance of incorporating various peripherally-acting vasodilators to enhance drug uptake.  Benfotiamine, incorporated into this transdermal formulation, was applied to skin in an animal model in order to determine the ability to deliver this thiamine pro-drug effectively to the sub-epithelial layers.  In this proof of concept study in guinea pigs, we found that a single topical application of either a solubilized form of benfotiamine (15 mg or a microcrystalline suspension form (25 mg resulted in considerable increases of the dephosphorylated benfotiamine (S-benzoylthiamine in the skin tissue as well as in significant increases in the thiamine and thiamine phosphate pools compared to control animals.  The presence of a ~8000x increase in thiamine and increases in its phosphorylated derivatives in the epidermis and dermis tissue of the test animals gives a strong indication that the topical treatment with benfotiamine works very well for the desired outcome of producing an intracellular increase of the activating cofactor pool for transketolase enzyme, which is implicated in the pathophysiology of diabetic neuropathy.

  15. The effect of transdermal nicotine patches on sleep and dreams.

    Science.gov (United States)

    Page, F; Coleman, G; Conduit, R

    2006-07-30

    This study was undertaken to determine the effect of 24-h transdermal nicotine patches on sleep and dream mentation in 15 smokers aged 20 to 33. Utilising a repeated measures design, it was found that more time awake and more ASDA micro-arousals occurred while wearing the nicotine patch compared to placebo. Also, the percentage of REM sleep decreased, but REM latency and the proportion of time spent in NREM sleep stages did not change significantly. Dream reports containing visual imagery, visual imagery ratings and the number of visualizable nouns were significantly greater from REM compared to Stage 2 awakenings, regardless of patch condition. However, a general interaction effect was observed. Stage 2 dream variables remained equivalent across nicotine and placebo conditions. Within REM sleep, more dream reports containing visual imagery occurred while wearing the nicotine patch, and these were rated as more vivid. The greater frequency of visual imagery reports and higher imagery ratings specifically from REM sleep suggests that previously reported dreaming side effects from 24-h nicotine patches may be specific to REM sleep. Combined with previous animal studies showing that transdermally delivered nicotine blocks PGO activity in REM sleep, the current results do no appear consistent with PGO-based hypotheses of dreaming, such as the Activation-Synthesis (AS) or Activation, Input and Modulation (AIM) models.

  16. Enhanced Transdermal Delivery of Diclofenac Sodium via Conventional Liposomes, Ethosomes, and Transfersomes

    Directory of Open Access Journals (Sweden)

    Saeed Ghanbarzadeh

    2013-01-01

    Full Text Available The aim of this study was to improve the transdermal permeation of Diclofenac sodium, a poorly water-soluble drug, employing conventional liposomes, ethosomes, and transfersomes. The prepared formulations had been characterized for the loaded drug amount and vesicle size. The prepared vesicular systems were incorporated into 1% Carbopol 914 gel, and a survey of in vitro drug release and drug retention into rat skin has been done on them using a modified Franz diffusion cell. The cumulative amount of drug permeated after 24 h, flux, and permeability coefficient were assessed. Stability studies were performed for three months. The size of vesicles ranged from 145 to 202 nm, and the encapsulation efficiency of the Diclofenac sodium was obtained between 42.61% and 51.72%. The transfersomes and ethosomes provided a significantly higher amount of cumulative permeation, steady state flux, permeability coefficient, and residual drug into skin compared to the conventional liposomes, conventional gel, or hydroethanolic solution. The in vitro release data of all vesicular systems were well fit into Higuchi model (RSD > 0.99. Stability tests indicated that the vesicular formulations were stable over three months. Results revealed that both ethosome and transfersome formulations can act as drug reservoir in skin and extend the pharmacologic effects of Diclofenac sodium.

  17. Preparation and in vitro evaluation of a pluronic lecithin organogel containing ricinoleic acid for transdermal delivery.

    Science.gov (United States)

    Boddu, Sai Hs; Bonam, Sindhu Prabha; Wei, Yangjie; Alexander, Kenneth

    2014-01-01

    The present study deals with the preparation and in vitro evaluation of a Pluronic lecithin organogel gel containing ricinoleic acid for transdermal delivery. Blank Pluronic lecithin organogel gels were prepared using ricinoleic acid as the oil phase and characterized for pH, viscosity, gelation temperature, and microscopic structure. The optimized Pluronic lecithin organogel gel formulation was further evaluated using ketoprofen (10%) and dexamethasone (0.5%) as model drugs. The stability and in vitro permeability of ketoprofen and dexamethasone was evaluated and compared with the corresponding control formulation (Pluronic lecithin organogel gel made with isopropyl palmitate as the oil phase). The pH and viscosity of blank Pluronic lecithin organogel gel prepared with ricinoleic acid was comparable with the isopropyl palmitate Pluronic lecithin organogel gel. The thixotropic property of ricinoleic acid Pluronic lecithin organogel gel was found to be better than the control. Drug-loaded Pluronic lecithin organogel gels behaved in a similar manner and all formulations were found to be stable at 25 degrees C, 35 degrees C, and 40 degrees C for up to 35 days. The penetration profile of dexamethasone was similar from both the Pluronic lecithin organogel gels, while the permeability for ketoprofen from Pluronic lecithin organogel gel containing ricinoleic acid was found to be three times higher as compared to the control formulation.

  18. A modified harmony search method for environmental/economic load dispatch of real-world power systems

    International Nuclear Information System (INIS)

    Jeddi, Babak; Vahidinasab, Vahid

    2014-01-01

    Highlights: • A combined economic and emission load dispatch (CEELD) model is proposed. • The proposed model considers practical constraints of real-world power systems. • A new modified harmony search algorithm proposed to solve non-convex CEELD. • The proposed algorithm is tested by applying it to solve seven test systems. - Abstract: Economic load dispatch (ELD) problem is one of the basic and important optimization problems in a power system. However, considering practical constraints of real-world power systems such as ramp rate limits, prohibited operating zones, valve loading effects, multi-fuel options, spinning reserve and transmission system losses in ELD problem makes it a non-convex optimization problem, which is a challenging one and cannot be solved by traditional methods. Moreover, considering environmental issues, results in combined economic and emission load dispatch (CEELD) problem that is a multiobjective optimization model with two non-commensurable and contradictory objectives. In this paper, a modified harmony search algorithm (MHSA) proposed and applied to solve ELD and CEELD problem considering the abovementioned constraints. In the proposed MHSA, a new improvising method based on wavelet mutation together with a new memory consideration scheme based on the roulette wheel mechanism are proposed which improves the accuracy, convergence speed, and robustness of the classical HSA. Performance of the proposed algorithm is investigated by applying it to solve various test systems having non-convex solution spaces. To Show the effectiveness of the proposed method, obtained results compared with classical harmony search algorithm (HSA) and some of the most recently published papers in the area

  19. Studies of fuel loading pattern optimization for a typical pressurized water reactor (PWR) using improved pivot particle swarm method

    International Nuclear Information System (INIS)

    Liu, Shichang; Cai, Jiejin

    2012-01-01

    Highlights: ► The mathematical model of loading pattern problems for PWR has been established. ► IPPSO was integrated with ‘donjon’ and ‘dragon’ into fuel arrangement optimizing code. ► The novel method showed highly efficiency for the LP problems. ► The core effective multiplication factor increases by about 10% in simulation cases. ► The power peaking factor decreases by about 0.6% in simulation cases. -- Abstract: An in-core fuel reload design tool using the improved pivot particle swarm method was developed for the loading pattern optimization problems in a typical PWR, such as Daya Bay Nuclear Power Plant. The discrete, multi-objective improved pivot particle swarm optimization, was integrated with the in-core physics calculation code ‘donjon’ based on finite element method, and assemblies’ group constant calculation code ‘dragon’, composing the optimization code for fuel arrangement. The codes of both ‘donjon’ and ‘dragon’ were programmed by Institute of Nuclear Engineering of Polytechnique Montréal, Canada. This optimization code was aiming to maximize the core effective multiplication factor (Keff), while keeping the local power peaking factor (Ppf) lower than a predetermined value to maintain fuel integrity. At last, the code was applied to the first cycle loading of Daya Bay Nuclear Power Plant. The result showed that, compared with the reference loading pattern design, the core effective multiplication factor increased by 9.6%, while the power peaking factor decreased by 0.6%, meeting the safety requirement.

  20. Determination of Selected Polycyclic Aromatic Compounds in Particulate Matter Samples with Low Mass Loading: An Approach to Test Method Accuracy

    Directory of Open Access Journals (Sweden)

    Susana García-Alonso

    2017-01-01

    Full Text Available A miniaturized analytical procedure to determine selected polycyclic aromatic compounds (PACs in low mass loadings (<10 mg of particulate matter (PM is evaluated. The proposed method is based on a simple sonication/agitation method using small amounts of solvent for extraction. The use of a reduced sample size of particulate matter is often limiting for allowing the quantification of analytes. This also leads to the need for changing analytical procedures and evaluating its performance. The trueness and precision of the proposed method were tested using ambient air samples. Analytical results from the proposed method were compared with those of pressurized liquid and microwave extractions. Selected PACs (polycyclic aromatic hydrocarbons (PAHs and nitro polycyclic aromatic hydrocarbons (NPAHs were determined by liquid chromatography with fluorescence detection (HPLC/FD. Taking results from pressurized liquid extractions as reference values, recovery rates of sonication/agitation method were over 80% for the most abundant PAHs. Recovery rates of selected NPAHs were lower. Enhanced rates were obtained when methanol was used as a modifier. Intermediate precision was estimated by data comparison from two mathematical approaches: normalized difference data and pooled relative deviations. Intermediate precision was in the range of 10–20%. The effectiveness of the proposed method was evaluated in PM aerosol samples collected with very low mass loadings (<0.2 mg during characterization studies from turbofan engine exhausts.