WorldWideScience

Sample records for loaded superparamagnetic iron

  1. Selective in vitro anticancer effect of superparamagnetic iron oxide nanoparticles loaded in hyaluronan polymeric micelles.

    Science.gov (United States)

    Smejkalová, Daniela; Nešporová, Kristina; Huerta-Angeles, Gloria; Syrovátka, Jakub; Jirák, Daniel; Gálisová, Andrea; Velebný, Vladimír

    2014-11-10

    Due to its native origin, excellent biocompatibility and biodegradability, hyaluronan (HA) represents an attractive polymer for superparamagnetic iron oxide nanoparticles (SPION) coating. Herein, we report HA polymeric micelles encapsulating oleic acid coated SPIONs, having a hydrodynamic size of about 100 nm and SPION loading capacity of 1-2 wt %. The HA-SPION polymeric micelles were found to be selectively cytotoxic toward a number of human cancer cell lines, mainly those of colon adenocarcinoma (HT-29). The selective inhibition of cell growth was even observed when the SPION loaded HA polymeric micelles were incubated with a mixture of control and cancer cells. The selective in vitro inhibition could not be connected with an enhanced CD44 uptake or radical oxygen species formation and was rather connected with a different way of SPION intracellular release. While aggregated iron particles were visualized in control cells, nonaggregated solubilized iron oxide particles were detected in cancer cells. In vivo SPION accumulation in intramuscular tumor following an intravenous micelle administration was confirmed by magnetic resonance (MR) imaging and histological analysis. Having a suitable hydrodynamic size, high magnetic relaxivity, and being cancer specific and able to accumulate in vivo in tumors, SPION-loaded HA micelles represent a promising platform for theranostic applications.

  2. Superparamagnetic iron oxide nanoparticles (SPIONs)-loaded Trojan microparticles for targeted aerosol delivery to the lung.

    Science.gov (United States)

    Tewes, Frederic; Ehrhardt, Carsten; Healy, Anne Marie

    2014-01-01

    Targeted aerosol delivery to specific regions of the lung may improve therapeutic efficiency and minimise unwanted side effects. Targeted delivery could potentially be achieved with porous microparticles loaded with superparamagnetic iron oxide nanoparticles (SPIONs)-in combination with a target-directed magnetic gradient field. The aim of this study was to formulate and evaluate the aerodynamic properties of SPIONs-loaded Trojan microparticles after delivery from a dry powder inhaler. Microparticles made of SPIONs, PEG and hydroxypropyl-β-cyclodextrin (HPβCD) were formulated by spray drying and characterised by various physicochemical methods. Aerodynamic properties were evaluated using a next generation cascade impactor (NGI), with or without a magnet positioned at stage 2. Mixing appropriate proportions of SPIONs, PEG and HPβCD allowed Trojan microparticle to be formulated. These particles had a median geometric diameter of 2.8±0.3μm and were shown to be sensitive to the magnetic field induced by a magnet having a maximum energy product of 413.8kJ/m(3). However, these particles, characterised by a mass median aerodynamic diameter (MMAD) of 10.2±2.0μm, were considered to be not inhalable. The poor aerodynamic properties resulted from aggregation of the particles. The addition of (NH4)2CO3 and magnesium stearate (MgST) to the formulation improved the aerodynamic properties of the Trojan particles and resulted in a MMAD of 2.2±0.8μm. In the presence of a magnetic field on stage 2 of the NGI, the amount of particles deposited at this stage increased 4-fold from 4.8±0.7% to 19.5±3.3%. These Trojan particles appeared highly sensitive to the magnetic field and their deposition on most of the stages of the NGI was changed in the presence compared to the absence of the magnet. If loaded with a pharmaceutical active ingredient, these particles may be useful for treating localised lung disease such as cancer nodules or bacterial infectious foci. Copyright

  3. Albumin and Hyaluronic Acid-Coated Superparamagnetic Iron Oxide Nanoparticles Loaded with Paclitaxel for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Elena Vismara

    2017-06-01

    Full Text Available Super paramagnetic iron oxide nanoparticles (SPION were augmented by both hyaluronic acid (HA and bovine serum albumin (BSA, each covalently conjugated to dopamine (DA enabling their anchoring to the SPION. HA and BSA were found to simultaneously serve as stabilizing polymers of Fe3O4·DA-BSA/HA in water. Fe3O4·DA-BSA/HA efficiently entrapped and released the hydrophobic cytotoxic drug paclitaxel (PTX. The relative amount of HA and BSA modulates not only the total solubility but also the paramagnetic relaxation properties of the preparation. The entrapping of PTX did not influence the paramagnetic relaxation properties of Fe3O4·DA-BSA. Thus, by tuning the surface structure and loading, we can tune the theranostic properties of the system.

  4. Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide

    International Nuclear Information System (INIS)

    Liao Chengde; Sun Qiquan; Liang, Biling; Shen Jun; Shuai Xintao

    2011-01-01

    Epidermal growth factor receptor (EGFR), a cellular transmembrane receptor, plays a key role in cell proliferation and is linked to a poor prognosis in various human cancers. In this study, we constructed Cetuximab-immunomicelles in which the anti-EGFR monoclonal antibody was linked to poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG–PCL) nanomicelles that were loaded with doxorubicin (DOX) and superparamagnetic iron oxide (SPIO). The specific interactions between EGFR-overexpressing tumor cells (A431) and immunomicelles were observed using confocal laser scanning microscopy (CLSM) and flow cytometry. Furthermore, the capacity of transporting SPIO into tumor cells using these immunomicelles was evaluated with a 1.5 T clinical magnetic resonance imaging (MRI) scanner. It was found that the acquired MRI T2 signal intensity of A431 cells that were treated with the SPIO-loaded and antibody-functionalized micelles decreased significantly. Using the thiazolyl blue tetrazolium bromide (MTT) assay, we also demonstrated that the immunomicelles inhibited cell proliferation more effectively than their nontargeting counterparts. Our results suggest that Cetuximab-immunomicelles are a useful delivery vehicle for DOX and SPIO to EGFR-overexpressing tumor cells in vitro and that Cetuximab-immunomicelles can serve as a MRI-visible and targeted drug delivery agent for better tumor imaging and therapy.

  5. Controllable labelling of stem cells with a novel superparamagnetic iron oxide-loaded cationic nanovesicle for MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ruo Mi; Zhang, Fang; Wen, Xue Hua; Shen, Jun [Sun Yat-Sen University, Department of Radiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong (China); Cao, Nuo; Wang, Yi Ru; Shuai, Xin Tao [Sun Yat-Sen University, BME Center, School of Chemistry and Chemical Engineering, Guangzhou (China)

    2012-11-15

    To investigate the feasibility of highly efficient and controllable stem cell labelling for cellular MRI. A new class of cationic, superparamagnetic iron oxide nanoparticle (SPION)-loaded nanovesicles was synthesised to label rat bone marrow mesenchymal stem cells without secondary transfection agents. The optimal labelling conditions and controllability were assessed, and the effect of labelling on cell viability, proliferation activity and multilineage differentiation was determined. In 18 rats, focal ischaemic cerebral injury was induced and the rats randomly injected with 1 x 10{sup 6} cells labelled with 0-, 8- or 20-mV nanovesicles (n = 6 each). In vivo MRI was performed to follow grafted cells in contralateral striata, and results were correlated with histology. Optimal cell labelling conditions involved a concentration of 3.15 {mu}g Fe/mL nanovesicles with 20-mV positive charge and 1-h incubation time. Labelling efficiency showed linear change with an increase in the electric potentials of nanovesicles. Labelling did not affect cell viability, proliferation activity or multilineage differentiation capacity. The distribution and migration of labelled cells could be detected by MRI. Histology confirmed that grafted cells retained the label and remained viable. Stem cells can be effectively and safely labelled with cationic, SPION-loaded nanovesicles in a controllable way for cellular MRI. (orig.)

  6. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy.

    Science.gov (United States)

    Dilnawaz, Fahima; Singh, Abhalaxmi; Mohanty, Chandana; Sahoo, Sanjeeb K

    2010-05-01

    The primary inadequacy of chemotherapeutic drugs is their relative non-specificity and potential side effects to the healthy tissues. To overcome this, drug loaded multifunctional magnetic nanoparticles are conceptualized. We report here an aqueous based formulation of glycerol monooleate coated magnetic nanoparticles (GMO-MNPs) devoid of any surfactant capable of carrying high payload hydrophobic anticancer drugs. The biocompatibility was confirmed by tumor necrosis factor alpha assay, confocal microscopy. High entrapment efficiency approximately 95% and sustained release of encapsulated drugs for more than two weeks under in vitro conditions was achieved for different anticancer drugs (paclitaxel, rapamycin, alone or combination). Drug loaded GMO-MNPs did not affect the magnetization properties of the iron oxide core as confirmed by magnetization study. Additionally the MNPs were functionalized with carboxylic groups by coating with DMSA (Dimercaptosuccinic acid) for the supplementary conjugation of amines. For targeted therapy, HER2 antibody was conjugated to GMO-MNPs and showed enhanced uptake in human breast carcinoma cell line (MCF-7). The IC(50) doses revealed potential antiproliferative effect in MCF-7. Therefore, antibody conjugated GMO-MNPs could be used as potential drug carrier for the active therapeutic aspects in cancer therapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Magnetic resonance cell-tracking studies: spectrophotometry-based method for the quantification of cellular iron content after loading with superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Böhm, Ingrid

    2011-08-01

    The purpose of this article is to present a user-friendly tool for quantifying the iron content of superparamagnetic labeled cells before cell tracking by magnetic resonance imaging (MRI). Iron quantification was evaluated by using Prussian blue staining and spectrophotometry. White blood cells were labeled with superparamagnetic iron oxide (SPIO) nanoparticles. Labeling was confirmed by light microscopy. Subsequently, the cells were embedded in a phantom and scanned on a 3 T magnetic resonance tomography (MRT) whole-body system. Mean peak wavelengths λ(peak) was determined at A(720 nm) (range 719-722 nm). Linearity was proven for the measuring range 0.5 to 10 μg Fe/mL (r  =  .9958; p  =  2.2 × 10(-12)). The limit of detection was 0.01 μg Fe/mL (0.1785 mM), and the limit of quantification was 0.04 μg Fe/mL (0.714 mM). Accuracy was demonstrated by comparison with atomic absorption spectrometry. Precision and robustness were also proven. On T(2)-weighted images, signal intensity varied according to the iron concentration of SPIO-labeled cells. Absorption spectrophotometry is both a highly sensitive and user-friendly technique that is feasible for quantifying the iron content of magnetically labeled cells. The presented data suggest that spectrophotometry is a promising tool for promoting the implementation of magnetic resonance-based cell tracking in routine clinical applications (from bench to bedside).

  8. Magnetic Resonance Cell-Tracking Studies: Spectrophotometry-Based Method for the Quantification of Cellular Iron Content after Loading with Superparamagnetic Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ingrid Böhm

    2011-07-01

    Full Text Available The purpose of this article is to present a user-friendly tool for quantifying the iron content of superparamagnetic labeled cells before cell tracking by magnetic resonance imaging (MRI. Iron quantification was evaluated by using Prussian blue staining and spectrophotometry. White blood cells were labeled with superparamagnetic iron oxide (SPIO nanoparticles. Labeling was confirmed by light microscopy. Subsequently, the cells were embedded in a phantom and scanned on a 3 T magnetic resonance tomography (MRT whole-body system. Mean peak wavelengths Λpeak was determined at A720nm (range 719–722 nm. Linearity was proven for the measuring range 0.5 to 10 μg Fe/mL (r = .9958; p = 2.2 × 10−12. The limit of detection was 0.01 μg Fe/mL (0.1785 mM, and the limit of quantification was 0.04 μg Fe/mL (0.714 mM. Accuracy was demonstrated by comparison with atomic absorption spectrometry. Precision and robustness were also proven. On T2-weighted images, signal intensity varied according to the iron concentration of SPIO-labeled cells. Absorption spectrophotometry is both a highly sensitive and user-friendly technique that is feasible for quantifying the iron content of magnetically labeled cells. The presented data suggest that spectrophotometry is a promising tool for promoting the implementation of magnetic resonance-based cell tracking in routine clinical applications (from bench to bedside.

  9. Superparamagnetic iron oxides for MRI

    International Nuclear Information System (INIS)

    Weissleder, R.; Reimer, P.

    1993-01-01

    Pharmaceutical iron oxide preparations have been used as MRI contrast agents for a variety of purposes. These agents predominantly decrease T2 relaxation times and therefore cause a decrease in signal intensity of tissues that contain the agent. After intravenous administration, dextran-coated iron oxides typically accumulate in phagocytic cells in liver and spleen. Clinical trials have shown that iron oxide increases lesion/liver and lesion/spleen contrast, that more lesions can be depicted than on plain MRI or CT, and that the size threshold for lesion detection decreases. Decreased uptake of iron oxides in liver has been observed in hepatitis and cirrhosis, potentially allowing the assessment of organ function. More recently a variety of novel, target-specific monocrystalline iron oxides compounds have been used for receptor and immunospecific images. Future development of targeted MRI contrast agents is critical for organ- or tissue-specific quantitative and functional MRI. (orig.)

  10. Superparamagnetic iron oxides for MRI

    Energy Technology Data Exchange (ETDEWEB)

    Weissleder, R [MGH-NMR Center, Dept. of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Reimer, P [MGH-NMR Center, Dept. of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); [Inst. fuer Klinische Radiologie, Zentrale Roentgendiagnostik, Westfaelische-Wilhelms-Univ., Muenster (Germany)

    1993-06-01

    Pharmaceutical iron oxide preparations have been used as MRI contrast agents for a variety of purposes. These agents predominantly decrease T2 relaxation times and therefore cause a decrease in signal intensity of tissues that contain the agent. After intravenous administration, dextran-coated iron oxides typically accumulate in phagocytic cells in liver and spleen. Clinical trials have shown that iron oxide increases lesion/liver and lesion/spleen contrast, that more lesions can be depicted than on plain MRI or CT, and that the size threshold for lesion detection decreases. Decreased uptake of iron oxides in liver has been observed in hepatitis and cirrhosis, potentially allowing the assessment of organ function. More recently a variety of novel, target-specific monocrystalline iron oxides compounds have been used for receptor and immunospecific images. Future development of targeted MRI contrast agents is critical for organ- or tissue-specific quantitative and functional MRI. (orig.)

  11. Targeted therapy for human hepatic carcinoma cells using folate-functionalized polymeric micelles loaded with superparamagnetic iron oxide and sorafenib in vitro

    Directory of Open Access Journals (Sweden)

    Zhang L

    2013-04-01

    Full Text Available Lei Zhang,1 Faming Gong,2 Fang Zhang,3 Jing Ma,1 Peidong Zhang,1 Jun Shen3 1Department of Hepatobiliary and Pancreatic Surgery, 2PCFM Laboratory of Ministry of Education, School of Chemistry and Chemical Engineering, 3Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China Background: The purpose of this study was to evaluate the inhibitory effect of targeted folate-functionalized micelles containing superparamagnetic iron oxide nanoparticles (SPIONs and sorafenib on human hepatic carcinoma (HepG2 cells in vitro, and to observe the feasibility of surveillance of this targeting therapeutic effect by magnetic resonance imaging. Methods: Sorafenib and SPIONs were loaded into polymeric micelles. The targeted nanocarrier was synthesized by functionalizing the micelles with folate. Folate-free micelles loaded with sorafenib and SPIONs were used as control (nontargeted micelles. Uptake of the nanocarrier by cells was assessed using Prussian blue staining after 1 hour of incubation with the polymeric micelles. The inhibitory effect of the targeted micelles on HepG2 cell proliferation at various concentrations of sorafenib was assessed in vitro using the methyl thiazolyl tetrazolium (MTT assay and apoptotic analysis using flow cytometry. Magnetic resonance imaging using a clinical 1.5 T scanner was performed to detect changes in the signal intensity of cells after incubation with the targeted micelles. Results: Prussian blue staining showed significantly more intracellular SPIONs in cells incubated with the targeted micelles than those incubated with nontargeted micelles. The MTT assay showed that the average inhibitory ratio in the targeted group was significantly higher than that in the nontargeted group (38.13% versus 22.54%, P = 0.028. The mean apoptotic rate in the targeted cells, nontargeted cells, and untreated cells was 17.01%, 11.04%, and 7.89%, respectively. The apoptotic rate in the

  12. Washing effect on superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Laura-Karina Mireles

    2016-06-01

    Full Text Available Much recent research on nanoparticles has occurred in the biomedical area, particularly in the area of superparamagnetic iron oxide nanoparticles (SPIONs; one such area of research is in their use as magnetically directed prodrugs. It has been reported that nanoscale materials exhibit properties different from those of materials in bulk or on a macro scale [1]. Further, an understanding of the batch-to-batch reproducibility and uniformity of the SPION surface is essential to ensure safe biological applications, as noted in the accompanying article [2], because the surface is the first layer that affects the biological response of the human body. Here, we consider a comparison of the surface chemistries of a batch of SPIONs, before and after the supposedly gentle process of dialysis in water.

  13. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride.

    Science.gov (United States)

    Mallick, Neha; Anwar, Mohammed; Asfer, Mohammed; Mehdi, Syed Hassan; Rizvi, Mohammed Moshahid Alam; Panda, Amulya Kumar; Talegaonkar, Sushama; Ahmad, Farhan Jalees

    2016-10-20

    Chondroitin-4-sulfate (CS), a glycosaminoglycan, was used to prepare CS-capped super-paramagnetic iron oxide nanoparticles, which were further employed for loading a water-soluble chemotherapeutic agent (doxorubicin hydrochloride, DOX). CS-capped SPIONs have potential biomedical application in cancer targeting. The optimized formulation had a hydrodynamic size of 91.2±0.8nm (PDI; 0.228±0.004) and zeta potential of -49.1±1.66mV. DOX was loaded onto the formulation up to 2% (w/w) by physical interaction with CS. TEM showed nano-sized particles having a core-shell structure. XRD confirmed crystal phase of iron oxide. FT-IR conceived the interaction of iron oxide with CS as bidentate chelation and also confirmed DOX loading. Vibration sample magnetometry confirmed super-paramagnetic nature of nanoparticles, with saturation magnetization of 0.238emug(-1). In vitro release profile at pH 7.4 showed that 96.67% of DOX was released within 24h (first order kinetics). MTT assay in MCF7 cells showed significantly higher (p<0.0001) cytotoxicity for DOX in SPIONs than DOX solution (IC50 values 6.294±0.4169 and 11.316±0.1102μgmL(-1), respectively). Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION

    Directory of Open Access Journals (Sweden)

    Neenu Singh

    2010-09-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPION are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these nanoparticles. Besides focussing on cytotoxicity, the most commonly used determinant of toxicity as a result of exposure to SPION, this review also mentions the importance of studying the subtle cellular alterations in the form of DNA damage and oxidative stress. We review current studies and discuss how SPION, with or without different surface coating, may cause cellular perturbations including modulation of actin cytoskeleton, alteration in gene expression profiles, disturbance in iron homeostasis and altered cellular responses such as activation of signalling pathways and impairment of cell cycle regulation. The importance of protein–SPION interaction and various safety considerations relating to SPION exposure are also addressed.

  15. Superparamagnetic bimetallic iron-palladium nanoalloy: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Rabia; Mazhar, Muhammad [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Akhtar, M Javed; Nadeem, M; Siddique, Muhammad [Physics Division, PINSTECH, PO Nilore, Islamabad 44000 (Pakistan); Shah, M Raza [HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270 (Pakistan); Khan, Nawazish A [Material Science Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mehmood, Mazhar [National Centre for Nanotechnology, PIEAS, Islamabad 45650 (Pakistan); Butt, N M [Pakistan Science Foundation, Islamabad 44000 (Pakistan)], E-mail: mazhar42pk@yahoo.com

    2008-05-07

    Iron-palladium nanoalloy in the particle size range of 15-30 nm is synthesized by the relatively low temperature thermal decomposition of coprecipitated [Fe(Bipy){sub 3}]Cl{sub 2} and [Pd(Bipy){sub 3}]Cl{sub 2} in an inert ambient of dry argon gas. The silvery black Fe-Pd alloy nanoparticles are air-stable and have been characterized by EDX-RF, XRD, AFM, TEM, magnetometry, {sup 57}Fe Moessbauer and impedance spectroscopy. This Fe-Pd nanoalloy is in single phase and contains iron sites having up to 11 nearest-neighboring atoms. It is superparamagnetic in nature with high magnetic susceptibility, low coercivity and hyperfine field.

  16. Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Marina Pöttler

    2015-11-01

    Full Text Available Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5 were treated with SPIONs, either coated with lauric acid (SEONLA only, or additionally with a protein corona of bovine serum albumin (BSA; SEONLA-BSA, or with dextran (SEONDEX. Both micronuclei testing and the detection of γH2A.X revealed no genotoxic effects of SEONLA-BSA, SEONDEX or SEONLA. Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system.

  17. Superparamagnetic iron oxide nanoparticles (SPIONs) for targeted drug delivery

    Science.gov (United States)

    Garg, Vijayendra K.; Kuzmann, Erno; Sharma, Virender K.; Kumar, Arun; Oliveira, Aderbal C.

    2016-10-01

    Studies of superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively carried out. Since the earlier work on Mössbauer studies on SPIONs in 1970s, many biomedical applications and their uses in innovative methods to produce new materials with improved performance have appeared. Applications of SPIONs in environmental remediation are also forthcoming. Several different methods of synthesis and coating of the magnetic particles have been described in the literature, and Mössbauer spectroscopy has been an important tool in the characterization of these materials. It is quite possible that the interpretation of the Mössbauer spectra might not be entirely correct because the possible presence of maghemite in the end product of SPIONs might not have been taken into consideration. Nanotechnology is an emerging field that covers a wide range of new technologies under development in nanoscale (1 to 100 nano meters) to produce new products and methodology.

  18. Single-cell nanotoxicity assays of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Eustaquio, Trisha; Leary, James F

    2012-01-01

    Properly evaluating the nanotoxicity of nanoparticles involves much more than bulk-cell assays of cell death by necrosis. Cells exposed to nanoparticles may undergo repairable oxidative stress and DNA damage or be induced into apoptosis. Exposure to nanoparticles may cause the cells to alter their proliferation or differentiation or their cell-cell signaling with neighboring cells in a tissue. Nanoparticles are usually more toxic to some cell subpopulations than others, and toxicity often varies with cell cycle. All of these facts dictate that any nanotoxicity assay must be at the single-cell level and must try whenever feasible and reasonable to include many of these other factors. Focusing on one type of quantitative measure of nanotoxicity, we describe flow and scanning image cytometry approaches to measuring nanotoxicity at the single-cell level by using a commonly used assay for distinguishing between necrotic and apoptotic causes of cell death by one type of nanoparticle. Flow cytometry is fast and quantitative, provided that the cells can be prepared into a single-cell suspension for analysis. But when cells cannot be put into suspension without altering nanotoxicity results, or if morphology, attachment, and stain location are important, a scanning image cytometry approach must be used. Both methods are described with application to a particular type of nanoparticle, a superparamagnetic iron oxide nanoparticle (SPION), as an example of how these assays may be applied to the more general problem of determining the effects of nanomaterial exposure to living cells.

  19. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles

    NARCIS (Netherlands)

    Moonen, R.P.M.; van der Tol, P.; Hectors, S.J.C.G.; Starmans, L.W.E.; Nicolaij, K.; Strijkers, G.J.

    2015-01-01

    Purpose To evaluate spin-lock MR for detecting superparamagnetic iron oxides and compare the detection sensitivity of quantitative T1ρ with T2 imaging. Methods In vitro experiments were performed to investigate the influence of iron oxide particle size and composition on T1ρ. These comprise T1ρ and

  20. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles

    NARCIS (Netherlands)

    Moonen, Rik P. M.; van der Tol, Pieternel; Hectors, Stefanie J. C. G.; Starmans, Lucas W. E.; Nicolay, Klaas; Strijkers, Gustav J.

    2015-01-01

    To evaluate spin-lock MR for detecting superparamagnetic iron oxides and compare the detection sensitivity of quantitative T1ρ with T2 imaging. In vitro experiments were performed to investigate the influence of iron oxide particle size and composition on T1ρ . These comprise T1ρ and T2 measurements

  1. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Pongrac, I. M.; Pavičić, I.; Milić, M.; Brkić Ahmed, L.; Babič, Michal; Horák, Daniel; Vinković Vrček, I.; Gajović, S.

    2016-01-01

    Roč. 11, 26 April (2016), s. 1701-1715 ISSN 1176-9114 R&D Projects: GA ČR(CZ) GC16-01128J EU Projects: European Commission(XE) 316120 - GLOWBRAIN Institutional support: RVO:61389013 Keywords : superparamagnetic iron oxide nanoparticles * biocompatibility * oxidative stress Subject RIV: CD - Macromolecular Chemistry

  2. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides

    International Nuclear Information System (INIS)

    Braga, Tiago P.; Vasconcelos, Igor F.; Sasaki, Jose M.; Fabris, J.D.; Oliveira, Diana Q.L. de; Valentini, Antoninho

    2010-01-01

    Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Moessbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Moessbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.

  3. In situ hybridization of superparamagnetic iron-biomolecule nanoparticles.

    Science.gov (United States)

    Moghimi, Nafiseh; Donkor, Apraku David; Mohapatra, Mamata; Thomas, Joseph Palathinkal; Su, Zhengding; Tang, Xiaowu Shirley; Leung, Kam Tong

    2014-07-23

    The increase in interest in the integration of organic-inorganic nanostructures in recent years has promoted the use of hybrid nanoparticles (HNPs) in medicine, energy conversion, and other applications. Conventional hybridization methods are, however, often long, complicated, and multistepped, and they involve biomolecules and discrete nanostructures as separate entities, all of which hinder the practical use of the resulting HNPs. Here, we present a novel, in situ approach to synthesizing size-specific HNPs using Fe-biomolecule complexes as the building blocks. We choose an anticancer peptide (p53p, MW 1.8 kDa) and an enzyme (GOx, MW 160 kDa) as model molecules to demonstrate the versatility of the method toward different types of molecules over a large size range. We show that electrostatic interaction for complex formation of metal hydroxide ion with the partially charged side of biomolecule in the solution is the key to hybridization of metal-biomolecule materials. Electrochemical deposition is then used to produce hybrid NPs from these complexes. These HNPs with controllable sizes ranging from 30 nm to 3.5 μm are found to exhibit superparamagnetic behavior, which is a big challenge for particles in this size regime. As an example of greatly improved properties and functionality of the new hybrid material, in vitro toxicity assessment of Fe-GOx HNPs shows no adverse effect, and the Fe-p53p HNPs are found to selectively bind to cancer cells. The superparamagnetic nature of these HNPs (superparamagnetic even above the size regime of 15-20 nm!), their biocompatibility, and the direct integration approach are fundamentally important to biomineralization and general synthesis strategy for bioinspired functional materials.

  4. Imaging pathobiology of carotid atherosclerosis with ultrasmall superparamagnetic particles of iron oxide: an update.

    Science.gov (United States)

    Sadat, Umar; Usman, Ammara; Gillard, Jonathan H

    2017-07-01

    To provide brief overview of the developments regarding use of ultrasmall superparamagnetic particles of iron oxide in imaging pathobiology of carotid atherosclerosis. MRI is a promising technique capable of providing morphological and functional information about atheromatous plaques. MRI using iron oxide particles, called ultrasmall superparamagnetic iron oxide (USPIO) particles, allows detection of macrophages in atherosclerotic tissue. Ferumoxytol has emerged as a new USPIO agent, which has an excellent safety profile. Based on the macrophage-selective properties of ferumoxytol, there is increasing number of recent reports suggesting its effectiveness to detect pathological inflammation. USPIO particles allow magnetic resonance detection of macrophages in atherosclerotic tissue. Ferumoxytol has emerged as a new USPIO agent, with an excellent safety profile. This has the potential to be used for MRI of the pathobiology of atherosclerosis.

  5. Enhanced bio-compatibility of ferrofluids of self-assembled superparamagnetic iron oxide-silica core-shell nanoparticles

    Digital Repository Service at National Institute of Oceanography (India)

    Narayanan, T.N.; Mary, A.P.R.; Swalih, P.K.A.; Kumar, D.S.; Makarov, D.; Albrecht, M.; Puthumana, J.; Anas, A.; Anantharaman, A.

    -interacting, monodispersed and hence the synthesis of such nanostructures has great relevance in the realm of nanoscience. Silica-coated superparamagnetic iron oxide nanoparticles based ferrofluids were prepared using polyethylene glycol as carrier fluid by employing a...

  6. Preparation and quality test of superparamagnetic iron oxide labeled antisense oligodeoxynucleotide probe: a preliminary study.

    Science.gov (United States)

    Wen, Ming; Li, Bibo; Ouyang, Yu; Luo, Yi; Li, Shaolin

    2009-06-01

    Molecular imaging of tumor antisense gene techniques have been applied to the study of magnetic resonance (MR) gene imaging associated with malignant tumors. In this study, we designed, synthesized, and tested a novel molecular probe, in which the antisense oligodeoxynucleotide (ASODN) was labeled with superparamagnetic iron oxide (SPIO), and its efficiency was examined by in vitro MR imaging after SK-Br-3 mammary carcinoma cell lines (oncocytes) transfection. The SPIO-labeled ASODN probe was prepared through SPIO conjugated to ASODN using a chemical cross linking method. Its morphology and size were detected by atomic force microscope, size distribution were detected by laser granulometer, the conjugating rate and biological activity were determined by high performance liquid chromatography, and the stability was determined by polyacrylamide gel electrophoresis. After that, the probes were transfected into the SK-Br-3 oncocytes, cellular iron uptake was analyzed qualitatively at light and electron microscopy and was quantified at atomic absorption spectrometry, and the signal change of the transfected cells was observed and measured using MR imaging. The morphology of the SPIO-labeled ASODN probe was mostly spherical with well-distributed scattering, and the diameters were between 25 and 40 nm (95%) by atomic force microscope and laser granulometer, the conjugating rate of the probe was 99%. Moreover, this probe kept its activity under physiological conditions and could conjugate with antisense oligodeoxynucleotide. In addition, light microscopy revealed an intracellular uptake of iron oxides in the cytosol and electron microscopic studies revealed a lysosomal deposition of iron oxides in the transfected SK-Br-3 oncocytes by antisense probes, some of them gathered stacks, and the iron content of the group of transfected SK-Br-3 oncocytes by antisense probe is significantly higher (18.37 +/- 0.42 pg) than other contrast groups, the MR imaging showed that

  7. A functionalized superparamagnetic iron oxide colloid as a receptor directed MR contrast agent

    International Nuclear Information System (INIS)

    Josephson, L.; Groman, E.V.; Menz, E.; Lewis, J.M.; Bengele, H.

    1990-01-01

    We have synthesized a surface functionalized superparamagnetic iron oxide colloid whose clearance from the vascular compartment was inhibited by asialofetuin but not fetuin. Unlike other particulate or colloidal magnetic resonance (MR) contrast agents, the agent of the current communication is not withdrawn from the vascular compartment by cells of the macrophage-monocyte phagocytic system, as indicated by its selective increase in hepatic relaxation rates. Because of this we refer to this colloid as a hepatic selective (HS) MR contrast agent. At 20 mumol Fe/kg the HS MR agent darkened MR images of liver. The HS MR agent exhibited no acute toxicity when injected into rats at 1800 mumol Fe/kg. Based on these observations, surface functionalized superparamagnetic iron oxide colloids may be the basis of MR contrast agents internalized by receptor mediated endocytosis generally, and by the asialoglycoprotein receptor in particular

  8. Whole tissue AC susceptibility after superparamagnetic iron oxide contrast agent administration in a rat model

    International Nuclear Information System (INIS)

    Lazaro, Francisco Jose; Gutierrez, Lucia; Rosa Abadia, Ana; Soledad Romero, Maria; Lopez, Antonio; Jesus Munoz, Maria

    2007-01-01

    A magnetic AC susceptibility characterisation of rat tissues after intravenous administration of superparamagnetic iron oxide (Endorem ( R)), at the same dose as established for Magnetic Resonance Imaging (MRI) contrast enhancement in humans, has been carried out. The measurements reveal the presence of the contrast agent as well as that of physiological ferritin in liver and spleen while no traces have been magnetically detected in heart and kidney. This preliminary work opens suggestive possibilities for future biodistribution studies of any type of magnetic carriers

  9. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles

    OpenAIRE

    Cheng,Kuo-Wei; Hsu,Shan-hui

    2017-01-01

    Kuo-Wei Cheng, Shan-hui Hsu Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan, Republic of China Abstract: Superparamagnetic iron oxide nanoparticles (SPIO NPs) have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encaps...

  10. Tissue Plasminogen Activator Binding to Superparamagnetic Iron Oxide Nanoparticle—Covalent Versus Adsorptive Approach

    Science.gov (United States)

    Friedrich, Ralf P.; Zaloga, Jan; Schreiber, Eveline; Tóth, Ildikó Y.; Tombácz, Etelka; Lyer, Stefan; Alexiou, Christoph

    2016-06-01

    Functionalized superparamagnetic iron oxide nanoparticles are frequently used to develop vehicles for drug delivery, hyperthermia, and photodynamic therapy and as tools used for magnetic separation and purification of proteins or for biomolecular imaging. Depending on the application, there are various possible covalent and non-covalent approaches for the functionalization of particles, each of them shows different advantages and disadvantages for drug release and activity at the desired location.

  11. Processing of superparamagnetic iron contrast agent ferucarbotran in transplanted pancreatic islets

    Czech Academy of Sciences Publication Activity Database

    Zacharovová, K.; Berková, Z.; Jirák, D.; Herynek, V.; Vancová, Marie; Dovolilová, E.; Saudek, F.

    2012-01-01

    Roč. 7, č. 6 (2012), s. 485-493 ISSN 1555-4309 Institutional research plan: CEZ:AV0Z60220518 Keywords : magnetic resonance imaging * pancreatic islets * transplantation * superparamagnetic iron oxide nanoparticles * ferucarbotran * β cells * diabetes * immunohistochemistry * transmission electron microscopy Subject RIV: CE - Biochemistry Impact factor: 2.872, year: 2012 http://onlinelibrary.wiley.com/doi/10.1002/cmmi.1477/full

  12. MRI in acute cerebral ischaemia: perfusion imaging with superparamagnetic iron oxide in a rat model

    International Nuclear Information System (INIS)

    Forsting, M.; Reith, W.; Doerfler, A.; Kummer, R. von; Hacke, W.; Sartor, K.

    1994-01-01

    An imaging technique capable of detecting ischaemic cerebral injury at an early stage could improve diagnosis in acute or transient cerebral ischaemia. We compared the ability of superparamagnetically contrast-enhanced MRI and conventional T2-weighted MRI to detect ischaemic injury early after unilateral occlusion of the middle cerebral artery in 12 male Wistar rats. Permanent vessel occlusion was achieved by a transvascular approach, which has the advantage of not requiring a craniectom. At 45-60 min after the procedure, the animals had conventional T2-weighted MRI before and after administration of a superparamagnetic contrast agent (iron oxide particles). Unenhanced images were normal in all animals. After administration of iron oxide particles, the presumed ischaemic area was clearly visible, as relatively increased signal, in all animals; this high signal area corresponded to the area of ischaemic brain infarction seen on histological studies. Our results suggest that superparamagnetic iron particles may significantly reduce the interval between an ischaemic insult and the appearance of parenchymal changes on MRI. (orig./UWA)

  13. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    International Nuclear Information System (INIS)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2016-01-01

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION. - Highlights: • We present recent advances in synthesis of SPION and various routes of producing silica coated SPION • The synthetic routes of producing SPION can be classified into three: physical, chemical and biological methods. • The chemical method is the most cited method of producing SPION and it sub-classified into liquid and gas phase. • The techniques of producing silica coated SPION is grouped into seeded and non-seeded methods.

  14. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    Energy Technology Data Exchange (ETDEWEB)

    Sodipo, Bashiru Kayode, E-mail: bashirsodipo@gmail.com [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Aziz, Azlan Abdul [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia)

    2016-10-15

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION. - Highlights: • We present recent advances in synthesis of SPION and various routes of producing silica coated SPION • The synthetic routes of producing SPION can be classified into three: physical, chemical and biological methods. • The chemical method is the most cited method of producing SPION and it sub-classified into liquid and gas phase. • The techniques of producing silica coated SPION is grouped into seeded and non-seeded methods.

  15. Evaluation of umbilical cord mesenchymal stem cells labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-Lysine

    International Nuclear Information System (INIS)

    Sibov, Tatiana Tais; Mamani, Javier Bustamante; Pavon, Lorena Favaro; Cardenas, Walter Humberto; Gamarra, Lionel Fernel; Miyaki, Liza Aya Mabuchi; Marti, Luciana Cavalheiro; Sardinha, Luiz Roberto; Oliveira, Daniela Mara de

    2012-01-01

    Objective: The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. Methods: The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dextran complexed and not complexed to poly-L-lysine. Superparamagnetic iron oxide nanoparticles/dextran was incubated with poly-L-lysine in an ultrasonic sonicator at 37 deg C for 10 minutes for complex formation superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine by electrostatic interaction. Then, the mesenchymal stem cells were incubated overnight with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran. After the incubation period the mesenchymal stem cells were evaluated by internalization of the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine and superparamagnetic iron oxide nanoparticles/dextran by Prussian Blue stain. Cellular viability of labeled mesenchymal stem cells was evaluated by cellular proliferation assay using 5,6-carboxyfluorescein-succinimidyl ester method and apoptosis detection by Annexin V- Propidium Iodide assay. Results: mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles/ dextran without poly-L-lysine not internalized efficiently the superparamagnetic iron oxide nanoparticles due to its low presence detected within cells. Mesenchymal stem cells labeled with the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine efficiently internalized the superparamagnetic iron oxide nanoparticles due to greater presence in the cells interior. The viability and apoptosis assays demonstrated that the mesenchymal stem cells labeled and not labeled respectively with the superparamagnetic iron oxide

  16. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging.

    Science.gov (United States)

    Wang, Yi-Xiang J

    2015-12-21

    Five types of superparamagnetic iron oxide (SPIO), i.e. Ferumoxides (Feridex(®) IV, Berlex Laboratories), Ferucarbotran (Resovist(®), Bayer Healthcare), Ferumoxtran-10 (AMI-227 or Code-7227, Combidex(®), AMAG Pharma; Sinerem(®), Guerbet), NC100150 (Clariscan(®), Nycomed,) and (VSOP C184, Ferropharm) have been designed and clinically tested as magnetic resonance contrast agents. However, until now Resovist(®) is current available in only a few countries. The other four agents have been stopped for further development or withdrawn from the market. Another SPIO agent Ferumoxytol (Feraheme(®)) is approved for the treatment of iron deficiency in adult chronic kidney disease patients. Ferumoxytol is comprised of iron oxide particles surrounded by a carbohydrate coat, and it is being explored as a potential imaging approach for evaluating lymph nodes and certain liver tumors.

  17. Toxicity of superparamagnetic iron oxide nanoparticles: Research strategies and implications for nanomedicine

    International Nuclear Information System (INIS)

    Li Lei; Jiang Ling-Ling; Zeng Yun; Liu Gang

    2013-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are one of the most versatile and safe nanoparticles in a wide variety of biomedical applications. In the past decades, considerable efforts have been made to investigate the potential adverse biological effects and safety issues associated with SPIONs, which is essential for the development of next-generation SPIONs and for continued progress in translational research. In this mini review, we summarize recent developments in toxicity studies on SPIONs, focusing on the relationship between the physicochemical properties of SPIONs and their induced toxic biological responses for a better toxicological understanding of SPIONs. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  18. Low temperature synthesis, magnetic and electrical properties of iron-magnesium superparamagnetic nanoalloy

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Rabia [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mazhar, Muhammad [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: mazhar42pk@yahoo.com; Akhtar, Muhammad Javed; Nadeem, Muhammad; Siddique, Muhammad [Physics Division, Pinstech, P.O. Nilore, Islamabad (Pakistan); Shah, Raza [HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270 (Pakistan); Hasanain, S. Khurshid [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2009-06-24

    A low temperature chemical approach which beats the miscibility barrier of Fe and Mg has been designed to synthesize Fe-Mg{sub 2} nanoalloy and tested to result nanoparticles of average 30 nm size. The nanoalloy is amorphous in nature and characterized by XPRD, AFM, magnetometery, Moessbauer and impedance spectroscopies. The result of magnetic measurement suggests the sample to be superparamagnetic as evidenced by the {sup 57}Fe Moessbauer spectroscopy. The two Mg atoms occupy different positions around iron resulting in two phase system as shown by Moessbauer and impedance spectroscopies.

  19. Low temperature synthesis, magnetic and electrical properties of iron-magnesium superparamagnetic nanoalloy

    International Nuclear Information System (INIS)

    Nazir, Rabia; Mazhar, Muhammad; Akhtar, Muhammad Javed; Nadeem, Muhammad; Siddique, Muhammad; Shah, Raza; Hasanain, S. Khurshid

    2009-01-01

    A low temperature chemical approach which beats the miscibility barrier of Fe and Mg has been designed to synthesize Fe-Mg 2 nanoalloy and tested to result nanoparticles of average 30 nm size. The nanoalloy is amorphous in nature and characterized by XPRD, AFM, magnetometery, Moessbauer and impedance spectroscopies. The result of magnetic measurement suggests the sample to be superparamagnetic as evidenced by the 57 Fe Moessbauer spectroscopy. The two Mg atoms occupy different positions around iron resulting in two phase system as shown by Moessbauer and impedance spectroscopies.

  20. Incorporation and release of drug into/from superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Maver, Uros; Bele, Marjan [National Institute of Chemistry Slovenia, Hajdrihova 19, 1000 Ljubljana (Slovenia); Makovec, Darko; Campelj, Stanislav [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Jamnik, Janko [National Institute of Chemistry Slovenia, Hajdrihova 19, 1000 Ljubljana (Slovenia); Gaberscek, Miran [National Institute of Chemistry Slovenia, Hajdrihova 19, 1000 Ljubljana (Slovenia)], E-mail: miran.gaberscek@ki.si

    2009-10-15

    The aim of this study was to attach a model drug (naproxen) onto superparamagnetic iron oxide nanoparticles (SPION). First, SPION were coated with thin layer of silica that contained micropores. We demonstrated that such surface functionalization could be optimized by the use of citric acid which prevented SPION agglomeration during the procedure. HRTEM investigation showed a uniform 1-2-nm-thick silica coating around SPION. This coating did not affect significantly the magnetic properties of the SPION. Into the coated SPION we successfully incorporated about 30 wt% of naproxen. The latter was readily released after immersion into a testing solution. The composites could be interesting for potential use in diagnostics.

  1. Incorporation and release of drug into/from superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Maver, Uros; Bele, Marjan; Makovec, Darko; Campelj, Stanislav; Jamnik, Janko; Gaberscek, Miran

    2009-01-01

    The aim of this study was to attach a model drug (naproxen) onto superparamagnetic iron oxide nanoparticles (SPION). First, SPION were coated with thin layer of silica that contained micropores. We demonstrated that such surface functionalization could be optimized by the use of citric acid which prevented SPION agglomeration during the procedure. HRTEM investigation showed a uniform 1-2-nm-thick silica coating around SPION. This coating did not affect significantly the magnetic properties of the SPION. Into the coated SPION we successfully incorporated about 30 wt% of naproxen. The latter was readily released after immersion into a testing solution. The composites could be interesting for potential use in diagnostics.

  2. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles

    Directory of Open Access Journals (Sweden)

    Cheng K

    2017-03-01

    Full Text Available Kuo-Wei Cheng, Shan-hui Hsu Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan, Republic of China Abstract: Superparamagnetic iron oxide nanoparticles (SPIO NPs have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs with ~35 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized by chemical co-precipitation. SPIO NPs were then added to the aqueous dispersion of PU NPs, followed by application of high-frequency (~20 kHz ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm suspended in water. SPIO-PU hybrid NPs contained ~50–60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer as well as high contrast in magnetic resonance imaging. SPIO-PU NPs also showed the ability to provide cell hyperthermic treatment. Using the same ultrasonic method, hydrophobic drug (Vitamin K3 [VK3] or (9-(methylaminomethylanthracene [MAMA] could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~35 nm size and different release profiles for PUs with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95% without burst release. The encapsulation mechanism may be attributed to the low glass transition temperature (Tg and good mechanical compliance of PU NPs. The new encapsulation method involving waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers. Keywords: superparamagnetic iron oxide, polyurethane, drug release, hybrid nanoparticles

  3. Cellular uptake of folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Woo, Kyoungja; Moon, Jihyung; Choi, Kyu-Sil; Seong, Tae-Yeon; Yoon, Kwon-Ha

    2009-01-01

    We prepared five folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles (F 5 -Liposuperparamagnetic iron oxide nanoparticles(SPIONs), 5.5 and 11 nm) and investigated their cellular uptake with KB cells, which is one of the representative folate-receptor over-expressing human epidermoid carcinoma cells, using MRI. The cellular uptake tests with the respective 5.5 and 11 nm F 5 -LipoSPIONs at a fixed particle concentration showed appreciable amount of receptor-mediated uptakes and the specificity was higher in 5.5 nm SPIONs, due to its higher folic acid (FA) density, without inhibition. However, the numbers of the particles taken up under FA inhibition were similar, irrespective of their sizes.

  4. Cellular uptake of folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Kyoungja [Nano-Materials Research Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of)], E-mail: kjwoo@kist.re.kr; Moon, Jihyung [Nano-Materials Research Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, 5-1, Anam-Dong, Sungbook-Ku, Seoul, 136-713 (Korea, Republic of); Choi, Kyu-Sil [Division of Molecular Imaging, Samsung Biomedical Research Institute, Samsung Medical Center, 50 Ilwon-Dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Seong, Tae-Yeon [Department of Materials Science and Engineering, Korea University, 5-1, Anam-Dong, Sungbook-Ku, Seoul, 136-713 (Korea, Republic of); Yoon, Kwon-Ha [Institute for Radiological Imaging Science, Wonkwang University School of Medicine, 344-2, Shinyong, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2009-05-15

    We prepared five folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles (F{sub 5}-Liposuperparamagnetic iron oxide nanoparticles(SPIONs), 5.5 and 11 nm) and investigated their cellular uptake with KB cells, which is one of the representative folate-receptor over-expressing human epidermoid carcinoma cells, using MRI. The cellular uptake tests with the respective 5.5 and 11 nm F{sub 5}-LipoSPIONs at a fixed particle concentration showed appreciable amount of receptor-mediated uptakes and the specificity was higher in 5.5 nm SPIONs, due to its higher folic acid (FA) density, without inhibition. However, the numbers of the particles taken up under FA inhibition were similar, irrespective of their sizes.

  5. Iron overload by Superparamagnetic Iron Oxide Nanoparticles is a High Risk Factor in Cirrhosis by a Systems Toxicology Assessment

    Science.gov (United States)

    Wei, Yushuang; Zhao, Mengzhu; Yang, Fang; Mao, Yang; Xie, Hang; Zhou, Qibing

    2016-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent have been widely used in magnetic resonance imaging for tumor diagnosis and theranostics. However, there has been safety concern of SPIONs with cirrhosis related to excess iron-induced oxidative stress. In this study, the impact of iron overload by SPIONs was assessed on a mouse cirrhosis model. A single dose of SPION injection at 0.5 or 5 mg Fe/kg in the cirrhosis group induced a septic shock response at 24 h with elevated serum levels of liver and kidney function markers and extended impacts over 14 days including high levels of serum cholesterols and persistent low serum iron level. In contrast, full restoration of liver functions was found in the normal group with the same dosages over time. Analysis with PCR array of the toxicity pathways revealed the high dose of SPIONs induced significant expression changes of a distinct subset of genes in the cirrhosis liver. All these results suggested that excess iron of the high dose of SPIONs might be a risk factor for cirrhosis because of the marked impacts of elevated lipid metabolism, disruption of iron homeostasis and possibly, aggravated loss of liver functions.

  6. Biodistribution and Clearance of Stable Superparamagnetic Maghemite Iron Oxide Nanoparticles in Mice Following Intraperitoneal Administration

    Directory of Open Access Journals (Sweden)

    Binh T. T. Pham

    2018-01-01

    Full Text Available Nanomedicine is an emerging field with great potential in disease theranostics. We generated sterically stabilized superparamagnetic iron oxide nanoparticles (s-SPIONs with average core diameters of 10 and 25 nm and determined the in vivo biodistribution and clearance profiles. Healthy nude mice underwent an intraperitoneal injection of these s-SPIONs at a dose of 90 mg Fe/kg body weight. Tissue iron biodistribution was monitored by atomic absorption spectroscopy and Prussian blue staining. Histopathological examination was performed to assess tissue toxicity. The 10 nm s-SPIONs resulted in higher tissue-iron levels, whereas the 25 nm s-SPIONs peaked earlier and cleared faster. Increased iron levels were detected in all organs and body fluids tested except for the brain, with notable increases in the liver, spleen, and the omentum. The tissue-iron returned to control or near control levels within 7 days post-injection, except in the omentum, which had the largest and most variable accumulation of s-SPIONs. No obvious tissue changes were noted although an influx of macrophages was observed in several tissues suggesting their involvement in s-SPION sequestration and clearance. These results demonstrate that the s-SPIONs do not degrade or aggregate in vivo and intraperitoneal administration is well tolerated, with a broad and transient biodistribution. In an ovarian tumor model, s-SPIONs were shown to accumulate in the tumors, highlighting their potential use as a chemotherapy delivery agent.

  7. Quantification of Superparamagnetic Iron Oxide (SPIO)-labeled Cells Using MRI

    Science.gov (United States)

    Rad, Ali M; Arbab, Ali S; Iskander, ASM; Jiang, Quan; Soltanian-Zadeh, Hamid

    2015-01-01

    Purpose To show the feasibility of using magnetic resonance imaging (MRI) to quantify superparamagnetic iron oxide (SPIO)-labeled cells. Materials and Methods Lymphocytes and 9L rat gliosarcoma cells were labeled with Ferumoxides-Protamine Sulfate complex (FE-PRO). Cells were labeled efficiently (more than 95%) and iron concentration inside each cell was measured by spectrophotometry (4.77-30.21 picograms). Phantom tubes containing different number of labeled or unlabeled cells as well as different concentrations of FE-PRO were made. In addition, labeled and unlabeled cells were injected into fresh and fixed rat brains. Results Cellular viability and proliferation of labeled and unlabeled cells were shown to be similar. T2-weighted images were acquired using 7 T and 3 T MRI systems and R2 maps of the tubes containing cells, free FE-PRO, and brains were made. There was a strong linear correlation between R2 values and labeled cell numbers but the regression lines were different for the lymphocytes and gliosarcoma cells. Similarly, there was strong correlation between R2 values and free iron. However, free iron had higher R2 values than the labeled cells for the same concentration of iron. Conclusion Our data indicated that in vivo quantification of labeled cells can be done by careful consideration of different factors and specific control groups. PMID:17623892

  8. Integrin-targeting thermally cross-linked superparamagnetic iron oxide nanoparticles for combined cancer imaging and drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong [School of Life Sciences, Gwangju Institute of Science and Technology, 261 Chemdangwagi-ro, Gwangju 500-712 (Korea, Republic of); Jeong, Yong Yeon [Department of Diagnostic Radiology, Jeonnam National University Hwasun Hospital, 160 Ilsim-ri, Hwasun-eup, Jeonnam 519-809 (Korea, Republic of); Moon, Woo Kyung, E-mail: syjon@gist.ac.kr [Diagnostic Radiology, Seoul National University Hospital and the Institute of Radiation Medicine, Medical Research Center Seoul National University, Seoul 110-744 (Korea, Republic of)

    2010-10-15

    We report multifunctional nanoparticles that are capable of cancer targeting and simultaneous cancer imaging and therapy. The nanoparticles are composed of cyclic arginine-glycine-aspartic acid (cRGD) peptide ligand bioconjugated thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) that enable loading of the anticancer drug doxorubicin (Dox). The cyclic RGD-conjugated TCL-SPION (cRGD{sub T}CL-SPION) had a mean hydrodynamic size of 34 {+-} 8 nm with approximately 0.39 wt% of cyclic RGD attached to the surface of the nanoparticles. The cRGD{sub T}CL-SPION exhibited preferential binding towards target cancer cells (U87MG, integrin {alpha}{sub v{beta}3} +) when analyzed by T{sub 2}-weighted magnetic resonance (MR) imaging. When Dox was loaded onto the polymeric coating layers of cRGD{sub T}CL-SPION via ionic interaction, the resulting Dox-loaded cRGD{sub T}CL-SPION (Dox-cRGD{sub T}CL-SPION) showed much higher cytotoxicity in U87MG cells than Dox-TCL-SPION lacking cRGD (IC{sub 50} value of 0.02 {mu}M versus 0.12 {mu}M). These results suggest that Dox-cRGD{sub T}CL-SPION has potential for use as an integrin-targeted, combined imaging and therapeutic agent.

  9. Methodology description for detection of cellular uptake of PVA coated superparamagnetic iron oxide nanoparticles (SPION) in synovial cells of sheep

    International Nuclear Information System (INIS)

    Schoepf, Bernhard; Neuberger, Tobias; Schulze, Katja; Petri, Alke; Chastellain, Matthieu; Hofmann, Margarete; Hofmann, Heinrich; Rechenberg, Brigitte von

    2005-01-01

    The detection of superparamagnetic iron oxide nanoparticles (SPION) in synoviocytes is reported. Synoviocytes were incubated for 2, 12, 24 and 48 h with 1.5 mg/ml of PVA coated SPION under the influence of magnets (12 h). Particles were well tolerated by the synoviocytes, were easily detected using the Turnbulls and Prussian blue reactions between 12 and 24 h

  10. Methodology description for detection of cellular uptake of PVA coated superparamagnetic iron oxide nanoparticles (SPION) in synovial cells of sheep

    Energy Technology Data Exchange (ETDEWEB)

    Schoepf, Bernhard [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Neuberger, Tobias [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Schulze, Katja [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Petri, Alke [Powder Technology Laboratory, Institute of Materials, Swiss Federal Institute of Technology Lausanne, EPFL, MX-D Ecublens, 1015 Lausanne (Switzerland); Chastellain, Matthieu [Powder Technology Laboratory, Institute of Materials, Swiss Federal Institute of Technology Lausanne, EPFL, MX-D Ecublens, 1015 Lausanne (Switzerland); Hofmann, Margarete [MatSearch, Ch. Jean Pavillard 14, 1009 Pully (Switzerland); Hofmann, Heinrich [Powder Technology Laboratory, Institute of Materials, Swiss Federal Institute of Technology Lausanne, EPFL, MX-D Ecublens, 1015 Lausanne (Switzerland); Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland)]. E-mail: bvonrechenberg@vetclinics.unizh.ch

    2005-05-15

    The detection of superparamagnetic iron oxide nanoparticles (SPION) in synoviocytes is reported. Synoviocytes were incubated for 2, 12, 24 and 48 h with 1.5 mg/ml of PVA coated SPION under the influence of magnets (12 h). Particles were well tolerated by the synoviocytes, were easily detected using the Turnbulls and Prussian blue reactions between 12 and 24 h.

  11. Efficient MRI labeling of endothelial progenitor cells: design of thiolated surface stabilized superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Shahnaz, Gul; Kremser, Christian; Reinisch, Andreas; Vetter, Anja; Laffleur, Flavia; Rahmat, Deni; Iqbal, Javed; Dünnhaupt, Sarah; Salvenmoser, Willi; Tessadri, Richard; Griesser, Ulrich; Bernkop-Schnürch, Andreas

    2013-11-01

    The aim of this study was to design thiolated surface stabilized superparamagnetic iron oxide nanoparticles (TSS-SPIONs) for efficient internalization with high MRI sensitivity. TSS-SPIONs were developed by chelation between thiolated chitosan-thioglycolic acid (chitosan-TGA) hydrogel and iron ions (Fe(2+)/Fe(3+)). Likely, unmodified chitosan hydrogel SPIONs (UC-SPIONs) and uncoated SPIONs were used as control. Moreover, TSS-SPIONs were investigated regarding to their iron core size, hydrodynamic diameter, zeta potential, iron contents, molar relaxivities (r1 and r2), and cellular internalization. TSS-SPIONs demonstrated an iron oxide core diameter (crystallite size by XRD) of 3.1 ± 0.02 nm, a hydrodynamic diameter of 94 ± 20 nm, a zeta potential of +21 ± 5 mV, and an iron content of 3.6 ± 0.9 mg/mL. In addition, internalization of TSS-SPIONs into human endothelial progenitor cells (EPC) from umbilical cord blood was more than threefold and 17-fold higher in contrast to UC-SPIONs and SPIONs, respectively. With twofold lower incubation iron concentration of TSS-SPIONs, more than threefold higher internalization was achieved as compared to Resovist®. Also, cell viability of more than 90% was observed in the presence of TSS-SPIONs after 24h. The molar MR relaxivities (r2) value at 1.5 T was threefold higher than that of Resovist® and demonstrated that TSS-SPIONs have the potential as very effective T2 contrast-enhancement agent. According to these findings, TSS-SPIONs with efficient internalization, lower cytotoxicity, and high MRI sensitivity seem to be promising for cell tracking. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Salunkhe, Ashwini B. [Centre for advanced materials research, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Soft matter and molecular biophysics group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela (Spain); Khot, Vishwajeet M. [Department of Physics and Astronomy, University College London (United Kingdom); Ruso, Juan M. [Soft matter and molecular biophysics group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela (Spain); Patil, S.I., E-mail: patil@physics.unipune.ac.in [Centre for advanced materials research, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-12-01

    Superparamagnetic nanoparticles of Cobalt iron oxide (CoFe{sub 2}O{sub 4}) are synthesized chemically, and dispersed in an aqueous suspension for hyperthermia therapy application. Different parameters such as magnetic field intensity, particle concentration which regulates the competence of CoFe{sub 2}O{sub 4} nanoparticle as a heating agents in hyperthermia are investigated. Specific absorption rate (SAR) decreases with increase in the particle concentration and increases with increase in applied magnetic field intensity. Highest value of SAR is found to be 91.84 W g{sup −1} for 5 mg. mL{sup −1} concentration. Oleic acid conjugated polyethylene glycol (OA-PEG) coated CoFe{sub 2}O{sub 4} nanoparticles have shown superior cyto-compatibility over uncoated nanoparticles to L929 mice fibroblast cell lines for concentrations below 2 mg. mL{sup −1}. Present work provides the underpinning for the use of CoFe{sub 2}O{sub 4} nanoparticles as a potential heating mediator for magnetic fluid hyperthermia. - Highlights: • Superparamagnetic, water dispersible CoFe{sub 2}O{sub 4} NPs were synthesized by simple and cost effective Co precipitation route. • Effect of coating on various physical and chemical properties of CoFe{sub 2}O{sub 4} NPs were studied. • The effect of coating on induction heating as well as biocompatibility of NPs were studied.

  13. Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Kalber TL

    2016-05-01

    Full Text Available Tammy L Kalber,1,2,* Katherine L Ordidge,1,2,* Paul Southern,3 Michael R Loebinger,1 Panagiotis G Kyrtatos,2,3 Quentin A Pankhurst,3,* Mark F Lythgoe,2,* Sam M Janes1,* 1Lungs for Living Research Centre, UCL Respiratory, University College London, 2UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 3Healthcare Biomagnetics Laboratory, University College London, London, UK *These authors contributed equally to this work Abstract: Magnetic hyperthermia – a potential cancer treatment in which superparamagnetic iron oxide nanoparticles (SPIONs are made to resonantly respond to an alternating magnetic field (AMF and thereby produce heat – is of significant current interest. We have previously shown that mesenchymal stem cells (MSCs can be labeled with SPIONs with no effect on cell proliferation or survival and that within an hour of systemic administration, they migrate to and integrate into tumors in vivo. Here, we report on some longer term (up to 3 weeks post-integration characteristics of magnetically labeled human MSCs in an immunocompromized mouse model. We initially assessed how the size and coating of SPIONs dictated the loading capacity and cellular heating of MSCs. Ferucarbotran® was the best of those tested, having the best like-for-like heating capability and being the only one to retain that capability after cell internalization. A mouse model was created by subcutaneous flank injection of a combination of 0.5 million Ferucarbotran-loaded MSCs and 1.0 million OVCAR-3 ovarian tumor cells. After 2 weeks, the tumors reached ~100 µL in volume and then entered a rapid growth phase over the third week to reach ~300 µL. In the control mice that received no AMF treatment, magnetic resonance imaging (MRI data showed that the labeled MSCs were both incorporated into and retained within the tumors over the entire 3-week period. In the AMF-treated mice, heat increases of ~4°C were observed

  14. Facile synthesis of polymer-enveloped ultrasmall superparamagnetic iron oxide for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hong Jun; Xu Dongmei; Yu Jiahui; Gong Peijun; Ma Hongjuan; Yao Side

    2007-01-01

    Ultrasmall superparamagnetic iron oxide (USPIO) with synthetic polymer, based on magnetite core, was synthesized via facile photochemical in situ polymerization. A possible mechanism of photochemical in situ polymerization was proposed. The obtained polymer-enveloped UPSIO was characterized by transmission electron microscopy (TEM), photo-correlation spectroscopy (PCS), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric (TG) analysis and vibrating sampling magnetometer (VSM) measurement. Properties such as ultrasmall particle size, hydrophilicity, strong magnetization and surface characteristics, which are desirable for magnetic resonance imaging (MRI) contrast agents, were evaluated in detail. The resultant USPIO-based MRI contrast agent holds considerable promise in molecular MR tracking, MR immune imaging, cell tracking and targeted intracellular hyperthermia, etc

  15. Synthesis of carboxyl superparamagnetic ultrasmall iron oxide (USPIO) nanoparticles by a novel flocculation-redispersion process

    International Nuclear Information System (INIS)

    Cheng Changming; Kou Geng; Wang Xiaoliang; Wang Shuhui; Gu Hongchen; Guo Yajun

    2009-01-01

    We report a novel flocculation-redispersion method to synthesize and purify the biocompatible superparamagnetic ultrasmall iron oxide (USPIO) nanoparticles coated with carboxyl dextran derivative. First, USPIO nanoparticles were synthesized and flocculated to form the large clusters through bridging effect of polyvinyl alcohol (PVA) during coprecipitation process. Then the flocculated USPIO was separated and purified from the solution conveniently through magnetic sedimentation. Finally, USPIO in the clusters were released again and well dispersed through electrostatic repelling effect of citric acid with the aid of ultrasonic. The dispersed carboxyl-functionalized USPIO was conjugated with the monoclonal antibodies. And it has been proved that the antibodies anchored on USPIO still retained their bioactivity after the conjugation. These results implied that the USPIO synthesized have good potential as active targeting molecular probe in biomedical application.

  16. Mechanism of Dimercaptosuccinic Acid Coated Superparamagnetic Iron Oxide Nanoparticles with Human Serum Albumin.

    Science.gov (United States)

    Zhao, Lining; Song, Wei; Wang, Jing; Yan, Yunxing; Chen, Jiangwei; Liu, Rutao

    2015-12-01

    To research the mechanism of dimercaptosuccinic acid coated-superparamagnetic iron oxide nanoparticles (SPION) with human serum albumin (HSA), the methods of spectroscopy, molecular modeling calculation, and calorimetry were used in this paper. The inner filter effect of the fluorescence intensity was corrected to obtain the accurate results. Ultraviolet-visible absorption and circular dichroism spectra reflect that SPION changed the secondary structure with a loss of α-helix and loosened the protein skeleton of HSA; the activity of the protein was also affected by the increasing exposure of SPION. Fluorescence lifetime measurement indicates that the quenching mechanism type of this system was static quenching. The isothermal titration calorimetry measurement and molecular docking calculations prove that the predominant force of this system was the combination of Van der Waals' force and hydrogen bonds. © 2015 Wiley Periodicals, Inc.

  17. Colloidal stability of superparamagnetic iron oxide nanoparticles in the central nervous system: a review.

    Science.gov (United States)

    Champagne, Pierre-Olivier; Westwick, Harrison; Bouthillier, Alain; Sawan, Mohamad

    2018-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) consist of nanosized metallic-based particles with unique magnetic properties. Their potential in both diagnostic and therapeutic applications in the CNS is at the source of an expanding body of the literature in recent years. Colloidal stability of nanoparticles represents their ability to resist aggregation and is a central aspect for the use of SPION in biological environment such as the CNS. This review gives a comprehensive update of the recent developments and knowledge on the determinants of colloidal stability of SPIONs in the CNS. Factors leading to aggregate formation and the repercussions of colloidal instability of SPION are reviewed in detail pertaining to their use in the CNS.

  18. A sonochemical approach to the direct surface functionalization of superparamagnetic iron oxide nanoparticles with (3-aminopropyl)triethoxysilane.

    Science.gov (United States)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2014-01-01

    We report a sonochemical method of functionalizing superparamagnetic iron oxide nanoparticles (SPION) with (3-aminopropyl)triethoxysilane (APTES). Mechanical stirring, localized hot spots and other unique conditions generated by an acoustic cavitation (sonochemical) process were found to induce a rapid silanization reaction between SPION and APTES. FTIR, XPS and XRD measurements were used to demonstrate the grafting of APTES on SPION. Compared to what was reported in literature, the results showed that the silanization reaction time was greatly minimized. More importantly, the product displayed superparamagnetic behaviour at room temperature with a more than 20% higher saturation magnetization.

  19. Evaluation of tumoral enhancement by superparamagnetic iron oxide particles: comparative studies with ferumoxtran and anionic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Brillet, P-Y.; Gazeau, F.; Luciani, A.; Bessoud, B.; Cuenod, C.-A.; Siauve, N.; Pons, J.-N.; Poupon, J.; Clement, O.

    2005-01-01

    This study was designed to compare tumor enhancement by superparamagnetic iron oxide particles, using anionic iron oxide nanoparticles (AP) and ferumoxtran. In vitro, relaxometry and media with increasing complexity were used to assess the changes in r2 relaxivity due to cellular internalization. In vivo, 26 mice with subcutaneously implanted tumors were imaged for 24 h after injection of particles to describe kinetics of enhancement using T1 spin echo, T2 spin echo, and T2 fast spin echo sequences. In vitro, the r2 relaxivity decreased over time (0-4 h) when AP were uptaken by cells. The loss of r2 relaxivity was less pronounced with long (Hahn Echo) than short (Carr-Purcell-Meiboom-Gill) echo time sequences. In vivo, our results with ferumoxtran showed an early T2 peak (1 h), suggesting intravascular particles and a second peak in T1 (12 h), suggesting intrainterstitial accumulation of particles. With AP, the late peak (24 h) suggested an intracellular accumulation of particles. In vitro, anionic iron oxide nanoparticles are suitable for cellular labeling due to a high cellular uptake. Conversely, in vivo, ferumoxtran is suitable for passive targeting of tumors due to a favorable biodistribution. (orig.)

  20. A method for determination of [Fe3+]/[Fe2+] ratio in superparamagnetic iron oxide

    Science.gov (United States)

    Jiang, Changzhao; Yang, Siyu; Gan, Neng; Pan, Hongchun; Liu, Hong

    2017-10-01

    Superparamagnetic iron oxide nanoparticles (SPION), as a kind of nanophase materials, are widely used in biomedical application, such as magnetic resonance imaging (MRI), drug delivery, and magnetic field assisted therapy. The magnetic property of SPION has close connection with its crystal structure, namely it is related to the ratio of Fe3+ and Fe2+ which form the SPION. So a simple way to determine the content of the Fe3+ and Fe2+ is important for researching the property of SPION. This review covers a method for determination of the Fe3+ and Fe2+ ratio in SPION by UV-vis spectrophotometry based the reaction of Fe2+ and 1,10-phenanthroline. The standard curve of Fe with R2 = 0.9999 is used for determination the content of Fe2+ and total iron with 2.5 mL 0.01% (w/v) SPION digested by HCl, pH = 4.30 HOAc-NaAc buffer 10 mL, 0.01% (w/v) 1,10-phenanthroline 5 mL and 10% (w/v) ascorbic acid 1 mL for total iron determine independently. But the presence of Fe3+ interfere with obtaining the actual value of Fe2+ (the error close to 9%). We designed a calibration curve to eliminate the error by devising a series of solution of different ratio of [Fe3+]/[Fe2+], and obtain the calibration curve. Through the calibration curve, the error between the measured value and the actual value can be reduced to 0.4%. The R2 of linearity of the method is 0.99441 and 0.99929 for Fe2+ and total iron respectively. The error of accuracy of recovery and precision of inter-day and intra-day are both lower than 2%, which can prove the reliability of the determination method.

  1. Preparation, Characterization and Tests of Incorporation in Stem Cells of Superparamagnetic Iron Oxide

    International Nuclear Information System (INIS)

    Haddad, P S; Britos, T N; Li, L M; Li, L D S

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have been produced and used as contrast-enhancing agents in magnetic resonance imaging (MRI) for diagnostic use in a wide range of maladies including cardiovascular, neurological disorders, and cancer. The reasons why these SPIONs are attractive for medical purposes are based on their important and unique features. The large surface area of the nanoparticles and their manipulation through an external magnetic field are features that allow their use for carrying a large number of molecules such as biomolecules or drugs. In this scenario, the present work reports on the synthesis and characterization of SPIONs and in vitro MRI experiments to increase their capacity as probes for MRI applications on stem cells therapy. Initially, the SPIONs were prepared through the co-precipitation method using ferrous and ferric chlorides in acidic solution. The SPIONs were coated with two thiolmolecules such as mercaptosuccinic acid (MSA) and cysteine (Cys) (molar ratio SPIONs:ligand = 1:20), leading to the formation of a stable aqueous dispersion of thiolated nanoparticles (SH-SPIONs). The SH-SPIONs were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The results showed that the SH-SPIONs have a mean diameter of 14 nm and display superparamagnetic behavior at room temperature. Preliminary tests of incorporation of SH-SPIONs were evaluated stem cells. The results showed that the thiolated nanoparticles have no toxic effects for stem cells and successfully internalized and enhance the contrast in MRI. (paper)

  2. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles.

    Science.gov (United States)

    Cheng, Kuo-Wei; Hsu, Shan-Hui

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO NPs) have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs) with ~35 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized by chemical co-precipitation. SPIO NPs were then added to the aqueous dispersion of PU NPs, followed by application of high-frequency (~20 kHz) ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm) suspended in water. SPIO-PU hybrid NPs contained ~50-60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer) as well as high contrast in magnetic resonance imaging. SPIO-PU NPs also showed the ability to provide cell hyperthermic treatment. Using the same ultrasonic method, hydrophobic drug (Vitamin K3 [VK3]) or (9-(methylaminomethyl) anthracene [MAMA]) could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~35 nm size and different release profiles for PUs with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95%) without burst release. The encapsulation mechanism may be attributed to the low glass transition temperature (Tg) and good mechanical compliance of PU NPs. The new encapsulation method involving waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers.

  3. Visualization of antigen-specific human cytotoxic T lymphocytes labeled with superparamagnetic iron-oxide particles

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Ambros J. [Technical University of Munich (TUM), Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Holzapfel, Konstantin; Settles, Marcus; Rummeny, Ernst J. [Technical University of Munich, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Neudorfer, Juliana; Kroenig, Holger; Peschel, Christian; Bernhard, Helga [TUM, Munich, Department of Hematology/Oncology, Klinikum rechts der Isar, Munich (Germany); Piontek, Guido; Schlegel, Juergen [TUM, Munich, Division of Neuropathology, Institute of Pathology, Klinikum rechts der Isar, Munich (Germany)

    2008-06-15

    New technologies are needed to characterize the migration and survival of antigen-specific T cells in vivo. In this study, we developed a novel technique for the labeling of human cytotoxic T lymphocytes with superparamagnetic iron-oxide particles and the subsequent depiction with a conventional 1.5-T magnetic resonance scanner. Antigen-specific CD8{sup +} T lymphocytes were labeled with ferucarbotran by lipofection. The uptake of ferucarbotran was confirmed by immunofluorescence microscopy using a dextran-specific antibody, and the intracellular enrichment of iron was measured by atomic absorption spectrometry. The imaging of T cells was performed by magnetic resonance on day 0, 2, 7 and 14 after the labeling procedure. On day 0 and 2 post labeling, a pronounced shortening of T2*-relaxation times was observed, which diminished after 7 days and was not detectable anymore after 14 days, probably due to the retained mitotic activity of the labeled T cells. Of importance, the antigen-specific cytolytic activity of the T cells was preserved following ferucarbotran labeling. Efficient ferucarbotran labeling of functionally active T lymphocytes and their detection by magnetic resonance imaging allows the in vivo monitoring of T cells and, subsequently, will impact the further development of T cell-based therapies. (orig.)

  4. Visualization of antigen-specific human cytotoxic T lymphocytes labeled with superparamagnetic iron-oxide particles

    International Nuclear Information System (INIS)

    Beer, Ambros J.; Holzapfel, Konstantin; Settles, Marcus; Rummeny, Ernst J.; Neudorfer, Juliana; Kroenig, Holger; Peschel, Christian; Bernhard, Helga; Piontek, Guido; Schlegel, Juergen

    2008-01-01

    New technologies are needed to characterize the migration and survival of antigen-specific T cells in vivo. In this study, we developed a novel technique for the labeling of human cytotoxic T lymphocytes with superparamagnetic iron-oxide particles and the subsequent depiction with a conventional 1.5-T magnetic resonance scanner. Antigen-specific CD8 + T lymphocytes were labeled with ferucarbotran by lipofection. The uptake of ferucarbotran was confirmed by immunofluorescence microscopy using a dextran-specific antibody, and the intracellular enrichment of iron was measured by atomic absorption spectrometry. The imaging of T cells was performed by magnetic resonance on day 0, 2, 7 and 14 after the labeling procedure. On day 0 and 2 post labeling, a pronounced shortening of T2*-relaxation times was observed, which diminished after 7 days and was not detectable anymore after 14 days, probably due to the retained mitotic activity of the labeled T cells. Of importance, the antigen-specific cytolytic activity of the T cells was preserved following ferucarbotran labeling. Efficient ferucarbotran labeling of functionally active T lymphocytes and their detection by magnetic resonance imaging allows the in vivo monitoring of T cells and, subsequently, will impact the further development of T cell-based therapies. (orig.)

  5. Ultra-small superparamagnetic particles of iron oxide in magnetic resonance imaging of cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Stirrat CG

    2014-10-01

    Full Text Available Colin G Stirrat,1 Alex T Vesey,1 Olivia MB McBride,1 Jennifer MJ Robson,1 Shirjel R Alam,1 William A Wallace,2 Scott I Semple,1,3 Peter A Henriksen,1 David E Newby1 1British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; 2Department of Pathology, University of Edinburgh, Edinburgh, UK; 3Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK Abstract: Ultra-small superparamagnetic particles of iron oxide (USPIO are iron-oxide based contrast agents that enhance and complement in vivo magnetic resonance imaging (MRI by shortening T1, T2, and T2* relaxation times. USPIO can be employed to provide immediate blood pool contrast, or to act as subsequent markers of cellular inflammation through uptake by inflammatory cells. They can also be targeted to specific cell-surface markers using antibody or ligand labeling. This review will discuss the application of USPIO contrast in MRI studies of cardiovascular disease. Keywords: cardiac, aortic, MRI, USPIO, carotid, vascular, molecular imaging

  6. Effects of superparamagnetic iron oxide nanoparticles on the longitudinal and transverse relaxation of hyperpolarized xenon gas

    Science.gov (United States)

    Burant, Alex; Antonacci, Michael; McCallister, Drew; Zhang, Le; Branca, Rosa Tamara

    2018-06-01

    SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) are often used in magnetic resonance imaging experiments to enhance Magnetic Resonance (MR) sensitivity and specificity. While the effect of SPIONs on the longitudinal and transverse relaxation time of 1H spins has been well characterized, their effect on highly diffusive spins, like those of hyperpolarized gases, has not. For spins diffusing in linear magnetic field gradients, the behavior of the magnetization is characterized by the relative size of three length scales: the diffusion length, the structural length, and the dephasing length. However, for spins diffusing in non-linear gradients, such as those generated by iron oxide nanoparticles, that is no longer the case, particularly if the diffusing spins experience the non-linearity of the gradient. To this end, 3D Monte Carlo simulations are used to simulate the signal decay and the resulting image contrast of hyperpolarized xenon gas near SPIONs. These simulations reveal that signal loss near SPIONs is dominated by transverse relaxation, with little contribution from T1 relaxation, while simulated image contrast and experiments show that diffusion provides no appreciable sensitivity enhancement to SPIONs.

  7. Synthesis and characterization of superparamagnetic iron oxide nanoparticles as calcium-responsive MRI contrast agents

    International Nuclear Information System (INIS)

    Xu, Pengfei; Shen, Zhiwei; Zhang, Baolin; Wang, Jun; Wu, Renhua

    2016-01-01

    Highlights: • SPIONs were conjugated with EGTA by EDC/sulfo-NHS method. • The presence of Ca"2"+ induced the aggregation of EGTA-SPIONs. • The aggregation of EGTA-SPIONs increased the T2 relaxation time. • EGTA-SPIONs can be used for the calcium imaging with MRI. - Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) as T2 contrast agents have great potential to sense calcium ion (Ca"2"+) using magnetic resonance imaging (MRI). Here we prepared calcium-responsive SPIONs for MRI, formed by combining poly(ethylene glycol) (PEG) and polyethylenimine (PEI) coated iron oxide nanoparticle (PEI/PEG-SPIONs) contrast agents with the straightforward calcium-sensing compound EGTA (ethylene glycol tetraacetic acid). EGTA was conjugated onto PEI/PEG-SPIONs using EDC/sulfo-NHS method. EGTA-SPIONs were characterized using TEM, XPS, DSL, TGA and SQUIID. DSL results show that the SPIONs aggregate in the presence of Ca"2"+. MRI analyses indicate that the water proton T2 relaxation rates in HEPES suspensions of the EGTA-SPIONs significantly increase with the calcium concentration because the SPIONs aggregate in the presence of Ca"2"+. The T2 values decreased 25% when Ca"2"+ concentration decreased from 1.2 to 0.8 mM. The aggregation of EGTA-SPIONs could be reversed by EDTA. EGTA-SPIONs have potential as smart contrast agents for Ca"2"+-sensitive MRI.

  8. Synthesis, characterization, and in vitro biological evaluation of highly stable diversely functionalized superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Bhattacharya, Dipsikha; Sahu, Sumanta K.; Banerjee, Indranil; Das, Manasmita; Mishra, Debashish; Maiti, Tapas K.; Pramanik, Panchanan

    2011-01-01

    In this article, we report the design and synthesis of a series of well-dispersed superparamagnetic iron oxide nanoparticles (SPIONs) using chitosan as a surface modifying agent to develop a potential T 2 contrast probe for magnetic resonance imaging (MRI). The amine, carboxyl, hydroxyl, and thiol functionalities were introduced on chitosan-coated magnetic probe via simple reactions with small reactive organic molecules to afford a series of biofunctionalized nanoparticles. Physico-chemical characterizations of these functionalized nanoparticles were performed by TEM, XRD, DLS, FTIR, and VSM. The colloidal stability of these functionalized iron oxide nanoparticles was investigated in presence of phosphate buffer saline, high salt concentrations and different cell media for 1 week. MRI analysis of human cervical carcinoma (HeLa) cell lines treated with nanoparticles elucidated that the amine-functionalized nanoparticles exhibited higher amount of signal darkening and lower T 2 relaxation in comparison to the others. The cellular internalization efficacy of these functionalized SPIONs was also investigated with HeLa cancer cell line by magnetically activated cell sorting (MACS) and fluorescence microscopy and results established selectively higher internalization efficacy of amine-functionalized nanoparticles to cancer cells. These positive attributes demonstrated that these nanoconjugates can be used as a promising platform for further in vitro and in vivo biological evaluations.

  9. Synthesis and characterization of superparamagnetic iron oxide nanoparticles as calcium-responsive MRI contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Pengfei [State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, School of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004 (China); Shen, Zhiwei [Second Affiliated Hospital of Shantou University Medical College, Dong Xia North Road, Shantou 515041,China (China); Zhang, Baolin, E-mail: baolinzhang@ymail.com [State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, School of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004 (China); Wang, Jun [State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, School of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004 (China); Wu, Renhua, E-mail: rhwu@stu.edu.cn [Second Affiliated Hospital of Shantou University Medical College, Dong Xia North Road, Shantou 515041,China (China)

    2016-12-15

    Highlights: • SPIONs were conjugated with EGTA by EDC/sulfo-NHS method. • The presence of Ca{sup 2+} induced the aggregation of EGTA-SPIONs. • The aggregation of EGTA-SPIONs increased the T2 relaxation time. • EGTA-SPIONs can be used for the calcium imaging with MRI. - Abstract: Superparamagnetic iron oxide nanoparticles (SPIONs) as T2 contrast agents have great potential to sense calcium ion (Ca{sup 2+}) using magnetic resonance imaging (MRI). Here we prepared calcium-responsive SPIONs for MRI, formed by combining poly(ethylene glycol) (PEG) and polyethylenimine (PEI) coated iron oxide nanoparticle (PEI/PEG-SPIONs) contrast agents with the straightforward calcium-sensing compound EGTA (ethylene glycol tetraacetic acid). EGTA was conjugated onto PEI/PEG-SPIONs using EDC/sulfo-NHS method. EGTA-SPIONs were characterized using TEM, XPS, DSL, TGA and SQUIID. DSL results show that the SPIONs aggregate in the presence of Ca{sup 2+}. MRI analyses indicate that the water proton T2 relaxation rates in HEPES suspensions of the EGTA-SPIONs significantly increase with the calcium concentration because the SPIONs aggregate in the presence of Ca{sup 2+}. The T2 values decreased 25% when Ca{sup 2+} concentration decreased from 1.2 to 0.8 mM. The aggregation of EGTA-SPIONs could be reversed by EDTA. EGTA-SPIONs have potential as smart contrast agents for Ca{sup 2+}-sensitive MRI.

  10. Superparamagnetic iron oxide nanoparticle-labeled cells as an effective vehicle for tracking the GFP gene marker using magnetic resonance imaging

    Science.gov (United States)

    Zhang, Z; Mascheri, N; Dharmakumar, R; Fan, Z; Paunesku, T; Woloschak, G; Li, D

    2010-01-01

    Background Detection of a gene using magnetic resonance imaging (MRI) is hindered by the magnetic resonance (MR) targeting gene technique. Therefore it may be advantageous to image gene-expressing cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles by MRI. Methods The GFP-R3230Ac (GFP) cell line was incubated for 24 h using SPIO nanoparticles at a concentration of 20 μg Fe/mL. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using fluorescent microscopy and MRI. Results SPIO was used to label GFP cells effectively, with no effects on cell function and GFP expression. Iron-loaded GFP cells were successfully imaged with both fluorescent microscopy and T2*-weighted MRI. Prussian blue staining showed intracellular iron accumulation in the cells. All cells were labeled (100% labeling efficiency). The average iron content per cell was 4.75±0.11 pg Fe/cell (P<0.05 versus control). Discussion This study demonstrates that the GFP expression of cells is not altered by the SPIO labeling process. SPIO-labeled GFP cells can be visualized by MRI; therefore, GFP, a gene marker, was tracked indirectly with the SPIO-loaded cells using MRI. The technique holds promise for monitoring the temporal and spatial migration of cells with a gene marker and enhancing the understanding of cell- and gene-based therapeutic strategies. PMID:18956269

  11. Theory, simulation and experimental results of the acoustic detection of magnetization changes in superparamagnetic iron oxide

    Directory of Open Access Journals (Sweden)

    Borgert Jörn

    2011-06-01

    Full Text Available Abstract Background Magnetic Particle Imaging is a novel method for medical imaging. It can be used to measure the local concentration of a tracer material based on iron oxide nanoparticles. While the resulting images show the distribution of the tracer material in phantoms or anatomic structures of subjects under examination, no information about the tissue is being acquired. To expand Magnetic Particle Imaging into the detection of soft tissue properties, a new method is proposed, which detects acoustic emissions caused by magnetization changes in superparamagnetic iron oxide. Methods Starting from an introduction to the theory of acoustically detected Magnetic Particle Imaging, a comparison to magnetically detected Magnetic Particle Imaging is presented. Furthermore, an experimental setup for the detection of acoustic emissions is described, which consists of the necessary field generating components, i.e. coils and permanent magnets, as well as a calibrated microphone to perform the detection. Results The estimated detection limit of acoustic Magnetic Particle Imaging is comparable to the detection limit of magnetic resonance imaging for iron oxide nanoparticles, whereas both are inferior to the theoretical detection limit for magnetically detected Magnetic Particle Imaging. Sufficient data was acquired to perform a comparison to the simulated data. The experimental results are in agreement with the simulations. The remaining differences can be well explained. Conclusions It was possible to demonstrate the detection of acoustic emissions of magnetic tracer materials in Magnetic Particle Imaging. The processing of acoustic emission in addition to the tracer distribution acquired by magnetic detection might allow for the extraction of mechanical tissue parameters. Such parameters, like for example the velocity of sound and the attenuation caused by the tissue, might also be used to support and improve ultrasound imaging. However, the method

  12. Atherosclerotic imaging using 4 types of superparamagnetic iron oxides: New possibilities for mannan-coated particles

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Keiko, E-mail: keikot@belle.shiga-medac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Nitta, Norihisa, E-mail: r34nitta@yahoo.co.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Sonoda, Akinaga, E-mail: akinagasonoda@yahoo.co.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Otani, Hideji, E-mail: otani@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Takahashi, Masashi, E-mail: masashi@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Murata, Kiyoshi, E-mail: murata@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Shiomi, Masashi, E-mail: ieakusm@med.kobe-u.ac.jp [Institute for Experimental Animals, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Tyuoku, Kobe, Hyogo 650-0017 (Japan); Tabata, Yasuhiko, E-mail: yasuhiko@frontier.kyoto-u.ac.jp [Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Syogoin-Kawahara-cho, Sakyoku, Kyoto 606-8507 (Japan); Nohara, Satoshi, E-mail: s-nohara@meito-sangyo.co.jp [The Nagoya Research Laboratory, Meito Sangyo Co., Ltd., 25-5 Nishibiwajima-cho, Kiyosu, Aichi 452-0067 (Japan)

    2013-11-01

    Purpose: We used magnetic resonance imaging (MRI) and histologic techniques to compare the uptake by the rabbit atherosclerotic wall of 4 types of superparamagnetic iron oxide (SPIO) particles, i.e. SPIO, mannan-coated SPIO (M-SPIO), ultrasmall SPIO (USPIO), and mannan-coated USPIO (M-USPIO). Materials and methods: All experimental protocols were approved by our institutional animal experimentation committee. We intravenously injected 12 Watanabe heritable hyperlipidemic rabbits with one of the 4 types of SPIO (0.8 mmol Fe/kg). Two other rabbits served as the control. The rabbits underwent in vivo contrast-enhanced magnetic resonance angiography (MRA) before- and 5 days after these injections; excised aortae were subjected to in vitro MRI. In the in vivo and in vitro studies we assessed the signal intensity of the vessels at identical regions of interest (ROI) and calculated the signal-to-noise ratio (SNR). For histologic assessment we evaluated the iron-positive regions in Prussian blue-stained specimens. Results: There were significant differences in iron-positive regions where M-USPIO > USPIO, M-SPIO > SPIO, USPIO > SPIO (p < 0.05) but not between M-USPIO and M-SPIO. The difference between the pre- and post-injection SNR was significantly greater in rabbits treated with M-USPIO than USPIO and in rabbits injected with M-SPIO than SPIO (p < 0.05). On in vitro MRI scans SNR tended to be lower in M-USPIO- and M-SPIO- than USPIO- and SPIO-treated rabbits (p < 0.1). Conclusion: Histologic and imaging analysis showed that mannan-coated SPIO and USPIO particles were taken up more readily by the atherosclerotic rabbit wall than uncoated SPIO and USPIO.

  13. Self-assembly of a superparamagnetic raspberry-like silica/iron oxide nanocomposite using epoxy-amine coupling chemistry.

    Science.gov (United States)

    Cano, Manuel; de la Cueva-Méndez, Guillermo

    2015-02-28

    The fabrication of colloidal nanocomposites would benefit from controlled hetero-assembly of ready-made particles through covalent bonding. Here we used epoxy-amine coupling chemistry to promote the self-assembly of superparamagnetic raspberry-like nanocomposites. This adaptable method induced the covalent attachment of iron oxide nanoparticles sparsely coated with amine groups onto epoxylated silica cores in the absence of other reactants.

  14. Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups

    Directory of Open Access Journals (Sweden)

    Hong SC

    2011-12-01

    Full Text Available Seong Cheol Hong1,*, Jong Ho Lee1,*, Jaewook Lee1, Hyeon Yong Kim1, Jung Youn Park2, Johann Cho3, Jaebeom Lee1, Dong-Wook Han11Department of Nanomedical Engineering, BK21 Nano Fusion Technology Division, College of Nanoscience and Nanotechnology, Pusan National University, 2Department of Biotechnology Research, National Fisheries Research and Development Institute, Busan, 3Electronic Materials Lab, Samsung Corning Precision Materials Co, Ltd, Gumi City, Gyeongsangbukdo, Korea*These authors contributed equally to this workAbstract: Superparamagnetic iron oxide nanoparticles (SPIONs have been widely utilized for the diagnosis and therapy of specific diseases, as magnetic resonance imaging (MRI contrast agents and drug-delivery carriers, due to their easy transportation to targeted areas by an external magnetic field. For such biomedical applications, SPIONs must have multifunctional characteristics, including optimized size and modified surface. However, the biofunctionality and biocompatibility of SPIONs with various surface functional groups of different sizes have yet to be elucidated clearly. Therefore, it is important to carefully monitor the cytotoxicity and genotoxicity of SPIONs that are surfaced-modified with various functional groups of different sizes. In this study, we evaluated SPIONs with diameters of approximately 10 nm and 100~150 nm, containing different surface functional groups. SPIONs were covered with –O-groups, so-called bare SPIONs. Following this, they were modified with three different functional groups – hydroxyl (–OH, carboxylic (–COOH, and amine (–NH2 groups – by coating their surfaces with tetraethyl orthosilicate (TEOS, (3-aminopropyltrimethoxysilane (APTMS, TEOS-APTMS, or citrate, which imparted different surface charges and sizes to the particles. The effects of SPIONs coated with these functional groups on mitochondrial activity, intracellular accumulation of reactive oxygen species, membrane integrity

  15. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Pongrac IM

    2016-04-01

    Full Text Available Igor M Pongrac,1 Ivan Pavičić,2 Mirta Milić,2 Lada Brkič Ahmed,1 Michal Babič,3 Daniel Horák,3 Ivana Vinković Vrček,2 Srećko Gajović1 1School of Medicine, Croatian Institute for Brain Research, University of Zagreb, 2Institute for Medical Research and Occupational Health, Zagreb, Croatia; 3Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic Abstract: Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs – uncoated, coated with D-mannose, or coated with poly-L-lysine – affects biocompatibility. We sought to investigate murine neural stem cells (NSCs as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions

  16. Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool

    Science.gov (United States)

    Uchiyama, Mayara Klimuk; Toma, Sergio Hiroshi; Rodrigues, Stephen Fernandes; Shimada, Ana Lucia Borges; Loiola, Rodrigo Azevedo; Cervantes Rodríguez, Hernán Joel; Oliveira, Pedro Vitoriano; Luz, Maciel Santos; Rabbani, Said Rahnamaye; Toma, Henrique Eisi; Poliselli Farsky, Sandra Helena; Araki, Koiti

    2015-01-01

    Fully dispersible, cationic ultrasmall (7 nm diameter) superparamagnetic iron oxide nanoparticles, exhibiting high relaxivity (178 mM−1s−1 in 0.47 T) and no acute or subchronic toxicity in Wistar rats, were studied and their suitability as contrast agents for magnetic resonance imaging and material for development of new diagnostic and treatment tools demonstrated. After intravenous injection (10 mg/kg body weight), they circulated throughout the vascular system causing no microhemorrhage or thrombus, neither inflammatory processes at the mesentery vascular bed and hepatic sinusoids (leukocyte rolling, adhesion, or migration as evaluated by intravital microscopy), but having been spontaneously concentrated in the liver, spleen, and kidneys, they caused strong negative contrast. The nanoparticles are cleared from kidneys and bladder in few days, whereas the complete elimination from liver and spleen occurred only after 4 weeks. Ex vivo studies demonstrated that cationic ultrasmall superparamagnetic iron oxide nanoparticles caused no effects on hepatic and renal enzymes dosage as well as on leukocyte count. In addition, they were readily concentrated in rat thigh by a magnet showing its potential as magnetically targeted carriers of therapeutic and diagnostic agents. Summarizing, cationic ultrasmall superparamagnetic iron oxide nanoparticles are nontoxic and efficient magnetic resonance imaging contrast agents useful as platform for the development of new materials for application in theranostics. PMID:26251595

  17. A detailed study on the transition from the blocked to the superparamagnetic state of reduction-precipitated iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Witte, K.; Bodnar, W.; Mix, T.; Schell, N.; Fulda, G.; Woodcock, T.G.; Burkel, E.

    2016-01-01

    Magnetic iron oxide nanoparticles were prepared by salt-assisted solid-state chemical precipitation method with alternating fractions of the ferric iron content. The physical properties of the precipitated nanoparticles mainly consisting of magnetite were investigated by means of transmission electron microscopy, high energy X-ray diffraction, vibrating sample magnetometry and Mössbauer spectroscopy. With particle sizes ranging from 16.3 nm to 2.1 nm, a gradual transition from the blocked state to the superparamagnetic state was observed. The transition was described as a dependence of the ferric iron content used during the precipitation. Composition, mean particle size, coercivity, saturation polarisation, as well as hyperfine interaction parameters and their evolution were studied systematically over the whole series of iron oxide nanoparticles. - Highlights: • Study of superparamagnetic transition of magnetite varying ferric iron content. • Coercivity is mainly influenced by the particle size. • Saturation polarisation influenced by the goethite content and the particle size. • Number of vacancies tend to increase with increasing ferric iron content. • Fe 3 O 4 B-sites are stronger effected by the reduction of particle size than A-sites.

  18. Magnetic properties of iron loaded MCM-48 molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Veronica R. [Centro de Investigacion y Tecnologia Quimica, Universidad Tecnologica Nacional, Facultad Regional Cordoba. Cordoba (Argentina); CONICET (Argentina); Oliva, Marcos I. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Cordoba (Argentina); IFEG-CONICET (Argentina); Vaschetto, Eliana G. [Centro de Investigacion y Tecnologia Quimica, Universidad Tecnologica Nacional, Facultad Regional Cordoba. Cordoba (Argentina); Urreta, Silvia E., E-mail: urreta@famaf.unc.edu.a [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Cordoba (Argentina); Eimer, Griselda A. [Centro de Investigacion y Tecnologia Quimica, Universidad Tecnologica Nacional, Facultad Regional Cordoba. Cordoba (Argentina); CONICET (Argentina); Silvetti, Silvia P. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Cordoba (Argentina)

    2010-11-15

    Mesoporous molecular sieves of MCM-48 type were loaded with iron by the wet impregnation method, using Fe(III) nitrate or Fe(II) sulfate aqueous solutions as Fe sources, to obtain a magnetic porous composite. The iron loaded materials were characterized by XRD, N{sub 2} adsorption and DRUV-vis and compared with the Si-MCM-48 host. Their magnetic properties were studied by measuring the hysteresis loops up to 1.5 T at different temperatures (5-300 K) and by magnetization vs. temperature curves following the conventional zero field cooling (ZFC) and field cooling (FC) protocols. Materials with high structure regularity and surface area are obtained, which exhibit a mixed paramagnetic and superparamagnetic behavior, arising in isolated iron ions inserted in the host framework, and in small iron oxide clusters or nanoparticles forming inside the pores, respectively. Larger hematite particles (8-13 nm) grown on the external surface provide a quite small ferromagnetic contribution to the hysteresis loop.

  19. Magnetic properties of iron loaded MCM-48 molecular sieves

    International Nuclear Information System (INIS)

    Elias, Veronica R.; Oliva, Marcos I.; Vaschetto, Eliana G.; Urreta, Silvia E.; Eimer, Griselda A.; Silvetti, Silvia P.

    2010-01-01

    Mesoporous molecular sieves of MCM-48 type were loaded with iron by the wet impregnation method, using Fe(III) nitrate or Fe(II) sulfate aqueous solutions as Fe sources, to obtain a magnetic porous composite. The iron loaded materials were characterized by XRD, N 2 adsorption and DRUV-vis and compared with the Si-MCM-48 host. Their magnetic properties were studied by measuring the hysteresis loops up to 1.5 T at different temperatures (5-300 K) and by magnetization vs. temperature curves following the conventional zero field cooling (ZFC) and field cooling (FC) protocols. Materials with high structure regularity and surface area are obtained, which exhibit a mixed paramagnetic and superparamagnetic behavior, arising in isolated iron ions inserted in the host framework, and in small iron oxide clusters or nanoparticles forming inside the pores, respectively. Larger hematite particles (8-13 nm) grown on the external surface provide a quite small ferromagnetic contribution to the hysteresis loop.

  20. Synthesis, characterization and theranostic evaluation of Indium-111 labeled multifunctional superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Zolata, Hamidreza; Abbasi Davani, Fereydoun; Afarideh, Hossein

    2015-01-01

    Indium-111 labeled, Trastuzumab-Doxorubicin Conjugated, and APTES-PEG coated magnetic nanoparticles were designed for tumor targeting, drug delivery, controlled drug release, and dual-modal tumor imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by thermal decomposition method to obtain narrow size particles. To increase SPIONs circulation time in blood and decrease its cytotoxicity in healthy tissues, SPIONs surface was modified with 3-Aminopropyltriethoxy Silane (APTES) and then were functionalized with N-Hydroxysuccinimide (NHS) ester of Polyethylene Glycol Maleimide (NHS-PEG-Mal) to conjugate with thiolated 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6, 9,-triacetic acid (PCTA) bifunctional chelator (BFC) and Trastuzumab antibody. In order to tumor SPECT/MR imaging, SPIONs were labeled with Indium-111 (T 1/2 = 2.80d). NHS ester of monoethyl malonate (MEM-NHS) was used for conjugation of Doxorubicin (DOX) chemotherapeutic agent onto SPIONs surface. Mono-Ethyl Malonate allows DOX molecules to be attached to SPIONs via pH-sensitive hydrazone bonds which lead to controlled drug release in tumor region. Active and passive tumor targeting were achieved through incorporated anti-HER2 (Trastuzumab) antibody and EPR effect of solid tumors for nanoparticles respectively. In addition to in vitro assessments of modified SPIONs in SKBR3 cell lines, their theranostic effects were evaluated in HER2 + breast tumor bearing BALB/c mice via biodistribution study, dual-modal molecular imaging and tumor diameter measurements

  1. Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge

    Directory of Open Access Journals (Sweden)

    Schweiger Christoph

    2012-07-01

    Full Text Available Abstract Time-resolved quantitative colocalization analysis is a method based on confocal fluorescence microscopy allowing for a sophisticated characterization of nanomaterials with respect to their intracellular trafficking. This technique was applied to relate the internalization patterns of nanoparticles i.e. superparamagnetic iron oxide nanoparticles with distinct physicochemical characteristics with their uptake mechanism, rate and intracellular fate. The physicochemical characterization of the nanoparticles showed particles of approximately the same size and shape as well as similar magnetic properties, only differing in charge due to different surface coatings. Incubation of the cells with both nanoparticles resulted in strong differences in the internalization rate and in the intracellular localization depending on the charge. Quantitative and qualitative analysis of nanoparticles-organelle colocalization experiments revealed that positively charged particles were found to enter the cells faster using different endocytotic pathways than their negative counterparts. Nevertheless, both nanoparticles species were finally enriched inside lysosomal structures and their efficiency in agarose phantom relaxometry experiments was very similar. This quantitative analysis demonstrates that charge is a key factor influencing the nanoparticle-cell interactions, specially their intracellular accumulation. Despite differences in their physicochemical properties and intracellular distribution, the efficiencies of both nanoparticles as MRI agents were not significantly different.

  2. Superparamagnetic iron oxide nanoparticles labeling of bone marrow stromal (mesenchymal cells does not affect their "stemness".

    Directory of Open Access Journals (Sweden)

    Arun Balakumaran

    2010-07-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPION are increasingly used to label human bone marrow stromal cells (BMSCs, also called "mesenchymal stem cells" to monitor their fate by in vivo MRI, and by histology after Prussian blue (PB staining. SPION-labeling appears to be safe as assessed by in vitro differentiation of BMSCs, however, we chose to resolve the question of the effect of labeling on maintaining the "stemness" of cells within the BMSC population in vivo. Assays performed include colony forming efficiency, CD146 expression, gene expression profiling, and the "gold standard" of evaluating bone and myelosupportive stroma formation in vivo in immuncompromised recipients. SPION-labeling did not alter these assays. Comparable abundant bone with adjoining host hematopoietic cells were seen in cohorts of mice that were implanted with SPION-labeled or unlabeled BMSCs. PB+ adipocytes were noted, demonstrating their donor origin, as well as PB+ pericytes, indicative of self-renewal of the stem cell in the BMSC population. This study confirms that SPION labeling does not alter the differentiation potential of the subset of stem cells within BMSCs.

  3. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Pongrac, Igor M; Pavičić, Ivan; Milić, Mirta; Brkić Ahmed, Lada; Babič, Michal; Horák, Daniel; Vinković Vrček, Ivana; Gajović, Srećko

    2016-01-01

    Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs) are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs - uncoated, coated with d-mannose, or coated with poly-l-lysine - affects biocompatibility. We sought to investigate murine neural stem cells (NSCs) as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions presented in this work highlights the need for further safety evaluations. This investigation helps to fill the knowledge gaps on the criteria that should be considered in evaluating the biocompatibility and safety of novel nanoparticles.

  4. Accumulation and Toxicity of Superparamagnetic Iron Oxide Nanoparticles in Cells and Experimental Animals.

    Science.gov (United States)

    Jarockyte, Greta; Daugelaite, Egle; Stasys, Marius; Statkute, Urte; Poderys, Vilius; Tseng, Ting-Chen; Hsu, Shan-Hui; Karabanovas, Vitalijus; Rotomskis, Ricardas

    2016-08-19

    The uptake and distribution of negatively charged superparamagnetic iron oxide (Fe₃O₄) nanoparticles (SPIONs) in mouse embryonic fibroblasts NIH3T3, and magnetic resonance imaging (MRI) signal influenced by SPIONs injected into experimental animals, were visualized and investigated. Cellular uptake and distribution of the SPIONs in NIH3T3 after staining with Prussian Blue were investigated by a bright-field microscope equipped with digital color camera. SPIONs were localized in vesicles, mostly placed near the nucleus. Toxicity of SPION nanoparticles tested with cell viability assay (XTT) was estimated. The viability of NIH3T3 cells remains approximately 95% within 3-24 h of incubation, and only a slight decrease of viability was observed after 48 h of incubation. MRI studies on Wistar rats using a clinical 1.5 T MRI scanner were showing that SPIONs give a negative contrast in the MRI. The dynamic MRI measurements of the SPION clearance from the injection site shows that SPIONs slowly disappear from injection sites and only a low concentration of nanoparticles was completely eliminated within three weeks. No functionalized SPIONs accumulate in cells by endocytic mechanism, none accumulate in the nucleus, and none are toxic at a desirable concentration. Therefore, they could be used as a dual imaging agent: as contrast agents for MRI and for traditional optical biopsy by using Prussian Blue staining.

  5. Control of the interparticle spacing in superparamagnetic iron oxide nanoparticle clusters by surface ligand engineering

    Science.gov (United States)

    Dan, Wang; Bingbing, Lin; Taipeng, Shen; Jun, Wu; Fuhua, Hao; Chunchao, Xia; Qiyong, Gong; Huiru, Tang; Bin, Song; Hua, Ai

    2016-07-01

    Polymer-mediated self-assembly of superparamagnetic iron oxide (SPIO) nanoparticles allows modulation of the structure of SPIO nanocrystal cluster and their magnetic properties. In this study, dopamine-functionalized polyesters (DA-polyester) were used to directly control the magnetic nanoparticle spacing and its effect on magnetic resonance relaxation properties of these clusters was investigated. Monodisperse SPIO nanocrystals with different surface coating materials (poly(ɛ-caprolactone), poly(lactic acid)) of different molecular weights containing dopamine (DA) structure (DA-PCL2k, DA-PCL1k, DA-PLA1k)) were prepared via ligand exchange reaction, and these nanocrystals were encapsulated inside amphiphilic polymer micelles to modulate the SPIO nanocrystal interparticle spacing. Small-angle x-ray scattering (SAXS) was applied to quantify the interparticle spacing of SPIO clusters. The results demonstrated that the tailored magnetic nanoparticle clusters featured controllable interparticle spacing providing directly by the different surface coating of SPIO nanocrystals. Systematic modulation of SPIO nanocrystal interparticle spacing can regulate the saturation magnetization (M s) and T 2 relaxation of the aggregation, and lead to increased magnetic resonance (MR) relaxation properties with decreased interparticle spacing. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB933903), the National Key Technology R&D Program of China (Grant No. 2012BAI23B08), and the National Natural Science Foundation of China (Grant Nos. 20974065, 51173117, and 50830107).

  6. A rapid method for the preparation of ultrapure, functional lysosomes using functionalized superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Walker, Mathew W; Lloyd-Evans, Emyr

    2015-01-01

    Lysosomes are an emerging and increasingly important cellular organelle. With every passing year, more novel proteins and key cellular functions are associated with lysosomes. Despite this, the methodologies for their purification have largely remained unchanged since the days of their discovery. With little advancement in this area, it is no surprise that analysis of lysosomal function has been somewhat stymied, largely in part by the change in buoyant densities that occur under conditions where lysosomes accumulate macromolecules. Such phenotypes are often associated with the lysosomal storage diseases but are increasingly being observed under conditions where lysosomal proteins or, in some cases, cellular functions associated with lysosomal proteins are being manipulated. These altered lysosomes poise a problem to the classical methods to purify lysosomes that are reliant largely on their correct sedimentation by density gradient centrifugation. Building upon a technique developed by others to purify lysosomes magnetically, we have developed a unique assay using superparamagnetic iron oxide nanoparticles (SPIONs) to purify high yields of ultrapure functional lysosomes from multiple cell types including the lysosomal storage disorders. Here we describe this method in detail, including the rationale behind using SPIONs, the potential pitfalls that can be avoided and the potential functional assays these lysosomes can be used for. Finally we also summarize the other methodologies and the exact reasons why magnetic purification of lysosomes is now the method of choice for lysosomal researchers. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Magnetic separation of encapsulated islet cells labeled with superparamagnetic iron oxide nano particles.

    Science.gov (United States)

    Mettler, Esther; Trenkler, Anja; Feilen, Peter J; Wiegand, Frederik; Fottner, Christian; Ehrhart, Friederike; Zimmermann, Heiko; Hwang, Yong Hwa; Lee, Dong Yun; Fischer, Stefan; Schreiber, Laura M; Weber, Matthias M

    2013-01-01

    Islet cell transplantation is a promising option for the restoration of normal glucose homeostasis in patients with type 1 diabetes. Because graft volume is a crucial issue in islet transplantations for patients with diabetes, we evaluated a new method for increasing functional tissue yield in xenogeneic grafts of encapsulated islets. Islets were labeled with three different superparamagnetic iron oxide nano particles (SPIONs; dextran-coated SPION, siloxane-coated SPION, and heparin-coated SPION). Magnetic separation was performed to separate encapsulated islets from the empty capsules, and cell viability and function were tested. Islets labeled with 1000 μg Fe/ml dextran-coated SPIONs experienced a 69.9% reduction in graft volume, with a 33.2% loss of islet-containing capsules. Islets labeled with 100 μg Fe/ml heparin-coated SPIONs showed a 46.4% reduction in graft volume, with a 4.5% loss of capsules containing islets. No purification could be achieved using siloxane-coated SPIONs due to its toxicity to the primary islets. SPION labeling of islets is useful for transplant purification during islet separation as well as in vivo imaging after transplantation. Furthermore, purification of encapsulated islets can also reduce the volume of the encapsulated islets without impairing their function by removing empty capsules. © 2013 John Wiley & Sons A/S.

  8. Biodistribution of ultra small superparamagnetic iron oxide nanoparticles in BALB mice

    International Nuclear Information System (INIS)

    Saeed Shanehsazzadeh; Mohammad Ali Oghabian; Tehran University of Medical Science, Tehran; Fariba Johari Daha; Massoud Amanlou; Allen, B.J.

    2013-01-01

    Recently ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles (NPs) have been widely used for medical applications. One of their important applications is using these particles as MRI contrast agent. While various research works have been done about MRI application of USPIOs, there is limited research about their uptakes in various organs. The aim of this study was to evaluate the biodistribution of dextran coated iron oxide NPs labelled with 99m Tc in various organs via intravenous injection in Balb/c mice. The magnetite NPs were dispersed in phosphate buffered saline and SnCl 2 which was used as a reduction reagent. Subsequently, the radioisotope 99m Tc was mixed directly into the reaction solution. The labeling efficiency of USPIOs labeled with 99m Tc, was above 99 %. Sixty mice were sacrificed at 12 different time points (From 1 min to 48 h post injections; five mice at each time). The percentage of injected dose per gram of each organ was measured by direct counting for 19 harvested organs of the mice. The biodistribution of 99m Tc-USPIO in Balb/c mice showed dramatic uptake in reticuloendothelial system. Accordingly, about 75 percent of injected dose was found in spleen and liver at 15 min post injection. More than 24 % of the NPs remain in liver after 48 h post-injection and their clearance is so fast in other organs. The results suggest that USPIOs as characterized in our study can be potentially used as contrast agent in MR Imaging, distributing reticuloendothelial system specially spleen and liver. (author)

  9. Hyaluronan-modified superparamagnetic iron oxide nanoparticles for bimodal breast cancer imaging and photothermal therapy

    Directory of Open Access Journals (Sweden)

    Yang R

    2016-12-01

    Full Text Available Rui-Meng Yang,1,* Chao-Ping Fu,2,* Jin-Zhi Fang,1 Xiang-Dong Xu,1 Xin-Hua Wei,1 Wen-Jie Tang,1 Xin-Qing Jiang,1 Li-Ming Zhang2 1Department of Radiology, Guangzhou First People’s Hospital, Guangzhou Medical University, 2School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, China *These authors contributed equally to this work Abstract: Theranostic nanoparticles with both imaging and therapeutic abilities are highly promising in successful diagnosis and treatment of the most devastating cancers. In this study, the dual-modal imaging and photothermal effect of hyaluronan (HA-modified superparamagnetic iron oxide nanoparticles (HA-SPIONs, which was developed in a previous study, were investigated for CD44 HA receptor-overexpressing breast cancer in both in vitro and in vivo experiments. Heat is found to be rapidly generated by near-infrared laser range irradiation of HA-SPIONs. When incubated with CD44 HA receptor-overexpressing MDA-MB-231 cells in vitro, HA-SPIONs exhibited significant specific cellular uptake and specific accumulation confirmed by Prussian blue staining. The in vitro and in vivo results of magnetic resonance imaging and photothermal ablation demonstrated that HA-SPIONs exhibited significant negative contrast enhancement on T2-weighted magnetic resonance imaging and photothermal effect targeted CD44 HA receptor-overexpressing breast cancer. All these results indicated that HA-SPIONs have great potential for effective diagnosis and treatment of cancer. Keywords: iron oxide nanoparticles, surface functionalization, bioactive glycosaminoglycan, magnetic resonance imaging, cellular uptake, breast carcinoma

  10. Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand.

    Science.gov (United States)

    Park, Yoonjee C; Paulsen, Jeffrey; Nap, Rikkert J; Whitaker, Ragnhild D; Mathiyazhagan, Vidhya; Song, Yi-Qiao; Hürlimann, Martin; Szleifer, Igal; Wong, Joyce Y

    2014-01-28

    Superparamagnetic iron oxide (SPIO) nanoparticles have the potential to be used in the characterization of porous rock formations in oil fields as a contrast agent for NMR logging because they are small enough to traverse through nanopores and enhance contrast by shortening NMR T2 relaxation time. However, successful development and application require detailed knowledge of particle stability and mobility in reservoir rocks. Because nanoparticle adsorption to sand (SiO2) and rock (often CaCO3) affects their mobility, we investigated the thermodynamic equilibrium adsorption behavior of citric acid-coated SPIO nanoparticles (CA SPIO NPs) and poly(ethylene glycol)-grafted SPIO nanoparticles (PEG SPIO NPs) on SiO2 (silica) and CaCO3 (calcium carbonate). Adsorption behavior was determined at various pH and salt conditions via chemical analysis and NMR, and the results were compared with molecular theory predictions. Most of the NPs were recovered from silica, whereas far fewer NPs were recovered from calcium carbonate because of differences in the mineral surface properties. NP adsorption increased with increasing salt concentration: this trend was qualitatively explained by molecular theory, as was the role of the PEG grafting in preventing NPs adsorption. Quantitative disagreement between the theoretical predictions and the data was due to NP aggregation, especially at high salt concentration and in the presence of calcium carbonate. Upon aggregation, NP concentrations as determined by NMR T2 were initially overestimated and subsequently corrected using the relaxation rate 1/T2, which is a function of aggregate size and fractal dimension of the aggregate. Our experimental validation of the theoretical predictions of NP adsorption to minerals in the absence of aggregation at various pH and salt conditions demonstrates that molecular theory can be used to determine interactions between NPs and relevant reservoir surfaces. Importantly, this integrated experimental and

  11. Clinical evaluation of multishot echo planar imaging after administration of superparamagnetic iron oxide for hepatic tumors

    International Nuclear Information System (INIS)

    Sugai, Yukio; Watanabe, Yorihisa; Ito, Kazushi; Hosoya, Takaaki; Yamaguchi, Koichi

    1998-01-01

    Ten cases of hepatocellular carcinoma and three cases of metastatic liver tumor were evaluated using breath-hold multishot echo planar imaging (EPI) before and after administration of super-paramagnetic iron oxide (SPIO), and the results were compared to those with breath-hold fast multi-planar SPGR (T 1 WI) and fat-suppressed respiratory-triggered FSE (T 2 WI). Qualitative imaging evaluation of lesion detectability showed that T 2 WI was much more useful than T 1 WI as previously reported, and more useful than EPI. Quantitative evaluation showed that the signal to noise (S/N) ratios of the liver parenchyma decreased after administration of SPIO and the changes were significant on all pulse sequences. The change ratio of the S/N ratio of the liver parenchyma after administration of SPIO on EPI was significantly higher than on T 1 WI and T 2 WI. The tumor-liver contrast to noise (C/N) ratios increased after administration of SPIO and the changes were significant on T 1 WI and T 2 WI, but not on EPI. These results suggested that the tumor S/N ratio decreased after administration of SPIO on EPI. The tumor diameters on EPI were significantly reduced after administration of SPIO. Magnetization and flow artifacts on EPI were detected in all cases and caused distortion: the signal decreased in the liver parenchyma. We concluded that EPI after administration of SPIO is not currently useful compared to other pulse sequences and cannot yet replace T 2 WI. (author)

  12. The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation

    Science.gov (United States)

    Mou, Yongbin; Xing, Yun; Ren, Hongyan; Cui, Zhihua; Zhang, Yu; Yu, Guangjie; Urba, Walter J.; Hu, Qingang; Hu, Hongming

    2017-01-01

    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γFe2O3/APTS (3-aminopropyltrimethoxysilane) NPs and γFe2O3/DMSA (meso-2, 3-Dimercaptosuccinic acid) NPs, with the same crystal structure, magnetic properties, and size distribution were prepared. Then, the promotion of T-cell activation via dendritic cells (DCs) was compared among different charged antigen coated NPs. Moreover, the activation of the autophagy, cytosolic delivery of the antigens, and antigen degradation mediated by the proteasome and lysosome were measured. Our results indicated that positive charged γFe2O3/APTS NPs, but not negative charged γFe2O3/DMSA NPs, enhanced the cross-presentation ability of DCs. Increased cross-presentation ability induced by γFe2O3/APTS NPs was associated with increased cytosolic antigen delivery. On the contrary, γFe2O3/DMSA NPs was associated with rapid autophagy. Overall, our results suggest that antigen delivered in cytoplasm induced by positive charged particles is beneficial for antigen cross-presentation and T-cell activation. NPs modified with different chemistries exhibit diverse biological properties and differ greatly in their adjuvant potentials. Thus, it should be carefully considered many different effects of NPs to design effective and safe adjuvants.

  13. Investigation on the toxic interaction of superparamagnetic iron oxide nanoparticles with catalase

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zehua [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China); Liu, Hongwei [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China); Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Hu, Xinxin; Song, Wei [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China); Liu, Rutao, E-mail: rutaoliu@sdu.edu.cn [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, China–America CRC for Environment and Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100 (China)

    2015-03-15

    Superparamagnetic iron oxide nanoparticles (SPIONs) have been investigated for various applications in targeted drug delivery and magnetic resonance imaging. Given their clinical relevance, there is a need to understand these particles' potential cytotoxic effects and possible mechanisms of cytotoxicity. Using a variety of spectroscopic techniques, we investigated the interaction of SPIONs with catalase (CAT) in an aqueous environment. Catalase is an important enzyme that protects cells and tissues from oxidative damage by reactive oxygen species (ROS). Therefore, in this work, CAT served as a model protein for examining the physiological effects of SPIONs due to is function in eliminating H{sub 2}O{sub 2}. Synchronous fluorescence spectroscopy results showed that SPIONs have little effect on tryptophan residues in CAT. Data from circular dichroism (CD) and UV–vis spectroscopies showed that CAT α-helical content decreased from 32.4% to 29.1% in the presence of SPIONs. Moreover, a ca. 10% decrease in CAT activity was observed in the presence of SPIONs at a 20:1 particle:protein ratio. These results show that SPIONs can interact with proteins to alter both their structure and function. Further studies with CAT or other toxicologically relevant enzymes may be used for elucidating the mechanisms of SPION cytotoxicity. - Highlights: • This work established the binding mode of SPIONs with CAT on molecular level. • The interaction mechanism was explored by multiple spectroscopic techniques. • SPIONs can loosen the skeleton of protein and increase the exposure of amide moieties in the hydrophobic pocket. • SPIONs can inhibit CAT activity and trigger conformational changes in CAT.

  14. Investigation on the toxic interaction of superparamagnetic iron oxide nanoparticles with catalase

    International Nuclear Information System (INIS)

    Yu, Zehua; Liu, Hongwei; Hu, Xinxin; Song, Wei; Liu, Rutao

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have been investigated for various applications in targeted drug delivery and magnetic resonance imaging. Given their clinical relevance, there is a need to understand these particles' potential cytotoxic effects and possible mechanisms of cytotoxicity. Using a variety of spectroscopic techniques, we investigated the interaction of SPIONs with catalase (CAT) in an aqueous environment. Catalase is an important enzyme that protects cells and tissues from oxidative damage by reactive oxygen species (ROS). Therefore, in this work, CAT served as a model protein for examining the physiological effects of SPIONs due to is function in eliminating H 2 O 2 . Synchronous fluorescence spectroscopy results showed that SPIONs have little effect on tryptophan residues in CAT. Data from circular dichroism (CD) and UV–vis spectroscopies showed that CAT α-helical content decreased from 32.4% to 29.1% in the presence of SPIONs. Moreover, a ca. 10% decrease in CAT activity was observed in the presence of SPIONs at a 20:1 particle:protein ratio. These results show that SPIONs can interact with proteins to alter both their structure and function. Further studies with CAT or other toxicologically relevant enzymes may be used for elucidating the mechanisms of SPION cytotoxicity. - Highlights: • This work established the binding mode of SPIONs with CAT on molecular level. • The interaction mechanism was explored by multiple spectroscopic techniques. • SPIONs can loosen the skeleton of protein and increase the exposure of amide moieties in the hydrophobic pocket. • SPIONs can inhibit CAT activity and trigger conformational changes in CAT

  15. Cellular Imaging at 1.5 T: Detecting Cells in Neuroinflammation using Active Labeling with Superparamagnetic Iron Oxide

    Directory of Open Access Journals (Sweden)

    Ayman J. Oweida

    2004-04-01

    Full Text Available The ability to visualize cell infiltration in experimental autoimmune encephalomyelitis (EAE, a well-known animal model for multiple sclerosis in humans, was investigated using a clinical 1.5-T magnetic resonance imaging (MRI scanner, a custom-built, high-strength gradient coil insert, a 3-D fast imaging employing steady-state acquisition (FIESTA imaging sequence and a superparamagnetic iron oxide (SPIO contrast agent. An “active labeling” approach was used with SPIO administered intravenously during inflammation in EAE. Our results show that small, discrete regions of signal void corresponding to iron accumulation in EAE brain can be detected using FIESTA at 1.5 T. This work provides early evidence that cellular abnormalities that are the basis of diseases can be probed using cellular MRI and supports our earlier work which indicates that tracking of iron-labeled cells will be possible using clinical MR scanners.

  16. Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging.

    Science.gov (United States)

    Mishra, Sushanta Kumar; Kumar, B S Hemanth; Khushu, Subash; Tripathi, Rajendra P; Gangenahalli, Gurudutta

    2016-09-01

    Synthesis of a contrast agent for biomedical imaging is of great interest where magnetic nanoparticles are concerned, because of the strong influence of particle size on transverse relaxivity. In the present study, biocompatible magnetic iron oxide nanoparticles were synthesized by co-precipitation of Fe 2+ and Fe 3+ salts, followed by surface adsorption with reduced dextran. The synthesized nanoparticles were spherical in shape, and 12 ± 2 nm in size as measured using transmission electron microscopy; this was corroborated with results from X-ray diffraction and dynamic light scattering studies. The nanoparticles exhibited superparamagnetic behavior, superior T 2 relaxation rate and high relaxivities (r 1  = 18.4 ± 0.3, r 2  = 90.5 ± 0.8 s -1 mM -1 , at 7 T). MR image analysis of animals before and after magnetic nanoparticle administration revealed that the signal intensity of tumor imaging, specific organ imaging and whole body imaging can be clearly distinguished, due to the strong relaxation properties of these nanoparticles. Very low concentrations (3.0 mg Fe/kg body weight) of iron oxides are sufficient for early detection of tumors, and also have a clear distinction in pre- and post-enhancement of contrast in organs and body imaging. Many investigators have demonstrated high relaxivities of magnetic nanoparticles at superparamagnetic iron oxide level above 50 nm, but this investigation presents a satisfactory, ultrasmall, superparamagnetic and high transverse relaxivity negative contrast agent for diagnosis in pre-clinical studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. PEGylated superparamagnetic iron oxide nanoparticles labeled with 68Ga as a PET/MRI contrast agent. A biodistribution study

    International Nuclear Information System (INIS)

    Afsaneh Lahooti; Gruttner, Cordula; Parham Geramifar; Hassan Yousefnia

    2017-01-01

    The purpose of this study is to evaluate the biodistribution of polyethylene glycol (PEG) coated superparamagnetic iron oxide nanoparticles radiolabeled with 68 Ga in normal mice after intravenous administration of this probe. Three mice were sacrificed at specific time intervals. The biodistribution data revealed high uptake by liver and spleen (60.62 and 12.65 %ID/g at 120 min post injection for liver and spleen, respectively). The clearance of other organs was fast. These results suggest that 68 Ga-PEG-SPIONs has magnificent capabilities for applying in (PET-MRI) as a theranostic agent for detection of liver and spleen malignancies. (author)

  18. Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: Size distribution, colloidal properties and DNA interaction

    Energy Technology Data Exchange (ETDEWEB)

    Steitz, Benedikt [Laboratory of Powder Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Hofmann, Heinrich [Laboratory of Powder Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Kamau, Sarah W. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zuerich, Zurich (Switzerland); Hassa, Paul O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zuerich, Zurich (Switzerland); Hottiger, Michael O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zuerich, Zurich (Switzerland); Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Hofmann-Amtenbrink, Magarethe [MatSearch, Chemin Jean Pavillard 14, 1009 Pully (Switzerland); Petri-Fink, Alke [Laboratory of Powder Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland)]. E-mail: alke.fink@epfl.ch

    2007-04-15

    Superparamagnetic iron oxide nanoparticles (SPIONs) were coated with polyethylenimine. Here, we briefly describe the synthesis as well as DNA:PEI:SPION complexes and the characterization of the compounds according to their particle size, {zeta}-potential, morphology, DNA complexing ability, magnetic sedimentation, and colloidal stability. PEI coating of SPIONs led to colloidally stable beads even in high salt concentrations over a wide pH range. DNA plasmids and PCR products encoding for green fluorescent protein were associated with the described beads. The complexes were added to cells and exposed to permanent and pulsating magnetic fields. Presence of these magnetic fields significantly increased the transfection efficiency.

  19. Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: Size distribution, colloidal properties and DNA interaction

    International Nuclear Information System (INIS)

    Steitz, Benedikt; Hofmann, Heinrich; Kamau, Sarah W.; Hassa, Paul O.; Hottiger, Michael O.; Rechenberg, Brigitte von; Hofmann-Amtenbrink, Magarethe; Petri-Fink, Alke

    2007-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) were coated with polyethylenimine. Here, we briefly describe the synthesis as well as DNA:PEI:SPION complexes and the characterization of the compounds according to their particle size, ζ-potential, morphology, DNA complexing ability, magnetic sedimentation, and colloidal stability. PEI coating of SPIONs led to colloidally stable beads even in high salt concentrations over a wide pH range. DNA plasmids and PCR products encoding for green fluorescent protein were associated with the described beads. The complexes were added to cells and exposed to permanent and pulsating magnetic fields. Presence of these magnetic fields significantly increased the transfection efficiency

  20. Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs).

    Science.gov (United States)

    Yu, Shann S; Scherer, Randy L; Ortega, Ryan A; Bell, Charleson S; O'Neil, Conlin P; Hubbell, Jeffrey A; Giorgio, Todd D

    2011-02-27

    Drug and contrast agent delivery systems that achieve controlled release in the presence of enzymatic activity are becoming increasingly important, as enzymatic activity is a hallmark of a wide array of diseases, including cancer and atherosclerosis. Here, we have synthesized clusters of ultrasmall superparamagnetic iron oxides (USPIOs) that sense enzymatic activity for applications in magnetic resonance imaging (MRI). To achieve this goal, we utilize amphiphilic poly(propylene sulfide)-bl-poly(ethylene glycol) (PPS-b-PEG) copolymers, which are known to have excellent properties for smart delivery of drug and siRNA. Monodisperse PPS polymers were synthesized by anionic ring opening polymerization of propylene sulfide, and were sequentially reacted with commercially available heterobifunctional PEG reagents and then ssDNA sequences to fashion biofunctional PPS-bl-PEG copolymers. They were then combined with hydrophobic 12 nm USPIO cores in the thin-film hydration method to produce ssDNA-displaying USPIO micelles. Micelle populations displaying complementary ssDNA sequences were mixed to induce crosslinking of the USPIO micelles. By design, these crosslinking sequences contained an EcoRV cleavage site. Treatment of the clusters with EcoRV results in a loss of R2 negative contrast in the system. Further, the USPIO clusters demonstrate temperature sensitivity as evidenced by their reversible dispersion at ~75°C and re-clustering following return to room temperature. This work demonstrates proof of concept of an enzymatically-actuatable and thermoresponsive system for dynamic biosensing applications. The platform exhibits controlled release of nanoparticles leading to changes in magnetic relaxation, enabling detection of enzymatic activity. Further, the presented functionalization scheme extends the scope of potential applications for PPS-b-PEG. Combined with previous findings using this polymer platform that demonstrate controlled drug release in oxidative

  1. Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs

    Directory of Open Access Journals (Sweden)

    Ortega Ryan A

    2011-02-01

    Full Text Available Abstract Background Drug and contrast agent delivery systems that achieve controlled release in the presence of enzymatic activity are becoming increasingly important, as enzymatic activity is a hallmark of a wide array of diseases, including cancer and atherosclerosis. Here, we have synthesized clusters of ultrasmall superparamagnetic iron oxides (USPIOs that sense enzymatic activity for applications in magnetic resonance imaging (MRI. To achieve this goal, we utilize amphiphilic poly(propylene sulfide-bl-poly(ethylene glycol (PPS-b-PEG copolymers, which are known to have excellent properties for smart delivery of drug and siRNA. Results Monodisperse PPS polymers were synthesized by anionic ring opening polymerization of propylene sulfide, and were sequentially reacted with commercially available heterobifunctional PEG reagents and then ssDNA sequences to fashion biofunctional PPS-bl-PEG copolymers. They were then combined with hydrophobic 12 nm USPIO cores in the thin-film hydration method to produce ssDNA-displaying USPIO micelles. Micelle populations displaying complementary ssDNA sequences were mixed to induce crosslinking of the USPIO micelles. By design, these crosslinking sequences contained an EcoRV cleavage site. Treatment of the clusters with EcoRV results in a loss of R2 negative contrast in the system. Further, the USPIO clusters demonstrate temperature sensitivity as evidenced by their reversible dispersion at ~75°C and re-clustering following return to room temperature. Conclusions This work demonstrates proof of concept of an enzymatically-actuatable and thermoresponsive system for dynamic biosensing applications. The platform exhibits controlled release of nanoparticles leading to changes in magnetic relaxation, enabling detection of enzymatic activity. Further, the presented functionalization scheme extends the scope of potential applications for PPS-b-PEG. Combined with previous findings using this polymer platform that

  2. The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice

    Directory of Open Access Journals (Sweden)

    Denise Bargheer

    2015-01-01

    Full Text Available 51Cr-labeled, superparamagnetic, iron oxide nanoparticles (51Cr-SPIOs and 65Zn-labeled CdSe/CdS/ZnS-quantum dots (65Zn-Qdots were prepared using an easy, on demand, exchange-labeling technique and their particokinetic parameters were studied in mice after intravenous injection. The results indicate that the application of these heterologous isotopes can be used to successfully mark the nanoparticles during initial distribution and organ uptake, although the 65Zn-label appeared not to be fully stable. As the degradation of the nanoparticles takes place, the individual transport mechanisms for the different isotopes must be carefully taken into account. Although this variation in transport paths can bring new insights with regard to the respective trace element homeostasis, it can also limit the relevance of such trace material-based approaches in nanobioscience. By monitoring 51Cr-SPIOs after oral gavage, the gastrointestinal non-absorption of intact SPIOs in a hydrophilic or lipophilic surrounding was measured in mice with such high sensitivity for the first time. After intravenous injection, polymer-coated, 65Zn-Qdots were mainly taken up by the liver and spleen, which was different from that of ionic 65ZnCl2. Following the label for 4 weeks, an indication of substantial degradation of the nanoparticles and the release of the label into the Zn pool was observed. Confocal microscopy of rat liver cryosections (prepared 2 h after intravenous injection of polymer-coated Qdots revealed a colocalization with markers for Kupffer cells and liver sinusoidal endothelial cells (LSEC, but not with hepatocytes. In J774 macrophages, fluorescent Qdots were found colocalized with lysosomal markers. After 24 h, no signs of degradation could be detected. However, after 12 weeks, no fluorescent nanoparticles could be detected in the liver cryosections, which would confirm our 65Zn data showing a substantial degradation of the polymer-coated CdSe/CdS/ZnS-Qdots in

  3. Superparamagnetic iron oxide enhanced MR imaging: influence of hepatic dysfunction in cirrhotic patients

    International Nuclear Information System (INIS)

    Kwak, Hyo Sung; Lee, Jeong Min; Kim, Chong Soo; Ym, Seong Hee; Han, Hyun Young

    2000-01-01

    To determine the influence of liver dysfunction on the detection of focal hepatic nodules, and investigate the loss of signal intensity of hepatic parenchyma occurring after superparamagnetic iron oxide (SPIO)-induced contrast enhancement in patients with liver cirrhosis. In 68 patients with liver cirrhosis, we evaluated MR images before and after the administration of SPIO. /clinical information and laboratory data indicated that the liver was normal in ten patients (nine hemangiomas and one hepatic cyst), while Child's A was diagnosed in 25 cases (22 of which were hepatocellular carcinoma (HCCs)),Child's B in 15 (11 HCCs), and Child's C in 18 (10 HCCs).Before and after SPIO administration, conventional T2-weighted spin-echo, respiratory-triggered T2-weighted turbo spin-echo, and breathhold T2-weighted turbo spin-echo images were obtained. After the administration of SPIO, degrees of lever dysfunction and laboratory data were correlated with reductions in signal intensity of the liver, and in addition, the state of hepatic dysfunction was correlated with inhomogeneous parenchymal change and lesion conspicuity. After the administration of SPIO, percentage signal loss in liver parenchyma was significantly higher on conventional T2-weighted spin-echo images than on T2-weighted turbo spin-echo and breathhold T2-weighted turbo spin-echo (p less than 0.05). There was significant correlation between degree of liver dysfunction and of signal loss (p less than ).05), while percentage signal loss of the liver was lower in the Child's C group than in the other three. In addition, there was close correlation between percentage signal loss and laboratory data such as albumin and total bilirubin levels, and prothrombin time (p less than 0.05). Qualitative analysis showed that inhomogeneous enhancement due to fibrous septa and a regenerative nodule occurred more often in the Child's B and Child's C group than in the normal and Child's A group (p less than 0.0001). In terms of

  4. Synthesis and characterization of the superparamagnetic iron oxide nanoparticles modified with cationic chitosan and coated with silica shell

    International Nuclear Information System (INIS)

    Lewandowska-Łańcucka, Joanna; Staszewska, Magdalena; Szuwarzyński, Michał; Kępczyński, Mariusz; Romek, Marek; Tokarz, Waldemar; Szpak, Agnieszka; Kania, Gabriela; Nowakowska, Maria

    2014-01-01

    Highlights: • The new, facile methodology for synthesis of silica covered SPIONs is proposed. • The SPIONs was modified with cationic chitosan and coated with silica shell. • Negatively charged, rounded in shape particles of ca. 330 nm were obtained. • The product exhibits the superparamagnetic properties. • The product properties imply its potential applications in biomedicine areas. -- Abstract: Novel method for synthesis of superparamagnetic iron oxide nanoparticles (SPION) modified with a cationic chitosan (CCh) and coated with a silica shell, SPION-CCh-SiO 2 was developed. The process was carried out in two steps. In the first step the chitosan coated SPIONs were obtained by co-precipitation of Fe 2+ and Fe 3+ with ammonium hydroxide in aqueous solution of CCh. In the second one, the silica shell is formed on their surfaces. The formation of SPION-CCh-SiO 2 was achieved by direct decomposition of tetraethoxysilane (TEOS) adsorbed on a surface of SPION-CCh dispersed in aqueous phase under sonication and mechanical stirring at room temperature. The chemical composition and physicochemical properties of the materials were determined using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Light Scattering (DLS) and zeta potential measurements. The morphology of the particles was evaluated by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). Magnetic properties were confirmed using Atomic Force Microscopy/Magnetic Force Microscopy (AFM/MFM) and magnetization measurements. The resulting products are negatively charged, rounded in shape and exhibit the superparamagnetic properties what implies their potential applications in engineering and biomedicine areas

  5. Synthesis and characterization of the superparamagnetic iron oxide nanoparticles modified with cationic chitosan and coated with silica shell

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowska-Łańcucka, Joanna, E-mail: lewandow@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Staszewska, Magdalena; Szuwarzyński, Michał; Kępczyński, Mariusz [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Romek, Marek [Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow (Poland); Tokarz, Waldemar [Department of Solid State Physics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Szpak, Agnieszka; Kania, Gabriela; Nowakowska, Maria [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)

    2014-02-15

    Highlights: • The new, facile methodology for synthesis of silica covered SPIONs is proposed. • The SPIONs was modified with cationic chitosan and coated with silica shell. • Negatively charged, rounded in shape particles of ca. 330 nm were obtained. • The product exhibits the superparamagnetic properties. • The product properties imply its potential applications in biomedicine areas. -- Abstract: Novel method for synthesis of superparamagnetic iron oxide nanoparticles (SPION) modified with a cationic chitosan (CCh) and coated with a silica shell, SPION-CCh-SiO{sub 2} was developed. The process was carried out in two steps. In the first step the chitosan coated SPIONs were obtained by co-precipitation of Fe{sup 2+} and Fe{sup 3+} with ammonium hydroxide in aqueous solution of CCh. In the second one, the silica shell is formed on their surfaces. The formation of SPION-CCh-SiO{sub 2} was achieved by direct decomposition of tetraethoxysilane (TEOS) adsorbed on a surface of SPION-CCh dispersed in aqueous phase under sonication and mechanical stirring at room temperature. The chemical composition and physicochemical properties of the materials were determined using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Light Scattering (DLS) and zeta potential measurements. The morphology of the particles was evaluated by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). Magnetic properties were confirmed using Atomic Force Microscopy/Magnetic Force Microscopy (AFM/MFM) and magnetization measurements. The resulting products are negatively charged, rounded in shape and exhibit the superparamagnetic properties what implies their potential applications in engineering and biomedicine areas.

  6. Superparamagnetic iron oxide coated on the surface of cellulose nanospheres for the rapid removal of textile dye under mild condition

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yunfeng [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Qin, Zongyi, E-mail: phqin@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Liu, Yannan; Cheng, Miao; Qian, Pengfei [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Wang, Qian, E-mail: drwangqian23@163.com [Department of Orthopaedics, Shanghai First People' s Hospital, Shanghai Jiaotong University, 100 Haining Road, Hongkou District, Shanghai 200080 (China); Zhu, Meifang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Material Science and Engineering, Donghua University, Shanghai 201620 (China)

    2015-12-01

    Graphical abstract: - Highlights: • Anchoring superparamagnetic iron oxide on the surface of cellulose nanospheres as magnetically recyclable nanocatalys. • Achieving highly efficient Fenton-like reaction on the surface of composite nanospheres for rapid removal of textile dye. • Reaching nearly 98.0% degradation of Navy blue within 5 min under mild condition. - Abstract: Magnetic composite nanoparticles (MNPs) were prepared by anchoring iron oxide (Fe{sub 3}O{sub 4}) on the surface of carboxyl cellulose nanospheres through a facile chemical co-precipitation method. The as-prepared MNPs were characterized by atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, wide-angle X-ray diffraction measurement, thermal gravity analysis and vibrating sample magnetometry. These MNPs were of a generally spherical shape with a narrow size distribution, and exhibited superparamagnetic behaviors with high saturation magnetization. High efficient removal of Navy blue in aqueous solution was demonstrated at room temperature in a Fenton-like system containing the MNPs and H{sub 2}O{sub 2}, which benefited from small particle size, large surface area, high chemical activity, and good dispersibility of the MNPs. The removal efficiency of Navy blue induced by the MNPs prepared at a weight ratio of cellulose to iron of 1:2 were 90.6% at the first minute of the degradation reaction, and 98.0% for 5 min. Furthermore, these MNPs could be efficiently recycled and reused by using an external magnetic field. The approach presented in this paper promotes the use of renewable natural resources as templates for the preparation and stabilization of various inorganic nanomaterials for the purpose of catalysis, magnetic resonance imaging, biomedical and other potential applications.

  7. Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool

    Directory of Open Access Journals (Sweden)

    Uchiyama MK

    2015-07-01

    Full Text Available Mayara Klimuk Uchiyama,1 Sergio Hiroshi Toma,1 Stephen Fernandes de Paula Rodrigues,2 Ana Lucia Borges Shimada,2 Rodrigo Azevedo Loiola,2 Hernán Joel Cervantes Rodríguez,3 Pedro Vitoriano Oliveira,4 Maciel Santos Luz,4 Said Rahnamaye Rabbani,3 Henrique Eisi Toma,1 Sandra Helena Poliselli Farsky,2 Koiti Araki11Laboratory of Supramolecular Chemistry and Nanotechnology, Department of Fundamental Chemistry, Institute of Chemistry, 2Laboratory of Experimental Toxicology, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, 3Magnetic Resonance Laboratory, Department of General Physics, Institute of Physics, 4Analysis and Research Group in Spectrometry, Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, BrazilAbstract: Fully dispersible, cationic ultrasmall (7 nm diameter superparamagnetic iron oxide nanoparticles, exhibiting high relaxivity (178 mM-1s-1 in 0.47 T and no acute or subchronic toxicity in Wistar rats, were studied and their suitability as contrast agents for magnetic resonance imaging and material for development of new diagnostic and treatment tools demonstrated. After intravenous injection (10 mg/kg body weight, they circulated throughout the vascular system causing no microhemorrhage or thrombus, neither inflammatory processes at the mesentery vascular bed and hepatic sinusoids (leukocyte rolling, adhesion, or migration as evaluated by intravital microscopy, but having been spontaneously concentrated in the liver, spleen, and kidneys, they caused strong negative contrast. The nanoparticles are cleared from kidneys and bladder in few days, whereas the complete elimination from liver and spleen occurred only after 4 weeks. Ex vivo studies demonstrated that cationic ultrasmall superparamagnetic iron oxide nanoparticles caused no effects on hepatic and renal enzymes dosage as well as on leukocyte count. In addition, they were readily concentrated in rat

  8. Synthesis of Superparamagnetic Iron Oxide Nanoparticles Modified with MPEG-PEI via Photochemistry as New MRI Contrast Agent

    Directory of Open Access Journals (Sweden)

    Yancong Zhang

    2015-01-01

    Full Text Available Novel method for synthesis of superparamagnetic iron oxide nanoparticles (SPIONs coated with polyethylenimine (PEI and modified with poly(ethylene glycol methyl ether (MPEG, MPEG-PEI-SPIONs, was developed. PEI-SPIONs were successfully prepared in aqueous system via photochemistry, and their surface was modified with poly(ethylene glycol methyl ether (MPEG. The so-obtained MPEG-PEI-SPIONs had a uniform hydrodynamic particle size of 34 nm. The successful coating of MPEG-PEI on the SPIONs was ascertained from FT-IR analysis, and the PEI and MPEG fractions in MPEG-PEI-SPIONs were calculated to account for 31% and 12%, respectively. Magnetic measurement revealed that the saturated magnetization of MPEG-PEI-SPIONs reached 46 emu/g and the nanoparticles showed the characteristic of being superparamagnetic. The stability experiment revealed that the MPEG-PEI modification improved the nanoparticles stability greatly. T2 relaxation measurements showed that MPEG-PEI-SPIONs show similar R2 value to the PEI-SPIONs. The T2-weighted magnetic resonance imaging (MRI of MPEG-PEI-SPIONs showed that the magnetic resonance signal was enhanced significantly with increasing nanoparticle concentration in water. These results indicated that the MPEG-PEI-SPIONs had great potential for application in MRI.

  9. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    Energy Technology Data Exchange (ETDEWEB)

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz [Nano-Optoelectronics Research and Technology (NOR) Lab, School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia Nano-Biotechnology Research (Malaysia); Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia)

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly related to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.

  10. Spectroscopic and photoacoustic characterization of encapsulated iron oxide super-paramagnetic nanoparticles as a new multiplatform contrast agent

    Science.gov (United States)

    Armanetti, Paolo; Flori, Alessandra; Avigo, Cinzia; Conti, Luca; Valtancoli, Barbara; Petroni, Debora; Doumett, Saer; Cappiello, Laura; Ravagli, Costanza; Baldi, Giovanni; Bencini, Andrea; Menichetti, Luca

    2018-06-01

    Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability. Furthermore, these encapsulated iron oxide nanoparticles exhibit strong super-paramagnetic behavior and nuclear relaxivities that make them useful as magnetic resonance imaging (MRI) contrast media as well. Their simple bio-conjugation strategy, optical and chemical stability, and straightforward manipulation could enable the development of a PA probe with magnetic and spectroscopic properties suitable for in vitro and in vivo real-time imaging of relevant biological targets.

  11. Proton T2 relaxation effect of superparamagnetic iron oxide. Comparison between fast spin echo and conventional spin echo sequence

    International Nuclear Information System (INIS)

    Tanimoto, Akihiro; Satoh, Yoshinori; Higuchi, Nobuya; Izutsu, Mutsumu; Yuasa, Yuji; Hiramatsu, Kyoichi

    1995-01-01

    Superparamagnetic iron oxide (SPIO) particles have been known to show a great T 2 relaxation effect in the liver, which contributes to significant liver signal decrease and detection of hepatic neoplasms. Recently, fast spin echo (FSE) sequence with less scanning time than conventional spin echo (SE) sequence has been rapidly introduced in clinical MR imaging. To investigate whether SPIO would show decreased T 2 relaxation effect on FSE, we obtained T 2 relaxivity (R2) of SPIO in vitro and liver signal decrease caused by SPIO in vivo. SPIO showed 20% less R2 on Carr-Purcell-Meiboom-Gill (CPMG) sequence than on SE. Relative liver signal-to-noise ratio (SNR) decrease caused by SPIO was significantly smaller (p 2 relaxation effect on FSE than on SE. However, further studies will be required to assess the diagnostic capability of SPIO on FSE, in the detection of hepatic neoplasms. (author)

  12. Mechanisms of complement activation by dextran-coated superparamagnetic iron oxide (SPIO) nanoworms in mouse versus human serum

    DEFF Research Database (Denmark)

    Banda, Nirmal K; Mehta, Gaurav; Chao, Ying

    2014-01-01

    BACKGROUND: The complement system is a key component of innate immunity implicated in the neutralization and clearance of invading pathogens. Dextran coated superparamagnetic iron oxide (SPIO) nanoparticle is a promising magnetic resonance imaging (MRI) contrast agent. However, dextran SPIO has...... the mechanisms of human complement activation. Mouse data were analyzed by non-paired t-test, human data were analyzed by ANOVA followed by multiple comparisons with Student-Newman-Keuls test. RESULTS: In mouse sera, SPIO NW triggered the complement activation via the LP, whereas the AP contributes via...... the CP, but that did not affect the total level of C3 deposition on the particles. CONCLUSIONS: There were important differences and similarities in the complement activation by SPIO NW in mouse versus human sera. Understanding the mechanisms of immune recognition of nanoparticles in mouse and human...

  13. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Xiao Y

    2015-02-01

    Full Text Available Yunbin Xiao,1,* Zuan Tao Lin,2,* Yanmei Chen,1 He Wang,1 Ya Li Deng,2 D Elizabeth Le,3 Jianguo Bin,1 Meiyu Li,1 Yulin Liao,1 Yili Liu,1 Gangbiao Jiang,2 Jianping Bin1 1State Key Laboratory of Organ Failure Research, Division of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China; 2Department of Pharmaceutical Engineering, South China Agricultural University, Guangzhou, People’s Republic of China; 3Cardiovascular Division, Oregon Health and Science University, Portland, OR, USA *These authors contributed equally to this work Abstract: Magnetic resonance imaging (MRI contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors. Keywords: superparamagnetic

  14. Comparative study of magnetic properties and the anticancer effect of superparamagnetic and ferromagnetic iron oxide nanoparticles in the nanocomplex with doxorubicin

    International Nuclear Information System (INIS)

    Orel, V.E.; Shevchenko, A.D.; Rikhal's'kij, O.Yu.; Romanov, A.V.; Orel, Yi.V.; Lukyin, S.M.; Burlaka, A.P.; Venger, Je.F.

    2015-01-01

    Mechano-magneto-chemically synthesized magnetic nanocomplex (MNC) of superparamagnetic iron oxide Fe 3 O 4 nanoparticles (NP) and anticancer drug doxorubicin (DR) had significantly lower saturation magnetic moment and magnetic hysteresis loop area as compared to the MNC of ferro- magnetic NP. However, the last was characterized by lower coercivity. MNC of superparamagnetic NP and DR had g-factors of 2.00, 2.30, and 4.00. MNC of ferromagnetic NP and DR had the g-factor of 2.50, and the integrated intensity of electron spin resonance signals was by 61% greater. Superparamagnetic iron oxide Fe 3 O 4 NP in MNC with DR initiated a greater antitumor effect during magnetic nanotherapy of animals with carcinosarcoma Walker-256 as compared to the MNC composed of ferromagnetic NP and DR. In the future, superparamagnetic iron oxide Fe 3 O 4 NP as a part of the nanocomplex with DR can be used in theranostics - a methodology that combines magnetic resonance diagnostics and magnetic nanotherapy using MNC both as therapeutic and diagnostic agents

  15. Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs).

    Science.gov (United States)

    Shevtsov, Maxim; Nikolaev, Boris; Marchenko, Yaroslav; Yakovleva, Ludmila; Skvortsov, Nikita; Mazur, Anton; Tolstoy, Peter; Ryzhov, Vyacheslav; Multhoff, Gabriele

    2018-01-01

    Glioblastoma is the most devastating primary brain tumor of the central nervous system in adults. Magnetic nanocarriers may help not only for a targeted delivery of chemotherapeutic agents into the tumor site but also provide contrast enhancing properties for diagnostics using magnetic resonance imaging (MRI). Synthesized hybrid chitosan-dextran superparamagnetic nanoparticles (CS-DX-SPIONs) were characterized using transmission electron microscopy (TEM) and relaxometry studies. Nonlinear magnetic response measurements were employed for confirming the superparamagnetic state of particles. Following in vitro analysis of nanoparticles cellular uptake tumor targeting was assessed in the model of the orthotopic glioma in rodents. CS-DX-SPIONs nanoparticles showed a uniform diameter of 55 nm under TEM and superparamagentic characteristics as determined by T 1 (spin-lattice relaxation time) and T 2 (spin-spin relaxation time) proton relaxation times. Application of the chitosan increased the charge from +8.9 to +19.3 mV of the dextran-based SPIONs. The nonlinear magnetic response at second harmonic of CS-DX-SPIONs following the slow change of stationary magnetic fields with very low hysteresis evidenced superparamagnetic state of particles at ambient temperatures. Confocal microscopy and flow cytometry studies showed an enhanced internalization of the chitosan-based nanoparticles in U87, C6 glioma and HeLa cells as compared to dextran-coated particles. Cytotoxicity assay demonstrated acceptable toxicity profile of the synthesized nanoparticles up to a concentration of 10 μg/ml. Intravenously administered CS-DX-SPIONs in orthotopic C6 gliomas in rats accumulated in the tumor site as shown by high-resolution MRI (11.0 T). Retention of nanoparticles resulted in a significant contrast enhancement of the tumor image that was accompanied with a dramatic drop in T 2 values ( P chitosan-dextran magnetic particles demonstrated high MR contrast enhancing properties for the

  16. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huang Hai; Xie Qiuping; Kang Muxing; Zhang Bo; Wu Yulian [Department of Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Zhang Hui; Chen Jin; Zhai Chuanxin; Yang Deren [State Key Lab of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Jiang Biao, E-mail: wuyulian@medmail.com.c, E-mail: yulianwu2003@yahoo.c [Department of Radiology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China)

    2009-09-09

    Superparamagnetic iron oxide nanoparticles (SPIO) are emerging as a novel probe for noninvasive cell tracking with magnetic resonance imaging (MRI) and have potential wide usage in medical research. In this study, we have developed a method using high-temperature hydrolysis of chelate metal alkoxide complexes to synthesize polyvinylpyrrolidone coated iron oxide nanoparticles (PVP-SPIO), as a biocompatible magnetic agent that can efficiently label mice islet {beta}-cells. The size, crystal structure and magnetic properties of the as-synthesized nanoparticles have been characterized. The newly synthesized PVP-SPIO with high stability, crystallinity and saturation magnetization can be efficiently internalized into {beta}-cells, without affecting viability and function. The imaging of 100 PVP-SPIO-labeled mice islets in the syngeneic renal subcapsular model of transplantation under a clinical 3.0 T MR imager showed high spatial resolution in vivo. These results indicated the great potential application of the PVP-SPIO as an MRI contrast agent for monitoring transplanted islet grafts in the clinical management of diabetes in the near future.

  17. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Huang Hai; Xie Qiuping; Kang Muxing; Zhang Bo; Wu Yulian; Zhang Hui; Chen Jin; Zhai Chuanxin; Yang Deren; Jiang Biao

    2009-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO) are emerging as a novel probe for noninvasive cell tracking with magnetic resonance imaging (MRI) and have potential wide usage in medical research. In this study, we have developed a method using high-temperature hydrolysis of chelate metal alkoxide complexes to synthesize polyvinylpyrrolidone coated iron oxide nanoparticles (PVP-SPIO), as a biocompatible magnetic agent that can efficiently label mice islet β-cells. The size, crystal structure and magnetic properties of the as-synthesized nanoparticles have been characterized. The newly synthesized PVP-SPIO with high stability, crystallinity and saturation magnetization can be efficiently internalized into β-cells, without affecting viability and function. The imaging of 100 PVP-SPIO-labeled mice islets in the syngeneic renal subcapsular model of transplantation under a clinical 3.0 T MR imager showed high spatial resolution in vivo. These results indicated the great potential application of the PVP-SPIO as an MRI contrast agent for monitoring transplanted islet grafts in the clinical management of diabetes in the near future.

  18. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications

    Science.gov (United States)

    Maleki, H.; Simchi, A.; Imani, M.; Costa, B. F. O.

    2012-11-01

    The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe3+ and Fe2+], the concentration of ammonium hydroxide as reducing agent, and molar ratio of water to surfactant. The biocompatibility of the obtained NPs, at various concentrations, was evaluated via MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and the results showed that the NPs were non-toxic at concentrations gold (˜4 nm) through chemical reduction of attached gold salts at the surface of the SPIONs. The Fe3O4 core/Au shell particles demonstrate strong plasmon resonance absorption and can be separated from solution using an external magnetic field. Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, phase components, core-shell surface composition, and magnetic properties have confirmed the formation of the mono-dispersed core-shell nanostructure.

  19. Magnetic resonance imaging of mouse islet grafts labeled with novel chitosan-coated superparamagnetic iron oxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Jyuhn-Huarng Juang

    Full Text Available To better understand the fate of islet isografts and allografts, we utilized a magnetic resonance (MR imaging technique to monitor mouse islets labeled with a novel MR contrast agent, chitosan-coated superparamagnetic iron oxide (CSPIO nanoparticles.After being incubated with and without CSPIO (10 µg/ml, C57BL/6 mouse islets were examined under transmission electron microscope (TEM and their insulin secretion was measured. Cytotoxicity was examined in α (αTC1 and β (NIT-1 and βTC cell lines as well as islets. C57BL/6 mice were used as donors and inbred C57BL/6 and Balb/c mice were used as recipients of islet transplantation. Three hundred islets were transplanted under the left kidney capsule of each mouse and then MR was performed in the recipients periodically. At the end of study, the islet graft was removed for histology and TEM studies.After incubation of mouse islets with CSPIO (10 µg/mL, TEM showed CSPIO in endocytotic vesicles of α- and β-cells at 8 h. Incubation with CSPIO did not affect insulin secretion from islets and death rates of αTC1, NIT-1 and βTC cell lines as well as islets. After syngeneic and allogeneic transplantation, grafts of CSPIO-labeled islets were visualized on MR scans as persistent hypointense areas. At 8 weeks after syngeneic transplantation and 31 days after allogeneic transplantation, histology of CSPIO-labeled islet grafts showed colocalized insulin and iron staining in the same areas but the size of allografts decreased with time. TEM with elementary iron mapping demonstrated CSPIO distributed in the cytoplasm of islet cells, which maintained intact ultrastructure.Our results indicate that after syngeneic and allogeneic transplantation, islets labeled with CSPIO nanoparticles can be effectively and safely imaged by MR.

  20. Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron(III) glucuronate and application in magnetic resonance imaging

    Czech Academy of Sciences Publication Activity Database

    Patsula, Vitalii; Kosinová, L.; Lovrić, M.; Ferhatovic Hamzic, L.; Rabyk, Mariia; Konefal, Rafal; Paruzel, Aleksandra; Šlouf, Miroslav; Herynek, V.; Gajović, S.; Horák, Daniel

    2016-01-01

    Roč. 8, č. 11 (2016), s. 7238-7247 ISSN 1944-8244 R&D Projects: GA MŠk(CZ) LH14318; GA MŠk(CZ) LO1507; GA MŠk(CZ) ED1.1.00/02.0109 EU Projects: European Commission(XE) 316120 - GLOWBRAIN Institutional support: RVO:61389013 Keywords : superparamagnetic * nanoparticles * iron oxide Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.504, year: 2016

  1. Plasma protein haptoglobin modulates renal iron loading

    DEFF Research Database (Denmark)

    Fagoonee, Sharmila; Gburek, Jakub; Hirsch, Emilio

    2005-01-01

    Haptoglobin is the plasma protein with the highest binding affinity for hemoglobin. The strength of hemoglobin binding and the existence of a specific receptor for the haptoglobin-hemoglobin complex in the monocyte/macrophage system clearly suggest that haptoglobin may have a crucial role in heme...... distribution of hemoglobin in haptoglobin-deficient mice resulted in abnormal iron deposits in proximal tubules during aging. Moreover, iron also accumulated in proximal tubules after renal ischemia-reperfusion injury or after an acute plasma heme-protein overload caused by muscle injury, without affecting...... morphological and functional parameters of renal damage. These data demonstrate that haptoglobin crucially prevents glomerular filtration of hemoglobin and, consequently, renal iron loading during aging and following acute plasma heme-protein overload....

  2. Multifunctional PEG-carboxylate copolymer coated superparamagnetic iron oxide nanoparticles for biomedical application

    Science.gov (United States)

    Illés, Erzsébet; Szekeres, Márta; Tóth, Ildikó Y.; Szabó, Ákos; Iván, Béla; Turcu, Rodica; Vékás, Ladislau; Zupkó, István; Jaics, György; Tombácz, Etelka

    2018-04-01

    Biocompatible magnetite nanoparticles (MNPs) were prepared by post-coating the magnetic nanocores with a synthetic polymer designed specifically to shield the particles from non-specific interaction with cells. Poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomers and acrylic acid (AA) small molecular monomers were chemically coupled by quasi-living atom transfer radical polymerization (ATRP) to a comb-like copolymer, P(PEGMA-co-AA) designated here as P(PEGMA-AA). The polymer contains pendant carboxylate moieties near the backbone and PEG side chains. It is able to bind spontaneously to MNPs; stabilize the particles electrostatically via the carboxylate moieties and sterically via the PEG moieties; provide high protein repellency via the structured PEG layer; and anchor bioactive proteins via peptide bond formation with the free carboxylate groups. The presence of the P(PEGMA-AA) coating was verified in XPS experiments. The electrosteric (i.e., combined electrostatic and steric) stabilization is efficient down to pH 4 (at 10 mM ionic strength). Static magnetization and AC susceptibility measurements showed that the P(PEGMA-AA)@MNPs are superparamagnetic with a saturation magnetization value of 55 emu/g and that both single core nanoparticles and multicore structures are present in the samples. The multicore components make our product well suited for magnetic hyperthermia applications (SAR values up to 17.44 W/g). In vitro biocompatibility, cell internalization, and magnetic hyperthermia studies demonstrate the excellent theranostic potential of our product.

  3. Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Baiju G.; Fukuda, Takahiro; Mizuki, Toru; Hanajiri, Tatsuro [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Maekawa, Toru, E-mail: maekawa@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We study the intracellular localisation of TAT-SPIONs using 3-D electron tomography. Black-Right-Pointing-Pointer 3-D images of TAT-SPIONs in a cell are clearly shown. Black-Right-Pointing-Pointer Release of TAT-SPIONs from endocytic vesicles into the cytoplasm is clearly shown. -- Abstract: Internalisation of nanoparticles conjugated with cell penetrating peptides is a promising approach to various drug delivery applications. Cell penetrating peptides such as transactivating transcriptional activator (TAT) peptides derived from HIV-1 proteins are effective intracellular delivery vectors for a wide range of nanoparticles and pharmaceutical agents thanks to their amicable ability to enter cells and minimum cytotoxicity. Although different mechanisms of intracellular uptake and localisation have been proposed for TAT conjugated nanoparticles, it is necessary to visualise the particles on a 3-D plane in order to investigate the actual intracellular uptake and localisation. Here, we study the intracellular localisation and trafficking of TAT peptide conjugated superparamagnetic ion oxide nanoparticles (TAT-SPIONs) using 3-D electron tomography. 3-D tomograms clearly show the location of TAT-SPIONs in a cell and their slow release from the endocytic vesicles into the cytoplasm. The present methodology may well be utilised for further investigations of the behaviours of nanoparticles in cells and eventually for the development of nano drug delivery systems.

  4. Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis

    International Nuclear Information System (INIS)

    Nair, Baiju G.; Fukuda, Takahiro; Mizuki, Toru; Hanajiri, Tatsuro; Maekawa, Toru

    2012-01-01

    Highlights: ► We study the intracellular localisation of TAT-SPIONs using 3-D electron tomography. ► 3-D images of TAT-SPIONs in a cell are clearly shown. ► Release of TAT-SPIONs from endocytic vesicles into the cytoplasm is clearly shown. -- Abstract: Internalisation of nanoparticles conjugated with cell penetrating peptides is a promising approach to various drug delivery applications. Cell penetrating peptides such as transactivating transcriptional activator (TAT) peptides derived from HIV-1 proteins are effective intracellular delivery vectors for a wide range of nanoparticles and pharmaceutical agents thanks to their amicable ability to enter cells and minimum cytotoxicity. Although different mechanisms of intracellular uptake and localisation have been proposed for TAT conjugated nanoparticles, it is necessary to visualise the particles on a 3-D plane in order to investigate the actual intracellular uptake and localisation. Here, we study the intracellular localisation and trafficking of TAT peptide conjugated superparamagnetic ion oxide nanoparticles (TAT-SPIONs) using 3-D electron tomography. 3-D tomograms clearly show the location of TAT-SPIONs in a cell and their slow release from the endocytic vesicles into the cytoplasm. The present methodology may well be utilised for further investigations of the behaviours of nanoparticles in cells and eventually for the development of nano drug delivery systems.

  5. Hepatocellular carcinoma with marginal superparamagnetic iron oxide uptake on T2*-weighted magnetic resonance imaging: Histopathologic correlation

    International Nuclear Information System (INIS)

    Ishigami, Kousei; Tajima, Tsuyoshi; Fujita, Nobuhiro; Nishie, Akihiro; Asayama, Yoshiki; Kakihara, Daisuke; Nakayama, Tomohiro; Okamoto, Daisuke; Taketomi, Akinobu; Shirabe, Ken; Honda, Hiroshi

    2011-01-01

    Purpose: To evaluate the characteristics of hepatocellular carcinomas (HCCs) with marginal superparamagnetic iron oxide (SPIO) uptake on T2*-weighted MRI. Materials and methods: The study group consisted of 73 patients with 83 surgically resected HCCs. Preoperative SPIO-enhanced MRI studies were retrospectively reviewed. Marginal SPIO uptake was considered positive if a rim-like or band-like low intensity area was present on SPIO-enhanced T2*-weighted images. The prevalence of marginal SPIO uptake was evaluated. Pathological specimens with hematoxylin and eosin staining and immunohistochemical staining of CD68 were reviewed in HCCs with marginal SPIO uptake and 33 HCCs without marginal SPIO uptake (control group). Results: Ten of 83 (12%) HCCs showed marginal SPIO uptake. All HCCs were hypervascular, and only one nodule showed a nodule-in-nodule appearance on imaging findings. The pathology specimens suggested possible causes of marginal SPIO uptake, including marginal macrophage infiltration in moderately or poorly differentiated HCC (n = 4), residual normal hepatic tissue at the marginal area of confluent multinodular or single nodular with extranodular growth type HCC (n = 3), and a well-differentiated HCC component in nodule-in-nodule type HCC (n = 3). Marginal macrophage infiltration was not seen in the control group. Conclusion: SPIO-enhanced MRI may be able to demonstrate marginal macrophage infiltration in HCC.

  6. A mathematical model of superparamagnetic iron oxide nanoparticle magnetic behavior to guide the design of novel nanomaterials

    International Nuclear Information System (INIS)

    Ortega, Ryan A.; Giorgio, Todd D.

    2012-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) exhibit unique magnetic properties that make them highly efficacious as MR imaging contrast agents and laboratory diagnostic tools. The complexity of SPION magnetic behavior and the multiple parameters affecting this behavior complicate attempts at fabricating particles suited for a particular purpose. A mathematical model of SPION magnetic properties derived from experimental relationships and first principles can be an effective design tool for predicting particle behavior before materials are fabricated. Here, a novel model of SPION magnetic properties is described, using particle size and applied magnetic field as the primary variable inputs. The model is capable of predicting particle susceptibility and non-linear particle magnetization as well as describing the vector magnetic field produced by a single particle in an applied field. Magnetization values produced by the model agree with recent experimental measurements of particle magnetizations. The model is used to predict the complex magnetic behavior of clustered magnetic particles in simulated in vivo environment; specifically, interactions between the clusters and water molecules. The model shows that larger particles exhibit more linear magnetic behavior and stronger magnetization and that clusters of smaller particles allow for more numerous SPION–water molecule interactions and more uniform cluster magnetizations.

  7. NMR-based metabonomic analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism

    Science.gov (United States)

    Feng, Jianghua; Zhao, Jing; Hao, Fuhua; Chen, Chang; Bhakoo, Kishore; Tang, Huiru

    2011-05-01

    The metabonomic changes in murine RAW264.7 macrophage-like cell line induced by ultrasmall superparamagnetic particles of iron oxides (USPIO) have been investigated, by analyzing both the cells and culture media, using high-resolution NMR in conjunction with multivariate statistical methods. Upon treatment with USPIO, macrophage cells showed a significant decrease in the levels of triglycerides, essential amino acids such as valine, isoleucine, and choline metabolites together with an increase of glycerophospholipids, tyrosine, phenylalanine, lysine, glycine, and glutamate. Such cellular responses to USPIO were also detectable in compositional changes of cell media, showing an obvious depletion of the primary nutrition molecules, such as glucose and amino acids and the production of end-products of glycolysis, such as pyruvate, acetate, and lactate and intermediates of TCA cycle such as succinate and citrate. At 48 h treatment, there was a differential response to incubation with USPIO in both cell metabonome and medium components, indicating that USPIO are phagocytosed and released by macrophages. Furthermore, information on cell membrane modification can be derived from the changes in choline-like metabolites. These results not only suggest that NMR-based metabonomic methods have sufficient sensitivity to identify the metabolic consequences of murine RAW264.7 macrophage-like cell line response to USPIO in vitro, but also provide useful information on the effects of USPIO on cellular metabolism.

  8. Pulmonary toxicity and kinetic study of Cy5.5-conjugated superparamagnetic iron oxide nanoparticles by optical imaging

    International Nuclear Information System (INIS)

    Cho, Wan-Seob; Cho, Minjung; Kim, Seoung Ryul; Choi, Mina; Lee, Jeong Yeon; Han, Beom Seok; Park, Sue Nie; Yu, Mi Kyung; Jon, Sangyong; Jeong, Jayoung

    2009-01-01

    Recent advances in the development of nanotechnology and devices now make it possible to accurately deliver drugs or genes to the lung. Magnetic nanoparticles can be used as contrast agents, thermal therapy for cancer, and be made to concentrate to target sites through an external magnetic field. However, these advantages may also become problematic when taking into account safety and toxicological factors. This study demonstrated the pulmonary toxicity and kinetic profile of anti-biofouling polymer coated, Cy5.5-conjugated thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) by optical imaging. Negatively charged, 36 nm-sized, Cy5.5-conjugated TCL-SPION was prepared for optical imaging probe. Cy5.5-conjugated TCL-SPION was intratracheally instilled into the lung by a non-surgical method. Cy5.5-conjugated TCL-SPION slightly induced pulmonary inflammation. The instilled nanoparticles were distributed mainly in the lung and excreted in the urine via glomerular filtration. Urinary excretion was peaked at 3 h after instillation. No toxicity was found under the concentration of 1.8 mg/kg and the half-lives of nanoparticles in the lung and urine were estimated to be about 14.4 ± 0.54 h and 24.7 ± 1.02 h, respectively. Although further studies are required, our results showed that Cy5.5-conjugated TCL-SPION can be a good candidate for use in pulmonary delivery vehicles and diagnostic probes.

  9. Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging.

    Science.gov (United States)

    Zhu, Lijuan; Wang, Dali; Wei, Xuan; Zhu, Xinyuan; Li, Jianqi; Tu, Chunlai; Su, Yue; Wu, Jieli; Zhu, Bangshang; Yan, Deyue

    2013-08-10

    A multifunctional pH-sensitive superparamagnetic iron-oxide (SPIO) nanocomposite system was developed for simultaneous tumor magnetic resonance imaging (MRI) and therapy. Small-size SPIO nanoparticles were chemically bonded with antitumor drug doxorubicin (DOX) and biocompatible poly(ethylene glycol) (PEG) through pH-sensitive acylhydrazone linkages, resulting in the formation of SPIO nanocomposites with magnetic targeting and pH-sensitive properties. These DOX-conjugated SPIO nanocomposites exhibited not only good stability in aqueous solution but also high saturation magnetizations. Under an acidic environment, the DOX was quickly released from the SPIO nanocomposites due to the cleavage of pH-sensitive acylhydrazone linkages. With the help of magnetic field, the DOX-conjugated SPIO nanocomposites showed high cellular uptake, indicating their magnetic targeting property. Comparing to free DOX, the DOX-conjugated SPIO nanocomposites showed better antitumor effect under magnetic field. At the same time, the relaxivity value of these SPIO nanocomposites was higher than 146s(-1)mM(-1) Fe, leading to ~4 times enhancement compared to that of free SPIO nanoparticles. As a negative contrast agent, these SPIO nanocomposites illustrated high resolution in MRI diagnosis of tumor-bearing mice. All of these results confirm that these pH-sensitive SPIO nanocomposites are promising hybrid materials for synergistic MRI diagnosis and tumor therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Multifunctional doxorubicin/superparamagnetic iron oxide-encapsulated Pluronic F127 micelles used for chemotherapy/magnetic resonance imaging

    Science.gov (United States)

    Lai, Jian-Ren; Chang, Yong-Wei; Yen, Hung-Chi; Yuan, Nai-Yi; Liao, Ming-Yuan; Hsu, Chia-Yen; Tsai, Jai-Lin; Lai, Ping-Shan

    2010-05-01

    Polymeric micelles are frequently used to transport and deliver drugs throughout the body because they protect against degradation. Research on functional polymeric micelles for biomedical applications has generally shown that micelles have beneficial properties, such as specific functionality, enhanced specific tumor targeting, and stabilized nanostructures. The particular aim of this study was to synthesize and characterize multifunctional polymeric micelles for use in controlled drug delivery systems and biomedical imaging. In this study, a theranostic agent, doxorubicin/superparamagnetic iron oxide (SPIO)-encapsulated Pluronic F127 (F127) micelles, was developed for dual chemotherapy/magnetic resonance imaging (MRI) purposes, and the structure and composition of the micellar SPIO were characterized by transmission electron microscopy and magnetic measurements. Our results revealed that the micellar SPIO with a diameter of around 100 nm led to a significant advantage in terms of T2 relaxation as compared with a commercial SPIO contrast agent (Resovist®) without cell toxicity. After doxorubicin encapsulation, a dose-dependent darkening of MR images was observed and HeLa cells were killed by this theranostic micelle. These findings demonstrate that F127 micelles containing chemotherapeutic agents and SPIO could be used as a multifunctional nanocarrier for cancer treatment and imaging.

  11. In vitro molecular magnetic resonance imaging detection and measurement of apoptosis using superparamagnetic iron oxide + antibody as ligands for nucleosomes

    Science.gov (United States)

    Rapley, P. L.; Witiw, C.; Rich, K.; Niccoli, S.; Tassotto, M. L.; Th'ng, J.

    2012-11-01

    Recent research in cell biology as well as oncology research has focused on apoptosis or programmed cell death as a means of quantifying the induced effects of treatment. A hallmark of late-stage apoptosis is nuclear fragmentation in which DNA is degraded to release nucleosomes with their associated histones. In this work, a method was developed for detecting and measuring nucleosome concentration in vitro with magnetic resonance imaging (MRI). The indirect procedure used a commercially available secondary antibody-superparamagnetic iron oxide (SPIO) particle complex as a contrast agent that bound to primary antibodies against nucleosomal histones H4, H2A and H2B. Using a multiple-echo spin-echo sequence on a 1.5 T clinical MRI scanner, significant T2 relaxation enhancement as a function of in vitro nucleosomal concentration was measured. In addition, clustering or aggregation of the contrast agent was demonstrated with its associated enhancement in T2 effects. The T2 clustering enhancement showed a complex dependence on relative concentrations of nucleosomes, primary antibody and secondary antibody + SPIO. The technique supports the feasibility of using MRI measurements of nucleosome concentration in blood as a diagnostic, prognostic and predictive tool in the management of cancer.

  12. Superparamagnetic iron oxide nanoparticles exert different cytotoxic effects on cells grown in monolayer cell culture versus as multicellular spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Theumer, Anja; Gräfe, Christine; Bähring, Franziska [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany); Bergemann, Christian [Chemicell GmbH, Eresburgstrasse 22–23, 12103 Berlin (Germany); Hochhaus, Andreas [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany); Clement, Joachim H., E-mail: joachim.clement@med.uni-jena.de [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany)

    2015-04-15

    The aim of this study was to investigate the interaction of superparamagnetic iron oxide nanoparticles (SPION) with human blood–brain barrier-forming endothelial cells (HBMEC) in two-dimensional cell monolayers as well as in three-dimensional multicellular spheroids. The precise nanoparticle localisation and the influence of the NP on the cellular viability and the intracellular Akt signalling were studied in detail. Long-term effects of different polymer-coated nanoparticles (neutral fluidMAG-D, anionic fluidMAG-CMX and cationic fluidMAG-PEI) and the corresponding free polymers on cellular viability of HBMEC were investigated by real time cell analysis studies. Nanoparticles exert distinct effects on HBMEC depending on the nanoparticles' surface charge and concentration, duration of incubation and cellular context. The most severe effects were caused by PEI-coated nanoparticles. Concentrations above 25 µg/ml led to increased amounts of dead cells in monolayer culture as well as in multicellular spheroids. On the level of intracellular signalling, context-dependent differences were observed. Monolayer cultures responded on nanoparticle incubation with an increase in Akt phosphorylation whereas spheroids on the whole show a decreased Akt activity. This might be due to the differential penetration and distribution of PEI-coated nanoparticles.

  13. NMR-based metabonomic analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism

    International Nuclear Information System (INIS)

    Feng Jianghua; Zhao Jing; Hao Fuhua; Chen Chang; Bhakoo, Kishore; Tang, Huiru

    2011-01-01

    The metabonomic changes in murine RAW264.7 macrophage-like cell line induced by ultrasmall superparamagnetic particles of iron oxides (USPIO) have been investigated, by analyzing both the cells and culture media, using high-resolution NMR in conjunction with multivariate statistical methods. Upon treatment with USPIO, macrophage cells showed a significant decrease in the levels of triglycerides, essential amino acids such as valine, isoleucine, and choline metabolites together with an increase of glycerophospholipids, tyrosine, phenylalanine, lysine, glycine, and glutamate. Such cellular responses to USPIO were also detectable in compositional changes of cell media, showing an obvious depletion of the primary nutrition molecules, such as glucose and amino acids and the production of end-products of glycolysis, such as pyruvate, acetate, and lactate and intermediates of TCA cycle such as succinate and citrate. At 48 h treatment, there was a differential response to incubation with USPIO in both cell metabonome and medium components, indicating that USPIO are phagocytosed and released by macrophages. Furthermore, information on cell membrane modification can be derived from the changes in choline-like metabolites. These results not only suggest that NMR-based metabonomic methods have sufficient sensitivity to identify the metabolic consequences of murine RAW264.7 macrophage-like cell line response to USPIO in vitro, but also provide useful information on the effects of USPIO on cellular metabolism.

  14. Integrity of 111In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse

    International Nuclear Information System (INIS)

    Wang, Haotian; Kumar, Rajiv; Nagesha, Dattatri; Duclos, Richard I.; Sridhar, Srinivas; Gatley, Samuel J.

    2015-01-01

    Introduction: Iron-oxide nanoparticles can act as contrast agents in magnetic resonance imaging (MRI), while radiolabeling the same platform with nuclear medicine isotopes allows imaging with positron emission tomography (PET) or single-photon emission computed tomography (SPECT), modalities that offer better quantification. For successful translation of these multifunctional imaging platforms to clinical use, it is imperative to evaluate the degree to which the association between radioactive label and iron oxide core remains intact in vivo. Methods: We prepared iron oxide nanoparticles stabilized by oleic acid and phospholipids which were further radiolabeled with 59 Fe, 14 C-oleic acid, and 111 In. Results: Mouse biodistributions showed 111 In preferentially localized in reticuloendothelial organs, liver, spleen and bone. However, there were greater levels of 59 Fe than 111 In in liver and spleen, but lower levels of 14 C. Conclusions: While there is some degree of dissociation between the 111 In labeled component of the nanoparticle and the iron oxide core, there is extensive dissociation of the oleic acid component

  15. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Kayal, S.; Ramanujan, R.V.

    2010-01-01

    Magnetic drug targeting is a drug delivery system that can be used in locoregional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by coprecipitation of iron oxide followed by coating with polyvinyl alcohol (PVA). Characterization was carried out using X-ray diffraction, TEM, TGA, FTIR and VSM techniques. The magnetic core of the carriers was magnetite (Fe 3 O 4 ), with average size of 10 nm. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. The amount of PVA bound to the iron oxide nanoparticles were estimated by thermogravimetric analysis (TGA) and the attachment of PVA to the iron oxide nanoparticles was confirmed by FTIR analysis. Doxorubicin (DOX) drug loading and release profiles of PVA coated iron oxide nanoparticles showed that up to 45% of adsorbed drug was released in 80 h, the drug release followed the Fickian diffusion-controlled process. The binding of DOX to the PVA was confirmed by FTIR analysis. The present findings show that DOX loaded PVA coated iron oxide nanoparticles are promising for magnetically targeted drug delivery.

  16. Value of Functionalized Superparamagnetic Iron Oxide Nanoparticles in the Diagnosis and Treatment of Acute Temporal Lobe Epilepsy on MRI

    Directory of Open Access Journals (Sweden)

    Tingting Fu

    2016-01-01

    Full Text Available Purpose. Although active targeting of drugs using a magnetic-targeted drug delivery system (MTDS with superparamagnetic iron oxide nanoparticles (SPIONs is a very effective treatment approach for tumors and other illnesses, successful results of drug-resistant temporal lobe epilepsy (TLE are unprecedented. A hallmark in the neuropathology of TLE is brain inflammation, in particular the activation of interleukin-1β (IL-1β induced by activated glial cells, which has been considered a new mechanistic target for treatment. The purpose of this study was to determine the feasibility of the functionalized SPIONs with anti-IL-1β monoclonal antibody (mAb attached to render MRI diagnoses and simultaneously provide targeted therapy with the neutralization of IL-1β overexpressed in epileptogenic zone of an acute rat model of TLE. Experimental Design. The anti-IL-1β mAb-SPIONs were studied in vivo versus plain SPIONs and saline. Lithium-chloride pilocarpine-induced TLE models (n=60 were followed by Western blot, Perl’s iron staining, Nissl staining, and immunofluorescent double-label staining after MRI examination. Results. The magnetic anti-IL-1β mAb-SPION administered intravenously, which crossed the BBB and was concentrated in the astrocytes and neurons in epileptogenic tissues, rendered these tissues visible on MRI and simultaneously delivered anti-IL-1β mAb to the epileptogenic focus. Conclusions. Our study provides the first evidence that the novel approach enhanced accumulation and the therapeutic effect of anti-IL-1β mAb by MTDS using SPIONs.

  17. Manipulation of Schwann cell migration across the astrocyte boundary by polysialyltransferase-loaded superparamagnetic nanoparticles under magnetic field

    Directory of Open Access Journals (Sweden)

    Xia B

    2016-12-01

    Full Text Available Bing Xia,* Liangliang Huang,* Lei Zhu, Zhongyang Liu, Teng Ma, Shu Zhu, Jinghui Huang, Zhuojing Luo Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China *These authors contributed equally to this work Abstract: Schwann cell (SC transplantation is an attractive strategy for spinal cord injury (SCI. However, the efficacy of SC transplantation has been limited by the poor migratory ability of SCs in the astrocyte-rich central nervous system (CNS environment and the inability to intermingle with the host astrocyte. In this study, we first magnetofected SCs by polysialyltransferase-functionalized superparamagnetic iron oxide nanoparticles (PST/SPIONs to induce overexpression of polysialylation of neural cell adhesion molecule (PSA-NCAM to enhance SC migration ability, before manipulating the direction of SC migration with the assistance of an applied magnetic field (MF. It was found that magnetofection with PST/SPIONs significantly upregulated the expression of PSA-NCAM in SCs, which significantly enhanced the migration ability of SCs, but without preferential direction in the absence of MF. The number and averaged maximum distance of SCs with PST/SPIONs migrating into the astrocyte domain were significantly enhanced by an applied MF. In a 300 µm row along the astrocyte boundary, the number of SCs with PST/SPIONs migrating into the astrocyte domain under an MF was 2.95 and 6.71 times higher than that in the absence of MF and the intact control SCs, respectively. More interestingly, a confrontation assay demonstrated that SCs with PST/SPIONs were in close contact with astrocytes and no longer formed boundaries in the presence of MF. In conclusion, SCs with PST/SPIONs showed enhanced preferential migration along the axis of a magnetic force, which might be beneficial for the formation of Büngner bands in the CNS. These findings raise the possibilities of enhancing the

  18. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications

    International Nuclear Information System (INIS)

    Maleki, H.; Simchi, A.; Imani, M.; Costa, B.F.O.

    2012-01-01

    The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe 3+ and Fe 2+ ], the concentration of ammonium hydroxide as reducing agent, and molar ratio of water to surfactant. The biocompatibility of the obtained NPs, at various concentrations, was evaluated via MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and the results showed that the NPs were non-toxic at concentrations 3 O 4 core/Au shell particles demonstrate strong plasmon resonance absorption and can be separated from solution using an external magnetic field. Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, phase components, core–shell surface composition, and magnetic properties have confirmed the formation of the mono-dispersed core–shell nanostructure. - Highlights: ► Increasing the concentration of iron salts, cubic-shape SPION NPs were formed. The magnetic saturation of the SPIONs was also increased. ► The concentration of reducing agent exhibited marginal effect on the size of SPIONs but influenced the crystallinity of the NPs. A lower magnetic saturation was obtained at higher NH 4 OH concentrations. ► Mono-dispersed SPIONs can be prepared by nano-emulsion procedure at w=23, [Fe]=2.12 M, and [NH 4 OH]=30%. Under this condition, NPs with dimension of 9±3 nm and magnetic saturation of 54 emu/g are obtained. The synthesized SPIONs exhibited acceptable biocompatibility, >80% viability after 24 h incubation in L929 cells at concentrations <0

  19. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

    Science.gov (United States)

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguy&Ecirtil; N. Thi&Cmb. B. Dot; Kim

    2016-02-01

    Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high saturation magnetization value (84.5 emu g-1). The surface of the IONPs could be tailored post synthesis with two different ligands which provided functionality and stability in water and phosphate buffer saline (PBS). Their potential as a magnetic resonance imaging (MRI) contrast agent was confirmed as they exhibited high r1 and r2 relaxivities of 7.95 mM-1 s-1 and 185.58 mM-1 s-1 respectively at 1.4 T. Biocompatibility and viability of IONPs in primary human mesenchymal stem cells (hMSCs) was studied and confirmed.Iron oxide nanoparticles (IONPs) of low polydispersity were obtained through a simple polyol synthesis in high pressure and high temperature conditions. The control of the size and morphology of the nanoparticles was studied by varying the solvent used, the amount of iron precursor and the reaction time. Compared with conventional synthesis methods such as thermal decomposition or co-precipitation, this process yields nanoparticles with a narrow particle size distribution in a simple, reproducible and cost effective manner without the need for an inert atmosphere. For example, IONPs with a diameter of ca. 8 nm could be made in a reproducible manner and with good crystallinity as evidenced by X-ray diffraction analysis and high

  20. Synthesis, characterization and magnetorheological properties of carbonyl iron suspension with superparamagnetic nanoparticles as an additive

    International Nuclear Information System (INIS)

    Leong, Siti Asma’ Nikmat; Mohd Samin, Pakharuddin; Idris, Ani; Rahman, Azura Hanis A; Mazlan, Saiful Amri

    2016-01-01

    Magnetorheological (MR) fluids are suspensions of micron-sized particles dispersed in carrier fluid. Due to high density magnetic particles, MR fluids are facing the problem with the instability of the suspension caused by high settling rate. Recently, researches have been conducted on the advantages of using the mixture of magnetic nanoparticles and microparticles, called bidisperse MR fluids. However, even though the sedimentation stability is improved, there is a reduction in dynamic yield stress when the nanoparticle is introduced. In this work, the investigation of magnetic iron nanoparticles (γ-Fe 2 O 3 ) as an additive to magnetic carbonyl iron (CI) suspension has been proposed so as to improve the sedimentation stability and redispersibility, but at the same time enhance the MR performance. The results indicated that the addition of nanoparticles reduced the sedimentation rate, improved redispersibility and enhanced the rheological performance of MR fluids as the particle fill the voids between the microparticles and strengthened the interparticle chains contributing to well-arranged particle structures. (paper)

  1. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin.

    Science.gov (United States)

    Atanasijevic, Tatjana; Shusteff, Maxim; Fam, Peter; Jasanoff, Alan

    2006-10-03

    We describe a family of calcium indicators for magnetic resonance imaging (MRI), formed by combining a powerful iron oxide nanoparticle-based contrast mechanism with the versatile calcium-sensing protein calmodulin and its targets. Calcium-dependent protein-protein interactions drive particle clustering and produce up to 5-fold changes in T2 relaxivity, an indication of the sensors' potency. A variant based on conjugates of wild-type calmodulin and the peptide M13 reports concentration changes near 1 microM Ca(2+), suitable for detection of elevated intracellular calcium levels. The midpoint and cooperativity of the response can be tuned by mutating the protein domains that actuate the sensor. Robust MRI signal changes are achieved even at nanomolar particle concentrations (calcium levels. When combined with technologies for cellular delivery of nanoparticulate agents, these sensors and their derivatives may be useful for functional molecular imaging of biological signaling networks in live, opaque specimens.

  2. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    Science.gov (United States)

    Feng, Jianghua; Liu, Huili; Zhang, Limin; Bhakoo, Kishore; Lu, Lehui

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  3. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianghua [Department of Physics, Fujian Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005 (China); Liu Huili; Zhang Limin [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Bhakoo, Kishore [Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A-STAR) 138667 (Singapore); Lu Lehui, E-mail: jianghua.feng@hotmail.com, E-mail: jianghua.feng@wipm.ac.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary {alpha}-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary {alpha}-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies ({beta}-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of

  4. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    International Nuclear Information System (INIS)

    Feng Jianghua; Liu Huili; Zhang Limin; Bhakoo, Kishore; Lu Lehui

    2010-01-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  5. Evaluation of lymph node metastases of breast cancer using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Harada, Tomoaki; Tanigawa, Nobuhiko; Matsuki, Mitsuru; Nohara, Takehiro; Narabayashi, Isamu

    2007-01-01

    Background: We assessed the utility of enhanced magnetic resonance imaging (MRI) using ultrasmall superparamagnetic iron oxide (USPIO) in the evaluation of axillary lymph node metastases in patients with breast cancer. Study design: MR examination of the axilla was performed before and 24-36 h after USPIO administration for patients with stage II or III breast cancer. Diagnostic performance was compared using size criteria (metastasis was defined when short axis diameter >5 or >10 mm) or morphologic criteria on conventional MRI, the combined study of USPIO precontrast and postcontrast images, and USPIO postcontrast study alone. Results: A total of 622 nodes (503 metastatic and 119 nonmetastatic nodes) were dissected from 33 patients. The results of conventional MRI for nodes >5 mm were 59.1% sensitivity, 86.7% specificity, and 80.4% overall accuracy. Results for nodes >10 mm were 15.7% sensitivity, 99.2% specificity, and 80.2% overall accuracy. Results based on morphology were 36.5% sensitivity, 94.1% specificity, and 81.0% overall accuracy. The results of the combined study of USPIO precontrast and postcontrast images were 86.4% sensitivity, 97.5% specificity, 91.1% positive predictive value, 96.1% negative predictive value, and 95.0% overall accuracy. The results of USPIO postcontrast images alone were 84.7% sensitivity, 96.8% specificity, and 94.0% overall accuracy. Patient-based results of postcontrast USPIO study alone were 100.0% sensitivity, 80.0% specificity, and 93.9% overall accuracy. Conclusions: USPIO postcontrast study alone was useful in the assessment of axillary lymph node metastases in patients with breast cancer

  6. Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging

    Science.gov (United States)

    2011-01-01

    Background Stem cell therapy has emerged as a promising addition to traditional treatments for a number of diseases. However, harnessing the therapeutic potential of stem cells requires an understanding of their fate in vivo. Non-invasive cell tracking can provide knowledge about mechanisms responsible for functional improvement of host tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) have been used to label and visualize various cell types with magnetic resonance imaging (MRI). In this study we performed experiments designed to investigate the biological properties, including proliferation, viability and differentiation capacity of mesenchymal cells (MSCs) labeled with clinically approved SPIONs. Results Rat and mouse MSCs were isolated, cultured, and incubated with dextran-covered SPIONs (ferumoxide) alone or with poly-L-lysine (PLL) or protamine chlorhydrate for 4 or 24 hrs. Labeling efficiency was evaluated by dextran immunocytochemistry and MRI. Cell proliferation and viability were evaluated in vitro with Ki67 immunocytochemistry and live/dead assays. Ferumoxide-labeled MSCs could be induced to differentiate to adipocytes, osteocytes and chondrocytes. We analyzed ferumoxide retention in MSCs with or without mitomycin C pretreatment. Approximately 95% MSCs were labeled when incubated with ferumoxide for 4 or 24 hrs in the presence of PLL or protamine, whereas labeling of MSCs incubated with ferumoxide alone was poor. Proliferative capacity was maintained in MSCs incubated with ferumoxide and PLL for 4 hrs, however, after 24 hrs it was reduced. MSCs incubated with ferumoxide and protamine were efficiently visualized by MRI; they maintained proliferation and viability for up to 7 days and remained competent to differentiate. After 21 days MSCs pretreated with mitomycin C still showed a large number of ferumoxide-labeled cells. Conclusions The efficient and long lasting uptake and retention of SPIONs by MSCs using a protocol employing ferumoxide and

  7. Evaluation of umbilical cord mesenchymal stem cells labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-Lysine; Avaliacao da marcacao de celulas-tronco mesenquimais de cordao umbilical com nanoparticulas superparamagneticas de oxido de ferro recobertas com Dextran e complexadas a Poli-L-Lisina

    Energy Technology Data Exchange (ETDEWEB)

    Sibov, Tatiana Tais; Mamani, Javier Bustamante; Pavon, Lorena Favaro; Cardenas, Walter Humberto; Gamarra, Lionel Fernel, E-mail: tatianats@einstein.br [Instituto do Cerebro - InCe, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Miyaki, Liza Aya Mabuchi [Faculdade de Enfermagem, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Marti, Luciana Cavalheiro; Sardinha, Luiz Roberto [Centro de Pesquisa Experimental, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Oliveira, Daniela Mara de [Universidade de Brasilia - UnB, Brasilia, DF (Brazil)

    2012-04-15

    Objective: The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. Methods: The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dextran complexed and not complexed to poly-L-lysine. Superparamagnetic iron oxide nanoparticles/dextran was incubated with poly-L-lysine in an ultrasonic sonicator at 37 deg C for 10 minutes for complex formation superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine by electrostatic interaction. Then, the mesenchymal stem cells were incubated overnight with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran. After the incubation period the mesenchymal stem cells were evaluated by internalization of the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine and superparamagnetic iron oxide nanoparticles/dextran by Prussian Blue stain. Cellular viability of labeled mesenchymal stem cells was evaluated by cellular proliferation assay using 5,6-carboxyfluorescein-succinimidyl ester method and apoptosis detection by Annexin V- Propidium Iodide assay. Results: mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles/ dextran without poly-L-lysine not internalized efficiently the superparamagnetic iron oxide nanoparticles due to its low presence detected within cells. Mesenchymal stem cells labeled with the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine efficiently internalized the superparamagnetic iron oxide nanoparticles due to greater presence in the cells interior. The viability and apoptosis assays demonstrated that the mesenchymal stem cells labeled and not labeled respectively with the superparamagnetic iron oxide

  8. Modification of the surface of superparamagnetic iron oxide nanoparticles to enable their safe application in humans.

    Science.gov (United States)

    Strehl, Cindy; Maurizi, Lionel; Gaber, Timo; Hoff, Paula; Broschard, Thomas; Poole, A Robin; Hofmann, Heinrich; Buttgereit, Frank

    Combined individually tailored methods for diagnosis and therapy (theragnostics) could be beneficial in destructive diseases, such as rheumatoid arthritis. Nanoparticles are promising candidates for theragnostics due to their excellent biocompatibility. Nanoparticle modifications, such as improved surface coating, are in development to meet various requirements, although safety concerns mean that modified nanoparticles require further review before their use in medical applications is permitted. We have previously demonstrated that iron oxide nanoparticles with amino-polyvinyl alcohol (a-PVA) adsorbed on their surfaces have the unwanted effect of increasing human immune cell cytokine secretion. We hypothesized that this immune response was caused by free-floating PVA. The aim of the present study was to prevent unwanted immune reactions by further surface modification of the a-PVA nanoparticles. After cross-linking of PVA to nanoparticles to produce PVA-grafted nanoparticles, and reduction of their zeta potential, the effects on cell viability and cytokine secretion were analyzed. PVA-grafted nanoparticles still stimulated elevated cytokine secretion from human immune cells; however, this was inhibited after reduction of the zeta potential. In conclusion, covalent cross-linking of PVA to nanoparticles and adjustment of the surface charge rendered them nontoxic to immune cells, nonimmunogenic, and potentially suitable for use as theragnostic agents.

  9. The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Chen, Ying-Chun; Hsiao, Jong-Kai; Liu, Hon-Man; Lai, I-Yin; Yao, Ming; Hsu, Szu-Chun; Ko, Bor-Sheng; Chen, Yao-Chang; Yang, Chung-Shi; Huang, Dong-Ming

    2010-01-01

    Superparamagnetic iron oxide (SPIO) nanoparticles are very useful for monitoring cell trafficking in vivo and distinguish whether cellular regeneration originated from an exogenous cell source, which is a key issue for developing successful stem cell therapies. However, the impact of SPIO labeling on stem cell behavior remains uncertain. Here, we show the inhibitory effect of Ferucarbotran, an ionic SPIO, on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Ferucarbotran caused a dose-dependent inhibition of osteogenic differentiation, abolished the differentiation at high concentration, promoted cell migration, and activated the signaling molecules, β-catenin, a cancer/testis antigen, SSX, and matrix metalloproteinase 2 (MMP2). An iron chelator, desferrioxamine, suppressed all the above Ferucarbotran-induced actions, demonstrating an important role of free iron in the inhibition of osteogenic differentiation that is mediated by the promotion of cell mobilization, involving the activation of a specific signaling pathway.

  10. Kinetics of (3-aminopropyl)triethoxylsilane (APTES) silanization of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Liu, Yue; Li, Yueming; Li, Xue-Mei; He, Tao

    2013-12-10

    Silanization of magnetic ironoxide nanoparticles with (3-aminopropyl)triethoxylsilane (APTES) is reported. The kinetics of silanization toward saturation was investigated using different solvents including water, water/ethanol (1/1), and toluene/methanol (1/1) at different reaction temperature with different APTES loading. The nanoparticles were characterized by Fourier transform infrared spectroscopy, vibrating sample magnetometry, transmission electron microscopy, and thermal gravimetric analysis (TGA). Grafting density data based on TGA were used for the kinetic modeling. It is shown that initial silanization takes place very fast but the progress toward saturation is very slow, and the mechanism may involve adsorption, chemical sorption, and chemical diffusion processes. The highest equilibrium grafting density of 301 mg/g was yielded when using toluene/methanol mixture as the solvent at a reaction temperature of 70 °C.

  11. Photodynamic synchrotron x-ray therapy in Glioma cell using superparamagnetic iron nanoparticle

    Science.gov (United States)

    Kim, Hong-Tae; Kim, Ki-Hong; Choi, Gi-Hwan; Jheon, Sanghoon; Park, Sung-Hwan; Kim, Bong-Il; Hyodo, Kazuyuki; Ando, Masami; Kim, Jong-Ki

    2009-06-01

    In order to evaluate cytotoxic effects of secondary Auger electron emission(Photon Activation Therapy:PAT) from alginate-coated iron nanoparticles(Alg-SNP), Alg-SNP-uptaken C6 glioma cell lines were irradiated with 6.89/7.2 Kev synchrotron X-ray. 0-125 Gy were irradiated on three experimental groups including No-SNP group incubating without SNP as control group, 6hr-SNP group incubating with SNP for 6hr and ON-SNP group incubating with SNP overnight. Irradiated cells were stained with Acridine Orange(AO) and Edithium Bromide(EB) to count their viability with fluorescent microscopy in comparison with control groups. AO stained in damaged DNA, giving FL color change in X-ray plus SNP group. EB did not or less enter inside the cell nucleus of control group. In contrast, EB entered inside the cell nucleus of Alg-SNP group which means more damage compared with Control groups. The results of MTT assay demonstrated a X-ray dose-dependent reduction generally in cell viability in the experimental groups. 3 or 9 times increase in cell survival loss rate was observed at 6hr-SNP and ON-SNP groups, respectively compared to No-SNP control group in first experiment that was done to test cell survival rate at relatively lower dose, from 0 to 50 Gy. In second experiment X-ray dose was increased to 125 Gy. Survival loss was sharply decreased in a relatively lower dose from 5 to 25 Gy, and then demonstrated an exponentially decreasing behavior with a convergence until 125 Gy for each group. This observation suggests PAT effects on the cell directly by X-ray in the presence of Alg-SNP occurs within lower X-ray dose, and conventional X-ray radiation effect becomes dominant in higher X-ray dose. The cell viability loss of ON-SNP group was three times higher compared with that of 6hr-SNP group. In conclusion, it is possible to design photodynamic X-ray therapy study using a monochromatic x-ray energy and metal nanoparticle as x-ray sensitizer, which may enable new X-ray PDT to

  12. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, H. [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Simchi, A., E-mail: simchi@sharif.edu [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Department of Material Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Imani, M. [Novel Drug Delivery Systems Department, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Costa, B.F.O. [CEMDRX, Department of Physics, University of Coimbra, P-3004-516 Coimbra (Portugal)

    2012-11-15

    The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe{sup 3+} and Fe{sup 2+}], the concentration of ammonium hydroxide as reducing agent, and molar ratio of water to surfactant. The biocompatibility of the obtained NPs, at various concentrations, was evaluated via MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and the results showed that the NPs were non-toxic at concentrations <0.1 mg/mL. Surface functionalization was performed by conformal coating of the NPs with a thin shell of gold ({approx}4 nm) through chemical reduction of attached gold salts at the surface of the SPIONs. The Fe{sub 3}O{sub 4} core/Au shell particles demonstrate strong plasmon resonance absorption and can be separated from solution using an external magnetic field. Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, phase components, core-shell surface composition, and magnetic properties have confirmed the formation of the mono-dispersed core-shell nanostructure. - Highlights: Black-Right-Pointing-Pointer Increasing the concentration of iron salts, cubic-shape SPION NPs were formed. The magnetic saturation of the SPIONs was also increased. Black-Right-Pointing-Pointer The concentration of reducing agent exhibited marginal effect on the size of SPIONs but influenced the crystallinity of the NPs. A lower magnetic saturation was obtained at higher NH{sub 4}OH concentrations. Black-Right-Pointing-Pointer Mono-dispersed SPIONs can be prepared

  13. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Roohi F

    2012-08-01

    Full Text Available Farnoosh Roohi, Jessica Lohrke, Andreas Ide, Gunnar Schütz, Katrin DasslerMR and CT Contrast Media Research, Bayer Pharma AG, Berlin, GermanyPurpose: Magnetic resonance imaging (MRI, one of the most powerful imaging techniques available, usually requires the use of an on-demand designed contrast agent to fully exploit its potential. The blood kinetics of the contrast agent represent an important factor that needs to be considered depending on the objective of the medical examination. For particulate contrast agents, such as superparamagnetic iron oxide nanoparticles (SPIOs, the key parameters are particle size and characteristics of the coating material. In this study we analyzed the effect of these two properties independently and systematically on the magnetic behavior and blood half-life of SPIOs.Methods: Eleven different SPIOs were synthesized for this study. In the first set (a, seven carboxydextran (CDX-coated SPIOs of different sizes (19–86 nm were obtained by fractionating a broadly size-distributed CDX–SPIO. The second set (b contained three SPIOs of identical size (50 nm that were stabilized with different coating materials, polyacrylic acid (PAA, polyethylene glycol, and starch. Furthermore, small PAA–SPIOs (20 nm were synthesized to gain a global insight into the effects of particle size vs coating characteristics. Saturation magnetization and proton relaxivity were determined to represent the magnetic and imaging properties. The blood half-life was analyzed in rats using MRI, time-domain nuclear magnetic resonance, and inductively coupled plasma optical emission spectrometry.Results: By changing the particle size without modifying any other parameters, the relaxivity r2 increased with increasing mean particle diameter. However, the blood half-life was shorter for larger particles. The effect of the coating material on magnetic properties was less pronounced, but it had a strong influence on blood kinetics depending on the

  14. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Roohi, Farnoosh; Lohrke, Jessica; Ide, Andreas; Schütz, Gunnar; Dassler, Katrin

    2012-01-01

    Magnetic resonance imaging (MRI), one of the most powerful imaging techniques available, usually requires the use of an on-demand designed contrast agent to fully exploit its potential. The blood kinetics of the contrast agent represent an important factor that needs to be considered depending on the objective of the medical examination. For particulate contrast agents, such as superparamagnetic iron oxide nanoparticles (SPIOs), the key parameters are particle size and characteristics of the coating material. In this study we analyzed the effect of these two properties independently and systematically on the magnetic behavior and blood half-life of SPIOs. Eleven different SPIOs were synthesized for this study. In the first set (a), seven carboxydextran (CDX)-coated SPIOs of different sizes (19-86 nm) were obtained by fractionating a broadly size-distributed CDX-SPIO. The second set (b) contained three SPIOs of identical size (50 nm) that were stabilized with different coating materials, polyacrylic acid (PAA), poly-ethylene glycol, and starch. Furthermore, small PAA-SPIOs (20 nm) were synthesized to gain a global insight into the effects of particle size vs coating characteristics. Saturation magnetization and proton relaxivity were determined to represent the magnetic and imaging properties. The blood half-life was analyzed in rats using MRI, time-domain nuclear magnetic resonance, and inductively coupled plasma optical emission spectrometry. By changing the particle size without modifying any other parameters, the relaxivity r(2) increased with increasing mean particle diameter. However, the blood half-life was shorter for larger particles. The effect of the coating material on magnetic properties was less pronounced, but it had a strong influence on blood kinetics depending on the ionic character of the coating material. In this report we systematically demonstrated that both particle size and coating material influence blood kinetics and magnetic properties of

  15. Increased cellular uptake of lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles due to surface modification with folic acid.

    Science.gov (United States)

    Feuser, Paulo Emilio; Arévalo, Juan Marcelo Carpio; Junior, Enio Lima; Rossi, Gustavo Rodrigues; da Silva Trindade, Edvaldo; Rocha, Maria Eliane Merlin; Jacques, Amanda Virtuoso; Ricci-Júnior, Eduardo; Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H Hermes

    2016-12-01

    Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid were synthesized by miniemulsion polymerization in just one step. In vitro biocompatibility and cytotoxicity assays on L929 (murine fibroblast), human red blood, and HeLa (uterine colon cancer) cells were performed. The effect of folic acid at the nanoparticles surface was evaluated through cellular uptake assays in HeLa cells. Results showed that the presence of folic acid did not affect substantially the polymer particle size (~120 nm), the superparamagnetic behavior, the encapsulation efficiency of lauryl gallate (~87 %), the Zeta potential (~38 mV) of the polymeric nanoparticles or the release profile of lauryl gallate. The release profile of lauryl gallate from superparamagnetic poly(methyl methacrylate) nanoparticles presented an initial burst effect (0-1 h) followed by a slow and sustained release, indicating a biphasic release system. Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles with folic acid did not present cytotoxicity effects on L929 and human red blood cells. However, free lauryl gallate presented significant cytotoxic effects on L929 and human red blood cells at all tested concentrations. The presence of folic acid increased the cytotoxicity of lauryl gallate loaded in nanoparticles on HeLa cells due to a higher cellular uptake when HeLa cells were incubated at 37 °C. On the other hand, when the nanoparticles were incubated at low temperature (4 °C) cellular uptake was not observed, suggesting that the uptake occurred by folate receptor mediated energy-dependent endocytosis. Based on presented results our work suggests that this carrier system can be an excellent alternative in targeted drug delivery by folate receptor.

  16. Synthesis and characterization of Bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI

    International Nuclear Information System (INIS)

    Jafari, Atefeh; Shayesteh, Saber Farjami; Salouti, Mojtaba; Heidari, Zahra; Rajabi, Ahmad Bitarafan; Boustani, Komail; Nahardani, Ali

    2015-01-01

    The targeted delivery of superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent may facilitate their accumulation in cancer cells and enhance the sensitivity of MR imaging. In this study, SPIONs coated with dextran (DSPIONs) were conjugated with bombesin (BBN) to produce a targeting contrast agent for detection of breast cancer using MRI. X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer analyses indicated the formation of dextran-coated superparamagnetic iron oxide nanoparticles with an average size of 6.0 ± 0.5 nm. Fourier transform infrared spectroscopy confirmed the conjugation of the BBN with the DSPIONs. A stability study proved the high optical stability of DSPION–BBN in human blood serum. DSPION–BBN biocompatibility was confirmed by cytotoxicity evaluation. A binding study showed the targeting ability of DSPION–BBN to bind to T47D breast cancer cells overexpressing gastrin-releasing peptide (GRP) receptors. T 2 -weighted and T 2 *-weighted color map MR images were acquired. The MRI study indicated that the DSPION–BBN possessed good diagnostic ability as a GRP-specific contrast agent, with appropriate signal reduction in T 2 *-weighted color map MR images in mice with breast tumors. (paper)

  17. Quantitative effects of cell internalization of two types of ultrasmall superparamagnetic iron oxide nanoparticles at 4.7 T and 7 T

    International Nuclear Information System (INIS)

    Brisset, J.C.; Desestret, V.; Chauveau, F.; Nighoghossian, N.; Berthezene, Y.; Wiart, M.; Marcellino, S.; Lagarde, F.; Devillard, E.; Nataf, S.

    2010-01-01

    MRI coupled with the intravenous injection of ultrasmall superparamagnetic particles of iron oxides (USPIOs) is a promising tool for the study of neuroinflammation. Quantification of the approximate number of magnetically labelled macrophages may provide an effective and efficient method for monitoring inflammatory cells. The purpose of the present study was to characterise the relaxation properties of macrophages labelled with two types of USPIOs, at 4.7 T and 7 T. USPIO-labelled bone-marrow-derived macrophage phantoms were compared with phantoms of free dispersed USPIOs with the same global iron concentration, using multi-parametric (T1, T2 and T2*) quantitative MRI. The same protocol was then evaluated in living mice after intracerebral injection of iron-labelled macrophages vs free iron oxide. A linear relationship was observed among R1, R2 and R2* values and iron concentration in vitro at 4.7 T and at 7 T. At a given field, T1 and T2 relaxivities of both types of USPIOs decreased following internalisation into macrophages, while T2* relaxivities increased. There was fair overall agreement between the theoretical number of injected cells and the number estimated from T2 quantification and in vitro calibration curves, supporting the validity of the present in vitro calibration curves for in vivo investigation. (orig.)

  18. Labeling Efficacy of Superparamagnetic Iron Oxide Nanoparticles to Human Neural Stem Cells: Comparison of Ferumoxides, Monocrystalline Iron Oxide, Cross-linked Iron Oxide (CLIO)-NH2 and tat-CLIO

    International Nuclear Information System (INIS)

    Song, Mi Yeoun; Moon, Woo Kyung; Kim, Yun Hee; Song, In Chan; Yoon, Byung Woo; Lim, Dong Yeol

    2007-01-01

    We wanted to compare the human neural stem cell (hNSC) labeling efficacy of different superparamagnetic iron oxide nanoparticles (SPIONs), namely, ferumoxides, monocrystalline iron oxide (MION), cross-linked iron oxide (CLIO)-NH 2 and tat-CLIO. The hNSCs (5x10 5 HB1F3 cells/ml) were incubated for 24 hr in cell culture media that contained 25 μg/ml of ferumoxides, MION or CLIO-NH 2 , and with or without poly-L-lysine (PLL) and tat-CLIO. The cellular iron uptake was analyzed qualitatively with using a light microscope and this was quantified via atomic absorption spectrophotometry. The visibility of the labeled cells was assessed with MR imaging. The incorporation of SPIONs into the hNSCs did not affect the cellular proliferations and viabilities. The hNSCs labeled with tat-CLIO showed the longest retention, up to 72 hr, and they contained 2.15± 0.3 pg iron/cell, which are 59 fold, 430 fold and six fold more incorporated iron than that of the hNSCs labeled with ferumoxides, MION or CLIO-NH 2 , respectively. However, when PLL was added, the incorporation of ferumoxides, MION or CLIO-NH 2 into the hNSCs was comparable to that of tat-CLIO. For MR imaging, hNSCs can be efficiently labeled with tat-CLIO alone or with a combination of ferumoxides, MION, CLIO-NH 2 and the transfection agent PLL

  19. Labeling Efficacy of Superparamagnetic Iron Oxide Nanoparticles to Human Neural Stem Cells: Comparison of Ferumoxides, Monocrystalline Iron Oxide, Cross-linked Iron Oxide (CLIO)-NH2 and tat-CLIO

    Science.gov (United States)

    Song, Miyeoun; Kim, Yunhee; Lim, Dongyeol; Song, In-Chan; Yoon, Byung-Woo

    2007-01-01

    Objective We wanted to compare the human neural stem cell (hNSC) labeling efficacy of different superparamagnetic iron oxide nanoparticles (SPIONs), namely, ferumoxides, monocrystalline iron oxide (MION), cross-linked iron oxide (CLIO)-NH2 and tat-CLIO. Materials and Methods The hNSCs (5 × 105 HB1F3 cells/ml) were incubated for 24 hr in cell culture media that contained 25 µg/ml of ferumoxides, MION or CLIO-NH2, and with or without poly-L-lysine (PLL) and tat-CLIO. The cellular iron uptake was analyzed qualitatively with using a light microscope and this was quantified via atomic absorption spectrophotometry. The visibility of the labeled cells was assessed with MR imaging. Results The incorporation of SPIONs into the hNSCs did not affect the cellular proliferations and viabilities. The hNSCs labeled with tat-CLIO showed the longest retention, up to 72 hr, and they contained 2.15 ± 0.3 pg iron/cell, which are 59 fold, 430 fold and six fold more incorporated iron than that of the hNSCs labeled with ferumoxides, MION or CLIO-NH2, respectively. However, when PLL was added, the incorporation of ferumoxides, MION or CLIO-NH2 into the hNSCs was comparable to that of tat-CLIO. Conclusion For MR imaging, hNSCs can be efficiently labeled with tat-CLIO alone or with a combination of ferumoxides, MION, CLIO-NH2 and the transfection agent PLL. PMID:17923778

  20. Physical and Chemical Characterization of Therapeutic Iron Containing Materials: A Study of Several Superparamagnetic Drug Formulations with the β-FeOOH or Ferrihydrite Structure

    International Nuclear Information System (INIS)

    Funk, Felix; Long, Gary J.; Hautot, Dimitri; Buechi, Ruth; Christl, Iso; Weidler, Peter G.

    2001-01-01

    The effectiveness of therapeutically used iron compounds is related to their physical and chemical properties. Four different iron compounds used in oral, intravenous, and intramuscular therapy have been examined by X-ray powder diffraction, iron-57 Moessbauer spectroscopy, transmission electron microscopy, BET surface area measurement, potentiometric titration and studied through dissolution kinetics determinations using acid, reducing and chelating agents. All compounds are nanosized with particle diameters, as determined by X-ray diffraction, ranging from 1 to 4.1 nm. The superparamagnetic blocking temperatures, as determined by Moessbauer spectroscopy, indicate that the relative diameters of the aggregates range from 2.5 to 4.1 nm. Three of the iron compounds have an akaganeite-like structure, whereas one has a ferrihydrite-like structure. As powders the particles form large and dense aggregates which have a very low surface area on the order of 1 m 2 g -1 . There is evidence, however, that in a colloidal solution the surface area is increased by two to three orders of magnitude, presumably as a result of the break up of the aggregates. Iron release kinetics by acid, chelating and reducing agents reflect the high surface area, the size and crystallinity of the particles, and the presence of the protective carbohydrate layer coating the iron compound. Within a physiologically relevant time period, the iron release produced by acid or large chelating ligands is small. In contrast, iron is rapidly mobilized by small organic chelating agents, such as oxalate, or by chelate-forming reductants, such as thioglycolate

  1. Physical and Chemical Characterization of Therapeutic Iron Containing Materials: A Study of Several Superparamagnetic Drug Formulations with the β-FeOOH or Ferrihydrite Structure

    Science.gov (United States)

    Funk, Felix; Long, Gary J.; Hautot, Dimitri; Büchi, Ruth; Christl, Iso; Weidler, Peter G.

    2001-03-01

    The effectiveness of therapeutically used iron compounds is related to their physical and chemical properties. Four different iron compounds used in oral, intravenous, and intramuscular therapy have been examined by X-ray powder diffraction, iron-57 Mössbauer spectroscopy, transmission electron microscopy, BET surface area measurement, potentiometric titration and studied through dissolution kinetics determinations using acid, reducing and chelating agents. All compounds are nanosized with particle diameters, as determined by X-ray diffraction, ranging from 1 to 4.1 nm. The superparamagnetic blocking temperatures, as determined by Mössbauer spectroscopy, indicate that the relative diameters of the aggregates range from 2.5 to 4.1 nm. Three of the iron compounds have an akaganeite-like structure, whereas one has a ferrihydrite-like structure. As powders the particles form large and dense aggregates which have a very low surface area on the order of 1 m2 g-1. There is evidence, however, that in a colloidal solution the surface area is increased by two to three orders of magnitude, presumably as a result of the break up of the aggregates. Iron release kinetics by acid, chelating and reducing agents reflect the high surface area, the size and crystallinity of the particles, and the presence of the protective carbohydrate layer coating the iron compound. Within a physiologically relevant time period, the iron release produced by acid or large chelating ligands is small. In contrast, iron is rapidly mobilized by small organic chelating agents, such as oxalate, or by chelate-forming reductants, such as thioglycolate.

  2. Preparation, characterization and application of superparamagnetic iron oxide nanoparticles modified with natural polymers for removal of {sup 60}Co-radionuclides from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Sharaf El-Deen, Gehan E. [Atomic Energy Authority, Cairo (Egypt). Radioactive Waste Management Dept.; Imam, Neama G. [Atomic Energy Authority, Cairo (Egypt). Experimental Physics Dept.; Elettra, Sincrotrone, Trieste (Italy); Ayoub, Refaat R. [Atomic Energy Authority, Cairo (Egypt). Nuclear Chemistry Dept.

    2017-04-01

    Superparamagnetic iron oxide nanoparticles (IO-MNPs) coated with natural polymers, starch (IO-S MNPs) and dextrin (IO-D MNPs), were synthesized by modified co-precipitation method. IO and hybrid-IO-MNPs were characterized by XRD, SEM, HRTEM, FT-IR spectroscopy, vibrating sample magnetometer (VSM) and zeta potential (ZP). IO-S MNPs and IO-D MNPs have IO core-shell structure with core of 10.8 nm and 13.8 nm and shell of 7.5 nm and 5.9 nm, respectively. The efficiency of the hybrid IO-MNPs for sorption of {sup 60}Co(II)-radionuclides from aqueous solution was investigated under varying experimental conditions. Kinetic data were described well by pseudo-second-order mode, sorption isotherms were fitted quite with Freundlich model with maximum adsorption capacity 36.89 (mmol.g{sup -1})/(L.mmol{sup -1}){sup n} for IO-S MNPs and 24.9 (mmol.g{sup -1})/(L.mmol{sup -1}){sup n} for IO-D MNPs. Sorption of {sup 60}Co-radionuclides by IO-S MNPs was suppressed with salinity and most of the adsorbed {sup 60}Co onto IO-S MNPs could be remove with 0.1 M HCl solution. IO-S MNPs exhibits superparamagnetic properties, easier separation according to higher saturation magnetization (47 emu/g) and better adsorption for {sup 60}CO-radionuclides than IO-D MNPs.

  3. Proton T2 Relaxation effect of superparamagnetic iron oxide on fast spin echo sequence. Influence of echo number (even or odd) of effective TE

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi; Fujita, Isao

    1999-01-01

    The T 2 relaxation effect of the fast spin echo sequence (FSE) was investigated using superparamagnetic iron oxide (SPIO) particles. When even echoes were used as the effective TE of FSE, the signal intensity ratio [signal intensity of FSE/signal intensity of conventional spin echo sequence (CSE)] of FSE and CSE increased, whereas the T 2 relaxation effect of SPIO with FSE was reduced. However, when odd echoes were used, neither signal intensity changed, and weakening of the T 2 relaxation effect, considered a problem with FSE, was reduced. This phenomenon was not observed when the refocusing flip angle was changed to 30 and 60 degrees. However, it was observed when the refocusing flip angle was 120 and 150 degrees. Thus, this phenomenon can be considered to be related to oscillation in longitudinal magnetization when using the Carr-Purcell-Meiboom-Gill (CPMG) technique. (author)

  4. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging.

    Science.gov (United States)

    Unterweger, Harald; Janko, Christina; Schwarz, Marc; Dézsi, László; Urbanics, Rudolf; Matuszak, Jasmin; Őrfi, Erik; Fülöp, Tamás; Bäuerle, Tobias; Szebeni, János; Journé, Clément; Boccaccini, Aldo R; Alexiou, Christoph; Lyer, Stefan; Cicha, Iwona

    2017-01-01

    Iron oxide-based contrast agents have been in clinical use for magnetic resonance imaging (MRI) of lymph nodes, liver, intestines, and the cardiovascular system. Superparamagnetic iron oxide nanoparticles (SPIONs) have high potential as a contrast agent for MRI, but no intravenous iron oxide-containing agents are currently approved for clinical imaging. The aim of our work was to analyze the hemocompatibility and immuno-safety of a new type of dextran-coated SPIONs (SPIONdex) and to characterize these nanoparticles with ultra-high-field MRI. Key parameters related to nanoparticle hemocompatibility and immuno-safety were investigated in vitro and ex vivo. To address concerns associated with hypersensitivity reactions to injectable nanoparticulate agents, we analyzed complement activation-related pseudoallergy (CARPA) upon intravenous administration of SPIONdex in a pig model. Furthermore, the size-tunability of SPIONdex and the effects of size reduction on their biocompatibility were investigated. In vitro, SPIONdex did not induce hemolysis, complement or platelet activation, plasma coagulation, or leukocyte procoagulant activity, and had no relevant effect on endothelial cell viability or endothelial-monocytic cell interactions. Furthermore, SPIONdex did not induce CARPA even upon intravenous administration of 5 mg Fe/kg in pigs. Upon SPIONdex administration in mice, decreased liver signal intensity was observed after 15 minutes and was still detectable 24 h later. In addition, by changing synthesis parameters, a reduction in particle size contrast agent.

  5. Molecular magnetic resonance imaging of activated hepatic stellate cells with ultrasmall superparamagnetic iron oxide targeting integrin αvβ3 for staging liver fibrosis in rat model

    Directory of Open Access Journals (Sweden)

    Zhang C

    2016-03-01

    Full Text Available Caiyuan Zhang,1,* Huanhuan Liu,1,* Yanfen Cui,1,* Xiaoming Li,1 Zhongyang Zhang,1 Yong Zhang,2 Dengbin Wang1 1Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 2MR Advanced Application and Research Center, GE Healthcare China, Shanghai, People’s Republic of China *These authors contributed equally to this work Purpose: To evaluate the expression level of integrin αvβ3 on activated hepatic stellate cells (HSCs at different stages of liver fibrosis induced by carbon tetrachloride (CCl4 in rat model and the feasibility to stage liver fibrosis by using molecular magnetic resonance imaging (MRI with arginine-glycine-aspartic acid (RGD peptide modified ultrasmall superparamagnetic iron oxide nanoparticle (USPIO specifically targeting integrin αvβ3.Materials and methods: All experiments received approval from our Institutional Animal Care and Use Committee. Thirty-six rats were randomly divided into three groups of 12 subjects each, and intraperitoneally injected with CCl4 for either 3, 6, or 9 weeks. Controls (n=10 received pure olive oil. The change in T2* relaxation rate (ΔR2* pre- and postintravenous administration of RGD-USPIO or naked USPIO was measured by 3.0T clinical MRI and compared by one-way analysis of variance or the Student’s t-test. The relationship between expression level of integrin αvβ3 and liver fibrotic degree was evaluated by Spearman’s ranked correlation.Results: Activated HSCs were confirmed to be the main cell types expressing integrin αvβ3 during liver fibrogenesis. The protein level of integrin αv and β3 subunit expressed on activated HSCs was upregulated and correlated well with the progression of liver fibrosis (r=0.954, P<0.001; r=0.931, P<0.001, respectively. After injection of RGD-USPIO, there is significant difference in ΔR2* among rats treated with 0, 3, 6, and 9 weeks of CCl4 (P<0.001. The accumulation of iron particles in fibrotic liver specimen is

  6. Rapid synthesis of water-dispersible superparamagnetic iron oxide nanoparticles by a microwave-assisted route for safe labeling of endothelial progenitor cells.

    Science.gov (United States)

    Carenza, Elisa; Barceló, Verónica; Morancho, Anna; Montaner, Joan; Rosell, Anna; Roig, Anna

    2014-08-01

    We synthesize highly crystalline citrate-coated iron oxide superparamagnetic nanoparticles that are stable and readily dispersible in water by an extremely fast microwave-assisted route and investigate the uptake of magnetic nanoparticles by endothelial cells. Nanoparticles form large aggregates when added to complete endothelial cell medium. The size of the aggregates was controlled by adjusting the ionic strength of the medium. The internalization of nanoparticles into endothelial cells was then investigated by transmission electron microscopy, magnetometry and chemical analysis, together with cell viability assays. Interestingly, a sevenfold more efficient uptake was found for systems with larger nanoparticle aggregates, which also showed significantly higher magnetic resonance imaging effectiveness without compromising cell viability and functionality. We are thus presenting an example of a straightforward microwave synthesis of citrate-coated iron oxide nanoparticles for safe endothelial progenitor cell labeling and good magnetic resonance cell imaging with potential application for magnetic cell guidance and in vivo cell tracking. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Magnetic resonance imaging with superparamagnetic iron oxide fails to track the long-term fate of mesenchymal stem cells transplanted into heart.

    Science.gov (United States)

    Ma, Ning; Cheng, Huaibing; Lu, Minjie; Liu, Qiong; Chen, Xiuyu; Yin, Gang; Zhu, Hao; Zhang, Lianfeng; Meng, Xianmin; Tang, Yue; Zhao, Shihua

    2015-03-12

    MRI for in vivo stem cell tracking remains controversial. Here we tested the hypothesis that MRI can track the long-term fate of the superparamagnetic iron oxide (SPIO) nanoparticles labelled mesenchymal stem cells (MSCs) following intramyocardially injection in AMI rats. MSCs (1 × 10(6)) from male rats doubly labeled with SPIO and DAPI were injected 2 weeks after myocardial infarction. The control group received cell-free media injection. In vivo serial MRI was performed at 24 hours before cell delivery (baseline), 3 days, 1, 2, and 4 weeks after cell delivery, respectively. Serial follow-up MRI demonstrated large persistent intramyocardial signal-voids representing SPIO during the follow-up of 4 weeks, and MSCs did not moderate the left ventricular dysfunction. The TUNEL analysis confirmed that MSCs engrafted underwent apoptosis. The histopathological studies revealed that the site of cell injection was infiltrated by inflammatory cells progressively and the iron-positive cells were macrophages identified by CD68 staining, but very few or no DAPI-positive stem cells at 4 weeks after cells transplantation. The presence of engrafted cells was confirmed by real-time PCR, which showed that the amount of Y-chromosome-specific SRY gene was consistent with the results. MRI may not reliably track the long-term fate of SPIO-labeled MSCs engraftment in heart.

  8. Magnetic Resonance Tracking of Endothelial Progenitor Cells Labeled with Alkyl-Polyethylenimine 2 kDa/Superparamagnetic Iron Oxide in a Mouse Lung Carcinoma Xenograft Model

    Directory of Open Access Journals (Sweden)

    Cong Chen

    2014-11-01

    Full Text Available The potential of using endothelial progenitor cells (EPCs in novel anticancer therapy and the repair of vascular injury has been increasingly recognized. In the present study, EPCs were labeled with N-alkyl-polyethylenimine 2 kDa (PEI2k-stabilized superparamagnetic iron oxide (SPIO to facilitate magnetic resonance imaging (MRI of EPCs in a mouse lung carcinoma xenograft model. EPCs derived from human peripheral blood were labeled with alkyl-PEI2k/SPIO. The viability and activity of labeled cells were evaluated using proliferation, migration, and tubulogenesis assays. Alkyl-PEI2k/SPIO-labeled EPCs were injected intravenously (group 1 or mixed and injected together with A549 cells subcutaneously (group 2 into groups of six mice with severe combined immunodeficiency. The labeling efficiency with alkyl-PEI2k/SPIO at 7 mg Fe/mL concentration was approximately 100%. Quantitative analysis of cellular iron was 6.062 ± 0.050 pg/cell. No significant effects on EPC proliferation, migration, or tubulogenesis were seen after labeling. Seventesla micro-MRI showed the presence of schistic or linear hypointense regions at the tumor margins starting from days 7 to 8 after EPC administration. This gradually extended into the inner tumor layers in group 1. In group 2, tumor growth was accompanied by dispersion of low-signal intensity regions inside the tumor. Iron-positive cells identified by Prussian blue dye were seen at the sites identified using MRI. Human CD31-positive cells and mouse CD31-positive cells were present in both groups. Labeling EPCs with alkyl-PEI2k/SPIO allows noninvasive magnetic resonance investigation of EPC involvement in tumor neovasculature and is associated with excellent biocompatibility and MRI sensitivity.

  9. Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MRI with RGD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Cui Y

    2016-11-01

    Full Text Available Yanfen Cui,1,* Caiyuan Zhang,1,* Ran Luo,1 Huanhuan Liu,1 Zhongyang Zhang,1 Tianyong Xu,2 Yong Zhang,2 Dengbin Wang11Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 2MR Advanced Application and Research Center, GE Healthcare China, Shanghai, People’s Republic of China *These authors contributed equally to this workPurpose: Arginine-glycine-aspartic acid (RGD-based nanoprobes allow specific imaging of integrin αvβ3, a protein overexpressed during angiogenesis. Therefore, this study applied a novel RGD-coupled, polyacrylic acid (PAA-coated ultrasmall superparamagnetic iron oxide (USPIO (referred to as RGD-PAA-USPIO in order to detect tumor angiogenesis and assess the early response to antiangiogenic treatment in human nasopharyngeal carcinoma (NPC xenograft model by magnetic resonance imaging (MRI.Materials and methods: The binding specificity of RGD-PAA-USPIO with human umbilical vein endothelial cells (HUVECs was confirmed by Prussian blue staining and transmission electron microscopy in vitro. The tumor targeting of RGD-PAA-USPIO was evaluated in the NPC xenograft model. Later, mice bearing NPC underwent MRI at baseline and after 4 and 14 days of consecutive treatment with Endostar or phosphate-buffered saline (n=10 per group.Results: The specific uptake of the RGD-PAA-USPIO nanoparticles was mainly dependent on the interaction between RGD and integrin αvβ3 of HUVECs. The tumor targeting of RGD-PAA-USPIO was observed in the NPC xenograft model. Moreover, the T2 relaxation time of mice in the Endostar-treated group decreased significantly compared with those in the control group both on days 4 and 14, consistent with the immunofluorescence results of CD31 and CD61 (P<0.05.Conclusion: This study demonstrated that the magnetic resonance molecular nanoprobes, RGD-PAA-USPIOs, allow noninvasive in vivo imaging of tumor angiogenesis and assessment of the early response to antiangiogenic treatment in

  10. Sinusoidal obstructive syndrome diagnosed with superparamagnetic iron oxide-enhanced magnetic resonance imaging in patients with chemotherapy-treated colorectal liver metastases.

    Science.gov (United States)

    Ward, Janice; Guthrie, James A; Sheridan, Maria B; Boyes, Sheila; Smith, Jonathan T; Wilson, Daniel; Wyatt, Judy I; Treanor, Darren; Robinson, Philip J

    2008-09-10

    To assess the predictive value of superparamagnetic iron oxide (SPIO) -enhanced T2-weighted gradient echo (GRE) imaging to determine the presence and severity of sinusoidal obstructive syndrome (SOS). Sixty hepatic resection patients with colorectal metastases treated with chemotherapy underwent unenhanced magnetic resonance imaging (MRI) followed by T2-weighted GRE sequences obtained after SPIO. The images were reviewed in consensus by two experienced observers who determined the presence and severity of linear and reticular hyperintensities, indicating SOS-type liver injury, using a 4-point ordinal scale. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) with 95% CIs for the detection of SOS were calculated. Twenty-four of 60 patients had moderate to severe SOS on MRI. MRI achieved a sensitivity of 87% (95% CI, 66% to 97%), specificity of 89% (95% CI, 75% to 97%), PPV of 83% (95% CI, 63% to 95%), and NPV of 92% (95% CI, 77% to 98%). SOS was never found at surgery or histology in patients whose background liver parenchyma was normal on SPIO-enhanced MRI. SOS is present in a significant proportion of patients with treated colorectal metastases and is effectively detected on SPIO-enhanced T2-weighted GRE images.

  11. Use of Ultrasmall Superparamagnetic Iron Oxide Enhanced Susceptibility Weighted Imaging and Mean Vessel Density Imaging to Monitor Antiangiogenic Effects of Sorafenib on Experimental Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Shuohui Yang

    2017-01-01

    Full Text Available We investigated effectiveness of ultrasmall superparamagnetic iron oxide enhanced susceptibility weighted imaging (USPIO-enhanced SWI and mean vessel density imaging (Q in monitoring antiangiogenic effects of Sorafenib on orthotopic hepatocellular carcinoma (HCC. Thirty-five HCC xenografts were established. USPIO-enhanced SWI and Q were performed on a 1.5 T MR scanner at baseline, 7, 14, and 21 days after Sorafenib treatment. Intratumoral susceptibility signal intensity (ITSS and Q were serially measured and compared between the treated (n = 15 and control groups (n = 15. Both ITSS and Q were significantly lower in the treated group at each time point (P < 0.05. Measurements in the treated group showed that ITSS persisted at 7 days (P = 0.669 and increased at 14 and 21 days (P < 0.05, while Q significantly declined at 7 days (P = 0.028 and gradually increased at 14 and 21 days. In the treated group, significant correlation was found between Q and histologic microvessel density (MVD (r = 0.753, P < 0.001, and ITSS correlated well with MVD (r = 0.742, P = 0.002 after excluding the data from baseline. This study demonstrated that USPIO-enhanced SWI and Q could provide novel biomarkers for evaluating antiangiogenic effects of Sorafenib on HCC.

  12. Promoting neuroregeneration by applying dynamic magnetic fields to a novel nanomedicine: Superparamagnetic iron oxide (SPIO)-gold nanoparticles bounded with nerve growth factor (NGF).

    Science.gov (United States)

    Yuan, Muzhaozi; Wang, Ya; Qin, Yi-Xian

    2018-04-05

    Neuroregeneration imposes a significant challenge in neuroscience for treating neurodegenerative diseases. The objective of this study is to evaluate the hypothesis that the nerve growth factor (NGF) functionalized superparamagnetic iron oxide (SPIO)-gold (Au) nanomedicine can stimulate the neuron growth and differentiation under external magnetic fields (MFs), and dynamic MFs outperform their static counterparts. The SPIO-Au core-shell nanoparticles (NPs) (Diameter: 20.8 nm) possessed advantages such as uniform quasi-spherical shapes, narrow size distribution, excellent stabilities, and low toxicity (viability >96% for 5 days). NGF functionalization has enhanced the cellular uptake. The promotion of neuronal growth and orientation using NGF functionalized SPIO-Au NPs, driven by both the static and dynamic MFs, were revealed experimentally on PC-12 cells and theoretically on a cytoskeletal force model. More importantly, dynamic MFs via rotation performed better than the static ones, i.e., the cellular differentiation ratio increased 58%; the neurite length elongation increased 63%. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Synthesis and in vitro evaluation of bone-seeking superparamagnetic iron oxide nanoparticles as contrast agents for imaging bone metabolic activity.

    Science.gov (United States)

    Panahifar, Arash; Mahmoudi, Morteza; Doschak, Michael R

    2013-06-12

    In this article, we report the synthesis and in vitro evaluation of a new class of nonionizing bone-targeting contrast agents based on bisphosphonate-conjugated superparamagnetic iron oxide nanoparticles (SPIONs), for use in imaging of bone turnover with magnetic resonance imaging (MRI). Similar to bone-targeting (99m)Technetium medronate, our novel contrast agent uses bisphosphonates to impart bone-seeking properties, but replaces the former radioisotope with nonionizing SPIONs which enables their subsequent detection using MRI. Our reported method is relatively simple, quick and cost-effective and results in BP-SPIONs with a final nanoparticle size of 17 nm under electron microscopy technique (i.e., TEM). In-vitro binding studies of our novel bone tracer have shown selective binding affinity (around 65%) for hydroxyapatite, the principal mineral of bone. Bone-targeting SPIONs offer the potential for use as nonionizing MRI contrast agents capable of imaging dynamic bone turnover, for use in the diagnosis and monitoring of metabolic bone diseases and related bone pathology.

  14. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells

    Science.gov (United States)

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.

  15. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells.

    Science.gov (United States)

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-05

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.

  16. Human nitric oxide biomarker as potential NO donor in conjunction with superparamagnetic iron oxide @ gold core shell nanoparticles for cancer therapeutics.

    Science.gov (United States)

    Singh, Nimisha; Patel, Khushbu; Sahoo, Suban K; Kumar, Rajender

    2018-03-01

    Nitric oxide releasing superparamagnetic (Fe 3 O 4 -Au@NTHP) nanoparticles were synthesized by conjugation of human biomarker of nitric oxide, N-nitrosothioproline with iron oxide-gold (Fe 3 O 4 -Au) core shell nanoparticles. The structure and morphology of the prepared nanoparticles were confirmed by ATR-FTIR, HR-TEM, EDAX, XPS, DLS and VSM measurements. N-nitrosothioproline is a natural molecule and nontoxic to humans. Thus, the core shell nanoparticles prepared were highly biocompatible. The prepared Fe 3 O 4 -Au@NTHP nanoparticles also provided an excellent release of nitric oxide in dark and upon light irradiation for cancer treatment. The amount of NO release was controllable with the wavelength of light and time of irradiation. The developed nanoparticles provided efficient cellular uptake and good cytotoxicity in picomolar range when tested on HeLa cancerous cells. These nanoparticles on account of their controllable NO release can also be used to release small amount of NO for killing cancerous cells without any toxic effect. Furthermore, the magnetic and photochemical properties of these nanoparticles provides dual platform for magneto therapy and phototherapy for cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Superparamagnetic iron oxide nanoparticle attachment on array of micro test tubes and microbeakers formed on p-type silicon substrate for biosensor applications

    Directory of Open Access Journals (Sweden)

    Raja Sufi

    2011-01-01

    Full Text Available Abstract A uniformly distributed array of micro test tubes and microbeakers is formed on a p-type silicon substrate with tunable cross-section and distance of separation by anodic etching of the silicon wafer in N, N-dimethylformamide and hydrofluoric acid, which essentially leads to the formation of macroporous silicon templates. A reasonable control over the dimensions of the structures could be achieved by tailoring the formation parameters, primarily the wafer resistivity. For a micro test tube, the cross-section (i.e., the pore size as well as the distance of separation between two adjacent test tubes (i.e., inter-pore distance is typically approximately 1 μm, whereas, for a microbeaker the pore size exceeds 1.5 μm and the inter-pore distance could be less than 100 nm. We successfully synthesized superparamagnetic iron oxide nanoparticles (SPIONs, with average particle size approximately 20 nm and attached them on the porous silicon chip surface as well as on the pore walls. Such SPION-coated arrays of micro test tubes and microbeakers are potential candidates for biosensors because of the biocompatibility of both silicon and SPIONs. As acquisition of data via microarray is an essential attribute of high throughput bio-sensing, the proposed nanostructured array may be a promising step in this direction.

  18. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Unterweger H

    2017-07-01

    Full Text Available Harald Unterweger,1,* Christina Janko,1,* Marc Schwarz,2 László Dézsi,3 Rudolf Urbanics,4 Jasmin Matuszak,1 Erik Őrfi,3 Tamás Fülöp,3 Tobias Bäuerle,2 János Szebeni,3,4 Clément Journé,5 Aldo R Boccaccini,6 Christoph Alexiou,1 Stefan Lyer,1 Iwona Cicha1 1Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON, Else Kröner-Fresenius-Stiftung-Professorship, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, 2Preclinical Imaging Platform Erlangen (PIPE, Institute of Radiology, University Hospital Erlangen, Erlangen, Germany; 3Nanomedicine Research and Education Center, Semmelweis University, 4SeroScience Ltd., Budapest, Hungary; 5Inserm U1148, Fédération de Recherche en Imagerie Multimodalités (FRIM, X Bichat Hospital, Paris Diderot University, Paris, France; 6Institute of Biomaterials, Department of Materials Science and Engineering, University Erlangen-Nuremberg, Erlangen, Germany *These authors contributed equally to this work Abstract: Iron oxide-based contrast agents have been in clinical use for magnetic resonance imaging (MRI of lymph nodes, liver, intestines, and the cardiovascular system. Superparamagnetic iron oxide nanoparticles (SPIONs have high potential as a contrast agent for MRI, but no intravenous iron oxide-containing agents are currently approved for clinical imaging. The aim of our work was to analyze the hemocompatibility and immuno-safety of a new type of dextran-coated SPIONs (SPIONdex and to characterize these nanoparticles with ultra-high-field MRI. Key parameters related to nanoparticle hemocompatibility and immuno-safety were investigated in vitro and ex vivo. To address concerns associated with hypersensitivity reactions to injectable nanoparticulate agents, we analyzed complement activation-related pseudoallergy (CARPA upon intravenous administration of SPIONdex in a pig model. Furthermore, the size-tunability of SPIONdex and

  19. Liposomes Loaded with Hydrophobic Iron Oxide Nanoparticles: Suitable T2 Contrast Agents for MRI

    Directory of Open Access Journals (Sweden)

    Raquel Martínez-González

    2016-07-01

    Full Text Available There has been a recent surge of interest in the use of superparamagnetic iron oxide nanoparticles (SPIONs as contrast agents (CAs for magnetic resonance imaging (MRI, due to their tunable properties and their low toxicity compared with other CAs such as gadolinium. SPIONs exert a strong influence on spin-spin T2 relaxation times by decreasing the MR signal in the regions to which they are delivered, consequently yielding darker images or negative contrast. Given the potential of these nanoparticles to enhance detection of alterations in soft tissues, we studied the MRI response of hydrophobic or hydrophilic SPIONs loaded into liposomes (magnetoliposomes of different lipid composition obtained by sonication. These hybrid nanostructures were characterized by measuring several parameters such as size and polydispersity, and number of SPIONs encapsulated or embedded into the lipid systems. We then studied the influence of acyl chain length as well as its unsaturation, charge, and presence of cholesterol in the lipid bilayer at high field strength (7 T to mimic the conditions used in preclinical assays. Our results showed a high variability depending on the nature of the magnetic particles. Focusing on the hydrophobic SPIONs, the cholesterol-containing samples showed a slight reduction in r2, while unsaturation of the lipid acyl chain and inclusion of a negatively charged lipid into the bilayer appeared to yield a marked increase in negative contrast, thus rendering these magnetoliposomes suitable candidates as CAs, especially as a liver CA.

  20. Superparamagnetic iron oxide nanoparticles function as a long-term, multi-modal imaging label for non-invasive tracking of implanted progenitor cells.

    Directory of Open Access Journals (Sweden)

    Christina A Pacak

    Full Text Available The purpose of this study was to determine the ability of superparamagnetic iron oxide (SPIO nanoparticles to function as a long-term tracking label for multi-modal imaging of implanted engineered tissues containing muscle-derived progenitor cells using magnetic resonance imaging (MRI and X-ray micro-computed tomography (μCT. SPIO-labeled primary myoblasts were embedded in fibrin sealant and imaged to obtain intensity data by MRI or radio-opacity information by μCT. Each imaging modality displayed a detection gradient that matched increasing SPIO concentrations. Labeled cells were then incorporated in fibrin sealant, injected into the atrioventricular groove of rat hearts, and imaged in vivo and ex vivo for up to 1 year. Transplanted cells were identified in intact animals and isolated hearts using both imaging modalities. MRI was better able to detect minuscule amounts of SPIO nanoparticles, while μCT more precisely identified the location of heavily-labeled cells. Histological analyses confirmed that iron oxide particles were confined to viable, skeletal muscle-derived cells in the implant at the expected location based on MRI and μCT. These analyses showed no evidence of phagocytosis of labeled cells by macrophages or release of nanoparticles from transplanted cells. In conclusion, we established that SPIO nanoparticles function as a sensitive and specific long-term label for MRI and μCT, respectively. Our findings will enable investigators interested in regenerative therapies to non-invasively and serially acquire complementary, high-resolution images of transplanted cells for one year using a single label.

  1. Liposomes Loaded with Hydrophobic Iron Oxide Nanoparticles: Suitable T2 Contrast Agents for MRI

    OpenAIRE

    Raquel Martínez-González; Joan Estelrich; Maria Antònia Busquets

    2016-01-01

    There has been a recent surge of interest in the use of superparamagnetic iron oxide nanoparticles (SPIONs) as contrast agents (CAs) for magnetic resonance imaging (MRI), due to their tunable properties and their low toxicity compared with other CAs such as gadolinium. SPIONs exert a strong influence on spin-spin T 2 relaxation times by decreasing the MR signal in the regions to which they are delivered, consequently yielding darker images or negative contrast. Given the potential of these na...

  2. Ultrastructural characterization of mesenchymal stromal cells labeled with ultrasmall superparamagnetic iron-oxide nanoparticles for clinical tracking studies

    DEFF Research Database (Denmark)

    Hansen, Louise; Hansen, Alastair B; Mathiasen, Anders B

    2014-01-01

    INTRODUCTION: To evaluate survival and engraftment of mesenchymal stromal cells (MSCs) in vivo, it is necessary to track implanted cells non-invasively with a method, which does not influence cellular ultrastructure and functional characteristics. Iron-oxide particles have been applied for cell...... sequence of trans-activator of transcription (TAT) (IODEX-TAT) and evaluate the effect of labeling on ultrastructure, viability, phenotype and proliferative capacity of the cells. MATERIALS AND METHODS: MSCs were labeled with 5 and 10 μg IODEX-TAT/10(5) cells for 2, 6 and 21 hours. IODEX-TAT uptake...... and cellular ultrastructure were determined by electron microscopy. Cell viability was determined by propidium iodide staining and cell proliferation capacity by 5-bromo-2-deoxyuridine (BrdU) incorporation. Maintenance of stem cell surface markers was determined by flow cytometry. Results. IODEX-TAT labeling...

  3. Thermoacoustic Imaging and Therapy Guidance based on Ultra-short Pulsed Microwave Pumped Thermoelastic Effect Induced with Superparamagnetic Iron Oxide Nanoparticles.

    Science.gov (United States)

    Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da

    2017-01-01

    Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy.

  4. Multidetector helical CT plus superparamagnetic iron oxide-enhanced MR imaging for focal hepatic lesions in cirrhotic liver: A comparison with multi-phase CT during hepatic arteriography

    International Nuclear Information System (INIS)

    Yukisawa, Seigo; Okugawa, Hidehiro; Masuya, Yoshio; Okabe, Shinichirou; Fukuda, Hiroyuki; Yoshikawa, Masaharu; Ebara, Masaaki; Saisho, Hiromitsu

    2007-01-01

    The aim of this study was to evaluate multidetector helical computed tomography (MDCT), superparamagnetic iron oxide (SPIO)-enhanced magnetic resonance (MR) imaging, and CT arterial portography (CTAP) and CT during hepatic arteriography (CTHA) for the detection and diagnosis of hepatocellular carcinomas (HCC). This included visual correlations of MDCT and SPIO-MR imaging in the detection of HCC using receiver operating characteristic (ROC) analysis. Twenty-five patients with 57 nodular HCCs were retrospectively analyzed. A total of 200 segments, including 49 segments with 57 HCCs, were reviewed independently by three observers. Each observer read four sets of images (set 1, MDCT; set 2, unenhanced and SPIO-enhanced MR images; set 3, combined MDCT and SPIO-enhanced MR images; set 4, combined CTAP and CTHA). The mean Az values representing the diagnostic accuracy for HCCs of sets 1, 2, 3, and 4 were 0.777, 0.814, 0.849, and 0.911, respectively, and there was no significant difference between sets 3 and 4. The sensitivity of set 4 was significantly higher than those of set 3 for all the lesions and for lesions 10 mm or smaller (p < 0.05); however, for lesions larger than 10 mm, the sensitivities of the two sets were similar. No significant difference in positive predictive value and specificity was observed between set 3 and set 4. Combined MDCT and SPIO-enhanced MR imaging may obviate the need for more invasive CTAP and CTHA for the pre-therapeutic evaluation of patients with HCC more than 10 mm

  5. Magnetic resonance cholangiopancreatography (MRCP) using new negative per-oral contrast agent based on superparamagnetic iron oxide nanoparticles for extrahepatic biliary duct visualization in liver cirrhosis.

    Science.gov (United States)

    Polakova, Katerina; Mocikova, Ingrid; Purova, Dana; Tucek, Pavel; Novak, Pavel; Novotna, Katerina; Izak, Niko; Bielik, Radoslav; Zboril, Radek; Miroslav, Herman

    2016-12-01

    Magnetic resonance cholangiopancreatography (MRCP) is often used for imaging of the biliary tree and is required by surgeons before liver transplantation. Advanced liver cirrhosis and ascites in patients however present diagnostic problems for MRCP. The aim of this study was to find out if the use of our negative per-oral contrast agent containing superparamagnetic iron oxide nanoparticles (SPIO) in MRCP is helpful for imaging of hepatobiliary tree in patients with liver cirrhosis. Forty patients with liver cirrhosis were examined on a 1.5 T MR unit using standard MRCP protocol. Twenty patients (group A) underwent MRCP after administration of per-oral SPIO contrast agent 30 min before examination. In group B, twenty patients were examined without per-oral bowel preparation. Ascites was present in eleven patients from group A and in thirteen patients in group B. Four radiologists analyzed MR images for visibility and delineation of the biliary tree. χ 2 tests were used for comparison of the visibility of intrahepatic and extrahepatic biliary ducts in patients with and without ascites. Better extrahepatic biliary duct visualization and visibility of extraluminal pathologies in patients with ascites was proved after administration of SPIO contrast agent. No statistically significant difference between group A and B was found for visualization of extrahepatic biliary ducts in patients without ascites. Delineation of intrahepatic biliary ducts was independent on bowel preparation. Application of our negative per-oral SPIO contrast agent before MRCP improves the visualization of extrahepatic biliary ducts in patients with ascites which is helpful during the liver surgery, mainly in liver transplantation.

  6. HO-1 gene overexpression enhances the beneficial effects of superparamagnetic iron oxide labeled bone marrow stromal cells transplantation in swine hearts underwent ischemia/reperfusion: an MRI study.

    Science.gov (United States)

    Jiang, Yibo; Chen, Lijuan; Tang, Yaoliang; Ma, Genshan; Shen, Chengxing; Qi, Chunmei; Zhu, Qi; Yao, Yuyu; Liu, Naifeng

    2010-05-01

    To determine the effect of intracoronary transfer of superparamagnetic iron oxide (SPIO) labeled heme oxygenase-1 (HO-1) overexpressed bone marrow stromal cells (BMSCs) in a porcine myocardial ischemia/reperfusion model. Cell apoptosis was assayed and supernatant cytokine concentrations were measured in BMSCs that underwent hypoxia/reoxygen in vitro. Female mini-swines that underwent 1 h LAD occlusion followed by 1 h reperfusion were randomly allocated to receive intracoronary saline (control), 1 x 10(7) SPIO-labeled BMSCs transfected with pcDNA3.1-Lacz plasmid (Lacz-BMSCs), pcDNA3.1-human HO-1 (HO-1-BMSCs), pcDNA3.1-hHO-1 pretreated with a HO inhibitor, tin protoporphyrin (SnPP, n = 10 each). MRI and postmortem histological analysis were made at 1 week or 3 months thereafter. Post hypoxia/reoxygen in vitro, apoptosis was significantly reduced, supernatant VEGF significantly increased while TNF-alpha and IL-6 significantly reduced in HO-1-BMSCs group compared with Lacz-BMSCs group (all p < 0.05). Myocardial expression of VEGF was significantly higher in HO-1-BMSCs than in Lacz-BMSCs group at 1 week post transplantation (all p < 0.05). Signal voids induced by the SPIO were detected in the peri-infarction region in all BMSC groups at 1 week but not at 3 months post transplantation and the extent of the hypointense signal was the highest in HO-1-BMSCs group, and histological analysis showed that signal voids represented cardiac macrophages that engulfed the SPIO-labeled BMSCs. Pretreatment with SnPP significantly attenuated the beneficial effects of HO-1-BMSCs. Transplantation of HO-1-overexpressed BMSCs significantly enhanced the beneficial effects of BMSCs on improving cardiac function in this model.

  7. Detection of lymph node metastases with ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging in oesophageal cancer: a feasibility study

    Science.gov (United States)

    van der Jagt, E.J.; van Westreenen, H.L.; van Dullemen, H.M.; Kappert, P.; Groen, H.; Sietsma, J.; Oudkerk, M.; Plukker, J.Th.M.; van Dam, G.M.

    2009-01-01

    Abstract Aim: In this feasibility study we investigated whether magnetic resonance imaging (MRI) with ultrasmall superparamagnetic iron oxide (USPIO) can be used to identify regional and distant lymph nodes, including mediastinal and celiac lymph node metastases in patients with oesophageal cancer. Patients and methods: Ten patients with a potentially curative resectable cancer of the oesophagus were eligible for this study. All patients included in the study had positive lymph nodes on conventional staging (including endoscopic ultrasound, computed tomography and fluorodeoxyglucose-positron emission tomography). Nine patients underwent MRI + USPIO before surgery. Results were restricted to those patients who had both MRI + USPIO and histological examination. Results were compared with conventional staging and histopathologic findings. Results: One patient was excluded due to expired study time. Five out of 9 patients underwent an exploration; in 1 patient prior to surgery MRI + USPIO diagnosed liver metastases and in 3 patients an oesophageal resection was performed. USPIO uptake in mediastinal lymph nodes was seen in 6 out of 9 patients; in 3 patients non-malignant nodes were not visible. In total, 9 lymph node stations (of 6 patients) were separately analysed; 7 lymph node stations were assessed as positive (N1) on MRI+USPIO compared with 9 by conventional staging. According to histology findings, there was one false-positive and one false-negative result in MRI + USPIO. Also, conventional staging modalities had one false-positive and one false-negative result. MRI + USPIO had surplus value in one patient. Not all lymph node stations could be compared due to unforeseen explorations. No adverse effects occurred after USPIO infusion. Conclusion: MRI+USPIO identified the majority of mediastinal and celiac (suspect) lymph nodes in 9 patients with oesophageal cancer. MRI+USPIO could have an additional value in loco-regional staging; however, more

  8. Polyvalent integrin antagonist-decorated superparamagnetic iron oxide nanoparticles for triggering apoptosis in human leukemia cancer cells

    International Nuclear Information System (INIS)

    Say, Rıdvan; Yazar, Suzan; Uğur, Alper; Hür, Deniz; Denizli, Adil; Ersöz, Arzu

    2013-01-01

    Integrin family members are the main mediators of cell adhesion to the extracellular matrix and active as intra- and extracellular signaling molecules in a variety of processes. They bind to their ligands by interacting with short amino acid sequences, that is, RGD (arginine-glycine-aspartic acid) sequence. RGD sequences have been used to enhance cell binding to artificial surfaces, so RGD mimics have been used to block integrin binding to its ligand. Integrin–ligand interactions are dependent on divalent cations, and Mg 2+ provide higher-affinity binding to ligand for many integrins. In this study, we have designed new integrin antagonists using methacryloyl amidoaspartic acid (MAASP) monomer-conjugated silanized super paramagnetic iron oxide nanoparticles (SPIONs, the size of the nanoparticles was verified with an average size of 32.6 nm) and poly(MAASP-co-EDMA) shell-decorated silanized SPIONs. Several mechanisms have been proposed to describe uptake of modified SPIONs into the cells, including receptor-mediated endocytosis. Our aim is to bind these modified SPIONs to the integrin-mediated aspartic acid ends of MAASP monomers and block integrin binding to their ligand.

  9. Polyvalent integrin antagonist-decorated superparamagnetic iron oxide nanoparticles for triggering apoptosis in human leukemia cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Say, R Latin-Small-Letter-Dotless-I dvan, E-mail: rsay@anadolu.edu.tr [Anadolu Universitesi, Kimya Boeluemue, Fen Fakueltesi (Turkey); Yazar, Suzan [Sanovel Pharmaceutical Company (Turkey); Ugur, Alper; Huer, Deniz [Anadolu Universitesi, Kimya Boeluemue, Fen Fakueltesi (Turkey); Denizli, Adil [Hacettepe University, Department of Chemistry (Turkey); Ersoez, Arzu [Anadolu Universitesi, Kimya Boeluemue, Fen Fakueltesi (Turkey)

    2013-01-15

    Integrin family members are the main mediators of cell adhesion to the extracellular matrix and active as intra- and extracellular signaling molecules in a variety of processes. They bind to their ligands by interacting with short amino acid sequences, that is, RGD (arginine-glycine-aspartic acid) sequence. RGD sequences have been used to enhance cell binding to artificial surfaces, so RGD mimics have been used to block integrin binding to its ligand. Integrin-ligand interactions are dependent on divalent cations, and Mg{sup 2+} provide higher-affinity binding to ligand for many integrins. In this study, we have designed new integrin antagonists using methacryloyl amidoaspartic acid (MAASP) monomer-conjugated silanized super paramagnetic iron oxide nanoparticles (SPIONs, the size of the nanoparticles was verified with an average size of 32.6 nm) and poly(MAASP-co-EDMA) shell-decorated silanized SPIONs. Several mechanisms have been proposed to describe uptake of modified SPIONs into the cells, including receptor-mediated endocytosis. Our aim is to bind these modified SPIONs to the integrin-mediated aspartic acid ends of MAASP monomers and block integrin binding to their ligand.

  10. Antioxidant responses of cortex neurons to iron loading

    Directory of Open Access Journals (Sweden)

    PABLA AGUIRRE

    2006-01-01

    Full Text Available Brain cells have a highly active oxidative metabolism, yet they contain only low to moderate superoxide dismutase and catalase activities. Thus, their antioxidant defenses rely mainly on cellular reduced glutathione levels. In this work, in cortical neurons we characterized viability and changes in reduced and oxidized glutathione levels in response to a protocol of iron accumulation. We found that massive death occurred after 2 days in culture with 10 mM Fe. Surviving cells developed an adaptative response that included increased synthesis of GSH and the maintenance of a glutathione-based reduction potential. These results highlight the fundamental role of glutathione homeostasis in the antioxidant response and provide novel insights into the adaptative mechanisms of neurons subjected to progressive iron loads.

  11. Detection of the immunologic rejection after xeno-islet transplantation: a study by MR imaging enhanced with superparamagnetic iron oxide marking CD4+ T cell antibody

    International Nuclear Information System (INIS)

    Nie Wei; Tang Yiya; Rong Pengfei; Ye Bin; Ye Zheng; Tong Qiongjuan; Wang Wei

    2008-01-01

    Objective: To evaluate the feasibility of the diagnosis of the early immunologic rejection after xeno-islet transplantation by MR imaging enhanced with superparamagnetic iron oxide (SPIO) marking CD4 + T cell antibody. Methods: Two thousand neonatal porcine islets (NPI)were transplanted under the left renal capsule of BALB/C nude mice. When the grafts could be observed by MRI, 10 7 human PBMC was intraperitoneal injected to nude mouse models to reconstitute the human immunologic system, 20 mice were reconstituted. Before and 3,7,14 days after reconstitution of human immunologic system on BALB/C nude mice, MRI imaging was performed half an hour after intravenous injection of nano-immunomagnetic beads via vena caudatis to observe the grafts' MRI signal. BALB/C nude mice were sacrificed after MRI scanning immediately, the histopathologic examination was assessed on grafts, the results were compared with MRI results. And calculate the sensitivity, specificity, Youden index number and coincidence of the MRI for immunologic rejection. Results: Grafts can be observed by MRI 3 weeks after islet cell transplantation (before immunologic rejection modeling), there is no abnormal MRI signal detected in nude mice' graft region after microbeads injected. Seven days after building of immunologic rejection model, MRI hypo-signal in graft site is shown in the T 2 WI sequence after nano-bioprober injected. Histopathologic assessments were employed on grafts in nude mice immediately (HE and immunohistochemistry staining), the results shown that there are a lot of T lymphocyts infiltrated in graft region, implying the occurrence of immunologic rejection. And the sensitivity, specificity, Youden index number and coincidence is: (72.96±0.24)%, 100%, 0.73±0.24, (88.46±0.13)% respectively. The correct Kappa between the MRI and the imunohistochemistry staining was 0.76. Conclusion: The cellular immunological rejection to xeno-islet grarts can be assessed with nano-bioprobe with anti-CD4

  12. Superparamagnetic iron oxide nanoparticles mediated 131I-hVEGF siRNA inhibits hepatocellular carcinoma tumor growth in nude mice

    International Nuclear Information System (INIS)

    Chen, Jing; Zhu, Shu; Tong, Liangqian; Li, Jiansha; Chen, Fei; Han, Yunfeng; Zhao, Ming; Xiong, Wei

    2014-01-01

    Hepatocellular carcinoma (HCC) is a primary liver tumor and is the most difficult human malignancy to treat. In this study, we sought to develop an integrative approach in which real-time tumor monitoring, gene therapy, and internal radiotherapy can be performed simultaneously. This was achieved through targeting HCC with superparamagnetic iron oxide nanoparticles (SPIOs) carrying small interfering RNA with radiolabled iodine 131 ( 131 I) against the human vascular endothelial growth factor (hVEGF). hVEGF siRNA was labeled with 131 I by the Bolton-Hunter method and conjugated to SilenceMag, a type of SPIOs. 131 I-hVEGF siRNA/SilenceMag was then subcutaneously injected into nude mice with HCC tumors exposed to an external magnetic field (EMF). The biodistribution and cytotoxicity of 131 I-hVEGF siRNA/SilenceMag was assessed by SPECT (Single-Photon Emission Computed Tomography) and MRI (Magnetic Resonance Imaging) studies and blood kinetics analysis. The body weight and tumor size of nude mice bearing HCC were measured daily for the 4-week duration of the experiment. 131 I-hVEGF siRNA/SilenceMag was successfully labeled; with a satisfactory radiochemical purity (>80%) and biological activity in vitro. External application of an EMF successfully attracted and retained more 131 I-hVEGF siRNA/SilenceMag in HCC tumors as shown by SPECT, MRI and biodistribution studies. The tumors treated with 131 I-hVEGF siRNA/SilenceMag grew nearly 50% slower in the presence of EMF than those without EMF and the control. Immunohistochemical assay confirmed that the tumor targeted by 131 I-hVEGF siRNA/SilenceMag guided by an EMF had a lower VEGF protein level compared to that without EMF exposure and the control. EMF-guided 131 I-hVEGF siRNA/SilenceMag exhibited an antitumor effect. The synergic therapy of 131 I-hVEGF siRNA/SilenceMag might be a promising future treatment option against HCC with the dual functional properties of tumor therapy and imaging

  13. Endothelial cell-derived microparticles loaded with iron oxide nanoparticles: feasibility of MR imaging monitoring in mice.

    Science.gov (United States)

    Al Faraj, Achraf; Gazeau, Florence; Wilhelm, Claire; Devue, Cécile; Guérin, Coralie L; Péchoux, Christine; Paradis, Valérie; Clément, Olivier; Boulanger, Chantal M; Rautou, Pierre-Emmanuel

    2012-04-01

    To assess the feasibility of loading iron oxide nanoparticles in endothelial microparticles (EMPs), thereby enabling their noninvasive monitoring with magnetic resonance (MR) imaging in mice. Experiments were approved by the French Ministry of Agriculture. Endothelial cells, first labeled with anionic superparamagnetic nanoparticles, were stimulated to generate EMPs, carrying the nanoparticles in their inner compartment. C57BL/6 mice received an intravenous injection of nanoparticle-loaded EMPs, free nanoparticles, or the supernatant of nanoparticle-loaded EMPs. A 1-week follow-up was performed with a 4.7-T MR imaging device by using a gradient-echo sequence for imaging spleen, liver, and kidney and a radial very-short-echo time sequence for lung imaging. Comparisons were performed by using the Student t test. The signal intensity loss induced by nanoparticle-loaded EMPs or free nanoparticles was readily detected within 5 minutes after injection in the liver and spleen, with a more pronounced effect in the spleen for the magnetic EMPs. The kinetics of signal intensity attenuation differed for nanoparticle-loaded EMPs and free nanoparticles. No signal intensity changes were observed in mice injected with the supernatant of nanoparticle-loaded EMPs, confirming that cells had not released free nanoparticles, but only in association with EMPs. The results were confirmed by using Perls staining and immunofluorescence analysis. The strategy to generate EMPs with magnetic properties allowed noninvasive MR imaging assessment and follow-up of EMPs and opens perspectives for imaging the implications of these cellular vectors in diseases. © RSNA, 2012.

  14. Effect of dietary iron loading on recognition memory in growing rats.

    Directory of Open Access Journals (Sweden)

    Murui Han

    Full Text Available While nutritional and neurobehavioral problems are associated with both iron deficiency during growth and overload in the elderly, the effect of iron loading in growing ages on neurobehavioral performance has not been fully explored. To characterize the role of dietary iron loading in memory function in the young, weanling rats were fed iron-loading diet (10,000 mg iron/kg diet or iron-adequate control diet (50 mg/kg for one month, during which a battery of behavioral tests were conducted. Iron-loaded rats displayed elevated non-heme iron levels in serum and liver, indicating a condition of systemic iron overload. In the brain, non-heme iron was elevated in the prefrontal cortex of iron-loaded rats compared with controls, whereas there was no difference in iron content in other brain regions between the two diet groups. While iron loading did not alter motor coordination or anxiety-like behavior, iron-loaded rats exhibited a better recognition memory, as represented by an increased novel object recognition index (22% increase from the reference value than control rats (12% increase; P=0.047. Western blot analysis showed an up-regulation of dopamine receptor 1 in the prefrontal cortex from iron-loaded rats (142% increase; P=0.002. Furthermore, levels of glutamate receptors (both NMDA and AMPA and nicotinic acetylcholine receptor (nAChR were significantly elevated in the prefrontal cortex of iron-loaded rats (62% increase in NR1; 70% increase in Glu1A; 115% increase in nAChR. Dietary iron loading also increased the expression of NMDA receptors and nAChR in the hippocampus. These results support the idea that iron is essential for learning and memory and further reveal that iron supplementation during developmental and rapidly growing periods of life improves memory performance. Our investigation also demonstrates that both cholinergic and glutamatergic neurotransmission pathways are regulated by dietary iron and provides a molecular basis for the

  15. Contribution of Hfe expression in macrophages to the regulation of hepatic hepcidin levels and iron loading

    OpenAIRE

    Makui, Hortence; Soares, Ricardo J.; Jiang, Wenlei; Constante, Marco; Santos, Manuela M.

    2005-01-01

    Hereditary hemochromatosis (HH), an iron overload disease associated with mutations in the HFE gene, is characterized by increased intestinal iron absorption and consequent deposition of excess iron, primarily in the liver. Patients with HH and Hfe-deficient (Hfe−/−) mice manifest inappropriate expression of the iron absorption regulator hepcidin, a peptide hormone produced by the liver in response to iron loading. In this study, we investigated the contribution of Hfe expression in macrophag...

  16. Chondroitin sulfate-polyethylenimine copolymer-coated superparamagnetic iron oxide nanoparticles as an efficient magneto-gene carrier for microRNA-encoding plasmid DNA delivery

    Science.gov (United States)

    Lo, Yu-Lun; Chou, Han-Lin; Liao, Zi-Xian; Huang, Shih-Jer; Ke, Jyun-Han; Liu, Yu-Sheng; Chiu, Chien-Chih; Wang, Li-Fang

    2015-04-01

    MicroRNA-128 (miR-128) is an attractive therapeutic molecule with powerful glioblastoma regulation properties. However, miR-128 lacks biological stability and leads to poor delivery efficacy in clinical applications. In our previous study, we demonstrated two effective transgene carriers, including polyethylenimine (PEI)-decorated superparamagnetic iron oxide nanoparticles (SPIONs) as well as chemically-conjugated chondroitin sulfate-PEI copolymers (CPs). In this contribution, we report optimized conditions for coating CPs onto the surfaces of SPIONs, forming CPIOs, for magneto-gene delivery systems. The optimized weight ratio of the CPs and SPIONs is 2 : 1, which resulted in the formation of a stable particle as a good transgene carrier. The hydrodynamic diameter of the CPIOs is ~136 nm. The gel electrophoresis results demonstrate that the weight ratio of CPIO/DNA required to completely encapsulate pDNA is >=3. The in vitro tests of CPIO/DNA were done in 293 T, CRL5802, and U87-MG cells in the presence and absence of an external magnetic field. The magnetofection efficiency of CPIO/DNA was measured in the three cell lines with or without fetal bovine serum (FBS). CPIO/DNA exhibited remarkably improved gene expression in the presence of the magnetic field and 10% FBS as compared with a gold non-viral standard, PEI/DNA, and a commercial magnetofection reagent, PolyMag/DNA. In addition, CPIO/DNA showed less cytotoxicity than PEI/DNA and PolyMag/DNA against the three cell lines. The transfection efficiency of the magnetoplex improved significantly with an assisted magnetic field. In miR-128 delivery, a microRNA plate array and fluorescence in situ hybridization were used to demonstrate that CPIO/pMIRNA-128 indeed expresses more miR-128 with the assisted magnetic field than without. In a biodistribution test, CPIO/Cy5-DNA showed higher accumulation at the tumor site where an external magnet is placed nearby.MicroRNA-128 (miR-128) is an attractive therapeutic molecule

  17. Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging

    Directory of Open Access Journals (Sweden)

    Xue S

    2014-05-01

    Full Text Available Sihan Xue,1 Yao Wang,1 Mengxing Wang,2 Lu Zhang,1 Xiaoxia Du,2 Hongchen Gu,1 Chunfu Zhang1,31School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 2Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, 3State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: In this study, a novel magnetic resonance imaging (MRI/computed tomography (CT/fluorescence trifunctional probe was prepared by loading iodinated oil into fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (i-fmSiO4@SPIONs. Fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs were prepared by growing fluorescent dye-doped silica onto superparamagnetic iron oxide nanoparticles (SPIONs directed by a cetyltrimethylammonium bromide template. As prepared, fmSiO4@SPIONs had a uniform size, a large surface area, and a large pore volume, which demonstrated high efficiency for iodinated oil loading. Iodinated oil loading did not change the sizes of fmSiO4@SPIONs, but they reduced the MRI T2 relaxivity (r2 markedly. I-fmSiO4@SPIONs were stable in their physical condition and did not demonstrate cytotoxic effects under the conditions investigated. In vitro studies indicated that the contrast enhancement of MRI and CT, and the fluorescence signal intensity of i-fmSiO4@SPION aqueous suspensions and macrophages, were intensified with increased i-fmSiO4@SPION concentrations in suspension and cell culture media. Moreover, for the in vivo study, the accumulation of i-fmSiO4@SPIONs in the liver could also be detected by MRI, CT, and fluorescence imaging. Our study demonstrated that i-fmSiO4@SPIONs had great potential for MRI/C/fluorescence trimodal imaging.Keywords: multifunctional probe, SPIONs, mesoporous silica

  18. HFE mRNA expression is responsive to intracellular and extracellular iron loading: short communication.

    Science.gov (United States)

    Mehta, Kosha J; Farnaud, Sebastien; Patel, Vinood B

    2017-10-01

    In liver hepatocytes, the HFE gene regulates cellular and systemic iron homeostasis by modulating cellular iron-uptake and producing the iron-hormone hepcidin in response to systemic iron elevation. However, the mechanism of iron-sensing in hepatocytes remain enigmatic. Therefore, to study the effect of iron on HFE and hepcidin (HAMP) expressions under distinct extracellular and intracellular iron-loading, we examined the effect of holotransferrin treatment (1, 2, 5 and 8 g/L for 6 h) on intracellular iron levels, and mRNA expressions of HFE and HAMP in wild-type HepG2 and previously characterized iron-loaded recombinant-TfR1 HepG2 cells. Gene expression was analyzed by real-time PCR and intracellular iron was measured by ferrozine assay. Data showed that in the wild-type cells, where intracellular iron content remained unchanged, HFE expression remained unaltered at low holotransferrin treatments but was upregulated upon 5 g/L (p HFE and HAMP expressions were elevated only at low 1 g/L treatment (p HFE (p HFE mRNA was independently elevated by extracellular and intracellular iron-excess. Thus, it may be involved in sensing both, extracellular and intracellular iron. Repression of HAMP expression under simultaneous intracellular and extracellular iron-loading resembles non-hereditary iron-excess pathologies.

  19. Comparison of Superparamagnetic Iron Oxide Labeling Efficiency between Poly-L-Lysine and Protamine Sulfate for Human Mesenchymal Stem Cells: Quantitative Analysis Using Multi-Echo T2 Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Suh, Ji Yeon; Lee, Jeong Hyun; Lee, Chang Kyung; Shin, Ji Hoon; Choi, Choong Gon; Kim, Jeong Kon

    2013-01-01

    To quantify in vitro labeling efficiency of protamine sulfate (PS) and poly-L-lysine (PLL) for labeling of human mesenchymal stem cells (hMSCs) with superparamagnetic iron oxide (SPIO) using multi-echo T2 magnetic resonance (MR) imaging at 4.7 T. The hMSCs were incubated with SPIO-PS or SPIO-PLL complexes. Their effects on the cell metabolism and differentiation capability were evaluated, respectively. The decrease of iron concentrations in the labeled cells were assessed immediately, and at 4 d after labeling using multi-echo T2 MR imaging at 4.7 T. The results were compared with those of Prussian blue colorimetry. The hMSCs were labeled more efficiently by SPIO-PLL than SPIO-PS without any significant effect on cell metabolism and differentiation capabilities. It was feasible to quantify the iron concentrations in SPIO-agarose-phantoms and in agarose mixture with the labeled cells from T2 maps obtained from multi-echo T2 MRI. However, the iron concentration of the labeled cells was significantly higher by T2-maps than the results of Prussian blue colorimetry. The hMSCs can be effectively labeled with SPIO-PLL complexes more than with SPIO-PS without significant change in cell metabolism and differentiation. In vitro quantification of the iron concentrations of the labeled is feasible from multi-echo T2 MRI, but needs further investigation.

  20. Comparison of Superparamagnetic Iron Oxide Labeling Efficiency between Poly-L-Lysine and Protamine Sulfate for Human Mesenchymal Stem Cells: Quantitative Analysis Using Multi-Echo T2 Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Ji Yeon; Lee, Jeong Hyun; Lee, Chang Kyung; Shin, Ji Hoon; Choi, Choong Gon; Kim, Jeong Kon [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2013-02-15

    To quantify in vitro labeling efficiency of protamine sulfate (PS) and poly-L-lysine (PLL) for labeling of human mesenchymal stem cells (hMSCs) with superparamagnetic iron oxide (SPIO) using multi-echo T2 magnetic resonance (MR) imaging at 4.7 T. The hMSCs were incubated with SPIO-PS or SPIO-PLL complexes. Their effects on the cell metabolism and differentiation capability were evaluated, respectively. The decrease of iron concentrations in the labeled cells were assessed immediately, and at 4 d after labeling using multi-echo T2 MR imaging at 4.7 T. The results were compared with those of Prussian blue colorimetry. The hMSCs were labeled more efficiently by SPIO-PLL than SPIO-PS without any significant effect on cell metabolism and differentiation capabilities. It was feasible to quantify the iron concentrations in SPIO-agarose-phantoms and in agarose mixture with the labeled cells from T2 maps obtained from multi-echo T2 MRI. However, the iron concentration of the labeled cells was significantly higher by T2-maps than the results of Prussian blue colorimetry. The hMSCs can be effectively labeled with SPIO-PLL complexes more than with SPIO-PS without significant change in cell metabolism and differentiation. In vitro quantification of the iron concentrations of the labeled is feasible from multi-echo T2 MRI, but needs further investigation.

  1. Kinetic analysis of superparamagnetic iron oxide nanoparticles in the liver of body-temperature-controlled mice using dynamic susceptibility contrast magnetic resonance imaging and an empirical mathematical model.

    Science.gov (United States)

    Murase, Kenya; Assanai, Purapan; Takata, Hiroshige; Matsumoto, Nozomi; Saito, Shigeyoshi; Nishiura, Motoko

    2015-06-01

    The purpose of this study was to develop a method for analyzing the kinetic behavior of superparamagnetic iron oxide nanoparticles (SPIONs) in the murine liver under control of body temperature using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and an empirical mathematical model (EMM). First, we investigated the influence of body temperature on the kinetic behavior of SPIONs in the liver by controlling body temperature using our temperature-control system. Second, we investigated the kinetic behavior of SPIONs in the liver when mice were injected with various doses of GdCl3, while keeping the body temperature at 36°C. Finally, we investigated it when mice were injected with various doses of zymosan, while keeping the body temperature at 36°C. We also investigated the effect of these substances on the number of Kupffer cells by immunohistochemical analysis using the specific surface antigen of Kupffer cells (CD68). To quantify the kinetic behavior of SPIONs in the liver, we calculated the upper limit of the relative enhancement (A), the rates of early contrast uptake (α) and washout or late contrast uptake (β), the parameter related to the slope of early uptake (q), the area under the curve (AUC), the maximum change of transverse relaxation rate (ΔR2) (ΔR2(max)), the time to ΔR2(max) (Tmax), and ΔR2 at the last time point (ΔR2(last)) from the time courses of ΔR2 using the EMM. The β and Tmax values significantly decreased and increased, respectively, with decreasing body temperature, suggesting that the phagocytic activity of Kupffer cells is significantly affected by body temperature. The AUC, ΔR2(max), and ΔR2(last) values decreased significantly with increasing dose of GdCl3, which was consistent with the change in the number of CD68-positive cells. They increased with increasing dose of zymosan, which was also consistent with the change in the number of CD68-positive cells. These results suggest that AUC, ΔR2(max), and ΔR2

  2. Magnetic behavior of iron-modified MCM-41 correlated with clustering processes from the wet impregnation method

    Energy Technology Data Exchange (ETDEWEB)

    Cuello, Natalia I.; Elías, Verónica R. [Centro de Investigación y Tecnología Química (CITeQ) (UTN-CONICET), Facultad Regional Córdoba. Maestro López y Cruz Roja Argentina, Ciudad Universitaria, Córdoba 5016 (Argentina); Winkler, Elin [Centro Atómico Bariloche, Comisión Nacional de Energía Atómica – CONICET, Avenue Bustillo 9500, San Carlos de Bariloche 8400 (Argentina); Pozo-López, Gabriela; Oliva, Marcos I. [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba – IFEG, CONICET, Ciudad Universitaria, Córdoba 5000 (Argentina); Eimer, Griselda A., E-mail: geimer@frc.utn.edu.ar [Centro de Investigación y Tecnología Química (CITeQ) (UTN-CONICET), Facultad Regional Córdoba. Maestro López y Cruz Roja Argentina, Ciudad Universitaria, Córdoba 5016 (Argentina)

    2016-06-01

    Magnetic MCM-41 type mesoporous silica materials were synthetized and modified with different iron loadings by the wet impregnation method. The evolution of iron speciation, depending on the metal loading and associated with a particular magnetic behavior was investigated by M vs. H curves, FC–ZFC curves, EPR spectroscopy and other complementary techniques such as SEM, TEM, and chemisorption of pyridine followed by FT-IR studies. A superparamagnetic contribution was larger for the lower loadings suggesting the high dispersion of very small sized iron nanospecies. However, this contribution decreased with increasing metal loading due to the growth of magnetically blocked nanoparticles (hematite) on the outer surface. Finally, a bimodal size distribution for the superparamagnetic nanospecies could be inferred; then the anisotropy constant for this phase and the corresponding nanospecies sizes were estimated. - Highlights: • All samples showed a main superparamagnetic contribution. • The oxide particles grow at expense of superparamagnetic nanospecies. • Bimodal distribution of nanospecies in superparamagnetic regime was determined. • The anisotropy constant for superparamagnetic nanospecies was calculated.

  3. Iron in seeds – loading pathways and subcellular localization

    Directory of Open Access Journals (Sweden)

    Louis eGrillet

    2014-01-01

    Full Text Available Iron (Fe is one of the most abundant elements on earth, but its limited bioavailability poses a major constraint for agriculture and constitutes a serious problem in human health. Due to an improved understanding of the mechanisms that control Fe homeostasis in plants, major advances towards engineering biofortified crops have been made during the past decade. Examples of successful biofortification strategies are, however, still scarce and the process of Fe loading into seeds is far from being well understood in most crop species. In particular in grains where the embryo represents the main storage compartment such as legumes, increasing the seed Fe content remains a challenging task. This review aims at placing the recently identified actors in Fe transport into the unsolved puzzle of grain filling, taking the differences of Fe distribution between various species into consideration. We summarize the current knowledge on Fe transport between symplasmic and apoplasmic compartments, and provide models for Fe trafficking and localization in different seed types that may help to develop high seed Fe germplasms.

  4. Electrical control of superparamagnetism

    Science.gov (United States)

    Yamada, Kihiro T.; Koyama, Tomohiro; Kakizakai, Haruka; Miwa, Kazumoto; Ando, Fuyuki; Ishibashi, Mio; Kim, Kab-Jin; Moriyama, Takahiro; Ono, Shimpei; Chiba, Daichi; Ono, Teruo

    2017-01-01

    The electric field control of superparamagnetism is realized using a Cu/Ni system, in which the deposited Ni shows superparamagnetic behavior above the blocking temperature. An electric double-layer capacitor (EDLC) with the Cu/Ni electrode and a nonmagnetic counter electrode is fabricated to examine the electric field effect on magnetism in the magnetic electrode. By changing the voltage applied to the EDLC, the blocking temperature of the system is clearly modulated.

  5. Development and characterization of superparamagnetic coatings

    OpenAIRE

    Kuschnerus I.; Lüdtke-Buzug K.

    2015-01-01

    Since 2005, Magnetic Particle Imaging (MPI) is handled as a key technology with great potential in medical applications as an imaging method [1]. The superparamagnetic iron oxide nanoparticles (SPIONs) which are already used as a tracer in MPI, combined with various polymers, are being investigated in order to enhance this potential. A combination of polymers such as polyethylene (PE) and polyurethane (PU) and SPIONs could be used as a coating for medical devices, or added to semi-rigid polyu...

  6. Moessbauer spectroscopic studies of iron-storage proteins

    Energy Technology Data Exchange (ETDEWEB)

    St. Pierre, T.G.

    1986-01-01

    /sup 57/Fe Moessbauer spectroscopy was used to study iron storage proteins. Various cryostats and a superconducting magnet were used to obtain sample environment temperatures from 1.3 to 200K and applied magnetic fields of up to 10T. The Moessbauer spectra of ferritins isolated from iron-overloaded human spleen, limpet (Patella vulgata), giant limpet (Patella laticostata) and chiton (Clavarizona hirtosa) hemolymph, and bacterial (Pseudomonas aeruginosa) cells are used to gain information on the magnetic ordering- and superparamagnetic transition temperatures of the microcrystalline cores of the proteins. Investigations were made about the cause of the difference in the magnetic anisotropy constants of the cores of iron-overloaded human spleen ferritin and hemosiderin. Livers taken from an iron-overloaded hornbill and artificially iron-loaded rats showed no component with a superparamagnetic transition temperature approaching that of the human spleen hemosiderin.

  7. Red meat consumption and risk of cardiovascular diseases-is increased iron load a possible link?

    Science.gov (United States)

    Quintana Pacheco, Daniel A; Sookthai, Disorn; Wittenbecher, Clemens; Graf, Mirja E; Schübel, Ruth; Johnson, Theron; Katzke, Verena; Jakszyn, Paula; Kaaks, Rudolf; Kühn, Tilman

    2018-01-01

    High iron load and red meat consumption could increase the risk of cardiovascular diseases (CVDs). As red meat is the main source of heme iron, which is in turn a major determinant of increased iron load, adverse cardiometabolic effects of meat consumption could be mediated by increased iron load. The object of the study was to assess whether associations between red meat consumption and CVD risk are mediated by iron load in a population-based human study. We evaluated relations between red meat consumption, iron load (plasma ferritin), and risk of CVD in the prospective EPIC-Heidelberg Study using a case-cohort sample including a random subcohort (n = 2738) and incident cases of myocardial infarction (MI, n = 555), stroke (n = 513), and CVD mortality (n = 381). Following a 4-step mediation analysis, associations between red meat consumption and iron load, red meat consumption and CVD risk, and iron load and CVD risk were assessed by multivariable regression models before finally testing to which degree associations between red meat consumption and CVD risk were attenuated by adjustment for iron status. Red meat consumption was significantly positively associated with ferritin concentrations and MI risk [HR per 50 g daily intake: 1.18 (95% CI: 1.05, 1.33)], but no significant associations with stroke risk and CVD mortality were observed. While direct associations between ferritin concentrations and MI risk as well as CVD mortality were significant in age- and sex-adjusted Cox regression models, these associations were substantially attenuated and no longer significant after multivariable adjustment for classical CVD risk factors. Strikingly, ferritin concentrations were positively associated with a majority of classical CVD risk factors (age, male sex, alcohol intake, obesity, inflammation, and lower education). Increased ferritin concentrations may be a marker of an overall unfavorable risk factor profile rather than a mediator of greater CVD risk due to meat

  8. Magnetic and in vitro heating properties of implants formed in situ from injectable formulations and containing superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microparticles for magnetically induced local hyperthermia

    International Nuclear Information System (INIS)

    Le Renard, Pol-Edern; Lortz, Rolf; Senatore, Carmine; Rapin, Jean-Philippe; Buchegger, Franz; Petri-Fink, Alke; Hofmann, Heinrich; Doelker, Eric; Jordan, Olivier

    2011-01-01

    The biological and therapeutic responses to hyperthermia, when it is envisaged as an anti-tumor treatment modality, are complex and variable. Heat delivery plays a critical role and is counteracted by more or less efficient body cooling, which is largely mediated by blood flow. In the case of magnetically mediated modality, the delivery of the magnetic particles, most often superparamagnetic iron oxide nanoparticles (SPIONs), is also critically involved. We focus here on the magnetic characterization of two injectable formulations able to gel in situ and entrap silica microparticles embedding SPIONs. These formulations have previously shown suitable syringeability and intratumoral distribution in vivo. The first formulation is based on alginate, and the second on a poly(ethylene-co-vinyl alcohol) (EVAL). Here we investigated the magnetic properties and heating capacities in an alternating magnetic field (141 kHz, 12 mT) for implants with increasing concentrations of magnetic microparticles. We found that the magnetic properties of the magnetic microparticles were preserved using the formulation and in the wet implant at 37 o C, as in vivo. Using two orthogonal methods, a common SLP (20 W g -1 ) was found after weighting by magnetic microparticle fraction, suggesting that both formulations are able to properly carry the magnetic microparticles in situ while preserving their magnetic properties and heating capacities. - Research highlights: → Magnetic formulations that form implants on injection into tissues are proposed for hyperthermia. → Superparamagnetic properties of the SPION-silica composite microparticles are preserved in the wet implants. → Heat-dissipating properties (SLP of 20 W/g of implant) support in vivo use.

  9. Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer

    DEFF Research Database (Denmark)

    Azhdarzadeh, Morteza; Atyabi, Fatemeh; Saei, Amir Ata

    2016-01-01

    Favorable physiochemical properties and the capability to accommodate targeting moieties make superparamegnetic iron oxide nanoparticles (SPIONs) popular theranostic agents. In this study, we engineered SPIONs for magnetic resonance imaging (MRI) and photothermal therapy of colon cancer cells...

  10. Efficient one-pot sonochemical synthesis of thickness-controlled silica-coated superparamagnetic iron oxide (Fe3O4/SiO2) nanospheres

    Science.gov (United States)

    Abbas, Mohamed; Abdel-Hamed, M. O.; Chen, Jiangang

    2017-12-01

    A facile and eco-friendly efficient sonochemical approach was designed for the synthesis of highly crystalline Fe3O4 and Fe3O4/SiO2 core/shell nanospheres in single reaction. The generated physical properties (shock waves, microjets, and turbulent flows) from ultrasonication as a consequence of the collapse of microbubbles and polyvinylpyrrolidone (PVP) as a chemical linker were found to play a crucial role in the successful formation of the core/shell NPs within short time than the previously reported methods. Transmission electron microscopy revealed that a uniform SiO2 shell is successfully coated over Fe3O4 nanospheres, and the thickness of the silica shell could be easily controlled in the range from 5 to 15 nm by adjusting the reaction parameters. X-ray diffraction data were employed to confirm the formation of highly crystalline and pure phase of a cubic inverse spinel structure for magnetite (Fe3O4) nanospheres. The magnetic properties of the as-synthesized Fe3O4 and Fe3O4/SiO2 core/shell nanospheres were measured at room temperature using vibrating sample magnetometer, and the results demonstrated a high magnetic moment values with superparamagnetic properties.

  11. SEPARATION OF CELL POPULATIONS BY SUPER-PARAMAGNETIC PARTICLES WITH CONTROLLED SURFACE FUNCTIONALITY

    Directory of Open Access Journals (Sweden)

    Lootsik M. D.

    2014-02-01

    Full Text Available The recognition and isolation of specific mammalian cells by the biocompatible polymer coated super-paramagnetic particles with determined surface functionality were studied. The method of synthesis of nanoscaled particles on a core of iron III oxide (Fe2O3, magemit coated with a polymer shell containing reactive oligoperoxide groups for attachment of ligands is described. By using the developed superparamagnetic particles functionalized with peanut agglutinin (PNA we have separated the sub-populations of PNA+ and PNA– cells from ascites of murine Nemeth-Kellner lymphoma. In another type of experiment, the particles were opsonized with proteins of the fetal calf serum that improved biocompatibility of the particles and their ingestion by cultivated murine macrophages J774.2. Macrophages loaded with the particles were effeciently separated from the particles free cells by using the magnet. Thus, the developed surface functionalized superparamagnetic particles showed to be a versatile tool for cell separation independent on the mode of particles’ binding with cell surface or their engulfment by the targeted cells.

  12. Mitoxantrone Loaded Superparamagnetic Nanoparticles for Drug Targeting: A Versatile and Sensitive Method for Quantification of Drug Enrichment in Rabbit Tissues Using HPLC-UV

    Directory of Open Access Journals (Sweden)

    Rainer Tietze

    2010-01-01

    Full Text Available In medicine, superparamagnetic nanoparticles bound to chemotherapeutics are currently investigated for their feasibility in local tumor therapy. After intraarterial application, these particles can be accumulated in the targeted area by an external magnetic field to increase the drug concentration in the region of interest (Magnetic-Drug-Targeting. We here present an analytical method (HPLC-UV, to detect pure or ferrofluid-bound mitoxantrone in a complex matrix even in trace amounts in order to perform biodistribution studies. Mitoxantrone could be extracted in high yields from different tissues. Recovery of mitoxantrone in liver tissue (5000 ng/g was 76±2%. The limit of quantification of mitoxantrone standard was 10 ng/mL ±12%. Validation criteria such as linearity, precision, and stability were evaluated in ranges achieving the FDA requirements. As shown for pilot samples, biodistribution studies can easily be performed after application of pure or ferrofluid-bound mitoxantrone.

  13. Dual contrast enhanced magnetic resonance imaging of the liver with superparamagnetic iron oxide followed by gadolinium for lesion detection and characterization

    International Nuclear Information System (INIS)

    Kubaska, Samantha; Sahani, Dushyant V.; Saini, Sanjay; Hahn, Peter F.; Halpern, Elkan

    2001-01-01

    AIM: Iron oxide contrast agents are useful for lesion detection, and extracellular gadolinium chelates are advocated for lesion characterization. We undertook a study to determine if dual contrast enhanced liver imaging with sequential use of ferumoxides particles and gadolinium (Gd)-DTPA can be performed in the same imaging protocol. MATERIALS AND METHODS: Sixteen patients underwent dual contrast magnetic resonance imaging (MRI) of the liver for evaluation of known/suspected focal lesions which included, metastases (n = 5), hepatocellular carcinoma (HCC;n = 3), cholangiocharcinoma(n = 1) and focal nodular hyperplasia (FNH;n = 3). Pre- and post-iron oxide T1-weighted gradient recalled echo (GRE) and T2-weighted fast spin echo (FSE) sequences were obtained, followed by post-Gd-DTPA (0.1 mmol/kg) multi-phase dynamic T1-weighted out-of-phase GRE imaging. Images were analysed in a blinded fashion by three experts using a three-point scoring system for lesion conspicuity on pre- and post-iron oxide T1 images as well as for reader's confidence in characterizing liver lesions on post Gd-DTPA T1 images. RESULTS: No statistically significant difference in lesion conspicuity was observed on pre- and post-iron oxide T1-GRE images in this small study cohort. The presence of iron oxide did not appreciably diminish image quality of post-gadolinium sequences and did not prevent characterization of liver lesions. CONCLUSION: Our results suggest that characterization of focal liver lesion with Gd-enhanced liver MRI is still possible following iron oxide enhanced imaging. Kubaska, S. et al. (2001)

  14. Development and characterization of superparamagnetic coatings

    Directory of Open Access Journals (Sweden)

    Kuschnerus I.

    2015-09-01

    Full Text Available Since 2005, Magnetic Particle Imaging (MPI is handled as a key technology with great potential in medical applications as an imaging method [1]. The superparamagnetic iron oxide nanoparticles (SPIONs which are already used as a tracer in MPI, combined with various polymers, are being investigated in order to enhance this potential. A combination of polymers such as polyethylene (PE and polyurethane (PU and SPIONs could be used as a coating for medical devices, or added to semi-rigid polyurethane for the production of surgical instruments [2]. This would be of great interest, since the method provides high sensitivity with simultaneous high spatial resolution and three-dimensional imaging in real time. Therefore various superparamagnetic coatings were developed, tested and characterized. Finally SPIONs and various polymers were combined directly and used for MPI-compatible models.

  15. Evaluation of Porcine Pancreatic Islets Transplanted in the Kidney Capsules of Diabetic Mice Using a Clinically Approved Superparamagnetic Iron Oxide (SPIO) and a 1.5T MR Scanner

    International Nuclear Information System (INIS)

    Kim, Hoe Suk; Kim, Hyoung Su; Park, Kyong Soo; Moon, Woo Kyung

    2010-01-01

    To evaluate transplanted porcine pancreatic islets in the kidney capsules of diabetic mice using a clinically approved superparamagnetic iron oxide (SPIO) and a 1.5T MR scanner. Various numbers of porcine pancreatic islets labeled with Resovist, a carboxydextran-coated SPIO, were transplanted into the kidney capsules of normal mice and imaged with a 3D FIESTA sequence using a 1.5T clinical MR scanner. Labeled (n = 3) and unlabeled (n = 2) islets were transplanted into the kidney capsules of streptozotocin-induced diabetic mice. Blood glucose levels and MR signal intensities were monitored for 30 days post-transplantation. There were no significant differences in viability or insulin secretion between labeled and unlabeled islets. A strong correlation (γ 2 > 0.94) was evident between the number of transplanted islets and T 2 relaxation times quantified by MRI. Transplantation with labeled or unlabeled islets helped restore normal sustained glucose levels in diabetic mice, and nephrectomies induced the recurrence of diabetes. The MR signal intensity of labeled pancreatic islets decreased by 80% over 30 days. The transplantation of SPIO-labeled porcine islets into the kidney capsule of diabetic mice allows to restore normal glucose levels, and these islets can be visualized and quantified using a 1.5T clinical MR scanner

  16. Detection of hepatic metastases by superparamagnetic iron oxide-enhanced MR imaging: prospective comparison between 1.5-T and 3.0-T images in the same patients

    International Nuclear Information System (INIS)

    Sofue, Keitaro; Miyake, Mototaka; Sakurada, Aine; Arai, Yasuaki; Tsurusaki, Masakatsu; Sugimura, Kazuro

    2010-01-01

    To prospectively compare the diagnostic performance of superparamagnetic iron oxide (SPIO)-enhanced magnetic resonance (MR) imaging at 3.0 T and 1.5 T for detection of hepatic metastases. A total of 28 patients (18 men, 10 women; mean age, 61 years) with 80 hepatic metastases were prospectively examined by SPIO-enhanced MR imaging at 3.0 T and 1.5 T. T1-weighted gradient-recalled-echo (GRE) images, T2*-weighted GRE images and T2-weighted fast spin-echo (SE) images were acquired. The tumour-to-liver contrast-to-noise ratio (CNR) of the lesions was calculated. Three observers independently reviewed each image. Image artefacts and overall image quality were analysed, sensitivity and positive predictive value for the detection of hepatic metastases were calculated, and diagnostic accuracy using the receiver-operating characteristics (ROC) method was evaluated. The tumour-to-liver CNRs were significantly higher at 3.0 T. Chemical shift and motion artefact were more severe, and overall image quality was worse on T2-weighted fast SE images at 3.0 T. Overall image quality of the two systems was similar on T1-weighted GRE images and T2*-weighted GRE images. Sensitivity and area under the ROC curve for the 3.0-T image sets were significantly higher. SPIO-enhanced MR imaging at 3.0 T provided better diagnostic performance for detection of hepatic metastases than 1.5 T. (orig.)

  17. Brain tumor magnetic targeting and biodistribution of superparamagnetic iron oxide nanoparticles linked with 70-kDa heat shock protein study by nonlinear longitudinal response

    International Nuclear Information System (INIS)

    Shevtsov, Maxim A.; Nikolaev, Boris P.; Ryzhov, Vyacheslav A.; Yakovleva, Ludmila Y.; Dobrodumov, Anatolii V.; Marchenko, Yaroslav Y.; Margulis, Boris A.; Pitkin, Emil; Guzhova, Irina V.

    2015-01-01

    Brain tumor targeting efficiency and biodistribution of the superparamagnetic nanoparticles conjugated with heat shock protein Hsp70 (SPION–Hsp70) were evaluated in experimental glioma model. Synthesized conjugates were characterized using the method of longitudinal nonlinear response of magnetic nanoparticles to a weak ac magnetic field with measurements of second harmonic of magnetization (NLR-M 2 ). Cellular interaction of magnetic conjugates was analyzed in 9L glioma cell culture. The biodistribution of the nanoparticles and their accumulation in tumors was assessed by the latter approach as well. The efficacy of Hsp70-conjugates for contrast enhancement in the orthotopic model of 9L glioma was assessed by MR imaging (11 T). Magnetic nanoparticles conjugated with Hsp70 had the relaxivity properties of the MR-negative contrast agents. Morphological observation and cell viability test demonstrated good biocompatibility of Hsp70-conjugates. Analysis of the T 2 -weighted MR scans in tumor-bearing rats demonstrated the high efficacy of Hsp70-conjugates in contrast enhancement of the glioma in comparison to non-conjugated nanoparticles. High contrast enhancement of the glioma was provided by the accumulation of the SPION–Hsp70 particles in the glioma tissue (as shown by the histological assay). Biodistribution analysis by NLR-M 2 measurements evidenced the many-fold increase (~40) in the tumor-to-normal brain uptake ratio in the Hsp70-conjugates treated animals. Biodistribution pattern of Hsp70-decorated nanoparticles differed from that of non-conjugated SPIONs. Coating of the magnetic nanoparticles with Hsp70 protein enhances the tumor-targeting ability of the conjugates that could be applied in the MR imaging of the malignant brain tumors. - Highlights: • Second-harmonic nonlinear magnetic response is used for biodistribution analysis. • NLR-M 2 ensures high sensibility in detection of SPIONs in tissue. • SPION–Hsp70 conjugates effectively target the

  18. Effects of casting defects, matrix structures and loading conditions on the fatigue strength of ductile irons

    Directory of Open Access Journals (Sweden)

    Endo Masahiro

    2014-06-01

    Full Text Available A novel method is presented to estimate the lower bound of the scatter in fatigue limit of ductile iron based upon the information of microstructural in homogeneities and loading conditions. The predictive capability of the method was verified by comparing to the experimental data obtained by the rotating-bending, torsion and combined tension-torsion fatigue tests for ductile irons with ferritic, pearlitic and bulls-eye (ferritic/pearlitic microstructures.

  19. Effect of Ba in the glass characteristics of cesium loaded iron phosphate glasses

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Asuvathraman, R.; Vasudeva Rao, P.R.

    2015-01-01

    Radioactive 137 Cs extracted from high level nuclear waste, when immobilized in a suitable matrix can be used as a γsource in medical industry. Iron phosphate glass (IPG) is one of a suitable matrix for the immobilization of 137 Cs prior to the immobilization of 137 Cs in IPG, it is essential to optimize the immobilization conditions using natural (inactive) cesium. Glass characteristics of inactive Cs loaded iron phosphate glasses were already explored in our earlier studies. However, the change in glass characteristics of 137 Cs loaded iron phosphate glass to 137 Ba loaded iron phosphate glass need to be studied before the immobilization of 137 Cs in iron phosphate glass as 137 Cs transforms to 137 Ba due to nuclear transmutation ( 137 Cs(β,γ) 137 Ba). This paper reports the studies on such a behaviour by incorporating inactive Ba in cesium loaded iron phosphate glasses. Cs and Ba loaded iron phosphate glasses were prepared by melt quench technique in air using appropriate amounts of Fe 2 O 3 , NH 4 H 2 PO 4 , Ba(OH) 2.8 H 2 O and Cs 2 CO 3 . The chemicals were added such that the glass formed possesses the batch composition of (a) 21.4 wt. % Fe 2 O 3 -45 wt. % Cs 2 O-5 wt % BaO-P 2 O 5 (henceforth referred as IP50Cs45Ba5); (b) 21.4 wt. % Fe 2 O 3 -25 wt. % Cs 2 O-25 wt % BaO-P 2 O5 (henceforth referred as IP50Cs25Ba25). The thermal expansion measurements were also carried out using a home-built quartz push-rod dilatometer. The data related to change in thermal expansion behaviour, glass forming ability, glass stability and structural changes in phosphate network due to the partial replacement of Cs with Ba will also be discussed. (author)

  20. Effective Shear Viscosity of Iron under Shock-Loading Condition

    International Nuclear Information System (INIS)

    Ma Xiao-Juan; Liu Fu-Sheng; Sun Yan-Yun; Zhang Ming-Jian; Peng Xiao-Juan; Li Yong-Hong

    2011-01-01

    We combine the flyer-impact experiment and improve the finite difference method to solve whether the shear viscosity coefficient of shock iron is more reliable. We find that the numerical simulated profile agrees well with the measured one, from which the determined effective shear viscosity coefficients of shocked iron are 3000 ± 100 Pa·s and 4000 ± 100 Pa·s, respectively, at 103 GPa and 159 GPa. These values are more than 2000 ± 300 Pa·s of Li Y L et al.[Chin. Phys. Lett. 26 (2009) 038301] Our values are more reasonable because they are obtained from a comprehensive simulation for the full-shocked perturbation evolving process. (fundamental areas of phenomenology(including applications))

  1. Brain tumor magnetic targeting and biodistribution of superparamagnetic iron oxide nanoparticles linked with 70-kDa heat shock protein study by nonlinear longitudinal response

    Energy Technology Data Exchange (ETDEWEB)

    Shevtsov, Maxim A., E-mail: shevtsov-max@mail.ru [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation); A.L. Polenov Russian Research Scientific Institute of Neurosurgery, Mayakovsky str. 12, St. Petersburg 191014 (Russian Federation); Nikolaev, Boris P. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Ryzhov, Vyacheslav A. [Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina 188300 (Russian Federation); Yakovleva, Ludmila Y. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Dobrodumov, Anatolii V. [Institute of Macromolecular Compounds of the Russian Academy of Sciences (RAS), Bolshoi pr. 31, St. Petersburg 199004 (Russian Federation); Marchenko, Yaroslav Y. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Margulis, Boris A. [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation); Pitkin, Emil [The Wharton School, University of Pennsylvania, 3730 Walnut St., Philadelphia, PA 19104 (United States); Guzhova, Irina V. [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation)

    2015-08-15

    Brain tumor targeting efficiency and biodistribution of the superparamagnetic nanoparticles conjugated with heat shock protein Hsp70 (SPION–Hsp70) were evaluated in experimental glioma model. Synthesized conjugates were characterized using the method of longitudinal nonlinear response of magnetic nanoparticles to a weak ac magnetic field with measurements of second harmonic of magnetization (NLR-M{sub 2}). Cellular interaction of magnetic conjugates was analyzed in 9L glioma cell culture. The biodistribution of the nanoparticles and their accumulation in tumors was assessed by the latter approach as well. The efficacy of Hsp70-conjugates for contrast enhancement in the orthotopic model of 9L glioma was assessed by MR imaging (11 T). Magnetic nanoparticles conjugated with Hsp70 had the relaxivity properties of the MR-negative contrast agents. Morphological observation and cell viability test demonstrated good biocompatibility of Hsp70-conjugates. Analysis of the T{sub 2}-weighted MR scans in tumor-bearing rats demonstrated the high efficacy of Hsp70-conjugates in contrast enhancement of the glioma in comparison to non-conjugated nanoparticles. High contrast enhancement of the glioma was provided by the accumulation of the SPION–Hsp70 particles in the glioma tissue (as shown by the histological assay). Biodistribution analysis by NLR-M{sub 2} measurements evidenced the many-fold increase (~40) in the tumor-to-normal brain uptake ratio in the Hsp70-conjugates treated animals. Biodistribution pattern of Hsp70-decorated nanoparticles differed from that of non-conjugated SPIONs. Coating of the magnetic nanoparticles with Hsp70 protein enhances the tumor-targeting ability of the conjugates that could be applied in the MR imaging of the malignant brain tumors. - Highlights: • Second-harmonic nonlinear magnetic response is used for biodistribution analysis. • NLR-M{sub 2} ensures high sensibility in detection of SPIONs in tissue. • SPION–Hsp70 conjugates

  2. Shock loading influence on mechanical behavior of high purity iron

    International Nuclear Information System (INIS)

    Buy, Francois; Voltz, Christophe

    2004-01-01

    This paper proposes the analysis of shock wave effects for high purity iron. The method developed is based on the characterization of the mechanical behavior of as received and shocked material. Shock effect is generated through plate impact tests performed in the range of 4 GPa to 39 GPa on a single stage light gas gun or a powder gun. Therefore, as-received and impacted materials are characterized. A formalism proposed by J.R.Klepaczko and based on physical relations has been adopted to describe stress strain curves

  3. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    Hosny KM

    2015-01-01

    Full Text Available Khaled Mohamed Hosny,1,2 Zainy Mohammed Banjar,3 Amani H Hariri,4 Ali Habiballah Hassan5 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt; 3Department of Clinical Biochemistry, Faculty of medicine, King Abdulaziz University, Jeddah, Saudi Arabia; 4Consultant Obstetrics and Gynecology, Hera Genaral Hospital, Makkah, Saudi Arabia; 5Department of Orthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: According to the World Health Organization, 46% of the world’s children suffer from anemia, which is usually treated with iron supplements such as ferrous sulfate. The aim of this study was to prepare iron as solid lipid nanoparticles, in order to find an innovative way for alleviating the disadvantages associated with commercially available tablets. These limitations include adverse effects on the digestive system resulting in constipation and blood in the stool. The second drawback is the high variability in the absorption of iron and thus in its bioavailability. Iron solid lipid nanoparticles (Fe-SLNs were prepared by hot homogenization/ultrasonication. Solubility of ferrous sulfate in different solid lipids was measured, and effects of process variables such as the surfactant type and concentration, homogenization and ultrasonication times, and charge-inducing agent on the particle size, zeta potential, and encapsulation efficiency were determined. Furthermore, in vitro drug release and in vivo pharmacokinetics were studied in rabbits. Results indicated that Fe-SLNs consisted of 3% Compritol 888 ATO, 1% Lecithin, 3% Poloxamer 188, and 0.2% dicetylphosphate, with an average particle size of 25 nm with 92.3% entrapment efficiency. In vivo pharmacokinetic study revealed more than fourfold enhanced bioavailability. In

  4. Design and preliminary assessment of 99mTc-labeled ultrasmall superparamagnetic iron oxide-conjugated bevacizumab for single photon emission computed tomography/magnetic resonance imaging of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Yanzhao Zhao; Hui Tan; Bing Wu; Pengcheng Hu; Pengyue Wu; Yushen Gu; Dengfeng Cheng; Hongcheng Shi; Qi Yao; Chunfu Zhang

    2014-01-01

    Hepatocellular carcinoma (HCC) has a very high incidence and mortality. Early diagnosis and timely treatments are therefore required to improve the quality of life and survival rate of HCC patients. Here, we developed a vascular endothelial growth factor (VEGF)-based multimodality imaging agent for single photon emission computed tomography (SPECT), computed tomography (CT) and magnetic resonance imaging (MRI) and used it to assess HCC mice and explore the combinative value of CT/MRI-based morphological imaging and SPECT functional imaging. HCC targeting with 125 I-labeled bevacizumab monoclonal antibody (mAb) was examined using SPECT/CT in HepG2 tumor-bearing mice after intravenous mAb injection. Based on this, an integrated, bimodal, VEGF-targeted, ultrasmall superparamagnetic iron oxide (USPIO)-conjugated 99m Tc-labeled bevacizumab mAb was synthesized to increase tumor penetration and accumulations. The in vivo pharmacokinetics and HepG2 tumor targeting were explored through in vivo planar imaging and SPECT/CT using a mouse model of HepG2 liver cancer. The specificity of the radiolabeled nanoparticles for HepG2 HCC was verified using in vitro immunohistochemistry and Prussian blue staining. With diethylenetriamine pentaacetic acid as a bifunctional chelating agent, USPIO-bevacizumab achieved a 99m Tc labeling efficiency of >90 %. The in vivo imaging results also exhibited the targeting of USPIO on HepG2 HCC. The specificity of these results was confirmed using in vitro immunohistochemistry and Prussian blue staining. Our preliminary findings showed the potential of USPIO as an imaging agent for the SPECT/MRI of HepG2 HCC. (author)

  5. Lymph node metastases from head and neck squamous cell carcinoma: MR imaging with ultrasmall superparamagnetic iron oxide particles (Sinerem MR) - results of a phase-III multicenter clinical trial

    International Nuclear Information System (INIS)

    Sigal, R.; Viala, J.; Bosq, J.; Vogl, T.; Mack, M.; Casselman, J.; Depondt, M.; Mattelaer, C.; Moulin, G.; Petit, P.; Champsaur, P.; Veillon, F.; Riehm, S.; Dadashitazehozi, Y.; Hermans, R.; de Jaegere, T.; Marchal, G.; Dubrulle, F.; Chevalier, D.; Lemaitre, L.; Kubiak, C.; Helmberger, R.; Halimi, P.

    2002-01-01

    The aim of this study was to compare the clinical usefulness of ultrasmall superparamagnetic iron oxide (USPIO) MR contrast media (Sinerem, Guerbet Laboratories, Aulnay-sous-Bois, France) with precontrast MRI in the diagnosis of metastatic lymph nodes in patients with head and neck squamous cell carcinoma, using histology as gold standard. Eighty-one previously untreated patients were enrolled in a multicenter phase-III clinical trial. All patients had a noncontrast MR, a Sinerem MR, and surgery within a period of 15 days. The MR exams were analyzed both on site and by two independent radiologists (centralized readers). Correlation between histology and imaging was done per lymph node groups, and per individual lymph nodes when the short axis was ≥10 mm. For individual lymph nodes, Sinerem MR showed a high sensitivity (≥88%) and specificity (≥77%). For lymph node groups, the sensitivity was ≥59% and specificity ≥81%. False-positive results were partially due to inflammatory nodes; false-negative results from the presence of undetected micrometastases. Errors of interpretation were also related to motion and/or susceptibility artifacts and problems of zone assignment. Sinerem MR had a negative predictive value (NPV) ≥90% and a positive predictive value (PPV) ≥51%. The specificity and PPV of Sinerem MR were better than those of precontrast MR. Precontrast MR showed an unexpectedly high sensitivity and NPV which were not increased with Sinerem MR. The potential contribution of Sinerem MR still remains limited by technical problems regarding motion and susceptibility artifacts and spatial resolution. It is also noteworthy that logistical problems, which could reduce the practical value of Sinerem MR, will be minimized in the future since Sinerem MR alone performed as good as the combination of precontrast and Sinerem MR. (orig.)

  6. Lymph node metastases from head and neck squamous cell carcinoma: MR imaging with ultrasmall superparamagnetic iron oxide particles (Sinerem MR) - results of a phase-III multicenter clinical trial

    Energy Technology Data Exchange (ETDEWEB)

    Sigal, R.; Viala, J.; Bosq, J. [Department of Radiology, Institut Gustave Roussy, Villejuif (France); Vogl, T.; Mack, M. [Institut fuer Diagnostische und Interventionelle Radiologie, Universitaetsklinikum, Frankfurt Main (Germany); Casselman, J.; Depondt, M.; Mattelaer, C. [Department of Radiology, Brugge (Belgium); Moulin, G.; Petit, P.; Champsaur, P. [Hopital de la Timone, Marseille (France); Veillon, F.; Riehm, S.; Dadashitazehozi, Y. [Hopital de Hautepierre, Avenue Moliere, 67098 Strasbourg (France); Hermans, R.; de Jaegere, T.; Marchal, G. [Department of Radiology, University Hospitals Gasthuisberg, KU Leuven, Heerestraat 49, 3000 Leuven (Belgium); Dubrulle, F.; Chevalier, D.; Lemaitre, L. [Hopital Huriez, 1 place Verdun, 59037 Lille (France); Kubiak, C.; Helmberger, R.; Halimi, P.

    2002-05-01

    The aim of this study was to compare the clinical usefulness of ultrasmall superparamagnetic iron oxide (USPIO) MR contrast media (Sinerem, Guerbet Laboratories, Aulnay-sous-Bois, France) with precontrast MRI in the diagnosis of metastatic lymph nodes in patients with head and neck squamous cell carcinoma, using histology as gold standard. Eighty-one previously untreated patients were enrolled in a multicenter phase-III clinical trial. All patients had a noncontrast MR, a Sinerem MR, and surgery within a period of 15 days. The MR exams were analyzed both on site and by two independent radiologists (centralized readers). Correlation between histology and imaging was done per lymph node groups, and per individual lymph nodes when the short axis was {>=}10 mm. For individual lymph nodes, Sinerem MR showed a high sensitivity ({>=}88%) and specificity ({>=}77%). For lymph node groups, the sensitivity was {>=}59% and specificity {>=}81%. False-positive results were partially due to inflammatory nodes; false-negative results from the presence of undetected micrometastases. Errors of interpretation were also related to motion and/or susceptibility artifacts and problems of zone assignment. Sinerem MR had a negative predictive value (NPV) {>=}90% and a positive predictive value (PPV) {>=}51%. The specificity and PPV of Sinerem MR were better than those of precontrast MR. Precontrast MR showed an unexpectedly high sensitivity and NPV which were not increased with Sinerem MR. The potential contribution of Sinerem MR still remains limited by technical problems regarding motion and susceptibility artifacts and spatial resolution. It is also noteworthy that logistical problems, which could reduce the practical value of Sinerem MR, will be minimized in the future since Sinerem MR alone performed as good as the combination of precontrast and Sinerem MR. (orig.)

  7. Determination of Conjugation Efficiency of Antibodies and Proteins to the Superparamagnetic Iron Oxide Nanoparticles by Capillary Electrophoresis with Laser-Induced Fluorescence Detection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F.-H.; Yoshitake, Takashi [Karolinska Institutet, Department of Neuroscience (Sweden); Kim, Do-Kyung; Muhammed, Mamoun [Royal Institute of Technology, Materials Chemistry Division (Sweden); Bjelke, Boerje [MRI-Center, Experimental Unit, Karolinska Institutet (Sweden); Kehr, Jan [Karolinska Institutet, Department of Neuroscience (Sweden)], E-mail: Jan.Kehr@neuro.ki.se

    2003-04-15

    The method based on capillary electrophoresis with laser-induced fluorescence detection (CE/LIF) was developed for determination of magnetic iron oxide nanoparticles (hydrodynamic diameters of 100 nm) functionalized with molecules containing primary amino groups. The magnetic nanoparticles with carboxylic or aminopropyl-trimethoxysilane groups at their surface were conjugated to the model proteins (bovine serum albumin, BSA; streptavidin or goat anti-rabbit immunoglobulin G, IgG) using carbodiimide as a zero-length cross-linker.The nanoparticle-protein conjugates (hydrodynamic diameter 163-194 nm) were derivatized with naphthalene-2,3-dicarboxaldehyde reagent and separated by CE/LIF with a helium-cadmium laser (excitation at 442 nm, emission at 488 nm). The separations were carried out by using a fused-silica capillary (effective length 48 cm, inner diameter 75 um) and 100 mM sodium borate buffer (pH 9.2), the potential was 30 kV. The detection limit for BSA-conjugate was 1.3 pg/10 nl, i.e. about 20 amol. The present method provides an efficient and fast tool for sensitive determination of the efficacy of biomolecular functionalization of magnetic nanoparticles. The CE/LIF technique requires only negligible sample volumes for analysis, which is especially suitable for controlling the process of preparation of functionalized nanoparticles with unique properties aimed to be used for diagnostic or therapeutic purposes.

  8. Brain transcriptome perturbations in the Hfe(-/-) mouse model of genetic iron loading.

    Science.gov (United States)

    Johnstone, Daniel; Graham, Ross M; Trinder, Debbie; Delima, Roheeth D; Riveros, Carlos; Olynyk, John K; Scott, Rodney J; Moscato, Pablo; Milward, Elizabeth A

    2012-04-11

    Severe disruption of brain iron homeostasis can cause fatal neurodegenerative disease, however debate surrounds the neurologic effects of milder, more common iron loading disorders such as hereditary hemochromatosis, which is usually caused by loss-of-function polymorphisms in the HFE gene. There is evidence from both human and animal studies that HFE gene variants may affect brain function and modify risks of brain disease. To investigate how disruption of HFE influences brain transcript levels, we used microarray and real-time reverse transcription polymerase chain reaction to assess the brain transcriptome in Hfe(-/-) mice relative to wildtype AKR controls (age 10 weeks, n≥4/group). The Hfe(-/-) mouse brain showed numerous significant changes in transcript levels (pgenes relating to transcriptional regulation (FBJ osteosarcoma oncogene Fos, early growth response genes), neurotransmission (glutamate NMDA receptor Grin1, GABA receptor Gabbr1) and synaptic plasticity and memory (calcium/calmodulin-dependent protein kinase IIα Camk2a). As previously reported for dietary iron-supplemented mice, there were altered levels of transcripts for genes linked to neuronal ceroid lipofuscinosis, a disease characterized by excessive lipofuscin deposition. Labile iron is known to enhance lipofuscin generation which may accelerate brain aging. The findings provide evidence that iron loading disorders can considerably perturb levels of transcripts for genes essential for normal brain function and may help explain some of the neurologic signs and symptoms reported in hemochromatosis patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A primary study on the phagocytic activity of Kupffer cells with superparamagnetic iron oxide particles enhanced MR imaging in a rat nonalcoholic steatohepatitis model

    International Nuclear Information System (INIS)

    Jiao Zhiyun; Li Cheng; Ma Zhanlong; Chen Wenjuan

    2010-01-01

    Objective: To investigate the feasibility of using superparamgnetic iron oxide (SPIO) as MRI contrast agent to assess rat nonalcoholic steatohepatitis Kupffer cells (KC) function. Methods: Twenty male SD rats were randomly divided into A and B groups, group A (n=10) was the experimental group fed high fat diet, group B (n=10) was the control group fed normal diet. After 8 weeks, plain MR and SPIO enhanced MR were performed in all the rats. Blood lipids were measured, and HE and Perl's blue staining in all livers specimen was done. The related results of the staining were analyzed with t test. Results: Group A TC and TG levels [(6.58 ± 1.25) and (1.53 ± 0.23) mmol/L respectively] were significantly higher than group B[(1.64 ± 0.22) and (0.55 ± 0.14) mmol/L respectively] (t=11.716 and 11.588, P 1 WI, ad statistically significant differences (t=-18.451 and -16.240, P 2 WI, T 2 WI and T 1 WI (t=10.745, 19.800, 39.168 and 92.785, P<0.01). Typical histological hepatic lesions of NASH were observed in group A, Perl's staining-positive particles in group A (2.33 ± 0.50) were fewer than in group B (4) (t=-10.000, P<0.01). Conclusion: The high-fat diet induced model of SD rats was close to the human NASH and was easy to establish. Clinical application of SPIO enhanced MR successfullly assessed the phagocytic activity of KC in the study, and it suggested that the pathogenesis of NASH was related to the decreased phagocytic activity of KC. (authors)

  10. The Association between Myocardial Iron Load and Ventricular Repolarization Parameters in Asymptomatic Beta-Thalassemia Patients

    Directory of Open Access Journals (Sweden)

    Mehmet Kayrak

    2012-01-01

    Full Text Available Previous studies have demonstrated impaired ventricular repolarization in patients with β-TM. However, the effect of iron overload with cardiac T2* magnetic resonance imaging (MRI on cardiac repolarization remains unclear yet. We aimed to examine relationship between repolarization parameters and iron loading using cardiac T2* MRI in asymptomatic β-TM patients. Twenty-two β-TM patients and 22 age- and gender-matched healthy controls were enrolled to the study. From the 12-lead surface electrocardiography, regional and transmyocardial repolarization parameters were evaluated manually by two experienced cardiologists. All patients were also undergone MRI for cardiac T2* evaluation. Cardiac T2* score <20 msec was considered as iron overload status. Of the QT parameters, QT duration, corrected QT interval, and QT peak duration were significantly longer in the β-TM group compared to the healthy controls. Tp−Te and Tp−Te dispersions were also significantly prolonged in β-TM group compared to healthy controls. (Tp-Te/QT was similar between groups. There was no correlation between repolarization parameters and cardiac T2* MRI values. In conclusion, although repolarization parameters were prolonged in asymptomatic β-TM patients compared with control, we could not find any relation between ECG findings and cardiac iron load.

  11. Superparamagnetic iron oxide polyacrylic acid coated γ-Fe{sub 2}O{sub 3} nanoparticles do not affect kidney function but cause acute effect on the cardiovascular function in healthy mice

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, Nina K., E-mail: nina.iversen@biology.au.dk [Zoophysiology, Department of Biological Sciences, Aarhus University (Denmark); Interdisciplinary Nanoscience Center, Aarhus University (Denmark); Frische, Sebastian [Department of Biomedicine, Aarhus University (Denmark); Thomsen, Karen [Interdisciplinary Nanoscience Center, Aarhus University (Denmark); Laustsen, Christoffer; Pedersen, Michael [MR Research Center, Aarhus University Hospital, Aarhus University (Denmark); Hansen, Pernille B.L.; Bie, Peter [Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark (Denmark); Fresnais, Jérome [Physicochimie des Electrolytes, Colloïdes et Sciences Analytiques (PECSA) UMR 7195 CNRS-UPMC-ESPCI, 4 place Jussieu, 75252 Paris Cedex 05 (France); Berret, Jean-Francois [Matière et Systèmes Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris (France); Baatrup, Erik [Zoophysiology, Department of Biological Sciences, Aarhus University (Denmark); Interdisciplinary Nanoscience Center, Aarhus University (Denmark); Wang, Tobias [Zoophysiology, Department of Biological Sciences, Aarhus University (Denmark)

    2013-01-15

    This study describes the distribution of intravenously injected polyacrylic acid (PAA) coated γ-Fe{sub 2}O{sub 3} NPs (10 mg kg{sup −1}) at the organ, cellular and subcellular levels in healthy BALB/cJ mice and in parallel addresses the effects of NP injection on kidney function, blood pressure and vascular contractility. Magnetic resonance imaging (MRI) and transmission electron microscopy (TEM) showed accumulation of NPs in the liver within 1 h after intravenous infusion, accommodated by intracellular uptake in endothelial and Kupffer cells with subsequent intracellular uptake in renal cells, particularly the cytoplasm of the proximal tubule, in podocytes and mesangial cells. The renofunctional effects of NPs were evaluated by arterial acid–base status and measurements of glomerular filtration rate (GFR) after instrumentation with chronically indwelling catheters. Arterial pH was 7.46 ± 0.02 and 7.41 ± 0.02 in mice 0.5 h after injections of saline or NP, and did not change over the next 12 h. In addition, the injections of NP did not affect arterial PCO{sub 2} or [HCO{sub 3}{sup −}] either. Twenty-four and 96 h after NP injections, the GFR averaged 0.35 ± 0.04 and 0.35 ± 0.01 ml min{sup −1} g{sup −1}, respectively, values which were statistically comparable with controls (0.29 ± 0.02 and 0.33 ± 0.1 ml{sup –1} min{sup –1} 25 g{sup –1}). Mean arterial blood pressure (MAP) decreased 12–24 h after NP injections (111.1 ± 11.5 vs 123.0 ± 6.1 min{sup −1}) associated with a decreased contractility of small mesenteric arteries revealed by myography to characterize endothelial function. In conclusion, our study demonstrates that accumulation of superparamagnetic iron oxide nanoparticles does not affect kidney function in healthy mice but temporarily decreases blood pressure. -- Highlights: ► PAA coated γ-Fe{sub 2}O{sub 3} nanoparticles were injected intravenously into healthy mice. ► We examine the distribution and physiological effects of

  12. Positive Contrast MRI Techniques for Visualization of Iron-Loaded Hernia Mesh Implants in Patients.

    Directory of Open Access Journals (Sweden)

    Alexander Ciritsis

    Full Text Available In MRI, implants and devices can be delineated via susceptibility artefacts. To discriminate susceptibility voids from proton-free structures, different positive contrast techniques were implemented. The purpose of this study was to evaluate a pulse sequence-based positive contrast technique (PCSI and a post-processing susceptibility gradient mapping algorithm (SGM for visualization of iron loaded mesh implants in patients.Five patients with iron-loaded MR-visible inguinal hernia mesh implants were examined at 1.5 Tesla. A gradient echo sequence (GRE; parameters: TR: 8.3ms; TE: 4.3ms; NSA:2; FA:20°; FOV:350mm² and a PCSI sequence (parameters: TR: 25ms; TE: 4.6ms; NSA:4; FA:20°; FOV:350mm² with on-resonant proton suppression were performed. SGM maps were calculated using two algorithms. Image quality and mesh delineation were independently evaluated by three radiologists.On GRE, the iron-loaded meshes generated distinct susceptibility-induced signal voids. PCSI exhibited susceptibility differences including the meshes as hyperintense signals. SGM exhibited susceptibility differences with positive contrast. Visually, the different algorithms presented no significant differences. Overall, the diagnostic value was rated best in GRE whereas PCSI and SGM were barely "sufficient".Both "positive contrast" techniques depicted implanted meshes with hyperintense signal. SGM comes without additional acquisition time and can therefore be utilized in every patient.

  13. Structure and superparamagnetic behaviour of magnetite nanoparticles in cellulose beads

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Jose R., E-mail: correa@fq.uh.cu [Department of General Chemistry, Faculty of Chemistry, University of Havana, Zapata and G, Havana City 10400 (Cuba); Bordallo, Eduardo [Sugar Cane-Cellulose Research Center, Cuba-9, Quivican (Cuba); Canetti, Dora [Department of Inorganic Chemistry, Faculty of Chemistry, University of Havana, Zapata and G, Havana City 10400 (Cuba); Leon, Vivian [Sugar Cane-Cellulose Research Center, Cuba-9, Quivican (Cuba); Otero-Diaz, Luis C. [Department of Inorganic Chemistry-1, Complutense University of Madrid, Madrid 28040 (Spain); Electron Microscopy Center, Complutense University of Madrid, Madrid 28040 (Spain); Negro, Carlos [Chemical Engineering Department, Complutense University of Madrid, Madrid 28040 (Spain); Gomez, Adrian [Electron Microscopy Center, Complutense University of Madrid, Madrid 28040 (Spain); Saez-Puche, Regino [Department of Inorganic Chemistry-1, Complutense University of Madrid, Madrid 28040 (Spain)

    2010-08-15

    Superparamagnetic magnetite nanoparticles were obtained starting from a mixture of iron(II) and iron(III) solutions in a preset total iron concentration from 0.04 to 0.8 mol l{sup -1} with ammonia at 25 and 70 {sup o}C. The regeneration of cellulose from viscose produces micrometrical spherical cellulose beads in which synthetic magnetite were embedded. The characterization of cellulose-magnetite beads by X-ray diffraction, Scanning and Transmission Electron Microscopy and magnetic measurement is reported. X-ray diffraction patterns indicate that the higher is the total iron concentration and temperature the higher is the crystal size of the magnetite obtained. Transmission Electron Microscopy studies of cellulose-magnetite beads revealed the distribution of magnetite nanoparticles inside pores of hundred nanometers. Magnetite as well as the cellulose-magnetite composites exhibit superparamagnetic characteristics. Field cooling and zero field cooling magnetic susceptibility measurements confirm the superparamagnetic behaviour and the blocking temperature for the magnetite with a mean size of 12.5 nm, which is 200 K.

  14. Uranium fate in wetland mesocosms: Effects of plants at two iron loadings with different pH values

    Science.gov (United States)

    Small-scale continuous flow wetland mesocosms (~0.8 L) were used to evaluate how plant roots under different iron loadings affect uranium (U) mobility. When significant concentrations of ferrous iron (Fe) were present at circumneutral pH values, U concentrations in root exposed ...

  15. Synthesis and characterization of superparamagnetic polymeric nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Renato; Fraceto, Leonardo Fernandes, E-mail: renato.grillo@ymail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil); Gallo, Juan; Grando Stroppa, Daniel; Carbo-Argibay, Enrique; Banõbre-Lopez, Manuel [International Iberian Nanotechnology Laboratory, Braga (Portugal); Lima, Renata de [Universidade de Sorocaba (UNISO), SP (Brazil)

    2016-07-01

    Full text: A wide variety of applications have been considered for superparamagnetic iron oxide nanoparticles (SPIONs), such as magnetic resonance imaging, cancer therapy and remediation of contaminants [1].Polymeric nanostructures (PNS) have also received great interest as suitable encapsulating agents and carriers due to their ability to influence the delivery profile. Hybrid nanosystems have been explored as a synergic approach that combines the modified active release induced by the polymer encapsulation and the intrinsic properties from the inorganic nanoparticles [2]. In this context, poly-ε-caprolactone nanocapsules containing different concentration of ∼8 nm superparamagnetic oleic acid coated magnetite (Fe{sub 3}O{sub 4}@OA) nanoparticles were developed. Successful incorporation of the magnetic nanoparticles was confirmed by transmission electron microscopy coupled with energy dispersive X-ray (TEM-EDX). Results showed that they accumulate preferentially in the outer organic membrane of the PNS. On the other hand, scanning electron microscopy and dynamic light scattering measurements showed a significant increase in particle size from ca. 400 to 800 nm. Magnetic measurements as a function of the applied magnetic field and temperature were performed in both vibrant sample (VSM) and superconducting quantum interference device magnetometers (SQUID). Hysteresis loops showed a superparamagnetic behavior with increasing saturation magnetization as magnetite concentration was progressively incorporated into the PNS. Zero-field cooled and field-cooled (ZFC-FC) magnetic curves showed a shift of the blocking temperature to higher temperatures as the content of magnetite increases in the capsules. These results are promising and contribute to a better understanding of the interaction between magnetic nanoparticles and PNS. References: [1] L. Zhang, W. Dong, H. Sun. Nanoscale 5, 7664-7684 (2013) [2] K.T. Nguyen and Y.L. Zhao. Acc. Chem. Res. 48, 3016-3025 (2015

  16. Doxorubicin loaded PEG-b-poly(4-vinylbenzylphosphonate) coated magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Hałupka-Bryl, Magdalena, E-mail: magdalenahalupka@op.pl [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Division of Medical Physics, Faculty of Physics, Adam Mickiewicz University, Poznań (Poland); Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba (Japan); Bednarowicz, Magdalena [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Division of Medical Physics, Faculty of Physics, Adam Mickiewicz University, Poznań (Poland); Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba (Japan); Dobosz, Bernadeta; Krzyminiewski, Ryszard [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Division of Medical Physics, Faculty of Physics, Adam Mickiewicz University, Poznań (Poland); Zalewski, Tomasz [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Wereszczyńska, Beata [Department of Macromolecular Physics, Adam Mickiewicz University, Poznań (Poland); Nowaczyk, Grzegorz; Jarek, Marcin [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Nagasaki, Yukio [Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba (Japan); Master’s School of Medicinal Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba (Japan); International Centre for Materials Nanoarchitectonics Satellite (WPI-MANA), National Institute For Materials Sciences (NIMS) and University of Tsukuba (Japan)

    2015-06-15

    Due to their unique physical properties, superparamagnetic iron oxide nanoparticles are increasingly used in medical applications. They are very useful carriers for delivering antitumor drugs in targeted cancer treatment. Magnetic nanoparticles with chemiotherapeutic were synthesized by coprecipitation method followed by coating with biocompatible polymer. The aim of this work is to characterize physical and magnetic properties of synthesized nanoparicles. Characterization was carried out using EPR, HRTEM, X-ray diffraction, SQUID and NMR methods. The present findings show that synthesized nanosystem is promising tool for potential magnetic drug delivery. - Highlights: • Synthesized PEG-PIONs/DOX have excellent physical properties. • PEG-PIONs/DOX have a potential to in vivo application. • PEG-PIONs/DOX could be used as drug delivery system as well as contrast agents.

  17. Effect of iron oxide loading on magnetoferritin structure in solution as revealed by SAXS and SANS.

    Science.gov (United States)

    Melníková, L; Petrenko, V I; Avdeev, M V; Garamus, V M; Almásy, L; Ivankov, O I; Bulavin, L A; Mitróová, Z; Kopčanský, P

    2014-11-01

    Synthetic biological macromolecule of magnetoferritin containing an iron oxide core inside a protein shell (apoferritin) is prepared with different content of iron. Its structure in aqueous solution is analysed by small-angle synchrotron X-ray (SAXS) and neutron (SANS) scattering. The loading factor (LF) defined as the average number of iron atoms per protein is varied up to LF=800. With an increase of the LF, the scattering curves exhibit a relative increase in the total scattered intensity, a partial smearing and a shift of the match point in the SANS contrast variation data. The analysis shows an increase in the polydispersity of the proteins and a corresponding effective increase in the relative content of magnetic material against the protein moiety of the shell with the LF growth. At LFs above ∼150, the apoferritin shell undergoes structural changes, which is strongly indicative of the fact that the shell stability is affected by iron oxide presence. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  19. Multifunctional superparamagnetic nanoparticles for enhanced drug transport in cystic fibrosis

    Science.gov (United States)

    Armijo, Leisha M.; Brandt, Yekaterina I.; Rivera, Antonio C.; Cook, Nathaniel C.; Plumley, John B.; Withers, Nathan J.; Kopciuch, Michael; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D.; Osinski, Marek

    2012-10-01

    Iron oxide colloidal nanoparticles (ferrofluids) are investigated for application in the treatment of cystic fibrosis lung infections, the leading cause of mortality in cystic fibrosis patients. We investigate the use of iron oxide nanoparticles to increase the effectiveness of administering antibiotics through aerosol inhalation using two mechanisms: directed particle movement in the presence of an inhomogeneous static external magnetic field and magnetic hyperthermia. Magnetic hyperthermia is an effective method for decreasing the viscosity of the mucus and biofilm, thereby enhancing drug, immune cell, and antibody penetration to the affected area. Iron oxide nanoparticles of various sizes and morphologies were synthesized and tested for specific losses (heating power). Nanoparticles in the superparamagnetic to ferromagnetic size range exhibited excellent heating power. Additionally, iron oxide / zinc selenide core/shell nanoparticles were prepared, in order to enable imaging of the iron oxide nanoparticles. We also report on synthesis and characterization of MnSe/ZnSeS alloyed quantum dots.

  20. Dynamics of defect-loaded grain boundary under shear deformation in alpha iron

    Science.gov (United States)

    Yang, L.; Zhou, H. L.; Liu, H.; Gao, F.; Zu, X. T.; Peng, S. M.; Long, X. G.; Zhou, X. S.

    2018-02-01

    Two symmetric tilt grain boundaries (GBs) (Σ3〈110〉{112} and Σ11〈110〉{332}) in alpha iron were performed to investigate the dynamics of defect-loaded GBs under shear deformation. The results show that the loaded self-interstitial atoms (SIAs) reduce the critical stress of the coupled GB motion in the Σ3 GB, but increase the critical stress in the Σ11 GB. The loaded SIAs in the Σ3 GB easily form 〈111〉 clusters and remain in the bulk when the GB moves away. However, the SIAs move along with the Σ11 GB and combine with the vacancies in the bulk, leading to the defect self-healing. The helium (He) atoms loaded into the GBs significantly affect the coupled GB motion. Once He clusters emit interstitials, the Σ11 GB carries those interstitials away but the Σ3 does not. The loaded He atoms reduce the critical stress of the Σ3 GB, but increase the critical stress of the Σ11 GB.

  1. Structure of cesium loaded iron phosphate glasses: An infrared and Raman spectroscopy study

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Premila, M.; Amarendra, G.; Govindan Kutty, K.V.; Sundar, C.S.; Vasudeva Rao, P.R.

    2012-01-01

    The structure of cesium loaded iron phosphate glasses (IPG) was investigated using infrared and Raman spectroscopy. The spectra of the cesium doped samples revealed a structural modification of the parent glass owing to the incorporation of cesium. The structural changes could be correlated with the variation observed in the glass transition temperature of these glasses. Increased Cs-mediated cationic cross linking appears to be the reason for the initial rise in glass transition temperature up to 21 mol% Cs 2 O in IPG; while, breakdown of the phosphate network with increasing cesium content, brings down the glass transition temperature.

  2. Distribution of iron during full loading of amberlite IRC-72 resin with uranium from nitrate solutions at 300C

    International Nuclear Information System (INIS)

    Shaffer, J.H.; Greene, C.W.

    1979-01-01

    The integrity of resin-based fuel kernels used in the fabrication of fuel elements for a high-temperature gas-cooled reactor will depend, in part, on the concentration of iron incorporated in the resin particles during their loading with uranium. Consequently, assessment of chemical specifications for iron as an impurity in uranyl nitrate solution should be based on its distribution during the resin loading operation. For this purpose, the behavior of iron, as an impurity in uranyl nitrate solutions, was investigated under equilibrium conditions at 30 0 C during full loading of Amberlite IRC-72 cation exchange reaction were derived from calculations based on complex coordination of ferric ion with the resin over the nitrate ion concentration range of approx. 0.5 to 2 N

  3. Quantitative assessment of iron load in myocardial overload rabbit model: preliminary study of MRI T2* map

    International Nuclear Information System (INIS)

    Huang Lu; Han Rui; Li Zhiwei; Yuan Sishu; Xia Liming

    2014-01-01

    Objective: To preliminarily investigate the feasibility of MRI-T 2 * map in evaluating myocardial iron load of myocardial iron overload rabbit models. Methods: Eleven rabbits were included in this study and divided into two groups, myocardial iron overload group (n =10) and the control group (n = 1). Iron dextrin (dose of 50 mg/kg) was injected in muscles of thigh once a week, totally 12 weeks. Serum iron test and MRI examination were performed before iron injection,and 1 week to 12 weeks after iron injection. MRI scan protocol included short axial T 2 * map of the left ventricle and cross-section T 2 * map of the liver. T 2 * and R 2 * of the heart and the liver were measured. One rabbit was killed after MRI examination at pre-iron injection, 1 week to 8 weeks, 11 weeks and 12 weeks after iron injection,respectively. Heart and liver were avulsed to undergo in vitro MRI scan and then paraffin embedded for pathological slices. MRI scan protocol and measurements of the heart and the liver samples were the same to that of in vivo ones. Pearson correlation was used to calculate the relationships between the parameters. Results: Myocardial T 2 * [(32.5 ± 8.3 ms)] and R 2 * values [(38.4 ± 7.9) Hz] had significant correlation with injecting iron content (1033.2 ± 673.4 mg), the Pearson coefficients were -0.799 (P = 0.001) and 0.770 (P = 0.002), respectively. Myocardial T 2 * had no significant correlation with liver T 2 * values (r = 0.556, P = 0.070). T 2 * values of heart and liver in vivo [(32.5 ± 8.3) ms and (8.8 ± 5.4) ms], respectively had strong correlation with those in vitro [(19.4 ± 6.5) ms and (9.8 ± 5.0) ms], respectively (r = 0.757, P = 0.007 and r = 0.861, P = 0.001). T 2 * and R 2 * values of the heart and the liver in vivo and in vitro had no significant correlations with serum iron (P>0.05). On Prussian blue staining slices,blue particles of myocardium, sinus hepaticas and hepatocyte increased with injecting iron content. Conclusions: It is

  4. A randomized, controlled study evaluating effects of amlodipine addition to chelators to reduce iron loading in patients with thalassemia major.

    Science.gov (United States)

    Eghbali, Aziz; Kazemi, Hamideh; Taherahmadi, Hassan; Ghandi, Yazdan; Rafiei, Mohammad; Bagheri, Bahador

    2017-12-01

    Cardiomyopathy due to iron overload can be fatal in patients with thalassemia major. Calcium channel blockers seem to be effective to reduce iron loading. Our goal was to study effects of amlodipine addition to chelators on iron loading in patients with thalassemia major. This randomized, controlled, and single-center trial was performed on 56 patients with thalassemia major. Patients were randomized 1:1 to combined group (iron chelator plus amlodipine) or control group (iron chelator) for 1 year. Iron content was measured by magnetic resonance imaging; heart T2*, and liver T2*. Serum ferritin was also measured. After 12 months of treatment, myocardial T2* values had significant improvement in combined group (21.9 ± 8.0 ms to 24.5 ± 7.6 ms; P < .05); Difference between two groups was significant (P = .02). Combined treatment had no effect on hepatic T2* value (9.6 ± 2.8 ms to 9.5 ± 3.6 ms); difference between two groups was not significant (P = .2). In addition, a significant reduction was seen in serum ferritin levels in two groups. Mild gastrointestinal upset was the most common untoward effect. Addition of amlodipine to iron chelators has beneficial effects for reduction of iron loading in patients with thalassemia major. This combination therapy seems safe. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Effects of Radiation and a High Iron Load on Bone Mineral Density

    Science.gov (United States)

    Yuen, E.; Morgan, J. L. L.; Zwart, S. R.; Gonzales, E.; Camp, K.; Smith, S. M.; Bloomfield, S. A.

    2012-01-01

    Astronauts on long duration space flight missions to the moon or mars are exposed to radiation and have increase iron (Fe) stores, both of which can independently induce oxidative stress and may exacerbate bone mass loss and strength. We hypothesize a high Fe diet and a fractionated gamma radiation exposure would increase oxidative stress and lower bone mass. Three mo-old, SD rats (n=32) were randomized to receive an adequate Fe diet (45 mg Fe/kg diet) or a high Fe diet (650 mg Fe/kg diet) for 4 wks and either a cumulative 3 Gy dose (fractionated 8 x 0.375 Gy) of gamma radiation (Cs-137) or sham exposure starting on day 14. Elisa kit assessed serum catalase, clinical analyzer assessed serum Fe status and ex vivo pQCT scans measured bone parameters in the proximal/midshaft tibia and femoral neck. Mechanical strength was assessed by 3-pt bending and femoral neck test. There is a significant decrease in trabecular bone mineral density (BMD) from radiation (p less than 0.05) and a trend in diet (p=0.05) at the proximal tibia. There is a significant interaction in cortical BMD from the combined treatments at the midshaft tibia (p less than 0.05). There is a trending decrease in total BMD from diet (p=0.07) at the femoral neck. In addition, high serum Fe was correlated to low trabecular BMD (p less than 0.05) and high serum catalase was correlated to low BMD at all 3 bone sites (p less than 0.05). There was no difference in the max load of the tibia or femoral neck. Radiation and a high iron diet increases iron status and catalase in the serum and decreases BMD.

  6. RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia.

    Science.gov (United States)

    Zheng, S W; Huang, M; Hong, R Y; Deng, S M; Cheng, L F; Gao, B; Badami, D

    2014-03-01

    The purpose of this study was to develop a specific targeting magnetic nanoparticle probe for magnetic resonance imaging and therapy in the form of local hyperthermia. Carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticles with carboxyl groups were coupled to cyclic arginine-glycine-aspartic peptides for integrin α(v)β₃ targeting. The particle size, magnetic properties, heating effect, and stability of the arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide were measured. The arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide demonstrates excellent stability and fast magneto-temperature response. Magnetic resonance imaging signal intensity of Bcap37 cells incubated with arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide was significantly decreased compared with that incubated with plain ultrasmall superparamagnetic iron oxide. The preferential uptake of arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide by target cells was further confirmed by Prussian blue staining and confocal laser scanning microscopy.

  7. Single Additive Enables 3D Printing of Highly Loaded Iron Oxide Suspensions.

    Science.gov (United States)

    Hodaei, Amin; Akhlaghi, Omid; Khani, Navid; Aytas, Tunahan; Sezer, Dilek; Tatli, Buse; Menceloglu, Yusuf Z; Koc, Bahattin; Akbulut, Ozge

    2018-03-21

    A single additive, a grafted copolymer, is designed to ensure the stability of suspensions of highly loaded iron oxide nanoparticles (IOPs) and to facilitate three-dimensional (3D) printing of these suspensions in the filament form. This poly (ethylene glycol)-grafted copolymer of N-[3(dimethylamino)propyl]methacrylamide and acrylic acid harnesses both electrostatic and steric repulsion to realize an optimum formulation for 3D printing. When used at 1.15 wt % (by the weight of IOPs), the suspension attains ∼81 wt % solid loading-96% of the theoretical limit as calculated by the Krieger-Dougherty equation. Rectangular, thick-walled toroidal, and thin-walled toroidal magnetic cores and a porous lattice structure are fabricated to demonstrate the utilization of this suspension as an ink for 3D printing. The electrical and magnetic properties of the magnetic cores are characterized through impedance spectroscopy (IS) and vibrating sample magnetometry (VSM), respectively. The IS indicates the possibility of utilizing wire-wound 3D printed cores as the inductive coils. The VSM verifies that the magnetic properties of IOPs before and after the ink formulation are kept almost unchanged because of the low dosage of the additive. This particle-targeted approach for the formulation of 3D printing inks allows embodiment of a fully aqueous system with utmost target material content.

  8. Intracellular Delivery of siRNA by Polycationic Superparamagnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Betzaida Castillo

    2012-01-01

    Full Text Available The siRNA transfection efficiency of nanoparticles (NPs, composed of a superparamagnetic iron oxide core modified with polycationic polymers (poly(hexamethylene biguanide or branched polyethyleneimine, were studied in CHO-K1 and HeLa cell lines. Both NPs demonstrated to be good siRNA transfection vehicles, but unmodified branched polyethyleneimine (25 kD was superior on both cell lines. However, application of an external magnetic field during transfection (magnetofection increased the efficiency of the superparamagnetic NPs. Furthermore, our results reveal that these NPs are less toxic towards CHO-K1 cell lines than the unmodified polycationic-branched polyethyleneimine (PEI. In general, the external magnetic field did not alter the cell’s viability nor it disrupted the cell membranes, except for the poly(hexamethylene biguanide-modified NP, where it was observed that in CHO-K1 cells application of the external magnetic field promoted membrane damage. This paper presents new polycationic superparamagnetic NPs as promising transfection vehicles for siRNA and demonstrates the advantages of magnetofection.

  9. Browse diversity and iron loading in captive sumatran rhinoceroses (Dicerorhinus sumatrensis): a comparison of sanctuary and zoological populations.

    Science.gov (United States)

    Candra, Dedi; Radcliffe, Robin W; Andriansyah; Khan, Mohammad; Tsu, I-Hsien; Paglia, Donald E

    2012-09-01

    Iron storage disease (ISD) is now recognized as a serious clinical disorder acquired by two species of browsing rhinoceroses, the African black (Diceros bicornis) and the Asian Sumatran (Dicerorhinus sumatrensis) rhinoceroses, when displaced from their natural habitats. The most complete knowledge of ISD comes from studies of the black rhinoceros, but the Asian species is also at risk. Sumatran rhinoceroses housed in traditional zoological settings outside of range countries have suffered significant morbidity and mortality potentially related to ISD induced by diet and/or other confinement conditions. With so few animals in captivity, very little information exists on iron loading in the Sumatran rhinoceros. To better characterize the problem, we retrospectively compared captive management conditions of Sumatran rhinoceroses housed under traditional zoological care with those in two native sanctuary environments. In general, zoo rhinoceroses are offered a paucity of plants and browse species compared with their sanctuary and wild counterparts managed in native rainforest habitats. Iron analyte levels and limited histopathologic observations in these populations suggest variable tendencies to overload iron, dependent upon differences in managed diet and individual food preferences. More detailed investigation of these markedly dissimilar ex situ populations is warranted to better understand the role of nutrition and other conditions affecting iron loading in browser rhinoceroses.

  10. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...... of transcription factors, activation of the mitochondrial apoptotic machinery or of other cell death mechanisms. The pro-inflammatory cytokine IL-1β facilitates divalent metal transporter 1 (DMT1)-induced β-cell iron uptake and consequently ROS formation and apoptosis, and we propose that this mechanism provides...

  11. Iron

    Science.gov (United States)

    ... Share: Search the ODS website Submit Search NIH Office of Dietary Supplements Consumer Datos en español Health ... eating a variety of foods, including the following: Lean meat, seafood, and poultry. Iron-fortified breakfast cereals ...

  12. Biodegradable Magnetic Silica@Iron Oxide Nanovectors with Ultra-Large Mesopores for High Protein Loading, Magnetothermal Release, and Delivery

    KAUST Repository

    Omar, Haneen

    2016-11-29

    The delivery of large cargos of diameter above 15 nm for biomedical applications has proved challenging since it requires biocompatible, stably-loaded, and biodegradable nanomaterials. In this study, we describe the design of biodegradable silica-iron oxide hybrid nanovectors with large mesopores for large protein delivery in cancer cells. The mesopores of the nanomaterials spanned from 20 to 60 nm in diameter and post-functionalization allowed the electrostatic immobilization of large proteins (e.g. mTFP-Ferritin, ~ 534 kDa). Half of the content of the nanovectors was based with iron oxide nanophases which allowed the rapid biodegradation of the carrier in fetal bovine serum and a magnetic responsiveness. The nanovectors released large protein cargos in aqueous solution under acidic pH or magnetic stimuli. The delivery of large proteins was then autonomously achieved in cancer cells via the silica-iron oxide nanovectors, which is thus a promising for biomedical applications.

  13. Degeneration of biogenic superparamagnetic magnetite.

    Science.gov (United States)

    Li, Y-L; Pfiffner, S M; Dyar, M D; Vali, H; Konhauser, K; Cole, D R; Rondinone, A J; Phelps, T J

    2009-01-01

    Magnetite crystals precipitated as a consequence of Fe(III) reduction by Shewanella algae BrY after 265 h incubation and 5-year anaerobic storage were investigated with transmission electron microscopy, Mössbauer spectroscopy and X-ray diffraction. The magnetite crystals were typically superparamagnetic with an approximate size of 13 nm. The lattice constants of the 265 h and 5-year crystals are 8.4164A and 8.3774A, respectively. The Mössbauer spectra indicated that the 265 h magnetite had excess Fe(II) in its crystal-chemistry (Fe(3+) (1.990)Fe(2+) (1.015)O(4)) but the 5-year magnetite was Fe(II)-deficient in stoichiometry (Fe(3+) (2.388)Fe(2+) (0.419)O(4)). Such crystal-chemical changes may be indicative of the degeneration of superparamagnetic magnetite through the aqueous oxidization of Fe(II) anaerobically, and the concomitant oxidation of the organic phases (fatty acid methyl esters) that were present during the initial formation of the magnetite. The observation of a corona structure on the aged magnetite corroborates the anaerobic oxidation of Fe(II) on the outer layers of magnetite crystals. These results suggest that there may be a possible link between the enzymatic activity of the bacteria and the stability of Fe(II)-excess magnetite, which may help explain why stable nano-magnetite grains are seldom preserved in natural environments.

  14. Degeneration of Biogenic Superparamagnetic Magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dr. Yi-Liang [University of Tennessee, Knoxville (UTK); Pfiffner, Susan M. [University of Tennessee, Knoxville (UTK); Dyar, Dr. M Darby [Mount Holyoke College; Vali, Dr. Hojatolah [McGill University, Montreal, Quebec; Konhauser, Dr, Kurt [University of Alberta; Cole, David R [ORNL; Rondinone, Adam Justin [ORNL; Phelps, Tommy Joe [ORNL

    2009-01-01

    ABSTRACT. Magnetite crystals precipitated as a consequence of Fe(III) reduction by Shewanella algae BrY after 265 hours incubation and 5-year storage were investigated with transmission electron microscopy, M ssbauer spectroscopy and X-ray diffraction. The magnetite crystals were typically superparamagnetic with an approximate size of 13 nm. The lattice constants of the 265 hour and 5-year crystals are 8.4164 and 8.3774 , respectively. The M ssbauer spectra indicated that the 265 hour magnetite had excess Fe(II) in its crystal-chemistry (Fe3+1.9901Fe2+ 1.0149O4) but the 5-year magnetite was Fe(II)-deficient in stoichiometry (Fe3+2.3875Fe2+0.4188O4). Such crystal-hemical changes may be indicative of the degeneration of superparamagnetic magnetite through the aqueous oxidization of Fe(II) anaerobically, and the concomitant oxidation of the organic phases(fatty acid methyl esters) that were present during the initial formation of the magnetite. The observation of a corona structure on the aged magnetite corroborates the oxidation of Fe(II) on the outer layers of magnetite crystals. These results suggest that there may be a possible link between the enzymatic activity of the bacteria and the stability of Fe(II)-excess magnetite, which may help explain why stable nano-magnetite grains are seldom preserved in natural environments.

  15. Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters

    International Nuclear Information System (INIS)

    Mehrmohammadi, M; Qu, M; Emelianov, S Y; Yoon, K Y; Johnston, K P

    2011-01-01

    Recently, pulsed magneto-motive ultrasound (pMMUS) imaging augmented with ultra-small magnetic nanoparticles has been introduced as a tool capable of imaging events at molecular and cellular levels. The sensitivity of a pMMUS system depends on several parameters, including the size, geometry and magnetic properties of the nanoparticles. Under the same magnetic field, larger magnetic nanostructures experience a stronger magnetic force and produce larger displacement, thus improving the sensitivity and signal-to-noise ratio (SNR) of pMMUS imaging. Unfortunately, large magnetic iron-oxide nanoparticles are typically ferromagnetic and thus are very difficult to stabilize against colloidal aggregation. In the current study we demonstrate improvement of pMMUS image quality by using large size superparamagnetic nanoclusters characterized by strong magnetization per particle. Water-soluble magnetic nanoclusters of two sizes (15 and 55 nm average size) were synthesized from 3 nm iron precursors in the presence of citrate capping ligand. The size distribution of synthesized nanoclusters and individual nanoparticles was characterized using dynamic light scattering (DLS) analysis and transmission electron microscopy (TEM). Tissue mimicking phantoms containing single nanoparticles and two sizes of nanoclusters were imaged using a custom-built pMMUS imaging system. While the magnetic properties of citrate-coated nanoclusters are identical to those of superparamagnetic nanoparticles, the magneto-motive signal detected from nanoclusters is larger, i.e. the same magnetic field produced larger magnetically induced displacement. Therefore, our study demonstrates that clusters of superparamagnetic nanoparticles result in pMMUS images with higher contrast and SNR.

  16. The effect of the hemochromatosis (HFE genotype on lead load and iron metabolism among lead smelter workers.

    Directory of Open Access Journals (Sweden)

    Guangqin Fan

    Full Text Available Both an excess of toxic lead (Pb and an essential iron disorder have been implicated in many diseases and public health problems. Iron metabolism genes, such as the hemochromatosis (HFE gene, have been reported to be modifiers for lead absorption and storage. However, the HFE gene studies among the Asian population with occupationally high lead exposure are lacking.To explore the modifying effects of the HFE genotype (wild-type, H63D variant and C282Y variant on the Pb load and iron metabolism among Asian Pb-workers with high occupational exposure.Seven hundred and seventy-one employees from a lead smelter manufacturing company were tested to determine their Pb intoxication parameters, iron metabolic indexes and identify the HFE genotype. Descriptive and multivariate analyses were conducted.Forty-five H63D variant carriers and no C282Y variant carrier were found among the 771 subjects. Compared with subjects with the wild-type genotype, H63D variant carriers had higher blood lead levels, even after controlling for factors such as age, sex, marriage, education, smoking and lead exposure levels. Multivariate analyses also showed that the H63D genotype modifies the associations between the blood lead levels and the body iron burden/transferrin.No C282Y variant was found in this Asian population. The H63D genotype modified the association between the lead and iron metabolism such that increased blood lead is associated with a higher body iron content or a lower transferrin in the H63D variant. It is indicated that H63D variant carriers may be a potentially highly vulnerable sub-population if they are exposed to high lead levels occupationally.

  17. The effect of the hemochromatosis (HFE) genotype on lead load and iron metabolism among lead smelter workers.

    Science.gov (United States)

    Fan, Guangqin; Du, Guihua; Li, Huijun; Lin, Fen; Sun, Ziyong; Yang, Wei; Feng, Chang; Zhu, Gaochun; Li, Yanshu; Chen, Ying; Jiao, Huan; Zhou, Fankun

    2014-01-01

    Both an excess of toxic lead (Pb) and an essential iron disorder have been implicated in many diseases and public health problems. Iron metabolism genes, such as the hemochromatosis (HFE) gene, have been reported to be modifiers for lead absorption and storage. However, the HFE gene studies among the Asian population with occupationally high lead exposure are lacking. To explore the modifying effects of the HFE genotype (wild-type, H63D variant and C282Y variant) on the Pb load and iron metabolism among Asian Pb-workers with high occupational exposure. Seven hundred and seventy-one employees from a lead smelter manufacturing company were tested to determine their Pb intoxication parameters, iron metabolic indexes and identify the HFE genotype. Descriptive and multivariate analyses were conducted. Forty-five H63D variant carriers and no C282Y variant carrier were found among the 771 subjects. Compared with subjects with the wild-type genotype, H63D variant carriers had higher blood lead levels, even after controlling for factors such as age, sex, marriage, education, smoking and lead exposure levels. Multivariate analyses also showed that the H63D genotype modifies the associations between the blood lead levels and the body iron burden/transferrin. No C282Y variant was found in this Asian population. The H63D genotype modified the association between the lead and iron metabolism such that increased blood lead is associated with a higher body iron content or a lower transferrin in the H63D variant. It is indicated that H63D variant carriers may be a potentially highly vulnerable sub-population if they are exposed to high lead levels occupationally.

  18. Lactoferrin modified graphene oxide iron oxide nanocomposite for glioma-targeted drug delivery.

    Science.gov (United States)

    Song, Meng-Meng; Xu, Huai-Liang; Liang, Jun-Xing; Xiang, Hui-Hui; Liu, Rui; Shen, Yu-Xian

    2017-08-01

    Targeting delivery of drugs in a specific manner represents a potential powerful technology in gliomas. Herein, we prepared a multifunctional targeted delivery system based on graphene oxide (GO) that contains a molecular bio-targeting ligand and superparamagnetic iron oxide nanoparticles on the surface of GO for magnetic targeting. Superparamagnetic Fe 3 O 4 nanoparticles was loaded on the surface of GO via chemical precipitation method to form GO@Fe 3 O 4 nanocomposites. Lactoferrin (Lf), an iron-transporting serum glycoprotein that binds to receptors overexpressed at the surface of glioma cells and vascular endothelial cell of the blood brain barrier, was chosen as the targeted ligand to construct the targeted delivery system Lf@GO@Fe 3 O 4 through EDC/NHS chemistry. With the confirmation of TEM, DLS and VSM, the resulting Lf@GO@Fe 3 O 4 had a size distribution of 200-1000nm and exhibited a superparamagnetic behavior. The nano delivery system had a high loading capacity and exhibited a pH-dependent release behavior. Compared with free DOX and DOX@GO@Fe 3 O 4 , Lf@GO@Fe 3 O 4 @DOX displayed greater intracellular delivery efficiency and stronger cytotoxicity against C6 glioma cells. The results demonstrated the potential utility of Lf conjugated GO@Fe 3 O 4 nanocomposites for therapeutic application in the treatment of gliomas. Copyright © 2017. Published by Elsevier B.V.

  19. Evaluation of tissue doppler echocardiography and T2* magnetic resonance imaging in iron load of patients with thalassemia major.

    Science.gov (United States)

    Saravi, Mehrdad; Tamadoni, Ahmad; Jalalian, Rozita; Mahmoodi-Nesheli, Hassan; Hojati, Mosatafa; Ramezani, Saeed

    2013-01-01

    Iron-mediated cardiomyopathy is the main complication of thalassemia major (TM) patients. Therefore, there is an important clinical need in the early diagnosis and risk stratification of patients. The aim of this study was to evaluate the efficacy of tissue doppler imaging (TDI) to study cardiac iron overload in patients with TM using T2* magnetic resonance (MR) as the gold-standard non-invasive diagnostic test. A total of 100 TM patients with the mean age of 19±7 years and 100 healthy controls 18.8±7 years were evaluated. Conventional echocardiography, TDI, and cardiac MRI T2* were performed in all subjects. TDI measures included myocardial systolic (Sm), early (Em) and late (Am) diastolic velocities at basal and middle segments of septal and lateral LV wall. The TM patients were also subgrouped according to those with iron load (T2* ≤ 20 ms) and those without (T2* > 20 ms), and also severe (T2* ≤ 10 ms) versus the non-severe (T2* ≤ 10 ms). Using T2* cardiovascular MR, abnormal myocardial iron load (T2* ≤ 20 ms) was detected in 84% of the patients and among these, 50% (42/84) had severe (T2* ≤ 10 ms) iron load. The mean T2* was 11.6±8.6 ms (5-36.7). A negative linear correlation existed between transfusion period of patients and T2* levels (r = -0.53, p=0.02). The following TDI measures were lower in patients than in controls: basal septal Am (p<0.05), mid-septal Em and Am (p<0.05), basal lateral Am (p<0.05), mid-lateral LV wall Sm (p<0.05) and Am (p<0.05). Tissue doppler imaging is helpful in predicting the presence of myocardial iron load in Thalassemia patients. Therefore, it can be used for screening of thalassemia major patients.

  20. ROS-induced toxicity: exposure of 3T3, RAW264.7, and MCF7 cells to superparamagnetic iron oxide nanoparticles results in cell death by mitochondria-dependent apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Hui-Chen, E-mail: d93548008@ntu.edu.tw; Chen, Chung-Ming, E-mail: chung@ntu.edu.tw [National Taiwan University, Institute of Biomedical Engineering (China); Hsieh, Wen-Yuan, E-mail: hsiehw@itri.org.tw [Industrial Technology Research Institute, Biomedical Technology and Device Research Labs (China); Chen, Ching-Yun, E-mail: chingyun523@gmail.com; Liu, Chia-Ching, E-mail: d95548005@ntu.edu.tw; Lin, Feng-Huei, E-mail: double@ntu.edu.tw [National Taiwan University, Institute of Biomedical Engineering (China)

    2015-02-15

    Superparamagnetic nanoparticles (Fe{sub 3}O{sub 4}, SPIO) have been used as magnetic resonance imaging enhancers for years. However, bio-safety issues concerning nanoparticles remain largely unexplored. Of particular concern is the possible cellular impact of nanoparticles during SPIO uptake and subsequent oxidative stress. SPIO causes cell death by apoptosis via a little understood mitochondrial pathway. To more closely examine this process, three kinds of cells—3T3, RAW264.7, and MCF7—were treated with SPIO coated with polyethylene glycol (SPIO-PEG) and monitored by transmission electron microscopy (TEM), using cytotoxicity evaluation, mitochondrial activity, reactive oxygen species (ROS) generation, and Annexin V assay. TEM revealed that SPIO-PEG nanoparticles surrounded the cellular endosome membrane, creating a bulge in the endosome. Compared to 3T3 cells, greater numbers of SPIO-PEG nanoparticles infiltrated the mitochondria of RAW264.7 and MCF7 cells. SPIO-PEG residency is associated with boosted ROS, with elevated levels of mitochondrial activity, and advancement of cell apoptosis. Furthermore, correlation analysis showed that a polynomial model demonstrates a better fit than a linear model in MCF7, implying that cytotoxicity may have alternative impacts on cell death at different concentrations. Thus, we believe that MCF7 cell death results from the apoptosis pathway triggered by mitochondria, and we find lower cytotoxicity in 3T3. We propose that optimal levels of SPIO-PEG nanoparticles lead to increased levels of ROS and a resulting oxidative stress environment which will kill only cancer cells while sparing normal cells. This finding has great potential for use in cancer therapies in the future.

  1. Competition of dipositive metal ions for Fe (III) binding sites in chelation therapy of Iron Load

    International Nuclear Information System (INIS)

    Rehmani, Fouzia S.

    2005-01-01

    Iron overload is a condition in which excessive iron deposited in the liver, kidney and spleen of human beings in the patients of beta thalassemia and sickle cell anemia. Instead of its importance iron could be toxic when in excess, it damages the tissues. For the treatment of iron overload, a drug desferrioxamine mesylate has been used. It is linear trihydroxamic acid, a natural siderophore produced by streptomyces which removes the extra iron from body. Salicylhydroxamate type siderphore. In present research salicylhydroxamate was used for the complexation with dipositive metal ions which are available in biological environments such as Mn (II), Co (II), Ni (II) and Cu (II). The aim of our work was to study the competition reactions between Fe (III) and other dipositive ions; to calculate the thermodynamic data of chelation of these metal ions complexes with hydroxamate by computer program and comparison with hydroxamate complexes. (author)

  2. Solid-phase extraction of copper, iron and zinc ions on Bacillus thuringiensis israelensis loaded on Dowex optipore V-493

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa; Melek, Esra [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey)], E-mail: msoylak@gmail.com

    2008-11-30

    Bacillus thuringiensis israelensis loaded on Dowex optipore V-493 as new adsorbent for the separation-preconcentration of heavy metal ions has been proposed. The analytical conditions for the quantitative recoveries of copper(II), iron(III) and zinc(II) including pH, amounts of adsorbent, sample volume, etc. were investigated. The influences of alkaline and earth alkaline ions were also reported. The recovery values for the analytes are generally higher than 95%. The preconcentration factor was 37. The limit of detections of the analyte ions (k = 3, N = 21) were 1.14 {mu}g L{sup -1} for copper, 2.01 {mu}g L{sup -1} for iron and 0.14 {mu}g L{sup -1} for zinc. The relative standard deviations of the determinations were found to be lower than 9%. The procedure was validated by analyzing copper, iron and zinc contents in two certified reference materials, NRCC-SLRS-4 Riverine water and NIST SRM 1515 Apple leaves. Agreements between the obtained results and the certified values were achieved. The developed preconcentration method was applied in the flame atomic absorption spectrometric determination of copper, iron and zinc in several samples including a multivitamin-multimineral tablet, dialysis solutions, natural waters and some food samples.

  3. Magnetic characterization of superparamagnetic nanoparticles pulled through model membranes.

    Science.gov (United States)

    Barnes, Allison L; Wassel, Ronald A; Mondalek, Fadee; Chen, Kejian; Dormer, Kenneth J; Kopke, Richard D

    2007-01-04

    To quantitatively compare in-vitro and in vivo membrane transport studies of targeted delivery, one needs characterization of the magnetically-induced mobility of superparamagnetic iron oxide nanoparticles (SPION). Flux densities, gradients, and nanoparticle properties were measured in order to quantify the magnetic force on the SPION in both an artificial cochlear round window membrane (RWM) model and the guinea pig RWM. Three-dimensional maps were created for flux density and magnetic gradient produced by a 24-well casing of 4.1 kilo-Gauss neodymium-iron-boron (NdFeB) disc magnets. The casing was used to pull SPION through a three-layer cell culture RWM model. Similar maps were created for a 4 inch (10.16 cm) cube 48 MGOe NdFeB magnet used to pull polymeric-nanoparticles through the RWM of anesthetized guinea pigs. Other parameters needed to compute magnetic force were nanoparticle and polymer properties, including average radius, density, magnetic susceptibility, and volume fraction of magnetite. A minimum force of 5.04 x 10(-16) N was determined to adequately pull nanoparticles through the in-vitro model. For the guinea pig RWM, the magnetic force on the polymeric nanoparticles was 9.69 x 10-20 N. Electron microscopy confirmed the movement of the particles through both RWM models. As prospective carriers of therapeutic substances, polymers containing superparamagnetic iron oxide nanoparticles were succesfully pulled through the live RWM. The force required to achieve in vivo transport was significantly lower than that required to pull nanoparticles through the in-vitro RWM model. Indeed very little force was required to accomplish measurable delivery of polymeric-SPION composite nanoparticles across the RWM, suggesting that therapeutic delivery to the inner ear by SPION is feasible.

  4. Iron Loading Selectively Increases Hippocampal Levels of Ubiquitinated Proteins and Impairs Hippocampus-Dependent Memory.

    Science.gov (United States)

    Figueiredo, Luciana Silva; de Freitas, Betânia Souza; Garcia, Vanessa Athaíde; Dargél, Vinícius Ayub; Köbe, Luiza Machado; Kist, Luiza Wilges; Bogo, Maurício Reis; Schröder, Nadja

    2016-11-01

    Alterations of brain iron levels have been observed in a number of neurodegenerative disorders. We have previously demonstrated that iron overload in the neonatal period results in severe and persistent memory deficits in the adulthood. Protein degradation mediated by the ubiquitin-proteasome system (UPS) plays a central regulatory role in several cellular processes. Impairment of the UPS has been implicated in the pathogenesis of neurodegenerative disorders. Here, we examined the effects of iron exposure in the neonatal period (12th-14th day of postnatal life) on the expression of proteasome β-1, β-2, and β-5 subunits, and ubiquitinated proteins in brains of 15-day-old rats, to evaluate the immediate effect of the treatment, and in adulthood to assess long-lasting effects. Two different memory types, emotionally motivated conditioning and object recognition were assessed in adult animals. We found that iron administered in the neonatal period impairs both emotionally motivated and recognition memory. Polyubiquitinated protein levels were increased in the hippocampus, but not in the cortex, of adult animals treated with iron. Gene expression of subunits β1 and β5 was affected by age, being higher in the early stages of development in the hippocampus, accompanied by an age-related increase in polyubiquitinated protein levels in adults. In the cortex, gene expression of the three proteasome subunits was significantly higher in adulthood than in the neonatal period. These findings suggest that expression of proteasome subunits and activity are age-dependently regulated. Iron exposure in the neonatal period produces long-lasting harmful effects on the UPS functioning, which may be related with iron-induced memory impairment.

  5. Highly fluorescent and superparamagnetic nanosystem for biomedical applications

    Science.gov (United States)

    Cabrera, Mariana P.; E Cabral Filho, Paulo; Silva, Camila M. C. M.; Oliveira, Rita M.; Geraldes, Carlos F. G. C.; Castro, M. Margarida C. A.; Costa, Benilde F. O.; Henriques, Marta S. C.; Paixão, José A.; Carvalho, Luiz B., Jr.; Santos, Beate S.; Hallwass, Fernando; Fontes, Adriana; Pereira, Giovannia A. L.

    2017-07-01

    This work reports on highly fluorescent and superparamagnetic bimodal nanoparticles (BNPs) obtained by a simple and efficient method as probes for fluorescence analysis and/or contrast agents for MRI. These promising BNPs with small dimensions (ca. 17 nm) consist of superparamagnetic iron oxide nanoparticles (SPIONs) covalently bound with CdTe quantum dots (ca. 3 nm). The chemical structure of the magnetic part of BNPs is predominantly magnetite, with minor goethite and maghemite contributions, as shown by Mössbauer spectroscopy, which is compatible with the x-ray diffraction data. Their size evaluation by different techniques showed that the SPION derivatization process, in order to produce the BNPs, does not lead to a large size increase. The BNPs saturation magnetization, when corrected for the organic content of the sample, is ca. 68 emu g-1, which is only slightly reduced relative to the bare nanoparticles. This indicates that the SPION surface functionalization does not change considerably the magnetic properties. The BNP aqueous suspensions presented stability, high fluorescence, high relaxivity ratio (r 2/r 1 equal to 25) and labeled efficiently HeLa cells as can be seen by fluorescence analysis. These BNP properties point to their applications as fluorescent probes as well as negative T 2-weighted MRI contrast agents. Moreover, their potential magnetic response could also be used for fast bioseparation applications.

  6. Magnetostructural study of iron sucrose

    International Nuclear Information System (INIS)

    Gutierrez, Lucia; Puerto Morales, Maria del; Jose Lazaro, Francisco

    2005-01-01

    Magnetic and structural analyses have been performed on an iron sucrose complex used as a haematinic agent. The system contains two-line ferrihydrite particles of about 5 nm that are superparamagnetic above approximately 50 K. The observed low-temperature magnetic dynamics of this compound is closer to simple models than in the case of other iron-containing drugs for intravenous use like iron dextran

  7. A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran

    International Nuclear Information System (INIS)

    Mornet, Stephane; Portier, Josik; Duguet, Etienne

    2005-01-01

    A new generation of susceptibility contrast agents for MRI and based on maghemite cores covalently bonded to dextran stabilizing macromolecules was investigated. The multistep preparation of these versatile ultrasmall superparamagnetic iron oxides (VUSPIO) consisted of colloidal maghemite synthesis, surface modification by aminopropylsilane groups, and coupling of partially oxidized dextran via Schiff's bases and secondary amine bonds. The dextran corona might be easily derivatized, e.g. by PEGylation

  8. Monodisperse superparamagnetic nanoparticles by thermolysis of Fe(III) oleate and mandelate complexes

    Czech Academy of Sciences Publication Activity Database

    Patsula, Vitalii; Petrovský, Eduard; Kovářová, Jana; Konefal, Rafal; Horák, Daniel

    2014-01-01

    Roč. 292, č. 9 (2014), s. 2097-2110 ISSN 0303-402X R&D Projects: GA ČR GAP206/12/0381; GA MŠk 7E12053 EU Projects: European Commission(XE) 246513 - NADINE Institutional support: RVO:61389013 ; RVO:67985530 Keywords : superparamagnetic * nanoparticles * iron oxide Subject RIV: CD - Macromolecular Chemistry; DE - Earth Magnetism, Geodesy, Geography (GFU-E) Impact factor: 1.865, year: 2014

  9. Using iron-loaded sepiolite obtained by adsorption as a catalyst in the electro-Fenton oxidation of Reactive Black 5.

    Science.gov (United States)

    Iglesias, O; Fernández de Dios, M A; Pazos, M; Sanromán, M A

    2013-09-01

    This study explores the possibility of using iron-loaded sepiolite, obtained by recovering iron from polluted water, as a catalyst in the electro-Fenton oxidation of organic pollutants in textile effluents. The removal of iron ions from aqueous solution by adsorption on sepiolite was studied in batch tests at iron concentrations between 100 and 1,000 ppm. Electro-Fenton experiments were carried out in an electrochemical cell with a working volume of 0.15 L, an air flow of 1 L/min, and 3 g of iron-loaded sepiolite. An electric field was applied using a boron-doped diamond anode and a graphite sheet cathode connected to a direct current power supply with a constant potential drop. Reactive Black 5 (100 mg/L) was selected as the model dye. The adsorption isotherms proved the ability of the used adsorbent. The removal of the iron ion by adsorption on sepiolite was in the range of 80-100 % for the studied concentration range. The Langmuir and Freundlich isotherms were found to be applicable in terms of the relatively high regression values. Iron-loaded sepiolite could be used as an effective heterogeneous catalyst for the degradation of organic dyes in the electro-Fenton process. Successive batch processes were performed at optimal working conditions (5 V and pH 2). The results indicate the suitability of the proposed combined process, adsorption to iron remediation followed by the application of the obtained iron-loaded sepiolite to the electro-Fenton technique, to oxidize polluted effluents.

  10. Relaxometry imaging of superparamagnetic magnetite nanoparticles at ambient conditions

    Science.gov (United States)

    Finkler, Amit; Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Wrachtrup, Jörg

    We present a novel technique to image superparamagnetic iron oxide nanoparticles via their fluctuating magnetic fields. The detection is based on the nitrogen-vacancy (NV) color center in diamond, which allows optically detected magnetic resonance (ODMR) measurements on its electron spin structure. In combination with an atomic-force-microscope, this atomic-sized color center maps ambient magnetic fields in a wide frequency range from DC up to several GHz, while retaining a high spatial resolution in the sub-nanometer range. We demonstrate imaging of single 10 nm sized magnetite nanoparticles using this spin noise detection technique. By fitting simulations (Ornstein-Uhlenbeck process) to the data, we are able to infer additional information on such a particle and its dynamics, like the attempt frequency and the anisotropy constant. This is of high interest to the proposed application of magnetite nanoparticles as an alternative MRI contrast agent or to the field of particle-aided tumor hyperthermia.

  11. Superparamagnetic nanoparticle-inclusion microbubbles for ultrasound contrast agents

    International Nuclear Information System (INIS)

    Yang Fang; Li Yixin; Chen Zhongping; Gu Ning; Li Ling; Wu Junru

    2008-01-01

    We have developed a new type of ultrasound (US) contrast agent, consisting of a gas core, a layer of superparamagnetic iron oxide Fe 3 O 4 nanoparticles (SPIO) and an oil in water outermost layer. The newly developed US contrast agent microbubbles have a mean diameter of 760 nm with a polydisperity index (PI) of 0.699. Our in vitro and in vivo experiments have shown that they have the following advantages compared to gas-encapsulated microbbubbles without SPIO inclusion: (1) they provide better contrast for US images; (2) the SPIO-inclusion microbubbles generate a higher backscattering signal; the mean grey scale is 97.9, which is 38.6 higher than that of microbubbles without SPIO; and (3) since SPIO can also serve as a contrast agent of magnetic resonance images (MRI) in vitro, they can be potentially used as contrast agents for double-modality (MRI and US) clinical studies.

  12. Superparamagnetic photocurable nanocomposite for the fabrication of microcantilevers

    DEFF Research Database (Denmark)

    Suter, M; Ergeneman, O; Zürcher, J

    2011-01-01

    We present a photocurable polymer composite with superparamagnetic characteristics for the fabrication of microcantilevers. Uniform distribution and low particle agglomeration (......We present a photocurable polymer composite with superparamagnetic characteristics for the fabrication of microcantilevers. Uniform distribution and low particle agglomeration (...

  13. The impact of different stator and rotor slot number combinations on iron losses of a three-phase induction motor at no-load

    International Nuclear Information System (INIS)

    Marcic, T.; Stumberger, B.; Stumberger, G.; Hadziselimovic, M.; Zagradisnik, I.

    2008-01-01

    The electromechanical characteristics of induction motors depend on the used stator and rotor slot combination. The correlation between the usage of different stator and rotor slot number combinations, magnetic flux density distributions, no-load iron losses and rated load winding over-temperatures for a specific induction motor is presented. The motor's magnetic field was analyzed by traces of the magnetic flux density vector, obtained by FEM. Post-processing of FE magnetic field solution was used for posterior iron loss calculation of the motor iron loss at no-load. The examined motor stator lamination had 36 semi-closed slots and the rotor laminations had 28, 33, 34, 44 and 46 semi-closed slots

  14. Oral administration of iron-saturated bovine lactoferrin-loaded ceramic nanocapsules for breast cancer therapy and influence on iron and calcium metabolism.

    Science.gov (United States)

    Mahidhara, Ganesh; Kanwar, Rupinder K; Roy, Kislay; Kanwar, Jagat R

    2015-01-01

    We determined the anticancer efficacy and internalization mechanism of our polymeric-ceramic nanoparticle system (calcium phosphate nanocores, enclosed in biodegradable polymers chitosan and alginate nanocapsules/nanocarriers [ACSC NCs]) loaded with iron-saturated bovine lactoferrin (Fe-bLf) in a breast cancer xenograft model. ACSC-Fe-bLf NCs with an overall size of 322±27.2 nm were synthesized. In vitro internalization and anticancer efficacy were evaluated in the MDA-MB-231 cells using multicellular tumor spheroids, CyQUANT and MTT assays. These NCs were orally delivered in a breast cancer xenograft mice model, and their internalization, cytotoxicity, biodistribution, and anticancer efficacy were evaluated. Chitosan-coated calcium phosphate Fe-bLf NCs effectively (59%, P≤0.005) internalized in a 1-hour period using clathrin-mediated endocytosis (P≤0.05) and energy-mediated pathways (P≤0.05) for internalization; 3.3 mg/mL of ACSC-Fe-bLf NCs completely disintegrated (~130-fold reduction, P≤0.0005) the tumor spheroids in 72 hours and 96 hours. The IC50 values determined for ACSC-Fe-bLf NCs were 1.69 mg/mL at 10 hours and 1.62 mg/mL after 20 hours. We found that Fe-bLf-NCs effectively (P≤0.05) decreased the tumor size (4.8-fold) compared to the void NCs diet and prevented tumor recurrence when compared to intraperitoneal injection of Taxol and Doxorubicin. Receptor gene expression and micro-RNA analysis confirmed upregulation of low-density lipoprotein receptor and transferrin receptor (liver, intestine, and brain). Several micro-RNAs responsible for iron metabolism upregulated with NCs were identified. Taken together, orally delivered Fe-bLf NCs offer enhanced antitumor activity in breast cancer by internalizing via low-density lipoprotein receptor and transferrin receptor and regulating the micro-RNA expression. These NCs also restored the body iron and calcium levels and increased the hematologic counts.

  15. Oral administration of iron-saturated bovine lactoferrin–loaded ceramic nanocapsules for breast cancer therapy and influence on iron and calcium metabolism

    Directory of Open Access Journals (Sweden)

    Mahidhara G

    2015-06-01

    Full Text Available Ganesh Mahidhara, Rupinder K Kanwar, Kislay Roy, Jagat R Kanwar Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Molecular and Medical Research Strategic Research Centre, Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia Abstract: We determined the anticancer efficacy and internalization mechanism of our polymeric–ceramic nanoparticle system (calcium phosphate nanocores, enclosed in biodegradable polymers chitosan and alginate nanocapsules/nanocarriers [ACSC NCs] loaded with iron-saturated bovine lactoferrin (Fe-bLf in a breast cancer xenograft model. ACSC-Fe-bLf NCs with an overall size of 322±27.2 nm were synthesized. In vitro internalization and anticancer efficacy were evaluated in the MDA-MB-231 cells using multicellular tumor spheroids, CyQUANT and MTT assays. These NCs were orally delivered in a breast cancer xenograft mice model, and their internalization, cytotoxicity, biodistribution, and anticancer efficacy were evaluated. Chitosan-coated calcium phosphate Fe-bLf NCs effectively (59%, P≤0.005 internalized in a 1-hour period using clathrin-mediated endocytosis (P≤0.05 and energy-mediated pathways (P≤0.05 for internalization; 3.3 mg/mL of ACSC-Fe-bLf NCs completely disintegrated (~130-fold reduction, P≤0.0005 the tumor spheroids in 72 hours and 96 hours. The IC50 values determined for ACSC-Fe-bLf NCs were 1.69 mg/mL at 10 hours and 1.62 mg/mL after 20 hours. We found that Fe-bLf-NCs effectively (P≤0.05 decreased the tumor size (4.8-fold compared to the void NCs diet and prevented tumor recurrence when compared to intraperitoneal injection of Taxol and Doxorubicin. Receptor gene expression and micro-RNA analysis confirmed upregulation of low-density lipoprotein receptor and transferrin receptor (liver, intestine, and brain. Several micro-RNAs responsible for iron metabolism upregulated with NCs were identified. Taken together, orally delivered Fe-bLf NCs

  16. Iron storage disease (hemochromatosis) and hepcidin response to iron load in two species of pteropodid fruit bats relative to the common vampire bat.

    Science.gov (United States)

    Stasiak, Iga M; Smith, Dale A; Ganz, Tomas; Crawshaw, Graham J; Hammermueller, Jutta D; Bienzle, Dorothee; Lillie, Brandon N

    2018-07-01

    Hepcidin is the key regulator of iron homeostasis in the body. Iron storage disease (hemochromatosis) is a frequent cause of liver disease and mortality in captive Egyptian fruit bats (Rousettus aegyptiacus), but reasons underlying this condition are unknown. Hereditary hemochromatosis in humans is due to deficiency of hepcidin or resistance to the action of hepcidin. Here, we investigated the role of hepcidin in iron metabolism in one species of pteropodid bat that is prone to iron storage disease [Egyptian fruit bat (with and without hemochromatosis)], one species of pteropodid bat where iron storage disease is rare [straw-colored fruit bat (Eidolon helvum)], and one species of bat with a natural diet very high in iron, in which iron storage disease is not reported [common vampire bat (Desmodus rotundus)]. Iron challenge via intramuscular injection of iron dextran resulted in significantly increased liver iron content and histologic iron scores in all three species, and increased plasma iron in Egyptian fruit bats and straw-colored fruit bats. Hepcidin mRNA expression increased in response to iron administration in healthy Egyptian fruit bats and common vampire bats, but not in straw-colored fruit bats or Egyptian fruit bats with hemochromatosis. Hepcidin gene expression significantly correlated with liver iron content in Egyptian fruit bats and common vampire bats, and with transferrin saturation and plasma ferritin concentration in Egyptian fruit bats. Induction of hepcidin gene expression in response to iron challenge is absent in straw-colored fruit bats and in Egyptian fruit bats with hemochromatosis and, relative to common vampire bats and healthy humans, is low in Egyptain fruit bats without hemochromatosis. Limited hepcidin response to iron challenge may contribute to the increased susceptibility of Egyptian fruit bats to iron storage disease.

  17. Magnetoviscoelastic characteristics of superparamagnetic oxides (Fe, Ni) based ferrofluids

    Science.gov (United States)

    Katiyar, Ajay; Dhar, Purbarun; Nandi, Tandra; Das, Sarit K.

    2017-08-01

    Ferrofluids have been popular among the academic and scientific communities owing to their intelligent physical characteristics under external stimuli and are in fact among the first nanotechnology products to be employed in real world applications. However, studies on the magnetoviscoelastic behavior of concentrated ferrofluids, especially of superparamagnetic oxides of iron and nickel are rare. The present article comprises the formulation of magneto-colloids utilizing the three various metal oxides nanoparticles viz. Iron (II, III) oxide (Fe3O4), Iron (III) oxide (Fe2O3) and Nickel oxide (NiO) in oil. Iron (II, III) oxide based colloids demonstrate high magnetoviscous characteristics over the other oxides based colloids under external magnetic fields. The maximum magnitude of yield stress and viscosity is found to be 3.0 kPa and 2.9 kPa.s, respectively for iron (II, III) oxide based colloids at 2.6 vol% particle concentration and 1.2 T magnetic field. Experimental investigations reveal that the formulated magneto-nanocolloids are stable, even in high magnetic fields and almost reversible when exposed to rising and drop of magnetic fields of the same magnitude. Observations also reveal that the elastic behavior dominates over the viscous behavior with enhanced relaxation and creep characteristics under the magnetic field. The effect of temperature on viscosity and yield stress of magneto-nanocolloids under magnetic fields has also been discussed. Thus, the present findings have potential applications in various fields such as electromagnetic clutch and brakes of automotive, damping, sealing, optics, nanofinishing etc.

  18. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy.

    Science.gov (United States)

    He, Yingna; Zhang, Linhua; Zhu, Dunwan; Song, Cunxian

    2014-01-01

    Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs) as a magnetic resonance imaging (MRI) contrast agent and anticancer drug, mitoxantrone (Mit), were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML) showed significantly increased uptake in luteinizing hormone-releasing hormone (LHRH) receptor overexpressing MCF-7 (Michigan Cancer Foundation-7) breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML) control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3) cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice. Furthermore, the Mit-GML demonstrated much higher T2 enhancement than did Mit-ML controls in vivo. Collectively, the study indicates that the integrated diagnostic and therapeutic design of Mit-GML nanomedicine potentially allows for the image-guided, target-specific treatment of cancer.

  19. Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency.

    Science.gov (United States)

    Matuszewski, Lars; Persigehl, Thorsten; Wall, Alexander; Schwindt, Wolfram; Tombach, Bernd; Fobker, Manfred; Poremba, Christopher; Ebert, Wolfgang; Heindel, Walter; Bremer, Christoph

    2005-04-01

    To evaluate the effect of lipofection, particle size, and surface coating on labeling efficiency of mammalian cells with superparamagnetic iron oxides (SPIOs). Institutional Review Board approval was not required. Different human cell lines (lung and breast cancer, fibrosarcoma, leukocytes) were tagged by using carboxydextran-coated SPIOs of various hydrodynamic diameters (17-65 nm) and a dextran-coated iron oxide (150 nm). Cells were incubated with increasing concentrations of iron (0.01-1.00 mg of iron [Fe] per milliliter), including or excluding a transfection medium (TM). Cellular iron uptake was analyzed qualitatively at light and electron microscopy and was quantified at atomic emission spectroscopy. Cell visibility was assessed with gradient- and spin-echo magnetic resonance (MR) imaging. Effects of iron concentration in the medium and of lipofection on cellular SPIO uptake were analyzed with analysis of variance and two-tailed Student t test, respectively. Iron oxide uptake increased in a dose-dependent manner with higher iron concentrations in the medium. The TM significantly increased the iron load of cells (up to 2.6-fold, P .05). As few as 10 000 cells could be detected with clinically available MR techniques by using this approach. Lipofection-based cell tagging is a simple method for efficient cell labeling with clinically approved iron oxide-based contrast agents. Large particle size and carboxydextran coating are preferable for cell tagging with endocytosis- and lipofection-based methods. (c) RSNA, 2005.

  20. Superparamagnetic relaxation of weakly interacting particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Tronc, Elisabeth

    1994-01-01

    The influence of particle interactions on the superparamagnetic relaxation time has been studied by Mossbauer spectroscopy in samples of maghemite (gamma-Fe2O3) particles with different particle sizes and particle separations. It is found that the relaxation time decreases with decreasing particl...

  1. Superparamagnetic relaxation in alpha-Fe particles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Pedersen, Michael Stanley

    1998-01-01

    The superparamagnetic relaxation time of carbon-supported alpha-Fe particles with an average size of 3.0 Mm has been studied over a large temperature range by the use of Mossbauer spectroscopy combined with AC and DC magnetization measurements. It is found that the relaxation time varies...

  2. Quantitative Susceptibility Mapping Reveals an Association between Brain Iron Load and Depression Severity

    Directory of Open Access Journals (Sweden)

    Shun Yao

    2017-08-01

    Full Text Available Previous studies have detected abnormal serum ferritin levels in patients with depression; however, the results have been inconsistent. This study used quantitative susceptibility mapping (QSM for the first time to examine brain iron concentration in depressed patients and evaluated whether it is related to severity. We included three groups of age- and gender-matched participants: 30 patients with mild-moderate depression (MD, 14 patients with major depression disorder (MDD and 20 control subjects. All participants underwent MR scans with a 3D gradient-echo sequence reconstructing for QSM and performed the 17-item Hamilton Depression Rating Scale (HDRS test. In MDD, the susceptibility value in the bilateral putamen was significantly increased compared with MD or control subjects. In addition, a significant difference was also observed in the left thalamus in MDD patients compared with controls. However, the susceptibility values did not differ between MD patients and controls. The susceptibility values positively correlated with the severity of depression as indicated by the HDRS scores. Our results provide evidence that brain iron deposition may be associated with depression and may even be a biomarker for investigating the pathophysiological mechanism of depression.

  3. Splenic red pulp macrophages are intrinsically superparamagnetic and contaminate magnetic cell isolates.

    Science.gov (United States)

    Franken, Lars; Klein, Marika; Spasova, Marina; Elsukova, Anna; Wiedwald, Ulf; Welz, Meike; Knolle, Percy; Farle, Michael; Limmer, Andreas; Kurts, Christian

    2015-08-11

    A main function of splenic red pulp macrophages is the degradation of damaged or aged erythrocytes. Here we show that these macrophages accumulate ferrimagnetic iron oxides that render them intrinsically superparamagnetic. Consequently, these cells routinely contaminate splenic cell isolates obtained with the use of MCS, a technique that has been widely used in immunological research for decades. These contaminations can profoundly alter experimental results. In mice deficient for the transcription factor SpiC, which lack red pulp macrophages, liver Kupffer cells take over the task of erythrocyte degradation and become superparamagnetic. We describe a simple additional magnetic separation step that avoids this problem and substantially improves purity of magnetic cell isolates from the spleen.

  4. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy

    Directory of Open Access Journals (Sweden)

    He Y

    2014-08-01

    Full Text Available Yingna He,1 Linhua Zhang,2 Dunwan Zhu,2 Cunxian Song2 1Laboratory of Chinese Medicine Pharmacology, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China; 2Key Laboratory of Biomedical Material of Tianjin, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, People’s Republic of China Abstract: Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs as a magnetic resonance imaging (MRI contrast agent and anticancer drug, mitoxantrone (Mit, were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML showed significantly increased uptake in luteinizing hormone–releasing hormone (LHRH receptor overexpressing MCF-7 (Michigan Cancer Foundation-7 breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3 cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice. Furthermore, the Mit-GML demonstrated much higher T2 enhancement than did Mit-ML controls in vivo. Collectively, the study indicates that the integrated diagnostic and therapeutic design of Mit-GML nanomedicine potentially allows for the image-guided, target-specific treatment of cancer. Keywords: multifunctional liposome, magnetic resonance imaging, theranostic nanomedicine, mitoxantrone, gonadorelin

  5. New strategies to prolong the in vivo life span of iron-based contrast agents for MRI.

    Directory of Open Access Journals (Sweden)

    Antonella Antonelli

    Full Text Available Superparamagnetic iron oxide (SPIO and ultra small superparamagnetic iron oxide (USPIO nanoparticles have been developed as magnetic resonance imaging (MRI contrast agents. Iron oxide nanoparticles, that become superparamagnetic if the core particle diameter is ~ 30 nm or less, present R1 and R2 relaxivities which are much higher than those of conventional paramagnetic gadolinium chelates. Generally, these magnetic particles are coated with biocompatible polymers that prevent the agglomeration of the colloidal suspension and improve their blood distribution profile. In spite of their potential as MRI blood contrast agents, the biomedical application of iron oxide nanoparticles is still limited because of their intravascular half-life of only few hours; such nanoparticles are rapidly cleared from the bloodstream by macrophages of the reticulo-endothelial system (RES. To increase the life span of these MRI contrast agents in the bloodstream we proposed the encapsulation of SPIO nanoparticles in red blood cells (RBCs through the transient opening of cell membrane pores. We have recently reported results obtained by applying our loading procedure to several SPIO nanoparticles with different chemical physical characteristics such as size and coating agent. In the current investigation we showed that the life span of iron-based contrast agents in the mice bloodstream was prolonged to 12 days after the intravenous injection of murine SPIO-loaded RBCs. Furthermore, we developed an animal model that implicates the pretreatment of animals with clodronate to induce a transient suppression of tissue macrophages, followed by the injection of human SPIO-loaded RBCs which make it possible to encapsulate nanoparticle concentrations (5.3-16.7 mM Fe higher than murine SPIO-loaded RBCs (1.4-3.55 mM Fe. The data showed that, when human RBCs are used as more capable SPIO nanoparticle containers combined with a depletion of tissue macrophages, Fe concentration in

  6. Micro-electrolysis of Cr (VI) in the nanoscale zero-valent iron loaded activated carbon.

    Science.gov (United States)

    Wu, Limei; Liao, Libing; Lv, Guocheng; Qin, Faxiang; He, Yujuan; Wang, Xiaoyu

    2013-06-15

    In this paper we prepared a novel material of activated carbon/nanoscale zero-valent iron (C-Fe(0)) composite. The C-Fe(0) was proved to possess large specific surface area and outstanding reducibility that result in the rapid and stable reaction with Cr (VI). The prepared composite has been examined in detail in terms of the influence of solution pH, concentration and reaction time in the Cr (VI) removal experiments. The results showed that the C-Fe(0) formed a micro-electrolysis which dominated the reaction rate. The Micro-electrolysis reaches equilibrium is ten minutes. Its reaction rate is ten times higher than that of traditional adsorption reaction, and the removal rate of Cr reaches up to 99.5%. By analyzing the obtained profiles from the cyclic voltammetry, PXRD and XPS, we demonstrate that the Cr (VI) is reduced to insoluble Cr (III) compound in the reaction. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Observation of electromagnetically induced transparency and absorption in Yttrium Iron Garnet loaded split ring resonator

    Science.gov (United States)

    Tay, Z. J.; Soh, W. T.; Ong, C. K.

    2018-04-01

    In this paper, we propose a new method of controlling microwave transmission from Electromagnetically Induced Absorption (EIA) to Electromagnetically Induced Transparency (EIT). EIA describes the state where the system strongly absorbs microwaves, whereas EIT describes the state in which the system is transparent to microwaves. Control is achieved via coupling of the 3 GHz photon mode of a metamaterial Split Ring Resonator (SRR) to the spin wave magnon modes of a Yttrium Iron Garnet (YIG) bulk. The system is described by a 2-body interaction matrix with an additional fitting parameter τ which takes into account the fact that the microstrip feed line could excite the SRR as well as the YIG. The parameter τ reveals the effect of geometry and shielding on the coupling behaviour and gives rise to unique physics. In low τ (τ ⩽ 2) configurations, only EIT is reported. However, in high τ (τ ≈ 10) configurations, EIA is reported. Furthermore, we report that the system can be easily changed from a low τ to high τ configuration by shielding the SRR from the microstrip with a thin metal piece. Varying the τ parameter through shielding is thus proposed as a new method of controlling the microwave transmission at the coupling region.

  8. Paclitaxel-loaded iron platinum stealth immunomicelles are potent MRI imaging agents that prevent prostate cancer growth in a PSMA-dependent manner

    Directory of Open Access Journals (Sweden)

    Taylor RM

    2012-08-01

    Full Text Available Robert M Taylor,1,2 Laurel O Sillerud1,31Department of Biochemistry and Molecular Biology, 2New Mexico Cancer Nanoscience and Microsystems Training Center, 3UNM Cancer Center, University of New Mexico, Albuquerque, NM, USABackground and methods: Problems with the clinical management of prostate cancer include the lack of both specific detection and efficient therapeutic intervention. We report the encapsulation of superparamagnetic iron platinum nanoparticles (SIPPs and paclitaxel in a mixture of polyethyleneglycolated, fluorescent, and biotin-functionalized phospholipids to create multifunctional SIPP-PTX micelles (SPMs that were conjugated to an antibody against prostate-specific membrane antigen (PSMA for the specific targeting, magnetic resonance imaging (MRI, and treatment of human prostate cancer xenografts in mice.Results: SPMs were 45.4 ± 24.9 nm in diameter and composed of 160.7 ± 22.9 µg/mL iron, 247.0 ± 33.4 µg/mL platinum, and 702.6 ± 206.0 µg/mL paclitaxel. Drug release measurements showed that, at 37°C, half of the paclitaxel was released in 30.2 hours in serum and two times faster in saline. Binding assays suggested that PSMA-targeted SPMs specifically bound to C4-2 human prostate cancer cells in vitro and released paclitaxel into the cells. In vitro, paclitaxel was 2.2 and 1.6 times more cytotoxic than SPMs to C4-2 cells at 24 and 48 hours of incubation, respectively. After 72 hours of incubation, paclitaxel and SPMs were equally cytotoxic. SPMs had MRI transverse relaxivities of 389 ± 15.5 Hz/mM iron, and SIPP micelles with and without drug caused MRI contrast enhancement in vivo.Conclusion: Only PSMA-targeted SPMs and paclitaxel significantly prevented growth of C4-2 prostate cancer xenografts in nude mice. Furthermore, mice injected with PSMA-targeted SPMs showed significantly more paclitaxel and platinum in tumors, compared with nontargeted SPM-injected and paclitaxel-injected mice.Keywords: iron platinum, MRI

  9. Superparamagnetic response of zinc ferrite incrusted nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Maldonado, K.L., E-mail: liliana.lopez.maldonado@gmail.com [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 norte, 32310 Ciudad Juárez (Mexico); Presa, P. de la, E-mail: pmpresa@ucm.es [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), PO Box 155, 28230 Las Rozas (Spain); Dpto. Física de Materiales, Univ. Complutense de Madrid, Madrid (Spain); Betancourt, I., E-mail: israelb@unam.mx [Departamento de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México, D.F. 04510 (Mexico); Farias Mancilla, J.R., E-mail: rurik.farias@uacj.mx [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 norte, 32310 Ciudad Juárez (Mexico); Matutes Aquino, J.A., E-mail: jose.matutes@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, 31109 Chihuahua (Mexico); Hernando, A., E-mail: antonio.hernando@externos.adif.es [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), PO Box 155, 28230 Las Rozas (Spain); Dpto. Física de Materiales, Univ. Complutense de Madrid, Madrid (Spain); and others

    2015-07-15

    Highlights: • Incrusted nanoparticles are found at the surface of ZnFe{sub 2}O{sub 4} microparticles. • Magnetic contribution of nano and microparticles are analyzed by different models. • Langevin model is used to calculate the nanoparticles-superparamagnetic diameter. • Susceptibility and Langevin analysis and calculations agree with experimental data. - Abstract: Zinc ferrite is synthesized via mechano-activation, followed by thermal treatment. Spinel ZnFe{sub 2}O{sub 4} single phase is confirmed by X-ray diffraction. SEM micrographs show large particles with average particle size 〈D{sub part}〉 = 1 μm, with particles in intimate contact. However, TEM micrographs show incrusted nanocrystallites at the particles surface, with average nanocrystallite size calculated as 〈D{sub inc}〉 ≈ 5 nm. The blocking temperature at 118 K in the ZFC–FC curves indicates the presence of a superparamagnetic response which is attributable to the incrusted nanocrystallites. Moreover, the hysteresis loops show the coexistence of superpara- and paramagnetic responses. The former is observable at the low field region; meanwhile, the second one is responsible of the lack of saturation at high field region. This last behavior is related to a paramagnetic contribution coming from well-ordered crystalline microdomains. The hysteresis loops are analyzed by means of two different models. The first one is the susceptibility model used to examine separately the para- and superparamagnetic contributions. The fittings with the theoretical model confirm the presence of the above mentioned magnetic contributions. Finally, using the Langevin-based model, the average superparamagnetic diameter 〈D{sub SPM}〉 is calculated. The obtained value 〈D{sub SPM}〉 = 4.7 nm (∼5 nm) is consistent with the average nanocrystallite size observed by TEM.

  10. Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading

    Science.gov (United States)

    Wang, Kun; Chen, Jun; Zhang, Xueyang; Zhu, Wenjun

    2017-09-01

    Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ɛ phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be ⟨"separators="|11 1 ¯ ⟩ B C C||⟨"separators="|1 ¯2 1 ¯ 0 ⟩ H C P and ⟨"separators="|1 1 ¯ 0 ⟩ B C C||⟨"separators="|0001 ⟩ H C P for both cases. The twin boundary corresponds to {"separators="|10 1 ¯ 0 } H C P after the phase transition. It is amazing that the reverse transition seems to be able to "memorize" and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.

  11. Effect of superparamagnetic iron oxide on bone marrow

    International Nuclear Information System (INIS)

    Hundt, W.; Helmberger, T.; Reiser, M.; Petsch, R.

    2000-01-01

    The goal of this study was to compare the effects of SPIO particles on the signal intensity of the bone marrow of the vertebra spine in patients with and without liver cirrhosis. Forty-eight patients with normal liver tissue and 56 patients with liver cirrhosis were examined before and after intravenous SPIO administration, using a 1.5-T system (Magnetom Vision, Siemens, Erlangen, Germany) with a semiflexible cp-array coil. Three different pulse sequences were applied: a T1-weighted gradient-echo sequence, a T2-weighted fast spin-echo sequence with spectral fat suppression and a T2 * -weighted gradient-echo sequence. The signal-to-noise ratio (SNR) of the liver, vertebra bone and paraspinal muscle were obtained. The SNR value change in each patient group and the SNR value difference between the two groups were evaluated. For assessment of statistical significance, Student's t-test with a level of p * -weighted gradient-echo sequence, the signal intensity decrease of the normal liver tissue was approximately -65.6 % (p = 0.00), in cirrhotic liver tissue the decrease was -29.9 % (p = 0.02). The SNR values of the bone marrow showed a decrease of -27.8 % (p = 0.04) in the noncirrhotic liver group, whereas in the cirrhotic liver group it was only -11.3 % and statistically not significant. The effect of SPIO particles on the liver and bone marrow is significantly less in patients with liver cirrhosis. (orig.)

  12. Magnetic properties of iron nanoparticle

    International Nuclear Information System (INIS)

    Carvell, J.; Ayieta, E.; Gavrin, A.; Cheng, Ruihua; Shah, V. R.; Sokol, P.

    2010-01-01

    Magnetic properties of Fe nanoparticles with different sizes synthesized by a physical deposition technique have been investigated experimentally. We have used a high pressure sputtering technique to deposit iron nanoparticles on a silicon substrate. The nanoparticles are then analyzed using atomic force microscopy (AFM), transmission electron microscopy (TEM), and superconducting quantum interference device techniques. TEM and AFM data show that the particle size could be tuned by adjusting the deposition conditions. The magnetic properties have been investigated from temperature dependent magnetization M(T) and field dependent magnetization M(H) measurements. The results show that two phases including both ferromagnetic and superparamagnetic particles are present in our system. From these data we extracted the superparamagnetic critical size to be 9 nm for our samples. Ferromagnetic particles are single magnetic domain particles and the magnetic properties can be explained by the Stoner and Wohlfarth model. For the superparamagnetic phase, the effective anisotropy constant, K eff , decreases as the particle size increases.

  13. Intraarticular application of superparamagnetic nanoparticles and their uptake by synovial membrane-an experimental study in sheep

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Katja [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich (Switzerland); Koch, Annette [Department of Chemistry and Applied BioSciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Winterthurerstrasse 190, 8057 Zurich (Switzerland); Schoepf, Bernhard [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich (Switzerland); Petri, Alke [Laboratory of Powder Technology, Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Steitz, Benedikt [Laboratory of Powder Technology, Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Chastellain, Mathieu [Laboratory of Powder Technology, Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Hofmann, Margarethe [MatSearch, Chemin Jean Pavillard 14, 1009 Pully (Switzerland); Hofmann, Heinrich [Laboratory of Powder Technology, Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland); Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich (Switzerland)]. E-mail: bvonrechenberg@vetclinics.unizh.ch

    2005-05-15

    A superparamagnetic iron oxide nanoparticle, coated with polyvinyl alcohol (PVA-SPION) and its fluorescently functionalized analogue (amino-PVA-Cy3.5-SPION) were compared in vivo as proof of principle for future use in magnetic drug targeting in inflammatory joint diseases. They were injected either intraarticularly or periarticularly and their uptake by cells of the synovial membrane was evaluated. Uptake was completed in 48 h and was enforced by an extracorporally applied magnet.

  14. Intraarticular application of superparamagnetic nanoparticles and their uptake by synovial membrane-an experimental study in sheep

    International Nuclear Information System (INIS)

    Schulze, Katja; Koch, Annette; Schoepf, Bernhard; Petri, Alke; Steitz, Benedikt; Chastellain, Mathieu; Hofmann, Margarethe; Hofmann, Heinrich; Rechenberg, Brigitte von

    2005-01-01

    A superparamagnetic iron oxide nanoparticle, coated with polyvinyl alcohol (PVA-SPION) and its fluorescently functionalized analogue (amino-PVA-Cy3.5-SPION) were compared in vivo as proof of principle for future use in magnetic drug targeting in inflammatory joint diseases. They were injected either intraarticularly or periarticularly and their uptake by cells of the synovial membrane was evaluated. Uptake was completed in 48 h and was enforced by an extracorporally applied magnet

  15. Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles.

    Directory of Open Access Journals (Sweden)

    Jens Baumgartner

    Full Text Available The room temperature co-precipitation of ferrous and ferric iron under alkaline conditions typically yields superparamagnetic magnetite nanoparticles below a size of 20 nm. We show that at pH  =  9 this method can be tuned to grow larger particles with single stable domain magnetic (> 20-30 nm or even multi-domain behavior (> 80 nm. The crystal growth kinetics resembles surprisingly observations of magnetite crystal formation in magnetotactic bacteria. The physicochemical parameters required for mineralization in these organisms are unknown, therefore this study provides insight into which conditions could possibly prevail in the biomineralizing vesicle compartments (magnetosomes of these bacteria.

  16. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, Tobias [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Schoepf, Bernhard [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Hofmann, Heinrich [Laboratory of Powder Technology, Institute of Materials, Swiss Federal Institute of Technology, EPFL, 1015 Lausanne (Switzerland); Hofmann, Margarete [MatSearch Pully, Chemin Jean Pavillard, 14, CH-1009 Pully (Switzerland); Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland)]. E-mail: bvonrechenberg@vetclinics.unizh.ch

    2005-05-15

    Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting. They are used for in vivo applications such as contrast agent for magnetic resonance imaging (MRI), for tumor therapy or cardiovascular disease. Very promising nanoparticles for these applications are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. SPION are coated with biocompatible materials and can be functionalized with drugs, proteins or plasmids. In this review, the characteristics and applications of SPION in the biomedical sector are introduced and discussed.

  17. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system

    International Nuclear Information System (INIS)

    Neuberger, Tobias; Schoepf, Bernhard; Hofmann, Heinrich; Hofmann, Margarete; Rechenberg, Brigitte von

    2005-01-01

    Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting. They are used for in vivo applications such as contrast agent for magnetic resonance imaging (MRI), for tumor therapy or cardiovascular disease. Very promising nanoparticles for these applications are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. SPION are coated with biocompatible materials and can be functionalized with drugs, proteins or plasmids. In this review, the characteristics and applications of SPION in the biomedical sector are introduced and discussed

  18. Magnetoviscoelastic characteristics of superparamagnetic oxides (Fe, Ni) based ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ajay, E-mail: ajay_k@ric.drdo.in [Research and Innovation Centre (DRDO), IIT Madras Research Park, Chennai 600113 (India); Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Dhar, Purbarun [Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 (India); Nandi, Tandra [Defence Materials and Stores Research and Development Establishment (DRDO), G.T. Road, Kanpur 208013 (India); Das, Sarit K. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 (India)

    2017-08-15

    Highlights: • The magnetoviscous effect in ferrofluids in the presence of magnetic field is investigated. • Oxides of Fe and Ni are dispersed in oil to formulate the ferrofluids. • Drastic enhancement in the yield stress and viscosity under the magnetic field is observed for Fe{sub 3}O{sub 4}-based ferrofluids. • Viscoelastic properties of the formulated ferrofluids demonstrate the strong function of magnetic field. • The increase in temperature reduces the magneto-viscous effect in ferrofluids under the magnetic field. - Abstract: Ferrofluids have been popular among the academic and scientific communities owing to their intelligent physical characteristics under external stimuli and are in fact among the first nanotechnology products to be employed in real world applications. However, studies on the magnetoviscoelastic behavior of concentrated ferrofluids, especially of superparamagnetic oxides of iron and nickel are rare. The present article comprises the formulation of magneto-colloids utilizing the three various metal oxides nanoparticles viz. Iron (II, III) oxide (Fe{sub 3}O{sub 4}), Iron (III) oxide (Fe{sub 2}O{sub 3}) and Nickel oxide (NiO) in oil. Iron (II, III) oxide based colloids demonstrate high magnetoviscous characteristics over the other oxides based colloids under external magnetic fields. The maximum magnitude of yield stress and viscosity is found to be 3.0 kPa and 2.9 kPa.s, respectively for iron (II, III) oxide based colloids at 2.6 vol% particle concentration and 1.2 T magnetic field. Experimental investigations reveal that the formulated magneto-nanocolloids are stable, even in high magnetic fields and almost reversible when exposed to rising and drop of magnetic fields of the same magnitude. Observations also reveal that the elastic behavior dominates over the viscous behavior with enhanced relaxation and creep characteristics under the magnetic field. The effect of temperature on viscosity and yield stress of magneto

  19. Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour

    Science.gov (United States)

    2012-01-01

    Background Superparamagnetic nanoparticles (MNPs) have been progressively explored for their potential in biomedical applications and in particular as a contrast agent for diagnostic imaging, for magnetic drug delivery and more recently for tissue engineering applications. Considering the importance of having safe MNPs for such applications, and the essential role of iron in bone remodelling, this study developed and analysed novel biocompatible and bioreabsorbable superparamagnetic nanoparticles, that avoid the use of poorly tolerated magnetite based nanoparticles, for bone tissue engineering applications. Results MNPs were obtained by doping hydroxyapatite (HA) with Fe ions, by directly substituting Fe2+ and Fe3+ into the HA structure yielding superparamagnetic bioactive phase. In the current study, we have investigated the effects of increasing concentrations (2000 μg/ml; 1000 μg/ml; 500 μg/ml; 200 μg/ml) of FeHA MNPs in vitro using Saos-2 human osteoblast-like cells cultured for 1, 3 and 7 days with and without the exposure to a static magnetic field of 320 mT. Results demonstrated not only a comparable osteoblast viability and morphology, but increased in cell proliferation, when compared to a commercially available Ha nanoparticles, even with the highest dose used. Furthermore, FeHA MNPs exposure to the static magnetic field resulted in a significant increase in cell proliferation throughout the experimental period, and higher osteoblast activity. In vivo preliminary results demonstrated good biocompatibility of FeHA superparamagnetic material four weeks after implantation into a critical size lesion of the rabbit condyle. Conclusions The results of the current study suggest that these novel FeHA MNPs may be particularly relevant for strategies of bone tissue regeneration and open new perspectives for the application of a static magnetic field in a clinical setting of bone replacement, either for diagnostic imaging or magnetic drug delivery

  20. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  1. Superparamagnetic hollow hybrid nanogels as a potential guidable vehicle system of stimuli-mediated MR imaging and multiple cancer therapeutics.

    Science.gov (United States)

    Chiang, Wen-Hsuan; Ho, Viet Thang; Chen, Hsin-Hung; Huang, Wen-Chia; Huang, Yi-Fong; Lin, Sung-Chyr; Chern, Chorng-Shyan; Chiu, Hsin-Cheng

    2013-05-28

    Hollow hybrid nanogels were prepared first by the coassembly of the citric acid-coated superparamagnetic iron oxide nanoparticles (SPIONs, 44 wt %) with the graft copolymer (56 wt %) comprising acrylic acid and 2-methacryloylethyl acrylate units as the backbone and poly(ethylene glycol) and poly(N-isopropylacrylamide) as the grafts in the aqueous phase of pH 3.0 in the hybrid vesicle structure, followed by in situ covalent stabilization via the photoinitiated polymerization of MEA residues within vesicles. The resultant hollow nanogels, though slightly swollen, satisfactorily retain their structural integrity while the medium pH is adjusted to 7.4. Confining SPION clusters to such a high level (44 wt %) within the pH-responsive thin gel layer remarkably enhances the transverse relaxivity (r2) and renders the MR imaging highly pH-tunable. For example, with the pH being adjusted from 4.0 to 7.4, the r2 value can be dramatically increased from 138.5 to 265.5 mM(-1) s(-1). The DOX-loaded hybrid nanogels also exhibit accelerated drug release in response to both pH reduction and temperature increase as a result of the substantial disruption of the interactions between drug molecules and copolymer components. With magnetic transport guidance toward the target and subsequent exposure to an alternating magnetic field, this DOX-loaded nanogel system possessing combined capabilities of hyperthermia and stimuli-triggered drug release showed superior in vitro cytotoxicity against HeLa cells as compared to the case with only free drug or hyperthermia alone. This work demonstrates that the hollow inorganic/organic hybrid nanogels hold great potential to serve as a multimodal theranostic vehicle functionalized with such desirable features as the guidable delivery of stimuli-mediated diagnostic imaging and hyperthermia/chemotherapies.

  2. Magnetic study of iron sorbitol

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, F.J. E-mail: osoro@posta.unizar.es; Larrea, A.; Abadia, A.R.; Romero, M.S

    2002-09-01

    A magnetic study of iron sorbitol, an iron-containing drug to treat the iron deficiency anemia is presented. Transmission electron microscopy reveals that the system contains nanometric particles with an average diameter of 3 nm whose composition is close to two-line ferrihydrite. The characterisation by magnetisation and AC susceptibility measurements indicates superparamagnetic behaviour with progressive magnetic blocking starting at 8 K. The quantitative analysis of the magnetic results indicates that the system consists of an assembly of very small magnetic moments, presumably originated by spin uncompensation of the antiferromagnetic nanoparticles, with Arrhenius type magnetic dynamics.

  3. The iron-regulated transporter 1 plays an essential role in uptake, translocation and grain-loading of manganese, but not iron, in barley

    DEFF Research Database (Denmark)

    Long, Lizhi; Persson, Daniel Olaf; Duan, Fengying

    2018-01-01

    Transporters involved in manganese (Mn) uptake and intracellular Mn homeostasis in Arabidopsis and rice are well characterized, while much less is known for barley, which is particularly prone to Mn deficiency. In this study we have investigated the role of the iron-regulated transporter 1 (IRT1...

  4. Treatment of Aqueous Bromate by Superparamagnetic BiOCl-Mediated Advanced Reduction Process

    Directory of Open Access Journals (Sweden)

    Xiaowei Liu

    2017-05-01

    Full Text Available Bromate ( BrO 3 − contamination in drinking water is a growing concern. Advanced reduction processes (ARPs are reportedly promising in relieving this concern. In this work, UV/superparamagnetic BiOCl (BiOCl loaded onto superparamagnetic hydroxyapatite assisted with small molecule carboxylic acid (formate, citrate, and acetate, a carboxyl anion radical ( CO 2 • − -based ARP, was proposed to eliminate aqueous BrO 3 − . Formate and citrate were found to be ideal CO 2 • − precursor, and the latter was found to be safe for practical use. BrO 3 − (10 μg·L−1, WHO guideline for drinking water can be completely degraded within 3 min under oxygen-free conditions. In this process, BrO 3 − degradation was realized by the reduction of CO 2 • − (major role and formyloxyl radical (minor role in bulk solution. The formation mechanism of radicals and the transformation pathway of BrO 3 − were proposed based on data on electron paramagnetic resonance monitoring, competitive kinetics, and degradation product analysis. The process provided a sustainable decontamination performance (<5% deterioration for 10 cycles and appeared to be more resistant to common electron acceptors (O2, NO 3 − , and Fe3+ than hydrated electron based-ARPs. Phosphate based-superparamagnetic hydroxyapatite, used to support BiOCl in this work, was believed to be applicable for resolving the recycling problem of other metal-containing catalyst.

  5. PAMAM dendrimer-coated iron oxide nanoparticles: synthesis and characterization of different generations

    International Nuclear Information System (INIS)

    Khodadust, Rouhollah; Unsoy, Gozde; Yalcın, Serap; Gunduz, Gungor; Gunduz, Ufuk

    2013-01-01

    This study focuses on the synthesis and characterization of different generations (G 0 –G 7 ) of polyamidoamine (PAMAM) dendrimer-coated magnetic nanoparticles (DcMNPs). In this study, superparamagnetic iron oxide nanoparticles were synthesized by co-precipitation method. The synthesized nanoparticles were modified with aminopropyltrimethoxysilane for dendrimer coating. Aminosilane-modified MNPs were coated with PAMAM dendrimer. The characterization of synthesized nanoparticles was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering, and vibrating sample magnetometry (VSM) analyses. TEM images demonstrated that the DcMNPs have monodisperse size distribution with an average particle diameter of 16 ± 5 nm. DcMNPs were found to be superparamagnetic through VSM analysis. The synthesis, aminosilane modification, and dendrimer coating of iron oxide nanoparticles were validated by FTIR and XPS analyses. Cellular internalization of nanoparticles was studied by inverted light scattering microscopy, and cytotoxicity was determined by XTT analysis. Results demonstrated that the synthesized DcMNPs, with their functional groups, symmetry perfection, size distribution, improved magnetic properties, and nontoxic characteristics could be suitable nanocarriers for targeted cancer therapy upon loading with various anticancer agents.

  6. Permanent magnet system to guide superparamagnetic particles

    Science.gov (United States)

    Baun, Olga; Blümler, Peter

    2017-10-01

    A new concept of using permanent magnet systems for guiding superparamagnetic nano-particles on arbitrary trajectories over a large volume is proposed. The basic idea is to use one magnet system which provides a strong, homogeneous, dipolar magnetic field to magnetize and orient the particles, and a second constantly graded, quadrupolar field, superimposed on the first, to generate a force on the oriented particles. In this configuration the motion of the particles is driven predominantly by the component of the gradient field which is parallel to the direction of the homogeneous field. As a result, particles are guided with constant force and in a single direction over the entire volume. The direction is simply adjusted by varying the angle between quadrupole and dipole. Since a single gradient is impossible due to Gauß' law, the other gradient component of the quadrupole determines the angular deviation of the force. However, the latter can be neglected if the homogeneous field is stronger than the local contribution of the quadrupole field. A possible realization of this idea is a coaxial arrangement of two Halbach cylinders. A dipole to evenly magnetize and orient the particles, and a quadrupole to generate the force. The local force was calculated analytically for this particular geometry and the directional limits were analyzed and discussed. A simple prototype was constructed to demonstrate the principle in two dimensions on several nano-particles of different size, which were moved along a rough square by manual adjustment of the force angle. The observed velocities of superparamagnetic particles in this prototype were always several orders of magnitude higher than the theoretically expected value. This discrepancy is attributed to the observed formation of long particle chains as a result of their polarization by the homogeneous field. The magnetic moment of such a chain is then the combination of that of its constituents, while its hydrodynamic radius

  7. Switchable cell trapping using superparamagnetic beads

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M. T.; Smith, K. H.; Real, M. E.; Bashir, M. A.; Fry, P. W.; Fischer, P.; Im, M.-Y.; Schrefl, T.; Allwood, D. A.; Haycock, J. W.

    2010-04-30

    Ni{sub 81}Fe{sub 19} microwires are investigated as the basis of a switchable template for positioning magnetically-labeled neural Schwann cells. Magnetic transmission X-ray microscopy and micromagnetic modeling show that magnetic domain walls can be created or removed in zigzagged structures by an applied magnetic field. Schwann cells containing superparamagnetic beads are trapped by the field emanating from the domain walls. The design allows Schwann cells to be organized on a surface to form a connected network and then released from the surface if required. As aligned Schwann cells can guide nerve regeneration, this technique is of value for developing glial-neuronal co-culture models in the future treatment of peripheral nerve injuries.

  8. Applicability of iron phosphate glass medium for loading NaCl originated from seawater used for cooling the stricken power reactors

    International Nuclear Information System (INIS)

    Amamoto, Ippei; Kobayashi, Hidekazu; Yokozawa, Takuma; Yamashita, Teruo; Nagai, Takayuki; Kitamura, Naoto; Takebe, Hiromichi; Mitamura, Naoki; Tsuzuki, Tatsuya

    2013-01-01

    As the part of investigation for immobilization of the sludge as one of the radioactive wastes arising from the treatment of contaminated water at Fukushima Dai-ichi nuclear power plant, applicability of vitrification method has been evaluated as a candidate technique. The aim of this study is to evaluate the influence of NaCl as one of the main constituents of sludge, on glass formation and glass properties. Two kinds of iron phosphate glass (IPG) media in the xFe 2 O 3 -(100-x)P 2 O 5 , with x=30 and 35 (mol%) were chosen and the glass formation, structure and properties including density, coefficient of thermal expansion, glass transition temperature, onset crystallization temperature and chemical durability of NaCl-loaded IPG were studied. The results are summarized as follows. Sodium chloride, NaCl could be loaded into IPG medium as Na 2 O and Cl contents and their loading ratio could be up to 19 and 15 mol%, respectively. Majority of Cl content of raw material NaCl was thought to be volatilized during glass melting. Loading NaCl into IPG induces to de-polymerize glass network of phosphate chains, leads to decrease both glass transition and onset crystallization temperatures, and to increase coefficient of thermal expansion. NaCl-loaded IPG indicated good chemical durability in case of using 35Fe 2 O 3 - 65P 2 O 5 medium. (authors)

  9. Microwave-Assisted Conversion of Levulinic Acid to γ-Valerolactone Using Low-Loaded Supported Iron Oxide Nanoparticles on Porous Silicates

    Directory of Open Access Journals (Sweden)

    Alfonso Yepez

    2015-09-01

    Full Text Available The microwave-assisted conversion of levulinic acid (LA has been studied using low-loaded supported Fe-based catalysts on porous silicates. A very simple, productive, and highly reproducible continuous flow method has been used for the homogeneous deposition of metal oxide nanoparticles on the silicate supports. Formic acid was used as a hydrogen donating agent for the hydrogenation of LA to effectively replace high pressure H2 mostly reported for LA conversion. Moderate LA conversion was achieved in the case of non-noble metal-based iron oxide catalysts, with a significant potential for further improvements to compete with noble metal-based catalysts.

  10. Selective manipulation of superparamagnetic beads by a magnetic microchip

    KAUST Repository

    Gooneratne, Chinthaka Pasan; Yassine, Omar; Giouroudi, Ioanna; Kosel, Jü rgen

    2013-01-01

    In this paper, a magnetic microchip (MMC) is presented, to first trap and then selectively manipulate individual, superparamagnetic beads (SPBs) to another trapping site. Trapping sites are realized through soft magnetic micro disks made of Ni80Fe20

  11. Design of Superparamagnetic Nanoparticles for Magnetic Particle Imaging (MPI

    Directory of Open Access Journals (Sweden)

    Philip W. T. Pong

    2013-09-01

    Full Text Available Magnetic particle imaging (MPI is a promising medical imaging technique producing quantitative images of the distribution of tracer materials (superparamagnetic nanoparticles without interference from the anatomical background of the imaging objects (either phantoms or lab animals. Theoretically, the MPI platform can image with relatively high temporal and spatial resolution and sensitivity. In practice, the quality of the MPI images hinges on both the applied magnetic field and the properties of the tracer nanoparticles. Langevin theory can model the performance of superparamagnetic nanoparticles and predict the crucial influence of nanoparticle core size on the MPI signal. In addition, the core size distribution, anisotropy of the magnetic core and surface modification of the superparamagnetic nanoparticles also determine the spatial resolution and sensitivity of the MPI images. As a result, through rational design of superparamagnetic nanoparticles, the performance of MPI could be effectively optimized. In this review, the performance of superparamagnetic nanoparticles in MPI is investigated. Rational synthesis and modification of superparamagnetic nanoparticles are discussed and summarized. The potential medical application areas for MPI, including cardiovascular system, oncology, stem cell tracking and immune related imaging are also analyzed and forecasted.

  12. Ultrasmall iron particles prepared by use of sodium amalgam

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1990-01-01

    Ultrasmall magnetic particles containing iron have been prepared by reduction of iron ions by the use of sodium in mercury. Mössbauer studies at 12 K show that the magnetic hyperfine field is significantly larger than in bulk alpha-Fe, suggesting that an iron mercury alloy rather than alpha-Fe has...... been formed. The particles exhibit superparamagnetic relaxation above 120 K. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  13. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications

    International Nuclear Information System (INIS)

    Agiotis, L.; Theodorakos, I.; Samothrakitis, S.; Papazoglou, S.; Zergioti, I.; Raptis, Y.S.

    2016-01-01

    Magnetic nanoparticles (MNPs), such as superparamagnetic iron oxide nanoparticles (SPIONS), have attracted major interest, due to their small size and unique magnetic properties, for drug delivery applications. In this context, iron oxide nanoparticles of magnetite (Fe 3 O 4 ) (150 nm magnetic core diameter), were used as drug carriers, aiming to form a magnetically controlled nano-platform. The navigation capabilities of the iron oxide nanoparticles in a microfluidic channel were investigated by simulating the magnetic field and the magnetic force applied on the magnetic nanoparticles inside a microfluidic chip. The simulations have been performed using finite element method (ANSY’S software). The optimum setup which intends to simulate the magnetic navigation of the nanoparticles, by the use of MRI-type fields, in the human circulatory system, consists of two parallel permanent magnets to produce a homogeneous magnetic field, in order to ensure the maximum magnetization of the magnetic nanoparticles, an electromagnet for the induction of the magnetic gradients and the creation of the magnetic force and a microfluidic setup so as to simulate the blood flow inside the human blood vessels. The magnetization of the superparamagnetic nanoparticles and the consequent magnetic torque developed by the two permanent magnets, together with the mutual interactions between the magnetized nanoparticles lead to the creation of rhabdoid aggregates in the direction of the homogeneous field. Additionally, the magnetic gradients introduced by the operation of the electromagnet are capable of directing the aggregates, as a whole, to the desired direction. By removing the magnetic fields, the aggregates are disrupted, due to the super paramagnetic nature of the nanoparticles, avoiding thus the formation of undesired thrombosis. - Highlights: • Homogeneous field yields an aggregation of particles along the lines of the field. • Additional electromagnet field rotates the

  14. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Agiotis, L.; Theodorakos, I.; Samothrakitis, S.; Papazoglou, S.; Zergioti, I.; Raptis, Y.S.

    2016-03-01

    Magnetic nanoparticles (MNPs), such as superparamagnetic iron oxide nanoparticles (SPIONS), have attracted major interest, due to their small size and unique magnetic properties, for drug delivery applications. In this context, iron oxide nanoparticles of magnetite (Fe{sub 3}O{sub 4}) (150 nm magnetic core diameter), were used as drug carriers, aiming to form a magnetically controlled nano-platform. The navigation capabilities of the iron oxide nanoparticles in a microfluidic channel were investigated by simulating the magnetic field and the magnetic force applied on the magnetic nanoparticles inside a microfluidic chip. The simulations have been performed using finite element method (ANSY’S software). The optimum setup which intends to simulate the magnetic navigation of the nanoparticles, by the use of MRI-type fields, in the human circulatory system, consists of two parallel permanent magnets to produce a homogeneous magnetic field, in order to ensure the maximum magnetization of the magnetic nanoparticles, an electromagnet for the induction of the magnetic gradients and the creation of the magnetic force and a microfluidic setup so as to simulate the blood flow inside the human blood vessels. The magnetization of the superparamagnetic nanoparticles and the consequent magnetic torque developed by the two permanent magnets, together with the mutual interactions between the magnetized nanoparticles lead to the creation of rhabdoid aggregates in the direction of the homogeneous field. Additionally, the magnetic gradients introduced by the operation of the electromagnet are capable of directing the aggregates, as a whole, to the desired direction. By removing the magnetic fields, the aggregates are disrupted, due to the super paramagnetic nature of the nanoparticles, avoiding thus the formation of undesired thrombosis. - Highlights: • Homogeneous field yields an aggregation of particles along the lines of the field. • Additional electromagnet field rotates the

  15. One-pot synthesis of water soluble iron nanoparticles using rationally-designed peptides and ligand release.

    Science.gov (United States)

    Papst, Stefanie; Cheong, Soshan; Banholzer, Moritz J; Brimble, Margaret A; Williams, David E; Tilley, Richard D

    2013-05-18

    Herein we report the rational design of new phosphopeptides for control of nucleation, growth and aggregation of water-soluble, superparamagnetic iron-iron oxide core-shell nanoparticles. The use of the designed peptides enables a one-pot synthesis that avoids utilizing unstable or toxic iron precursors, organic solvents, and the need for exchange of capping agent after synthesis of the NPs.

  16. The Influence of Micro-Oxygen Addition on Desulfurization Performance and Microbial Communities during Waste-Activated Sludge Digestion in a Rusty Scrap Iron-Loaded Anaerobic Digester

    Directory of Open Access Journals (Sweden)

    Renjun Ruan

    2017-02-01

    Full Text Available In this study, micro-oxygen was integrated into a rusty scrap iron (RSI-loaded anaerobic digester. Under an optimal RSI dosage of 20 g/L, increasing O2 levels were added stepwise in seven stages in a semi-continuous experiment. Results showed the average methane yield was 306 mL/g COD (chemical oxygen demand, and the hydrogen sulphide (H2S concentration was 1933 ppmv with RSI addition. O2 addition induced the microbial oxidation of sulphide by stimulating sulfur-oxidizing bacteria and chemical corrosion of iron, which promoted the generation of FeS and Fe2S3. In the 6th phase of the semi-continuous test, deep desulfurization was achieved without negatively impacting system performance. Average methane yield was 301.1 mL/g COD, and H2S concentration was 75 ppmv. Sulfur mass balance was described, with 84.0%, 11.90% and 0.21% of sulfur present in solid, liquid and gaseous phases, respectively. The Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE analysis revealed that RSI addition could enrich the diversity of hydrogenotrophic methanogens and iron-reducing bacteria to benefit methanogenesis and organic mineralization, and impoverish the methanotroph (Methylocella silvestris to reduce the consumption of methane. Micro-oxygen supplementation could enhance the diversity of iron-oxidizing bacteria arising from the improvement of Fe(II release rate and enrich the sulphur-oxidising bacteria to achieved desulfurization. These results demonstrated that RSI addition in combination with micro-oxygenation represents a promising method for simultaneously controlling biogas H2S concentration and improving digestion performance.

  17. Magnetic and relaxometric properties of polyethylenimine-coated superparamagnetic MRI contrast agents

    International Nuclear Information System (INIS)

    Corti, M.; Lascialfari, A.; Marinone, M.; Masotti, A.; Micotti, E.; Orsini, F.; Ortaggi, G.; Poletti, G.; Innocenti, C.; Sangregorio, C.

    2008-01-01

    Novel systems to be employed as superparamagnetic contrast agents (CA) for magnetic resonance imaging (MRI) have been synthesized. These compounds are composed of an iron oxide magnetic core coated by polyethylenimine (PEI) or carboxylated polyethylenimine (PEI-COOH). The aim of the present work was to prepare and study new nanostructured systems (with better or at least comparable relaxivities, R 1 and R 2 , with respect to the commercial ones) with controlled, almost monodisperse average dimensions and shape, as candidates for molecular targeting. By means of atomic force microscopy (AFM) measurements we determined the average diameter, of the order of 200 nm, and the shape of the particles. The superparamagnetic behavior was assessed by SQUID measurements. From X-ray data the estimated average diameters of the magnetic cores were found to be ∼5.8 nm for PEI-COOH60 and ∼20 nm for the compound named PEI25. By NMR-dispersion (NMRD), we found that PEI-COOH60 presents R 1 and R 2 relaxivities slightly lower than Endorem. The experimental results suggest that these novel compounds can be used as MRI CA

  18. Stabilisation effects of superparamagnetic nanoparticles on clustering in nanocomposite microparticles and on magnetic behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Mandel, K., E-mail: karl-sebastian.mandel@isc.fraunhofer.de [Fraunhofer Institute for Silicate Research, ISC, Neunerplatz 2, 97082 Würzburg (Germany); University Würzburg, Chair of Chemical Technology of Materials Synthesis, Röntgenring 11, 97070 Würzburg (Germany); Hutter, F., E-mail: frank.hutter@isc.fraunhofer.de [Fraunhofer Institute for Silicate Research, ISC, Neunerplatz 2, 97082 Würzburg (Germany); Gellermann, C., E-mail: carsten.gellermann@isc.fraunhofer.de [Fraunhofer Institute for Silicate Research, ISC, Neunerplatz 2, 97082 Würzburg (Germany); Sextl, G., E-mail: gerhard.sextl@isc.fraunhofer.de [Fraunhofer Institute for Silicate Research, ISC, Neunerplatz 2, 97082 Würzburg (Germany); University Würzburg, Chair of Chemical Technology of Materials Synthesis, Röntgenring 11, 97070 Würzburg (Germany)

    2013-04-15

    Superparamagnetic nanoparticles of magnetite were coprecipitated from iron salts, dispersed with nitric acid and stabilised either by lactic acid (LA) or by a polycarboxylate-ether polymer (MELPERS4343, MP). The differently stabilised nanoparticles were incorporated into a silica matrix to form nanocomposite microparticles. The silica matrix was prepared either from tetraethylorthosilicate (TEOS) or from an aqueous sodium silicate (water glass) solution. Stabilisation of nanoparticles had a crucial influence on microparticle texture and nanoparticle distribution in the silica matrix. Magnetic measurements in combination with transmission electron microscopy (TEM) investigations suggest a uniform magnetic interaction of nanoparticles in case of LA stabilisation and magnetically interacting nanoparticle clusters of different sizes in case of MP stabilisation. Splitting of blocking temperature (T{sub B}) and irreversible temperature (T{sub ir}) in zero field cooled (ZFC) and field cooled (FC) measurements is discussed in terms of nanoparticle clustering. -- Highlights: ► Superparamagnetic nanoparticles were synthesised, dispersed and stabilised. ► Stabilisation is either via a polycarboxylate ether polymer or lactic acid. ► Stabilised nanoparticles were incorporated into silica to form composite particles. ► Depending on the stabilisation, nanoparticle clustering in the composites differed. ► Clustering influences zero field cooled/field cooled magnetic measurements.

  19. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications

    Science.gov (United States)

    Amstad, Esther; Textor, Marcus; Reimhult, Erik

    2011-07-01

    Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface presentation of functionalities. This review is focused on different aspects of the stability of superparamagnetic iron oxide NPs, from its practical definition to its implementation by molecular design of the dispersant shell around the iron oxide core and further on to its influence on the magnetic properties of the superparamagnetic iron oxide NPs. Special attention is given to the selection of molecular anchors for the dispersant shell, because of their importance to ensure colloidal and functional stability of sterically stabilized superparamagnetic iron oxide NPs. We further detail how dispersants have been optimized to gain close control over iron oxide NP stability, size and functionalities by independently considering the influences of anchors and the attached sterically repulsive polymer brushes. A critical evaluation of different strategies to stabilize and functionalize core-shell superparamagnetic iron oxide NPs as well as a brief introduction to characterization methods to compare those strategies is given.Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface

  20. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Feuser, Paulo Emilio [Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering (Brazil); Jacques, Amanda Virtuoso [Federal University of Santa Catarina, Department of Clinical Analyses (Brazil); Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin [Federal University of Paraná, Department of Biochemistry and Molecular Biology (Brazil); Santos-Silva, Maria Claudia dos [Federal University of Santa Catarina, Department of Clinical Analyses (Brazil); Sayer, Claudia; Araújo, Pedro H. Hermes de, E-mail: pedro.h.araujo@ufsc.br [Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering (Brazil)

    2016-04-15

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  1. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    International Nuclear Information System (INIS)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; Santos-Silva, Maria Claudia dos; Sayer, Claudia; Araújo, Pedro H. Hermes de

    2016-01-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  2. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    Science.gov (United States)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; dos Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H. Hermes

    2016-04-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  3. Investigation of the mechanism of microplasma impact on iron and aluminum load using solutions of organic substances

    International Nuclear Information System (INIS)

    Lobanova, G L; Yurmazova, T A; Shiyan, L N; Voyno, D A

    2015-01-01

    The paper reports on the study of mechanism of electroeffects on iron and aluminum and pellets with using solutions of organic substances. Methylene blue solution, furacilin and eosin were used. It is observed the reactions of the pulse at the time and after switching off the voltage source. It is shown that there are two developing process in the conditions studied. The first process depends on material of electrodes and pulse parameters. The second process occurs spontaneously and it is determined by the redox reaction and sorption processes. The products of electrode erosion and active particles react in the redox reactions. Active particles are formed in solution by the action of pulsed electric discharge in water. The highest efficiency of the process was demonstrated on an iron pellets. (paper)

  4. 3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron loaded in mode II

    Czech Academy of Sciences Publication Activity Database

    Uhnáková, Alena; Pokluda, J.; Machová, Anna; Hora, Petr

    2012-01-01

    Roč. 61, AUG 2012 (2012), s. 12-19 ISSN 0927-0256 R&D Projects: GA ČR(CZ) GAP108/10/0698 Institutional research plan: CEZ:AV0Z20760514 Keywords : fatigue * mode II * bcc iron * molecular dynamic simulations Subject RIV: JG - Metallurgy Impact factor: 1.878, year: 2012 http://www.sciencedirect.com/science/article/pii/S0927025612001929

  5. MR tomography of focal liver lesions using the superparamagnetic contrast agent AMI-25 at 1.5 tesla

    International Nuclear Information System (INIS)

    Duda, S.H.; Laniado, M.; Kopp, A.F.; Groenewaeller, E.; Aicher, K.P.; Pavone, P.; Jehle, E.; Claussen, C.D.

    1994-01-01

    Superparamagnetic iron oxide particles (AMI-25) were evaluated as a liver contrast agent in high-field MR imaging (1.5 T). 16 patients with up to 5 presumed focal liver lesions (liver metastases n=8, HCC n=5, Klatskin tumours n=2, FNH n=1) received 15 μmol Fe/kg BW intravenously and were examined via standard T 1 - and T 2 -weighted spin-echo sequences. Quantitative image analysis showed a post-contrast increase of the contrast-to-noise ratio (C/N) from 1.6 to 7.4 on SE 2,500/15 images (p [de

  6. Biodegradable Magnetic Silica@Iron Oxide Nanovectors with Ultra-Large Mesopores for High Protein Loading, Magnetothermal Release, and Delivery

    KAUST Repository

    Omar, Haneen; Croissant, Jonas G.; Alamoudi, Kholod; Alsaiari, Shahad K.; Alradwan, Ibrahim; Majrashi, Majed A.; Anjum, Dalaver H.; Martins, Patricia; Moosa, Basem; Almalik, Abdulaziz; Khashab, Niveen M.

    2016-01-01

    The delivery of large cargos of diameter above 15 nm for biomedical applications has proved challenging since it requires biocompatible, stably-loaded, and biodegradable nanomaterials. In this study, we describe the design of biodegradable silica

  7. Mössbauer spectroscopy research of interaction of alumosilicic reagent and iron dissolved in water

    International Nuclear Information System (INIS)

    Feklistov, D Y; Filippov, V P; Kurchatov, I M; Laguntsov, N I; Salomasov, V A; Permyakov, Yu V

    2016-01-01

    The aim of this work is to reveal the results of alumosilicic reagent interaction with iron compounds contained in the water. This reagent is simultaneously coagulant-flocculant and adsorbent. The iron atoms state is studied in the reagent and in reacted sediment. The valence state of iron atoms are determined in the reagents and sediments. The existence of iron containing superparamagnetic particles in the sediment is shown. (paper)

  8. Iron oxides in human brain

    International Nuclear Information System (INIS)

    Cesnek, M.; Miglierini, M.; Lancok, A.

    2015-01-01

    It was confirmed that Moessbauer spectroscopy is an useful tool for measurement of biological tissues even if the concentration of iron in the samples is very low. Moessbauer spectra revealed a presence of particles with non-magnetic behaviour at room temperature. At temperature 4.2 K almost all particles exhibit magnetic behaviour. The rest of the particles still exhibits superparamagnetic behaviour what indicates that their blocking temperature is lower than 4.2 K. It was suggested that those might be very small haemosiderin particles. Parameters the sextet-like components suggest possible presence of goethite, akaganeit or ferrihydrite. Using synchrotron assisted XRD, it was not possible to reveal any iron relevant structural information due to very low concentration of iron atoms in samples. Atomic pairs with the highest contribution to PDF were revealed. All these atomic pairs are characteristic for biological materials. XRD measurement of extracted ferritin could reveal some helpful information about the iron structure. (authors)

  9. Superparamagnetic adsorbents for high-gradient magnetic fishing of lectins out of legume extracts

    DEFF Research Database (Denmark)

    Heebøll-Nielsen, Anders; Dalkiær, M.; Hubbuch, Jürgen

    2004-01-01

    This work presents the development, testing, and application in high-gradient magnetic fishing of superparamagnetic supports for adsorption of lectins. Various approaches were examined to produce affinity, mixed mode, and hydrophobic charge induction type adsorbents. In clean monocomponent systems...... affinity supports created by direct attachment of glucose or maltose to amine-terminated iron oxide particles could bind concanavalin A at levels of up to approximate to 280 mg g(-1) support with high affinity (approximate to 1 muM dissociation constants). However, the best performance was delivered......-linked adsorbents supplied sufficient competition to dissolved sugars to selectively bind concanavalin A in an extract of jack beans. The dextran-linked supports were employed in a high-gradient magnetic fishing experiment, in which concanavalin A was purified to near homogeneity from a crude, unclarified extract...

  10. Acceleration of superparamagnetic particles with magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Stange, R., E-mail: Robert.stange@tu-dresden.de; Lenk, F.; Bley, T.; Boschke, E.

    2017-04-01

    High magnetic capture efficiency in the context of Biomagnetic Separation (BMS) using superparamagnetic particles (SMPs) requires efficient mixing and high relative velocities between cellular and other targets and SMPs. For this purpose, batch processes or microfluidic systems are commonly used. Here, we analyze the characteristics of an in-house developed batch process experimental setup, the Electromagnetic Sample Mixer (ESM) described earlier. This device uses three electromagnets to increase the relative velocity between SMPs and targets. We carry out simulations of the magnetic field in the ESM and in a simpler paradigmatic setup, and thus were able to calculate the force field acting on the SMPs and to simulate their relative velocities and fluid dynamics due to SMP movement. In this way we were able to show that alternate charging of the magnets induces a double circular stream of SMPs in the ESM, resulting in high relative velocities of SMPs to the targets. Consequently, due to the conservation of momentum, the fluid experiences an acceleration induced by the SMPs. We validated our simulations by microscopic observation of the SMPs in the magnetic field, using a homemade apparatus designed to accommodate a long working-distance lens. By comparing the results of modeling this paradigmatic setup with the experimental observations, we determined that the velocities of the SMPs corresponded to the results of our simulations. - Highlights: • Investigation of a batch process setup for complex forming at Biomagnetic Separation. • Simulation of fluid flow characteristics in this Electro Magnetic Samplemixer. • Simulation of relative velocities between magnetic particles and fluid in the setup. • Simulation of fluid flow induced by the acceleration of magnet particles. • Validation of magnetic fields and flow characteristics in paradigmatic setups. • Reached relative velocity is higher than the sedimentation velocity of the particles • Alternating

  11. Strategies to optimize the biocompatibility of iron oxide nanoparticles - ;SPIONs safe by design;

    Science.gov (United States)

    Janko, Christina; Zaloga, Jan; Pöttler, Marina; Dürr, Stephan; Eberbeck, Dietmar; Tietze, Rainer; Lyer, Stefan; Alexiou, Christoph

    2017-06-01

    Various nanoparticle systems have been developed for medical applications in recent years. For constant improvement of efficacy and safety of nanoparticles, a close interdisciplinary interplay between synthesis, physicochemical characterizations and toxicological investigations is urgently needed. Based on combined toxicological data, we follow a ;safe-by design; strategy for our superparamagnetic iron oxide nanoparticles (SPION). Using complementary interference-free toxicological assay systems, we initially identified agglomeration tendencies in physiological fluids, strong uptake by cells and improvable biocompatibility of lauric acid (LA)-coated SPIONs (SPIONLA). Thus, we decided to further stabilize those particles by an artificial protein corona consisting of serum albumin. This approach finally lead to increased colloidal stability, augmented drug loading capacity and improved biocompatibility in previous in vitro assays. Here, we show in whole blood ex vivo and on isolated red blood cells (RBC) that a protein corona protects RBCs from hemolysis by SPIONs.

  12. Study experimental and modelisation of strain plastic of iron : rats strains, sensibility to strain rate and loading history

    OpenAIRE

    Afane , Mostapha

    1997-01-01

    This work describes the behavior of a cubical system metal centered : the iron 0.02% C with the help many experimental results. The first part of this thesis is devoted to a bibliographical study whose which the sensitivity of the behavior of metals CC to the speed of deformation, to the temperature is put in obviousness, the indication of the possibility of the appearance of the mecanical twining for the great speeds of deformation, the existence for metals CC of them limit inferior elastici...

  13. Crack growth in Fe-2.7 wt% Si single crystals under cyclic loading and 3D atomistic results in bcc iron

    Czech Academy of Sciences Publication Activity Database

    Landa, Michal; Machová, Anna; Uhnáková, Alena; Pokluda, J.; Lejček, Pavel

    2016-01-01

    Roč. 87, June (2016), s. 63-70 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698; GA ČR GAP108/12/0144; GA ČR(CZ) GA15-20666S; GA ČR GA13-13616S Institutional support: RVO:61388998 ; RVO:68378271 Keywords : grack growth * cyclic loading * Bcc iron Subject RIV: JL - Materials Fatigue, Friction Mechanics; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.899, year: 2016 http://ac.els-cdn.com/S014211231500448X/1-s2.0-S014211231500448X-main.pdf?_tid=96e3e5a0-fb08-11e5-92cb-00000aab0f02&acdnat=1459845181_19fcdd93d31b1f140714e52b835b33d8

  14. Measuring and modeling the magnetic settling of superparamagnetic nanoparticle dispersions.

    Science.gov (United States)

    Prigiobbe, Valentina; Ko, Saebom; Huh, Chun; Bryant, Steven L

    2015-06-01

    In this paper, we present settling experiments and mathematical modeling to study the magnetic separation of superparamagnetic iron-oxide nanoparticles (SPIONs) from a brine. The experiments were performed using SPIONs suspensions of concentration between 3 and 202g/L dispersed in water and separated from the liquid under the effect of a permanent magnet. A 1D model was developed in the framework of the sedimentation theory with a conservation law for SPIONs and a mass flux function based on the Newton's law for motion in a magnetic field. The model describes both the hindering effect of suspension concentration (n) during settling due to particle collisions and the increase in settling rate due to the attraction of the SPIONs towards the magnet. The flux function was derived from the settling experiments and the numerical model validated against the analytical solution and the experimental data. Suspensions of SPIONs were of 2.8cm initial height, placed on a magnet, and monitored continuously with a digital camera. Applying a magnetic field of 0.5T of polarization, the SPION's velocity was of approximately 3·10(-5)m/s close to the magnet and decreases of two orders of magnitude across the domain. The process was characterized initially by a classical sedimentation behavior, i.e., an upper interface between the clear water and the suspension slowly moving towards the magnet and a lower interface between the sediment layer and the suspension moving away from the magnet. Subsequently, a rapid separation of nanoparticle occured suggesting a non-classical settling phenomenon induced by magnetic forces which favor particle aggregation and therefore faster settling. The rate of settling decreased with n and an optimal condition for fast separation was found for an initial n of 120g/L. The model agrees well with the measurements in the early stage of the settling, but it fails to describe the upper interface movement during the later stage, probably because of particle

  15. 46 CFR 56.60-10 - Cast iron and malleable iron.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Cast iron and malleable iron. 56.60-10 Section 56.60-10... APPURTENANCES Materials § 56.60-10 Cast iron and malleable iron. (a) The low ductility of cast iron and malleable iron should be recognized and the use of these metals where shock loading may occur should be...

  16. Plasma Antenna Based on Superparamagnetic Nanoparticles

    Science.gov (United States)

    Papadopoulos, K.

    2017-12-01

    A novel plasma antenna for space or ground based generation and injection of whistler and Alfven waves is presented. The new antenna concept is based on recently manufactured, small (10-60 nm radius), single domain, non-interacting magnetic grains with uniaxial magnetic anisotropy, known as superparamagnetic nanoparticles (SPN), dispersed in low viscosity, non-conducting media. SPNs can be described as ensembles of non-interacting magnetic moments μ with energy E=-μB when driven by a magnetic field B, similar to ordinary paramagnets, with exception that SPNs are composed by many thousands of magnetic atoms and as result have susceptibilities comparable to ferromagnets but with zero coercivity. The Langevin function accurately describes the dynamic behavior of the magnetization in the presence of low frequency AC fields since the characteristic mechanical (Brownian) and magnetic (Neel) relaxation times are shorter than 10msecs. For ground-based applications the grains are suspended in low viscosity carrier liquids, such as water or benzne and are known as ferrofluids. For space based applications, such as wave injection from CubeSats they can be dispersed as dust in vacuum containers. Agglomeration is avoided by coating the grains by coating their surface by an appropriate surfactant molecule. The ensemble of magnetic grains is driven to rotation at the desired VLF or ELF frequency by a pair of Helmholtz like coils surrounding the grain container. The near field electric field associated with rotating magnetic field then drives currents such as were observed in Rotating Magnetic Field experiments at the UCLA/LAPD chamber [Gigliotti et al., Phys. of Plasmas 16:092106; Karavaev et al., Phys. of Plasmas 17(1):012102,2010]. The magnetic moment of the AC coil is amplified by the susceptibility χ of the SPN ensemble that depending on the grain size and material can reach values of 104-105. Preliminary estimates indicate that less than 1 kg of SPN grains and power of

  17. Controlled torque on superparamagnetic beads for functional biosensors

    NARCIS (Netherlands)

    Janssen, X.J.A.; Schellekens, A.J.; van Ommering, K.; IJzendoorn, van L.J.; Prins, M.W.J.

    2009-01-01

    We demonstrate that a rotating magnetic field can be used to apply a controlled torque on superparamagnetic beads which leads to a tunable bead rotation frequency in fluid. Smooth rotation is obtained for field rotation frequencies many orders of magnitude higher than the bead rotation frequency. A

  18. Superparamagnetic beads in rotating magnetic fields: microfluidic experiments

    NARCIS (Netherlands)

    Den Toonder, J.M.J.; Bokdam, M.

    2008-01-01

    The effect of the Mason number, ratio of viscous and magnetic force, on suspended superparamagnetic micro sized beads was investigated experimentally. Microfluidic experiments were performed in a set-up that generates a rotating homogeneous magnetic field. In the presence of a magnetic field, the

  19. Moessbauer studies of superparamagnetic ferrite nanoparticles for functional application

    Energy Technology Data Exchange (ETDEWEB)

    Mazeika, K., E-mail: kestas@ar.fi.lt; Jagminas, A.; Kurtinaitiene, M. [SSRI Center for Physical Sciences and Technology (Lithuania)

    2013-04-15

    Nanoparticles of CoFe{sub 2}O{sub 4} and MnFe{sub 2}O{sub 4} prepared for functional applications in nanomedicine were studied using Moessbauer spectrometry. Superparamagnetic properties of nanoparticles of different size and composition were compared applying collective excitations and multilevel models for the description of the Moessbauer spectra.

  20. Current understanding of iron homeostasis.

    Science.gov (United States)

    Anderson, Gregory J; Frazer, David M

    2017-12-01

    Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.

  1. Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates.

    Science.gov (United States)

    Kong, Xin; Wei, Yonghong; Xu, Shuang; Liu, Jianguo; Li, Huan; Liu, Yili; Yu, Shuyao

    2016-07-01

    Excessive acidification occurs frequently in food waste (FW) anaerobic digestion (AD) due to the high carbon-to-nitrogen ratio of FW. In this study, zero-valent iron (ZVI) was applied to prevent the excessive acidification. All of the control groups, without ZVI addition (pH∼5.3), produced little methane (CH4) and had high volatile fatty acids/bicarbonate alkalinity (VFA/ALK). By contrast, at OLR of 42.32gVS/Lreactor, the pH of effluent from the reactors with 0.4g/gVSFWadded of ZVI increased to 7.8-8.2, VFA/ALK decreased to <0.1, and the final CH4 yield was ∼380mL/gVSFWadded, suggesting inhibition of excessive acidification. After adding powdered or scrap metal ZVI to the acidogenic reactors, the fractional content of butyric acid changed from 30-40% to 0%, while, that of acetic acid increased. These results indicate that adding ZVI to FW digestion at high OLRs could eliminate excessive acidification by promoting butyric acid conversion and enhancing methanogen activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. [Blood detoxification using superparamagnetic nanoparticles (magnetic hemodialysis)].

    Science.gov (United States)

    Ciochină, Al D; Untu, Alina; Iacob, Gh

    2010-01-01

    The authors present an experimental study realized in order to simulate blood detoxification with the help of supermagnetic nanoparticles. The particles used are red oxide nanoparticles which are considered to be equivalent from a magnetic susceptibility and dynamic diameter point of view to the complex structures of magnetite nanoparticles. Two types of custom HGMS matrices have been used--a threaded one and a micro-spheres one. For testing red oxide particles have been purposefully created to have a lower magnetic susceptibility than magnetite or iron-carbon particles used in other experimental studies. Different concentrations of iron oxide, glycerine and water have been prepared, creating a 3.5 cP viscosity (equivalent to the one of the blood); the concentrations of the prepared solutions varied between 0.16 mg/mL and 2 mg/mL, with the background magnetic field value ranging from 0.25 T to 0.9 T, in order to observer the effectiveness of filtering at different intensities. The efficiency of HGMS filtering in experimental conditions was almost completely successful (99.99%) in all experimental conditions, both with the threaded and micro-spheres matrices. The high gradient magnetic separation system of nanoparticles has maximum efficiency and has the potential of being implemented in a medical blood detoxification device.

  3. Efficient synthesis of superparamagnetic magnetite nanoparticles under air for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Namita, E-mail: saxenanamita@yahoo.com [School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030 (India); Singh, Man, E-mail: mansingh50@hotmail.com [School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030 (India)

    2017-05-01

    The facile co-precipitation process of synthesising Superparamagnetic Iron Oxide Nanoparticles (SPIONs) especially magnetite was investigated and simplified, to develop a reproducible and scaled up synthesis process under air, for producing particles with enhanced percentage of magnetite, thus eliminating the crucial and complicated need of using the inert atmosphere. Presence of magnetite was confirmed by XRD, TEM, and Raman spectroscopy. Efficiency of synthesising magnetite was increased up to approx. ∼58 wt%, under air with no other phases but maghemite present. Alkali concentration was optimised, and particles with better magnetisation values were synthesised. The approximate weight percentage of magnetite was calculated using the simple and rapid XRD peak deconvolution method. Higher pH values from 13 to14 were investigated in the study while alkali concentration was varied from 0.5 to 4 M. 1Molar NaOH with a final pH of 13.4 was found to be optimum. Well crystallised particles with approx. 6–12 nm size, narrow size distribution and cubo-spheroidal shape were synthesised. Particles were Superparamagnetic with high values of saturation magnetisation of up to 68 emu/g and negligible values of remanence and coercivity. A reaction yield of up to 62% was obtained. Hydrophilic coated particles were produced in a single, one step facile process for biomedical applications, using optimised parameters of pH and alkali concentration obtained in the study. Single domain particles with good magnetisation formed stable aqueous dispersions. FTIR, UV-Visible and DLS were used to confirm the coating and dispersion stabilities of the particles. These particles have the requisite properties required for application in different biomedical fields.

  4. Synthesis, characterization and antibacterial activity of superparamagnetic nanoparticles modified with glycol chitosan

    International Nuclear Information System (INIS)

    Stephen Inbaraj, Baskaran; Tsai, Tsung-Yu; Chen, Bing-Huei

    2012-01-01

    Iron oxide nanoparticles (IONPs) were synthesized by coprecipitation of iron salts in alkali media followed by coating with glycol chitosan (GC-coated IONPs). Both bare and GC-coated IONPs were subsequently characterized and evaluated for their antibacterial activity. Comparison of Fourier transform infrared spectra and thermogravimetric data of bare and GC-coated IONPs confirmed the presence of GC coating on IONPs. Magnetization curves showed that both bare and GC-coated IONPs are superparamagnetic and have saturation magnetizations of 70.3 and 59.8 emu g −1 , respectively. The IONP size was measured as ∼8–9 nm by transmission electron microscopy, and their crystal structure was assigned to magnetite from x-ray diffraction patterns. Both bare and GC-coated IONPs inhibited the growths of Escherichia coli ATCC 8739 and Salmonella enteritidis SE 01 bacteria better than the antibiotics linezolid and cefaclor, as evaluated by the agar dilution assay. GC-coated IONPs showed higher potency against E. coli O157:H7 and Staphylococcus aureus ATCC 10832 than bare IONPs. Given their biocompatibility and antibacterial properties, GC-coated IONPs are a potential nanomaterial for in vivo applications.

  5. Evaluation of Glass Density to Support the Estimation of Fissile Mass Loadings from Iron Concentrations in SB6 Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.; Peeler, D.

    2010-12-15

    The Department of Energy - Savannah River (DOE-SR) previously provided direction to Savannah River Remediation (SRR) to maintain fissile concentration in glass below 897 g/m{sup 3}. In support of the guidance, the Savannah River National Laboratory (SRNL) provided a technical basis and a supporting Microsoft{reg_sign} Excel{reg_sign} spreadsheet for the evaluation of fissile loading in Sludge Batch 5 glass based on the Fe concentration in glass as determined by the measurements from the Slurry Mix Evaporator (SME) acceptability analysis. SRR has since requested that SRNL provide the necessary information to allow SRR to update the Excel spreadsheet so that it may be used to maintain fissile concentration in glass below 897 g/m{sup 3} during the processing of Sludge Batch 6 (SB6). One of the primary inputs into the fissile loading spreadsheet includes a bounding density for SB6-based glasses. Based on the measured density data of select SB6 variability study glasses, SRNL recommends that SRR utilize the 99/99 Upper Tolerance Limit (UTL) density value at 38% WL (2.823 g/cm{sup 3}) as a bounding density for SB6 glasses to assess the fissile concentration in this glass system. That is, the 2.823 g/cm{sup 3} is recommended as a key (and fixed) input into the fissile concentration spreadsheet for SB6 processing. It should be noted that no changes are needed to the underlying structure of the Excel based spreadsheet to support fissile assessments for SB6. However, SRR should update the other key inputs to the spreadsheet that are based on fissile and Fe concentrations reported from the SB6 Waste Acceptance Product Specification (WAPS) sample. The purpose of this technical report is to present the density measurements that were determined for the SB6 variability study glasses and to conduct a statistical evaluation of these measurements to provide a bounding density value that may be used as input to the Excel{reg_sign} spreadsheet to be employed by SRR to maintain the

  6. Determination of lead, iron and nickel in water and vegetable samples after preconcentration with aspergillus niger loaded on silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Baytak, Sitki [Harran University, Arts and Science Faculty, Department of Chemistry, Sanliurfa (Turkey); Kocyigit, Abdurrahim [Harran University, Faculty of Medicine, Department of Biochemistry, Sanliurfa (Turkey); Rehber Tuerker, Ali [Gazi University, Arts and Science Faculty, Department of Chemistry, Ankara (Turkey)

    2007-12-15

    A method for the determination of Fe(III), Pb(II), and Ni(II) by flame atomic absorption spectrometry (FAAS) after preconcentrating on a column containing Aspergillus niger loaded on silica gel 60 (Biosorbent) is described. The effect of experimental parameters such as pH, flow rate of sample solution, and volume of sample solution were investigated on the recovery of the analytes. The effect of interfering ions on the recovery of the analytes has also been investigated. Recoveries of Fe(III), Pb(II), and Ni(II) were (98 {+-} 2), (98 {+-} 3), (99 {+-} 2)% at the 95% confidence level, respectively. For the analytes, 50-fold preconcentration was obtained. The analytical detection limits for Fe(III), Pb(II), and Ni(II) were 1.7, 5.2, and 1.6 ng/mL, respectively. The proposed method was applied to the determination of trace metals in various water and vegetable samples. The analytes have been determined with relative error lower than 7%. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  7. Biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Uluozlu, Ozgur Dogan; Usta, Canan; Soylak, Mustafa

    2007-01-01

    The biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin for preconcentration-separation of them have been investigated. The sorbed analytes on biosorbent were eluted by using 1 mol L -1 HCl and analytes were determined by flame atomic absorption spectrometry. The influences of analytical parameters including amounts of pH, B. sphaericus, sample volume etc. on the quantitative recoveries of analytes were investigated. The effects of alkaline, earth alkaline ions and some metal ions on the retentions of the analytes on the biosorbent were also examined. Separation and preconcentration of Cu, Pb, Fe and Co ions from real samples was achieved quantitatively. The detection limits by 3 sigma for analyte ions were in the range of 0.20-0.75 μg L -1 for aqueous samples and in the range of 2.5-9.4 ng g -1 for solid samples. The validation of the procedure was performed by the analysis of the certified standard reference materials (NRCC-SLRS 4 Riverine Water, SRM 2711 Montana soil and GBW 07605 Tea). The presented method was applied to the determination of analyte ions in green tea, black tea, cultivated mushroom, boiled wheat, rice and soil samples with successfully results

  8. Application of iron and zinc isotopes to track the sources and mechanisms of metal loading in a mountain watershed

    Energy Technology Data Exchange (ETDEWEB)

    Borrok, David M., E-mail: dborrok@utep.edu [Department of Geological Sciences, University of Texas, El Paso, TX 79968 (United States); Wanty, Richard B.; Ian Ridley, W.; Lamothe, Paul J. [US Geological Survey, Denver Federal Center, Denver, CO 80225 (United States); Kimball, Briant A. [US Geological Survey, 2329 W. Orton Cir., Salt Lake City, UT 84119 (United States); Verplanck, Philip L.; Runkel, Robert L. [US Geological Survey, Denver Federal Center, Denver, CO 80225 (United States)

    2009-07-15

    Here the hydrogeochemical constraints of a tracer dilution study are combined with Fe and Zn isotopic measurements to pinpoint metal loading sources and attenuation mechanisms in an alpine watershed impacted by acid mine drainage. In the tested mountain catchment, {delta}{sup 56}Fe and {delta}{sup 66}Zn isotopic signatures of filtered stream water samples varied by {approx}3.5 per mille and 0.4 per mille, respectively. The inherent differences in the aqueous geochemistry of Fe and Zn provided complimentary isotopic information. For example, variations in {delta}{sup 56}Fe were linked to redox and precipitation reactions occurring in the stream, while changes in {delta}{sup 66}Zn were indicative of conservative mixing of different Zn sources. Fen environments contributed distinctively light dissolved Fe (<-2.0 per mille) and isotopically heavy suspended Fe precipitates to the watershed, while Zn from the fen was isotopically heavy (>+0.4 per mille). Acidic drainage from mine wastes contributed heavier dissolved Fe ({approx}+0.5 per mille) and lighter Zn ({approx}+0.2 per mille) isotopes relative to the fen. Upwelling of Fe-rich groundwater near the mouth of the catchment was the major source of Fe ({delta}{sup 56}Fe {approx} 0 per mille) leaving the watershed in surface flow, while runoff from mining wastes was the major source of Zn. The results suggest that given a strong framework for interpretation, Fe and Zn isotopes are useful tools for identifying and tracking metal sources and attenuation mechanisms in mountain watersheds.

  9. Molecular and parametric imaging with iron oxides

    International Nuclear Information System (INIS)

    Matuszewski, L.; Bremer, C.; Tombach, B.; Heindel, W.

    2007-01-01

    Superparamagnetic iron oxide (SPIO) contrast agents, clinically established for high resolution magnetic resonance imaging of reticuloendothelial system containing anatomical structures, can additionally be exploited for the non-invasive characterization and quantification of pathology down to the molecular level. In this context, SPIOs can be applied for non-invasive cell tracking, quantification of tissue perfusion and target specific imaging, as well as for the detection of gene expression. This article provides an overview of new applications for clinically approved iron oxides as well of new, modified SPIO contrast agents for parametric and molecular imaging. (orig.) [de

  10. Near-infrared-responsive, superparamagnetic Au@Co nanochains

    Directory of Open Access Journals (Sweden)

    Varadee Vittur

    2017-08-01

    Full Text Available This manuscript describes a new type of nanomaterial, namely superparamagnetic Au@Co nanochains with optical extinctions in the near infrared (NIR. The Au@Co nanochains were synthesized via a one-pot galvanic replacement route involving a redox-transmetalation process in aqueous medium, where Au salt was reduced to form Au shells on Co seed templates, affording hollow Au@Co nanochains. The Au shells serve not only as a protective coating for the Co nanochain cores, but also to give rise to the optical properties of these unique nanostructures. Importantly, these bifunctional, magneto-optical Au@Co nanochains combine the advantages of nanophotonics (extinction at ca. 900 nm and nanomagnetism (superparamagnetism and provide a potentially useful new nanoarchitecture for biomedical or catalytic applications that can benefit from both activation by light and manipulation using an external magnetic field.

  11. Research progress in role of iron overload in non-alcoholic fatty liver disease

    OpenAIRE

    LI Guangming

    2013-01-01

    Iron overload is an important research focus in non-alcoholic fatty liver disease (NAFLD). The relationship between iron overload and NAFLD is summarized from the assessment method for iron overload, relationship between iron load and hemochromatosis gene mutations, incidence of iron load in NAFLD, and relationship between iron load and progression of NAFLD; the action mechanism of iron overload in the progression of NAFLD is reviewed from the causes of iron overload, relationship between iro...

  12. Selective manipulation of superparamagnetic beads by a magnetic microchip

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2013-07-01

    In this paper, a magnetic microchip (MMC) is presented, to first trap and then selectively manipulate individual, superparamagnetic beads (SPBs) to another trapping site. Trapping sites are realized through soft magnetic micro disks made of Ni80Fe20, and SPB motion is controlled by current-carrying, tapered, conducting lines made of Au. The MMC was realized using standard microfabrication techniques and provides a cheap and versatile platform for microfluidic systems for cell manipulation. © 2013 IEEE.

  13. Effects of Superparamagnetic Nanoparticle Clusters on the Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Toshiaki Higashi

    2012-04-01

    Full Text Available The polymerase chain reaction (PCR method is widely used for the reproduction and amplification of specific DNA segments, and a novel PCR method using nanomaterials such as gold nanoparticles has recently been reported. This paper reports on the effects of superparamagnetic nanoparticles on PCR amplification without an external magnetic field, and clarifies the mechanism behind the effects of superparamagnetic particle clusters on PCR efficiency by estimating the structures of such clusters in PCR. It was found that superparamagnetic nanoparticles tend to inhibit PCR amplification depending on the structure of the magnetic nanoparticle clusters. The paper also clarifies that Taq polymerase is captured in the spaces formed among magnetic nanoparticle clusters, and that it is captured more efficiently as a result of their motion from heat treatment in PCR thermal cycles. Consequently, Taq polymerase that should be used in PCR is reduced in the PCR solution. These outcomes will be applied to novel PCR techniques using magnetic particles in an external magnetic field.

  14. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    International Nuclear Information System (INIS)

    Zhang, Yijun; Liu, Ming; Ren, Wei; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang

    2015-01-01

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe 3 O 4 thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe 3 O 4 thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7 nm, resulting in a superparamagnetic behavior with a blocking temperature of 210 K. After post-annealing in H 2 /Ar at 400 °C, the as-grown α−Fe 2 O 3 sample is reduced to Fe 3 O 4 phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications

  15. Water quality, hydrology, and simulated response to changes in phosphorus loading of Mercer Lake, Iron County, Wisconsin, with special emphasis on the effects of wastewater discharges

    Science.gov (United States)

    Robertson, Dale M.; Garn, Herbert S.; Rose, William J.; Juckem, Paul F.; Reneau, Paul C.

    2012-01-01

    phosphorus was 0.023 mg/L, indicating the lake is borderline mesotrophic-eutrophic, or has moderate to high concentrations of phosphorus, whereas the average summer chlorophyll a concentration was 3.3 mg/L and water clarity, as measured with a Secchi depth, was 10.4 ft, both indicating mesotrophic conditions or that the lake has a moderate amount of algae and water clarity. Although actions have been taken to eliminate the wastewater discharges, the bottom sediment still has slightly elevated concentrations of several pollutants from wastewater discharges, lumber operations, and roadway drainage, and a few naturally occurring metals (such as iron). None of the concentrations, however, were high enough above the defined thresholds to be of concern. Based on nitrogen to phosphorus ratios, the productivity (algal growth) in Mercer Lake should typically be limited by phosphorus; therefore, understanding the phosphorus input to the lake is important when management efforts to improve or prevent degradation of the lake water quality are considered. Total inputs of phosphorus to Mercer Lake were directly estimated for MY 2008-09 at about 340 lb/yr and for a recent year with more typical hydrology at about 475 lb/yr. During these years, the largest sources of phosphorus were from Little Turtle Inlet, which contributed about 45 percent, and the drainage area near the lake containing the adjacent urban and residential developments, which contributed about 24 percent. Prior to 1965, when there was no sewage treatment plant and septic systems and other untreated systems contributed nutrients to the watershed, phosphorus loadings were estimated to be about 71 percent higher than during around 2009. In 1965, a sewage treatment plant was built, but its effluent was released in the downstream end of the lake. Depending on various assumptions on how much effluent was retained in the lake, phosphorus inputs from wastewater may have ranged from 0 to 342 lb. Future highway and stormwater

  16. Iron oxide nanoparticles in modern microbiology and biotechnology.

    Science.gov (United States)

    Dinali, Ranmadugala; Ebrahiminezhad, Alireza; Manley-Harris, Merilyn; Ghasemi, Younes; Berenjian, Aydin

    2017-08-01

    Iron oxide nanoparticles (IONs) are one of the most developed and used nanomaterials in biotechnology and microbiology. These particles have unique physicochemical properties, which make them unique among nanomaterials. Therefore, many experiments have been conducted to develop facile synthesis methods for these particles and to make them biocompatible. Various effects of IONs on microorganisms have been reported. Depending on the microbial strain and nanoparticle (NP) concentration, IONs can stimulate or inhibit microbial growth. Due to the superparamagnetic properties of IONs, these NPs have used as nano sources of heat for hyperthermia in infected tissues. Antibiotic-loaded IONs are used for targeted delivery of chemical therapy direct to the infected organ and IONs have been used as a dirigible carrier for more potent antimicrobial nanomaterials such as silver nanoparticles. Magnetic NPs have been used for specific separation of pathogen and non-pathogen bacterial strains. Very recently, IONs were used as a novel tool for magnetic immobilization of microbial cells and process intensification in a biotechnological process. This review provides an overview of application of IONs in different microbial processes. Recommendations are also given for areas of future research.

  17. Harmonic decomposition of magneto-optical signal from suspensions of superparamagnetic nanoparticles

    Science.gov (United States)

    Patterson, Cody; Syed, Maarij; Takemura, Yasushi

    2018-04-01

    Magnetic nanoparticles (MNPs) are widely used in biomedical applications. Characterizing dilute suspensions of superparamagnetic iron oxide nanoparticles (SPIONs) in bio-relevant media is particularly valuable for magnetic particle imaging, hyperthermia, drug delivery, etc. Here, we study dilute aqueous suspensions of single-domain magnetite nanoparticles using an AC Faraday rotation (FR) setup. The setup uses an oscillating magnetic field (800 Hz) which generates a multi-harmonic response. Each harmonic is collected and analyzed using the Fourier components of the theoretical signal determined by a Langevin-like magnetization. With this procedure, we determine the average magnetic moment per particle μ , particle number density n, and Verdet constant of the sample. The fitted values of μ and n are shown to be consistent across each harmonic. Additionally, we present the results of these parameters as n is varied. The large values of μ reveal the possibility of clustering as reported in other literature. This suggests that μ is representative of the average magnetic moment per cluster of nanoparticles. Multiple factors, including the external magnetic field, surfactant degradation, and laser absorption, can contribute to dynamic and long-term aggregation leading to FR signals that represent space- and time-averaged sample parameters. Using this powerful analysis procedure, future studies are aimed at determining the clustering mechanisms in this AC system and characterizing SPION suspensions at different frequencies and viscosities.

  18. Fluorescent labelling of DNA on superparamagnetic nanoparticles by a perylene bisimide derivative for cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Maltas, Esra, E-mail: maltasesra@gmail.com [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Malkondu, Sait [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Uyar, Pembegul [Selcuk University, Faculty of Science, Department of Biology, 42075 Konya (Turkey); Selcuk University, Advanced Technology Research and Application Center, Konya (Turkey); Ozmen, Mustafa [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey)

    2015-03-01

    N,N′-Bis[tris-(2-aminoethyl) amine]-3,4,9,10-perylenetetracarboxylic diimide (PBI-TRIS), nonfluorescent dye was used to fluorescent labelling of DNA. For this aim, (3-aminopropyl) triethoxysilane (APTS) modified superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized to provide a suitable surface for binding of DNA. Amine functionalized nanoparticles showed a high immobilization capacity (82.70%) at 25 mg of nanoparticle concentration for Calf thymus DNA. Binding capacity of PBI-TRIS to DNA-SPION was also found as 1.93 μM on 25 mg of nanoparticles by using UV–vis spectroscopy. Binding of PBI-TRIS to DNA onto nanoparticles was also characterized by scanning electron microscopy and infrared spectroscopy. The confocal images of PBI-TRIS labelled DNA-SPION and breast cells were taken at 488 and 561.7 nm of excitation wavelengths. Cell image was also compared with a commercial dye, DAPI at 403.7 nm of excitation wavelength. Results showed that PBI-TRIS can be used for cell staining. - Highlights: • Functionalized SPIONs were synthesized and treated with DNA. • The binding of PBI-TRIS with DNA was studied. • The image of PBI-TRIS labelled DNA-SPION was detected by a confocal microscope.

  19. Fluorescent labelling of DNA on superparamagnetic nanoparticles by a perylene bisimide derivative for cell imaging

    International Nuclear Information System (INIS)

    Maltas, Esra; Malkondu, Sait; Uyar, Pembegul; Ozmen, Mustafa

    2015-01-01

    N,N′-Bis[tris-(2-aminoethyl) amine]-3,4,9,10-perylenetetracarboxylic diimide (PBI-TRIS), nonfluorescent dye was used to fluorescent labelling of DNA. For this aim, (3-aminopropyl) triethoxysilane (APTS) modified superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized to provide a suitable surface for binding of DNA. Amine functionalized nanoparticles showed a high immobilization capacity (82.70%) at 25 mg of nanoparticle concentration for Calf thymus DNA. Binding capacity of PBI-TRIS to DNA-SPION was also found as 1.93 μM on 25 mg of nanoparticles by using UV–vis spectroscopy. Binding of PBI-TRIS to DNA onto nanoparticles was also characterized by scanning electron microscopy and infrared spectroscopy. The confocal images of PBI-TRIS labelled DNA-SPION and breast cells were taken at 488 and 561.7 nm of excitation wavelengths. Cell image was also compared with a commercial dye, DAPI at 403.7 nm of excitation wavelength. Results showed that PBI-TRIS can be used for cell staining. - Highlights: • Functionalized SPIONs were synthesized and treated with DNA. • The binding of PBI-TRIS with DNA was studied. • The image of PBI-TRIS labelled DNA-SPION was detected by a confocal microscope

  20. Self-assembled superparamagnetic nanoparticles as MRI contrast agents— A review

    International Nuclear Information System (INIS)

    Su Hong-Ying; Wu Chang-Qiang; Ai Hua; Li Dan-Yang

    2015-01-01

    Recent progress of the preparation and applications of superparamagnetic iron oxide (SPIO) clusters as magnetic resonance imaging (MRI) probes is reviewed with regard to their applications in labeling and tracking cells in vivo, in diagnosis of cardiovascular diseases and tumors, and in drug delivery systems. Magnetic nanoparticles (NPs), especially SPIO nanoparticles, have long been used as MRI contrast agents and as an advantageous nanoplatform for drug delivery, taking advantage of their unique magnetic properties and ability to function at the molecular and cellular levels. Due to advances in nanotechnology, various means to control SPIO NPs’ size, composition, magnetization and relaxivity have been developed, as well as ways to usefully modify their surface. Recently, self-assembly of SPIO NP clusters in particulate carriers—such as polymeric micelles, vesicles, liposomes, and layer-by-layer (LbL) capsules—have been widely studied for application as ultrasensitive MRI probes, owing to their remarkably high spin–spin (T 2 ) relaxivity and convenience for further functionalization. (topical review)

  1. Fluxgate magnetorelaxometry of superparamagnetic nanoparticles for hydrogel characterization

    International Nuclear Information System (INIS)

    Heim, Erik; Harling, Steffen; Poehlig, Kai; Ludwig, Frank; Menzel, Henning; Schilling, Meinhard

    2007-01-01

    A new characterization method for hydrogels based on the relaxation behavior of superparamagnetic nanoparticles (MNPs) is proposed. MNPs are incorporated in the hydrogel to examine its network properties. By analyzing their relaxation behavior, incorporated and mobile nanoparticles can be studied. In the case of mobile nanoparticles, the microviscosity of the hydrogel can be determined. Thus, this method allows the studying of gelation as well as the degradation process of hydrogels. Furthermore, the hydrogel can have any shape (e.g. microspheres or larger blocks) and no sample preparation is needed, avoiding artefacts

  2. Superparamagnetic perpendicular magnetic tunnel junctions for true random number generators

    Science.gov (United States)

    Parks, Bradley; Bapna, Mukund; Igbokwe, Julianne; Almasi, Hamid; Wang, Weigang; Majetich, Sara A.

    2018-05-01

    Superparamagnetic perpendicular magnetic tunnel junctions are fabricated and analyzed for use in random number generators. Time-resolved resistance measurements are used as streams of bits in statistical tests for randomness. Voltage control of the thermal stability enables tuning the average speed of random bit generation up to 70 kHz in a 60 nm diameter device. In its most efficient operating mode, the device generates random bits at an energy cost of 600 fJ/bit. A narrow range of magnetic field tunes the probability of a given state from 0 to 1, offering a means of probabilistic computing.

  3. Magnet polepiece design for uniform magnetic force on superparamagnetic beads

    OpenAIRE

    Fallesen, Todd; Hill, David B.; Steen, Matthew; Macosko, Jed C.; Bonin, Keith; Holzwarth, George

    2010-01-01

    Here we report construction of a simple electromagnet with novel polepieces which apply a spatially uniform force to superparamagnetic beads in an optical microscope. The wedge-shaped gap was designed to keep ∂Bx∕∂y constant and B large enough to saturate the bead. We achieved fields of 300–600 mT and constant gradients of 67 T∕m over a sample space of 0.5×4 mm2 in the focal plane of the microscope and 0.05 mm along the microscope optic axis. Within this space the maximum force on a 2.8 μm di...

  4. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Chiemi; Ushimaru, Kazunori [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Horiishi, Nanao [Bengala Techno Laboratory, 9-5-1006, 1-1 Kodai, Miyamae-ku, Kawasaki 216-0007 (Japan); Tsuge, Takeharu [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kitamoto, Yoshitaka, E-mail: kitamoto.y.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-05-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites.

  5. Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement

    NARCIS (Netherlands)

    Vellinga, M.M.; Oude Engberink, R.D.; Seewann, A.; Pouwels, P.J.W.; Wattjes, M.P.; van der Pol, S.M.A.; Pering, C.; Polman, C.H.; de Vries, H.E.; Geurts, J.J.G.; Barkhof, F.

    2008-01-01

    Gadolinium-DTPA (Gd-DTPA) is routinely used as a marker for inflammation in MRI to visualize breakdown of the blood-brain barrier (BBB) in multiple sclerosis. Recent data suggest that ultra-small superparamagnetic particles of iron oxide (USPIO) can be used to visualize cellular infiltration,

  6. Synthesis of superparamagnetic nanoparticles dispersed in spherically shaped carbon nanoballs

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, E.M.M., E-mail: e.ibrahim@science.sohag.edu.eg; Hampel, Silke; Thomas, Juergen; Haase, Diana; Wolter, A. U. B.; Khavrus, Vyacheslav O.; Taeschner, Christine; Leonhardt, Albrecht; Buechner, Bernd [Leibniz Institute of Solid State and Material Research (Germany)

    2012-09-15

    In this work, carbon nanoballs in spherical shape with diameter 70 {+-} 2 nm containing well-dispersed superparamagnetic magnetite/maghemite Fe{sub 3}O{sub 4}/{gamma}-Fe{sub 2}O{sub 3} nanoparticles of 5-10 nm in size were synthesised by a facile route using the radio frequency (rf) plasma in order to assist the pyrolysis of ferrocene. Ferrocene was placed in an inductively coupled rf plasma field without additional thermal heating to activate simultaneous sublimation and pre-pyrolysis processes. During this plasma activation, the resultant derivatives were carried by an argon gas stream into the hot zone of a resistance furnace (600 Degree-Sign C) for complete thermal decomposition. The deposition of the nanoballs could be observed in the hot zone of the furnace at a temperature of 600 Degree-Sign C. The synthesised nanoballs are highly dispersible in solvents that make them particularly suitable for different applications. Their morphology, composition and structure were characterized by high-resolution scanning and transmission electron microscopy, including selected area electron diffraction, electron energy loss spectroscopy and X-ray diffraction. Magnetic measurements demonstrated that the nanoballs possess superparamagnetic characteristics.

  7. Synthesis and super-paramagnetic properties of neodymium ferrites nanorods

    Energy Technology Data Exchange (ETDEWEB)

    El moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the High Energies, URAC 12, Departement of Physique, Faculty of Science, Mohammed V- Agdal University, BP 1014, Rabat (Morocco); Mounkachi, O., E-mail: o.mounkachi@mascir.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Route Sidi Bouzid, BP 63, 46000 Safi (Morocco); Hamedoun, M., E-mail: hamedoun@hotmail.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS-UJF, B.P. 166, 38042 Grenoble Cedex (France); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the High Energies, URAC 12, Departement of Physique, Faculty of Science, Mohammed V- Agdal University, BP 1014, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2013-12-25

    Highlights: •Magnetic properties of Neodymium nanorods depend on calcination temperature. •The as-synthesized Nd ferrite nanorods are superparamagnetic at room temperature. •The blocking temperature is higher than room temperature. -- Abstract: In this work we report the microstructural characterization and the magnetic properties of neodymium ferrites (NdFe{sub 2}O{sub 4}) nanorods prepared by well controlled co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of NdFe{sub 2}O{sub 4} has been investigated. The transmission electron microscopy (TEM) observations revealed that the as-prepared nanoparticles have rods-like shape with the average diameter ranging from 5 to 14 nm and uniform length. The magnetic measurements show that the as-synthesized nanorods have a superparamagnetic behavior at room temperature, with a blocking temperature of 360 K and magnetic anisotropy constant of 2.8 × 10{sup 5} ergs/cm{sup 3}. The magnetization and coercitivity at room temperature are increased from 26 to 34 emu/g and from 151 to 171 Oe with increasing annealing temperature from 400 to 600 °C, respectively.

  8. Facile synthesis of radial-like macroporous superparamagnetic chitosan spheres with in-situ co-precipitation and gelation of ferro-gels.

    Directory of Open Access Journals (Sweden)

    Chih-Hui Yang

    Full Text Available Macroporous chitosan spheres encapsulating superparamagnetic iron oxide nanoparticles were synthesized by a facile and effective one-step fabrication process. Ferro-gels containing ferrous cations, ferric cations and chitosan were dropped into a sodium hydroxide solution through a syringe pump. In addition, a sodium hydroxide solution was employed for both gelation (chitosan and co-precipitation (ferrous cations and ferric cations of the ferro-gels. The results showed that the in-situ co-precipitation of ferro-ions gave rise to a radial morphology with non-spheroid macro pores (large cavities inside the chitosan spheres. The particle size of iron oxide can be adjusted from 2.5 nm to 5.4 nm by tuning the concentration of the sodium hydroxide solution. Using Fourier Transform Infrared Spectroscopy and X-ray diffraction spectra, the synthesized nanoparticles were illustrated as Fe(3O(4 nanoparticles. In addition, the prepared macroporous chitosan spheres presented a super-paramagnetic behaviour at room temperature with a saturation magnetization value as high as ca. 18 emu/g. The cytotoxicity was estimated using cell viability by incubating doses (0∼1000 µg/mL of the macroporous chitosan spheres. The result showed good viability (above 80% with alginate chitosan particles below 1000 µg/mL, indicating that macroporous chitosan spheres were potentially useful for biomedical applications in the future.

  9. Synthesis and characterization of iron based nanoparticles for novel applications

    Science.gov (United States)

    Khurshid, Hafsa

    glycol. Parameters such as the reactant concentrations and their flow rate were varied to study the effect of particle size, structure and crystallinity on the magnetic nanoparticles. Many different hydrophilic surfactants and polymers electrolytes were investigated for the particles' stability in water. PSSNa was found to be the best coating agent among all the other investigated polymer and surfactants for particles stability in water. Particles have an average size of 50 nm and magnetization above 150 emu/g. It is anticipated that owing to their high saturation magnetization and magneto crystalline anisotropy, the incorporations of PSSNa coated nanoparticles into the MICR toner can reduce the pigment loading and hence optimize the toner quality. The magnetic properties were studied as a function of particle size, composition and morphology. The saturation magnetization and coercivity was found to be strongly dependent on the particle size and morphology. The estimated effective anisotropy of the particles was found to be much higher than their bulk values because of their morphology and finite size effects. Core/shell particles below an average size of 12 nm display superparamagnetism and exchange bias phenomenon. The hollow morphology can be used as an extra degree of freedom to control magnetic properties. The enormously large number of pinned spins at the inner and outer surface and at the interface between the grain boundaries in hollow nanoparticles, gives rise to a very large value of effective anisotropy in these nanoparticles and measured hyteresis loops are minor loops. The surface spin disorder contribution to magnetic behavior is strongly influenced by the cooling field magnitude.

  10. Experimental study of the biological properties of 188Re-Hepama-1 biologic superparamagnetic nanoparticles

    International Nuclear Information System (INIS)

    Feng Yanlin; Tan Jiaju; Sun Jing; Wen Guanghua; Wu Xiaolian; Liang Sheng; Xia Jiaoyun

    2007-01-01

    Objective: To investigate a new biologic-superparamagnetic nanoparticles's characteristics of immunological activity, biological distributing in vivo, targeting and inhibiting tumor effect. Methods: The experimental group 188 Re-Hepama-l-superparamagnetic nanoparticles, and control groups, including 188 ReO 4 - , 188 Re-Hepama-1, and 188 Re-superparamagnetic nanoparticles, were set up. The distributions were measured after injection 4 h and 24 h by caudal vein of Kuming mice. The magnetic targeting experiments in vivo were clone with and without magnetic field in liver after injection in New Zealand rabbit. The inhibiting tumor effect on hepatic cancer cell lines SMMC-7721 of the above four 188 Re labeled products were measured by mono nuclear cell direct cytotoxicity assay method. Results: After injection 4 h and 24 h by vein, the liver taking was highest in group 188 Re-Hepama-l-superparamagnetic nanoparticles. The radiative activity in liver in magnetism zoo was higher than in non magnetism zoo in 188 Re- Hepama-1-superparamagnetic nanoparticles after applying magnetic field in left lobe of liver, and the ratio of in magnetism zoo to non magnetism zoo was 1.87. And the half effective inhibition radioactive concentrations (IC 50 ) in 188 Re-Hepama-l-superparamagnetic nanoparticles was one forth of 188 ReO 4 - . Conclusion: 188 Re- Hepama-l-superparamagnetic nanoparticles showed its fine stability in intro, good immunological activity and significant liver target. (authors)

  11. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents

    Science.gov (United States)

    Bhattacharya, Proma; Neogi, Sudarsan

    2017-09-01

    Applications of different types of magnetic nanoparticles for biomedical purposes started a long time back. The concept of surface functionalization of the iron oxide nanoparticles with antibiotics is a novel technique which paves the path for further application of these nanoparticles by virtue of their property of superparamagnetism. In this paper, we have synthesized novel iron oxide nanoparticles surface functionalized with Gentamicin. The average size of the particles, concluded from the HR-TEM images, came to be around 14 nm and 10 nm for unmodified and modified nanoparticles, respectively. The magnetization curve M(H) obtained for these nanoparticles are typical of superparamagnetic nature and having almost zero values of coercivity and remanance. The release properties of the drug coated nanoparticles were studied; obtaining an S shaped profile, indicating the initial burst effect followed by gradual sustained release. In vitro investigations against various gram positive and gram negative strains viz Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis indicated significant antibacterial efficiency of the drug-nanoparticle conjugate. The MIC values indicated that a small amount like 0.2 mg ml-1 of drug capped particles induce about 98% bacterial death. The novelty of the work lies in the drug capping of the nanoparticles, which retains the superparamagnetic nature of the iron oxide nanoparticles and the medical properties of the drug simultaneously, which is found to extremely blood compatible.

  12. An ionic-liquid-assisted approach to synthesize a reduced graphene oxide loading iron-based fluoride as a cathode material for sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Miaoling; Wang, Xianyou, E-mail: wxianyou@yahoo.com; Wei, Shuangying; Shen, Yongqiang; Hu, Hai

    2016-06-15

    A reduced graphene oxide loading iron-based fluoride (abbreviated as Fe{sub 2}F{sub 5}·H{sub 2}O/rGO) as a cathode material for sodium ion batteries (SIBs) has been successfully prepared by an ionic-liquid-assisted route. The morphology, structure, physicochemical properties and electrochemical performance are characterized by X-ray powder diffraction (XRD), Rietveld refinement of XRD pattern, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical tests. The XRD result shows that the crystal structure of the as-prepared sample can be indexed to the cubic Fd-3m space group and the lattice parameter is as follow: a = 1.04029 nm and V = 1.12581 nm{sup 3}. Moreover, the SEM and TEM images reveal that the as-prepared rGO has a rough wavy structure and flexural paper-like morphology, and numerous Fe{sub 2}F{sub 5}·H{sub 2}O particles are firmly adhered on the surface of the rGO to form an uniform Fe{sub 2}F{sub 5}·H{sub 2}O/rGO composite. Electrochemical tests show that the initial discharge capacity of Fe{sub 2}F{sub 5}·H{sub 2}O/rGO sample is 248.7 mAh g{sup −1} and the corresponding charging capacity up to 229.7 mAh g{sup −1} at a rate of 20 mA g{sup −1}. Especially, the Fe{sub 2}F{sub 5}·H{sub 2}O/rGO possesses good cycling stability, and it can deliver a discharge capacity of 164.2 mAh g{sup −1} at the 100th cycle. Besides, the rate capability tests show that a stable high capacity of 186.0 mAh g{sup −1} can be resumed when the current rate returns to 20 mA g{sup −1} after 20 cycles. - - Highlights: • The Fe{sub 2}F{sub 5}·H{sub 2}O/rGO has been successfully prepared by an ionic-liquid-assisted method. • The paper-like rGO could be obtained by a green hydrothermal method. • Numerous Fe{sub 2}F{sub 5}·H{sub 2}O particles are adhered firmly on the surface of the paper-like rGO. • The Fe{sub 2}F{sub 5}·H{sub 2}O/rGO shows excellent cycling stability and rate capability.

  13. Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mizuki, Toru; Watanabe, Noriyuki; Nagaoka, Yutaka [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Fukushima, Tadamasa [Shimadzu GLC Ltd., Phenomenex Support Centre, Tokyo 110-0016 (Japan); Morimoto, Hisao; Usami, Ron [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Maekawa, Toru, E-mail: maekawa@toyonet.toyo.ac.jp [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan)

    2010-03-19

    We immobilize {alpha}-amylase extracted from Bacillus Iicheniformis on the surfaces of superparamagnetic particles and investigate the effect of a rotational magnetic field on the enzyme's activity. We find that the activity of the enzyme molecules immobilized on superparamagnetic particles increases in the rotational magnetic field and reaches maximum at a certain frequency. We clarify the effect of the cluster structures formed by the superparamagnetic particles on the activity. Enzyme reactions are enhanced even in a tiny volume of solution using the present method, which is very important for the development of efficient micro reactors and micro total analysis systems ({mu}-TAS).

  14. Deviation from the superparamagnetic behaviour of fine-particle systems

    CERN Document Server

    Malaescu, I

    2000-01-01

    Studies concerning superparamagnetic behaviour of fine magnetic particle systems were performed using static and radiofrequency measurements, in the range 1-60 MHz. The samples were: a ferrofluid with magnetite particles dispersed in kerosene (sample A), magnetite powder (sample B) and the same magnetite powder dispersed in a polymer (sample C). Radiofrequency measurements indicated a maximum in the imaginary part of the complex magnetic susceptibility, for each of the samples, at frequencies with the magnitude order of tens of MHz, the origin of which was assigned to Neel-type relaxation processes. The static measurements showed a Langevin-type dependence of magnetisation M and of susceptibility chi, on the magnetic field for sample A. For samples B and C deviations from this type of dependence were found. These deviations were analysed qualitatively and explained in terms of the interparticle interactions, dispersion medium influence and surface effects.

  15. Synthesis and magnetic properties of superparamagnetic CoAs nanostructures

    Science.gov (United States)

    Desai, P.; Ashokaan, N.; Masud, J.; Pariti, A.; Nath, M.

    2015-03-01

    This article provides a comprehensive guide on the synthesis and characterization of superparamagnetic CoAs nanoparticles and elongated nanostructures with high blocking temperature, (TB), via hot-injection precipitation and solvothermal methods. Cobalt arsenides constitute an important family of magnetically active solids that find a variety of applications ranging from magnetic semiconductors to biomedical imaging. While the higher temperature hot-injection precipitation technique (300 °C) yields pure CoAs nanostructures, the lower temperature solvothermal method (200 °C) yields a mixture of CoAs nanoparticles along with other Co-based impurity phases. The synthesis in all these cases involved usage of triphenylarsine ((C6H5)3As) as the As precursor which reacts with solid Co2(CO)8 by ligand displacement to yield a single source precursor. The surfactant, hexadecylamine (HDA) further assists in controlling the morphology of the nanostructures. HDA also provides a basic medium and molten flux-like conditions for the redox chemistry to occur between Co and As at elevated temperatures. The influence of the length of reaction time was investigated by studying the evolution of product morphology over time. It was observed that while spontaneous nucleation at higher temperature followed by controlled growth led to the predominant formation of short nanorods, with longer reaction time, the nanorods were further converted to nanoparticles. The size of the nanoparticles obtained, was mostly in the range of 10-15 nm. The key finding of this work is exceptionally high coercivity in CoAs nanostructures for the first time. Coercivity observed was as high as 0.1 T (1000 Oe) at 2 K. These kinds of magnetic nanostructures find multiple applications in spintronics, whereas the superparamagnetic nanoparticles are viable for use in magnetic storage, ferrofluids and as contrast enhancing agents in MRI.

  16. Theranastic USPIO-loaded microbubbles for mediating and monitoring blood-brain barrier permeation

    NARCIS (Netherlands)

    Lammers, Twan Gerardus Gertudis Maria; Koczera, Patrick; Fokong, Stanley; Gremse, Felix; Ehling, Josef; Vogt, Michael; Pich, Andrij; Storm, Gerrit; van Zandvoort, Marc; Kiessling, Fabian

    2015-01-01

    Efficient and safe drug delivery across the blood-brain barrier (BBB) remains one of the major challenges of biomedical and (nano-) pharmaceutical research. Here, it is demonstrated that poly(butyl cyanoacrylate)-based microbubbles (MB), carrying ultrasmall superparamagnetic iron oxide (USPIO)

  17. Theranostic USPIO-loaded microbubbles for mediating and monitoring blood-brain barrier permeation

    NARCIS (Netherlands)

    Lammers, Twan; Koczera, Patrick; Fokong, Stanley; Gremse, Felix; Ehling, Josef; Vogt, Michael; Pich, Andrij; Storm, G; Van Zandvoort, Marc; Kiessling, Fabian

    2015-01-01

    Efficient and safe drug delivery across the blood-brain barrier (BBB) remains one of the major challenges of biomedical and (nano-) pharmaceutical research. Here, it is demonstrated that poly(butyl cyanoacrylate)-based microbubbles (MB), carrying ultrasmall superparamagnetic iron oxide (USPIO)

  18. In vitro removal of toxic heavy metals by poly(γ-glutamic acid-coated superparamagnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Inbaraj BS

    2012-08-01

    Full Text Available Baskaran Stephen Inbaraj,1 Bing-Huei Chen1,21Department of Food Science, 2Graduate Institute of Medicine, Fu Jen University, Taipei, TaiwanBackground: Chelation therapy involving organic chelators for treatment of heavy metal intoxication can cause cardiac arrest, kidney overload, mineral deficiency, and anemia.Methods: In this study, superparamagnetic iron oxide nanoparticles (SPIONs modified with an edible biopolymer poly(γ-glutamic acid (PGA were synthesized by coprecipitation method, characterized and evaluated for their removal efficiency of heavy metals from a metal solution, and simulated gastrointestinal fluid (SGIF.Results: Instrumental characterization of bare- and PGA-SPIONs revealed 7% coating of PGA on SPIONs with a spherical shape and an iron oxide spinel structure belonging to magnetite. The particle sizes as determined from transmission electron microscopy images were 8.5 and 11.7 nm for bare- and PGA-SPIONs, respectively, while the magnetization values were 70.3 and 61.5 emu/g. Upon coating with PGA, the zeta potentials were shifted from positive to negative at most of the environmental pH (3–8 and biological pH (1–8, implying good dispersion in aqueous suspension and favorable conditions for heavy metal removal. Batch studies showed rapid removal of lead and cadmium with the kinetic rates estimated by pseudo-second-order model being 0.212 and 0.424 g/mg•min, respectively. A maximum removal occurred in the pH range 4–8 in deionized water and 5–8 in SGIF corresponding to most gastrointestinal pH except for the stomach. Addition of different ionic strengths (0.001–1 M sodium acetate and essential metals (Cu, Fe, Zn, Mg, Ca, and K did not show any marked influence on lead removal by PGA-SPIONs, but significantly reduced the binding of cadmium. Compared to deionized water, the lead removal from SGIF was high at all pH with the Langmuir monolayer removal capacity being 98.70 mg/g for the former and 147.71 mg/g for the

  19. Superparamagnetic magnetite nanocrystals-graphene oxide nanocomposites: facile synthesis and their enhanced electric double-layer capacitor performance.

    Science.gov (United States)

    Wang, Qihua; Wang, Dewei; Li, Yuqi; Wang, Tingmei

    2012-06-01

    Superparamagnetic magnetite nanocrystals-graphene oxide (FGO) nanocomposites were successfully synthesized through a simple yet versatile one-step solution-processed approach at ambient conditions. Magnetite (Fe3O4) nanocrystals (NCs) with a size of 10-50 nm were uniformly deposited on the surfaces of graphene oxide (GO) sheets, which were confirmed by transmission electron microscopy (TEM) and high-angle annular dark field scanning transmission election microscopy (HAADF-STEM) studies. FGO with different Fe3O4 loadings could be controlled by simply manipulating the initial weight ratio of the precursors. The M-H measurements suggested that the as-prepared FGO nanocomposites have a large saturation magnetizations that made them can move regularly under an external magnetic field. Significantly, FGO nanocomposites also exhibit enhanced electric double-layer capacitor (EDLC) activity compared with pure Fe3O4 NCs and GO in terms of specific capacitance and high-rate charge-discharge.

  20. 3D atomistic studies of fatigue behaviour of edge crack (0 0 1) in bcc iron loaded in mode i and II

    Czech Academy of Sciences Publication Activity Database

    Machová, Anna; Pokluda, J.; Uhnáková, Alena; Hora, Petr

    2014-01-01

    Roč. 66, September (2014), s. 11-19 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698 Institutional support: RVO:61388998 Keywords : fatigue crack growth * bcc iron * 3D atomistic simulations * molecular dynamics Subject RIV: JQ - Machines ; Tools Impact factor: 2.275, year: 2014 www.elsevier.com/locate/ijfatigue

  1. Synthesis, Characterizations of Superparamagnetic Fe3O4-Ag Hybrid Nanoparticles and Their Application for Highly Effective Bacteria Inactivation.

    Science.gov (United States)

    Tung, Le Minh; Cong, Nguyen Xuan; Huy, Le Thanh; Lan, Nguyen Thi; Phan, Vu Ngoc; Hoa, Nguyen Quang; Vinh, Le Khanh; Thinh, Nguyen Viet; Tai, Le Thanh; Ngo, Duc-The; Mølhave, Kristian; Huy, Tran Quang; Le, Anh-Tuan

    2016-06-01

    In recent years, outbreaks of infectious diseases caused by pathogenic micro-organisms pose a serious threat to public health. In this work, Fe3O4-Ag hybrid nanoparticles were synthesized by simple chemistry method and these prepared nanoparticles were used to investigate their antibacterial properties and mechanism against methicilline-resistant Staphylococcus aureus (MRSA) pathogen. The formation of dimer-like nanostructure of Fe3O4-Ag hybrid NPs was confirmed by X-ray diffraction and High-resolution Transmission Electron Microscopy. Our biological analysis revealed that the Fe3O4-Ag hybrid NPs showed more noticeable bactericidal activity than that of plain Fe3O4 NPs and Ag-NPs. We suggest that the enhancement in bactericidal activity of Fe3O4-Ag hybrid NPs might be likely from main factors such as: (i) enhanced surface area property of hybrid nanoparticles; (ii) the high catalytic activity of Ag-NPs with good dispersion and aggregation stability due to the iron oxide magnetic carrier, and (iii) large direct physical contacts between the bacterial cell membrane and the hybrid nanoparticles. The superparamagnetic hybrid nanoparticles of iron oxide magnetic nanoparticles decorated with silver nanoparticles can be a potential candidate to effectively treat infectious MRSA pathogen with recyclable capability, targeted bactericidal delivery and minimum release into environment.

  2. Investigation properties of superparamagnetic nanoparticles and magnetic field-dependent hyperthermia therapy

    Science.gov (United States)

    Hedayatnasab, Z.; Abnisa, F.; Daud, W. M. A. Wan

    2018-03-01

    The application of superparamagnetic nanoparticles as heating agents in hyperthermia therapy has made a therapeutic breakthrough in cancer treatment. The high efficiency of this magnetic hyperthermia therapy has derived from a great capability of superparamagnetic nanoparticles to generate focused heat in inaccessible tumors being effectively inactivated. The main challenges of this therapy are the improvement of the induction heating power of superparamagnetic nanoparticles and the control of the hyperthermia temperature in a secure range of 42 °C to 47 °C, at targeted area. The variation of these hyperthermia properties is principally dependent on the magnetic nanoparticles as well as the magnetic field leading to enhance the efficiency of magnetic hyperthermia therapy at targeted area and also avoid undue heating to healthy cells. The present study evaluates the magnetic hyperthermia therapy through the determination of superparamagnetic nanoparticles properties and magnetic field’ parameters.

  3. Synthesis of novel magnetic iron metal-silica (Fe-SBA-15) and magnetite-silica (Fe{sub 3}O{sub 4}-SBA-15) nanocomposites with a high iron content using temperature-programed reduction

    Energy Technology Data Exchange (ETDEWEB)

    Yiu, H H P [Department of Chemistry, University of Liverpool, Liverpool, Merseyside L69 7ZD (United Kingdom); Keane, M A [Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Lethbridge, Z A D [Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Lees, M R [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Haj, A J El; Dobson, J [Institute of Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB (United Kingdom)], E-mail: j.p.dobson@keele.ac.uk

    2008-06-25

    Magnetic iron metal-silica and magnetite-silica nanocomposites have been prepared via temperature-programed reduction (TPR) of an iron oxide-SBA-15 (SBA: Santa Barbara Amorphous) composite. TPR of the starting SBA-15 supported Fe{sub 2}O{sub 3} generated Fe{sub 3}O{sub 4} and FeO as stepwise intermediates in the ultimate formation of Fe-SBA-15. The composite materials have been characterized by means of x-ray diffraction, high resolution transmission electron microscopy and SQUID (superconducting quantum interference device) magnetometry. The Fe oxide and metal components form a core, as nanoscale particles, that is entrapped in the SBA-15 pore network. Fe{sub 3}O{sub 4}-SBA-15 and Fe-SBA-15 exhibited superparamagnetic properties with a total magnetization value of 17 emu g{sup -1}. The magnetite-silica composite (at an Fe{sub 3}O{sub 4} loading of 30% w/w) delivered a magnetization that exceeded values reported in the literature or obtained with commercial samples. Due to the high pore volume of the mesoporous template, the magnetite content can be increased to 83% w/w with a further enhancement of magnetization.

  4. Iron oxide contrast media improve MR-imaging of the portal venous system -an experimental study

    International Nuclear Information System (INIS)

    Boeck, J.C.; Knollmann, F.D.; Teltenkoetter, S.; Wlodarcyk, W.; Muehler, A.; Felix, R.

    1997-01-01

    Purpose: The aim was to demonstrate that intravenous superparamagnetic iron oxide contrast agents improve the delineation of the portal venous system. Material and methods: The portal venous system of 8 minipigs was demonstrated by a FLASH 2-D MRA-sequence. Scans were acquired before and after intravenous administration of 10 and 20 μmol/kg of a superparamagnetic iron oxide contrast agent (SHU 555 A). Signal intensities were measured in the portal vein and hepatic parenchym and contrast-to-noise ratios were calculated. Results: Following a cumulative dose of 10 μmol iron oxide, hepatic parenchymal signal intensity decreased to 67±6%, following 20 μmol to 29±4%, and following 40 μmol to 13±2% of control (p [de

  5. Modulatory Role of Surface Coating of Superparamagnetic Iron Oxide Nanoworms in Complement Opsonization and Leukocyte Uptake

    DEFF Research Database (Denmark)

    Inturi, Swetha; Wang, Guankui; Chen, Fangfang

    2015-01-01

    demonstrated that neutrophils, monocytes, lymphocytes and eosinophils took up SPIO NWs, and the uptake was prevented by EDTA (a general complement inhibitor) and by antiproperdin antibody (an inhibitor of the alternative pathway of the complement system). Cross-linking and hydrogelation of SPIO NWs surface...... by epichlorohydrin decreased C3 opsonization in mouse serum, and consequently reduced the uptake by mouse leukocytes by more than 70% in vivo. Remarkably, the cross-linked particles did not show a decrease in C3 opsonization in human serum, but showed a significant decrease (over 60%) of the uptake by human...... leukocytes. The residual uptake of cross-linked nanoparticles was completely blocked by EDTA. These findings demonstrate species differences in complement-mediated nanoparticle recognition and uptake by leukocytes, and further show that human hemocompatibility could be improved by inhibitors of complement...

  6. Dynamic MR imaging of liver lesions with superparamagnetic iron oxide (SH-U-555A)

    International Nuclear Information System (INIS)

    Saito, Kazuhiro; Ishida, Jiro; Ito, Naoki; Kakizaki, Dai; Abe, Kimihiko; Kotake, Fumio

    2001-01-01

    Dynamic MRI with SH-U-555 (SPIO) was evaluated. Dynamic MRI was performed for 17 patients with 22 lesions. Dynamic study with T2 * -weighted imaging (T2 * dynamic) and T1-weighted imaging (T1 dynamic) were performed in 8 cases (10 lesions) and 9 cases (12 lesion), respectively. T2 * dynamic MR images were obtained before and 30, 90, 180, 270, 360, and 450 seconds and 31 minutes after the intravenous injection of SPIO, and T1 dynamic MR images were obtained before and 0, 40, 80, 120, 180, 240, 300, 360, 420, 480 seconds and 28 minutes after the injection of SPIO. The signal intensity of each lesion was measured before and after the injection of SPIO. The enhancement ratio of the lesions was calculated and evaluated. The enhancement ratio of hypervascular lesions decreased rapidly in the first phase of T2 * dynamic MRI, while that of hypovascular lesions decreased gradually. The enhancement ratio of hypervascular lesions increased in the first phase of T1 dynamic MRI and decreased gradually, while that of hypovascular lesions lacked the increase in the first phase, in contrast to hypervascular lesions. However, the changing of signal intensity could not be recognized on images with T2 * dynamic and T1 dynamic study. In conclusion, quantitative analysis using the enhancement ratio made it possible to anticipate lesion vascularity. (author)

  7. Particokinetics: computational analysis of the superparamagnetic iron oxide nanoparticles deposition process

    Science.gov (United States)

    Cárdenas, Walter HZ; Mamani, Javier B; Sibov, Tatiana T; Caous, Cristofer A; Amaro, Edson; Gamarra, Lionel F

    2012-01-01

    Background Nanoparticles in suspension are often utilized for intracellular labeling and evaluation of toxicity in experiments conducted in vitro. The purpose of this study was to undertake a computational modeling analysis of the deposition kinetics of a magnetite nanoparticle agglomerate in cell culture medium. Methods Finite difference methods and the Crank–Nicolson algorithm were used to solve the equation of mass transport in order to analyze concentration profiles and dose deposition. Theoretical data were confirmed by experimental magnetic resonance imaging. Results Different behavior in the dose fraction deposited was found for magnetic nanoparticles up to 50 nm in diameter when compared with magnetic nanoparticles of a larger diameter. Small changes in the dispersion factor cause variations of up to 22% in the dose deposited. The experimental data confirmed the theoretical results. Conclusion These findings are important in planning for nanomaterial absorption, because they provide valuable information for efficient intracellular labeling and control toxicity. This model enables determination of the in vitro transport behavior of specific magnetic nanoparticles, which is also relevant to other models that use cellular components and particle absorption processes. PMID:22745539

  8. Particokinetics: computational analysis of the superparamagnetic iron oxide nanoparticles deposition process

    Directory of Open Access Journals (Sweden)

    Cárdenas WH

    2012-06-01

    Full Text Available Walter HZ Cárdenas, Javier B Mamani, Tatiana T Sibov, Cristofer A Caous, Edson Amaro Jr, Lionel F GamarraInstituto do Cérebro, Hospital Israelita Albert Einstein, São Paulo, BrazilBackground: Nanoparticles in suspension are often utilized for intracellular labeling and evaluation of toxicity in experiments conducted in vitro. The purpose of this study was to undertake a computational modeling analysis of the deposition kinetics of a magnetite nanoparticle agglomerate in cell culture medium.Methods: Finite difference methods and the Crank-Nicolson algorithm were used to solve the equation of mass transport in order to analyze concentration profiles and dose deposition. Theoretical data were confirmed by experimental magnetic resonance imaging.Results: Different behavior in the dose fraction deposited was found for magnetic nanoparticles up to 50 nm in diameter when compared with magnetic nanoparticles of a larger diameter. Small changes in the dispersion factor cause variations of up to 22% in the dose deposited. The experimental data confirmed the theoretical results.Conclusion: These findings are important in planning for nanomaterial absorption, because they provide valuable information for efficient intracellular labeling and control toxicity. This model enables determination of the in vitro transport behavior of specific magnetic nanoparticles, which is also relevant to other models that use cellular components and particle absorption processes.Keywords: magnetite, nanoparticles, diffusion, sedimentation, agglomerates, computational modeling, cellular labeling, magnetic resonance imaging

  9. Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Uzun, K.; Cevik, E.; Senel, M.; Soezeri, H.; Baykal, A.; Abasiyanik, M. F.; Toprak, M. S.

    2010-01-01

    In this study, polyamidoamine (PAMAM) dendrimer was synthesized on the surface of superparamagnetite nanoparticles to enhance invertase immobilization. The amount of immobilized enzyme on the surface-hyperbranched magnetite nanoparticle was up to 2.5 times (i.e., 250%) as much as that of magnetite nanoparticle modified with only amino silane. Maximum reaction rate (V max ) and Michaelis-Menten constant (K m ) were determined for the free and immobilized enzymes. Various characteristics of immobilized invertase such as; the temperature activity, thermal stability, operational stability, and storage stability were evaluated and results revealed that stability of the enzyme is improved upon immobilization.

  10. Investigation of superparamagnetism in pure and chromium substituted cobalt nanoferrite

    Energy Technology Data Exchange (ETDEWEB)

    Raghasudha, M., E-mail: raghasudha_m@yahoo.co.in [Department of Chemistry, University College of Science, Osmania University, Hyderabad 500007, Telangana (India); Ravinder, D. [Department of Physics, University College of Science, Osmania University, Hyderabad 500007, Telangana (India); Veerasomaiah, P. [Department of Chemistry, University College of Science, Osmania University, Hyderabad 500007, Telangana (India)

    2016-12-15

    Nanostructured magnetic materials with the chemical composition CoFe{sub 2}O{sub 4} and CoCr{sub 0.9}Fe{sub 1.1}O{sub 4} were synthesized through Citrate-gel chemical synthesis with a crystallite size of 6.5 nm and 10.7 nm respectively. Structural characterization of the samples was performed by X-ray diffraction analysis and magnetic properties were studied using Vibrating Sample Magnetometer (VSM). Magnetization measurements as a function of applied magnetic field ±10 T at various temperatures 5 K, 25 K, 310 K and 355 K were carried out. Field cooled (FC) and Zero field cooled (ZFC) magnetization measurements under a magnetic field of 100 Oe for temperature ranging from 5–400 K were studied. The blocking temperature (T{sub b}) for both the ferrites was observed to be around 355 K. Below blocking temperature they showed ferromagnetic behavior and above which they are superparamagnetic in nature that favors their application in the biomedical field. The substitution of paramagnetic Cr{sup 3+} ions for magnetic Fe{sup 3+} ion in cobalt ferrite has resulted in a decrease in magnetization and the coercivity of the samples. CoCr{sub 0.9}Fe{sub 1.1}O{sub 4} nanoferrites with observed low coercivity of 338 Oe make them desirable in high frequency transformers due to their very soft magnetic behavior. - Highlights: • Particle size of CoFe{sub 2}O{sub 4} and CoCr{sub 0.9}Fe{sub 1.1}O{sub 4} is 6.5 nm and 10.7 nm respectively. • At 5 K and 25 K the materials were ferromagnetic in nature with high coercivity. • Materials show superparamagnetic behavior above room temperature. • Blocking temperature is at around 355 K where coercivity and remanence are zero. • Materials are suitable for hyperthermia cancer therapy.

  11. Treatment Efficiency of Free and Nanoparticle-Loaded Mitoxantrone for Magnetic Drug Targeting in Multicellular Tumor Spheroids

    Directory of Open Access Journals (Sweden)

    Annkathrin Hornung

    2015-09-01

    Full Text Available Major problems of cancer treatment using systemic chemotherapy are severe side effects. Magnetic drug targeting (MDT employing superparamagnetic iron oxide nanoparticles (SPION loaded with chemotherapeutic agents may overcome this dilemma by increasing drug accumulation in the tumor and reducing toxic side effects in the healthy tissue. For translation of nanomedicine from bench to bedside, nanoparticle-mediated effects have to be studied carefully. In this study, we compare the effect of SPION, unloaded or loaded with the cytotoxic drug mitoxantrone (MTO with the effect of free MTO, on the viability and proliferation of HT-29 cells within three-dimensional multicellular tumor spheroids. Fluorescence microscopy and flow cytometry showed that both free MTO, as well as SPION-loaded MTO (SPIONMTO are able to penetrate into tumor spheroids and thereby kill tumor cells, whereas unloaded SPION did not affect cellular viability. Since SPIONMTO has herewith proven its effectivity also in complex multicellular tumor structures with its surrounding microenvironment, we conclude that it is a promising candidate for further use in magnetic drug targeting in vivo.

  12. Ferroferric oxide/polystyrene (Fe3O4/PS superparamagnetic nanocomposite via facile in situ bulk radical polymerization

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available Organo-modified ferroferric oxide superparamagnetic nanoparticles, synthesized by the coprecipitation of superparamagnetic nanoparticles in presence of oleic acid (OA, were incorporated in polystyrene (PS by the facile in situ bulk radical polymerization by using 2,2-azobisisobutyronitrile (AIBN as initiator. The transmission electron microscopy (TEM analysis of the resultant uniform ferroferric oxide/polystyrene superparamagnetic nanocomposite (Fe3O4/PS showed that the superparamagnetic nanoparticles had been dispersed homogeneously in the polymer matrix due to the surface grafted polystyrene, confirmed by Fourier transform infrared (FT-IR spectroscopy and thermogravimetric analysis (TGA. The superparamagnetic property of the Fe3O4/PS nanocomposite was testified by the vibrating sample magnetometer (VSM analysis. The strategy developed is expected to be applied for the large-scale industrial manufacturing of the superparamagnetic polymer nanocomposite.

  13. Cerebral Abscess Associated With Odontogenic Bacteremias, Hypoxemia, and Iron Loading in Immunocompetent Patients With Right-to-Left Shunting Through Pulmonary Arteriovenous Malformations.

    Science.gov (United States)

    Boother, Emily J; Brownlow, Sheila; Tighe, Hannah C; Bamford, Kathleen B; Jackson, James E; Shovlin, Claire L

    2017-08-15

    Cerebral abscess is a recognized complication of pulmonary arteriovenous malformations (PAVMs) that allow systemic venous blood to bypass the pulmonary capillary bed through anatomic right-to-left shunts. Broader implications and mechanisms remain poorly explored. Between June 2005 and December 2016, at a single institution, 445 consecutive adult patients with computed tomography-confirmed PAVMs (including 403 [90.5%] with hereditary hemorrhagic telangiectasia) were recruited to a prospective series. Multivariate logistic regression was performed and detailed periabscess histories were evaluated to identify potential associations with cerebral abscess. Rates were compared to an earlier nonoverlapping series. Thirty-seven of the 445 (8.3%) patients experienced a cerebral abscess at a median age of 50 years (range, 19-76 years). The rate adjusted for ascertainment bias was 27 of 435 (6.2%). Twenty-nine of 37 (78.4%) patients with abscess had no PAVM diagnosis prior to their abscess, a rate unchanged from earlier UK series. Twenty-one of 37 (56.7%) suffered residual neurological deficits (most commonly memory/cognition impairment), hemiparesis, and visual defects. Isolation of periodontal microbes, and precipitating dental and other interventional events, emphasized potential sources of endovascular inoculations. In multivariate logistic regression, cerebral abscess was associated with low oxygen saturation (indicating greater right-to-left shunting); higher transferrin iron saturation index; intravenous iron use for anemia (adjusted odds ratio, 5.4 [95% confidence interval, 1.4-21.1]); male sex; and venous thromboemboli. There were no relationships with anatomic attributes of PAVMs, or red cell indices often increased due to secondary polycythemia. Greater appreciation of the risk of cerebral abscess in undiagnosed PAVMs is required. Lower oxygen saturation and intravenous iron may be modifiable risk factors. © The Author 2017. Published by Oxford University Press

  14. Cerebral Abscess Associated With Odontogenic Bacteremias, Hypoxemia, and Iron Loading in Immunocompetent Patients With Right-to-Left Shunting Through Pulmonary Arteriovenous Malformations

    Science.gov (United States)

    Boother, Emily J.; Brownlow, Sheila; Tighe, Hannah C.; Bamford, Kathleen B.; Jackson, James E.

    2017-01-01

    Abstract Background Cerebral abscess is a recognized complication of pulmonary arteriovenous malformations (PAVMs) that allow systemic venous blood to bypass the pulmonary capillary bed through anatomic right-to-left shunts. Broader implications and mechanisms remain poorly explored. Methods Between June 2005 and December 2016, at a single institution, 445 consecutive adult patients with computed tomography–confirmed PAVMs (including 403 [90.5%] with hereditary hemorrhagic telangiectasia) were recruited to a prospective series. Multivariate logistic regression was performed and detailed periabscess histories were evaluated to identify potential associations with cerebral abscess. Rates were compared to an earlier nonoverlapping series. Results Thirty-seven of the 445 (8.3%) patients experienced a cerebral abscess at a median age of 50 years (range, 19–76 years). The rate adjusted for ascertainment bias was 27 of 435 (6.2%). Twenty-nine of 37 (78.4%) patients with abscess had no PAVM diagnosis prior to their abscess, a rate unchanged from earlier UK series. Twenty-one of 37 (56.7%) suffered residual neurological deficits (most commonly memory/cognition impairment), hemiparesis, and visual defects. Isolation of periodontal microbes, and precipitating dental and other interventional events, emphasized potential sources of endovascular inoculations. In multivariate logistic regression, cerebral abscess was associated with low oxygen saturation (indicating greater right-to-left shunting); higher transferrin iron saturation index; intravenous iron use for anemia (adjusted odds ratio, 5.4 [95% confidence interval, 1.4–21.1]); male sex; and venous thromboemboli. There were no relationships with anatomic attributes of PAVMs, or red cell indices often increased due to secondary polycythemia. Conclusions Greater appreciation of the risk of cerebral abscess in undiagnosed PAVMs is required. Lower oxygen saturation and intravenous iron may be modifiable risk factors. PMID

  15. High frequency lateral flow affinity assay using superparamagnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lago-Cachón, D., E-mail: dlagocachon@gmail.com [Dpto. de Física, Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón (Spain); Rivas, M., E-mail: rivas@uniovi.es [Dpto. de Física, Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón (Spain); Martínez-García, J.C., E-mail: jcmg@uniovi.es [Dpto. de Física, Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón (Spain); Oliveira-Rodríguez, M., E-mail: oliveiramyriam@uniovi.es [Dpto. de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo (Spain); Blanco-López, M.C., E-mail: cblanco@uniovi.es [Dpto. de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo (Spain); García, J.A., E-mail: joseagd@uniovi.es [Dpto. de Física, Universidad de Oviedo, Escuela de Marina, Campus de Viesques, 33204 Gijón (Spain)

    2017-02-01

    Lateral flow assay is one of the simplest and most extended techniques in medical diagnosis for point-of-care testing. Although it has been traditionally a positive/negative test, some work has been lately done to add quantitative abilities to lateral flow assay. One of the most successful strategies involves magnetic beads and magnetic sensors. Recently, a new technique of superparamagnetic nanoparticle detection has been reported, based on the increase of the impedance induced by the nanoparticles on a RF-current carrying copper conductor. This method requires no external magnetic field, which reduces the system complexity. In this work, nitrocellulose membranes have been installed on the sensor, and impedance measurements have been carried out during the sample diffusion by capillarity along the membrane. The impedance of the sensor changes because of the presence of magnetic nanoparticles. The results prove the potentiality of the method for point-of-care testing of biochemical substances and nanoparticle capillarity flow studies. - Highlights: • A method for quantification of Lateral Flow Assays is proposed. • MNP induce an increase of the impedance on a RF-current carrying copper sensor. • Magnetic nanoparticles (MNP) can be detected flowing over the sensing element.

  16. Hydrodynamic Torques and Rotations of Superparamagnetic Bead Dimers

    Science.gov (United States)

    Pease, Christopher; Etheridge, J.; Wijesinghe, H. S.; Pierce, C. J.; Prikockis, M. V.; Sooryakumar, R.

    Chains of micro-magnetic particles are often rotated with external magnetic fields for many lab-on-a-chip technologies such as transporting beads or mixing fluids. These applications benefit from faster responses of the actuated particles. In a rotating magnetic field, the magnetization of superparamagnetic beads, created from embedded magnetic nano-particles within a polymer matrix, is largely characterized by induced dipoles mip along the direction of the field. In addition there is often a weak dipole mop that orients out-of-phase with the external rotating field. On a two-bead dimer, the simplest chain of beads, mop contributes a torque Γm in addition to the torque from mip. For dimers with beads unbound to each other, mop rotates individual beads which generate an additional hydrodynamic torque on the dimer. Whereas, mop directly torques bound dimers. Our results show that Γm significantly alters the average frequency-dependent dimer rotation rate for both bound and unbound monomers and, when mop exceeds a critical value, increases the maximum dimer rotation frequency. Models that include magnetic and hydrodynamics torques provide good agreement with the experimental findings over a range of field frequencies.

  17. High frequency lateral flow affinity assay using superparamagnetic nanoparticles

    International Nuclear Information System (INIS)

    Lago-Cachón, D.; Rivas, M.; Martínez-García, J.C.; Oliveira-Rodríguez, M.; Blanco-López, M.C.; García, J.A.

    2017-01-01

    Lateral flow assay is one of the simplest and most extended techniques in medical diagnosis for point-of-care testing. Although it has been traditionally a positive/negative test, some work has been lately done to add quantitative abilities to lateral flow assay. One of the most successful strategies involves magnetic beads and magnetic sensors. Recently, a new technique of superparamagnetic nanoparticle detection has been reported, based on the increase of the impedance induced by the nanoparticles on a RF-current carrying copper conductor. This method requires no external magnetic field, which reduces the system complexity. In this work, nitrocellulose membranes have been installed on the sensor, and impedance measurements have been carried out during the sample diffusion by capillarity along the membrane. The impedance of the sensor changes because of the presence of magnetic nanoparticles. The results prove the potentiality of the method for point-of-care testing of biochemical substances and nanoparticle capillarity flow studies. - Highlights: • A method for quantification of Lateral Flow Assays is proposed. • MNP induce an increase of the impedance on a RF-current carrying copper sensor. • Magnetic nanoparticles (MNP) can be detected flowing over the sensing element.

  18. Crystal structure of superparamagnetic Mg0.2Ca0.8Fe2O4 nanoparticles synthesized by sol–gel method

    International Nuclear Information System (INIS)

    Escamilla-Pérez, A.M.; Cortés-Hernández, D.A.; Almanza-Robles, J.M.; Mantovani, D.; Chevallier, P.

    2015-01-01

    Powders of magnetic iron oxide nanoparticles (Mg 0.2 Ca 0.8 Fe 2 O 4 ) were prepared by a sol–gel method using ethylene glycol and nitrates of Fe, Ca and Mg as starting materials. Those powders were heat treated at different temperatures (573, 673, 773 and 873 K). In order to evaluate the effect of the heat treatment temperature on the nanoferrites properties, X-ray diffraction (XRD), vibrating sample magnetometry (VSM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques were used. It was found that the reaction products exhibit nanometric sizes and superparamagnetic behavior. It is also demonstrated that, as the heat treatment temperature increases, the particle size and the saturation magnetization of the nanoferrites are increased. - Highlights: • Mg 0.2 Ca 0.8 Fe 2 O 4 superparamagnetic nanoparticles were successfully synthesized. • Particle average sizes of Ca–Mg ferrites were within the range of 8–25 nm. • The nanoferrite treated at 873 K showed a stoichiometry close to Mg 0.2 Ca 0.8 Fe 2 O 4 . • The heat treatment temperature has a strong effect on the crystal structure. • These nanoparticles are potential materials for magnetic hyperthermia

  19. Iron oxide nanoparticles for use in contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Oliveira, Elisa M.N. de; Rocha, Maximiliano S. da; Caimi, Priscila de A.; Basso, Nara R. de S.; Zanini, Mara L.; Papaleo, Ricardo M.

    2015-01-01

    In this work were carried out synthesis of iron oxide nanoparticles coated with dextran, comparing the results of using different concentrations of dextran, iron salts, temperature and reaction time. The compounds were analyzed by DLS, XRD, TGA, TEM, FTIR, Zeta Potential and relaxivity. Nanoparticles with dispersion around 10-15 nm and average hydrodynamic diameters of 16-50 nm, with superparamagnetic behavior were obtained. The ratio of the relaxivities (r2/r1) in aqueous solutions was 5.30, close to value of the commercially available iron oxide contrast agents. (author)

  20. Magnetic and Mössbauer spectroscopy studies of nanocrystalline iron oxide aerogels

    DEFF Research Database (Denmark)

    Carpenter, E.E.; Long, J.W.; Rolison, D.R.

    2006-01-01

    A sol-gel synthesis was used to produce iron oxide aerogels. These nanocrystalline aerogels have a pore-solid structure similar to silica aerogels but are composed entirely of iron oxides. Mössbauer experiments and x-ray diffraction showed that the as-prepared aerogel is an amorphous or poorly...... crystalline iron oxide, which crystallized as a partially oxidized magnetite during heating in argon. After further heat treatment in air, the nanocrystallites are fully converted to maghemite. The particles are superparamagnetic at high temperatures, but the magnetic properties are strongly influenced...

  1. Macrophages loaded with gold nanoshells for photothermal ablation of glioma: An in vitro model

    Science.gov (United States)

    Makkouk, Amani Riad

    The current median survival of patients with glioblastoma multiforme (GBM), the most common type of glioma, remains at 14.6 months despite multimodal treatments (surgery, radiotherapy and chemotherapy). This research aims to study the feasibility of photothermal ablation of glioma using gold nanoshells that are heated upon laser irradiation at their resonance wavelength. The novelty of our approach lies in improving nanoshell tumor delivery by loading them in macrophages, which are known to be recruited to gliomas via tumor-released chemoattractive agents. Ferumoxides, superparamagnetic iron oxide (SPIO) nanoparticles, are needed as an additional macrophage load in order to visualize macrophage accumulation in the tumor with magnetic resonance imaging (MRI) prior to laser irradiation. The feasibility of this approach was studied in an in vitro model of glioma spheroids with the use of continuous wave (CW) laser light for ablation. The optimal loading of both murine and rat macrophages with Ferumoxides was determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Higher concentrations of SPIO were observed in rat macrophages, and the optimal concentration was chosen at 100 microg Fe/ml. Macrophages were found to be very sensitive to near infra-red (NIR) laser irradiation, and their use as vehicles was thus not expected to hinder the function of loaded nanoshells as tumor-ablating tools. The intracellular presence of gold nanoshells in macrophages was confirmed with TEM imaging. Next, the loading of both murine and rat macrophages with gold nanoshells was studied using UV/Vis spectrophotometry, where higher nanoshell uptake was found in rat macrophages. Incubation of loaded murine and rat macrophages with rat C-6 and human ACBT spheroids, respectively, resulted in their infiltration of the spheroids. Subsequent laser irradiation at 55 W/cm2 for 10 min and follow-up of spheroid average diameter size over 14 days post-irradiation showed that

  2. Deactivation of iron oxide used in the steam-iron process to produce hydrogen

    NARCIS (Netherlands)

    Bleeker, M.F.; Veringa, H.J.; Kersten, Sascha R.A.

    2009-01-01

    In the steam-iron process pure hydrogen can be produced from any hydrocarbon feedstock by using a redox cycle of iron oxide. One of the main problems connected to the use of the iron oxide is the inherent structural changes that take place during oxygen loading and unloading leading to severe

  3. Strategies to optimize the biocompatibility of iron oxide nanoparticles – “SPIONs safe by design”

    International Nuclear Information System (INIS)

    Janko, Christina; Zaloga, Jan; Pöttler, Marina; Dürr, Stephan

    2017-01-01

    Various nanoparticle systems have been developed for medical applications in recent years. For constant improvement of efficacy and safety of nanoparticles, a close interdisciplinary interplay between synthesis, physicochemical characterizations and toxicological investigations is urgently needed. Based on combined toxicological data, we follow a “safe-by design” strategy for our superparamagnetic iron oxide nanoparticles (SPION). Using complementary interference-free toxicological assay systems, we initially identified agglomeration tendencies in physiological fluids, strong uptake by cells and improvable biocompatibility of lauric acid (LA)-coated SPIONs (SPION LA ). Thus, we decided to further stabilize those particles by an artificial protein corona consisting of serum albumin. This approach finally lead to increased colloidal stability, augmented drug loading capacity and improved biocompatibility in previous in vitro assays. Here, we show in whole blood ex vivo and on isolated red blood cells (RBC) that a protein corona protects RBCs from hemolysis by SPIONs. - Highlights: • Comparison of hemolytic properties between two SPION systems (with and without protein corona). • Protein corona increases the colloidal stability and hemocompatibility of SPIONs. • Close interaction between nanoparticle synthesis, physicochemical characterization and toxicology enables nanoparticle optimization (“safe by design”).

  4. Preparation and investigation of structural properties of magnetic diatomite nanocomposites formed with different iron content

    Energy Technology Data Exchange (ETDEWEB)

    Yusan, Sabriye, E-mail: sabriye.doyurum@ege.edu.tr [Ege University, Institute of Nuclear Sciences, 35100 Bornova, Izmir (Turkey); Korzhynbayeva, Kuralay [Al-Farabi Kazakh National University, Faculty of Chemistry and Chemical Technology, 050040 Almaty (Kazakhstan); Aytas, Sule [Ege University, Institute of Nuclear Sciences, 35100 Bornova, Izmir (Turkey); Tazhibayeva, Sagdat; Musabekov, Kuanyshbek [Al-Farabi Kazakh National University, Faculty of Chemistry and Chemical Technology, 050040 Almaty (Kazakhstan)

    2014-09-01

    Highlights: • Magnetic diatomite nanocomposites were generated by partial reduction co-precipitation method. • VSM results showed that nanocomposites have superparamagnetic behaviour. • The nanocomposites were also characterized by XRD, FTIR, SEM, DTA/TGA and BET. - Abstract: Magnetic diatomite nanocomposites (MDNC) were synthesized successfully by partial reduction co-precipitation method from iron salt solution at different concentrations and characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal analyses (DTA/TGA), vibrating sample magnetometry (VSM) and surface area measurements (BET). The XRD pattern of magnetic diatomite nanocomposites is face centered cubic with an average diameter of 4.67, 4.11 and 4. 82 nm as MDNC-1, MDNC-2 and MDNC-3, respectively. The saturation magnetization values for magnetic diatomite composites (diatomite/Fe ratio 1:1.5, 1:2.0 and 1:3.0) were found to be 13.81, 13.37 and 16.42 emu/g, respectively. By FT-IR spectra it was found that the main features of the silica framework were maintained after magnetite incorporation and some peak intensities were increased with magnetite loading. The cell parameter increase and the surface area decrease with increase in Fe content, observed by N{sub 2} adsorption–desorption technique, were considered as evidence of metal concentration effect in the synthesis procedure.

  5. Strategies to optimize the biocompatibility of iron oxide nanoparticles – “SPIONs safe by design”

    Energy Technology Data Exchange (ETDEWEB)

    Janko, Christina, E-mail: christina.janko@uk-erlangen.de [Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Glückstraße 10a, Erlangen, 91054 Germany (Germany); Zaloga, Jan, E-mail: jan.zaloga@uk-erlangen.de [Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Glückstraße 10a, Erlangen, 91054 Germany (Germany); Pöttler, Marina, E-mail: marina.poettler@uk-erlangen.de [Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Glückstraße 10a, Erlangen, 91054 Germany (Germany); Dürr, Stephan, E-mail: stephan.duerr@uk-erlangen.de [Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Glückstraße 10a, Erlangen, 91054 Germany (Germany); Department of Otorhinolaryngology, Section of Phoniatrics & Pediatric Audiology, Head & Neck Surgery, University Hospital Erlangen, Bohlenplatz 21, Erlangen, 91054 Germany (Germany); and others

    2017-06-01

    Various nanoparticle systems have been developed for medical applications in recent years. For constant improvement of efficacy and safety of nanoparticles, a close interdisciplinary interplay between synthesis, physicochemical characterizations and toxicological investigations is urgently needed. Based on combined toxicological data, we follow a “safe-by design” strategy for our superparamagnetic iron oxide nanoparticles (SPION). Using complementary interference-free toxicological assay systems, we initially identified agglomeration tendencies in physiological fluids, strong uptake by cells and improvable biocompatibility of lauric acid (LA)-coated SPIONs (SPION{sup LA}). Thus, we decided to further stabilize those particles by an artificial protein corona consisting of serum albumin. This approach finally lead to increased colloidal stability, augmented drug loading capacity and improved biocompatibility in previous in vitro assays. Here, we show in whole blood ex vivo and on isolated red blood cells (RBC) that a protein corona protects RBCs from hemolysis by SPIONs. - Highlights: • Comparison of hemolytic properties between two SPION systems (with and without protein corona). • Protein corona increases the colloidal stability and hemocompatibility of SPIONs. • Close interaction between nanoparticle synthesis, physicochemical characterization and toxicology enables nanoparticle optimization (“safe by design”).

  6. Giant Faraday Rotation through Ultrasmall Fe0 n Clusters in Superparamagnetic FeO-SiO2 Vitreous Films.

    Science.gov (United States)

    Nakatsuka, Yuko; Pollok, Kilian; Wieduwilt, Torsten; Langenhorst, Falko; Schmidt, Markus A; Fujita, Koji; Murai, Shunsuke; Tanaka, Katsuhisa; Wondraczek, Lothar

    2017-04-01

    Magnetooptical (MO) glasses and, in particular, Faraday rotators are becoming key components in lasers and optical information processing, light switching, coding, filtering, and sensing. The common design of such Faraday rotator materials follows a simple path: high Faraday rotation is achieved by maximizing the concentration of paramagnetic ion species in a given matrix material. However, this approach has reached its limits in terms of MO performance; hence, glass-based materials can presently not be used efficiently in thin film MO applications. Here, a novel strategy which overcomes this limitation is demonstrated. Using vitreous films of x FeO·(100 - x )SiO 2 , unusually large Faraday rotation has been obtained, beating the performance of any other glassy material by up to two orders of magnitude. It is shown that this is due to the incorporation of small, ferromagnetic clusters of atomic iron which are generated in line during laser deposition and rapid condensation of the thin film, generating superparamagnetism. The size of these clusters underbids the present record of metallic Fe incorporation and experimental verification in glass matrices.

  7. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    International Nuclear Information System (INIS)

    Sardar, Debasmita; Sengupta, Manideepa; Bordoloi, Ankur; Ahmed, Md. A.; Neogi, S.K.; Bandyopadhyay, Sudipta; Jain, Ruchi; Gopinath, Chinnakonda S.; Bala, Tanushree

    2017-01-01

    Highlights: • Ni nanoparticles were synthesized in polymer to form Ni-Polymer composite. • Ni nanoparticles retain their superparamagnetism in the composite. • Ni-Polymer composites showed catalytic activity. - Abstract: Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH_4, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV–vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  8. Contribution of macrophages in the contrast loss in iron oxide-based MRI cancer cell tracking studies

    Science.gov (United States)

    Danhier, Pierre; Deumer, Gladys; Joudiou, Nicolas; Bouzin, Caroline; Levêque, Philippe; Haufroid, Vincent; Jordan, Bénédicte F.; Feron, Olivier; Sonveaux, Pierre; Gallez, Bernard

    2017-01-01

    Magnetic resonance imaging (MRI) cell tracking of cancer cells labeled with superparamagnetic iron oxides (SPIO) allows visualizing metastatic cells in preclinical models. However, previous works showed that the signal void induced by SPIO on T2(*)-weighted images decreased over time. Here, we aim at characterizing the fate of iron oxide nanoparticles used in cell tracking studies and the role of macrophages in SPIO metabolism. In vivo MRI cell tracking of SPIO positive 4T1 breast cancer cells revealed a quick loss of T2* contrast after injection. We next took advantage of electron paramagnetic resonance (EPR) spectroscopy and inductively coupled plasma mass spectroscopy (ICP-MS) for characterizing the evolution of superparamagnetic and non-superparamagnetic iron pools in 4T1 breast cancer cells and J774 macrophages after SPIO labeling. These in vitro experiments and histology studies performed on 4T1 tumors highlighted the quick degradation of iron oxides by macrophages in SPIO-based cell tracking experiments. In conclusion, the release of SPIO by dying cancer cells and the subsequent uptake of iron oxides by tumor macrophages are limiting factors in MRI cell tracking experiments that plead for the use of (MR) reporter-gene based imaging methods for the long-term tracking of metastatic cells. PMID:28467814

  9. Synthesis, characterization, and cytotoxicity of the plasmid EGFP-p53 loaded on pullulan–spermine magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Eslaminejad, Touba, E-mail: tslaminejad@yahoo.com [Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Nematollahi-Mahani, Seyed Noureddin, E-mail: nnematollahi@kmu.ac.ir [Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Afzal Research Institute, Kerman (Iran, Islamic Republic of); Ansari, Mehdi, E-mail: mansari@kmu.ac.ir [Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Pharmaceutics Research Centre, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of)

    2016-03-15

    Magnetic nanoparticles have been used as effective vehicles for the targeted delivery of therapeutic agents that can be controlled in their concentration and distribution to a desired part of the body by using externally driven magnets. This study focuses on the synthesis, characterization, and functionalization of pullulan–spermine (PS) magnetic nanoparticles for medical applications. Magnetite nanopowder was produced by thermal decomposition of goethite (FeOOH) in oleic acid and 1-octadecene; pullulan–spermine was deposited on the magnetite nanoparticles in the form of pullulan–spermine clusters. EGFP-p53 plasmid was loaded on functionalized iron oleate to transfer into cells. Synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), vibrating sample magnetometry (VSM), and transmission electron microscopy (TEM). The encapsulation efficiency and drug loading efficiency of the nanocomplexes were tested. FTIR studies showed the presence of oleic acid and 1-octadecene in the iron oleate nanopowder and verified the interaction between spermine and pullulan. The characteristic bands of PS in the spectrum of the pullulan–spermine-coated iron oleate (PSCFO) confirmed that PS covered the surface of the iron oleate particles. TEM studies showed the average size of the iron oleate nanopowder, the PSCFO, and the plasmid-carrying PSCFO (PSCFO/pEGFP-p53) to be 34±12 nm, 100±50 nm and 172±3 nm, respectively. Magnetic measurements revealed that magnetic saturation of the PSCFO was lower in comparison with the iron oleate nanopowder due to the presence of organic compounds in the former. In cytotoxicity tests performed using U87 cells as glioblastoma cells, a 92% survival rate was observed at 50 µg/µl of the plasmid-carrying PSCFO, with an IC{sub 50} value of 189 µg/µl. - Highlights: • Magnetite nanopowder was produced by thermal decomposition method. • TEM studies showed the average size of

  10. Synthesis, characterization, and cytotoxicity of the plasmid EGFP-p53 loaded on pullulan–spermine magnetic nanoparticles

    International Nuclear Information System (INIS)

    Eslaminejad, Touba; Nematollahi-Mahani, Seyed Noureddin; Ansari, Mehdi

    2016-01-01

    Magnetic nanoparticles have been used as effective vehicles for the targeted delivery of therapeutic agents that can be controlled in their concentration and distribution to a desired part of the body by using externally driven magnets. This study focuses on the synthesis, characterization, and functionalization of pullulan–spermine (PS) magnetic nanoparticles for medical applications. Magnetite nanopowder was produced by thermal decomposition of goethite (FeOOH) in oleic acid and 1-octadecene; pullulan–spermine was deposited on the magnetite nanoparticles in the form of pullulan–spermine clusters. EGFP-p53 plasmid was loaded on functionalized iron oleate to transfer into cells. Synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), vibrating sample magnetometry (VSM), and transmission electron microscopy (TEM). The encapsulation efficiency and drug loading efficiency of the nanocomplexes were tested. FTIR studies showed the presence of oleic acid and 1-octadecene in the iron oleate nanopowder and verified the interaction between spermine and pullulan. The characteristic bands of PS in the spectrum of the pullulan–spermine-coated iron oleate (PSCFO) confirmed that PS covered the surface of the iron oleate particles. TEM studies showed the average size of the iron oleate nanopowder, the PSCFO, and the plasmid-carrying PSCFO (PSCFO/pEGFP-p53) to be 34±12 nm, 100±50 nm and 172±3 nm, respectively. Magnetic measurements revealed that magnetic saturation of the PSCFO was lower in comparison with the iron oleate nanopowder due to the presence of organic compounds in the former. In cytotoxicity tests performed using U87 cells as glioblastoma cells, a 92% survival rate was observed at 50 µg/µl of the plasmid-carrying PSCFO, with an IC 50 value of 189 µg/µl. - Highlights: • Magnetite nanopowder was produced by thermal decomposition method. • TEM studies showed the average size of the

  11. Surface modification of iron oxide nanoparticles and their conjuntion with water soluble polymers for biomedical application

    International Nuclear Information System (INIS)

    Nguyen Thanh Huong; Lam Thi Kieu Giang; Nguyen Thanh Binh; Le Quoc Minh

    2009-01-01

    Superparamagnetic iron oxide nanoparticles (SPION) coated with suitable bio-compatible substances have been used in biomedicine, particularly in magnetic resonance imaging (MRI), tissue engineering, and hyperthermia and drug delivery. In this study, we describe the synthesis of SPION and its surface modification for in-vitro experiments. The particle diameter and structure were estimated by FESEM, TEM, XRD analyses. The saturation magnetization was characterized. SPION with a mean size of 12 nm have been prepared under N 2 atmosphere, with support of natural polymeric starch, by controlling chemical coprecipitation of magnetite phase from aqueous solutions containing suitable salts ratios of Fe 2+ and Fe 3+ . The surface of SPION-nanoparticles was treated with a coordinatable agent for higher dispersion ability in water and remaining the superparamagnetic behavior. The prepared iron oxide nanoparticles were coated with starch, dextran, PEG or MPEG to extend the application potential in the quite different engineering field of nano biomedicine.

  12. Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: Synthesis, characteristic, adsorption performance and mechanism.

    Science.gov (United States)

    Guo, Yige; Huang, Wenli; Chen, Bin; Zhao, Ying; Liu, Dongfang; Sun, Yu; Gong, Bin

    2017-10-05

    In this study, nano zero valent iron (NZVI) modified MCM-41-zeolite A (Fe-MCM-41-A) composite as a novel adsorbent was prepared by precipitation method and applied for tetracycline (TC) removal from aqueous solution. The adsorbent was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and N 2 -BET analysis. Hysteresis loops indicated that the sample has a desirable magnetic property and can be separated quickly. Adsorption studies were carried out to evaluate its potential for TC removal. Results showed that the optimal Fe-MCM-41-A dosage, initial pH and reaction time at initial TC concentration of 100mgL -1 solution are 1gL -1 , pH=5, and 60 min respectively, at which the removal efficiency of TC was 98.7%. The TC adsorption results fitted the Langmuir isotherm model very well and the adsorption process could be described by a pseudo-second-order kinetic model. A maximum TC adsorption capacity of 526.32mgg -1 was achieved. This study demonstrates that Fe-MCM-41-A is a promising and efficient material for TC adsorption from aqueous solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Binding assays with streptavidin-functionalized superparamagnetic nanoparticles and biotinylated analytes using fluxgate magnetorelaxometry

    International Nuclear Information System (INIS)

    Heim, Erik; Ludwig, Frank; Schilling, Meinhard

    2009-01-01

    Binding assays based on the magnetorelaxation of superparamagnetic nanoparticles as markers are presented utilizing a differential fluxgate system. As ligand and receptor, streptavidin and biotin, respectively, are used. Superparamagnetic nanoparticles are functionalized with streptavidin and bound to two types of biotinylated analytes: agarose beads and bovine serum (BSA) proteins. The size difference of the two analytes causes a different progress of the reaction. As a consequence, the analysis of the relaxation signal is carried out dissimilarly for the two analytes. In addition, we studied the reaction kinetics of the two kinds of analytes with the fluxgate system.

  14. Iron loading effects in Fe/SSZ-13 NH3-SCR catalysts: nature of the Fe-ions and structure-function relationships

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng; Zheng, Yang; Kukkadapu, Ravi K.; Wang, Yilin; Walter, Eric D.; Schwenzer, Birgit; Szanyi, Janos; Peden, Charles HF

    2016-05-06

    Using a traditional aqueous solution ion-exchange method under a protecting atmosphere of N2, a series of Fe/SSZ-13 catalysts with various Fe loadings were synthesized. UV-Vis, EPR and Mössbauer spectroscopies, coupled with temperature programmed reduction and desorption techniques, were used to probe the nature of the Fe sites. The major monomeric and dimeric Fe species are extra-framework [Fe(OH)2]+ and [HO-Fe-O-Fe-OH]2+. Larger oligomers with unknown nuclearity, poorly crystallized Fe2O3 particles, together with isolated Fe2+ ions, are minor Fe-containing moieties. Reaction rate and Fe loading correlations suggest that isolated Fe3+ ions are the active sites for standard SCR while the dimeric sites are the active centers for NO oxidation. NH3 oxidation, on the other hand, is catalyzed by sites with higher nuclearity. A low-temperature standard SCR reaction network is proposed that includes redox cycling of both monomeric and dimeric Fe species, for SCR and NO2 generation, respectively. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  15. Assessments of proliferation capacity and viability of New Zealand rabbit peripheral blood endothelial progenitor cells labeled with superparamagnetic particles.

    Science.gov (United States)

    Mai, Xiao-Li; Ma, Zhan-Long; Sun, Jun-Hui; Ju, Sheng-Hong; Ma, Ming; Teng, Gao-Jun

    2009-01-01

    Magnetic resonance imaging (MRI) has proven to be effective in tracking the distribution of transplanted stem cells to target organs by way of labeling cells with superparamagnetic iron oxide particles (SPIO). However, the effect of SPIO upon labeled cells is still unclear on a cellular level. With this study, the proliferation and viability of New Zealand rabbit peripheral blood endothelial progenitor cells (EPCs) labeled with SPIO were evaluated and in vitro images were obtained using a 1.5 T MR scanner. Mononuclear cells (MNCs) were isolated from peripheral blood of the adult New Zealand rabbit and cultured in fibronectin-coated culture flasks, in which EPCs were identified from cell morphology, outgrowth characteristics, and internalization of DiI-Ac-LDL and binding to FITC-UEA I. EPCs were incubated with the self-synthesized poly-L-lysine-conjugated SPIO (PLL-SPIO) particles in a range of concentrations. The prevalence of iron-containing vesicles or endosomes in the cytoplasm of labeled cells was confirmed with Prussian blue staining and transmission electron microscopy. Tetrazolium salt (MTT) assay, cell apoptosis, and cycle detection were assessed to evaluate proliferation and function of various concentrations, magnetically labeled EPCs. The quantity of iron per cell was determined by atomic absorption spectrometry. The cells underwent MRI with different sequences. The result showed that rabbit EPCs were efficiently labeled with the home synthesized PLL-SPIO. There was found to be no statistically significant difference in the MTT values of light absorption measured on the third and fifth days. Between labeled and unlabeled cells, there were also no aberrations found in the cell cycles, apoptosis, or growth curves. The atomic absorption spectrophotometer showed that the intracellular content of Fe decreased as more time elapsed after labeling. The labeled EPCs demonstrated a loss of MRI signal intensity (SI) when compared with the SI of unlabeled cells

  16. Superparamagnetic nanoparticles for enhanced magnetic resonance and multimodal imaging

    Science.gov (United States)

    Sikma, Elise Ann Schultz

    Magnetic resonance imaging (MRI) is a powerful tool for noninvasive tomographic imaging of biological systems with high spatial and temporal resolution. Superparamagnetic (SPM) nanoparticles have emerged as highly effective MR contrast agents due to their biocompatibility, ease of surface modification and magnetic properties. Conventional nanoparticle contrast agents suffer from difficult synthetic reproducibility, polydisperse sizes and weak magnetism. Numerous synthetic techniques and nanoparticle formulations have been developed to overcome these barriers. However, there are still major limitations in the development of new nanoparticle-based probes for MR and multimodal imaging including low signal amplification and absence of biochemical reporters. To address these issues, a set of multimodal (T2/optical) and dual contrast (T1/T2) nanoparticle probes has been developed. Their unique magnetic properties and imaging capabilities were thoroughly explored. An enzyme-activatable contrast agent is currently being developed as an innovative means for early in vivo detection of cancer at the cellular level. Multimodal probes function by combining the strengths of multiple imaging techniques into a single agent. Co-registration of data obtained by multiple imaging modalities validates the data, enhancing its quality and reliability. A series of T2/optical probes were successfully synthesized by attachment of a fluorescent dye to the surface of different types of nanoparticles. The multimodal nanoparticles generated sufficient MR and fluorescence signal to image transplanted islets in vivo. Dual contrast T1/T2 imaging probes were designed to overcome disadvantages inherent in the individual T1 and T2 components. A class of T1/T2 agents was developed consisting of a gadolinium (III) complex (DTPA chelate or DO3A macrocycle) conjugated to a biocompatible silica-coated metal oxide nanoparticle through a disulfide linker. The disulfide linker has the ability to be reduced

  17. Cancer therapy with drug loaded magnetic nanoparticles-magnetic drug targeting

    International Nuclear Information System (INIS)

    Alexiou, Christoph; Tietze, Rainer; Schreiber, Eveline; Jurgons, Roland; Richter, Heike; Trahms, Lutz; Rahn, Helene; Odenbach, Stefan; Lyer, Stefan

    2011-01-01

    The aim of magnetic drug targeting (MDT) in cancer therapy is to concentrate chemotherapeutics to a tumor region while simultaneously the overall dose is reduced. This can be achieved with coated superparamagnetic nanoparticles bound to a chemotherapeutic agent. These particles are applied intra arterially close to the tumor region and focused to the tumor by a strong external magnetic field. The interaction of the particles with the field gradient leads to an accumulation in the region of interest (i.e. tumor). The particle enrichment and thereby the drug-load in the tumor during MDT has been proven by several analytical and imaging methods. Moreover, in pilot studies we investigated in an experimental in vivo tumor model the effectiveness of this approach. Complete tumor regressions without any negative side effects could be observed. - Research Highlights: →Iron oxide nanoparticles can be enriched in tumors by external magnetic fields. → Histology evidences the intravasation of particles enter the intracellular space. → Non-invasive imaging techniques can display the spatial arrangement of particles. → HPLC-analysis show outstanding drug enrichment in tumors after MDT.

  18. Cancer therapy with drug loaded magnetic nanoparticles-magnetic drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    Alexiou, Christoph, E-mail: c.alexiou@web.d [Department of Oto-rhino-laryngology, Head and Neck Surgery, University Hospital Erlangen, Section for Experimental Oncology and Nanomedicine at the Else Kroener-Fresenius-Stiftung-Professorship (Germany); Tietze, Rainer; Schreiber, Eveline [Department of Oto-rhino-laryngology, Head and Neck Surgery, University Hospital Erlangen, Section for Experimental Oncology and Nanomedicine at the Else Kroener-Fresenius-Stiftung-Professorship (Germany); Jurgons, Roland [Franz Penzoldt Center, University Hospital Erlangen (Germany); Richter, Heike; Trahms, Lutz [PTB Berlin (Germany); Rahn, Helene; Odenbach, Stefan [TU Dresden, Chair of Magnetofluiddynamics, 01062 Dresden (Germany); Lyer, Stefan [Department of Oto-rhino-laryngology, Head and Neck Surgery, University Hospital Erlangen, Section for Experimental Oncology and Nanomedicine at the Else Kroener-Fresenius-Stiftung-Professorship (Germany)

    2011-05-15

    The aim of magnetic drug targeting (MDT) in cancer therapy is to concentrate chemotherapeutics to a tumor region while simultaneously the overall dose is reduced. This can be achieved with coated superparamagnetic nanoparticles bound to a chemotherapeutic agent. These particles are applied intra arterially close to the tumor region and focused to the tumor by a strong external magnetic field. The interaction of the particles with the field gradient leads to an accumulation in the region of interest (i.e. tumor). The particle enrichment and thereby the drug-load in the tumor during MDT has been proven by several analytical and imaging methods. Moreover, in pilot studies we investigated in an experimental in vivo tumor model the effectiveness of this approach. Complete tumor regressions without any negative side effects could be observed. - Research Highlights: Iron oxide nanoparticles can be enriched in tumors by external magnetic fields. Histology evidences the intravasation of particles enter the intracellular space. Non-invasive imaging techniques can display the spatial arrangement of particles. HPLC-analysis show outstanding drug enrichment in tumors after MDT.

  19. A novel thermal decomposition approach for the synthesis of silica-iron oxide core–shell nanoparticles

    International Nuclear Information System (INIS)

    Kishore, P.N.R.; Jeevanandam, P.

    2012-01-01

    Highlights: ► Silica-iron oxide core–shell nanoparticles have been synthesized by a novel thermal decomposition approach. ► The silica-iron oxide core–shell nanoparticles are superparamagnetic at room temperature. ► The silica-iron oxide core–shell nanoparticles serve as good photocatalyst for the degradation of Rhodamine B. - Abstract: A simple thermal decomposition approach for the synthesis of magnetic nanoparticles consisting of silica as core and iron oxide nanoparticles as shell has been reported. The iron oxide nanoparticles were deposited on the silica spheres (mean diameter = 244 ± 13 nm) by the thermal decomposition of iron (III) acetylacetonate, in diphenyl ether, in the presence of SiO 2 . The core–shell nanoparticles were characterized by X-ray diffraction, infrared spectroscopy, field emission-scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy, diffuse reflectance spectroscopy, and magnetic measurements. The results confirm the presence of iron oxide nanoparticles on the silica core. The core–shell nanoparticles are superparamagnetic at room temperature indicating the presence of iron oxide nanoparticles on silica. The core–shell nanoparticles have been demonstrated as good photocatalyst for the degradation of Rhodamine B.

  20. Laboratory and pilot-scale field experiments for application of iron oxide nanoparticle-loaded chitosan composites to phosphate removal from natural water.

    Science.gov (United States)

    Kim, Jae-Hyun; Kim, Song-Bae; Lee, Sang-Hyup; Choi, Jae-Woo

    2018-03-01

    The aim of this study was to apply iron oxide nanoparticle-chitosan (ION-chitosan) composites to phosphate removal from natural water collected from the Seoho Stream in Suwon, Republic of Korea. Laboratory batch experiments showed that phosphate removal by the ION-chitosan composites was not sensitive to pH changes between pH values of 5.0 and 9.0. During six cycles of adsorption-desorption, the composites could be successfully regenerated with 5 mM NaOH solution and reused for phosphate removal. Laboratory fixed-bed column experiments (column height = 10 and 20 cm, inner diameter = 2.5 cm, flow rate = 8.18 and 16.36 mL/min) demonstrated that the composites could be successfully applied for phosphate removal under dynamic flow conditions. A pilot-scale field experiment was performed in a pilot plant, which was mainly composed of chemical reactor/dissolved air flotation and an adsorption tower, built nearby the Seoho Stream. The natural water was pumped from the Seoho Stream into the pilot plant, passed through the chemical reactor/dissolved air flotation process, and then introduced into the adsorption tower (height = 100 cm, inner diameter = 45 cm, flow rate = 7.05 ± 0.18 L/min) for phosphate removal via the composites (composite volume = 80 L, composite weight = 85.74 kg). During monitoring of the adsorption tower (33 days), the influent total phosphorus (T-P) concentration was in the range of 0.020-0.046 mgP/L, whereas the effluent T-P concentration was in the range of 0.010-0.028 mgP/L. The percent removal of T-P in the adsorption tower was 52.3% with a phosphate removal capacity of 0.059 mgP/g.

  1. Optimization of Iron Oxide Tracer Synthesis for Magnetic Particle Imaging

    Directory of Open Access Journals (Sweden)

    Sabina Ziemian

    2018-03-01

    Full Text Available The optimization of iron oxide nanoparticles as tracers for magnetic particle imaging (MPI alongside the development of data acquisition equipment and image reconstruction techniques is crucial for the required improvements in image resolution and sensitivity of MPI scanners. We present a large-scale water-based synthesis of multicore superparamagnetic iron oxide nanoparticles stabilized with dextran (MC-SPIONs. We also demonstrate the preparation of single core superparamagnetic iron oxide nanoparticles in organic media, subsequently coated with a poly(ethylene glycol gallic acid polymer and phase transferred to water (SC-SPIONs. Our aim was to obtain long-term stable particles in aqueous media with high MPI performance. We found that the amplitude of the third harmonic measured by magnetic particle spectroscopy (MPS at 10 mT is 2.3- and 5.8-fold higher than Resovist for the MC-SPIONs and SC-SPIONs, respectively, revealing excellent MPI potential as compared to other reported MPI tracer particle preparations. We show that the reconstructed MPI images of phantoms using optimized multicore and specifically single-core particles are superior to that of commercially available Resovist, which we utilize as a reference standard, as predicted by MPS.

  2. Arc-Discharge Synthesis of Iron Encapsulated in Carbon Nanoparticles for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    S. Chaitoglou

    2014-01-01

    Full Text Available The objective of the present work is to improve the protection against the oxidation that usually appears in core@shell nanoparticles. Spherical iron nanoparticles coated with a carbon shell were obtained by a modified arc-discharge reactor, which permits controlling the diameter of the iron core and the carbon shell of the particles. Oxidized iron nanoparticles involve a loss of the magnetic characteristics and also changes in the chemical properties. Our nanoparticles show superparamagnetic behavior and high magnetic saturation owing to the high purity α-Fe of core and to the high core sealing, provided by the carbon shell. A liquid iron precursor was injected in the plasma spot dragged by an inert gas flow. A fixed arc-discharge current of 40 A was used to secure a stable discharge, and several samples were produced at different conditions. Transmission electron microscopy indicated an iron core diameter between 5 and 9 nm. Selected area electron diffraction provided evidences of a highly crystalline and dense iron core. The magnetic properties were studied up to 5 K temperature using a superconducting quantum interference device. The results reveal a superparamagnetic behaviour, a narrow size distribution (σg=1.22, and an average diameter of 6 nm for nanoparticles having a blocking temperature near 40 K.

  3. Characterizing and quantifying superparamagnetic magnetite particles in serpentinized mantle peridotite observed in continental ophiolite complexes.

    Science.gov (United States)

    Ortiz, E.; Vento, N. F. R.; Tominaga, M.; Beinlich, A.; Einsle, J. F.; Buisman, I.; Ringe, E.; Schrenk, M. O.; Cardace, D.

    2017-12-01

    Serpentinization of mantle peridotite has been recognized as one of the most important energy factories for the deep biosphere. To better evaluate the habitability of the deep biosphere, it is crucial to understand the link between in situ peridotite serpentinization processes and associated magnetite and hydrogen production. Previous efforts in correlating magnetite and hydrogen production during serpentinization processes are based primarily on laboratory experiments and numerical modeling, being challenged to include the contribution of superparamagnetic-sized magnetites (i.e., extremely fine-grained magnetite, petrographically observed as a "pepper flake" like texture in many natural serpentinized rock samples). To better estimate the abundance of superparamagnetic grains, we conducted frequency-dependent susceptibility magnetic measurements at the Institute of Rock Magnetism on naturally serpentinized rock samples from the Coast Range Ophiolite Microbial Observatory (CROMO) in California, USA and the Atlin Ophiolite (British Columbia). In addition, we conducted multiscale EDS phase mapping, BackScattered Electron (BSE) scanning, FIB-nanotomography and STEM-EELS to identify and quantify the superparamagnetic minerals that contribute to the measured magnetic susceptibility signals in our rock samples. Utilizing a multidisciplinary approach, we aim to improve the estimation of hydrogen production based on the abundance of magnetite, that includes the contribution of superparamagnetic particle size magnetite, to ultimately provide a more accurate estimation of bulk deep-biomass hosted by in situ serpentinization processes.

  4. Mössbauer studies of superparamagnetic ferrite nanoparticles for functional application

    International Nuclear Information System (INIS)

    Mažeika, K.; Jagminas, A.; Kurtinaitienė, M.

    2013-01-01

    Nanoparticles of CoFe 2 O 4 and MnFe 2 O 4 prepared for functional applications in nanomedicine were studied using Mössbauer spectrometry. Superparamagnetic properties of nanoparticles of different size and composition were compared applying collective excitations and multilevel models for the description of the Mössbauer spectra.

  5. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  6. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Burtron H. Davis

    1999-01-01

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe(sub 3)O(sub 4). Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to(epsilon)(prime)-Fe(sub 2.2)C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to(chi)-Fe(sub 5)C(sub 2) and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe(sub 3)O(sub 4); however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94%(chi)-Fe(sub 5)C(sub 2), deactivated rapidly as the carbide was oxidized to Fe(sub 3)O(sub 4). No difference in activity, stability or deactivation rate was found for(chi)-Fe(sub 5)C(sub 2) and(epsilon)(prime)-Fe(sub 2.2)C

  7. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Burtron H. Davis

    1999-04-30

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe{sub 3}O{sub 4}. Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to {epsilon}{prime}-Fe{sub 2.2}C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to {chi}-Fe{sub 5}C{sub 2} and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe{sub 3}O{sub 4}; however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94% {chi}-Fe{sub 5}C{sub 2}, deactivated rapidly as the carbide was oxidized to Fe{sub 3}O{sub 4}. No difference in activity, stability or deactivation rate was found for {chi}-Fe{sub 5}C{sub 2} and {epsilon}{prime}-Fe{sub 2.2}C.

  8. Modelling iron mismanagement in neurodegenerative disease in vitro: paradigms, pitfalls, possibilities & practical considerations.

    Science.gov (United States)

    Healy, Sinead; McMahon, Jill M; FitzGerald, Una

    2017-11-01

    Although aberrant metabolism and deposition of iron has been associated with aging and neurodegeneration, the contribution of iron to neuropathology is unclear. Well-designed model systems that are suited to studying the putative pathological effect of iron are likely to be essential if such unresolved details are to be clarified. In this review, we have evaluated the utility and effectiveness of the reductionist in vitro platform to study the molecular mechanisms putatively underlying iron perturbations of neurodegenerative disease. The expression and function of iron metabolism proteins in glia and neurons and the extent to which this iron regulatory system is replicated in in vitro models has been comprehensively described, followed by an appraisal of the inherent suitability of different in vitro and ex vivo models that have been, or might be, used for iron loading. Next, we have identified and critiqued the relevant experimental parameters that have been used in in vitro iron loading experiments, including the choice of iron reagent, relevant iron loading concentrations and supplementation with serum or ascorbate, and propose optimal iron loading conditions. Finally, we have provided a synthesis of the differential iron accumulation and toxicity in glia and neurons from reported iron loading paradigms. In summary, this review has amalgamated the findings and paradigms of the published reports modelling iron loading in monocultures, discussed the limitations and discrepancies of such work to critically propose a robust, relevant and reliable model of iron loading to be used for future investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. One-pot synthesis and characterization of rhodamine derivative-loaded magnetic core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jin, E-mail: jzhang@eng.uwo.ca; Li Jiaxin [University of Western Ontario, Department of Chemical and Biochemical Engineering (Canada); Razavi, Fereidoon S. [Brock University, Department of Physics (Canada); Mumin, Abdul Md. [University of Western Ontario, Department of Chemical and Biochemical Engineering (Canada)

    2011-05-15

    A new method to produce elaborate nanostructure with magnetic and fluorescent properties in one entity is reported in this article. Magnetite (Fe{sub 3}O{sub 4}) coated with fluorescent silica (SiO{sub 2}) shell was produced through the one-pot reaction, in which one reactor was utilized to realize the synthesis of superparamagnetic core of Fe{sub 3}O{sub 4}, the formation of SiO{sub 2} coating through the condensation and polymerization of tetraethylorthosilicate (TEOS), and the encapsulation of tetramethyl rhodamine isothiocyanate-dextran (TRITC-dextran) within silica shell. Transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) were carried out to investigate the core-shell structure. The magnetic core of the core-shell nanoparticles is 60 {+-} 10 nm in diameter. The thickness of the fluorescent SiO{sub 2} shell is estimated at 15 {+-} 5 nm. In addition, the fluorescent signal of the SiO{sub 2} shell has been detected by the laser confocal scanning microscopy (LCSM) with emission wavelength ({lambda}{sub em}) at 566 nm. In addition, the magnetic properties of TRITC-dextran loaded silica-coating iron oxide nanoparticles (Fe{sub 3}O{sub 4}-SiO{sub 2} NPs) were studied. The hysteresis loop of the core-shell NPs measured at room temperature shows that the saturation magnetization (M{sub s}) is not reached even at the field of 70 kOe (7T). Meanwhile, the very low coercivity (H{sub c}) and remanent magnetization (M{sub r}) are 0.375 kOe and 6.6 emu/g, respectively, at room temperature. It indicates that the core-shell particles have the superparamagnetic properties. The measured blocking temperature (T{sub B}) of the TRITC-dextran loaded Fe{sub 3}O{sub 4}-SiO{sub 2} NPs is about 122.5 K. It is expected that the multifunctional core-shell nanoparticles can be used in bio-imaging.

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, ... iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat ...

  11. Rapid, highly sensitive detection of herpes simplex virus-1 using multiple antigenic peptide-coated superparamagnetic beads.

    Science.gov (United States)

    Ran, Ying-Fen; Fields, Conor; Muzard, Julien; Liauchuk, Viktoryia; Carr, Michael; Hall, William; Lee, Gil U

    2014-12-07

    A sensitive, rapid, and label free magnetic bead aggregation (MBA) assay has been developed that employs superparamagnetic (SPM) beads to capture, purify, and detect model proteins and the herpes simplex virus (HSV). The MBA assay is based on monitoring the aggregation state of a population of SPM beads using light scattering of individual aggregates. A biotin-streptavidin MBA assay had a femtomolar (fM) level sensitivity for analysis times less than 10 minutes, but the response of the assay becomes nonlinear at high analyte concentrations. A MBA assay for the detection of HSV-1 based on a novel peptide probe resulted in the selective detection of the virus at concentrations as low as 200 viral particles (vp) per mL in less than 30 min. We define the parameters that determine the sensitivity and response of the MBA assay, and the mechanism of enhanced sensitivity of the assay for HSV. The speed, relatively low cost, and ease of application of the MBA assay promise to make it useful for the identification of viral load in resource-limited and point-of-care settings where molecular diagnostics cannot be easily implemented.

  12. On the possibilities of age estimation of iron ore minerals using the Moessbauer effect

    International Nuclear Information System (INIS)

    Mbesherubusa, F.

    1980-01-01

    The age of geological iron are samples from regions with mainly oxidative conditions has been estimated, by the method of Moessbauer spectroscopy. In many cases the relative age of two samples could be determined unambigiously, due to the different Moessbauer data for Fe 2 + and Fe 3 + and the superparamagnetic behaviour of the iron oxide microcrystallites (up to about 200 A). This has been proved by three series of measurements with samples from three different climatic zones - Baja California, West-Australia, and Rhine Valley. (orig./HBR) [de

  13. Synthesis of magnetic iron oxide nanoparticles toward arsenic removal from drinking water

    International Nuclear Information System (INIS)

    Starbird Perez, Ricardo; Montero Campos, Virginia

    2015-01-01

    A high contact area material is supplied to be used in the treatment of water contaminated with arsenic. Synthesis of iron nanoparticles is reported with superparamagnetic properties, stabilized with stearic acid. The characterization is performed through spectrophotometric, thermogravimetric and electronic transmission techniques. The presence of an emulsifier is evidenced and determinant for the stabilization of the iron oxide phase (maghemite or magnetite) with magnetic properties. The material is obtained and shows suitable properties to be used in the treatment of water for human consumption. (author) [es

  14. On the reaction of iron oxides and oxyhydroxides with tannic and phosphoric acid and their mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, J. J., E-mail: jjbj08@yahoo.com; Novegil, F. J.; Garcia, K. E.; Barrero, C. A. [Universidad de Antioquia, Sede de Investigacion Universitaria, Grupo de Estado Solido, Instituto de Fisica (Colombia)

    2010-01-15

    The actions of tannic acid, phosphoric acid and their mixture on lepidocrocite, goethite, superparamagnetic goethite, akaganeite, magnetite, hematite and maghemite for 1 day and 1 month were explored. It was found that these acids form iron tannates and phosphates. Lepidocrocite and magnetite were the iron phases more easily transformed with the mixture of the acids after 1 month of reaction, whereas hematite was the most resistant phase. In the case of goethite, our results suggest that in order to understand properly the action of these acids, we have to take into account its stoichiometry, surface area and degree of crystallinity.

  15. Rational Design of Iron Oxide Nanoparticles as Targeted Nanomedicines for Cancer Therapy

    Science.gov (United States)

    Kievit, Forrest M.

    2011-07-01

    Nanotechnology provides a flexible platform for the development of effective therapeutic nanomaterials that can interact specifically with a target in a biological system and provoke a desired biological response. Of the nanomaterials studied, superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as one of top candidates for cancer therapy due to their intrinsic superparamagnetism that enables non-invasive magnetic resonance imaging (MRI) and biodegradability favorable for in vivo application. This dissertation is aimed at development of SPION-based nanomedicines to overcome the current limitations in cancer therapy. These limitations include non-specificity of therapy which can harm healthy tissue, the difficulty in delivering nucleic acids for gene therapy, the formation of drug resistance, and the inability to detect and treat micrometastases. First, a SPION-based non-viral gene delivery vehicle was developed through functionalization of the SPION core with a co-polymer designed to provide stable binding of DNA and low toxicity which showed excellent gene delivery in vitro and in vivo. This SPION-based non-viral gene delivery vehicle was then activated with a targeting agent to improve gene delivery throughout a xenograft tumor of brain cancer. It was found that targeting did not promote the accumulation of SPIONs at the tumor site, but rather improved the distribution of SPIONs throughout the tumor so a higher proportion of cells received treatment. Next, the high surface area of SPIONs was utilized for loading large amounts of drug which was shown to overcome the multidrug resistance acquired by many cancer cells. Drug bound to SPIONs showed significantly higher multidrug resistant cell uptake as compared to free drug which translated into improved cell kill. Also, an antibody activated SPION was developed and was shown to be able to target micrometastases in a transgenic animal model of metastatic breast cancer. These SPION-based nanomedicines

  16. Direct Iron Coating onto Nd-Fe-B Powder by Thermal Decomposition of Iron Pentacarbonyl

    International Nuclear Information System (INIS)

    Yamamuro, S; Okano, M; Tanaka, T; Sumiyama, K; Nozawa, N; Nishiuchi, T; Hirosawa, S; Ohkubo, T

    2011-01-01

    Iron-coated Nd-Fe-B composite powder was prepared by thermal decomposition of iron pentacarbonyl in an inert organic solvent in the presence of alkylamine. Though this method is based on a modified solution-phase process to synthesize highly size-controlled iron nanoparticles, it is in turn featured by a suppressed formation of iron nanoparticles to achieve an efficient iron coating solely onto the surfaces of rare-earth magnet powder. The Nd-Fe-B magnetic powder was successfully coated by iron shells whose thicknesses were of the order of submicrometer to micrometer, being tuneable by the amount of initially loaded iron pentacarbonyl in a reaction flask. The amount of the coated iron reached to more than 10 wt.% of the initial Nd-Fe-B magnetic powder, which is practically sufficient to fabricate Nd-Fe-B/α-Fe nanocomposite permanent magnets.

  17. IRON DOME

    African Journals Online (AJOL)

    6 Israeli Navy 'First Arm of the Sea: The Successful Interception of the Iron Dome Rocket .... sky to destroy them whilst in flight to minimise civilian casualties. ..... Including The Moon and Celestial Bodies.53 Demeyere further emphasises the.

  18. Iron overdose

    Science.gov (United States)

    ... tracing) X-ray to detect and track iron tablets through the stomach and intestines Treatment may include: ... BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016: ...

  19. Gd3+ doped Mn-Zn soft ferrite nanoparticles: Superparamagnetism and its correlation with other physical properties

    Science.gov (United States)

    Thakur, Prashant; Sharma, Rohit; Sharma, Vineet; Barman, P. B.; Kumar, Manoj; Barman, Dipto; Katyal, S. C.; Sharma, Pankaj

    2017-06-01

    Superparamagnetic nanoparticles are very important in biomedicine due to their various applications like drug delivery, gene delivery in the body and also used for hyperthermia. In the present work, superparamagnetic nanoparticles of Mn0.5Zn0.5GdxFe2-xO4 (x = 0, 0.025, 0.050, 0.075, 0.1) ferrites have been prepared by co-precipitation method. Thorough characterizations (XRD, FTIR, FE-SEM, EDS, VSM and fluorescence spectroscopy) have proved the formation of cubical spinel superparamagnetic nanoparticles of soft ferrites. A cation distribution has been proposed for the determination of various important theoretical parameters for these samples. With the addition of Gd3+ nanoparticles have shown the superparamagnetism at room temperature confirmed by VSM analysis. Photoluminescence (PL) spectra shows a blue shift (for x = 0.025, 0.075) which may be due to quantum confinement.

  20. Specific features of the occurrence, development, and re-compaction of spall and shear fractures in spherically-convergent shells made of unalloyed iron and some steels under their spherical explosive loading

    International Nuclear Information System (INIS)

    Kozlov, E.A.; Brichikov, S.A.; Gorbachev, D.M.; Brodova, I.G.; Yablonskikh, T.I.

    2007-01-01

    Results of comparative metallographic examination of recovered shells exposed to explosive loading in two modes (with and without a heavy casing confining explosion products scatter) are presented. The shells were made of high-purity and technical-grade unalloyed iron with the initial grain size 250 and 125 μm, steel 30KhGSA in delivery state and quenched up to HR C 35...40, austenitic stainless steel 12Kh18N10T. The heavy casing used in experiments is demonstrated to ensure a rather compact convergence of shells destroyed at high radii. In the described comparative experiments, one managed to compile the 12Kh18N10T steel shell, after it was spalled at high radii and exposed to shear fracture and spallation layer fragmentation at medium radii, into a compact sphere but failed to do the same with the 30KhGSA quenched steel shell after it was fractured according to spall and shear mechanisms at high and medium radii. Polar zones of this steel shell have obvious undercompressed areas due to significant dissipative losses to overcome the shear strength. Occurrence, development, and re-compaction of spall and shear fractures in spherically-convergent shells made of materials, which were already carefully investigated in 1D- and 2D-geometry experiments, were systematically studied in order to verify and validate new physical models of dynamic fractures, as well as up-to-date used in 1D-, 2D- and 3D-numerical algorithms [ru

  1. Effect of patterned micro-magnets on superparamagnetic beads in microchannels

    International Nuclear Information System (INIS)

    Guo, S S; Deng, Y L; Zhao, L B; Zhao, X-Z; Chan, H L W

    2008-01-01

    The trapping response of patterned micro-magnets (PMMs) was studied based on the parameters affecting superparamagnetic beads in microfluidic channels. Using replica moulding and electroplating technologies, the PMMs were fabricated on the microchannel bottom, which generated sufficient magnetic forces to bias the moments of magnetic particles in a flowing stream. A simplified physical principle was used to analyse the relative velocity of the magnetic particle in the confined space of a microchannel. The results revealed that the magnetic force contributed to the fluidic flow rate as well as to the hydrodynamic drag force. The relative velocity of magnetic particles was dependent on the frequency under an external magnetic field driven by an alternate current (ac) source. It showed that the magnetic gradient induced hysteresis characteristics of the transmission spectrum, associated with the interaction of superparamagnetic beads and magnetic field

  2. Superparamagnetic and ferrimagnetic behavior of nanocrystalline ZnO(MnO)

    Science.gov (United States)

    Kuryliszyn-Kudelska, I.; Dobrowolski, W.; Arciszewska, M.; Romčević, N.; Romčević, M.; Hadžić, B.; Sibera, D.; Narkiewicz, U.

    2018-04-01

    We have studied the magnetic properties of nanocrystals of ZnO:MnO prepared by traditional wet chemistry method. The detailed structural and morphological characterization was performed. The results of systematic measurements of AC magnetic susceptibility as a function of temperature and frequency as well as DC magnetization are reported. We observed two different types of magnetic behavior depending on the concentration doping. For samples with low nominal content (up to 30 wt% of MnO), superparamagnetic behavior was observed. We attribute the observed superparamagnetism to the presence of nanosized ZnMnO3 phase. For nanocrystals doped above nominal 60 wt% of MnO ferrimagnetism was detected with TC at around 42 K. This magnetic behavior we assign to the presence of nanosized Mn3O4 phase.

  3. Environmentally Compatible Synthesis of Superparamagnetic Magnetite (Fe3O4 Nanoparticles with Prehydrolysate from Corn Stover

    Directory of Open Access Journals (Sweden)

    Chunming Zheng

    2013-12-01

    Full Text Available An environmentally compatible and size-controlled method has been employed for synthesis of superparamagnetic magnetite nanoparticles with prehydrolysate from corn stover. Various characterizations involving X-ray diffraction (XRD, standard and high-resolution transmission electron microscopy (TEM and HRTEM, selected area electron diffraction (SAED, and thermogravimetric analysis (TGA have integrally confirmed the formation of magnetite nanoparticles with homogeneous morphology and the formation mechanism of magnetite only from ferric precursor. Organic materials in the prehydrolysate act as a bifunctional agent: (1 a reducing agent to reduce ferric ions to prepare magnetite with the coexistence of ferric and ferrous ions; and (2 a coating agent to prevent particle growth and agglomeration and to promote the formation of nanoscale and superparamagnetic magnetite. The size of the magnetite nanoparticles can be easily controlled by tailoring the reducing sugar concentration, reaction time, or hydrothermal temperature.

  4. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    Science.gov (United States)

    Sardar, Debasmita; Sengupta, Manideepa; Bordoloi, Ankur; Ahmed, Md. A.; Neogi, S. K.; Bandyopadhyay, Sudipta; Jain, Ruchi; Gopinath, Chinnakonda S.; Bala, Tanushree

    2017-05-01

    Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH4, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV-vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  5. Synthesis of Superparamagnetic Core-Shell Structure Supported Pd Nanocatalysts for Catalytic Nitrite Reduction with Enhanced Activity, No Detection of Undesirable Product of Ammonium, and Easy Magnetic Separation Capability.

    Science.gov (United States)

    Sun, Wuzhu; Yang, Weiyi; Xu, Zhengchao; Li, Qi; Shang, Jian Ku

    2016-01-27

    Superparamagnetic nanocatalysts could minimize both the external and internal mass transport limitations and neutralize OH(-) produced in the reaction more effectively to enhance the catalytic nitrite reduction efficiency with the depressed product selectivity to undesirable ammonium, while possess an easy magnetic separation capability. However, commonly used qusi-monodispersed superparamagnetic Fe3O4 nanosphere is not suitable as catalyst support for nitrite reduction because it could reduce the catalytic reaction efficiency and the product selectivity to N2, and the iron leakage could bring secondary contamination to the treated water. In this study, protective shells of SiO2, polymethylacrylic acid, and carbon were introduced to synthesize Fe3O4@SiO2/Pd, Fe3O4@PMAA/Pd, and Fe3O4@C/Pd catalysts for catalytic nitrite reduction. It was found that SiO2 shell could provide the complete protection to Fe3O4 nanosphere core among these shells. Because of its good dispersion, dense structure, and complete protection to Fe3O4, the Fe3O4@SiO2/Pd catalyst demonstrated the highest catalytic nitrite reduction activity without the detection of NH4(+) produced. Due to this unique structure, the activity of Fe3O4@SiO2/Pd catalysts for nitrite reduction was found to be independent of the Pd nanoparticle size or shape, and their product selectivity was independent of the Pd nanoparticle size, shape, and content. Furthermore, their superparamagnetic nature and high saturation magnetization allowed their easy magnetic separation from treated water, and they also demonstrated a good stability during the subsequent recycling experiment.

  6. Effect of substrate interface on the magnetism of supported iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Balan, A. [Swiss Light Source, Paul Scherrer Institut (PSI), Villigen CH-5232 (Switzerland); Fraile Rodríguez, A. [Departament de Física Fonamental and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona (Spain); Vaz, C.A.F.; Kleibert, A.; Nolting, F. [Swiss Light Source, Paul Scherrer Institut (PSI), Villigen CH-5232 (Switzerland)

    2015-12-15

    In situ X-ray photo-emission electron microscopy is used to investigate the magnetic properties of iron nanoparticles deposited on different single crystalline substrates, including Si(001), Cu(001), W(110), and NiO(001). We find that, in our room temperature experiments, Fe nanoparticles deposited on Si(001) and Cu(001) show both superparamagnetic and magnetically stable (blocked) ferromagnetic states, while Fe nanoparticles deposited on W(110) and NiO(001) show only superparamagnetic behaviour. The dependence of the magnetic behaviour of the Fe nanoparticles on the contact surface is ascribed to the different interfacial bonding energies, higher for W and NiO, and to a possible relaxation of point defects within the core of the nanoparticles on these substrates, that have been suggested to stabilise the ferromagnetic state at room temperature when deposited on more inert surfaces such as Si and Cu. - Highlights: • In situ X-ray photo-emission electron microscopy study on iron nanoparticles. • Magnetically blocked particles are found on Si(001) and Cu(001). • Superparamagnetic particles are found on W(110) and Ni0(001). • The substrate dependent behavior is ascribed to the different bonding energies.

  7. Quantum interference oscillations of the superparamagnetic blocking in an Fe8 molecular nanomagnet

    OpenAIRE

    Burzurí, E.; Luis, F.; Montero, O.; Barbara, B.; Ballou, R.; Maegawa, S.

    2013-01-01

    We show that the dynamic magnetic susceptibility and the superparamagnetic blocking temperature of an Fe8 single molecule magnet oscillate as a function of the magnetic field Hx applied along its hard magnetic axis. These oscillations are associated with quantum interferences, tuned by Hx, between different spin tunneling paths linking two excited magnetic states. The oscillation period is determined by the quantum mixing between the ground S=10 and excited multiplets. These experiments enabl...

  8. Spectroscopic and magnetic studies of highly dispersible superparamagnetic silica coated magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tadyszak, Krzysztof [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics Polish Academy of Sciences, ul. Mariana Smo.luchowskiego 17, 60-179 Poznań (Poland); Kertmen, Ahmet, E-mail: ahmet.kertmen@pg.gda.pl [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Coy, Emerson [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Andruszkiewicz, Ryszard; Milewski, Sławomir [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Kardava, Irakli; Scheibe, Błażej; Jurga, Stefan [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Chybczyńska, Katarzyna, E-mail: katarzyna.chybczynska@ifmpan.poznan.pl [Institute of Molecular Physics Polish Academy of Sciences, ul. Mariana Smo.luchowskiego 17, 60-179 Poznań (Poland)

    2017-07-01

    Highlights: • Superparamagnetic core-shell nanoparticles of Fe{sub 2}O{sub 3}@Silica were obtained. • Magnetic response was studied by DC, AC magnetometry and EPR spectroscopy. • Nanoparticles show magnetite structure with a well-defined Verwey transition. • Samples show no inter particle magnetic interactions or agglomeration. - Abstract: Superparamagnetic behavior in aqueously well dispersible magnetite core-shell Fe{sub 3}O{sub 4}@SiO{sub 2} nanoparticles is presented. The magnetic properties of core-shell nanoparticles were measured with use of the DC, AC magnetometry and EPR spectroscopy. Particles where characterized by HR-TEM and Raman spectroscopy, showing a crystalline magnetic core of 11.5 ± 0.12 nm and an amorphous silica shell of 22 ± 1.5 nm in thickness. The DC, AC magnetic measurements confirmed the superparamagnetic nature of nanoparticles, additionally the EPR studies performed at much higher frequency than DC, AC magnetometry (9 GHz) have confirmed the paramagnetic nature of the nanoparticles. Our results show the excellent magnetic behavior of the particles with a clear magnetite structure, which are desirable properties for environmental remediation and biomedical applications.

  9. Thermal treatment to enhance saturation magnetization of superparamagnetic Ni nanoparticles while maintaining low coercive force

    Science.gov (United States)

    Ishizaki, Toshitaka; Yatsugi, Kenichi; Akedo, Kunio

    2018-05-01

    Superparamagnetic nanoparticles capped by insulators have the potential to decrease eddy current and hysteresis losses. However, the saturation magnetization ( M s) decreases significantly with decreasing the particle size. In this study, superparamagnetic Ni nanoparticles having the mean size of 11.6 ± 1.8 nm were synthesized from the reduction of Ni(II) acetylacetonate in oleylamine with the addition of trioctylphosphine, indicating the coercive force ( H c) less than 1 Oe. Thermal treatments of the Ni nanoparticles were investigated as a method to enhance the M s. The results indicated that the M s was enhanced by an increase of the Ni mass ratio with increasing thermal treatment temperature. However, the decomposition behavior of the capping layers indicated that their alkyl chains actively decomposed at temperatures above 523 K to form Ni3P via reaction between Ni and P, resulting in particle growth with a significant increase in the H c. Therefore, the optimal temperature was determined to be 473 K, which increased the Ni ratio without formation of Ni3P while maintaining particle sizes with superparamagnetic properties. Further, the M s could be improved by 22% (relative to the as-synthesized Ni nanoparticles) after thermal treatment at 473 K while maintaining the H c to be less than 1 Oe.

  10. Conjugating folate on superparamagnetic Fe3O4@Au nanoparticles using click chemistry

    International Nuclear Information System (INIS)

    Shen, Xiaofang; Ge, Zhaoqiang; Pang, Yuehong

    2015-01-01

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe 3 O 4 @Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe 3 O 4 @Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenous leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe 3 O 4 @Au–FA nanoparticles. - Graphical abstract: Self-assembled azide-terminated group on superparamagnetic Fe 3 O 4 @Au nanoparticles followed by click reaction with alkyne-functionalized folate, allowing the nanoparticles target folate receptor of cancer cells. - Highlights: • Azidoundecanethiol was coated on the superparamagnetic Fe 3 O 4 @Au nanoparticles by forming self-assembled monolayers. • Alkyne-terminated folate was synthesized from a reaction between the amine and the carboxylic acid. • Conjugation of Fe 3 O 4 @Au nanoparticles with folate was made by copper-catalyzed azide-alkyne cycloaddition click chemistry

  11. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Sardar, Debasmita [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Sengupta, Manideepa; Bordoloi, Ankur [Nano Catalysis, Catalytic Conversion and Process Division, CSIR—Indian Institute of Petroleum (IIP), Mohkampur, Dehradun 248005 (India); Ahmed, Md. A.; Neogi, S.K.; Bandyopadhyay, Sudipta [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Jain, Ruchi; Gopinath, Chinnakonda S. [Catalysis Division and Center of Excellence on Surface Science, CSIR—National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (India); Bala, Tanushree, E-mail: tanushreebala@gmail.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India)

    2017-05-31

    Highlights: • Ni nanoparticles were synthesized in polymer to form Ni-Polymer composite. • Ni nanoparticles retain their superparamagnetism in the composite. • Ni-Polymer composites showed catalytic activity. - Abstract: Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH{sub 4}, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV–vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  12. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    International Nuclear Information System (INIS)

    Ngoi, Kuan Hoon; Chia, Chin-Hua; Zakaria, Sarani; Chiu, Wee Siong

    2015-01-01

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature

  13. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    Energy Technology Data Exchange (ETDEWEB)

    Ngoi, Kuan Hoon; Chia, Chin-Hua, E-mail: chia@ukm.edu.my; Zakaria, Sarani [School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia 43600 UKM Bangi, Selangor (Malaysia); Chiu, Wee Siong [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur (Malaysia)

    2015-09-25

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.

  14. Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Asuvathraman, R.; Venkata Krishnan, R.; Ravindran, T.R.; Govindaraj, R.; Govindan Kutty, K.V.; Vasudeva Rao, P.R.

    2014-01-01

    Detailed characterization was carried out on an iron phosphate glass waste form containing 20 wt.% of a simulated nuclear waste. High temperature viscosity measurement was carried out by the rotating spindle method. The Fe 3+ /Fe ratio and structure of this waste loaded iron phosphate glass was investigated using Mössbauer and Raman spectroscopy respectively. Specific heat measurement was carried out in the temperature range of 300–700 K using differential scanning calorimeter. Isoconversional kinetic analysis was employed to understand the crystallization behavior of the waste loaded iron phosphate glass. The glass forming ability and glass stability of the waste loaded glass were also evaluated. All the measured properties of the waste loaded glass were compared with the characteristics of pristine iron phosphate glass

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich foods, especially during certain stages of life when more iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...