WorldWideScience

Sample records for loaded plga nanoparticles

  1. Endostar-loaded PEG-PLGA nanoparticles: in vitro and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Sanyuan Hu

    2010-11-01

    Full Text Available Sanyuan Hu1, Yangde Zhang21Xiangya School of Medicine and 2National Hepatobiliary and Enteric Surgery Research Center, Ministry of Health, Central South University, Changsha, Hunan Province, People’s Republic of ChinaAbstract: Endostar, a novel recombinant human endostatin, which was approved by the Chinese State Food and Drug Administration in 2005, has a broad spectrum of activity against solid tumors. In this study, we aimed to determine whether the anticancer effect of Endostar is increased by using a nanocarrier system. It is expected that the prolonged circulation of endostar will improve its anticancer activity. Endostar-loaded nanoparticles were prepared to improve controlled release of the drug in mice and rabbits, as well as its anticancer effects in mice with colon cancer. A protein release system could be exploited to act as a drug carrier. Nanoparticles were formulated from poly (ethylene glycol modified poly (DL-lactide-co-glycolide (PEG-PLGA by a double emulsion technique. Physical and release characteristics of endostar-loaded nanoparticles in vitro were evaluated by transmission electron microscopy (TEM, photon correlation spectroscopy (PCS, and micro bicinchoninic acid protein assay. The pharmacokinetic parameters of endostar nanoparticles in rabbit and mice plasma were measured by enzyme-linked immunosorbent assay. Western blot was used to detect endostatin in different tissues. To study the effects of endostar-loaded nanoparticles in vivo, nude mice in which tumor cells HT-29 were implanted, were subsequently treated with endostar or endostar-loaded PEG-PLGA nanoparticles. Using TEM and PCS, endostar-loaded PEG-PLGA nanoparticles were found to have a spherical core-shell structure with a diameter of 169.56 ± 35.03 nm. Drug-loading capacity was 8.22% ± 2.35% and drug encapsulation was 80.17% ± 7.83%. Compared with endostar, endostar-loaded PEG-PLGA nanoparticles had a longer elimination half-life and lower peak

  2. Amikacin loaded PLGA nanoparticles against Pseudomonas aeruginosa.

    Science.gov (United States)

    Sabaeifard, Parastoo; Abdi-Ali, Ahya; Soudi, Mohammad Reza; Gamazo, Carlos; Irache, Juan Manuel

    2016-10-10

    Amikacin is a very effective aminoglycoside antibiotic but according to its high toxicity, the use of this antibiotic has been limited. The aim of this study was to formulate and characterize amikacin loaded PLGA nanoparticles. Nanoparticles were synthetized using a solid-in-oil-in-water emulsion technique with different ratio of PLGA 50:50 (Resomer 502H) to drug (100:3.5, 80:3.5 and 60:3.5), two different concentrations of stabilizer (pluronic F68) (0.5% or 1%) and varied g forces to recover the final products. The most efficient formulation based on drug loading (26.0±1.3μg/mg nanoparticle) and encapsulation efficiency (76.8±3.8%) was the one obtained with 100:3.5 PLGA:drug and 0.5% luronic F68, recovered by 20,000×g for 20min. Drug release kinetic study indicated that about 50% of the encapsulated drug was released during the first hour of incubation in phospahte buffer, pH7.4, 37°C, 120rpm. Using different cell viability/cytotoxicity assays, the optimized formulation showed no toxicity against RAW macrophages after 2 and 24h of exposure. Furthermore, released drug was active and maintained its bactericidal activity against Pseudomonas aeruginosa in vitro. These results support the effective utilization of the PLGA nanoparticle formulation for amikacin in further in vivo studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Preparation, characterization and immunological evaluation: canine parvovirus synthetic peptide loaded PLGA nanoparticles.

    Science.gov (United States)

    Derman, Serap; Mustafaeva, Zeynep Akdeste; Abamor, Emrah Sefik; Bagirova, Melahat; Allahverdiyev, Adil

    2015-10-20

    Canine parvovirus 2 (CPV-2) remains a significant worldwide canine pathogen and the most common cause of viral enteritis in dogs. The 1 L15 and 7 L15 peptides overlap each other with QPDGGQPAV residues (7-15 of VP2 capsid protein of CPV) is shown to produce high immune response. PLGA nanoparticles were demonstrated to have special properties such as; controlled antigen release, protection from degradation, elimination of booster-dose and enhancing the cellular uptake by antigen presenting cells. Nevertheless, there is no study available in literature, about developing vaccine based on PLGA nanoparticles with adjuvant properties against CPV. Thus, the aim of the present study was to synthesize and characterize high immunogenic W-1 L19 peptide (from the VP2 capsid protein of CPV) loaded PLGA nanoparticle and to evaluate their in vitro immunogenic activity. PLGA nanoparticles were produced with 5.26 ± 0.05 % loading capacity and high encapsulation efficiency with 81.2 ± 3.1 %. Additionally, it was evaluated that free NPs and W-1 L19 peptide encapsulated PLGA nanoparticles have Z-ave of 183.9 ± 12.1 nm, 221.7 ± 15.8 nm and polydispersity index of 0.107 ± 0.08, 0.135 ± 0.12 respectively. It was determined that peptide loaded PLGA nanoparticles were successfully phagocytized by macrophage cells and increased NO production at 2-folds (*P vaccine candidate against Canine Parvovirus. Studies targeting PLGA nanoparticles based delivery system must be maintained in near future in order to develop new and more effective nano-vaccine formulations.

  4. Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers.

    Directory of Open Access Journals (Sweden)

    Stefanie Wohlfart

    Full Text Available BACKGROUND: Chemotherapy of glioblastoma is largely ineffective as the blood-brain barrier (BBB prevents entry of most anticancer agents into the brain. For an efficient treatment of glioblastomas it is necessary to deliver anti-cancer drugs across the intact BBB. Poly(lactic-co-glycolic acid (PLGA nanoparticles coated with poloxamer 188 hold great promise as drug carriers for brain delivery after their intravenous injection. In the present study the anti-tumour efficacy of the surfactant-coated doxorubicin-loaded PLGA nanoparticles against rat glioblastoma 101/8 was investigated using histological and immunohistochemical methods. METHODOLOGY: The particles were prepared by a high-pressure solvent evaporation technique using 1% polyvinylalcohol (PLGA/PVA or human serum albumin (PLGA/HSA as stabilizers. Additionally, lecithin-containing PLGA/HSA particles (Dox-Lecithin-PLGA/HSA were prepared. For evaluation of the antitumour efficacy the glioblastoma-bearing rats were treated intravenously with the doxorubicin-loaded nanoparticles coated with poloxamer 188 using the following treatment regimen: 3 × 2.5 mg/kg on day 2, 5 and 8 after tumour implantation; doxorubicin and poloxamer 188 solutions were used as controls. On day 18, the rats were sacrificed and the antitumour effect was determined by measurement of tumour size, necrotic areas, proliferation index, and expression of GFAP and VEGF as well as Isolectin B4, a marker for the vessel density. CONCLUSION: The results reveal a considerable anti-tumour effect of the doxorubicin-loaded nanoparticles. The overall best results were observed for Dox-Lecithin-PLGA/HSA. These data demonstrate that the poloxamer 188-coated PLGA nanoparticles enable delivery of doxorubicin across the blood-brain barrier in the therapeutically effective concentrations.

  5. Efficacy of piroxicam plus cisplatin-loaded PLGA nanoparticles in inducing apoptosis in mesothelioma cells.

    Science.gov (United States)

    Menale, Ciro; Piccolo, Maria Teresa; Favicchia, Ilaria; Aruta, Maria Grazia; Baldi, Alfonso; Nicolucci, Carla; Barba, Vincenzo; Mita, Damiano Gustavo; Crispi, Stefania; Diano, Nadia

    2015-02-01

    Combined treatment based on cisplatin-loaded Poly(D,L-lactic-co-glicolic)acid (PLGA) nanoparticles (NP-C) plus the NSAID piroxicam was used as novel treatment for mesothelioma to reduce side effects related to cisplatin toxicity. PLGA nanoparticles were prepared by double emulsion solvent evaporation method. Particle size, drug release profile and in vitro cellular uptake were characterized by TEM, DLS, LC/MS and fluorescence microscopy. MSTO-211H cell line was used to analyse NP-C biological efficacy by FACS and protein analysis. Cisplatin was encapsulated in 197 nm PLGA nanoparticles with 8.2% drug loading efficiency and 47% encapsulation efficiency. Cisplatin delivery from nanoparticles reaches 80% of total encapsulated drug in 14 days following a triphasic trend. PLGA nanoparticles in MSTO-211H cells were localized in the perinuclear space NP-C in combination with piroxicam induced apoptosis using a final cisplatin concentration 1.75 fold less than free drug. Delivered cisplatin cooperated with piroxicam in modulating cell cycle regulators as caspase-3, p53 and p21. Cisplatin loaded PLGA nanoparticles plus piroxicam showed a good efficacy in exerting cytotoxic activity and inducing the same molecular apoptotic effects of the free drugs. Sustained cisplatin release allowed to use less amount of drug, decreasing toxic side effects. This novel approach could represent a new strategy for mesothelioma treatment.

  6. Nafcillin-loaded PLGA nanoparticles for treatment of osteomyelitis

    International Nuclear Information System (INIS)

    Pillai, Rajeev Raghavan; Rabinovich, Monica; Gonsalves, Kenneth E; Somayaji, Shankari N; Hudson, Michael C

    2008-01-01

    The goal of this investigation is to develop poly(dl-lactide-co-glycolide) (PLGA) nanoparticles for the delivery of antibiotics such as nafcillin to osteoblasts. This is important in order to treat Staphylococcus aureus-mediated osteomyelitis. The latter is often chronic and highly resistant to antibiotics. Nafcillin (a penicillinase-resistant penicillin)-loaded nanoparticles were prepared by a single emulsion/solvent evaporation method. In vitro drug release studies were conducted in an incubator shaker at 37 deg. C in phosphate buffer saline. Drug loading and release were determined by UV-Vis spectroscopy. A viability study was conducted in S. aureus-infected mouse osteoblasts. In vitro release study showed an initial burst release and a second phase of slow release. Following 24 and 48 h of incubation, all formulations of nanoparticles loaded with nafcillin either killed or significantly reduced all of the intracellular bacteria. Our data demonstrate that effective killing of intracellular S. aureus is possible by treating the infected osteoblasts with nanoparticles loaded with nafcillin

  7. Nafcillin-loaded PLGA nanoparticles for treatment of osteomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rajeev Raghavan; Rabinovich, Monica; Gonsalves, Kenneth E [Polymer Nanotechnology Laboratory at Center for Optoelectronics and Department of Chemistry, University of North Carolina, Charlotte, NC 28223 (United States); Somayaji, Shankari N; Hudson, Michael C [Department of Biology, University of North Carolina, Charlotte, NC 28223 (United States)], E-mail: kegonsal@uncc.edu

    2008-09-01

    The goal of this investigation is to develop poly(dl-lactide-co-glycolide) (PLGA) nanoparticles for the delivery of antibiotics such as nafcillin to osteoblasts. This is important in order to treat Staphylococcus aureus-mediated osteomyelitis. The latter is often chronic and highly resistant to antibiotics. Nafcillin (a penicillinase-resistant penicillin)-loaded nanoparticles were prepared by a single emulsion/solvent evaporation method. In vitro drug release studies were conducted in an incubator shaker at 37 deg. C in phosphate buffer saline. Drug loading and release were determined by UV-Vis spectroscopy. A viability study was conducted in S. aureus-infected mouse osteoblasts. In vitro release study showed an initial burst release and a second phase of slow release. Following 24 and 48 h of incubation, all formulations of nanoparticles loaded with nafcillin either killed or significantly reduced all of the intracellular bacteria. Our data demonstrate that effective killing of intracellular S. aureus is possible by treating the infected osteoblasts with nanoparticles loaded with nafcillin.

  8. PTX-loaded three-layer PLGA/CS/ALG nanoparticle based on layer-by-layer method for cancer therapy.

    Science.gov (United States)

    Wang, Fang; Yuan, Jian; Zhang, Qian; Yang, Siqian; Jiang, Shaohua; Huang, Chaobo

    2018-05-17

    Poly (lactic-co-glycolic acid) (PLGA) nanoparticles are an ideal paclitaxel (PTX)-carrying system due to its biocompatibility and biodegradability. But it possessed disadvantage of drug burst release. In this research, a layer-by-layer deposition of chitosan (CS) and sodium alginate (ALG) was applied to modify the PLGA nanoparticles. The surface charges and morphology of the PLGA, PLGA/CS and PLGA/CS/ALG particles was measured by capillary electrophoresis and SEM and TEM, respectively. The drug encapsulation and loading efficiency were confirmed by ultraviolet spectrophotometer. The nanoparticles were stable and exhibited controlled drug release performance, with good cytotoxicity to human lung carcinoma cells (HepG 2). Cumulatively, our research suggests that this kind of three-layer nanoparticle with LbL-coated shield has great properties to act as a novel drug-loaded system.

  9. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile.

    Science.gov (United States)

    Rafiei, Pedram; Haddadi, Azita

    2017-01-01

    Docetaxel is a highly potent anticancer agent being used in a wide spectrum of cancer types. There are important matters of concern regarding the drug's pharmacokinetics related to the conventional formulation. Poly(lactide- co -glycolide) (PLGA) is a biocompatible/biodegradable polymer with variable physicochemical characteristics, and its application in human has been approved by the United States Food and Drug Administration. PLGA gives polymeric nanoparticles with unique drug delivery characteristics. The application of PLGA nanoparticles (NPs) as intravenous (IV) sustained-release delivery vehicles for docetaxel can favorably modify pharmacokinetics, biofate, and pharmacotherapy of the drug in cancer patients. Surface modification of PLGA NPs with poly(ethylene glycol) (PEG) can further enhance NPs' long-circulating properties. Herein, an optimized fabrication approach has been used for the preparation of PLGA and PLGA-PEG NPs loaded with docetaxel for IV application. Both types of NP formulations demonstrated in vitro characteristics that were considered suitable for IV administration (with long-circulating sustained-release purposes). NP formulations were IV administered to an animal model, and docetaxel's pharmacokinetic and biodistribution profiles were determined and compared between study groups. PLGA and PEGylated PLGA NPs were able to modify the pharmacokinetics and biodistribution of docetaxel. Accordingly, the mode of changes made to pharmacokinetics and biodistribution of docetaxel is attributed to the size and surface properties of NPs. NPs contributed to increased blood residence time of docetaxel fulfilling their role as long-circulating sustained-release drug delivery systems. Surface modification of NPs contributed to more pronounced docetaxel blood concentration, which confirms the role of PEG in conferring long-circulation properties to NPs.

  10. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method

    Science.gov (United States)

    Kashi, Tahereh Sadat Jafarzadeh; Eskandarion, Solmaz; Esfandyari-Manesh, Mehdi; Marashi, Seyyed Mahmoud Amin; Samadi, Nasrin; Fatemi, Seyyed Mostafa; Atyabi, Fatemeh; Eshraghi, Saeed; Dinarvand, Rassoul

    2012-01-01

    Background Low drug entrapment efficiency of hydrophilic drugs into poly(lactic-co-glycolic acid) (PLGA) nanoparticles is a major drawback. The objective of this work was to investigate different methods of producing PLGA nanoparticles containing minocycline, a drug suitable for periodontal infections. Methods Different methods, such as single and double solvent evaporation emulsion, ion pairing, and nanoprecipitation were used to prepare both PLGA and PEGylated PLGA nanoparticles. The resulting nanoparticles were analyzed for their morphology, particle size and size distribution, drug loading and entrapment efficiency, thermal properties, and antibacterial activity. Results The nanoparticles prepared in this study were spherical, with an average particle size of 85–424 nm. The entrapment efficiency of the nanoparticles prepared using different methods was as follows: solid/oil/water ion pairing (29.9%) > oil/oil (5.5%) > water/oil/water (4.7%) > modified oil/water (4.1%) > nano precipitation (0.8%). Addition of dextran sulfate as an ion pairing agent, acting as an ionic spacer between PEGylated PLGA and minocycline, decreased the water solubility of minocycline, hence increasing the drug entrapment efficiency. Entrapment efficiency was also increased when low molecular weight PLGA and high molecular weight dextran sulfate was used. Drug release studies performed in phosphate buffer at pH 7.4 indicated slow release of minocycline from 3 days to several weeks. On antibacterial analysis, the minimum inhibitory concentration and minimum bactericidal concentration of nanoparticles was at least two times lower than that of the free drug. Conclusion Novel minocycline-PEGylated PLGA nanoparticles prepared by the ion pairing method had the best drug loading and entrapment efficiency compared with other prepared nanoparticles. They also showed higher in vitro antibacterial activity than the free drug. PMID:22275837

  11. Surface modification of paclitaxel-loaded tri-block copolymer PLGA-b-PEG-b-PLGA nanoparticles with protamine for liver cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Nansha [Chinese Academy of Science, Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology (China); Chen, Zhihong [Guangdong Medical College, Analysis Centre (China); Xiao, Xiaojun [Shenzhen University, Institute of Allergy and Immunology, School of Medicine (China); Ruan, Changshun [Chinese Academy of Science, Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology (China); Mei, Lin [Tsinghua University, The Shenzhen Key Lab of Gene and Antibody Therapy, and Division of Life and Health Sciences, Graduate School at Shenzhen (China); Liu, Zhigang, E-mail: lzg@szu.edu.cn [Shenzhen University, Institute of Allergy and Immunology, School of Medicine (China); Zeng, Xiaowei, E-mail: zeng.xiaowei@sz.tsinghua.edu.cn [Tsinghua University, The Shenzhen Key Lab of Gene and Antibody Therapy, and Division of Life and Health Sciences, Graduate School at Shenzhen (China)

    2015-08-15

    In order to enhance the therapeutic effect of chemotherapy on liver cancer, a biodegradable formulation of protamine-modified paclitaxel-loaded poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-b-PEG-b-PLGA) nanoparticles (PTX-loaded/protamine NPs) was prepared. Tri-block copolymer PLGA-b-PEG-b-PLGA was synthesized by ring-opening polymerization and characterized by {sup 1}H NMR spectroscopy and gel permeation chromatography. PTX-loaded and PTX-loaded/protamine NPs were characterized in terms of size, size distribution, zeta potential, surface morphology, drug encapsulation efficiency, and drug release. Confocal laser scanning microscopy showed that coumarin 6-loaded/protamine NPs were internalized by hepatocellular carcinoma cell line HepG2. The cellular uptake efficiency of NPs was obviously elevated after protamine modification. With commercial formulation Taxol{sup ®} as the reference, HepG2 cells were also used to study the cytotoxicity of the NPs. PTX-loaded/protamine NPs exhibited significantly higher cytotoxicity than PTX-loaded NPs and Taxol{sup ®} did. All the results suggested that surface modification of PTX-loaded PLGA-b-PEG-b-PLGA NPs with protamine boosted the therapeutic efficacy on liver cancer.

  12. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    International Nuclear Information System (INIS)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant

    2013-01-01

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide-co-glycolide) (PLGA) microparticles (size 1–4 μm, encapsulation efficiency 80–85 %) and nanoparticles (size 151.6 ± 28.6 nm, encapsulation efficiency 92.17 ± 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  13. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant, E-mail: pmishra@dbeb.iitd.ac.in [Indian Institute of Technology Delhi, Department of Biochemical Engineering and Biotechnology (India)

    2013-03-15

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide-co-glycolide) (PLGA) microparticles (size 1-4 {mu}m, encapsulation efficiency 80-85 %) and nanoparticles (size 151.6 {+-} 28.6 nm, encapsulation efficiency 92.17 {+-} 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  14. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    Science.gov (United States)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant

    2013-03-01

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide- co-glycolide) (PLGA) microparticles (size 1-4 μm, encapsulation efficiency 80-85 %) and nanoparticles (size 151.6 ± 28.6 nm, encapsulation efficiency 92.17 ± 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  15. Development and evaluation of Desvenlafaxine loaded PLGA-chitosan nanoparticles for brain delivery

    Directory of Open Access Journals (Sweden)

    Gui-Feng Tong

    2017-09-01

    Full Text Available Depression is a debilitating psychiatric condition that remains the second most common cause of disability worldwide. Currently, depression affects more than 4 per cent of the world’s population. Most of the drugs intended for clinical management of depression augment the availability of neurotransmitters at the synapse by inhibiting their neuronal reuptake. However, the therapeutic efficacy of antidepressants is often compromised as they are unable to reach brain by the conventional routes of administration. The purpose of the present study was to reconnoiter the potential of mucoadhesive PLGA-chitosan nanoparticles for the delivery of encapsulated Desvenlafaxine to the brain by nose to brain delivery route for superior pharmacokinetic and pharmacodynamic profile of Desvenlafaxine. Desvenlafaxine loaded PLGA-chitosan nanoparticles were prepared by solvent emulsion evaporation technique and optimized for various physiochemical characteristics. The antidepressant efficacy of optimized Desvenlafaxine was evaluated in various rodent depression models together with the biochemical estimation of monoamines in their brain. Further, the levels of Desvenlafaxine in brain and blood plasma were determined at various time intervals for calculation of different pharmacokinetic parameters. The optimized Desvenlafaxine loaded PLGA-chitosan nanoparticles (∼172 nm/+35 mV on intranasal administration significantly reduced the symptoms of depression and enhanced the level of monoamines in the brain in comparison with orally administered Desvenlafaxine. Nose to brain delivery of Desvenlafaxine PLGA-chitosan nanoparticles also enhanced the pharmacokinetic profile of Desvenlafaxine in brain together with their brain/blood ratio at different time points. Thus, intranasal mucoadhesive Desvenlafaxine PLGA-chitosan nanoparticles could be potentially used for the treatment of depression.

  16. PLGA nanoparticles from nano-emulsion templating as imaging agents: Versatile technology to obtain nanoparticles loaded with fluorescent dyes.

    Science.gov (United States)

    Fornaguera, C; Feiner-Gracia, N; Calderó, G; García-Celma, M J; Solans, C

    2016-11-01

    The interest in polymeric nanoparticles as imaging systems for biomedical applications has increased notably in the last decades. In this work, PLGA nanoparticles, prepared from nano-emulsion templating, have been used to prepare novel fluorescent imaging agents. Two model fluorescent dyes were chosen and dissolved in the oil phase of the nano-emulsions together with PLGA. Nano-emulsions were prepared by the phase inversion composition (PIC) low-energy method. Fluorescent dye-loaded nanoparticles were obtained by solvent evaporation of nano-emulsion templates. PLGA nanoparticles loaded with the fluorescent dyes showed hydrodynamic radii lower than 40nm; markedly lower than those reported in previous studies. The small nanoparticle size was attributed to the nano-emulsification strategy used. PLGA nanoparticles showed negative surface charge and enough stability to be used for biomedical imaging purposes. Encapsulation efficiencies were higher than 99%, which was also attributed to the nano-emulsification approach as well as to the low solubility of the dyes in the aqueous component. Release kinetics of both fluorescent dyes from the nanoparticle dispersions was pH-independent and sustained. These results indicate that the dyes could remain encapsulated enough time to reach any organ and that the decrease of the pH produced during cell internalization by the endocytic route would not affect their release. Therefore, it can be assumed that these nanoparticles are appropriate as systemic imaging agents. In addition, in vitro toxicity tests showed that nanoparticles are non-cytotoxic. Consequently, it can be concluded that the preparation of PLGA nanoparticles from nano-emulsion templating represents a very versatile technology that enables obtaining biocompatible, biodegradable and safe imaging agents suitable for biomedical purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids.

    Science.gov (United States)

    García-Díaz, María; Foged, Camilla; Nielsen, Hanne Mørck

    2015-03-30

    Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique. The nanoparticles were characterized in terms of size, zeta potential, insulin encapsulation efficiency and loading capacity. Upon pre-assembly with lipids, there was an increased distribution of insulin into the organic phase of the emulsion, eventually resulting in significantly enhanced encapsulation efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid-insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer during release studies in buffers, whereas insulin was released in a non-complexed form as a burst of approximately 80% of the loaded insulin. In conclusion, the protein load in PLGA nanoparticles can be significantly increased by employing self-assembled protein-lipid complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Improved insulin loading in poly (lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids

    DEFF Research Database (Denmark)

    Garcia Diaz, Maria; Foged, Camilla; Nielsen, Hanne Mørck

    2015-01-01

    Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading...... of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique...... efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid–insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer...

  19. Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections.

    Science.gov (United States)

    Günday Türeli, Nazende; Torge, Afra; Juntke, Jenny; Schwarz, Bianca C; Schneider-Daum, Nicole; Türeli, Akif Emre; Lehr, Claus-Michael; Schneider, Marc

    2017-08-01

    Current pulmonary treatments against Pseudomonas aeruginosa infections in cystic fibrosis (CF) lung suffer from deactivation of the drug and immobilization in thick and viscous biofilm/mucus blend, along with the general antibiotic resistance. Administration of nanoparticles (NPs) with high antibiotic load capable of penetrating the tight mesh of biofilm/mucus can be an advent to overcome the treatment bottlenecks. Biodegradable and biocompatible polymer nanoparticles efficiently loaded with ciprofloxacin complex offer a solution for emerging treatment strategies. NPs were prepared under controlled conditions by utilizing MicroJet Reactor (MJR) to yield a particle size of 190.4±28.6nm with 0.089 PDI. Encapsulation efficiency of the drug was 79% resulting in a loading of 14%. Release was determined to be controlled and medium-independent in PBS, PBS+0.2% Tween 80 and simulated lung fluid. Cytotoxicity assays with Calu-3 cells and CF bronchial epithelial cells (CFBE41o - ) indicated that complex-loaded PLGA NPs were non-toxic at concentrations ≫ MIC cipro against lab strains of the bacteria. Antibacterial activity tests revealed enhanced activity when applied as nanoparticles. NPs' colloidal stability in mucus was proven. Notably, a decrease in mucus turbidity was observed upon incubation with NPs. Herewith, ciprofloxacin complex-loaded PLGA NPs are introduced as promising pulmonary nano drug delivery systems against P.aeruginosa infections in CF lung. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Estradiol-loaded PLGA nanoparticles for improving low bone mineral density of cancellous bone caused by osteoporosis: Application of enhanced charged nanoparticles with iontophoresis.

    Science.gov (United States)

    Takeuchi, Issei; Kobayashi, Shiori; Hida, Yukari; Makino, Kimiko

    2017-07-01

    Postmenopausal osteoporosis among older women, which occurs by an ovarian hormone deficiency, is one of the major public health problems. 17 β-estradiol (E2) is used to prevent and treat this disease as a drug of hormone replacement therapy. In oral administration, E2 is significantly affected by first-pass hepatic metabolism, and high dose administration must be needed to obtain drug efficacy. Therefore, alternative administration route is needed, and we have focused on the transdermal drug delivery system. In this study, we have prepared E2-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles for osteoporosis by using a combination of an antisolvent diffusion method with preferential solvation. The average particle diameter of the nanoparticles was 110.0±41.0nm and the surface charge number density was 82 times higher than that of conventional E2-loaded PLGA nanoparticles. Therapeutic evaluation of E2-loaded PLGA nanoparticles was carried out using ovariectomized female rats. Therapeutic efficacy was evaluated to measure bone mineral density of cancellous bone using an X-ray CT system. When the E2-loaded PLGA nanoparticles were administrated once a week, bone mineral density was significantly higher than that of the non-treated group at 60days after the start of treatment. Also, in the group administered this nanoparticle twice a week, the bone mineral density increased significantly at 45days after the start of treatment. From these results, it was revealed that E2-loaded PLGA nanoparticles with iontophoresis were useful to recover bone mineral density of cancellous bone, and it was also suggested that they extend the dosing interval of E2. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effects of curcumin-loaded PLGA nanoparticles on the RG2 rat glioma model.

    Science.gov (United States)

    Orunoğlu, Merdan; Kaffashi, Abbas; Pehlivan, Sibel Bozdağ; Şahin, Selma; Söylemezoğlu, Figen; Oğuz, Kader Karli; Mut, Melike

    2017-09-01

    Curcumin, the active ingredient of turmeric, has a remarkable antitumor activity against various cancers, including glioblastoma. However, it has poor absorption and low bioavailability; thus, to cross the blood-brain barrier and reach tumor tissue, it needs to be transferred to tumor site by special drug delivery systems, such as nanoparticles. We aimed to evaluate the antitumor activity of curcumin on glioblastoma tissue in the rat glioma-2 (RG2) tumor model when it is loaded on poly(lactic-co-glycolic acid)-1,2-distearoyl-glycerol-3-phospho-ethanolamine-N-[methoxy (polyethylene glycol)-2000] ammonium salt (PLGA-DSPE-PEG) hybrid nanoparticles. Glioblastoma was induced in 42 adult female Wistar rats (250-300g) by RG2 tumor model. The curcumin-loaded nanoparticles were injected by intravenous (n=6) or intratumoral route (n=6). There were five control groups, each containing six rats. First control group was not applied any treatment. The remaining four control groups were given empty nanoparticles or curcumin alone by intravenous or intratumoral route, respectively. The change in tumor volume was assessed by magnetic resonance imaging and histopathology before and 5days after drug injections. Tumor size decreased significantly after 5days of intratumoral injection of curcumin-loaded nanoparticle (from 66.6±44.6 to 34.9±21.7mm 3 , p=0.028), whereas it significantly increased in nontreated control group (from 33.9±21.3 to 123.7±41.1mm 3 , p=0.036) and did not significantly change in other groups (p>0.05 for all). In this in vivo experimental model, intratumoral administration of curcumin-loaded PLGA-DSPE-PEG hybrid nanoparticles was effective against glioblastoma. Curcumine-loaded nanoparticles may have potential application in chemotherapy of glioblastoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cellular uptake and radiosensitization of SR-2508 loaded PLGA nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jin Cheng [Fourth Military Medical University, Department of Radiation Medicine (China); Bai Ling [Xi' an Gaoxin Hospital, Department of Clinical Laboratories (China); Wu Hong [Fourth Military Medical University, Department of Pharmacy (China); Teng Zenghui [Fourth Military Medical University, Department of Pharmacology (China); Guo Guozhen, E-mail: guozhengg@tom.co [Fourth Military Medical University, Department of Radiation Medicine (China); Chen Jingyuan, E-mail: jy_chen@fmmu.edu.c [Fourth Military Medical University, Department of Occupational and Environmental Health (China)

    2008-08-15

    SR-2508 (etanidazole), a hypoxic radiosensitizer, has potential applications in radiotherapy. The poly(d,l-lactide-co-glycolide)(PLGA) nanoparticles containing SR-2508 were prepared by w/o/w emulsification-solvent evaporation method. The physicochemical characteristics of the nanoparticles (i.e. encapsulation efficiency, particle size distribution, morphology, in vitro release) were studied. The cellular uptake of the nanoparticles for the two human tumor cell lines: human breast carcinoma cells (MCF-7) and human carcinoma cervices cells (HeLa), was evaluated by fluorescence microscopy and transmission electronic microscopy. Cell viability was measured by the ability of single cell to form colonies in vitro. The prepared nanoparticles were spherical in shape with size between 90 nm and 190 nm. The encapsulation efficiency was 20.06%. The drug release pattern exhibited an initial burst followed by a plateau for over 24 h. The cellular uptake of nanoparticles was observed. Co-culture of MCF-7 and HeLa cells with SR-2508 loaded nanoparticles showed that released SR-2508 retained its bioactivity and effectively sensitized two hypoxic tumor cell lines to radiation. The radiosensitization of SR-2508 loaded nanoparticles was more significant than that of free drug.

  3. Cellular uptake and radiosensitization of SR-2508 loaded PLGA nanoparticles

    International Nuclear Information System (INIS)

    Jin Cheng; Bai Ling; Wu Hong; Teng Zenghui; Guo Guozhen; Chen Jingyuan

    2008-01-01

    SR-2508 (etanidazole), a hypoxic radiosensitizer, has potential applications in radiotherapy. The poly(d,l-lactide-co-glycolide)(PLGA) nanoparticles containing SR-2508 were prepared by w/o/w emulsification-solvent evaporation method. The physicochemical characteristics of the nanoparticles (i.e. encapsulation efficiency, particle size distribution, morphology, in vitro release) were studied. The cellular uptake of the nanoparticles for the two human tumor cell lines: human breast carcinoma cells (MCF-7) and human carcinoma cervices cells (HeLa), was evaluated by fluorescence microscopy and transmission electronic microscopy. Cell viability was measured by the ability of single cell to form colonies in vitro. The prepared nanoparticles were spherical in shape with size between 90 nm and 190 nm. The encapsulation efficiency was 20.06%. The drug release pattern exhibited an initial burst followed by a plateau for over 24 h. The cellular uptake of nanoparticles was observed. Co-culture of MCF-7 and HeLa cells with SR-2508 loaded nanoparticles showed that released SR-2508 retained its bioactivity and effectively sensitized two hypoxic tumor cell lines to radiation. The radiosensitization of SR-2508 loaded nanoparticles was more significant than that of free drug.

  4. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles

    Science.gov (United States)

    Ibarra, Jaime; Melendres, Julio; Almada, Mario; Burboa, María G.; Taboada, Pablo; Juárez, Josué; Valdez, Miguel A.

    2015-09-01

    In this work, we report the synthesis and characterization of a new hybrid nanoparticles system performed by magnetite nanoparticles, loaded in a PLGA matrix, and stabilized by different concentrations of chitosan. Magnetite nanoparticles were hydrophobized with oleic acid and entrapped in a PLGA matrix by the emulsion solvent evaporation method, after that, magnetite/PLGA/chitosan nanoparticles were obtained by adding dropwise magnetite/PLGA nanoparticles in chitosan solutions. Magnetite/PLGA nanoparticles produced with different molar ratios did not show significant differences in size and the 3:1 molar ratio showed best spherical shapes as well as uniform particle size. Isothermal titration calorimetry studies demonstrated that the first stage of PLGA-chitosan interaction is mostly regulated by electrostatic forces. Based on a single set of identical sites model, we obtained for the average number of binding sites a value of 3.4, which can be considered as the number of chitosan chains per nanoparticle. This value was confirmed by using a model based on the DLVO theory and fitting zeta potential measurements of magnetite/PLGA/chitosan nanoparticles. From the adjusted parameters, we found that an average number of chitosan molecules of 3.6 per nanoparticle are attached onto the surface of the PLGA matrix. Finally, we evaluated the effect of surface charge of nanoparticles on a membrane model of endothelial cells performed by a mixture of three phospholipids at the air-water interface. Different isotherms and adsorption curves show that cationic surface of charged nanoparticles strongly interact with the phospholipids mixture and these results can be the basis of future experiments to understand the nanoparticles- cell membrane interaction.

  5. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles

    International Nuclear Information System (INIS)

    Ibarra, Jaime; Melendres, Julio; Almada, Mario; Juárez, Josué; Valdez, Miguel A; Burboa, María G; Taboada, Pablo

    2015-01-01

    In this work, we report the synthesis and characterization of a new hybrid nanoparticles system performed by magnetite nanoparticles, loaded in a PLGA matrix, and stabilized by different concentrations of chitosan. Magnetite nanoparticles were hydrophobized with oleic acid and entrapped in a PLGA matrix by the emulsion solvent evaporation method, after that, magnetite/PLGA/chitosan nanoparticles were obtained by adding dropwise magnetite/PLGA nanoparticles in chitosan solutions. Magnetite/PLGA nanoparticles produced with different molar ratios did not show significant differences in size and the 3:1 molar ratio showed best spherical shapes as well as uniform particle size. Isothermal titration calorimetry studies demonstrated that the first stage of PLGA-chitosan interaction is mostly regulated by electrostatic forces. Based on a single set of identical sites model, we obtained for the average number of binding sites a value of 3.4, which can be considered as the number of chitosan chains per nanoparticle. This value was confirmed by using a model based on the DLVO theory and fitting zeta potential measurements of magnetite/PLGA/chitosan nanoparticles. From the adjusted parameters, we found that an average number of chitosan molecules of 3.6 per nanoparticle are attached onto the surface of the PLGA matrix. Finally, we evaluated the effect of surface charge of nanoparticles on a membrane model of endothelial cells performed by a mixture of three phospholipids at the air–water interface. Different isotherms and adsorption curves show that cationic surface of charged nanoparticles strongly interact with the phospholipids mixture and these results can be the basis of future experiments to understand the nanoparticles- cell membrane interaction. (paper)

  6. PLGA nanoparticles introduction into mitoxantrone-loaded ultrasound-responsive liposomes: In vitro and in vivo investigations.

    Science.gov (United States)

    Xin, Yuxuan; Qi, Qi; Mao, Zhenmin; Zhan, Xiaoping

    2017-08-07

    A novel ultrasound-responsive liposomal system for tumor targeting was prepared in order to increase the antitumor efficacy and decrease serious side effects. In this paper, PLGA nanoparticles were used ultrasound-responsive agents instead of conventional microbubbles. The PLGA-nanoparticles were prepared by an emulsion solvent evaporation method. The liposomes were prepared by a lipid film hydration method. Particle size, zeta potential, encapsulation efficiency and drug loading capacity of the liposomes were studied by light scattering analysis and dialysis. Transmission electron microscopy (TEM) and atomic force microscope (AFM) were used to investigate the morphology of liposomes. The release in vitro was carried out in the pH 7.4 phosphate buffer solutions, as a result, liposome L3 encapsulating PLGA-nanoparticles displayed good stability under simulative physiological conditions and quickly responsive release under the ultrasound. The release in vivo was carried out on the rats, as a result, liposome L3 showed higher bioavailability than traditional intravenous injectable administration, and liposome L3 showed higher elimination ratio after stimulation by ultrasound than L3 without stimulation. Thus, the novel ultrasound-responsive liposome encapsulating PLGA-nanoparticles has a potential to be developed as a new drug delivery system for anti-tumor drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The studies of PLGA nanoparticles loading atorvastatin calcium for oral administration in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Zhenbao Li

    2017-05-01

    Full Text Available A biodegradable poly(lactic-co-glycolic acid loading atorvastatin calcium (AC nanoparticles (AC-PLGA-NPs were prepared by probe ultrasonication and evaporation method aiming at improving the oral bioavailability of AC. The effects of experimental parameters, including stabilizer species, stabilizer concentration and pH of aqueous phase, on particle size were also evaluated. The resultant nanoparticles were in spherical shape with an average diameter of 174.7 nm and a narrow particle size distribution. And the drug loading and encapsulation efficiency were about 8% and 71%, respectively. The particle size and polydispersion were almost unchanged in 10 days. The release curves of AC-PLGA-NPs in vitro displaying sustained release characteristics indicated that its release mechanisms were matrix erosion and diffusion. The pharmacokinetic study in vivo revealed that the Cmax and AUC0-∞ of AC-PLGA-NPs in rats were nearly 3.7-fold and 4.7-fold higher than that of pure atorvastatin calcium suspension. Our results demonstrated that the delivery of AC-PLGA-NPs could be a promising approach for the oral delivery of AC for enhanced bioavailability.

  8. Quercetin-loaded PLGA nanoparticles: a highly effective antibacterial agent in vitro and anti-infection application in vivo

    International Nuclear Information System (INIS)

    Sun, Dongdong; Li, Nuan; Zhang, Weiwei; Yang, Endong; Mou, Zhipeng; Zhao, Zhiwei; Liu, Haiping; Wang, Weiyun

    2016-01-01

    Nanotechnology-based approaches have tremendous potential for enhancing efficacy against infectious diseases. PLGA-based nanoparticles as drug delivery carrier have shown promising potential, owing to their sizes and related unique properties. This article aims to develop nanosized poly (d, l-lactide-co-glycolide) PLGA nanoparticle formulation loaded with quercetin (QT). QT is an antioxidant and antibacterial compound isolated from Chinese traditional medicine with low skin permeability and extreme water insolubility. The quercetin-loaded PLGA nanoparticles (PQTs) were synthesized by emulsion–solvent evaporation method and stabilized by coating with poly (vinyl alcohol). The characteristics of PQTs were analyzed by Fourier transform infrared spectroscopy, Ultraviolet–Visible spectroscopy, scanning electron microscope, transmission electron microscopy, and atomic force microscopy, respectively. The PQTs showed a spherical shape with an average size of 100–150 nm. We compared the antibacterial effects of PQTs against Escherichia coli (E. coli) and Micrococcus tetragenus (M. tetragenus).The PQTs produced stronger antibacterial activity to E. coli than that to M. tetragenus through disrupting bacterial cell wall integrity. The antibacterial ratio was increased with the increasing dosages and incubation time. Next, we tested the in vivo antibacterial activity in mice. No noticeable organ damage was captured from H&E-staining organ slices, suggesting the promise of using PQTs for in vivo applications. The results of this study demonstrated the interaction between bacteria and PLGA-based nanoparticles, providing encouragement for conducting further investigations on properties and antimicrobial activity of the PQTs in clinical application

  9. Quercetin-loaded PLGA nanoparticles: a highly effective antibacterial agent in vitro and anti-infection application in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Dongdong; Li, Nuan; Zhang, Weiwei; Yang, Endong; Mou, Zhipeng; Zhao, Zhiwei; Liu, Haiping; Wang, Weiyun, E-mail: weiywswzy@163.com [Anhui Agricultural University, School of Life Sciences (China)

    2016-01-15

    Nanotechnology-based approaches have tremendous potential for enhancing efficacy against infectious diseases. PLGA-based nanoparticles as drug delivery carrier have shown promising potential, owing to their sizes and related unique properties. This article aims to develop nanosized poly (d, l-lactide-co-glycolide) PLGA nanoparticle formulation loaded with quercetin (QT). QT is an antioxidant and antibacterial compound isolated from Chinese traditional medicine with low skin permeability and extreme water insolubility. The quercetin-loaded PLGA nanoparticles (PQTs) were synthesized by emulsion–solvent evaporation method and stabilized by coating with poly (vinyl alcohol). The characteristics of PQTs were analyzed by Fourier transform infrared spectroscopy, Ultraviolet–Visible spectroscopy, scanning electron microscope, transmission electron microscopy, and atomic force microscopy, respectively. The PQTs showed a spherical shape with an average size of 100–150 nm. We compared the antibacterial effects of PQTs against Escherichia coli (E. coli) and Micrococcus tetragenus (M. tetragenus).The PQTs produced stronger antibacterial activity to E. coli than that to M. tetragenus through disrupting bacterial cell wall integrity. The antibacterial ratio was increased with the increasing dosages and incubation time. Next, we tested the in vivo antibacterial activity in mice. No noticeable organ damage was captured from H&E-staining organ slices, suggesting the promise of using PQTs for in vivo applications. The results of this study demonstrated the interaction between bacteria and PLGA-based nanoparticles, providing encouragement for conducting further investigations on properties and antimicrobial activity of the PQTs in clinical application.

  10. Quercetin-loaded PLGA nanoparticles: a highly effective antibacterial agent in vitro and anti-infection application in vivo

    Science.gov (United States)

    Sun, Dongdong; Li, Nuan; Zhang, Weiwei; Yang, Endong; Mou, Zhipeng; Zhao, Zhiwei; Liu, Haiping; Wang, Weiyun

    2016-01-01

    Nanotechnology-based approaches have tremendous potential for enhancing efficacy against infectious diseases. PLGA-based nanoparticles as drug delivery carrier have shown promising potential, owing to their sizes and related unique properties. This article aims to develop nanosized poly ( d, l-lactide-co-glycolide) PLGA nanoparticle formulation loaded with quercetin (QT). QT is an antioxidant and antibacterial compound isolated from Chinese traditional medicine with low skin permeability and extreme water insolubility. The quercetin-loaded PLGA nanoparticles (PQTs) were synthesized by emulsion-solvent evaporation method and stabilized by coating with poly (vinyl alcohol). The characteristics of PQTs were analyzed by Fourier transform infrared spectroscopy, Ultraviolet-Visible spectroscopy, scanning electron microscope, transmission electron microscopy, and atomic force microscopy, respectively. The PQTs showed a spherical shape with an average size of 100-150 nm. We compared the antibacterial effects of PQTs against Escherichia coli ( E. coli) and Micrococcus tetragenus ( M. tetragenus).The PQTs produced stronger antibacterial activity to E. coli than that to M. tetragenus through disrupting bacterial cell wall integrity. The antibacterial ratio was increased with the increasing dosages and incubation time. Next, we tested the in vivo antibacterial activity in mice. No noticeable organ damage was captured from H&E-staining organ slices, suggesting the promise of using PQTs for in vivo applications. The results of this study demonstrated the interaction between bacteria and PLGA-based nanoparticles, providing encouragement for conducting further investigations on properties and antimicrobial activity of the PQTs in clinical application.

  11. Towards development of novel immunization strategies against leishmaniasis using PLGA nanoparticles loaded with kinetoplastid membrane protein-11

    Directory of Open Access Journals (Sweden)

    Santos DM

    2012-04-01

    Full Text Available Diego M Santos1, Marcia W Carneiro1, Tatiana R de Moura1, Kiyoshi Fukutani1, Jorge Clarencio1, Manuel Soto2, Socorro Espuelas3,4, Claudia Brodskyn1,5, Aldina Barral1,5, Manoel Barral-Netto1,5, Camila I de Oliveira1,51Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Salvador, BA, Brazil; 2Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Departamento de Biologia Molecular, Universidad Autonoma de Madrid, Madrid; 3Departamento de Farmacia y Tecnología Farmacéutica, 4Instituto de Salud Tropical, Facultad de Farmacia, Universidad de Navarra, Pamplona, Spain; 5Instituto de Investigação em Imunologia, Salvador, BA, BrazilBackground: Vaccine development has been a priority in the fight against leishmaniases, which are vector-borne diseases caused by Leishmania protozoa. Among the different immunization strategies employed to date is inoculation of plasmid DNA coding for parasite antigens, which has a demonstrated ability to induce humoral and cellular immune responses. In this sense, inoculation of plasmid DNA encoding Leishmania kinetoplasmid membrane protein-11 (KMP-11 was able to confer protection against visceral leishmaniasis. However, recently the use of antigen delivery systems such as poly(lactic-co-glycolic acid (PLGA nanoparticles has also proven effective for eliciting protective immune responses.Methods: In the present work, we tested two immunization strategies with the goal of obtaining protection, in terms of lesion development and parasite load, against cutaneous leishmaniasis caused by L. braziliensis. One strategy involved immunization with plasmid DNA encoding L. infantum chagasi KMP-11. Alternatively, mice were primed with PLGA nanoparticles loaded with the recombinant plasmid DNA and boosted using PLGA nanoparticles loaded with recombinant KMP-11.Results: Both immunization strategies elicited detectable cellular immune responses with the presence of both proinflammatory and anti

  12. PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging

    Science.gov (United States)

    Wang, Yan J.; Strohm, Eric M.; Sun, Yang; Niu, Chengcheng; Zheng, Yuanyi; Wang, Zhigang; Kolios, Michael C.

    2014-03-01

    Phase-change contrast agents consisting of a perfluorocarbon (PFC) liquid core stabilized by a lipid, protein, or polymer shell have been proposed for a variety of clinical applications. Previous work has demonstrated that vaporization can be induced by laser irradiation through optical absorbers incorporated inside the droplet. In this study, Poly-lactide-coglycolic acid (PLGA) particles loaded with PFC liquid and silica-coated gold nanoparticles (GNPs) were developed and characterized using photoacoustic (PA) methods. Microsized PLGA particles were loaded with PFC liquid and GNPs (14, 35, 55nm each with a 20nm silica shell) using a double emulsion method. The PA signal intensity and optical vaporization threshold were investigated using a 375 MHz transducer and a focused 532-nm laser (up to 450-nJ per pulse). The laser-induced vaporization threshold energy decreased with increasing GNP size. The vaporization threshold was 850, 690 and 420 mJ/cm2 for 5μm-sized PLGA particles loaded with 14, 35 and 55 nm GNPs, respectively. The PA signal intensity increased as the laser fluence increased prior to the vaporization event. This trend was observed for all particles sizes. PLGA particles were then incubated with MDA-MB-231 breast cancer cells for 6 hours to investigate passive targeting, and the vaporization of the PLGA particles that were internalized within cells. The PLGA particles passively internalized by MDA cells were visualized via confocal fluorescence imaging. Upon PLGA particle vaporization, bubbles formed inside the cells resulting in cell destruction. This work demonstrates that GNPs-loaded PLGA/PFC particles have potential as PA theranostic agents in PA imaging and optically-triggered drug delivery systems.

  13. Formulation and in vitro interaction of rhodamine-B loaded PLGA nanoparticles with cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Antranik Jonderian

    2016-12-01

    Full Text Available This study aims to characterize rhodamine B (Rh B loaded poly(D,L-lactide-co-glycolide (PLGA nanoparticles (NPs and their interactions with cardiac myocytes. PLGA NPs were formulated using single emulsion solvent evaporation technique. The influence of varying parameters such as the stabilizer concentration, the sonication time, and the organic to aqueous ratio were investigated. The diameter, the dispersity, the encapsulation efficiency and the zeta potential of the optimized nanoparticles were about 184 nm, 0.19, 40% and -21.7 mV respectively. In vitro release showed that 29% of the Rh B was released within the first 8 hours. Scanning electron microscopy (SEM measurements performed on the optimized nanoparticles showed smooth surface and spherical shapes. No significant cytotoxic or apoptotic effects were observed on fetal cardiac myocytes after 24 and 48 hours of exposure with concentrations up to 200 µg/mL. The kinetic of the intracellular uptake was confirmed by confocal microscopy and cells took up PLGA NPs within the first hours. Interestingly, our data show an increase in the nanoparticles’ uptake with time of exposure. Taken together, we demonstrate for the first time that the designed NPs can be used as potential probes for drug delivery in cardiac myocytes.

  14. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing.

    Science.gov (United States)

    Chereddy, Kiran Kumar; Her, Charles-Henry; Comune, Michela; Moia, Claudia; Lopes, Alessandra; Porporato, Paolo E; Vanacker, Julie; Lam, Martin C; Steinstraesser, Lars; Sonveaux, Pierre; Zhu, Huijun; Ferreira, Lino S; Vandermeulen, Gaëlle; Préat, Véronique

    2014-11-28

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Poly (lactic-co-glycolic acid) (PLGA) supplies lactate that accelerates neovascularization and promotes wound healing. LL37 is an endogenous human host defense peptide that modulates wound healing and angiogenesis and fights infection. Hence, we hypothesized that the administration of LL37 encapsulated in PLGA nanoparticles (PLGA-LL37 NP) promotes wound closure due to the sustained release of both LL37 and lactate. In full thickness excisional wounds, the treatment with PLGA-LL37 NP significantly accelerated wound healing compared to PLGA or LL37 administration alone. PLGA-LL37 NP-treated wounds displayed advanced granulation tissue formation by significant higher collagen deposition, re-epithelialized and neovascularized composition. PLGA-LL37 NP improved angiogenesis, significantly up-regulated IL-6 and VEGFa expression, and modulated the inflammatory wound response. In vitro, PLGA-LL37 NP induced enhanced cell migration but had no effect on the metabolism and proliferation of keratinocytes. It displayed antimicrobial activity on Escherichia coli. In conclusion, we developed a biodegradable drug delivery system that accelerated healing processes due to the combined effects of lactate and LL37 released from the nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization.

    Science.gov (United States)

    Cun, Dongmei; Jensen, Ditte Krohn; Maltesen, Morten Jonas; Bunker, Matthew; Whiteside, Paul; Scurr, David; Foged, Camilla; Nielsen, Hanne Mørck

    2011-01-01

    Poly(DL-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 2(5-1) fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion. The effects on the siRNA encapsulation efficiency and the particle size were investigated. The most important factors for obtaining an encapsulation efficiency as high as 70% were the PLGA concentration and the volume ratio whereas the size was mainly affected by the PLGA concentration. The viscosity of the oil phase was increased at high PLGA concentration, which explains the improved encapsulation by stabilization of the primary emulsion and reduction of siRNA leakage to the outer water phase. Addition of Ac-BSA increased the encapsulation efficiency at low PLGA concentrations. The PLGA matrix protected siRNA against nuclease degradation, provided a burst release of surface-localized siRNA followed by a triphasic sustained release for two months. These results enable careful understanding and definition of optimal process parameters for preparation of PLGA nanoparticles encapsulating high amounts of siRNA with immediate and long-term sustained release properties. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Samarium oxide as a radiotracer to evaluate the in vivo biodistribution of PLGA nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mandiwana, Vusani, E-mail: VMandiwana@csir.co.za; Kalombo, Lonji, E-mail: LKalombo@csir.co.za [Centre of Polymers and Composites, CSIR (South Africa); Venter, Kobus, E-mail: Kobus.Venter@mrc.ac.za [South African Medical Research Council (South Africa); Sathekge, Mike, E-mail: Mike.Sathekge@up.ac.za [University of Pretoria and Steve Biko Academic Hospital, Department of Nuclear Medicine (South Africa); Grobler, Anne, E-mail: Anne.Grobler@nwu.ac.za; Zeevaart, Jan Rijn, E-mail: zeevaart@necsa.co.za [North-West University, DST/NWU Preclinical Drug Development Platform (South Africa)

    2015-09-15

    Developing nanoparticulate delivery systems that will allow easy movement and localization of a drug to the target tissue and provide more controlled release of the drug in vivo is a challenge in nanomedicine. The aim of this study was to evaluate the biodistribution of poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles containing samarium-153 oxide ([{sup 153}Sm]Sm{sub 2}O{sub 3}) in vivo to prove that orally administered nanoparticles alter the biodistribution of a drug. These were then activated in a nuclear reactor to produce radioactive {sup 153}Sm-loaded-PLGA nanoparticles. The nanoparticles were characterized for size, zeta potential, and morphology. The nanoparticles were orally and intravenously (IV) administered to rats in order to trace their uptake through imaging and biodistribution studies. The {sup 153}Sm-loaded-PLGA nanoparticles had an average size of 281 ± 6.3 nm and a PDI average of 0.22. The zeta potential ranged between 5 and 20 mV. The [{sup 153}Sm]Sm{sub 2}O{sub 3} loaded PLGA nanoparticles, orally administered were distributed to most organs at low levels, indicating that there was absorption of nanoparticles. While the IV injected [{sup 153}Sm]Sm{sub 2}O{sub 3}-loaded PLGA nanoparticles exhibited the highest localization of nanoparticles in the spleen (8.63 %ID/g) and liver (3.07 %ID/g), confirming that nanoparticles are rapidly removed from the blood by the RES, leading to rapid uptake in the liver and spleen. From the biodistribution data obtained, it is clear that polymeric nanoscale delivery systems would be suitable for improving permeability and thus the bioavailability of therapeutic compounds.

  17. PLGA biodegradable nanoparticles containing perphenazine or chlorpromazine hydrochloride: effect of formulation and release.

    Science.gov (United States)

    Halayqa, Mohammed; Domańska, Urszula

    2014-12-22

    In our study, poly(dl-lactide-co-glycolide) (PLGA) nanoparticles loaded with perphenazine (PPH) and chlorpromazine hydrochloride (CPZ-HCl) were formulated by emulsion solvent evaporation technique. The effect of various processing variables, including PLGA concentration, theoretical drug loading, poly(vinyl alcohol) (PVA) concentration and the power of sonication were assessed systematically to obtain higher encapsulation efficiency and to minimize the nanoparticles size. By the optimization formulation process, the nanoparticles were obtained in submicron size from 325.5 ± 32.4 to 374.3 ± 10.1 nm for nanoparticles loaded with PPH and CPZ-HCl, respectively. Nanoparticles observed by scanning electron microscopy (SEM) presented smooth surface and spherical shape. The encapsulation efficiency of nanoparticles loaded with PPH and CPZ-HCl were 83.9% and 71.0%, respectively. The drug loading were 51.1% and 39.4% for PPH and CPZ-HCl, respectively. Lyophilized nanoparticles with different PLGA concentration 0.8%, 1.3% and 1.6% (w/v) in formulation process were evaluated for in vitro release in phosphate buffered saline (pH = 7.4) by using dialysis bags. The release profile for both drugs have shown that the rate of PPH and CPZ-HCl release were dependent on a size and amount of drugs in the nanoparticles.

  18. PLGA Biodegradable Nanoparticles Containing Perphenazine or Chlorpromazine Hydrochloride: Effect of Formulation and Release

    Directory of Open Access Journals (Sweden)

    Mohammed Halayqa

    2014-12-01

    Full Text Available In our study, poly(dl-lactide-co-glycolide (PLGA nanoparticles loaded with perphenazine (PPH and chlorpromazine hydrochloride (CPZ-HCl were formulated by emulsion solvent evaporation technique. The effect of various processing variables, including PLGA concentration, theoretical drug loading, poly(vinyl alcohol (PVA concentration and the power of sonication were assessed systematically to obtain higher encapsulation efficiency and to minimize the nanoparticles size. By the optimization formulation process, the nanoparticles were obtained in submicron size from 325.5 ± 32.4 to 374.3 ± 10.1 nm for nanoparticles loaded with PPH and CPZ-HCl, respectively. Nanoparticles observed by scanning electron microscopy (SEM presented smooth surface and spherical shape. The encapsulation efficiency of nanoparticles loaded with PPH and CPZ-HCl were 83.9% and 71.0%, respectively. The drug loading were 51.1% and 39.4% for PPH and CPZ-HCl, respectively. Lyophilized nanoparticles with different PLGA concentration 0.8%, 1.3% and 1.6% (w/v in formulation process were evaluated for in vitro release in phosphate buffered saline (pH = 7.4 by using dialysis bags. The release profile for both drugs have shown that the rate of PPH and CPZ-HCl release were dependent on a size and amount of drugs in the nanoparticles.

  19. Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, Athulya; Nair, Remya; Raveendran, Sreejith; Veeranarayanan, Srivani; Nagaoka, Yutaka; Fukuda, Takahiro; Hasumura, Takahashi; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D., E-mail: sakthi@toyo.jp

    2013-10-15

    Controlled and targeted drug delivery is an essential criterion in cancer therapy to reduce the side effects caused by non-specific drug release and toxicity. Targeted chemotherapy, sustained drug release and optical imaging have been achieved using a multifunctional nanocarrier constructed from poly (D, L-lactide-co-glycolide) nanoparticles (PLGA NPs), an anticancer drug paclitaxel (PTX), a fluorescent dye Nile red (NR), magnetic fluid (MF) and aptamers (Apt, AS1411, anti-nucleolin aptamer). The magnetic fluid and paclitaxel loaded fluorescently labeled PLGA NPs (MF-PTX-NR-PLGA NPs) were synthesized by a single-emulsion technique/solvent evaporation method using a chemical cross linker bis (sulfosuccinimidyl) suberate (BS3) to enable binding of aptamer on to the surface of the nanoparticles. Targeting aptamers were then introduced to the particles through the reaction with the cross linker to target the nucleolin receptors over expressed on the cancer cell surface. Specific binding and uptake of the aptamer conjugated magnetic fluid loaded fluorescently tagged PLGA NPs (Apt-MF-NR-PLGA NPs) to the target cancer cells induced by aptamers was observed using confocal microscopy. Cytotoxicity assay conducted in two cell lines (L929 and MCF-7) confirmed that targeted MCF-7 cancer cells were killed while control cells were unharmed. In addition, aptamer mediated delivery resulting in enhanced binding and uptake to the target cancer cells exhibited increased therapeutic effect of the drug. Moreover, these aptamer conjugated magnetic polymer vehicles apart from actively transporting drugs into specifically targeted tumor regions can also be used to induce hyperthermia or for facilitating magnetic guiding of particles to the tumor regions. - Highlights: • Aptamer escorted, theranostic biodegradable PLGA carriers were developed. • Can target cancer cells, control drug release, image and magnetically guide. • Highly specific to the targeted cancer cells thus delivering

  20. Mn2+-coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy.

    Science.gov (United States)

    Xi, Juqun; Da, Lanyue; Yang, Changshui; Chen, Rui; Gao, Lizeng; Fan, Lei; Han, Jie

    2017-01-01

    Nanoparticle drug delivery carriers, which can implement high performances of multi-functions, are of great interest, especially for improving cancer therapy. Herein, we reported a new approach to construct Mn 2+ -coordinated doxorubicin (DOX)-loaded poly(lactic- co -glycolic acid) (PLGA) nanoparticles as a platform for synergistic chemo-photothermal tumor therapy. DOX-loaded PLGA (DOX/PLGA) nanoparticles were first synthesized through a double emulsion-solvent evaporation method, and then modified with polydopamine (PDA) through self-polymerization of dopamine, leading to the formation of PDA@DOX/PLGA nanoparticles. Mn 2+ ions were then coordinated on the surfaces of PDA@DOX/PLGA to obtain Mn 2+ -PDA@DOX/PLGA nanoparticles. In our system, Mn 2+ -PDA@DOX/PLGA nanoparticles could destroy tumors in a mouse model directly, by thermal energy deposition, and could also simulate the chemotherapy by thermal-responsive delivery of DOX to enhance tumor therapy. Furthermore, the coordination of Mn 2+ could afford the high magnetic resonance (MR) imaging capability with sensitivity to temperature and pH. The results demonstrated that Mn 2+ -PDA@ DOX/PLGA nanoparticles had a great potential as a smart theranostic agent due to their imaging and tumor-growth-inhibition properties.

  1. Comparison of intracellular accumulation and cytotoxicity of free mTHPC and mTHPC-loaded PLGA nanoparticles in human colon carcinoma cells

    International Nuclear Information System (INIS)

    Loew, Karin; Wagner, Sylvia; Briesen, Hagen von; Knobloch, Thomas; Wiehe, Arno; Engel, Andrea; Langer, Klaus

    2011-01-01

    The second generation photosensitizer mTHPC was approved by the European Medicines Agency (EMA) for the palliative treatment of advanced head and neck cancer in October 2001. It is known that mTHPC possesses a significant phototoxicity against a variety of human cancer cells in vitro but also exhibits dark toxicity and can cause adverse effects (especially skin photosensitization). Due to its poor water solubility, the administration of hydrophobic photosensitizer still presents several difficulties. To overcome the administration problems, the use of nanoparticles as drug carrier systems is much investigated. Nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) have been extensively studied as delivery systems into tumours due to their biocompatibility and biodegradability. The goal of this study was the comparison of free mTHPC and mTHPC-loaded PLGA nanoparticles concerning cytotoxicity and intracellular accumulation in human colon carcinoma cells (HT29). The nanoparticles delivered the photosensitizer to the colon carcinoma cells and enabled drug release without losing its activity. The cytotoxicity assays showed a time- and concentration-dependent decrease in cell proliferation and viability after illumination. However, first and foremost mTHPC lost its dark toxic effects using the PLGA nanoparticles as a drug carrier system. Therefore, PLGA nanoparticles are a promising drug carrier system for the hydrophobic photosensitizer mTHPC.

  2. Comparison of intracellular accumulation and cytotoxicity of free mTHPC and mTHPC-loaded PLGA nanoparticles in human colon carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Loew, Karin; Wagner, Sylvia; Briesen, Hagen von [Fraunhofer-Institute for Biomedical Engineering, D-66386 Strasse Ingbert (Germany); Knobloch, Thomas [Institute of Pharmaceutical Technology, Biocenter of Goethe-University, D-60438 Frankfurt (Germany); Wiehe, Arno [Biolitec AG, D-07745 Jena (Germany); Engel, Andrea; Langer, Klaus, E-mail: hagen.briesen@ibmt.fraunhofer.de [Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, D-48149 Muenster (Germany)

    2011-06-17

    The second generation photosensitizer mTHPC was approved by the European Medicines Agency (EMA) for the palliative treatment of advanced head and neck cancer in October 2001. It is known that mTHPC possesses a significant phototoxicity against a variety of human cancer cells in vitro but also exhibits dark toxicity and can cause adverse effects (especially skin photosensitization). Due to its poor water solubility, the administration of hydrophobic photosensitizer still presents several difficulties. To overcome the administration problems, the use of nanoparticles as drug carrier systems is much investigated. Nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) have been extensively studied as delivery systems into tumours due to their biocompatibility and biodegradability. The goal of this study was the comparison of free mTHPC and mTHPC-loaded PLGA nanoparticles concerning cytotoxicity and intracellular accumulation in human colon carcinoma cells (HT29). The nanoparticles delivered the photosensitizer to the colon carcinoma cells and enabled drug release without losing its activity. The cytotoxicity assays showed a time- and concentration-dependent decrease in cell proliferation and viability after illumination. However, first and foremost mTHPC lost its dark toxic effects using the PLGA nanoparticles as a drug carrier system. Therefore, PLGA nanoparticles are a promising drug carrier system for the hydrophobic photosensitizer mTHPC.

  3. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA.

    Science.gov (United States)

    Jensen, Ditte Krohn; Jensen, Linda Boye; Koocheki, Saeid; Bengtson, Lasse; Cun, Dongmei; Nielsen, Hanne Mørck; Foged, Camilla

    2012-01-10

    Matrix systems based on biocompatible and biodegradable polymers like the United States Food and Drug Administration (FDA)-approved polymer poly(DL-lactide-co-glycolide acid) (PLGA) are promising for the delivery of small interfering RNA (siRNA) due to favorable safety profiles, sustained release properties and improved colloidal stability, as compared to polyplexes. The purpose of this study was to design a dry powder formulation based on cationic lipid-modified PLGA nanoparticles intended for treatment of severe lung diseases by pulmonary delivery of siRNA. The cationic lipid dioleoyltrimethylammoniumpropane (DOTAP) was incorporated into the PLGA matrix to potentiate the gene silencing efficiency. The gene knock-down level in vitro was positively correlated to the weight ratio of DOTAP in the particles, and 73% silencing was achieved in the presence of 10% (v/v) serum at 25% (w/w) DOTAP. Optimal properties were found for nanoparticles modified with 15% (w/w) DOTAP, which reduced the gene expression with 54%. This formulation was spray-dried with mannitol into nanocomposite microparticles of an aerodynamic size appropriate for lung deposition. The spray-drying process did not affect the physicochemical properties of the readily re-dispersible nanoparticles, and most importantly, the in vitro gene silencing activity was preserved during spray-drying. The siRNA content in the powder was similar to the theoretical loading and the siRNA was intact, suggesting that the siRNA is preserved during the spray-drying process. Finally, X-ray powder diffraction analysis demonstrated that mannitol remained in a crystalline state upon spray-drying with PLGA nanoparticles suggesting that the sugar excipient might exert its stabilizing effect by sterical inhibition of the interactions between adjacent nanoparticles. This study demonstrates that spray-drying is an excellent technique for engineering dry powder formulations of siRNA nanoparticles, which might enable the local

  4. Fabrication of surfactant-free quercetin-loaded PLGA nanoparticles: evaluation of hepatoprotective efficacy by nuclear scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Soumya; Gaonkar, Raghuvir H. [CSIR-Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division (India); Sinha, Samarendu; Gupta, Amit [Thakurpukur Cancer Centre and Welfare Home Campus, Regional Radiation Medicine Centre (India); Chattopadhyay, Dipankar [University of Calcutta, Department of Polymer Science & Technology, University College of Science & Technology (India); Chattopadhyay, Sankha [Variable Energy Cyclotron Centre, Radiopharmaceuticals Laboratory, Board of Radiation and Isotope Technology (India); Sachdeva, Satbir S. [Radiopharmaceuticals Production (India); Ganguly, Shantanu [Thakurpukur Cancer Centre and Welfare Home Campus, Regional Radiation Medicine Centre (India); Debnath, Mita C., E-mail: mitacd@iicb.res.in, E-mail: mita-chdebnath@yahoo.com [CSIR-Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division (India)

    2016-07-15

    The purpose of this study was to develop surfactant-free quercetin-loaded PLGA nanoparticles (Qr-NPs) and investigate the hepatoprotective efficacy of the product non-invasively by nuclear scintigraphy. The nanoparticles were prepared using PLGA by dialysis method and ranged in size between 50 and 250 nm with a narrow range of distribution. They were found to arrive at the fenestra of liver sinusoidal epithelium for accumulation. The sizes of nanoparticles (batch S1) were optimal to reach the target and offer enough protection of the hepatocytes degenerated by CCl{sub 4} intoxication as determined by various biochemical and histopathological tests. In vitro studies exhibited the cytotoxic effect of the formulation against HepG2 cell line. The hepatoprotective efficacy of Qr-NPs evaluated non-invasively by nuclear scintigraphic technique using {sup 99m}Tc-labelled sulphur colloid revealed abnormality in liver at the area of decreased uptake in rats of CCl{sub 4}-treated group, which disappeared in Qr-NP-treated group. In dynamic studies with {sup 99m}Tc-mebrofenin, excretion was severely impaired in CCl{sub 4}-treated group but was moderate in drug-treated group, proving the recovery of animals from damage.Graphical Abstract.

  5. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency.

    Science.gov (United States)

    Yu, Fei; Ao, Mingtao; Zheng, Xiao; Li, Nini; Xia, Junjie; Li, Yang; Li, Donghui; Hou, Zhenqing; Qi, Zhongquan; Chen, Xiao Dong

    2017-11-01

    The natural product berberine (BBR), present in various plants, arouses great interests because of its numerous pharmacological effects. However, the further development and application of BBR had been hampered by its poor oral bioavailability. In this work, we report on polymer-lipid hybrid nanoparticles (PEG-lipid-PLGA NPs) loaded with BBR phospholipid complex using a solvent evaporation method for enhancing the oral BBR efficiency. The advantage of this new drug delivery system is that the BBR-soybean phosphatidylcholine complex (BBR-SPC) could be used to enhance the liposolubility of BBR and improve the affinity with the biodegradable polymer to increase the drug-loading capacity and controlled/sustained release. The entrapment efficiency of the PEG-lipid-PLGA NPs/BBR-SPC was observed to approach approximately 89% which is more than 2.4 times compared with that of the PEG-lipid-PLGA NPs/BBR. To the best of our knowledge, this is the first report on using polymer material for effective encapsulation of BBR to improve its oral bioavailability. The prepared BBR delivery systems demonstrated a uniform spherical shape, a well-dispersed core-shell structure and a small particle size (149.6 ± 5.1 nm). The crystallographic and thermal analysis has indicated that the BBR dispersed in the PEG-lipid-PLGA NPs matrix is in an amorphous form. More importantly, the enhancement in the oral relative bioavailability of the PEG-lipid-PLGA NPs/BBR-SPC was ∼343% compared with that of BBR. These positive results demonstrated that PEG-lipid-PLGA NPs/BBR-SPC may have the potential for facilitating the oral drug delivery of BBR.

  6. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Anila Mathew

    Full Text Available Alzheimer's disease is a growing concern in the modern world. As the currently available medications are not very promising, there is an increased need for the fabrication of newer drugs. Curcumin is a plant derived compound which has potential activities beneficial for the treatment of Alzheimer's disease. Anti-amyloid activity and anti-oxidant activity of curcumin is highly beneficial for the treatment of Alzheimer's disease. The insolubility of curcumin in water restricts its use to a great extend, which can be overcome by the synthesis of curcumin nanoparticles. In our work, we have successfully synthesized water-soluble PLGA coated- curcumin nanoparticles and characterized it using different techniques. As drug targeting to diseases of cerebral origin are difficult due to the stringency of blood-brain barrier, we have coupled the nanoparticle with Tet-1 peptide, which has the affinity to neurons and possess retrograde transportation properties. Our results suggest that curcumin encapsulated-PLGA nanoparticles are able to destroy amyloid aggregates, exhibit anti-oxidative property and are non-cytotoxic. The encapsulation of the curcumin in PLGA does not destroy its inherent properties and so, the PLGA-curcumin nanoparticles can be used as a drug with multiple functions in treating Alzheimer's disease proving it to be a potential therapeutic tool against this dreaded disease.

  7. Design and Optimization of PLGA-Based Diclofenac Loaded Nanoparticles

    Science.gov (United States)

    Cooper, Dustin L.; Harirforoosh, Sam

    2014-01-01

    Drug based nanoparticle (NP) formulations have gained considerable attention over the past decade for their use in various drug formulations. NPs have been shown to increase bioavailability, decrease side effects of highly toxic drugs, and prolong drug release. Nonsteroidal anti-inflammatory drugs such as diclofenac block cyclooxygenase expression and reduce prostaglandin synthesis, which can lead to several side effects such as gastrointestinal bleeding and renal insufficiency. The aim of this study was to formulate and characterize diclofenac entrapped poly(lactide-co-glycolide) (PLGA) based nanoparticles. Nanoparticles were formulated using an emulsion-diffusion-evaporation technique with varying concentrations of poly vinyl alcohol (PVA) (0.1, 0.25, 0.5, or 1%) or didodecyldimethylammonium bromide (DMAB) (0.1, 0.25, 0.5, 0.75, or 1%) stabilizers centrifuged at 8,800 rpm or 12,000 rpm. The resultant nanoparticles were evaluated based on particle size, zeta potential, and entrapment efficacy. DMAB formulated NPs showed the lowest particle size (108±2.1 nm) and highest zeta potential (−27.71±0.6 mV) at 0.1 and 0.25% respectively, after centrifugation at 12,000 rpm. Results of the PVA based NP formulation showed the smallest particle size (92.4±7.6 nm) and highest zeta potential (−11.14±0.5 mV) at 0.25% and 1% w/v, respectively, after centrifugation at 12,000 rpm. Drug entrapment reached 77.3±3.5% and 80.2±1.2% efficiency with DMAB and PVA formulations, respectively. The results of our study indicate the use of DMAB for increased nanoparticle stability during formulation. Our study supports the effective utilization of PLGA based nanoparticle formulation for diclofenac. PMID:24489896

  8. Design and optimization of PLGA-based diclofenac loaded nanoparticles.

    Directory of Open Access Journals (Sweden)

    Dustin L Cooper

    Full Text Available Drug based nanoparticle (NP formulations have gained considerable attention over the past decade for their use in various drug formulations. NPs have been shown to increase bioavailability, decrease side effects of highly toxic drugs, and prolong drug release. Nonsteroidal anti-inflammatory drugs such as diclofenac block cyclooxygenase expression and reduce prostaglandin synthesis, which can lead to several side effects such as gastrointestinal bleeding and renal insufficiency. The aim of this study was to formulate and characterize diclofenac entrapped poly(lactide-co-glycolide (PLGA based nanoparticles. Nanoparticles were formulated using an emulsion-diffusion-evaporation technique with varying concentrations of poly vinyl alcohol (PVA (0.1, 0.25, 0.5, or 1% or didodecyldimethylammonium bromide (DMAB (0.1, 0.25, 0.5, 0.75, or 1% stabilizers centrifuged at 8,800 rpm or 12,000 rpm. The resultant nanoparticles were evaluated based on particle size, zeta potential, and entrapment efficacy. DMAB formulated NPs showed the lowest particle size (108 ± 2.1 nm and highest zeta potential (-27.71 ± 0.6 mV at 0.1 and 0.25% respectively, after centrifugation at 12,000 rpm. Results of the PVA based NP formulation showed the smallest particle size (92.4 ± 7.6 nm and highest zeta potential (-11.14 ± 0.5 mV at 0.25% and 1% w/v, respectively, after centrifugation at 12,000 rpm. Drug entrapment reached 77.3 ± 3.5% and 80.2 ± 1.2% efficiency with DMAB and PVA formulations, respectively. The results of our study indicate the use of DMAB for increased nanoparticle stability during formulation. Our study supports the effective utilization of PLGA based nanoparticle formulation for diclofenac.

  9. pH-Responsive PLGA Nanoparticle for Controlled Payload Delivery of Diclofenac Sodium

    Directory of Open Access Journals (Sweden)

    Shalil Khanal

    2016-08-01

    Full Text Available Poly(lactic-co-glycolic acid (PLGA based nanoparticles have gained increasing attention in delivery applications due to their capability for controlled drug release characteristics, biocompatibility, and tunable mechanical, as well as degradation, properties. However, thorough study is always required while evaluating potential toxicity of the particles from dose dumping, inconsistent release and drug-polymer interactions. In this research, we developed PLGA nanoparticles modified by chitosan (CS, a cationic and pH responsive polysaccharide that bears repetitive amine groups in its backbone. We used a model drug, diclofenac sodium (DS, a nonsteroidal anti-inflammatory drug (NSAID, to study the drug loading and release characteristics. PLGA nanoparticles were synthesized by double-emulsion solvent evaporation technique. The nanoparticles were evaluated based on their particle size, surface charge, entrapment efficacy, and effect of pH in drug release profile. About 390–420 nm of average diameters and uniform morphology of the particles were confirmed by scanning electron microscope (SEM imaging and dynamic light scattering (DLS measurement. Chitosan coating over PLGA surface was confirmed by FTIR and DLS. Drug entrapment efficacy was up to 52%. Chitosan coated PLGA showed a pH responsive drug release in in vitro. The release was about 45% more at pH 5.5 than at pH 7.4. The results of our study indicated the development of chitosan coating over PLGA nanoparticle for pH dependent controlled release DS drug for therapeutic applications.

  10. Mn2+-coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy

    Directory of Open Access Journals (Sweden)

    Xi J

    2017-04-01

    Full Text Available Juqun Xi,1–3 Lanyue Da,1 Changshui Yang,1 Rui Chen,4 Lizeng Gao,2 Lei Fan,5 Jie Han5 1Pharmacology Department, Medical School, Yangzhou University, 2Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, 3Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 4Department of Nephrology, Subei People’s Hospital, Yangzhou University, 5School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China Abstract: Nanoparticle drug delivery carriers, which can implement high performances of multi-functions, are of great interest, especially for improving cancer therapy. Herein, we reported a new approach to construct Mn2+-coordinated doxorubicin (DOX-loaded poly(lactic-co-glycolic acid (PLGA nanoparticles as a platform for synergistic chemo-photothermal tumor therapy. DOX-loaded PLGA (DOX/PLGA nanoparticles were first synthesized through a double emulsion-solvent evaporation method, and then modified with polydopamine (PDA through self-polymerization of dopamine, leading to the formation of PDA@DOX/PLGA nanoparticles. Mn2+ ions were then coordinated on the surfaces of PDA@DOX/PLGA to obtain Mn2+-PDA@DOX/PLGA nanoparticles. In our system, Mn2+-PDA@DOX/PLGA nanoparticles could destroy tumors in a mouse model directly, by thermal energy deposition, and could also simulate the chemotherapy by thermal-responsive delivery of DOX to enhance tumor therapy. Furthermore, the coordination of Mn2+ could afford the high magnetic resonance (MR imaging capability with sensitivity to temperature and pH. The results demonstrated that Mn2+-PDA@DOX/PLGA nanoparticles had a great potential as a smart theranostic agent due to their imaging and tumor-growth-inhibition properties. Keywords: PLGA nanoparticles, polydopamine, chemo-photothermal therapy, smart theranostic agent

  11. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line.

    Science.gov (United States)

    Doggui, Sihem; Sahni, Jasjeet Kaur; Arseneault, Madeleine; Dao, Lé; Ramassamy, Charles

    2012-01-01

    Curcumin, a natural polyphenolic pigment present in the spice turmeric (Curcuma longa), is known to possess a pleiotropic activity such as antioxidant, anti-inflammatory, and anti-amyloid-β activities. However, these benefits of curcumin are limited by its poor aqueous solubility and oral bioavailability. In the present study, a polymer-based nanoparticle approach has been utilized to deliver drugs to neuronal cells. Curcumin was encapsulated in biodegradable poly (lactide-co-glycolide) (PLGA) based-nanoparticulate formulation (Nps-Cur). Dynamic laser light scattering and transmission electronic microscopy analysis indicated a particle diameter ranging from 80 to 120 nm. The entrapment efficiency was 31% with 15% drug-loading. In vitro release kinetics of curcumin from Nps-Cur revealed a biphasic pattern with an initial exponential phase followed by a slow release phase. Cellular internalization of Nps-Cur was confirmed by fluorescence and confocal microscopy with a wide distribution of the fluorescence in the cytoplasm and within the nucleus. The prepared nanoformulation was characterized for cellular toxicity and biological activity. Cytotoxicity assays showed that void PLGA-nanoparticles (Nps) and curcumin-loaded PLGA nanoparticles (Nps-Cur) were nontoxic to human neuroblastoma SK-N-SH cells. Moreover, Nps-Cur was able to protect SK-N-SH cells against H2O2 and prevent the elevation of reactive oxygen species and the consumption of glutathione induced by H2O2. Interestingly, Nps-Cur was also able to prevent the induction of the redox-sensitive transcription factor Nrf2 in the presence of H2O2. Taken together, these results suggest that Nps-Cur could be a promising drug delivery strategy to protect neurons against oxidative damage as observed in Alzheimer's disease.

  12. Modification of PLGA nanoparticles for improved properties as a 99mTc-labeled agent in sentinel lymph node detection.

    Science.gov (United States)

    Subramanian, Suresh; Pandey, Usha; Gugulothu, Dalapathi; Patravale, Vandana; Samuel, Grace

    2013-10-01

    We have earlier reported on the possible application of poly [lactide (co-glycolide)] (PLGA) nanoparticles of suitable size to serve as a (99m)Tc-labeled diagnostic tracer in sentinel lymph node detection (SLND). Additional efforts have now been made to improve both the radiolabeling yield and the biological efficacy by modifying the PLGA particles. Two approaches were taken, one based on in situ loading of mebrofenin inside PLGA nanoparticles and the second one based on functionalization of existing terminal carboxylic acid groups on the nanoparticle surface with p-aminobenzyl diethylenetriamine pentaacetic acid (p-NH2-Bz-DTPA) for enhanced availability of functional groups suitable for (99m)Tc complexation. The modified PLGA derivatives were purified and characterized. Radiolabeling of the modified PLGA nanoparticles was carried out with (99m)Tc using stannous chloride as the reducing agent. Mebrofenin encapsulated PLGA nanoparticles (mebrofenin-PLGA) did not show any significant improvement in the radiolabeling yield in comparison to the earlier reported "plain" PLGA nanoparticles, probably due to inaccessibility of the mebrofenin moiety to (99m)Tc upon encapsulation. DTPA-conjugated PLGA nanoparticles (DTPA-PLGA) showed appreciable improvement in radiolabeling yield under more moderate reaction conditions and better stability. In the biological evaluation performed in Wistar rat model, (99m)Tc-DTPA-PLGA nanoparticles showed a considerable increase in uptake in the sentinel node and the percentage popliteal extraction of the preparation was also higher. (99m)Tc-mebrofenin-PLGA did not show any improvement in SLN uptake over plain PLGA nanoparticles. The above results suggest that surface modification of PLGA by covalently coupling DTPA to PLGA nanoparticles prior to (99m)Tc labeling appears to be a superior approach to achieve a suitable (99m)Tc-labeled PLGA nanoparticle preparation for SLND.

  13. Molybdenum cluster loaded PLGA nanoparticles: An innovative theranostic approach for the treatment of ovarian cancer.

    Science.gov (United States)

    Brandhonneur, N; Hatahet, T; Amela-Cortes, M; Molard, Y; Cordier, S; Dollo, G

    2018-04-01

    We evaluate poly (d,l-lactide-co-glycolide) (PLGA) nanoparticles embedding inorganic molybdenum octahedral cluster for photodynamic therapy of cancer (PDT). Tetrabutyl ammonium salt of Mo 6 Br 14 cluster unit, (TBA) 2 Mo 6 Br 14 , presents promising photosensitization activity in the destruction of targeted cancer cells. Stable cluster loaded nanoparticles (CNPs) were prepared by solvent displacement method showing spherical shapes, zeta potential values around -30 mV, polydispersity index lower than 0.2 and sizes around 100 nm. FT-IR and DSC analysis revealed the lack of strong chemical interaction between the cluster and the polymer within the nanoparticles. In vitro release study showed that (TBA) 2 Mo 6 Br 14 was totally dissolved in 20 min, while CNPs were able to control the release of encapsulated cluster. In vitro cellular viability studies conducted on A2780 ovarian cancer cell line treated up to 72 h with cluster or CNPs did not show any sign of toxicity in concentrations up to 20 µg/ml. This concentration was selected for photo-activation test on A2780 cells and CNPs were able to generate oxygen singlet resulting in a decrease of the cellular viability up to 50%, respectively compared to non-activated conditions. This work presents (TBA) 2 Mo 6 Br 14 as a novel photosensitizer for PDT and suggests PLGA nanoparticles as an efficient delivery system intended for tumor targeting. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. PEG-PLGA electrospun nanofibrous membranes loaded with Au@Fe2O3 nanoparticles for drug delivery applications

    Science.gov (United States)

    Spadaro, Salvatore; Santoro, Marco; Barreca, Francesco; Scala, Angela; Grimato, Simona; Neri, Fortunato; Fazio, Enza

    2018-02-01

    A PEGylated-PLGA random nanofibrous membrane loaded with gold and iron oxide nanoparticles and with silibinin was prepared by electrospinning deposition. The nanofibrous membrane can be remotely controlled and activated by a laser light or magnetic field to release biological agents on demand. The nanosystems were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and thermogravimetric analyses. The drug loading efficiency and drug content percentages were determined by UV-vis optical absorption spectroscopy. The nanofibrous membrane irradiated by a relatively low-intensity laser or stimulated by a magnetic field showed sustained silibinin release for at least 60 h, without the burst effect. The proposed low-cost electrospinning procedure is capable of assembling, via a one-step procedure, a stimuli-responsive drug-loaded nanosystem with metallic nanoparticles to be externally activated for controlled drug delivery.

  15. Optimization of ciprofloxacin complex loaded PLGA nanoparticles for pulmonary treatment of cystic fibrosis infections: Design of experiments approach.

    Science.gov (United States)

    Günday Türeli, Nazende; Türeli, Akif Emre; Schneider, Marc

    2016-12-30

    Design of Experiments (DoE) is a powerful tool for systematic evaluation of process parameters' effect on nanoparticle (NP) quality with minimum number of experiments. DoE was employed for optimization of ciprofloxacin loaded PLGA NPs for pulmonary delivery against Pseudomonas aeruginosa infections in cystic fibrosis (CF) lungs. Since the biofilm produced by bacteria was shown to be a complicated 3D barrier with heterogeneous meshes ranging from 100nm to 500nm, nanoformulations small enough to travel through those channels were assigned as target quality. Nanoprecipitation was realized utilizing MicroJet Reactor (MJR) technology based on impinging jets principle. Effect of MJR parameters flow rate, temperature and gas pressure on particle size and PDI was investigated using Box-Behnken design. The relationship between process parameters and particle quality was demonstrated by constructed fit functions (R 2 =0.9934 p65%. Response surface plots provided experimental data-based understanding of MJR parameters' effect, thus NP quality. Presented work enables ciprofloxacin loaded PLGA nanoparticle preparations with pre-defined quality to fulfill the requirements of local drug delivery under CF disease conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages.

    Science.gov (United States)

    Sanchez-Gaytan, Brenda L; Fay, Francois; Lobatto, Mark E; Tang, Jun; Ouimet, Mireille; Kim, YongTae; van der Staay, Susanne E M; van Rijs, Sarian M; Priem, Bram; Zhang, Liangfang; Fisher, Edward A; Moore, Kathryn J; Langer, Robert; Fayad, Zahi A; Mulder, Willem J M

    2015-03-18

    High-density lipoprotein (HDL) is a natural nanoparticle that exhibits an intrinsic affinity for atherosclerotic plaque macrophages. Its natural targeting capability as well as the option to incorporate lipophilic payloads, e.g., imaging or therapeutic components, in both the hydrophobic core and the phospholipid corona make the HDL platform an attractive nanocarrier. To realize controlled release properties, we developed a hybrid polymer/HDL nanoparticle composed of a lipid/apolipoprotein coating that encapsulates a poly(lactic-co-glycolic acid) (PLGA) core. This novel HDL-like nanoparticle (PLGA-HDL) displayed natural HDL characteristics, including preferential uptake by macrophages and a good cholesterol efflux capacity, combined with a typical PLGA nanoparticle slow release profile. In vivo studies carried out with an ApoE knockout mouse model of atherosclerosis showed clear accumulation of PLGA-HDL nanoparticles in atherosclerotic plaques, which colocalized with plaque macrophages. This biomimetic platform integrates the targeting capacity of HDL biomimetic nanoparticles with the characteristic versatility of PLGA-based nanocarriers.

  17. Antiplasmodial Activity and Toxicological Assessment of Curcumin PLGA-Encapsulated Nanoparticles

    Science.gov (United States)

    Busari, Zulaikha A.; Dauda, Kabiru A.; Morenikeji, Olajumoke A.; Afolayan, Funmilayo; Oyeyemi, Oyetunde T.; Meena, Jairam; Sahu, Debasis; Panda, Amulya K.

    2017-01-01

    Curcumin is a polyphenolic pigment isolated from the rhizomes of Curcuma longa (turmeric), a medicinal plant widely used in the ancient Indian and Chinese medicine. The antiplasmodial activity of curcumin is often hampered by its fast metabolism and poor water solubility, thus its incorporation into a delivery system could circumvent this problem. This study aimed to evaluate the in vivo antiplasmodial activity and the toxicity assessment of curcumin incorporated into poly (lactic-co-glycolic) acid (PLGA) nanoparticles. Curcumin was loaded with poly (D,L-lactic-co-glycolic acid) (PLGA) using solvent evaporation from oil-in-water single emulsion method. The nanoparticles were characterized and evaluated in vivo for antimalarial activities using Peter’s 4-day suppressive protocol in mice model. Hematological and hepatic toxicity assays were performed on whole blood and plasma, respectively. In vivo anti-parasitic test and toxicity assays for free and encapsulated drug were performed at 5 and 10 mg/kg. In vitro cytotoxicity of free and PLGA encapsulated curcumin (Cur-PLGA) to RAW 264.7 cell line was also determined at varying concentrations (1000–7.8 μg/mL). The size and entrapment efficiency of the nanoparticulate drug formulated was 291.2 ± 82.1 nm and 21.8 ± 0.4 respectively. The percentage parasite suppression (56.8%) at 5 mg/kg was significantly higher than in free drug (40.5%) of similar concentration (p 0.05) except in lymphocytes which were significantly higher in Cur-PLGA compared to the free drug (p 0.05). At higher concentrations (1000 and 500 μg/mL), Cur-PLGA entrapped nanoparticle showed higher toxicity compared with the free drug (p 0.05). The antiplasmodial activity and safety of Cur-PLGA was better at lower concentration. PMID:28932197

  18. Brain-targeted delivery of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles.

    Directory of Open Access Journals (Sweden)

    Xiangru Wen

    Full Text Available Magnetic poly (D,L-lactide-co-glycolide (PLGA/lipid nanoparticles (MPLs were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol (DSPE-PEG-NH2, and magnetic nanoparticles (NPs, and then conjugated to trans-activating transcriptor (TAT peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES, naringin (NAR, and glutathione (GSH were encapsulated in MPLs with drug loading capacity (>10% and drug encapsulation efficiency (>90%. The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain.

  19. Gentamicin Sulfate PEG-PLGA/PLGA-H Nanoparticles: Screening Design and Antimicrobial Effect Evaluation toward Clinic Bacterial Isolates

    Science.gov (United States)

    Dorati, Rossella; DeTrizio, Antonella; Spalla, Melissa; Migliavacca, Roberta; Pagani, Laura; Pisani, Silvia; Chiesa, Enrica; Modena, Tiziana; Genta, Ida

    2018-01-01

    Nanotechnology is a promising approach both for restoring or enhancing activity of old and conventional antimicrobial agents and for treating intracellular infections by providing intracellular targeting and sustained release of drug inside infected cells. The present paper introduces a formulation study of gentamicin loaded biodegradable nanoparticles (Nps). Solid-oil-in water technique was studied for gentamicin sulfate nanoencapsulation using uncapped Polylactide-co-glycolide (PLGA-H) and Polylactide-co-glycolide-co-Polyethylenglycol (PLGA-PEG) blends. Screening design was applied to optimize: drug payload, Nps size and size distribution, stability and resuspendability after freeze-drying. PLGA-PEG concentration resulted most significant factor influencing particles size and drug content (DC): 8 w/w% DC and 200 nm Nps were obtained. Stirring rate resulted most influencing factor for size distribution (PDI): 700 rpm permitted to obtain homogeneous Nps dispersion (PDI = 1). Further experimental parameters investigated, by 23 screening design, were: polymer blend composition (PLGA-PEG and PLGA-H), Polyvinylalcohol (PVA) and methanol concentrations into aqueous phase. Drug content was increased to 10.5 w/w%. Nanoparticle lyophilization was studied adding cryoprotectants, polyvinypirrolidone K17 and K32, and sodiumcarboxymetylcellulose. Freeze-drying protocol was optimized by a mixture design. A freeze-dried Nps powder free resuspendable with stable Nps size and payload, was developed. The powder was tested on clinic bacterial isolates demonstrating that after encapsulation, gentamicin sulfate kept its activity. PMID:29329209

  20. Antiplasmodial Activity and Toxicological Assessment of Curcumin PLGA-Encapsulated Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zulaikha A. Busari

    2017-09-01

    Full Text Available Curcumin is a polyphenolic pigment isolated from the rhizomes of Curcuma longa (turmeric, a medicinal plant widely used in the ancient Indian and Chinese medicine. The antiplasmodial activity of curcumin is often hampered by its fast metabolism and poor water solubility, thus its incorporation into a delivery system could circumvent this problem. This study aimed to evaluate the in vivo antiplasmodial activity and the toxicity assessment of curcumin incorporated into poly (lactic-co-glycolic acid (PLGA nanoparticles. Curcumin was loaded with poly (D,L-lactic-co-glycolic acid (PLGA using solvent evaporation from oil-in-water single emulsion method. The nanoparticles were characterized and evaluated in vivo for antimalarial activities using Peter’s 4-day suppressive protocol in mice model. Hematological and hepatic toxicity assays were performed on whole blood and plasma, respectively. In vivo anti-parasitic test and toxicity assays for free and encapsulated drug were performed at 5 and 10 mg/kg. In vitro cytotoxicity of free and PLGA encapsulated curcumin (Cur-PLGA to RAW 264.7 cell line was also determined at varying concentrations (1000–7.8 μg/mL. The size and entrapment efficiency of the nanoparticulate drug formulated was 291.2 ± 82.1 nm and 21.8 ± 0.4 respectively. The percentage parasite suppression (56.8% at 5 mg/kg was significantly higher than in free drug (40.5% of similar concentration (p < 0.05 but not at 10 mg/kg (49.5% at 4-day post-treatment. There were no significant differences in most of the recorded blood parameters in free curcumin and PLGA encapsulated nanoparticulate form (p > 0.05 except in lymphocytes which were significantly higher in Cur-PLGA compared to the free drug (p < 0.05. There were no significant differences in hepatotoxic biomarkers; aspartate aminotransferase and alanine aminotransferase concentrations in various treatment groups (p > 0.05. At higher concentrations (1000 and 500 μg/mL, Cur-PLGA

  1. Melatonin releasing PLGA micro/nanoparticles and their effect on osteosarcoma cells.

    Science.gov (United States)

    Altındal, Damla Çetin; Gümüşderelioğlu, Menemşe

    2016-02-01

    Melatonin loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles and microparticles in the diameter of ∼200 nm and 3.5 μm, respectively, were prepared by emulsion-diffusion-evaporation method. Melatonin entrapment into the particles was significantly improved with the addition of 0.2% (w/v) melatonin into the aqueous phase and encapsulation efficiencies were found as 14 and 27% for nanoparticles and microparticles, respectively. At the end of 40 days, ∼70% of melatonin was released from both of particles, with high burst release. Both blank and melatonin loaded PLGA nanoparticles caused toxic effect on the MG-63 cells due to their uptake by the cells. However, when 0.05 mg microparticle that is carrying ∼1.7 μg melatonin was added to the cm(2) of culture, inhibitory effect of melatonin on the cells were obviously observed. The results would provide an expectation about the usage of melatonin as an adjunct to the routine chemotherapy of osteosarcoma by encapsulating it into a polymeric carrier system.

  2. Progesterone PLGA/mPEG-PLGA Hybrid Nanoparticle Sustained-Release System by Intramuscular Injection.

    Science.gov (United States)

    Xie, Bin; Liu, Yang; Guo, Yuting; Zhang, Enbo; Pu, Chenguang; He, Haibing; Yin, Tian; Tang, Xing

    2018-02-14

    To prepare sustained-release PLGA/mPEG-PLGA hybrid nanoparticles of progesterone (PRG), and evaluate the descending required administration dosage in vivo. PRG hybrid nanoparticles (PRG H-NPs) based on PLGA/mPEG-PLGA were compared with PRG nanoparticles (PRG-NPs) of pure PLGA as the matrix and PRG-oil solutions. Nanoparticles (NPs) were formed by the method of nanoemulsion, and the pharmacokinetics of the sustained-release PRG H-NPs in male Sprague dawley (SD) rats were investigated. The rats were randomly divided into four groups, each group received: single dose of PRG H-NPs (14.58 mg/kg, i.m.) and PRG-NPs (14.58 mg/kg, i.m.), repeated dosing for 7 days of PRG-oil (2.08 mg/kg, i.m.) solution (Oil-L) and a higher dosage of PRG-oil (6.24 mg/kg, i.m.) solution (Oil-H), respectively. In the pharmacokinetic test, the PRG H-NPs exhibited a comparatively good sustained-release effect against the PRG-NPs without mPEG-PLGA and PRG-oil solution. The pharmacokinetic parameters of the PRG H-NPs, PRG-NPs, Oil-L and Oil-H were AUC 0-t (ng·h·mL -1 ) 8762.1, 1546.1, 1914.5, and 12,138.9, t 1/2 (h)52.7, 44.1, 8.4 and 44.6 respectively. Owing to the modification of PEG, PRG H-NPs can act as safe delivery platforms for sustained-release of drugs with a lower dosage required.

  3. The Cytotoxicity, Characteristics, and Optimization of Insulin-loaded Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yasemin Budama-Kilinc

    2017-04-01

    Full Text Available Controlled release systems for insulin are frequent subjects of research, because it is rapidly degraded by proteolytic enzymes in the gastrointestinal tract and minimally absorbed after oral administration. Controlled release systems also provide significant contribution to its stability.  Different techniques are used for the preparation of drug-loaded nanoparticles, and many novel techniques are being developed. The size and morphology of insulin-loaded nanoparticles may vary according to performed techniques, even if the same polymer is used. The aim of this study was to demonstrate the cytotoxicity of insulin loaded nanoparticles and the effect of various synthesis parameters on the particle size, polydispersity index (PdI, loading efficiency, and particle morphology. In the experiments, poly(lactic-co-glycolic acid (PLGA and insulin-loaded PLGA nanoparticles were prepared using the double emulsion (w/o/w method. The characterization of the nanoparticles were performed with a UV spectrometer, the Zeta-sizer system, FTIR spectroscopy, and a scanning probe microscope. Cell toxicity of different concentrations was assayed with MTT methods on L929 fibroblast cells. The optimum size of the insulin-loaded PLGA nanoparticle was obtained with a 96.5% encapsulation efficiency, a 224.5 nm average particle size, and a 0.063 polydispersity index. This study obtained and characterized spherical morphology, determined that the nanoparticles have very low toxicity, and showed the effect of different parameters on particle size and polydispersity. DOI: http://dx.doi.org/10.17807/orbital.v9i1.934 

  4. Preparation and characterization of PLGA-β-CD polymeric nanoparticles containing methotrexate and evaluation of their effects on T47D cell line.

    Science.gov (United States)

    Gorjikhah, Fatemeh; Azizi Jalalian, Farid; Salehi, Roya; Panahi, Yunes; Hasanzadeh, Arash; Alizadeh, Effat; Akbarzadeh, Abolfazl; Davaran, Soodabeh

    2017-05-01

    Among all cancers that affect women, breast cancer has most mortality rate. It is essential to attain more safe and efficient anticancer drugs. Recent advances in medical nanotechnology and biotechnology have caused in novel improvements in breast and other cancer drug delivery. Methotrexate is an anticancer drug that prevents the dihydrofolate reductase enzyme, which inhibits in the formation of DNA, RNA and proteins which have poor water-solubility. For enhancing the solubility and stability of drugs in delivery systems, we used methotrexate-loaded PLGA- beta-cyclodextrin nanoparticles. The PLGA- beta-cyclodextrin nanoparticles were synthesized by a double emulsion method and characterized with FT-IR and SEM. T47D breast cancer cell lines were treated with equal concentrations of methotrexate-loaded PLGA- beta-cyclodextrin nanoparticles and free methotrexate. MTT assay confirmed that methotrexate-loaded PLGA- beta-cyclodextrin nanoparticles enhanced cytotoxicity and drug delivery in T47D breast cancer cells. These results indicate that encapsulated drugs could be effective in controlled drug release for a sustained period would serve the purpose for long-term treatment of many diseases such as breast cancer.

  5. Preformulation Studies of Bee Venom for the Preparation of Bee Venom-Loaded PLGA Particles.

    Science.gov (United States)

    Park, Min-Ho; Kim, Ju-Heon; Jeon, Jong-Woon; Park, Jin-Kyu; Lee, Bong-Joo; Suh, Guk-Hyun; Cho, Cheong-Weon

    2015-08-18

    It is known that allergic people was potentially vulnerable to bee venom (BV), which can induce an anaphylactic shock, eventually leading to death. Up until recently, this kind of allergy was treated only by venom immunotherapy (VIT) and its efficacy has been recognized worldwide. This treatment is practiced by subcutaneous injections that gradually increase the doses of the allergen. This is inconvenient for patients due to frequent injections. Poly (D,L-lactide-co-glycolide) (PLGA) has been broadly studied as a carrier for drug delivery systems (DDS) of proteins and peptides. PLGA particles usually induce a sustained release. In this study, the physicochemical properties of BV were examined prior to the preparation of BV-loaded PLGA nanoparticles NPs). The content of melittin, the main component of BV, was 53.3%. When protected from the light BV was stable at 4 °C in distilled water, during 8 weeks. BV-loaded PLGA particles were prepared using dichloromethane as the most suitable organic solvent and two min of ultrasonic emulsification time. This study has characterized the physicochemical properties of BV for the preparation BV-loaded PLGA NPs in order to design and optimize a suitable sustained release system in the future.

  6. Synthesis of PLGA-Lipid Hybrid Nanoparticles for siRNA Delivery Using the Emulsion Method PLGA-PEG-Lipid Nanoparticles for siRNA Delivery.

    Science.gov (United States)

    Wang, Lei; Griffel, Benjamin; Xu, Xiaoyang

    2017-01-01

    The effective delivery of small interfering RNA (siRNA) to tumor cells remains a challenge for applications in cancer therapy. The development of polymeric nanoparticles with high siRNA loading efficacy has shown great potential for cancer targets. Double emulsion solvent evaporation technique is a useful tool for encapsulation of hydrophilic molecules (e.g., siRNA). Here we describe a versatile platform for siRNA delivery based on PLGA-PEG-cationic lipid nanoparticles by using the double emulsion method. The resulting nanoparticles show high encapsulation efficiency for siRNA (up to 90%) and demonstrate effective downregulation of the target genes in vitro and vivo.

  7. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties

    International Nuclear Information System (INIS)

    Mehrasa, Mohammad; Asadollahi, Mohammad Ali; Nasri-Nasrabadi, Bijan; Ghaedi, Kamran; Salehi, Hossein; Dolatshahi-Pirouz, Alireza; Arpanaei, Ayyoob

    2016-01-01

    Poly(lactic-co-glycolic acid) (PLGA) and PLGA/gelatin random nanofibrous scaffolds embedded with different amounts of mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. To evaluate the effects of nanoparticles on the scaffolds, physical, chemical, and mechanical properties as well as in vitro degradation behavior of scaffolds were investigated. The mean diameters of nanofibers were 974 ± 68 nm for the pure PLGA scaffolds vs 832 ± 70, 764 ± 80, and 486 ± 64 for the PLGA/gelatin, PLGA/10 wt% MSNPs, and the PLGA/gelatin/10 wt% MSNPs scaffolds, respectively. The results suggested that the incorporation of gelatin and MSNPs into PLGA-based scaffolds enhances the hydrophilicity of scaffolds due to an increase of hydrophilic functional groups on the surface of nanofibers. With porosity examination, it was concluded that the incorporation of MSNPs and gelatin decrease the porosity of scaffolds. Nanoparticles also improved the tensile mechanical properties of scaffolds. Using in vitro degradation analysis, it was shown that the addition of nanoparticles to the nanofibers matrix increases the weight loss percentage of PLGA-based samples, whereas it decreases the weight loss percentage in the PLGA/gelatin composites. Cultivation of rat pheochromocytoma cell line (PC12), as precursor cells of dopaminergic neural cells, on the scaffolds demonstrated that the introduction of MSNPs into PLGA and PLGA/gelatin matrix leads to improved cell attachment and proliferation and enhances cellular processes. - Highlights: • PLGA-based random nanofibers embedded with mesoporous silica nanoparticles were fabricated using electrospinning method • Incorporation of gelatin and MSNPs into PLGA-based scaffolds increased the hydrophilicity of scaffold • Addition of nanoparticles also improved the tensile mechanical properties of scaffolds • Introduction of MSNPs led to improved cell attachment and proliferation

  8. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties

    Energy Technology Data Exchange (ETDEWEB)

    Mehrasa, Mohammad [Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of); Asadollahi, Mohammad Ali, E-mail: ma.asadollahi@ast.ui.ac.ir [Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Nasri-Nasrabadi, Bijan [Department of Chemical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Ghaedi, Kamran [Department of Biology, Faculty of Science, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Salehi, Hossein [Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Dolatshahi-Pirouz, Alireza [DTU Nanotech, Center for Nanomedicine and Theranostics, Technical University of Denmark (DTU), DK-2800 Kgs. Lyngby (Denmark); Arpanaei, Ayyoob, E-mail: arpanaei@yahoo.com [Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of)

    2016-09-01

    Poly(lactic-co-glycolic acid) (PLGA) and PLGA/gelatin random nanofibrous scaffolds embedded with different amounts of mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. To evaluate the effects of nanoparticles on the scaffolds, physical, chemical, and mechanical properties as well as in vitro degradation behavior of scaffolds were investigated. The mean diameters of nanofibers were 974 ± 68 nm for the pure PLGA scaffolds vs 832 ± 70, 764 ± 80, and 486 ± 64 for the PLGA/gelatin, PLGA/10 wt% MSNPs, and the PLGA/gelatin/10 wt% MSNPs scaffolds, respectively. The results suggested that the incorporation of gelatin and MSNPs into PLGA-based scaffolds enhances the hydrophilicity of scaffolds due to an increase of hydrophilic functional groups on the surface of nanofibers. With porosity examination, it was concluded that the incorporation of MSNPs and gelatin decrease the porosity of scaffolds. Nanoparticles also improved the tensile mechanical properties of scaffolds. Using in vitro degradation analysis, it was shown that the addition of nanoparticles to the nanofibers matrix increases the weight loss percentage of PLGA-based samples, whereas it decreases the weight loss percentage in the PLGA/gelatin composites. Cultivation of rat pheochromocytoma cell line (PC12), as precursor cells of dopaminergic neural cells, on the scaffolds demonstrated that the introduction of MSNPs into PLGA and PLGA/gelatin matrix leads to improved cell attachment and proliferation and enhances cellular processes. - Highlights: • PLGA-based random nanofibers embedded with mesoporous silica nanoparticles were fabricated using electrospinning method • Incorporation of gelatin and MSNPs into PLGA-based scaffolds increased the hydrophilicity of scaffold • Addition of nanoparticles also improved the tensile mechanical properties of scaffolds • Introduction of MSNPs led to improved cell attachment and proliferation.

  9. Fabrication of interconnected microporous biomaterials with high hydroxyapatite nanoparticle loading

    International Nuclear Information System (INIS)

    Zhang Wei; Yao Donggang; Zhang Qingwei; Lelkes, Peter I; Zhou, Jack G

    2010-01-01

    Hydroxyapatite (HA) is known to promote osteogenicity and enhance the mechanical properties of biopolymers. However, incorporating a large amount of HA into a porous biopolymer still remains a challenge. In the present work, a new method was developed to produce interconnected microporous poly(glycolic-co-lactic acid) (PLGA) with high HA nanoparticle loading. First, a ternary blend comprising PLGA/PS (polystyrene)/HA (40/40/20 wt%) was prepared by melt blending under conditions for formation of a co-continuous phase structure. Next, a dynamic annealing stage under small-strain oscillation was applied to the blend to facilitate nanoparticle redistribution. Finally, the PS phase was sacrificially extracted, leaving a porous matrix. The results from different characterizations suggested that the applied small-strain oscillation substantially accelerated the migration of HA nanoparticles during annealing from the PS phase to the PLGA phase; nearly all HA particles were uniformly presented in the PLGA phase after a short period of annealing. After dissolution of the PS phase, a PLGA material with interconnected microporous structure was successfully produced, with a high HA loading above 30 wt%. The mechanisms beneath the experimental observations, particularly on the enhanced particle migration process, were discussed, and strategies for producing highly particle loaded biopolymers with interconnected microporous structures were proposed.

  10. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties

    DEFF Research Database (Denmark)

    Mehrasa, Mohammad; Asadollahi, Mohammad Ali; Nasri-Nasrabadi, Bijan

    2016-01-01

    Poly(lactic-co-glycolic.acid) (PLGA) and PLGA/gelatin random nanofibrous scaffolds embedded with different amounts of mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. To evaluate the effects of nanoparticles on the scaffolds, physical, chemical, and mechanical...... the porosity of scaffolds. Nanoparticles also improved the tensile mechanical properties of scaffolds. Using in vitro degradation analysis, it was shown that the addition of nanoparticles to the nano fibers matrix increases the weight loss percentage of PLGA-based samples, whereas it decreases the weight loss...... properties as well as in vitro degradation behavior of scaffolds were investigated. The mean diameters of nanofibers were 974 ± 68 nm for the pure PLGA scaffolds vs 832 ± 70, 764 ± 80, and 486 ± 64 for the PLGA/gelatin, PLGA/10 wt% MSNPs, and the PLGA/gelatin/10 wt% MSNPs scaffolds, respectively. The results...

  11. PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors

    Directory of Open Access Journals (Sweden)

    Marxa Figueiredo

    2012-01-01

    Full Text Available This paper focuses on novel approaches in the field of nanotechnology-based carriers utilizing ultrasound stimuli as a means to spatially target gene delivery in vivo, using nanoparticles made with either poly(lactic-co-glycolic acid (PLGA or other polymers. We specifically discuss the potential for gene delivery by particles that are echogenic (amenable to destruction by ultrasound composed either of polymers (PLGA, polystyrene or other contrast agent materials (Optison, SonoVue microbubbles. The use of ultrasound is an efficient tool to further enhance gene delivery by PLGA or other echogenic particles in vivo. Echogenic PLGA nanoparticles are an attractive strategy for ultrasound-mediated gene delivery since this polymer is currently approved by the US Food and Drug Administration for drug delivery and diagnostics in cancer, cardiovascular disease, and also other applications such as vaccines and tissue engineering. This paper will review recent successes and the potential of applying PLGA nanoparticles for gene delivery, which include (a echogenic PLGA used with ultrasound to enhance local gene delivery in tumors or muscle and (b PLGA nanoparticles currently under development, which could benefit in the future from ultrasound-enhanced tumor targeted gene delivery.

  12. Interaction of PLGA and trimethyl chitosan modified PLGA nanoparticles with mixed anionic/zwitterionic phospholipid bilayers studied using molecular dynamics simulations

    Science.gov (United States)

    Novak, Brian; Astete, Carlos; Sabliov, Cristina; Moldovan, Dorel

    2012-02-01

    Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable polymer. Nanoparticles of PLGA are commonly used for drug delivery applications. The interaction of the nanoparticles with the cell membrane may influence the rate of their uptake by cells. Both PLGA and cell membranes are negatively charged, so adding positively charged polymers such as trimethyl chitosan (TMC) which adheres to the PLGA particles improves their cellular uptake. The interaction of 3 nm PLGA and TMC-modified-PLGA nanoparticles with lipid bilayers composed of mixtures of phosphatidylcholine and phosphatidylserine lipids was studied using molecular dynamics simulations. The free energy profiles as function of nanoparticles position along the normal direction to the bilayers were calculated, the distribution of phosphatidylserine lipids as a function of distance of the particle from the bilayer was calculated, and the time scale for particle motion in the directions parallel to the bilayer surface was estimated.

  13. Preformulation Studies of Bee Venom for the Preparation of Bee Venom-Loaded PLGA Particles

    Directory of Open Access Journals (Sweden)

    Min-Ho Park

    2015-08-01

    Full Text Available It is known that allergic people was potentially vulnerable to bee venom (BV, which can induce an anaphylactic shock, eventually leading to death. Up until recently, this kind of allergy was treated only by venom immunotherapy (VIT and its efficacy has been recognized worldwide. This treatment is practiced by subcutaneous injections that gradually increase the doses of the allergen. This is inconvenient for patients due to frequent injections. Poly (D,L-lactide-co-glycolide (PLGA has been broadly studied as a carrier for drug delivery systems (DDS of proteins and peptides. PLGA particles usually induce a sustained release. In this study, the physicochemical properties of BV were examined prior to the preparation of BV-loaded PLGA nanoparticles NPs. The content of melittin, the main component of BV, was 53.3%. When protected from the light BV was stable at 4 °C in distilled water, during 8 weeks. BV-loaded PLGA particles were prepared using dichloromethane as the most suitable organic solvent and two min of ultrasonic emulsification time. This study has characterized the physicochemical properties of BV for the preparation BV-loaded PLGA NPs in order to design and optimize a suitable sustained release system in the future.

  14. Bufalin-loaded mPEG-PLGA-PLL-cRGD nanoparticles: preparation, cellular uptake, tissue distribution, and anticancer activity

    Directory of Open Access Journals (Sweden)

    Duan YR

    2012-07-01

    Full Text Available Peihao Yin,1,* Yan Wang,1,* YanYan Qiu,1 LiLi Hou,1 Xuan Liu,1 Jianmin Qin,1 Yourong Duan,2 Peifeng Liu,2 Ming Qiu,3 Qi Li11Department of Clinical Oncology, Putuo Hospital and Interventional Cancer Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; 2Shanghai Cancer Institute, Jiaotong University, Shanghai, China; 3Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China *These authors contributed equally to this workBackground: Recent studies have shown that bufalin has a good antitumor effect but has high toxicity, poor water solubility, a short half-life, a narrow therapeutic window, and a toxic dose that is close to the therapeutic dose, which all limit its clinical application. This study aimed to determine the targeting efficacy of nanoparticles (NPs made of methoxy polyethylene glycol (mPEG, polylactic-co-glycolic acid (PLGA, poly-L-lysine (PLL, and cyclic arginine-glycine-aspartic acid (cRGD loaded with bufalin, ie, bufalin-loaded mPEG-PLGA-PLL-cRGD nanoparticles (BNPs, in SW620 colon cancer-bearing mice.Methods: BNPs showed uniform size. The size, shape, zeta potential, drug loading, encapsulation efficiency, and release of these nanoparticles were studied in vitro. The tumor targeting, cellular uptake, and growth-inhibitory effect of BNPs in vivo were tested.Results: BNPs were of uniform size with an average particle size of 164 ± 84 nm and zeta potential of 2.77 mV. The encapsulation efficiency was 81.7% ± 0.89%, and the drug load was 3.92% ± 0.16%. The results of in vitro cytotoxicity studies showed that although the blank NPs were nontoxic, they enhanced the cytotoxicity of bufalin in BNPs. Drug release experiments showed that the release of the drug was prolonged and sustained. The results of confocal laser scanning microscopy indicated that BNPs could effectively bind to human umbilical vein endothelial cells. In the SW620

  15. Preparation and characterization of Tribulus terrestris-loaded nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Khanavi*

    2017-11-01

    Full Text Available Background and objectives: Tribulus terrestris is a flowering herb (Zygophyllaceae with several properties in folk medicine such as diuretic, tonic, aphrodisiac, analgesic, astringent, and stomachic-lithotripter activities. Although, some extracts and phytochemicals represent excellent bio-activity in vitro, less or no in vivo activity is observed due to their improper molecular size. The intend of this research was investigation of the feasibility of encapsulating T. terrestris into [poly (lactic-co-glycolic acid] PLGA nanoparticles. Methods: Aerial parts of the plant were extracted with aqueous ethanol 85% by percolation apparatus. The nanoparticles of T. terrestris-loaded were prepared using a modified simultaneous double-emulsion solvent evaporation/diffusion method. Elucidations were made on the basis of scanning electron microscopy (SEM and differential scanning calorimetry (DSC. The content of nanoparticles was analyzed by HPLC with indirect method. Results: The results stated that increasing the portion of plant extract could cause bigger size with no considerable increase in polydispersity index (PDI. The encapsulation efficiency of T. terrestris-loaded nanoparticles was 40.3 to 78.5 and the drug loadings were 0.806 to 6.104, with different ratios of extract. The overall pattern of the release in SDS 1% in dialysis bag in all formulations showed similar and biphasic release kinetic, an initial burst release in the first day followed by constant release over 10 days. Conclusion: An effective approach for the preparation of T. terrestris-loaded PLGA nanoparticles was performed. The controlled release profile showed that these biodegradable PLGA nanoparticles had great potential and should be given particular consideration in further biological researches.

  16. Effect of PEG and water-soluble chitosan coating on moxifloxacin-loaded PLGA long-circulating nanoparticles.

    Science.gov (United States)

    Mustafa, Sanaul; Devi, V Kusum; Pai, Roopa S

    2017-02-01

    Moxifloxacin (MOX) is a Mycobacterium tuberculosis DNA gyrase inhibitor. Due to its intense hydrophilicity, MOX is cleared from the body within 24 h and required for repetitive doses which may then result in hepatotoxicity and acquisition of MOX resistant-TB, related with its use. To overcome the aforementioned limitations, the current study aimed to develop PLGA nanoparticles (PLGA NPs), to act as an efficient carrier for controlled delivery of MOX. To achieve a substantial extension in blood circulation, a combined design, affixation of polyethylene glycol (PEG) to MOX-PLGA NPs and adsorption of water-soluble chitosan (WSC) (cationic deacetylated chitin) to particle surface, was rose for surface modification of NPs. Surface modified NPs (MOX-PEG-WSC NPs) were prepared to provide controlled delivery and circulate in the bloodstream for an extended period of time, thus minimizing dosing frequency. In vivo pharmacokinetic and in vivo biodistribution following oral administration were investigated. NP surface charge was closed to neutral +4.76 mV and significantly affected by the WSC coating. MOX-PEG-WSC NPs presented striking prolongation in blood circulation, reduced protein binding, and long-drawn-out the blood circulation half-life with resultant reduced liver sequestration vis-à-vis MOX-PLGA NPs. The studies, therefore, indicate the successful formulation development of MOX-PEG-WSC NPs that showed sustained release behavior from nanoparticles which indicates low frequency of dosing.

  17. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer's disease mice.

    Science.gov (United States)

    Huang, Na; Lu, Shuai; Liu, Xiao-Ge; Zhu, Jie; Wang, Yu-Jiong; Liu, Rui-Tian

    2017-10-06

    Alzheimer's disease (AD) is the most common form of dementia, characterized by the formation of extracellular senile plaques and neuronal loss caused by amyloid β (Aβ) aggregates in the brains of AD patients. Conventional strategies failed to treat AD in clinical trials, partly due to the poor solubility, low bioavailability and ineffectiveness of the tested drugs to cross the blood-brain barrier (BBB). Moreover, AD is a complex, multifactorial neurodegenerative disease; one-target strategies may be insufficient to prevent the processes of AD. Here, we designed novel kind of poly(lactide-co-glycolic acid) (PLGA) nanoparticles by loading with Aβ generation inhibitor S1 (PQVGHL peptide) and curcumin to target the detrimental factors in AD development and by conjugating with brain targeting peptide CRT (cyclic CRTIGPSVC peptide), an iron-mimic peptide that targets transferrin receptor (TfR), to improve BBB penetration. The average particle size of drug-loaded PLGA nanoparticles and CRT-conjugated PLGA nanoparticles were 128.6 nm and 139.8 nm, respectively. The results of Y-maze and new object recognition test demonstrated that our PLGA nanoparticles significantly improved the spatial memory and recognition in transgenic AD mice. Moreover, PLGA nanoparticles remarkably decreased the level of Aβ, reactive oxygen species (ROS), TNF-α and IL-6, and enhanced the activities of super oxide dismutase (SOD) and synapse numbers in the AD mouse brains. Compared with other PLGA nanoparticles, CRT peptide modified-PLGA nanoparticles co-delivering S1 and curcumin exhibited most beneficial effect on the treatment of AD mice, suggesting that conjugated CRT peptide, and encapsulated S1 and curcumin exerted their corresponding functions for the treatment.

  18. Ketamine nano-delivery based on poly-lactic-co-glycolic acid (PLGA) nanoparticles

    Science.gov (United States)

    Hirano, Sota; Bovi, Michele; Romeo, Alessandro; Guzzo, Flavia; Chiamulera, Cristiano; Perduca, Massimiliano

    2018-04-01

    This work describes a novel method for the generation of a ketamine nano-delivery, to improve brain blood barrier permeability and increase drug therapeutic window as anaesthetic, analgesic and potential antidepressant. The approach herein described is based on ketamine-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles coupled to an apolipoprotein E (ApoE) peptide for delivery to the central nervous system. PLGA particles were synthesized with amount of drug, coupled with the ApoE peptide on the surface, and validated by physical characterization. The produced nanodevice showed a good colloidal stability in water, confirmed by zeta potential measurements, with a diameter in the range of 185-205 nm. The ketamine encapsulation was verified by liquid chromatography-mass spectrometry analyses obtaining an encapsulation efficiency up to 21.2 ± 3.54%. Once the occurrence of ApoE peptide functionalization was confirmed with fluorescence spectroscopy, the thermal stability and morphological information were obtained by differential scanning calorimetry and further dynamic light scattering measurements. The spherical shape and a rough nanoparticles surface were observed by atomic force microscopy. The reliability of this approach may be further developed as a protocol to be used to generate PLGA nanoparticles greater than 100 nm able to better penetrate blood brain barrier and release a neuroactive molecule at lower doses.

  19. Photodynamic effects of methylene blue-loaded polymeric nanoparticles on dental plaque bacteria.

    Science.gov (United States)

    Klepac-Ceraj, Vanja; Patel, Niraj; Song, Xiaoqing; Holewa, Colleen; Patel, Chitrang; Kent, Ralph; Amiji, Mansoor M; Soukos, Nikolaos S

    2011-09-01

    Photodynamic therapy (PDT) is increasingly being explored for treatment of oral infections. Here, we investigate the effect of PDT on human dental plaque bacteria in vitro using methylene blue (MB)-loaded poly(lactic-co-glycolic) (PLGA) nanoparticles with a positive or negative charge and red light at 665 nm. Dental plaque samples were obtained from 14 patients with chronic periodontitis. Suspensions of plaque microorganisms from seven patients were sensitized with anionic, cationic PLGA nanoparticles (50 µg/ml equivalent to MB) or free MB (50 µg/ml) for 20 min followed by exposure to red light for 5 min with a power density of 100 mW/cm2 . Polymicrobial oral biofilms, which were developed on blood agar in 96-well plates from dental plaque inocula obtained from seven patients, were also exposed to PDT as above. Following the treatment, survival fractions were calculated by counting the number of colony-forming units. The cationic MB-loaded nanoparticles exhibited greater bacterial phototoxicity in both planktonic and biofilm phase compared to anionic MB-loaded nanoparticles and free MB, but results were not significantly different (P > 0.05). Cationic MB-loaded PLGA nanoparticles have the potential to be used as carriers of MB for PDT systems. Copyright © 2011 Wiley-Liss, Inc.

  20. A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells.

    Science.gov (United States)

    Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab

    2017-04-01

    Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells.

  1. Preparation and characterization of bee venom-loaded PLGA particles for sustained release.

    Science.gov (United States)

    Park, Min-Ho; Jun, Hye-Suk; Jeon, Jong-Woon; Park, Jin-Kyu; Lee, Bong-Joo; Suh, Guk-Hyun; Park, Jeong-Sook; Cho, Cheong-Weon

    2016-12-14

    Bee venom-loaded poly(lactic-co-glycolic acid) (PLGA) particles were prepared by double emulsion-solvent evaporation, and characterized for a sustained-release system. Factors such as the type of organic solvent, the amount of bee venom and PLGA, the type of PLGA, the type of polyvinyl alcohol, and the emulsification method were considered. Physicochemical properties, including the encapsulation efficiency, drug loading, particle size, zeta-potential and surface morphology were examined by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The size of the bee venom-loaded PLGA particles was 500 nm (measured using sonication). Zeta-potentials of the bee venom-loaded PLGA particles were negative owing to the PLGA. FT-IR results demonstrated that the bee venom was completely encapsulated in the PLGA particles, indicated by the disappearance of the amine and amide peaks. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the bee venom in the bee venom-loaded PLGA particles was intact. In vitro release of the bee venom from the bee venom-loaded PLGA particles showed a sustained-release profile over 1 month. Bee venom-loaded PLGA particles can help improve patients' quality of life by reducing the number of injections required.

  2. PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood-brain barrier.

    Science.gov (United States)

    Fornaguera, C; Dols-Perez, A; Calderó, G; García-Celma, M J; Camarasa, J; Solans, C

    2015-08-10

    Neurodegenerative diseases have an increased prevalence and incidence nowadays, mainly due to aging of the population. In addition, current treatments lack efficacy, mostly due to the presence of the blood-brain barrier (BBB) that limits the penetration of the drugs to the central nervous system. Therefore, novel drug delivery systems are required. Polymeric nanoparticles have been reported to be appropriate for this purpose. Specifically, the use of poly-(lactic-co-glycolic acid) (PLGA) seems to be advantageous due to its biocompatibility and biodegradability that ensure safe therapies. In this work, a novel approximation to develop loperamide-loaded nanoparticles is presented: their preparation by nano-emulsion templating using a low-energy method (the phase inversion composition, PIC, method). This nano-emulsification approach is a simple and very versatile technology, which allows a precise size control and it can be performed at mild process conditions. Drug-loaded PLGA nanoparticles were obtained using safe components by solvent evaporation of template nano-emulsions. Characterization of PLGA nanoparticles was performed, together with the study of the BBB crossing. The in vivo results of measuring the analgesic effect using the hot-plate test evidenced that the designed PLGA loperamide-loaded nanoparticles are able to efficiently cross the BBB, with high crossing efficiencies when their surface is functionalized with an active targeting moiety (a monoclonal antibody against the transferrin receptor). These results, together with the nanoparticle characterization performed here are expected to provide sufficient evidences to end up to clinical trials in the near future. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Novel PLGA-based nanoparticles for the oral delivery of insulin

    Directory of Open Access Journals (Sweden)

    Malathi S

    2015-03-01

    Full Text Available Sampath Malathi,1 Perumal Nandhakumar,2 Velayudham Pandiyan,2 Thomas J Webster,3 Sengottuvelan Balasubramanian1 1Department of Inorganic Chemistry, Guindy Campus, University of Madras, Chennai, Tamil Nadu, India; 2Department of Veterinary Biochemistry, Madras Veterinary College, Chennai, Tamil Nadu, India; 3Department of Chemical Engineering, Northeastern University, Boston, USA Background: Insulin is the drug therapy for patients with insulin-dependent diabetes mellitus. A number of attempts have been made in the past to overcome the problems associated with the oral delivery of insulin, but with little success. Orally administered insulin has encountered with many difficulties such as rapid degradation and poor intestinal absorption. The potential use of d-α-tocopherol poly(ethylene glycol 1000 succinate (TPGS-emulsified poly(ethylene glycol (PEG-capped poly(lactic-co-glycolic acid (PLGA nanoparticles (NPs was investigated for sustained delivery of insulin (IS.Objective: To investigate the efficacy of TPGS-emulsified PEG-capped PLGA NPs (TPPLG NPs as a potential drug carrier for the oral delivery of insulin.Methods: A series of biodegradable low-molecular-weight PLGA (80/20 [PLG4] and 70/30 [PLG6] copolymers were synthesized by melt polycondensation. The commercial insulin-loaded TPGS-emulsified PEG-capped PLGA NPs (ISTPPLG NPs were synthesized by water–oil–water emulsion solvent evaporation method. The physical and chemical properties of PLGA copolymers, particle size, zeta potential, and morphology of the NPs were examined. The in vivo studies of ISTPPLG NPs were carried out in diabetic rats by oral administration.Results: The maximum encapsulation efficiency of ISTPPLG6 NPs was 78.6%±1.2%, and the mean diameter of the NPs was 180±20 nm. The serum glucose level was significantly (twofold decreased on treatment with ISTPPLG NPs, and there was a threefold decrease with insulin-loaded PLGA (70/30 NPs when compared to that of free

  4. Interactions of PLGA nanoparticles with blood components: protein adsorption, coagulation, activation of the complement system and hemolysis studies.

    Science.gov (United States)

    Fornaguera, Cristina; Calderó, Gabriela; Mitjans, Montserrat; Vinardell, Maria Pilar; Solans, Conxita; Vauthier, Christine

    2015-04-14

    The intravenous administration of poly(lactic-co-glycolic) acid (PLGA) nanoparticles has been widely reported as a promising alternative for delivery of drugs to specific cells. However, studies on their interaction with diverse blood components using different techniques are still lacking. Therefore, in the present work, the interaction of PLGA nanoparticles with blood components was described using different complementary techniques. The influence of different encapsulated compounds/functionalizing agents on these interactions was also reported. It is worth noting that all these techniques can be simply performed, without the need for highly sophisticated apparatus or skills. Moreover, their transference to industries and application of quality control could be easily performed. Serum albumin was adsorbed onto all types of tested nanoparticles. The saturation concentration was dependent on the nanoparticle size. In contrast, fibrinogen aggregation was dependent on nanoparticle surface charge. The complement activation was also influenced by the nanoparticle functionalization; the presence of a functionalizing agent increased complement activation, while the addition of an encapsulated compound only caused a slight increase. None of the nanoparticles influenced the coagulation cascade at low concentrations. However, at high concentrations, cationized nanoparticles did activate the coagulation cascade. Interactions of nanoparticles with erythrocytes did not reveal any hemolysis. Interactions of PLGA nanoparticles with blood proteins depended both on the nanoparticle properties and the protein studied. Independent of their loading/surface functionalization, PLGA nanoparticles did not influence the coagulation cascade and did not induce hemolysis of erythrocytes; they could be defined as safe concerning induction of embolization and cell lysis.

  5. Treating cutaneous squamous cell carcinoma using ALA PLGA nanoparticle-mediated photodynamic therapy in a mouse model

    Science.gov (United States)

    Wang, Xiaojie; Shi, Lei; Tu, Qingfeng; Wang, Hongwei; Zhang, Haiyan; Wang, Peiru; Zhang, Linglin; Huang, Zheng; Wang, Xiuli; Zhao, Feng; Luan, Hansen

    2015-03-01

    Background: Squamous cell carcinoma (SCC) is a common skin cancer and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP)-assisted ALA delivery for topical photodynamic therapy (PDT) of cutaneous SCC. Methods: UV-induced cutaneous SCCs were established in hairless mice. ALA loaded polylactic-co-glycolic acid (PLGA) NPs were prepared and characterized. The kinetics of ALA PLGA NPs-induced protoporphyrin IX (PpIX) fluorescence in SCCs, therapeutic efficacy of ALA NP-mediated PDT, and immune responses were examined. Results: PLGA NPs could enhance PpIX production in SCC. ALA PLGA NP mediated topical PDT was more effective than free ALA of the same concentration in treating cutaneous SCC. Conclusion: PLGA NPs provide a promising strategy for delivering ALA in topical PDT of cutaneous SCC.

  6. Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Locatelli, Erica; Comes Franchini, Mauro, E-mail: mauro.comesfranchini@unibo.it [University of Bologna, Dipartimento di Chimica Industriale Toso Montanari (Italy)

    2012-12-15

    During the past decades many synthetic polymers have been studied for nanomedicine applications and in particular as drug delivery systems. For this purpose, polymers must be non-toxic, biodegradable, and biocompatible. Polylactic-co-glycolic acid (PLGA) is one of the most studied polymers due to its complete biodegradability and ability to self-assemble into nanometric micelles that are able to entrap small molecules like drugs and to release them into body in a time-dependent manner. Despite fine qualities, using PLGA polymeric nanoparticles for in vivo applications still remains an open challenge due to many factors such as poor stability in water, big diameter (150-200 nm), and the removal of these nanocarriers from the blood stream by the liver and spleen thus reducing the concentration of drugs drastically in tumor tissue. Polyethylene glycol (PEG) is the most used polymers for drug delivery applications and the first PEGylated product is already on the market for over 20 years. This is due to its stealth behavior that inhibits the fast recognition by the immune system (opsonization) and generally leads to a reduced blood clearance of nanocarriers increasing blood circulation time. Furthermore, PEG is hydrophilic and able to stabilize nanoparticles by steric and not ionic effects especially in water. PLGA-PEG block copolymer is an emergent system because it can be easily synthesized and it possesses all good qualities of PLGA and also PEG capability so in the last decade it arose as one of the most promising systems for nanoparticles formation, drug loading, and in vivo drug delivery applications. This review will discuss briefly on PLGA-b-PEG synthesis and physicochemical properties, together with its improved qualities with respect to the single PLGA and PEG polymers. Moreover, we will focus on but in particular will treat nanoparticles formation and uses as new drug delivery system for nanomedical applications.

  7. The effect of cryoprotection on the use of PLGA encapsulated iron oxide nanoparticles for magnetic cell labeling

    International Nuclear Information System (INIS)

    Tang, Kevin S; Shapiro, Erik M; Hashmi, Sarah M

    2013-01-01

    Magnetic PLGA nanoparticles are a significant advancement in the quest to translate MRI-based cell tracking to the clinic. The benefits of these types of particles are that they encapsulate large amounts of iron oxide nanocrystals within an FDA-approved polymer matrix, combining the best aspects of inert micron-sized iron oxide particles, or MPIOs, and biodegradable small particles of iron oxide, or SPIOs. Practically, PLGA nanoparticle fabrication and storage requires some form of cryoprotectant to both protect the particle during freeze drying and to promote resuspension. While this is a commonly employed procedure in the fabrication of drug loaded PLGA nanoparticles, it has yet to be investigated for magnetic particles and what effect this might have on internalization of magnetic particles. As such, in this study, magnetic PLGA nanoparticles were fabricated with various concentrations of two common cryoprotectants, dextrose and sucrose, and analyzed for their ability to magnetically label cells. It was found that cryoprotection with either sugar significantly enhanced the ability to resuspend nanoparticles without aggregation. Magnetic cell labeling was impacted by sugar concentration, with higher sugar concentrations used during freeze drying more significantly reducing magnetic cell labeling than lower concentrations. These studies suggest that cryoprotection with 1% dextrose is an optimal compromise that preserves monodispersity following resuspension and high magnetic cell labeling. (paper)

  8. Preparation and in vitro characterization of 9-nitrocamptothecin-loaded long circulating nanoparticles for delivery in cancer patients.

    Science.gov (United States)

    Derakhshandeh, Katayoun; Soheili, Marzieh; Dadashzadeh, Simin; Saghiri, Reza

    2010-08-09

    The purpose in this study was to investigate poly(ethylene glycol)-modified poly (d,l-lactide-co-glycolide) nanoparticles (PLGA-PEG-NPs) loading 9-nitrocamptothecin (9-NC) as a potent anticancer drug. 9-NC is an analog of the natural plant alkaloid camptothecin that has shown high antitumor activity and is currently in the end stage of clinical trial. Unfortunately, at physiological pH, these potent agents undergo a rapid and reversible hydrolysis with the loss of antitumor activity. Previous researchers have shown that the encapsulation of this drug in PLGA nanoparticles could increase its stability and release profile. In this research we investigated PLGA-PEG nanoparticles and their effect on in vitro characteristics of this labile drug. 9-NC-PLGA-PEG nanoparticles with particle size within the range of 148.5 ± 30 nm were prepared by a nanoprecipitation method. The influence of four different independent variables (amount of polymer, percent of emulsifier, internal phase volume, and external phase volume) on nanoparticle drug-loading was studied. Differential scanning calorimetry and X-ray diffractometry were also evaluated for physical characterizing. The results of optimized formulation showed a narrow size distribution, suitable zeta potential (+1.84), and a drug loading of more than 45%. The in vitro drug release from PLGA-PEG NPs showed a sustained release pattern of up to 120 hours and comparing with PLGA-NPs had a significant decrease in initial burst effect. These experimental results indicate that PLGA-PEG-NPs (versus PLGA-NPs) have a better physicochemical characterization and can be developed as a drug carrier in order to treat different malignancies.

  9. Neurotensin-loaded PLGA/CNC composite nanofiber membranes accelerate diabetic wound healing.

    Science.gov (United States)

    Zheng, Zhifang; Liu, Yishu; Huang, Wenhua; Mo, Yunfei; Lan, Yong; Guo, Rui; Cheng, Biao

    2018-04-13

    Diabetic foot ulcers (DFUs) are a threat to human health and can lead to amputation and even death. Recently neurotensin (NT), an inflammatory modulator in wound healing, was found to be beneficial for diabetic wound healing. As we demonstrated previously, polylactide-polyglycolide (PLGA) and cellulose nanocrystals (CNCs) (PLGA/CNC) nanofiber membranes show good cytocompatibility and facilitate fibroblast adhesion, spreading and proliferation. PLGA/CNC nanofiber membranes are novel materials that have not been used previously as NT carriers in diabetic wounds. This study aims to explore the therapeutic efficacy and possible mechanisms of NT-loaded PLGA/CNC nanofiber membranes in full-thickness skin wounds in spontaneously diabetic mice. The results showed that NT could be sustained released from NT-loaded PLGA/CNC composite nanofiber membranes for 2 weeks. NT-loaded PLGA/CNC composite nanofiber membranes induced more rapid healing than other control groups. After NT exposure, the histological scores of the epidermal and dermal regeneration and the ratios of the fibrotic area to the whole area were increased. NT-loaded PLGA/CNC composite nanofiber membranes also decreased the expressions of the inflammatory cytokines IL-1β and IL-6. These results suggest that NT-loaded PLGA/CNC composite nanofiber membranes for sustained delivery of NT should effectively promote tissue regeneration for the treatment of DFUs.

  10. Chitosan-poly (lactide-co-glycolide) (CS-PLGA) nanoparticles containing metformin HCl: preparation and in vitro evaluation.

    Science.gov (United States)

    Gundogdu, Nuran; Cetin, Meltem

    2014-11-01

    In this study, the preparation and in vitro characterisation of metformin HCl-loaded CS-PLGA nanoparticles (NPs) were aimed. The prepared nanoparticles (blank nanoparticles (C-1), 50 mg of metformin HCl loaded nanoparticles (C-2) and 75 mg of metformin HCl loaded nanoparticles (C-3) ranged in size from 506.67±13.61 to 516.33±16.85 nm and had surface charges of 22.57±1.21 to 32.37±0.57 mV. Low encapsulation efficiency was observed for both nanoparticle formulations due to the leakage of metformin HCl to the external medium during preparation of nanoparticles. Nanoparticle formulations showed highly reproducible drug release profiles. ~20% of metformin HCl was released within 30 minutes and approximately 98% of the loaded metformin HCl was released at 144 hours in a phosphate buffer (PB; pH 6.8). No statistically significant difference was noted between the in vitro release profiles of the nanoparticles (C-2 and C-3) containing metformin HCl. Also, nanoparticles were characterised using FT-IR and DSC.

  11. Kanamycin Sulphate Loaded PLGA-Vitamin-E-TPGS Long Circulating Nanoparticles Using Combined Coating of PEG and Water-Soluble Chitosan

    Directory of Open Access Journals (Sweden)

    Sanaul Mustafa

    2017-01-01

    Full Text Available Kanamycin sulphate (KS is a Mycobacterium tuberculosis protein synthesis inhibitor. Due to its intense hydrophilicity, KS is cleared from the body within 8 h. KS has a very short plasma half-life (2.5 h. KS is used in high concentrations to reach the therapeutic levels in plasma, which results in serious nephrotoxicity/ototoxicity. To overcome aforementioned limitations, the current study aimed to develop KS loaded PLGA-Vitamin-E-TPGS nanoparticles (KS-PLGA-TPGS NPs, to act as an efficient carrier for controlled delivery of KS. To achieve a substantial extension in blood circulation, a combined design, affixation of polyethylene glycol (PEG to KS-PLGA-TPGS NPs and adsorption of water-soluble chitosan (WSC (cationic deacetylated chitin to particle surface, was raised for surface modification of NPs. Surface modified NPs (KS-PEG-WSC NPs were prepared to provide controlled delivery and circulate in the bloodstream for an extended period of time, thus minimizing dosing frequency. In vivo pharmacokinetics and in vivo biodistribution following intramuscular administration were investigated. NPs surface charge was close to neutral +3.61 mV and significantly affected by the WSC coating. KS-PEG-WSC NPs presented striking prolongation in blood circulation, reduced protein binding, and long drew-out the blood circulation half-life with resultant reduced kidney sequestration vis-à-vis KS-PLGA-TPGS NPs. The studies, therefore, indicate the successful formulation development of KS-PEG-WSC NPs with reduced frequency of dosing of KS indicating low incidence of nephrotoxicity/ototoxicity.

  12. Preparation and in vitro characterization of 9-nitrocamptothecin-loaded long circulating nanoparticles for delivery in cancer patients

    Directory of Open Access Journals (Sweden)

    Katayoun Derakhshandeh

    2010-07-01

    Full Text Available Katayoun Derakhshandeh1, Marzieh Soheili1, Simin Dadashzadeh2, Reza Saghiri31Department of Pharmaceutics, Faculty of Pharmacy, University of Medical Science, Kermanshah 67145-1673, Iran; 2Department of Pharmaceutics, Faculty of Pharmacy, Shaheed Beheshti University of Medical Science, Tehran, Iran; 3Deptartment of Biochemistry, Pasteur Institute, Tehran, IranAbstract: The purpose in this study was to investigate poly(ethylene glycol-modified poly (d,l-lactide-co-glycolide nanoparticles (PLGA-PEG-NPs loading 9-nitrocamptothecin (9-NC as a potent anticancer drug. 9-NC is an analog of the natural plant alkaloid camptothecin that has shown high antitumor activity and is currently in the end stage of clinical trial. Unfortunately, at physiological pH, these potent agents undergo a rapid and reversible hydrolysis with the loss of antitumor activity. Previous researchers have shown that the encapsulation of this drug in PLGA nanoparticles could increase its stability and release profile. In this research we investigated PLGA-PEG nanoparticles and their effect on in vitro characteristics of this labile drug. 9-NC-PLGA-PEG nanoparticles with particle size within the range of 148.5 ± 30 nm were prepared by a nanoprecipitation method. The influence of four different independent variables (amount of polymer, percent of emulsifier, internal phase volume, and external phase volume on nanoparticle drug-loading was studied. Differential scanning calorimetry and X-ray diffractometry were also evaluated for physical characterizing. The results of optimized formulation showed a narrow size distribution, suitable zeta potential (+1.84, and a drug loading of more than 45%. The in vitro drug release from PLGA-PEG NPs showed a sustained release pattern of up to 120 hours and comparing with PLGA-NPs had a significant decrease in initial burst effect. These experimental results indicate that PLGA-PEG-NPs (versus PLGA-NPs have a better physicochemical characterization

  13. Surface functionalisation of PLGA nanoparticles for gene silencing

    DEFF Research Database (Denmark)

    Andersen, Morten Østergaard; Lichawska, Agata; Arpanaei, Ayyoob

    2010-01-01

    . In addition, particles containing cetylated-PEI achieved 64% silencing of TNFα in J774.1 cells. This rapid method for surface modification of PLGA nanoparticles promotes its application for alternative cetylated functional derivatives as a strategy to control specific biological properties of nanoparticles....

  14. Folate receptor targeted 17-allylamino-17-demethoxygeldanamycin (17-AAG) loaded polymeric nanoparticles for breast cancer.

    Science.gov (United States)

    Saxena, Vipin; Naguib, Youssef; Hussain, M Delwar

    2012-06-01

    Low water solubility and hepatotoxicity limited the clinical use of 17-allylamino-17-demethoxy geldanamycin (17-AAG), an inhibitor of heat shock protein 90 (HSP90). Folate targeted polylactide-co-glycolide-polyethylene glycol-folic acid (PLGA-PEG-FA) nanoparticles containing 17-AAG were prepared and characterized. Cellular uptake and in vitro cytotoxicity of the prepared nanoparticles were determined in MCF-7 human breast cancer cells. The particle size of 17-AAG loaded folate targeted nanoparticles was 238.67±3.52 nm, drug loading was 8.25±2.49% and about 80% of drug was released from the nanoparticles over 10 days. Cellular uptake studies showed much higher intracellular uptake of folate targeted nanoparticle as compared to nontargeted nanoparticles. Cytotoxicity study showed 2 fold increase (PAAG loaded PLGA-PEG-FA nanoparticles might be developed as a targeted delivery system for breast and other cancer treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Improved Treatment of Pancreatic Cancer With Drug Delivery Nanoparticles Loaded With a Novel AKT/PDK1 Inhibitor.

    Science.gov (United States)

    Kobes, Joseph E; Daryaei, Iman; Howison, Christine M; Bontrager, Jordan G; Sirianni, Rachael W; Meuillet, Emmanuelle J; Pagel, Mark D

    2016-09-01

    This research study sought to improve the treatment of pancreatic cancer by improving the drug delivery of a promising AKT/PDK1 inhibitor, PHT-427, in poly(lactic-co-glycolic) acid (PLGA) nanoparticles. PHT-427 was encapsulated in single-emulsion and double-emulsion PLGA nanoparticles (SE-PLGA-427 and DE-PLGA-427). The drug release rate was evaluated to assess the effect of the second PLGA layer of DE-PLGA-427. Ex vivo cryo-imaging and drug extraction from ex vivo organs was used to assess the whole-body biodistribution in an orthotopic model of MIA PaCa-2 pancreatic cancer. Anatomical magnetic resonance imaging (MRI) was used to noninvasively assess the effects of 4 weeks of nanoparticle drug treatment on tumor size, and diffusion-weighted MRI longitudinally assessed changes in tumor cellularity. DE-PLGA-427 showed delayed drug release and longer drug retention in the pancreas relative to SE-PLGA-427. Diffusion-weighted MRI indicated a consistent decrease in cellularity during drug treatment with both types of drug-loaded nanoparticles. Both SE- and DE-PLGA-427 showed a 6-fold and 4-fold reduction in tumor volume relative to untreated tumors and an elimination of primary pancreatic tumor in 68% of the mice. These results indicated that the PLGA nanoparticles improved drug delivery of PHT-427 to pancreatic tumors, which improved the treatment of MIA PaCa-2 pancreatic cancer.

  16. Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging.

    Science.gov (United States)

    Mieszawska, Aneta J; Gianella, Anita; Cormode, David P; Zhao, Yiming; Meijerink, Andries; Langer, Robert; Farokhzad, Omid C; Fayad, Zahi A; Mulder, Willem J M

    2012-06-14

    Polylactic-co-glycolic acid (PLGA) based nanoparticles are biocompatible and biodegradable and therefore have been extensively investigated as therapeutic carriers. Here, we engineered diagnostically active PLGA nanoparticles that incorporate high payloads of nanocrystals into their core for tunable bioimaging features. We accomplished this through esterification reactions of PLGA to generate polymers modified with nanocrystals. The PLGA nanoparticles formed from modified PLGA polymers that were functionalized with either gold nanocrystals or quantum dots exhibited favorable features for computed tomography and optical imaging, respectively.

  17. Efficient production of retroviruses using PLGA/bPEI-DNA nanoparticles and application for reprogramming somatic cells.

    Directory of Open Access Journals (Sweden)

    Eun Jin Seo

    Full Text Available Reprogramming of somatic cells to pluripotent cells requires the introduction of factors driving fate switches. Viral delivery has been the most efficient method for generation of induced pluripotent stem cells. Transfection, which precedes virus production, is a commonly-used process for delivery of nucleic acids into cells. The aim of this study is to evaluate the efficiency of PLGA/ bPEI nanoparticles in transfection and virus production. Using a modified method of producing PLGA nanoparticles, PLGA/bPEI-DNA nanoparticles were examined for transfection efficiency and virus production yield in comparison with PLGA-DNA, bPEI-DNA nanoparticles or liposome-DNA complexes. After testing various ratios of PLGA, bPEI, and DNA, the ratio of 6:3:1 (PLGA:bPEI:DNA, w/w/w was determined to be optimal, with acceptable cellular toxicity. PLGA/bPEI-DNA (6:3:1 nanoparticles showed superior transfection efficiency, especially in multiple gene transfection, and viral yield when compared with liposome-DNA complexes. The culture supernatants of HEK293FT cells transfected with PLGA/bPEI-DNA of viral constructs containing reprogramming factors (Oct4, Sox2, Klf4, or c-Myc successfully and more efficiently generated induced pluripotent stem cell colonies from mouse embryonic fibroblasts. These results strongly suggest that PLGA/bPEI-DNA nanoparticles can provide significant advantages in studying the effect of multiple factor delivery such as in reprogramming or direct conversion of cell fate.

  18. Ocular pharmacoscintigraphic and aqueous humoral drug availability of ganciclovir-loaded mucoadhesive nanoparticles in rabbits

    NARCIS (Netherlands)

    Akhter, Sohail; Ramazani, Farshad; Ahmad, Mohammad Zaki; Ahmad, Farjam Jalees; Rahman, Ziyaur; Bhatnagar, Aseem; Storm, Gerrit

    2013-01-01

    The present report describes the improved ocular retention and aqueous humoral drug availability of ganciclovir (GCV) when administered via topical instillation of different kind of nanoparticles onto the rabbit eye. GCV was loaded into PLGA nanoparticles, chitosan-coated nanoparticles and

  19. Nanobody conjugated PLGA nanoparticles for active targeting of African Trypanosomiasis.

    Science.gov (United States)

    Arias, José L; Unciti-Broceta, Juan D; Maceira, José; Del Castillo, Teresa; Hernández-Quero, José; Magez, Stefan; Soriano, Miguel; García-Salcedo, José A

    2015-01-10

    Targeted delivery of therapeutics is an alternative approach for the selective treatment of infectious diseases. The surface of African trypanosomes, the causative agents of African trypanosomiasis, is covered by a surface coat consisting of a single variant surface glycoprotein, termed VSG. This coat is recycled by endocytosis at a very high speed, making the trypanosome surface an excellent target for the delivery of trypanocidal drugs. Here, we report the design of a drug nanocarrier based on poly ethylen glycol (PEG) covalently attached (PEGylated) to poly(D,L-lactide-co-glycolide acid) (PLGA) to generate PEGylated PLGA nanoparticles. This nanocarrier was coupled to a single domain heavy chain antibody fragment (nanobody) that specifically recognizes the surface of the protozoan pathogen Trypanosoma brucei. Nanoparticles were loaded with pentamidine, the first-line drug for T. b. gambiense acute infection. An in vitro effectiveness assay showed a 7-fold decrease in the half-inhibitory concentration (IC50) of the formulation relative to free drug. Furthermore, in vivo therapy using a murine model of African trypanosomiasis demonstrated that the formulation cured all infected mice at a 10-fold lower dose than the minimal full curative dose of free pentamidine and 60% of mice at a 100-fold lower dose. This nanocarrier has been designed with components approved for use in humans and loaded with a drug that is currently in use to treat the disease. Moreover, this flexible nanobody-based system can be adapted to load any compound, opening a range of new potential therapies with application to other diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Permeation of PLGA nanoparticles across different in vitro models

    CSIR Research Space (South Africa)

    Nkabinde, LA

    2012-07-01

    Full Text Available of drug candidates when formulated as nanoparticles. PLGA nanoparticles were prepared by means of a double emulsion solvent evaporation technique and evaluated in terms of size, encapsulation efficiency, surface charge, isoniazid release and in vitro...

  1. Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications.

    Science.gov (United States)

    Gomes, Carmen; Moreira, Rosana G; Castell-Perez, Elena

    2011-03-01

    Eugenol and trans-cinnamaldehyde are natural compounds known to be highly effective antimicrobials; however, both are hydrophobic molecules, a limitation to their use within the food industry. The goal of this study was to synthesize spherical poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped eugenol and trans-cinnamaldehyde for future antimicrobial delivery applications. The emulsion evaporation method was used to form the nanoparticles in the presence of poly (vinyl alcohol) (PVA) as a surfactant. The inclusion of antimicrobial compounds into the PLGA nanoparticles was accomplished in the organic phase. Synthesis was followed by ultrafiltration (performed to eliminate the excess of PVA and antimicrobial compound) and freeze-drying. The nanoparticles were characterized by their shape, size, entrapment efficiency, and antimicrobial efficiency. The entrapment efficiency for eugenol and trans-cinnamaldehyde was approximately 98% and 92%, respectively. Controlled release experiments conducted in vitro at 37 °C and 100 rpm for 72 h showed an initial burst followed by a slower rate of release of the antimicrobial entrapped inside the PLGA matrix. All loaded nanoparticles formulations proved to be efficient in inhibiting growth of Salmonella spp. (Gram-negative bacterium) and Listeria spp. (Gram-positive bacterium) with concentrations ranging from 20 to 10 mg/mL. Results suggest that the application of these antimicrobial nanoparticles in food systems may be effective at inhibiting specific pathogens. Nanoencapsulation of lipophilic antimicrobial compounds has great potential for improving the effectiveness and efficiency of delivery in food systems. This study consisted of synthesizing PLGA nanoparticles with entrapped eugenol and trans-cinnamaldehyde. By characterizing these new delivery systems, one can understand the controlled-release mechanism and antimicrobial efficiency that provides a foundation that will enable food manufacturers to design

  2. Mannan-Modified PLGA Nanoparticles for Targeted Gene Delivery

    Directory of Open Access Journals (Sweden)

    Fansheng Kong

    2012-01-01

    Full Text Available The studies of targeted gene delivery nanocarriers have gained increasing attention during the past decades. In this study, mannan modified DNA loaded bioadhesive PLGA nanoparticles (MAN-DNA-NPs were investigated for targeted gene delivery to the Kupffer cells (KCs. Bioadhesive PLGA nanoparticles were prepared and subsequently bound with pEGFP. Following the coupling of the mannan-based PE-grafted ligands (MAN-PE with the DNA-NPs, the MAN-DNA-NPs were delivered intravenously to rats. The transfection efficiency was determined from the isolated KCs and flow cytometry was applied for the quantitation of gene expression after 48 h post transfection. The size of the MAN-DNA-NPs was found to be around 190 nm and the Zeta potential was determined to be −15.46mV. The pEGFP binding capacity of MAN-DNA-NPs was (88.9±5.8% and the in vitro release profiles of the MAN-DNA-NPs follow the Higuchi model. When compared with non-modified DNA-NPs and Lipofectamine 2000-DNA, MAN-DNA-NPs produced the highest gene expressions, especially in vivo. The in vivo data from flow cytometry analysis showed that MAN-DNA-NPs displayed a remarkably higher transfection efficiency (39% than non-modified DNA-NPs (25% and Lipofectamine 2000-DNA (23% in KCs. The results illustrate that MAN-DNA-NPs have the ability to target liver KCs and could function as promising active targeting drug delivery vectors.

  3. Scolicidal and apoptotic activities of albendazole sulfoxide and albendazole sulfoxide-loaded PLGA-PEG as a novel nanopolymeric particle against Echinococcus granulosus protoscoleces.

    Science.gov (United States)

    Naseri, Marziyeh; Akbarzadeh, Abolfazl; Spotin, Adel; Akbari, Nagibeh Asl Rahnemaii; Mahami-Oskouei, Mahmoud; Ahmadpour, Ehsan

    2016-12-01

    Treatment failures of human cystic echinococcosis (CE) with albendazole (ABZ) have attributed to its low solubility and poor drug absorption rate, resulting in low drug level in plasma. The scolicidal effects of ABZ-loaded liposome nanoparticles have recently evaluated; however, these particles have several challenges due to their low encapsulated load. This investigation was designed to evaluate and compare in vitro apoptotic activities of ABZ sulfoxide (ABZs) and ABZs-loaded poly(lactic-co-glycolic acid) (PLGA)-PEG against protoscoleces (PSCs). ABZs-loaded PLGA-PEG was prepared by a double-emulsion method (W1/O/W2). Various concentrations of ABZs and ABZs-loaded PLGA-PEG (50, 100, 150, and 200 μg/ml) were experimentally tested against PSC of CE at different exposure times (5, 10, 20, 30, and 60 min). ABZs-loaded PLGA-PEG at concentrations of 150 and 200 μg/ml was able to act at a 100 % scolicidal rate in all exposure times (5 to 60 min), while ABZs at a concentration of 200 μg/ml demonstrated 94, 100, and 100 % mortality rates following 20, 30, and 60 min of exposure times, respectively. The messenger RNA (mRNA) expression of caspase-3 was assessed by semi-quantitative RT-PCR after 15 h of exposure. Caspase-3 mRNA expression was higher in both PSC treated with ABZs and PSC treated with ABZs-loaded PLGA-PEG than that in control groups (P  0.05). DNA fragmentation assay and ultrastructural changes revealed that ABZs and ABZs-loaded PLGA-PEG induced the apoptosis of PSC by activation of caspase-3. The higher permeability and scolicidal rate of ABZs-loaded PLGA-PEG can be addressed as an effectual alternative strategy to improve the treatment of human CE.

  4. PLGA nanoparticles as chlorhexidine-delivery carrier to resin-dentin adhesive interface.

    Science.gov (United States)

    Priyadarshini, Balasankar Meera; Mitali, Kakran; Lu, Thong Beng; Handral, Harish K; Dubey, Nileshkumar; Fawzy, Amr S

    2017-07-01

    To characterize and deliver fabricated CHX-loaded PLGA-nanoparticles inside micron-sized dentinal-tubules of demineralized dentin-substrates and resin-dentin interface. Nanoparticles fabricated by emulsion evaporation were assessed in-vitro by different techniques. Delivery of drug-loaded nanoparticles to demineralized dentin substrates, interaction with collagen matrix, and ex-vivo CHX-release profiles using extracted teeth connected to experimental setup simulating pulpal hydrostatic pressure were investigated. Furthermore, nanoparticles association/interaction with a commercial dentin-adhesive applied to demineralized dentin substrates were examined. The results showed that the formulated nanoparticles demonstrated attractive physicochemical properties, low cytotoxicity, potent antibacterial efficacy, and slow degradation and gradual CHX release profiles. Nanoparticles delivered efficiently inside dentinal-tubules structure to sufficient depth (>10μm) against the simulated upward pulpal hydrostatic-pressure, even after bonding-resins infiltration and were attached/retained on collagen-fibrils. These results verified the potential significance of this newly introduced drug-delivery therapeutic strategy for future clinical applications and promote for a new era of future dental research. This innovative drug-delivery strategy has proven to be a reliable method for delivering treatments that could be elaborated for other clinical applications in adhesive and restorative dentistry. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Delivery of phytochemical thymoquinone using molecular micelle modified poly(D, L lactide-co-glycolide) (PLGA) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ganea, Gabriela M; Warner, Isiah M [Department of Chemistry, Louisiana State University, 434 Choppin Hall, Baton Rouge, LA 70803 (United States); Fakayode, Sayo O [Department of Chemistry, Anderson Center Modular Unit 244-B, Winston-Salem State University, Winston Salem, NC 27110 (United States); Losso, Jack N [Food Science Department, Louisiana State University Agricultural Center, 111 Food Science Building, Baton Rouge, LA 70803 (United States); Van Nostrum, Cornelus F [Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Sorbonnelaan 16, 3508 TB Utrecht (Netherlands); Sabliov, Cristina M, E-mail: iwarner@lsu.edu [Biological and Agricultural Engineering Department, Louisiana State University Agricultural Center, 141 E B Doran Building, Baton Rouge, LA 70803 (United States)

    2010-07-16

    Continuous efforts have been made in the development of potent benzoquinone-based anticancer drugs aiming for improved water solubility and reduced adverse reactions. Thymoquinone is a liposoluble benzoquinone-based phytochemical that has been shown to have remarkable antioxidant and anticancer activities. In the study reported here, thymoquinone-loaded PLGA nanoparticles were synthesized and evaluated for physico-chemical, antioxidant and anticancer properties. The nanoparticles were synthesized by an emulsion solvent evaporation method using anionic molecular micelles as emulsifiers. The system was optimized for maximum entrapment efficiency using a Box-Behnken experimental design. Optimum conditions were found for 100 mg PLGA, 15 mg TQ and 0.5% w/v poly(sodium N-undecylenyl-glycinate) (poly-SUG). In addition, other structurally related molecular micelles such as poly(sodium N-heptenyl-glycinate) (poly-SHG), poly(sodium N-undecylenyl-leucinate) (poly-SUL), and poly(sodium N-undecylenyl-valinate) (poly-SUV) were also examined as emulsifiers. All investigated molecular micelles provided excellent emulsifier properties, leading to maximum optimized TQ entrapment efficiency, and monodispersed particle sizes below 200 nm. The release of TQ from molecular micelle modified nanoparticles was investigated by dialysis and reached lower levels than the free drug. The antioxidant activity of TQ-loaded nanoparticles, indicated by IC50 (mg ml{sup -1} TQ for 50% 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity), was highest for poly-SUV emulsified nanoparticles (0.030 {+-} 0.002 mg ml{sup -1}) as compared to free TQ. In addition, it was observed that TQ-loaded nanoparticles emulsified with poly-SUV were more effective than free TQ against MDA-MB-231 cancer cell growth inhibition, presenting a cell viability of 16.0 {+-} 5.6% after 96 h.

  6. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy

    Science.gov (United States)

    2012-01-01

    Background Nanoparticle based delivery of anticancer drugs have been widely investigated. However, a very important process for Research & Development in any pharmaceutical industry is scaling nanoparticle formulation techniques so as to produce large batches for preclinical and clinical trials. This process is not only critical but also difficult as it involves various formulation parameters to be modulated all in the same process. Methods In our present study, we formulated curcumin loaded poly (lactic acid-co-glycolic acid) nanoparticles (PLGA-CURC). This improved the bioavailability of curcumin, a potent natural anticancer drug, making it suitable for cancer therapy. Post formulation, we optimized our process by Reponse Surface Methodology (RSM) using Central Composite Design (CCD) and scaled up the formulation process in four stages with final scale-up process yielding 5 g of curcumin loaded nanoparticles within the laboratory setup. The nanoparticles formed after scale-up process were characterized for particle size, drug loading and encapsulation efficiency, surface morphology, in vitro release kinetics and pharmacokinetics. Stability analysis and gamma sterilization were also carried out. Results Results revealed that that process scale-up is being mastered for elaboration to 5 g level. The mean nanoparticle size of the scaled up batch was found to be 158.5 ± 9.8 nm and the drug loading was determined to be 10.32 ± 1.4%. The in vitro release study illustrated a slow sustained release corresponding to 75% drug over a period of 10 days. The pharmacokinetic profile of PLGA-CURC in rats following i.v. administration showed two compartmental model with the area under the curve (AUC0-∞) being 6.139 mg/L h. Gamma sterilization showed no significant change in the particle size or drug loading of the nanoparticles. Stability analysis revealed long term physiochemical stability of the PLGA-CURC formulation. Conclusions A successful effort towards

  7. Effect of the Freezing Step in the Stability and Bioactivity of Protein-Loaded PLGA Nanoparticles Upon Lyophilization

    DEFF Research Database (Denmark)

    Fonte, Pedro; Andrade, Fernanda; Azevedo, Cláudia

    2016-01-01

    , sucrose and sorbitol as cryoprotectants was evaluated. METHODS: Cryoprotectants were co-encapsulated with insulin into PLGA nanoparticles and lyophilized using an optimized cycle with freezing at -80°C, in liquid nitrogen, or ramped cooling at -40°C. Upon lyophilization, the stability of protein structure...

  8. Co-encapsulation of lyoprotectants improves the stability of protein-loaded PLGA nanoparticles upon lyophilization

    DEFF Research Database (Denmark)

    Fonte, Pedro; Araújo, Francisca; Seabra, Vítor

    2015-01-01

    The purpose of this work was to evaluate the influence of the co-encapsulation of lyoprotectants with insulin into PLGA nanoparticles, on the stability of the protein and nanoparticles upon lyophilization. Different lyoprotectants were used, namely trehalose, glucose, sucrose, fructose and sorbitol...... formulations with externally added lyoprotectants, except trehalose, showed crystallinity. FTIR assessment showed that co-encapsulating lyoprotectants better preserved insulin structure upon lyophilization with a spectral area overlap of 82-87%, compared to only 72% in lyoprotectant absence. These results were...... confirmed by circular dichroism spectroscopy. Surprisingly, the simultaneous co-encapsulation and addition of lyoprotectants was detrimental to protein stabilization. The insulin in vitro release studies demonstrated that formulations with co-encapsulated trehalose, glucose, sucrose, fructose and sorbitol...

  9. Codelivery of SH-aspirin and curcumin by mPEG-PLGA nanoparticles enhanced antitumor activity by inducing mitochondrial apoptosis

    Directory of Open Access Journals (Sweden)

    Zhou L

    2015-08-01

    Full Text Available Lin Zhou,1,2,* Xingmei Duan,1,2,* Shi Zeng,1 Ke Men,1 Xueyan Zhang,1 Li Yang,1 Xiang Li1 1State Key Laboratory of Biotherapy, Cancer Center and Department of Urology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China; 2Sichuan Food and Drug Safety Monitoring and Review of Certification, Adverse Reaction Monitoring Center, Drug Abuse Monitoring Center, Chengdu, People’s Republic of China *These authors contributed equally to this work Abstract: Natural product curcumin (Cur and H2S-releasing prodrug SH-aspirin (SH-ASA are potential anticancer agents with diverse mechanisms, but their clinical application prospects are restricted by hydrophobicity and limited efficiency. In this work, we coencapsulated SH-ASA and Cur into methoxy poly(ethylene glycol-poly (lactide-coglycolide (mPEG-PLGA nanoparticles through a modified oil-in-water single-emulsion solvent evaporation process. The prepared SH-ASA/Cur-coloaded mPEG-PLGA nanoparticles had a mean particle size of 122.3±6.8 nm and were monodispersed (polydispersity index =0.179±0.016 in water, with high drug-loading capacity and stability. Intriguingly, by treating with SH-ASA/Cur-coloaded mPEG-PLGA nanoparticles, obvious synergistic anticancer effects on ES-2 and SKOV3 human ovarian carcinoma cells were observed in vitro, and activation of the mitochondrial apoptosis pathway was indicated. Our results demonstrated that SH-ASA/Cur-coloaded mPEG-PLGA nanoparticles could have potential clinical advantages for the treatment of ovarian cancer. Keywords: drug delivery, cancer therapy, ovarian cancer, synergistic effect

  10. Preparation, Optimization and Activity Evaluation of PLGA/Streptokinase Nanoparticles Using Electrospray

    Directory of Open Access Journals (Sweden)

    Nasrin Yaghoobi

    2017-04-01

    Full Text Available Purpose: PLGA nanoparticles (NPs have been extensively investigated as carriers of different drug molecules to enhance their therapeutic effects or preserve them from the aqueous environment. Streptokinase (SK is an important medicine for thrombotic diseases. Methods: In this study, we used electrospray to encapsulate SK in PLGA NPs and evaluate its activity. This is the first paper which investigates activity of an electrosprayed enzyme. Effect of three input parameters, namely, voltage, internal diameter of needle (nozzle and concentration ratio of polymer to protein on size and size distribution (SD of NPs was evaluated using artificial neural networks (ANNs. Optimizing the SD has been rarely reported so far in electrospray. Results: From the results, to obtain lowest size of nanoparticles, ratio of polymer/enzyme and needle internal diameter (ID should be low. Also, minimum SD was obtainable at high values of voltage. The optimum preparation had mean (SD size, encapsulation efficiency and loading capacity of 37 (12 nm, 90% and 8.2%, respectively. Nearly, 20% of SK was released in the first 30 minutes, followed by cumulative release of 41% during 72 h. Activity of the enzyme was also checked 30 min after preparation and 19.2% activity was shown. Conclusion: Our study showed that electrospraying could be an interesting approach to encapsulate proteins/enzymes in polymeric nanoparticles. However, further works are required to assure maintaining the activity of the enzyme/protein after electrospray.

  11. Farnesylthiosalicylic acid-loaded lipid-polyethylene glycol-polymer hybrid nanoparticles for treatment of glioblastoma.

    Science.gov (United States)

    Kaffashi, Abbas; Lüle, Sevda; Bozdağ Pehlivan, Sibel; Sarısözen, Can; Vural, İmran; Koşucu, Hüsnü; Demir, Taner; Buğdaycı, Kadir Emre; Söylemezoğlu, Figen; Karlı Oğuz, Kader; Mut, Melike

    2017-08-01

    We aimed to develop lipid-polyethylene glycol (PEG)-polymer hybrid nanoparticles, which have high affinity to tumour tissue with active ingredient, a new generation antineoplastic drug, farnesylthiosalicylic acid (FTA) for treatment of glioblastoma. Farnesylthiosalicylic acid-loaded poly(lactic-co-glycolic acid)-1,2 distearoyl-glycerol-3-phospho-ethanolamine-N [methoxy (PEG)-2000] ammonium salt (PLGA-DSPE-PEG) with or without 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) hybrid nanoparticles has been prepared and evaluated for in-vitro characterization. Cytotoxicity of FTA-loaded nanoparticles along with its efficacy on rat glioma-2 (RG2) cells was also evaluated both in vitro (in comparison with non-malignant cell line, L929) and in vivo. Scanning electron microscopy studies showed that all formulations prepared had smooth surface and spherical in shape. FTA and FTA-loaded nanoparticles have cytotoxic activity against RG2 glioma cell lines in cell culture studies, which further increases with addition of DOTAP. Magnetic resonance imaging and histopathologic evaluation on RG2 tumour cells in rat glioma model (49 female Wistar rats, 250-300 g) comparing intravenous and intratumoral injections of the drug have been performed and FTA-loaded nanoparticles reduced tumour size significantly in in-vivo studies, with higher efficiency of intratumoral administration than intravenous route. Farnesylthiosalicylic acid-loaded PLGA-DSPE-PEG-DOTAP hybrid nanoparticles are proven to be effective against glioblastoma in both in-vitro and in-vivo experiments. © 2017 Royal Pharmaceutical Society.

  12. Ciprofloxacin-loaded PLGA nanoparticles against Cystic Fibrosis P. aeruginosa Lung Infections.

    OpenAIRE

    Günday Türeli, Nazende; Torge, Afra; Juntke, Jenny; Schwarz, Bianca C; Schneider-Daum, Nicole; Türeli, Akif Emre; Lehr, Claus-Michael; Schneider, Marc

    2017-01-01

    Current pulmonary treatments against Pseudomonasaeruginosa infections in cystic fibrosis (CF) lung suffer from deactivation of the drug and immobilization in thick and viscous biofilm/mucus blend, along with the general antibiotic resistance. Administration of nanoparticles (NPs) with high antibiotic load capable of penetrating the tight mesh of biofilm/mucus can be an advent to overcome the treatment bottlenecks. Biodegradable and biocompatible polymer nanoparticles efficiently loaded with c...

  13. Antitumor activity of docetaxel-loaded polymeric nanoparticles fabricated by Shirasu porous glass membrane-emulsification technique

    Directory of Open Access Journals (Sweden)

    Yu YN

    2013-07-01

    Full Text Available Yunni Yu,1,* Songwei Tan,1,2,* Shuang Zhao,1 Xiangting Zhuang,1 Qingle Song,1 Yuliang Wang,1 Qin Zhou,2,3 Zhiping Zhang1,2 1Tongji School of Pharmacy, 2National Engineering Research Center for Nanomedicine, 3College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China *These authors contributed equally to this work Abstract: Docetaxel (DTX has excellent efficiency against a wide spectrum of cancers. However, the current clinical formulation has limited its usage, as it causes some severe side effects. Various polymeric nanoparticles have thus been developed as alternative formulations of DTX, but they have been mostly fabricated on a laboratory scale. Previously, we synthesized a novel copolymer, poly(lactide-D-α-tocopheryl polyethylene glycol 1000 succinate (PLA-TPGS, and found that it exhibited great potential in drug delivery with improved properties. In this study, we applied the Shirasu porous glass (SPG membrane-emulsification technique to prepare the DTX-loaded PLA-TPGS nanoparticles on a pilot scale. The effect of several formulation variables on the DTX-loaded nanoparticle properties, including particle size, zeta potential, and drug-encapsulation efficiency, were investigated based on surfactant type and concentration in the aqueous phase, organic/aqueous phase volumetric ratio, membrane-pore size, transmembrane cycles, and operation pressure. The DTX-loaded nanoparticles were obtained with sizes of 306.8 ± 5.5 nm and 334.1 ± 2.7 nm (mean value ± standard deviation, and drug-encapsulation efficiency of 81.8% ± 4.5% and 64.5% ± 2.7% for PLA-TPGS and poly(lactic-co-glycolic acid (PLGA nanoparticles, respectively. In vivo pharmacokinetic study exhibited a significant advantage of PLA-TPGS nanoparticles over PLGA nanoparticles and Taxotere. Drug-loaded PLA-TPGS nanoparticles exhibited 1.78-, 6.34- and 3.35-fold higher values for area under the curve, half-life, and mean

  14. Parenteral immunization of PLA/PLGA nanoparticle encapsulating outer membrane protein (Omp) from Aeromonas hydrophila: Evaluation of immunostimulatory action in Labeo rohita (rohu).

    Science.gov (United States)

    Rauta, Pradipta Ranjan; Nayak, Bismita

    2015-05-01

    Advanced vaccine research approaches needs to explore on biodegradable nanoparticles (NPs) based vaccine carrier that can serve as antigen delivery systems as well as immuno-stimulatory action to induce both innate and adaptive immune response in fish. Immunogenicity of PLA and PLGA NPs encapsulating outer membrane protein (Omp) antigen of Aeromonas hydrophila were evaluated through intra-peritoneal injection in fish, Labeo rohita. Antigen loaded PLA-Omp (223.5 ± 13.19 nm) and PLGA-Omp (166.4 ± 21.23 nm) NPs were prepared using double emulsion method by efficiently encapsulating the antigen reaching the encapsulation efficiency 44 ± 4.58% and 59.33 ± 5.13% respectively. Our formulated PLA Omp and PLGA-Omp NPs were in nanometer range (PLA-Omp, it showed considerably slower antigen release in vitro than PLGA-Omp NPs. Other physical properties like zetapotential values and poly dispersity index (PDI) confirmed the stability as well as monodisperse nature of the formulated nanoparticles. The spherical and isolated nature of PLA-Omp and PLGA-Omp NPs were revealed by SEM analysis. Upon immunization of all antigenic formulations (PLA-Omp NP, PLGA-Omp NP, FIA-Omp, PLA NP, PLGA NP, PBS as control), significant higher bacterial agglutination titre and haemolytic activity were observed in case of PLA-Omp and PLGA-Omp immunized groups than rest groups at both 21 days and 42 days. The specific antibody response was significantly increased and persisted up to 42 days of post immunization by PLA-Omp, PLGA-Omp, FIA-Omp. PLA-Omp NPs showed better immune response (higher bacterial agglutination titre, haemolytic activity, specific antibody titre, higher percent survival upon A. hydrophila challenge) than PLGA-Omp in L. rohita confirming its better efficacy. Comparable antibody response of PLA-Omp and PLGA-Omp with FIA-Omp treated groups suggested that PLA and PLGA could be replacement for Freund's adjuvant (for stimulating antibody response) to overcome many side effects

  15. Colon-targeted delivery of cyclosporine A using dual-functional Eudragit® FS30D/PLGA nanoparticles ameliorates murine experimental colitis.

    Science.gov (United States)

    Naeem, Muhammad; Bae, Junhwan; Oshi, Murtada A; Kim, Min-Soo; Moon, Hyung Ryong; Lee, Bok Luel; Im, Eunok; Jung, Yunjin; Yoo, Jin-Wook

    2018-01-01

    Colon-targeted oral nanoparticles (NPs) have emerged as an ideal, safe, and effective therapy for ulcerative colitis (UC) owing to their ability to selectively accumulate in inflamed colonic mucosa. Cyclosporine A (CSA), an immunosuppressive agent, has long been used as rescue therapy in severe steroid-refractory UC. In this study, we developed CSA-loaded dual-functional polymeric NPs composed of Eudragit ® FS30D as a pH-sensitive polymer for targeted delivery to the inflamed colon, and poly(lactic-co-glycolic acid) (PLGA) as a sustained-release polymer. CSA-loaded Eudragit FS30D nanoparticles (ENPs), PLGA nanoparticles (PNPs), and Eudragit FS30D/PLGA nanoparticles (E/PNPs) were prepared using the oil-in-water emulsion method. Scanning electron microscope images and zeta size data showed successful preparation of CSA-loaded NPs. PNPs exhibited a burst drug release of >60% at pH 1.2 (stomach pH) in 0.5 h, which can lead to unwanted systemic absorption and side effects. ENPs effectively inhibited the burst drug release at pH 1.2 and 6.8 (proximal small intestine pH); however, nearly 100% of the CSA in ENPs was released rapidly at pH 7.4 (ileum-colon pH) owing to complete NP dissolution. In contrast to single-functional PNPs and ENPs, the dual-functional E/PNPs minimized burst drug release (only 18%) at pH 1.2 and 6.8, and generated a sustained release at pH 7.4 thereafter. Importantly, in distribution studies in the gastrointestinal tracts of mice, E/PNPs significantly improved CSA distribution to the colon compared with PNPs or ENPs. In a mouse model of colitis, E/PNP treatment improved weight loss and colon length, and decreased rectal bleeding, spleen weight, histological scoring, myeloperoxidase activity, macrophage infiltration, and expression of proinflammatory cytokines compared with PNPs or ENPs. Overall, this work confirms the benefits of CSA-loaded E/PNPs for efficiently delivering CSA to the colon, suggesting their potential for UC therapy.

  16. Antiproliferative effect of ASC-J9 delivered by PLGA nanoparticles against estrogen-dependent breast cancer cells.

    Science.gov (United States)

    Verderio, Paolo; Pandolfi, Laura; Mazzucchelli, Serena; Marinozzi, Maria Rosaria; Vanna, Renzo; Gramatica, Furio; Corsi, Fabio; Colombo, Miriam; Morasso, Carlo; Prosperi, Davide

    2014-08-04

    Among polymeric nanoparticles designed for cancer therapy, PLGA nanoparticles have become one of the most popular polymeric devices for chemotherapeutic-based nanoformulations against several kinds of malignant diseases. Promising properties, including long-circulation time, enhanced tumor localization, interference with "multidrug" resistance effects, and environmental biodegradability, often result in an improvement of the drug bioavailability and effectiveness. In the present work, we have synthesized 1,7-bis(3,4-dimethoxyphenyl)-5-hydroxyhepta-1,4,6-trien-3-one (ASC-J9) and developed uniform ASC-J9-loaded PLGA nanoparticles of about 120 nm, which have been prepared by a single-emulsion process. Structural and morphological features of the nanoformulation were analyzed, followed by an accurate evaluation of the in vitro drug release kinetics, which exhibited Fickian law diffusion over 10 days. The intracellular degradation of ASC-J9-bearing nanoparticles within estrogen-dependent MCF-7 breast cancer cells was correlated to a time- and dose-dependent activity of the released drug. A cellular growth inhibition associated with a specific cell cycle G2/M blocking effect caused by ASC-J9 release inside the cytosol allowed us to put forward a hypothesis on the action mechanism of this nanosystem, which led to the final cell apoptosis. Our study was accomplished using Annexin V-based cell death analysis, MTT assessment of proliferation, radical scavenging activity, and intracellular ROS evaluation. Moreover, the intracellular localization of nanoformulated ASC-J9 was confirmed by a Raman optical imaging experiment designed ad hoc. PLGA nanoparticles and ASC-J9 proved also to be safe for a healthy embryo fibroblast cell line (3T3-L1), suggesting a possible clinical translation of this potential nanochemotherapeutic to expand the inherently poor bioavailability of hydrophobic ASC-J9 that could be proposed for the treatment of malignant breast cancer.

  17. Curdlan-conjugated PLGA nanoparticles possess macrophage stimulant activity and drug delivery capabilities

    CSIR Research Space (South Africa)

    Tukulula, M

    2015-02-01

    Full Text Available There is significant interest in the application of nanoparticles to deliver immunostimulatory signals to cells. We hypothesized that curdlan (immune stimulating polymer) could be conjugated to PLGA and nanoparticles from this copolymer would...

  18. Antioxidant Effects of Quercetin and Catechin Encapsulated into PLGA Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hector Pool

    2012-01-01

    Full Text Available Polymeric nanoparticles (PLGA have been developed for the encapsulation and controlled release of quercetin and catechin. Nanoparticles were fabricated using a solvent displacement method. Physicochemical properties were measured by light scattering, scanning electron microscopy and ζ-potential, X-ray diffraction, infrared spectroscopy and differential scanning calorimetry. Encapsulation efficiency and in vitro release profiles were obtained from differential pulse voltammetry experiments. Antioxidant properties of free and encapsulated flavonoids were determined by TBARS, fluorescence spectroscopy and standard chelating activity methods. Relatively small (d≈ 400 nm polymeric nanoparticles were obtained containing quercetin or catechin in a non-crystalline form (EE ≈ 79% and the main interactions between the polymer and each flavonoid were found to consist of hydrogen bonds. In vitro release profiles were pH-dependant, the more acidic pH, the faster release of each flavonoid from the polymeric nanoparticles. The inhibition of the action of free radicals and chelating properties, were also enhanced when quercetin and catechin were encapsulated within PLGA nanoparticles. The information obtained from this study will facilitate the design and fabrication of polymeric nanoparticles as possible oral delivery systems for encapsulation, protection and controlled release of flavonoids aimed to prevent oxidative stress in human body or food products.

  19. Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells.

    Science.gov (United States)

    Cerqueira, Brenda Brenner S; Lasham, Annette; Shelling, Andrew N; Al-Kassas, Raida

    2017-07-01

    This study aimed at development of poly (lactic-co-glycolic acid) (PLGA) nanoparticles embedded with paclitaxel and coated with hyaluronic acid (HA-PTX-PLGA) to actively target the drug to a triple negative breast cancer cells. Nanoparticles were successfully fabricated using a modified oil-in-water emulsion method. The effect of various formulations parameters on the physicochemical properties of the nanoparticles was investigated. SEM imaging confirmed the spherical shape and nano-scale size of the nanoparticles. A sustained drug release profile was obtained and enhanced PTX cytotoxicity was observed when MDA-MB-231 cells were incubated with the HA-PTX-PLGA formulation compared to cells incubated with the non-HA coated nanoparticles. Moreover, HA-PLGA nanoparticles exhibited improved cellular uptake, based on a possible receptor mediated endocytosis due to interaction of HA with CD44 receptors when compared to non-coated PLGA nanoparticles. The non-haemolytic potential of the nanoparticles indicated the suitability of the developed formulation for intravenous administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Design and Development of Bioceramic Based Functionalized PLGA Nanoparticles of Risedronate for Bone Targeting: In-vitro Characterization and Pharmacodynamic Evaluation.

    Science.gov (United States)

    Rawat, Purnima; Manglani, Kapil; Gupta, Sarika; Kalam, Abul; Vohora, Divya; Ahmad, Farhan Jalees; Talegaonkar, Sushama

    2015-10-01

    Bioceramic(Hydroxyapatite) based Poly(D,L-lactide-co-glycolide) (PLGA) and polyethylene glycol (PEG) nanoparticles of Risedronate was prepared by dialysis method for bone-targeting. Risedronate, a targeting moiety that has a strong affinity for bone, was conjugated to PLGA via carbodiimide chemistry. Mono-methoxy PEG(mPEG)-PLGA block polymers were synthesized and used to impart surface hydrophilicity to nanoparticles to avoid its uptake by reticuloendothelial system (RES). The structure of prepared di block copolymers were characterized by FT-IR and NMR spectrometry. Risedronate was adsorbed on the surface of hydroxyapatite (RIS-HA) and it was conjugated with different ratios of mPEG-PLGA. The formation of surface-modified PLGA nanoparticle prepared with various ratios of risedronate as well as hydroxyapatite and mPEG was confirmed by (1)H NMR and FT-IR spectrometry. Size and % entrapment of the prepared nanoparticle was found to be 79.3 ± 2.3 nm and 93 ± 3.1%. Transmission electron microscopy (TEM) revealed that mPEG-PLGA-RIS-HA nanoparticles possess smooth and uniform surface. Pharmacodynamic study was performed on Dexamethasone (DEX) induced osteoporotic model. The effect of various formulations (mPEG-PLGA-RIS, mPEG-PLGA-RIS-HA and RISOFOS tablet) on bone was studied by Volume bone density (VBD) and by histopathological evaluation. Interestingly mPEG-PLGA-RIS-HA, showed a significant enhancement in bone micro-architecture when compared with other formulations. The results strongly implicated that mPEG-PLGA-RIS-HA has a therapeutic benefits over risedronate sodium monotherapy for the treatment of osteoporosis in a rat model.

  1. Copper oxide loaded PLGA nanospheres: towards a multifunctional nanoscale platform for ultrasound-based imaging and therapy

    Science.gov (United States)

    Perlman, Or; Weitz, Iris S.; Sivan, Sarit S.; Abu-Khalla, Hiba; Benguigui, Madeleine; Shaked, Yuval; Azhari, Haim

    2018-05-01

    Copper oxide nanoparticles (CuO-NPs) are increasingly becoming the subject of investigation exploring their potential use for diagnostic and therapeutic purposes. Recent work has demonstrated their anticancer potential, as well as contrast agent capabilities for magnetic resonance imaging (MRI) and through-transmission ultrasound. However, no capability of CuO-NPs has been demonstrated using conventional ultrasound systems, which, unlike the former, are widely deployed in the clinic. Furthermore, in spite of their potential as multifunctional nano-based materials for diagnosis and therapy, CuO-NPs have been delayed from further clinical application due to their inherent toxicity. Herein, we present the synthesis of a novel nanoscale system, composed of CuO-loaded PLGA nanospheres (CuO-PLGA-NS), and demonstrate its imaging detectability and augmented heating effect by therapeutic ultrasound. The CuO-PLGA-NS were prepared by a double emulsion (W/O/W) method with subsequent solvent evaporation. They were characterized as sphere-shaped, with size approximately 200 nm. Preliminary results showed that the viability of PANC-1, human pancreatic adenocarcinoma cells was not affected after 72 h exposure to CuO-PLGA-NS, implying that PLGA masks the toxic effects of CuO-NPs. A systematic ultrasound imaging evaluation of CuO-PLGA-NS, using a conventional system, was performed in vitro and ex vivo using poultry heart and liver, and also in vivo using mice, all yielding a significant contrast enhancement. In contrast to CuO-PLGA-NS, neither bare CuO-NPs nor blank PLGA-NS possess these unique advantageous ultrasonic properties. Furthermore, CuO-PLGA-NS accelerated ultrasound-induced temperature elevation by more than 4 °C within 2 min. The heating efficiency (cumulative equivalent minutes at 43 °C) was increased approximately six-fold, demonstrating the potential for improved ultrasound ablation. In conclusion, CuO-PLGA-NS constitute a versatile platform, potentially useful for

  2. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs.

    Science.gov (United States)

    Hiremath, Jagadish; Kang, Kyung-il; Xia, Ming; Elaish, Mohamed; Binjawadagi, Basavaraj; Ouyang, Kang; Dhakal, Santosh; Arcos, Jesus; Torrelles, Jordi B; Jiang, X; Lee, Chang Won; Renukaradhya, Gourapura J

    2016-01-01

    Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.

  3. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs.

    Directory of Open Access Journals (Sweden)

    Jagadish Hiremath

    Full Text Available Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV. Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA nanoparticle (PLGA-NP based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2 chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.

  4. Synthesis of PLGA nanoparticles of tea polyphenols and their strong in vivo protective effect against chemically induced DNA damage

    Directory of Open Access Journals (Sweden)

    Srivastava AK

    2013-04-01

    Full Text Available Amit Kumar Srivastava,1 Priyanka Bhatnagar,2 Madhulika Singh,1 Sanjay Mishra,1 Pradeep Kumar,2 Yogeshwer Shukla,1 Kailash Chand Gupta1,2 1Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR, Lucknow, India; 2Nucleic Acid Research Laboratory, Institute of Genomics and Integrative Biology (CSIR, Delhi University Campus, India Abstract: In spite of proficient results of several phytochemicals in preclinical settings, the conversion rate from bench to bedside is not very encouraging. Many reasons are attributed to this limited success, including inefficient systemic delivery and bioavailability under in vivo conditions. To achieve improved efficacy, polyphenolic constituents of black (theaflavin [TF] and green (epigallocatechin-3-gallate [EGCG] tea in poly(lactide-co-glycolide nanoparticles (PLGA-NPs were entrapped with entrapment efficacy of ~18% and 26%, respectively. Further, their preventive potential against 7,12-dimethylbenzanthracene (DMBA-induced DNA damage in mouse skin using DNA alkaline unwinding assay was evaluated. Pretreatment (topically of mouse skin with either TF or EGCG (100 µg/mouse doses exhibits protection of 45.34% and 28.32%, respectively, against DMBA-induced DNA damage. However, pretreatment with TF-loaded PLGA-NPs protects against DNA damage 64.41% by 1/20th dose of bulk, 71.79% by 1/10th dose of bulk, and 72.46% by 1/5th dose of bulk. Similarly, 51.28% (1/20th of bulk, 57.63% (1/10th of bulk, and 63.14% (1/5th of bulk prevention was noted using EGCG-loaded PLGA-NP doses. These results showed that tea polyphenol-loaded PLGA-NPs have ~30-fold dose-advantage than bulk TF or EGCG doses. Additionally, TF- or EGCG-loaded PLGA-NPs showed significant potential for induction of DNA repair genes (XRCC1, XRCC3, and ERCC3 and suppression of DNA damage responsive genes (p53, p21, MDM2, GADD45α, and COX-2 as compared with respective bulk TF or EGCG doses. Taken together, TF- or EGCG-loaded PLGA-NPs showed a superior

  5. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods

    Science.gov (United States)

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-01

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml-1 concentrations (both p 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol, methanol or DMSO. Consequently, obtained results show that the method of selection is extremely important and will influence the

  6. Synergistic effect of PLGA nanoparticles and submicron triglyceride droplets in enhancing the intestinal solubilisation of a lipophilic weak base.

    Science.gov (United States)

    Joyce, Paul; Prestidge, Clive A

    2018-06-15

    A novel hybrid microparticulate system composed of poly(lactic-co-glycolic) acid (PLGA) nanoparticles and submicron medium-chain triglyceride (MCT) droplets was fabricated to overcome the pH-dependent solubility and precipitation challenges associated with a model poorly water-soluble weak base, cinnarizine (CIN). Molecular CIN was confined within both the lipid and polymer phase of PLGA-lipid hybrid (PLH) and PLGA-lipid-mannitol hybrid (PLMH) particles, which offered significant biopharmaceutical advantages in comparison to the unformulated drug, submicron MCT droplets and PLGA nanoparticles. This was highlighted by a substantial reduction in the pH-induced precipitation during in vitro gastrointestinal two-step dissolution studies. A >2.5-fold solubilisation enhancement was observed for the composite particles during simulated intestinal conditions, compared to pure CIN. Furthermore, the drug solubilisation capacity during in vitro intestinal digesting conditions was ~2-2.5 times greater for PLMH particles compared to the precursor emulsion droplets and PLGA nanoparticles. The observations from this study indicate that a synergy exists between the degradation products of PLGA nanoparticles and lipid droplets, whereby the dual-phase release and dissolution mechanism of the hybrid particles aids in prolonging pH-provoked precipitation. Subsequently, the ability for PLGA polymers and oligomers to act as polymeric precipitation inhibitors has been highlighted for the first time. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration

    Directory of Open Access Journals (Sweden)

    Yu T

    2016-02-01

    Full Text Available Ting Yu,1,* Bei Xu,1,* Lili He,2 Shan Xia,3 Yan Chen,1 Jun Zeng,1 Yongmei Liu,1 Shuangzhi Li,1 Xiaoyue Tan,4 Ke Ren,1 Shaohua Yao,1 Xiangrong Song1 1State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 2College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, 3Central Laboratory, Science Education Department, Chengdu Normal University, Chengdu, Sichuan, 4Department of Pathology/Collaborative Innovation Center of Biotherapy, Medical School of Nankai University, Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%, probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on

  8. Ibuprofen delivered by poly(lactic-co-glycolic acid) (PLGA) nanoparticles to human gastric cancer cells exerts antiproliferative activity at very low concentrations

    Science.gov (United States)

    Bonelli, Patrizia; Tuccillo, Franca M; Federico, Antonella; Napolitano, Maria; Borrelli, Antonella; Melisi, Daniela; Rimoli, Maria G; Palaia, Raffaele; Arra, Claudio; Carinci, Francesco

    2012-01-01

    Purpose Epidemiological, clinical, and laboratory studies have suggested that ibuprofen, a commonly used nonsteroidal anti-inflammatory drug, inhibits the promotion and proliferation of certain tumors. Recently, we demonstrated the antiproliferative effects of ibuprofen on the human gastric cancer cell line MKN-45. However, high doses of ibuprofen were required to elicit these antiproliferative effects in vitro. The present research compared the antiproliferative effects of ibuprofen delivered freely and released by poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) in MKN-45 cells. Methods MKN-45 human gastric adenocarcinoma cells were treated with ibuprofen-loaded PLGA NPs. The proliferation of MKN-45 cells was then assessed by cell counting. The uptake of NPs was imaged by fluorescence microscopy and flow cytometry. The release of ibuprofen from ibuprofen-loaded PLGA NPs in the cells was evaluated by gas chromatography–mass spectrometry. Results Dramatic inhibition of cellular proliferation was observed in cells treated with ibuprofen-loaded PLGA NPs versus those treated with free ibuprofen at the same concentration. The localization of NPs was cytoplasmic. The initiation of ibuprofen release was rapid, commencing within 2 hours, and then increased slowly over time, reaching a maximum concentration at 24 hours. The inhibition of proliferation was confirmed to be due to the intracellular release of ibuprofen from the NPs. Using PLGA NPs as carriers, ibuprofen exerted an antiproliferative activity at concentrations > 100 times less than free ibuprofen, suggesting greater efficiency and less cellular toxicity. In addition, when carried by PLGA NPs, ibuprofen more quickly induced the expression of transcripts involved in proliferation and invasiveness processes. Conclusion Ibuprofen exerted an antiproliferative effect on MKN-45 cells at low concentrations. This effect was achieved using PLGA NPs as carriers of low doses of ibuprofen. PMID:23180963

  9. Synthesis and characterization of PLGA nanoparticles containing mixture of curcuminoids for optimization of photodynamic inactivation

    Science.gov (United States)

    Suzuki, Isabella L.; Inada, Natália M.; Marangoni, Valéria S.; Corrêa, Thaila Q.; Zucolotto, Valtencir; Kurachi, Cristina; Bagnato, Vanderlei S.

    2016-03-01

    Because of excessive use of antibiotics there is a growth in the number of resistant strains. Due to this growth of multiresistant bacteria, the number of searches looking for alternatives antibacterial therapeutic has increased, and among them is the antimicrobial photodynamic therapy (aPDT) or photodynamic inactivation (PDI). The photodynamic inactivation involves the action of a photosensitizer (PS), activated by a specific wavelength, in the present of oxygen, resulting in cytotoxic effect. Natural curcumin, consists of a mixture of three curcuminoids: curcumin, demethoxycurcumin and bis-demethoxycurcumin. Curcumin has various pharmacological properties, however, has extremely low solubility in aqueous solutions, which difficult the use as therapeutic agent. The present study aims to develop polymeric PLGA nanoparticles containing curcuminoids to improve water solubility, increase bioavailability providing protection from degradation (chemistry and physics), and to verify the efficacy in photodynamic inactivation of microorganisms. The PLGA-CURC were synthesized by nanoprecipitation, resulting in two different systems, with an average size of 172 nm and 70% encapsulation efficiency for PLGA-CURC1, and 215 nm and 80% for PLGA-CURC2. Stability tests showed the polymer protected the curcuminoids against premature degradation. Microbiological tests in vitro with curcuminoids water solution and both suspension of PLGA-CURC were efficient in Gram-positive bacterium and fungus. However, the solution presented dark toxicity at high concentrations, unlike the nanoparticles. Thus, it was concluded that it was possible to let curcuminoids water soluble by encapsulation in PLGA nanoparticles, to ensure improved stability in aqueous medium (storage), and to inactivate bacteria and fungus.

  10. Gambogic acid-loaded biomimetic nanoparticles in colorectal cancer treatment

    Directory of Open Access Journals (Sweden)

    Zhang Z

    2017-02-01

    Full Text Available Zhen Zhang,1 Hanqing Qian,2 Mi Yang,2 Rutian Li,2 Jing Hu,1 Li Li,1 Lixia Yu,2 Baorui Liu,1,2 Xiaoping Qian1,2 1Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, 2Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute, Nanjing University, Nanjing, China Abstract: Gambogic acid (GA is expected to be a potential new antitumor drug, but its poor aqueous solubility and inevitable side effects limit its clinical application. Despite these inhe­rent defects, various nanocarriers can be used to promote the solubility and tumor targeting of GA, improving antitumor efficiency. In addition, a cell membrane-coated nanoparticle platform that was reported recently, unites the customizability and flexibility of a synthetic copolymer, as well as the functionality and complexity of natural membrane, and is a new synthetic biomimetic nanocarrier with improved stability and biocompatibility. Here, we combined poly(lactic-co-glycolic acid (PLGA with red blood-cell membrane (RBCm, and evaluated whether GA-loaded RBCm nanoparticles can retain and improve the antitumor efficacy of GA with relatively lower toxicity in colorectal cancer treatment compared with free GA. We also confirmed the stability, biocompatibility, passive targeting, and few side effects of RBCm-GA/PLGA nanoparticles. We expect to provide a new drug carrier in the treatment of colorectal cancer, which has strong clinical application prospects. In addition, the potential antitumor drug GA and other similar drugs could achieve broader clinical applications via this biomimetic nanocarrier. Keywords: gambogic acid, nanocarriers, RBCm-GA/PLGA nanoparticles, colorectal cancer

  11. New Perspective in the Formulation and Characterization of Didodecyldimethylammonium Bromide (DMAB Stabilized Poly(Lactic-co-Glycolic Acid (PLGA Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Rebecca Gossmann

    Full Text Available Over the last few decades the establishment of nanoparticles as suitable drug carriers with the transport of drugs across biological barriers such as the gastrointestinal barrier moved into the focus of many research groups. Besides drug transport such carrier systems are well suited for the protection of drugs against enzymatic and chemical degradation. The preparation of biocompatible and biodegradable nanoparticles based on poly(lactic-co-glycolic acid (PLGA is intensively described in literature, while especially nanoparticles with cationic properties show a promising increased cellular uptake. This is due to the electrostatic interaction between the cationic surface and the negatively charged lipid membrane of the cells. Even though several studies achieved the successful preparation of nanoparticles stabilized with the cationic surfactants such as didodecyldimethylammonium bromide (DMAB, in most cases insufficient attention was paid to a precise analytical characterization of the nanoparticle system. The aim of the present work was to overcome this deficit by presenting a new perspective in the formulation and characterization of DMAB-stabilized PLGA nanoparticles. Therefore these nanoparticles were carefully examined with regard to particle diameter, zeta potential, the effect of variation in stabilizer concentration, residual DMAB content, and electrolyte stability. Without any steric stabilization, the DMAB-modified nanoparticles were sensitive to typical electrolyte concentrations of biological environments due to compression of the electrical double layer in conjunction with a decrease in zeta potential. To handle this problem, the present study proposed two modifications to enable electrolyte stability. Both polyvinyl alcohol (PVA and polyethylene glycol (PEG modified DMAB-PLGA-nanoparticles were stable during electrolyte addition. Furthermore, in contrast to unmodified DMAB-PLGA-nanoparticles and free DMAB, such modifications led to

  12. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods

    International Nuclear Information System (INIS)

    Arasoglu, Tülin; Mansuroglu, Banu; Derman, Serap

    2016-01-01

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o–w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml −1 concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as

  13. Nanofibrous poly(lactide-co-glycolide membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Parizek M

    2012-04-01

    Full Text Available Martin Parizek1, Timothy EL Douglas2, Katarina Novotna1, Alexander Kromka3, Mariea A Brady4, Andrea Renzing4, Eske Voss4, Marketa Jarosova3, Lukas Palatinus3, Pavel Tesarek5, Pavla Ryparova5, Vera Lisa1, Ana M dos Santos2, Lucie Bacakova11Department of Biomaterials and Tissue Engineering, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2Polymer Chemistry and Biomaterials Group, Ghent University, Ghent, Belgium; 3Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 4Department of Oral and Maxillofacial Surgery, University of Kiel, Kiel, Germany; 5Czech Technical University in Prague, Faculty of Civil Engineering, Prague, Czech RepublicBackground: Nanofibrous scaffolds loaded with bioactive nanoparticles are promising materials for bone tissue engineering.Methods: In this study, composite nanofibrous membranes containing a copolymer of L-lactide and glycolide (PLGA and diamond nanoparticles were fabricated by an electrospinning technique. PLGA was dissolved in a mixture of methylene chloride and dimethyl formamide (2:3 at a concentration of 2.3 wt%, and nanodiamond (ND powder was added at a concentration of 0.7 wt% (about 23 wt% in dry PLGA.Results: In the composite scaffolds, the ND particles were either arranged like beads in the central part of the fibers or formed clusters protruding from the fibers. In the PLGA-ND membranes, the fibers were thicker (diameter 270 ± 9 nm than in pure PLGA meshes (diameter 218 ± 4 nm, but the areas of pores among these fibers were smaller than in pure PLGA samples (0.46 ± 0.02 µm2 versus 1.28 ± 0.09 µm2 in pure PLGA samples. The PLGA-ND membranes showed higher mechanical resistance, as demonstrated by rupture tests of load and deflection of rupture probe at failure. Both types of membranes enabled the attachment, spreading, and subsequent proliferation of human osteoblast-like MG-63 cells to a similar extent, although these

  14. Dorzolamide-loaded PLGA/vitamin E TPGS nanoparticles for glaucoma therapy: Pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits.

    Science.gov (United States)

    Warsi, Musarrat H; Anwar, Mohammed; Garg, Vaidehi; Jain, Gaurav K; Talegaonkar, Sushama; Ahmad, Farhan J; Khar, Roop K

    2014-10-01

    Poor drug penetration and rapid clearance after topical instillation of a drug formulation into the eyes are the major causes for the lower ocular bioavailability from conventional eye drops. Along with this, poor encapsulation efficiency of hydrophilic drug in polymeric nanoparticles remains a major formulation challenge. Taking this perspective into consideration, dorzolamide (DZ)-loaded PLGA nanoparticles were developed employing two different emulsifiers (PVA and vitamin E TPGS) and the effects of various formulation and process variables on particle size and encapsulation efficiency were assessed. Nanoparticles emulsified with vitamin E TPGS (DZ-T-NPs) were found to possess enhanced drug encapsulation (59.8±6.1%) as compared to those developed with PVA as emulsifier (DZ-P-NPs). Transcorneal permeation study revealed a significant enhancement in permeation (1.8-2.5 fold) as compared to solution. In addition, ex vivo biodistribution study showed a higher concentration of drug in the aqueous humour (1.5-2.3 fold). Histological and IR-camera studies proved the non-irritant potential of the formulations. Pharmacoscintigraphic studies revealed the reduced corneal clearance, as well as naso-lachrymal drainage in comparison to drug solution. Furthermore, efficacy study revealed that DZ-P-NPs and DZ-T-NPs significantly reduced the intraocular pressure by 22.81% and 29.12%, respectively, after a single topical instillation into the eye. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Hydrophobic ion pairing of a minocycline/Ca(2+)/AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release.

    Science.gov (United States)

    Holmkvist, Alexander Dontsios; Friberg, Annika; Nilsson, Ulf J; Schouenborg, Jens

    2016-02-29

    Polymeric nanoparticles is an established and efficient means to achieve controlled release of drugs. Incorporation of minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, into biodegradable nanoparticles may therefore provide an efficient means to combat foreign body reactions to implanted electrodes in the brain. However, minocycline is commonly associated with poor encapsulation efficiencies and/or fast release rates due to its high solubility in water. Moreover, minocycline is unstable under conditions of low and high pH, heat and exposure to light, which exacerbate the challenges of encapsulation. In this work drug loaded PLGA nanoparticles were prepared by a modified emulsification-solvent-diffusion technique and characterized for size, drug encapsulation and in vitro drug release. A novel hydrophobic ion pair complex of minocycline, Ca(2+) ions and the anionic surfactant AOT was developed to protect minocycline from degradation and prolong its release. The optimized formulation resulted in particle sizes around 220 nm with an entrapment efficiency of 43% and showed drug release over 30 days in artificial cerebrospinal fluid. The present results constitute a substantial increase in release time compared to what has hitherto been achieved for minocycline and indicate that such particles might provide useful for sustained drug delivery in the CNS. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Preparation and evaluation of 17-allyamino-17-demethoxygeldanamycin (17-AAG)-loaded poly(lactic acid-co-glycolic acid) nanoparticles.

    Science.gov (United States)

    Pradhan, Roshan; Poudel, Bijay Kumar; Choi, Ju Yeon; Choi, Im Soon; Shin, Beom Soo; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2015-01-01

    In the present study, we developed the novel 17-allyamino-17-demethoxygeldanamycin (17-AAG)-loaded poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles (NPs) using the combination of sodium lauryl sulfate and poloxamer 407 as the anionic and non-ionic surfactant for stabilization. The PLGA NPs were prepared by emulsification/solvent evaporation method. Both the drug/polymer ratio and phase ratio were 1:10 (w/w). The optimized formulation of 17-AAG-loaded PLGA NPs had a particle size and polydispersity index of 151.6 ± 2.0 and 0.152 ± 0.010 nm, respectively, which was further supported by TEM image. The encapsulation efficiency and drug loading capacity were 69.9 and 7.0%, respectively. In vitro release study showed sustained release. When in vitro release data were fitted to Korsmeyer-Peppas model, the n value was 0.468, which suggested that the drug was released by anomalous or non-Fickian diffusion. In addition, 17-AAG-loaded PLGA NPs in 72 h, displayed approximately 60% cell viability reduction at 10 µg/ml 17-AAG concentration, in MCF-7 cell lines, indicating sustained release from NPs. Therefore, our results demonstrated that incorporation of 17-AAG into PLGA NPs could provide a novel effective nanocarrier for the treatment of cancer.

  17. Characterization of Plasmid DNA Location within Chitosan/PLGA/pDNA Nanoparticle Complexes Designed for Gene Delivery

    Directory of Open Access Journals (Sweden)

    Hali Bordelon

    2011-01-01

    Full Text Available Poly(D,L-lactide-co-glycolide- (PLGA-chitosan nanoparticles are becoming an increasingly common choice for the delivery of nucleic acids to cells for various genetic manipulation techniques. These particles are biocompatible, with tunable size and surface properties, possessing an overall positive charge that promotes complex formation with negatively charged nucleic acids. This study examines properties of the PLGA-chitosan nanoparticle/plasmid DNA complex after formation. Specifically, the study aims to determine the optimal ratio of plasmid DNA:nanoparticles for nucleic acid delivery purposes and to elucidate the location of the pDNA within these complexes. Such characterization will be necessary for the adoption of these formulations in a clinical setting. The ability of PLGA-chitosan nanoparticles to form complexes with pDNA was evaluated by using the fluorescent intercalating due OliGreen to label free plasmid DNA. By monitoring the fluorescence at different plasmid: nanoparticle ratios, the ideal plasmid:nanoparticle ration for complete complexation of plasmid was determined to be 1:50. Surface-Enhanced Raman Spectroscopy and gel digest studies suggested that even at these optimal complexation ratios, a portion of the plasmid DNA was located on the outer complex surface. This knowledge will facilitate future investigations into the functionality of the system in vitro and in vivo.

  18. Biotin decorated PLGA nanoparticles containing SN-38 designed for cancer therapy.

    Science.gov (United States)

    Mehdizadeh, Mozhdeh; Rouhani, Hasti; Sepehri, Nima; Varshochian, Reyhaneh; Ghahremani, Mohammad Hossein; Amini, Mohsen; Gharghabi, Mehdi; Ostad, Seyed Nasser; Atyabi, Fatemeh; Baharian, Azin; Dinarvand, Rassoul

    2017-05-01

    Active targeted chemotherapy is expected to provide more specific delivery of cytotoxic drugs to the tumor cells and hence reducing the side effects on healthy tissues. Due to the over expression of biotin receptors on cancerous cells as a result of further requirement for rapid proliferations, biotin can be a good candidate as a targeting agent. In this study, biotin decorated PLGA nanoparticles (NPs) containing SN-38 were prepared and in vitro studies were evaluated for their improved anti-cancer properties. In conclusion, biotin targeted PLGA NPs containing SN-38 showed preferential anticancer properties against tumor cells with biotin receptor over expression.

  19. A novel vehicle for local protein delivery to the inner ear: injectable and biodegradable thermosensitive hydrogel loaded with PLGA nanoparticles.

    Science.gov (United States)

    Dai, Juan; Long, Wei; Liang, Zhongping; Wen, Lu; Yang, Fan; Chen, Gang

    2018-01-01

    Delivery of biomacromolecular drugs into the inner ear is challenging, mainly because of their inherent instability as well as physiological and anatomical barriers. Therefore, protein-friendly, hydrogel-based delivery systems following local administration are being developed for inner ear therapy. Herein, biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) containing interferon α-2 b (IFN α-2 b) were loaded in chitosan/glycerophosphate (CS/GP)-based thermosensitive hydrogel for IFN delivery by intratympanic injection. The injectable hydrogel possessed a physiological pH and formed semi-solid gel at 37 °C, with good swelling and deswelling properties. The CS/GP hydrogel could slowly degrade as visualized by scanning electron microscopy (SEM). The presence of NPs in CS/GP gel largely influenced in vitro drug release. In the guinea pig cochlea, a 1.5- to 3-fold increase in the drug exposure time of NPs-CS/GP was found than those of the solution, NPs and IFN-loaded hydrogel. Most importantly, a prolonged residence time was attained without obvious histological changes in the inner ear. This biodegradable, injectable, and thermosensitive NPs-CS/GP system may allow longer delivery of protein drugs to the inner ear, thus may be a potential novel vehicle for inner ear therapy.

  20. Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles.

    Science.gov (United States)

    Chiesa, E; Dorati, R; Modena, T; Conti, B; Genta, I

    2018-01-30

    Design of Experiment-assisted evaluation of critical process (total flow rate, TFR, flow rate ratio, FRR) and formulation (polymer concentration and structure, drug:polymer ratio) variables in a novel microfluidics-based device, a staggered herringbone micromixer (SHM), for poly(lactic-co-glycolic acid) copolymer (PLGA) nanoparticles (NPs) manufacturing was performed in order to systematically evaluate and mathematically describe their effects on NPs sizes and drug encapsulation; a small hydrophilic moiety, N-acetylcysteine, was chosen as challenging model drug. SHM-assisted nanoprecipitation method consistently yielded NPs with tailor made sizes (in the range of 100-900 nm) and polydispersity index range from 0.061 to 0.286. Significant effects on NPs sizes were highlighted for TFR and FRR: increasing TFR (from 5 to 15 mL/min) and decreasing FRR (from 1:1 to 1:5 v/v, acetonitrile: buffer) NPs with mean diameter <200 nm were obtained. SHM technique allowed for flexible, application-specific tuning of PLGA NPs size using organic solvents with relatively low toxicity (acetone, acetonitrile), varying aqueous phase composition (Tris buffer vs PVA aqueous solution) and PLGA characteristics (Mw ranging from 25-90 kDa, capped or un-capped PLGA, different lactide:glycolide molar ratio). A very satisfactory N-Ac encapsulation efficiency (more than 67%) and a prolonged release (by 168 h) were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood-brain barrier and human placental trophoblast.

    Science.gov (United States)

    Lopalco, Antonio; Ali, Hazem; Denora, Nunzio; Rytting, Erik

    2015-01-01

    Encapsulation of antiepileptic drugs (AEDs) into nanoparticles may offer promise for treating pregnant women with epilepsy by improving brain delivery and limiting the transplacental permeability of AEDs to avoid fetal exposure and its consequent undesirable adverse effects. Oxcarbazepine-loaded nanoparticles were prepared by a modified solvent displacement method from biocompatible polymers (poly(lactic-co-glycolic acid) [PLGA] with or without surfactant and PEGylated PLGA [Resomer(®) RGPd5055]). The physical properties of the developed nanoparticles were determined with subsequent evaluation of their permeability across in vitro models of the blood-brain barrier (hCMEC/D3 cells) and human placental trophoblast cells (BeWo b30 cells). Oxcarbazepine-loaded nanoparticles with encapsulation efficiency above 69% were prepared with sizes ranging from 140-170 nm, polydispersity indices below 0.3, and zeta potential values below -34 mV. Differential scanning calorimetry and X-ray diffraction studies confirmed the amorphous state of the nanoencapsulated drug. The apparent permeability (Pe ) values of the free and nanoencapsulated oxcarbazepine were comparable across both cell types, likely due to rapid drug release kinetics. Transport studies using fluorescently-labeled nanoparticles (loaded with coumarin-6) demonstrated increased permeability of surfactant-coated nanoparticles. Future developments in enzyme-prodrug therapy and targeted delivery are expected to provide improved options for pregnant patients with epilepsy.

  2. Samarium oxide as a radiotracer to evaluate the in vivo biodistribution of PLGA nanoparticles

    CSIR Research Space (South Africa)

    Mandiwana, V

    2015-09-01

    Full Text Available the biodistribution of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles containing samarium-153 oxide ([(sup153)Sm]Sm(sub2)O(sub3)) in vivo to prove that orally administered nanoparticles alter the biodistribution of a drug. These were then activated in a nuclear...

  3. Cyclosporine A Loaded PLGA Nanoparticles for Dry Eye Disease: In Vitro Characterization Studies

    International Nuclear Information System (INIS)

    Wagh, V.D.; Apar, D.U.

    2014-01-01

    Dry eye disease is a common disease of the tear film caused by decreased tear production or increased evaporation. The objective of this study was to develop and evaluate poly (dl-lactide-co-glycolide) (PLGA) nanoparticles for CsA (CsA) ophthalmic delivery, for the treatment of dry eye disease. Topical CsA is currently the only and safe pharmacologic treatment of severe dry eye symptoms. Nanoparticles (NPs) were prepared by W/O solvent evaporation technique followed by probe sonicator and characterized for various properties such as particle size, entrapment efficiency, zeta potential, in vitro drug release, in vitro permeation studies by Franz diffusion cells, XRD, DSC, SEM, and stability studies. The developed nano suspension showed a mean particle size in the range from 128 to 253.50 nm before freeze drying and after freeze drying 145.60 to 260.0 nm. The drug entrapment efficiency was from 58.35 to 95.69% and production yield was found between 52.29±2.4 and 85.30±2.1 % in all preparations. The zeta potential of the Eudragit RL containing nanoparticles was positive, that is, 20.3 mV to 34.5 mV. The NPs formulations exhibited a biphasic drug release with initial burst followed by a very slow drug release and total cumulative release up to 24 h ranged from 69.83 to 91.92%. Kinetically, the release profiles of CsA from NPs appeared to fit best with the Higuchi model. The change of surface characteristics of NPs represents a useful approach for improvement of ocular retention and drug availability.

  4. Cationic PLGA/Eudragit RL nanoparticles for increasing retention time in synovial cavity after intra-articular injection in knee joint

    Directory of Open Access Journals (Sweden)

    Kim SR

    2015-08-01

    Full Text Available Sung Rae Kim,1 Myoung Jin Ho,2 Eugene Lee,3 Joon Woo Lee,3 Young Wook Choi,1 Myung Joo Kang21College of Pharmacy, Chung-Ang University, Dongjak-gu, Seoul, 2College of Pharmacy, Dankook University, Dongnam-gu, Cheonan, Chungnam, 3Department of Radiology, Seoul National University Bundang Hospital, Bundang-gu, Seongnam, Gyeonggi-do, South KoreaAbstract: Positively surface-charged poly(lactide-co-glycolide (PLGA/Eudragit RL nanoparticles (NPs were designed to increase retention time and sustain release profile in joints after intra-articular injection, by forming micrometer-sized electrostatic aggregates with hyaluronic acid, an endogenous anionic polysaccharide found in high amounts in synovial fluid. The cationic NPs consisting of PLGA, Eudragit RL, and polyvinyl alcohol were fabricated by solvent evaporation technique. The NPs were 170.1 nm in size, with a zeta potential of 21.3 mV in phosphate-buffered saline. Hyperspectral imaging (CytoViva® revealed the formation of the micrometer-sized filamentous aggregates upon admixing, due to electrostatic interaction between NPs and the polysaccharides. NPs loaded with a fluorescent probe (1,1'-dioctadecyl-3,3,3',3' tetramethylindotricarbocyanine iodide, DiR displayed a significantly improved retention time in the knee joint, with over 50% preservation of the fluorescent signal 28 days after injection. When DiR solution was injected intra-articularly, the fluorescence levels rapidly decreased to 30% of the initial concentration within 3 days in mice. From these findings, we suggest that PLGA-based cationic NPs could be a promising tool for prolonged delivery of therapeutic agents in joints selectively.Keywords: PLGA, Eudragit RL, hyaluronic acid, cationic nanoparticles, intra-articular injection, electrostatic interaction

  5. Preparation and characterization of gadolinium-loaded PLGA particles surface modified with RGDS for the detection of thrombus

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2013-10-01

    Full Text Available Yu Zhang,1 Jun Zhou,1 Dajing Guo,1 Meng Ao,2 Yuanyi Zheng,2 Zhigang Wang21Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China; 2Institute of Ultrasound Imaging, Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of ChinaAbstract: Thrombotic disease is a leading cause of death and disability worldwide. The development of magnetic resonance molecular imaging provides potential promise for early disease diagnosis. In this study, we explore the preparation and characterization of gadolinium (Gd-loaded poly (lactic-co-glycolic acid (PLGA particles surface modified with the Arg-Gly-Asp-Ser (RGDS peptide for the detection of thrombus. PLGA was employed as the carrier-delivery system, and a double emulsion solvent-evaporation method (water in oil in water was used to prepare PLGA particles encapsulating the magnetic resonance contrast agent Gd diethylenetriaminepentaacetic acid (DTPA. To synthesize the Gd-PLGA/chitosan (CS-RGDS particles, carbodiimide-mediated amide bond formation was used to graft the RGDS peptide to CS to form a CS-RGDS film that coated the surface of the PLGA particles. Blank PLGA, Gd-PLGA, and Gd-PLGA/CS particles were fabricated using the same water in oil in water method. Our results indicated that the RGDS peptide successfully coated the surface of the Gd-PLGA/CS-RGDS particles. The particles had a regular shape, smooth surface, relatively uniform size, and did not aggregate. The high electron density of the Gd-loaded particles and a translucent film around the particles coated with the CS and CS-RGDS films could be observed by transmission electron microscopy. In vitro experiments demonstrated that the Gd-PLGA/CS-RGDS particles could target thrombi and could be imaged using a clinical magnetic resonance scanner. Compared with the Gd-DTPA solution, the longitudinal relaxation time of

  6. Dual drug-loaded paclitaxel–thymoquinone nanoparticles for effective breast cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Soni, Parth; Kaur, Jasmine; Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com [National Institute of Pharmaceutical Education and Research (NIPER), Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology (India)

    2015-01-15

    The present study highlights the beneficial synergistic blend of anticancer drug paclitaxel (PTX) and thymoquinone (TQ) in MCF-7 breast cancer cells. We aimed to augment the therapeutic index of PTX using a polymeric nanoparticle system loaded with PTX and TQ. PLGA nanoparticles encapsulating the two drugs, individually or in combination, were prepared by single emulsion solvent evaporation method. The formulated nanoparticles were homogenous with an overall negative charge and their size ranging between 200 and 300 nm. Entrapment efficiency of PTX and TQ in the dual drug-loaded nanoparticles was found to be 82.4 ± 2.18 and 65.8 ± 0.45 %, respectively. The release kinetics of PTX and TQ from the nanoparticles exhibited a biphasic pattern characterised by an initial burst, followed by a gradual and continuous release. The anticancer activity of nanoparticles encapsulating both the drugs was higher as compared to the free drugs in MCF-7 breast cancer cells. The combination index for the dual drug-loaded NPs was found to be 0.688 which is indicative of synergistic interaction. Thus, here, we propose the synthesis and use of dual drug-loaded TQ and PTX NPs which exhibits enhanced anticancer activity and can additionally help to alleviate the toxic effects of PTX by lowering its effective dose.

  7. Dual drug-loaded paclitaxel–thymoquinone nanoparticles for effective breast cancer therapy

    International Nuclear Information System (INIS)

    Soni, Parth; Kaur, Jasmine; Tikoo, Kulbhushan

    2015-01-01

    The present study highlights the beneficial synergistic blend of anticancer drug paclitaxel (PTX) and thymoquinone (TQ) in MCF-7 breast cancer cells. We aimed to augment the therapeutic index of PTX using a polymeric nanoparticle system loaded with PTX and TQ. PLGA nanoparticles encapsulating the two drugs, individually or in combination, were prepared by single emulsion solvent evaporation method. The formulated nanoparticles were homogenous with an overall negative charge and their size ranging between 200 and 300 nm. Entrapment efficiency of PTX and TQ in the dual drug-loaded nanoparticles was found to be 82.4 ± 2.18 and 65.8 ± 0.45 %, respectively. The release kinetics of PTX and TQ from the nanoparticles exhibited a biphasic pattern characterised by an initial burst, followed by a gradual and continuous release. The anticancer activity of nanoparticles encapsulating both the drugs was higher as compared to the free drugs in MCF-7 breast cancer cells. The combination index for the dual drug-loaded NPs was found to be 0.688 which is indicative of synergistic interaction. Thus, here, we propose the synthesis and use of dual drug-loaded TQ and PTX NPs which exhibits enhanced anticancer activity and can additionally help to alleviate the toxic effects of PTX by lowering its effective dose

  8. Diphtheria toxoid loaded poly-(epsilon-caprolactone) nanoparticles as mucosal vaccine delivery systems.

    Science.gov (United States)

    Singh, Jasvinder; Pandit, Sreenivas; Bramwell, Vincent W; Alpar, H Oya

    2006-02-01

    Poly-(epsilon-caprolactone) (PCL), a poly(lactide-co-glycolide) (PLGA)-PCL blend and co-polymer nanoparticles encapsulating diphtheria toxoid (DT) were investigated for their potential as a mucosal vaccine delivery system. The nanoparticles, prepared using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method, demonstrated release profiles which were dependent on the properties of the polymers. An in vitro experiment using Caco-2 cells showed significantly higher uptake of PCL nanoparticles in comparison to polymeric PLGA, the PLGA-PCL blend and co-polymer nanoparticles. The highest uptake mediated by the most hydrophobic nanoparticles using Caco-2 cells was mirrored in the in vivo studies following nasal administration. PCL nanoparticles induced DT serum specific IgG antibody responses significantly higher than PLGA. A significant positive correlation between hydrophobicity of the nanoparticles and the immune response was observed following intramuscular administration. The positive correlation between hydrophobicity of the nanoparticles and serum DT specific IgG antibody response was also observed after intranasal administration of the nanoparticles. The cytokine assays showed that the serum IgG antibody response induced is different according to the route of administration, indicated by the differential levels of IL-6 and IFN-gamma. The nanoparticles eliciting the highest IgG antibody response did not necessarily elicit the highest levels of the cytokines IL-6 and IFN-gamma.

  9. Nanoparticles with entrapped {alpha}-tocopherol: synthesis, characterization, and controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Zigoneanu, Imola Gabriela [101 E B Doran Building, BAE Department, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 (United States); Astete, Carlos Ernesto [110 E B Doran Building, BAE Department, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 (United States); Sabliov, Cristina Mirela [141 E B Doran Building, BAE Department, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 (United States)], E-mail: csabliov@lsu.edu

    2008-03-12

    An emulsion evaporation method was used to synthesize spherical poly(DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped {alpha}-tocopherol. Two different surfactants were used: sodium dodecyl sulfate (SDS) and poly(vinyl alcohol) (PVA). For SDS nanoparticles, the size of the nanoparticles decreased significantly with the entrapment of {alpha}-tocopherol in the PLGA matrix, while the size of PVA nanoparticles remained unchanged. The polydispersity index after synthesis was under 0.100 for PVA nanoparticles and around 0.150 for SDS nanoparticles. The zeta potential was negative for all PVA nanoparticles. The entrapment efficiency of {alpha}-tocopherol in the polymeric matrix was approximately 89% and 95% for nanoparticles with 8% and 16% {alpha}-tocopherol theoretical loading, respectively. The residual PVA associated with the nanoparticles after purification was approximately 6% ( w/w relative to the nanoparticles). The release profile showed an initial burst followed by a slower release of the {alpha}-tocopherol entrapped inside the PLGA matrix. The release for nanoparticles with 8% {alpha}-tocopherol theoretical loading (86% released in the first hour) was faster than the release for the nanoparticles with 16% {alpha}-tocopherol theoretical loading (34% released in the first hour)

  10. Nanoparticles with entrapped α-tocopherol: synthesis, characterization, and controlled release

    International Nuclear Information System (INIS)

    Zigoneanu, Imola Gabriela; Astete, Carlos Ernesto; Sabliov, Cristina Mirela

    2008-01-01

    An emulsion evaporation method was used to synthesize spherical poly(DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped α-tocopherol. Two different surfactants were used: sodium dodecyl sulfate (SDS) and poly(vinyl alcohol) (PVA). For SDS nanoparticles, the size of the nanoparticles decreased significantly with the entrapment of α-tocopherol in the PLGA matrix, while the size of PVA nanoparticles remained unchanged. The polydispersity index after synthesis was under 0.100 for PVA nanoparticles and around 0.150 for SDS nanoparticles. The zeta potential was negative for all PVA nanoparticles. The entrapment efficiency of α-tocopherol in the polymeric matrix was approximately 89% and 95% for nanoparticles with 8% and 16% α-tocopherol theoretical loading, respectively. The residual PVA associated with the nanoparticles after purification was approximately 6% ( w/w relative to the nanoparticles). The release profile showed an initial burst followed by a slower release of the α-tocopherol entrapped inside the PLGA matrix. The release for nanoparticles with 8% α-tocopherol theoretical loading (86% released in the first hour) was faster than the release for the nanoparticles with 16% α-tocopherol theoretical loading (34% released in the first hour)

  11. Doxorubicin-loaded poly (lactic-co-glycolic acid) nanoparticles coated with chitosan/alginate by layer by layer technology for antitumor applications.

    Science.gov (United States)

    Chai, Fujuan; Sun, Linlin; He, Xinyi; Li, Jieli; Liu, Yuanfen; Xiong, Fei; Ge, Liang; Webster, Thomas J; Zheng, Chunli

    2017-01-01

    Natural polyelectrolyte multilayers of chitosan (CHI) and alginate (ALG) were alternately deposited on doxorubicin (DOX)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) with layer by layer self-assembly to control drug release for antitumor activity. Numerous factors which influenced the multilayer growth on nano-colloidal particles were studied: polyelectrolyte concentration, NaCl concentration and temperature. Then the growth regime of the CHI/ALG multilayers was elucidated. The coated NPs were characterized by transmission electron microscopy, atomic force microscopy, X-ray diffraction and a zeta potential analyzer. In vitro studies demonstrated an undesirable initial burst release of DOX-loaded PLGA NPs (DOX-PLGA NPs), which was relieved from 55.12% to 5.78% through the use of the layer by layer technique. The release of DOX increased more than 40% as the pH of media decreased from 7.4 to 5.0. More importantly, DOX-PLGA (CHI/ALG) 3 NPs had superior in vivo tumor inhibition rates at 83.17% and decreased toxicity, compared with DOX-PLGA NPs and DOX in solution. Thus, the presently formulated PLGA-polyelectrolyte NPs have strong potential applications for numerous controlled anticancer drug release applications.

  12. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration.

    Science.gov (United States)

    Yu, Ting; Xu, Bei; He, Lili; Xia, Shan; Chen, Yan; Zeng, Jun; Liu, Yongmei; Li, Shuangzhi; Tan, Xiaoyue; Ren, Ke; Yao, Shaohua; Song, Xiangrong

    2016-01-01

    Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF) is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC) was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs) were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W) solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%), probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide) terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on proliferation of human umbilical vein endothelial cells in vitro and inhibited the tumor-induced angiogenesis in vivo by an alginate-encapsulated tumor cell assay. Further in vivo antitumor investigation, carried out in a C26 subcutaneous tumor model by intravenous injection, demonstrated that D-NPs could achieve a significant antitumor activity with sharply reduced microvessel density and significantly promoted tumor cell apoptosis. Additionally, the in vitro hemolysis analysis and in vivo serological and biochemical analysis revealed that D-NPs had no obvious toxicity. All the data indicated that the novel CPPC nanoparticles were ideal vectors for the systemic delivery of PEDF gene and might be widely

  13. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles.

    Science.gov (United States)

    Keohane, Kieran; Brennan, Des; Galvin, Paul; Griffin, Brendan T

    2014-06-05

    The increasing realisation of the impact of size and surface properties on the bio-distribution of drug loaded colloidal particles has driven the application of micro fabrication technologies for the precise engineering of drug loaded microparticles. This paper demonstrates an alternative approach for producing size controlled drug loaded PLGA based microparticles using silicon Microfluidic Flow Focusing Devices (MFFDs). Based on the precise geometry and dimensions of the flow focusing channel, microparticle size was successfully optimised by modifying the polymer type, disperse phase (Qd) flow rate, and continuous phase (Qc) flow rate. The microparticles produced ranged in sizes from 5 to 50 μm and were highly monodisperse (coefficient of variation <5%). A comparison of Ciclosporin (CsA) loaded PLGA microparticles produced by MFFDs vs conventional production techniques was also performed. MFFDs produced microparticles with a narrower size distribution profile, relative to the conventional approaches. In-vitro release kinetics of CsA was found to be influenced by the production technique, with the MFFD approach demonstrating the slowest rate of release over 7 days (4.99 ± 0.26%). Finally, MFFDs were utilised to produce pegylated microparticles using the block co-polymer, PEG-PLGA. In contrast to the smooth microparticles produced using PLGA, PEG-PLGA microparticles displayed a highly porous surface morphology and rapid CsA release, with 85 ± 6.68% CsA released after 24h. The findings from this study demonstrate the utility of silicon MFFDs for the precise control of size and surface morphology of PLGA based microparticles with potential drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Preliminary evaluation of the encapsulation of new antidiabetic sulphonylhydrazone and antitumor N-acylhydrazone derivatives using PLGA nanoparticles

    International Nuclear Information System (INIS)

    Costa, F N; Ibiapino, A L; De Figueiredo, L P; De Castro, C E; Giacomelli, F C; Ferreira, F F; Barreiro, E J; Lima, L M; Do Amaral, D N

    2015-01-01

    It has been demonstrated the feasibly of using PLGA nanoparticles to promote the encapsulation of novel anti-diabetic sulphonylhydrazone and antitumor N-acylhydrazone derivatives. The motivation is to further demonstrate the possibility of long-term release of anti-diabetic as well as higher accumulation of the antitumor derivative by using the nanotechnology-based production. The produced nanoparticles were obtained by the nanoprecipitation method, which revealed to be effective in the encapsulation of the bioactive compounds. The determined sizes were in the range of ∼100 nm, which are supposed to be suitable for both potential applications. The preliminary experimental data demonstrated the formation of stable nanosystems and further experiments are underway in order to determine the loading content, encapsulation efficiency and release profile of the hydrophobic bioactive compounds. (paper)

  15. Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood–brain barrier and human placental trophoblast

    Science.gov (United States)

    Lopalco, Antonio; Ali, Hazem; Denora, Nunzio; Rytting, Erik

    2015-01-01

    Encapsulation of antiepileptic drugs (AEDs) into nanoparticles may offer promise for treating pregnant women with epilepsy by improving brain delivery and limiting the transplacental permeability of AEDs to avoid fetal exposure and its consequent undesirable adverse effects. Oxcarbazepine-loaded nanoparticles were prepared by a modified solvent displacement method from biocompatible polymers (poly(lactic-co-glycolic acid) [PLGA] with or without surfactant and PEGylated PLGA [Resomer® RGPd5055]). The physical properties of the developed nanoparticles were determined with subsequent evaluation of their permeability across in vitro models of the blood–brain barrier (hCMEC/D3 cells) and human placental trophoblast cells (BeWo b30 cells). Oxcarbazepine-loaded nanoparticles with encapsulation efficiency above 69% were prepared with sizes ranging from 140–170 nm, polydispersity indices below 0.3, and zeta potential values below -34 mV. Differential scanning calorimetry and X-ray diffraction studies confirmed the amorphous state of the nanoencapsulated drug. The apparent permeability (Pe) values of the free and nanoencapsulated oxcarbazepine were comparable across both cell types, likely due to rapid drug release kinetics. Transport studies using fluorescently-labeled nanoparticles (loaded with coumarin-6) demonstrated increased permeability of surfactant-coated nanoparticles. Future developments in enzyme-prodrug therapy and targeted delivery are expected to provide improved options for pregnant patients with epilepsy. PMID:25792832

  16. Influence of different stabilizers on the encapsulation of desmopressin acetate into PLGA nanoparticles.

    Science.gov (United States)

    Primavessy, Daniel; Günday Türeli, Nazende; Schneider, Marc

    2017-09-01

    To address targeting and bioavailability issues of peptidic drugs like desmopressin, the encapsulation into nanoparticles (NP) has become standard in pharmaceutics. This study investigated the encapsulation of desmopressin into PLGA NP by the use of pharmaceutically common stabilizers as a precursor to future, optional targeting and bioavailability experiments. Polymer dry weights were measured by freeze drying and thermo gravimetric analysis (TGA). Particle sizes (ranging between 105 and 130nm, PDIDoppler-Anemometry (LDA) respectively. Highest loading efficiencies, quantified by RP-HPLC, were achieved with Pluronic F-68 as stabilizer of the inner aqueous phase (1.16±0.07μg desmopressin/mg PLGA) and were significantly higher than coating approaches and approaches without stabilizer (0.74±0.01μg/mg). Optimized nanoformulations are thus in competition with the concentration of commercial non-nanoparticulate desmopressin products. Stability of desmopressin after the process was evaluated by HPLC peak purity analysis (diode array detector) and by mass spectrometry. Desmopressin was shown to remain intact during the whole process; however, despite these very good results the encapsulation efficiency turned out to be a bottle neck and makes the system a challenge for potential applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Dual-layer surface coating of PLGA-based nanoparticles provides slow-release drug delivery to achieve metronomic therapy in a paclitaxel-resistant murine ovarian cancer model.

    Science.gov (United States)

    Amoozgar, Zohreh; Wang, Lei; Brandstoetter, Tania; Wallis, Samuel S; Wilson, Erin M; Goldberg, Michael S

    2014-11-10

    Development of drug resistance is a central challenge to the treatment of ovarian cancer. Metronomic chemotherapy decreases the extent of drug-free periods, thereby hindering development of drug resistance. Intraperitoneal chemotherapy allows for treatment of tumors confined within the peritoneum, but achieving sustained tumor-localized chemotherapy remains difficult. We hypothesized that modulating the surface properties of poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles could enhance their drug retention ability and extend their release profile, thereby enabling metronomic, localized chemotherapy in vivo. Paclitaxel was encapsulated in particles coated with a layer of polydopamine and a subsequent layer of poly(ethylene glycol) (PEG). These particles achieved a 3.8-fold higher loading content compared to that of nanoparticles formulated from linear PLGA-PEG copolymers. In vitro release kinetic studies and in vivo drug distribution profiles demonstrate sustained release of paclitaxel. Although free drug conferred no survival advantage, low-dose intraperitoneal administration of paclitaxel-laden surface-coated nanoparticles to drug-resistant ovarian tumor-bearing mice resulted in significant survival benefits in the absence of any apparent systemic toxicity.

  18. Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection.

    Science.gov (United States)

    Palocci, Cleofe; Valletta, Alessio; Chronopoulou, Laura; Donati, Livia; Bramosanti, Marco; Brasili, Elisa; Baldan, Barbara; Pasqua, Gabriella

    2017-12-01

    PLGA NPs' cell uptake involves different endocytic pathways. Clathrin-independent endocytosis is the main internalization route. The cell wall plays a more prominent role than the plasma membrane in NPs' size selection. In the last years, many studies on absorption and cell uptake of nanoparticles by plants have been conducted, but the understanding of the internalization mechanisms is still largely unknown. In this study, polydispersed and monodispersed poly(lactic-co-glycolic) acid nanoparticles (PLGA NPs) were synthesized, and a strategy combining the use of transmission electron microscopy (TEM), confocal analysis, fluorescently labeled PLGA NPs, a probe for endocytic vesicles (FM4-64), and endocytosis inhibitors (i.e., wortmannin, ikarugamycin, and salicylic acid) was employed to shed light on PLGA NP cell uptake in grapevine cultured cells and to assess the role of the cell wall and plasma membrane in size selection of PLGA NPs. The ability of PLGA NPs to cross the cell wall and membrane was confirmed by TEM and fluorescence microscopy. A strong adhesion of PLGA NPs to the outer side of the cell wall was observed, presumably due to electrostatic interactions. Confocal microscopy and treatment with endocytosis inhibitors suggested the involvement of both clathrin-dependent and clathrin-independent endocytosis in cell uptake of PLGA NPs and the latter appeared to be the main internalization pathway. Experiments on grapevine protoplasts revealed that the cell wall plays a more prominent role than the plasma membrane in size selection of PLGA NPs. While the cell wall prevents the uptake of PLGA NPs with diameters over 50 nm, the plasma membrane can be crossed by PLGA NPs with a diameter of 500-600 nm.

  19. PLGA/alginate composite microspheres for hydrophilic protein delivery

    International Nuclear Information System (INIS)

    Zhai, Peng; Chen, X.B.; Schreyer, David J.

    2015-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility

  20. PLGA/alginate composite microspheres for hydrophilic protein delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Peng [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Chen, X.B. [Department of Mechanical Engineering, University of Saskatchewan, S7N5A9 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Schreyer, David J., E-mail: david.schreyer@usask.ca [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada)

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility.

  1. Neuronal Uptake and Neuroprotective Properties of Curcumin-Loaded Nanoparticles on SK-N-SH Cell Line: Role of Poly(lactide-co-glycolide) Polymeric Matrix Composition.

    Science.gov (United States)

    Djiokeng Paka, Ghislain; Doggui, Sihem; Zaghmi, Ahlem; Safar, Ramia; Dao, Lé; Reisch, Andreas; Klymchenko, Andrey; Roullin, V Gaëlle; Joubert, Olivier; Ramassamy, Charles

    2016-02-01

    Curcumin, a neuroprotective agent with promising therapeutic approach has poor brain bioavailability. Herein, we demonstrate that curcumin-encapsulated poly(lactide-co-glycolide) (PLGA) 50:50 nanoparticles (NPs-Cur 50:50) are able to prevent the phosphorylation of Akt and Tau proteins in SK-N-SH cells induced by H2O2 and display higher anti-inflammatory and antioxidant activities than free curcumin. PLGA can display various physicochemical and degradation characteristics for controlled drug release applications according to the matrix used. We demonstrate that the release of curcumin entrapped into a PLGA 50:50 matrix (NPs-Cur 50:50) is faster than into PLGA 65:35. We have studied the effects of the PLGA matrix on the expression of some key antioxidant- and neuroprotective-related genes such as APOE, APOJ, TRX, GLRX, and REST. NPs-Cur induced the elevation of GLRX and TRX while decreasing APOJ mRNA levels and had no effect on APOE and REST expressions. In the presence of H2O2, both NPs-Cur matrices are more efficient than free curcumin to prevent the induction of these genes. Higher uptake was found with NPs-Cur 50:50 than NPs-Cur 65:35 or free curcumin. By using PLGA nanoparticles loaded with the fluorescent dye Lumogen Red, we demonstrated that PLGA nanoparticles are indeed taken up by neuronal cells. These data highlight the importance of polymer composition in the therapeutic properties of the nanodrug delivery systems. Our study demonstrated that NPs-Cur enhance the action of curcumin on several pathways implicated in the pathophysiology of Alzheimer's disease (AD). Overall, these results suggest that PLGA nanoparticles are a promising strategy for the brain delivery of drugs for the treatment of AD.

  2. Prolonged analgesic effect of PLGA-encapsulated bee venom on formalin-induced pain in rats.

    Science.gov (United States)

    Jeong, Injae; Kim, Beom-Soo; Lee, Hyejung; Lee, Kang-Min; Shim, Insop; Kang, Sung-Keel; Yin, Chang-Shick; Hahm, Dae-Hyun

    2009-10-01

    To enhance the medicinal activity of bee venom (BV) acupuncture, bee venom was loaded into biodegradable poly(D,L-lactide-co-glycolide) nanoparticles (BV-PLGA-NPs) by a water-in-oil-in-water-emulsion/solvent-evaporation technique. Rat formalin tests were performed after subcutaneous injection of BV-PLGA-NPs to the Zusanli acupuncture point (ST36) at 0.5, 1, 2, 6, 12, 24, and 48 h before plantar injection of 2% formalin. BV-PLGA-NPs treatment showed comparable analgesic activity to typical BV acupuncture during the late phase, compared with saline-treated controls, and the analgesic effect lasted for 12h. PLGA-encapsulation was also effective in alleviating the edema induced by allergens in bee venom. These results indicate that PLGA-encapsulation provided a more prolonged effect of BV acupuncture treatment, while maintaining a comparable therapeutic effect.

  3. Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood–brain barrier and human placental trophoblast

    Directory of Open Access Journals (Sweden)

    Lopalco A

    2015-03-01

    Full Text Available Antonio Lopalco,1–3,* Hazem Ali,1,* Nunzio Denora,3 Erik Rytting1,4,5 1Department of Obstretrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA; 2Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; 3Department of Pharmacy – Drug Sciences, University of Bari Aldo Moro, Bari, Italy; 4Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA; 5Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA *These authors contributed equally to this work Abstract: Encapsulation of antiepileptic drugs (AEDs into nanoparticles may offer promise for treating pregnant women with epilepsy by improving brain delivery and limiting the transplacental permeability of AEDs to avoid fetal exposure and its consequent undesirable adverse effects. Oxcarbazepine-loaded nanoparticles were prepared by a modified solvent displacement method from biocompatible polymers (poly(lactic-co-glycolic acid [PLGA] with or without surfactant and PEGylated PLGA [Resomer® RGPd5055]. The physical properties of the developed nanoparticles were determined with subsequent evaluation of their permeability across in vitro models of the blood–brain barrier (hCMEC/D3 cells and human placental trophoblast cells (BeWo b30 cells. Oxcarbazepine-loaded nanoparticles with encapsulation efficiency above 69% were prepared with sizes ranging from 140–170 nm, polydispersity indices below 0.3, and zeta potential values below −34 mV. Differential scanning calorimetry and X-ray diffraction studies confirmed the amorphous state of the nanoencapsulated drug. The apparent permeability (Pe values of the free and nanoencapsulated oxcarbazepine were comparable across both cell types, likely due to rapid drug release kinetics. Transport studies using fluorescently-labeled nanoparticles (loaded with coumarin-6 demonstrated increased permeability of surfactant-coated nanoparticles

  4. Chitosan/siRNA nanoparticles encapsulated in PLGA nanofibers for siRNA delivery

    DEFF Research Database (Denmark)

    Chen, Menglin; Gao, Shan; Dong, Mingdong

    2012-01-01

    Composite nanofibers of biodegradable poly(d,l-lactic-co-glycolic acid) (PLGA) encapsulating chitosan/siRNA nanoparticles (NPs) were prepared by electrospinning. Acidic/alkaline hydrolysis and a bulk/surface degradation mechanism were investigated in order to achieve an optimized release profile...... for prolonged and efficient gene silencing. Thermo-controlled AFM in situ imaging not only revealed the integrity of the encapsulated chitosan/siRNA polyplex but also shed light on the decreasing Tg of PLGA on the fiber surfaces during release. A triphasic release profile based on bulk erosion was obtained at p......RNA transfection, where the encapsulated chitosan/siRNA NPs exhibited up to 50% EGFP gene silencing activity after 48 h post-transfection on H1299 cells....

  5. Effect of nanoparticle encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate.

    Science.gov (United States)

    Perugini, P; Simeoni, S; Scalia, S; Genta, I; Modena, T; Conti, B; Pavanetto, F

    2002-10-10

    The aim of this study was to investigate the influence of nanoparticle-based systems on the light-induced decomposition of the sunscreen agent, trans-2-ethylhexyl-p-methoxycinnamate (trans-EHMC). Ethylcellulose (EC) and poly-D,L-lactide-co-glycolide (PLGA) were used as biocompatible polymers for the preparation of the particulate systems. The "salting out" method was used for nanoparticle preparation and several variables were evaluated in order to optimize product characteristics. The photodegradation of the sunscreen agent in emulsion vehicles was reduced by encapsulation into the PLGA nanoparticles (the extent of degradation was 35.3% for the sunscreen-loaded nanoparticles compared to 52.3% for free trans-EHMC) whereas the EC nanoparticle system had no significant effect. Therefore, PLGA nanoparticles loaded with trans-EHMC improve the photostability of the sunscreen agent.

  6. Ibuprofen delivered by poly(lactic-co-glycolic acid (PLGA nanoparticles to human gastric cancer cells exerts antiproliferative activity at very low concentrations

    Directory of Open Access Journals (Sweden)

    Bonelli P

    2012-11-01

    Full Text Available Patrizia Bonelli,1 Franca M Tuccillo,1 Antonella Federico,5 Maria Napolitano,2 Antonella Borrelli,1 Daniela Melisi,6 Maria G Rimoli,6 Raffaele Palaia,3 Claudio Arra,4 Francesco Carinci71Laboratory of Molecular Biology and Viral Oncogenesis; 2Department of Clinical Immunology; 3Department of Gastrointestinal-Hepatobiliary-Pancreatic Cancer Oncology Surgery; 4Animal Facility, National Cancer Institute G Pascale, Naples, Italy; 5Microtech Laboratory, Naples, Italy; 6Pharmaceutical and Toxicological Chemistry Department, School of Pharmacy, University "Federico II", Naples, Italy; 7Department of Maxillofacial Surgery, University of Ferrara, Ferrara, ItalyPurpose: Epidemiological, clinical, and laboratory studies have suggested that ibuprofen, a commonly used nonsteroidal anti-inflammatory drug, inhibits the promotion and proliferation of certain tumors. Recently, we demonstrated the antiproliferative effects of ibuprofen on the human gastric cancer cell line MKN-45. However, high doses of ibuprofen were required to elicit these antiproliferative effects in vitro. The present research compared the antiproliferative effects of ibuprofen delivered freely and released by poly(lactic-co-glycolic acid (PLGA nanoparticles (NPs in MKN-45 cells.Methods: MKN-45 human gastric adenocarcinoma cells were treated with ibuprofen-loaded PLGA NPs. The proliferation of MKN-45 cells was then assessed by cell counting. The uptake of NPs was imaged by fluorescence microscopy and flow cytometry. The release of ibuprofen from ibuprofen-loaded PLGA NPs in the cells was evaluated by gas chromatography–mass spectrometry.Results: Dramatic inhibition of cellular proliferation was observed in cells treated with ibuprofen-loaded PLGA NPs versus those treated with free ibuprofen at the same concentration. The localization of NPs was cytoplasmic. The initiation of ibuprofen release was rapid, commencing within 2 hours, and then increased slowly over time, reaching a maximum

  7. Co-delivery of Cbfa-1-targeting siRNA and SOX9 protein using PLGA nanoparticles to induce chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Jeon, Su Yeon; Park, Ji Sun; Yang, Han Na; Lim, Hye Jin; Yi, Se Won; Park, Hansoo; Park, Keun-Hong

    2014-09-01

    During stem cell differentiation, various cellular responses occur that are mediated by transcription factors and proteins. This study evaluated the abilities of SOX9, a crucial protein during the early stage of chondrogenesis, and siRNA targeting Cbfa-1, a transcription factor that promotes osteogenesis, to stimulate chondrogenesis. Non-toxic poly-(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. Coomassie blue staining and circular dichroism revealed that the loaded SOX9 protein maintained its stability and bioactivity. These NPs easily entered human mesenchymal stem cells (hMSCs) in vitro and caused them to differentiate into chondrocytes. Markers that are typically expressed in mature chondrocytes were examined. These markers were highly expressed at the mRNA and protein levels in hMSCs treated with PLGA NPs coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. By contrast, these cells did not express osteogenesis-related markers. hMSCs were injected into mice following internalization of PLGA NPs coated with Cbfa-1-targeting siRNA and loaded with SOX9 protein. When the injection site was excised, markers of chondrogenesis were found to be highly expressed at the mRNA and protein levels, similar to the in vitro results. When hMSCs internalized these NPs and were then cultured in vitro or injected into mice, chondrogenesis-related extracellular matrix components were highly expressed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Antimicrobial Properties and Cytocompatibility of PLGA/Ag Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mariangela Scavone

    2016-01-01

    Full Text Available The purpose of this study was to investigate the antimicrobial properties of multifunctional nanocomposites based on poly(dl-Lactide-co-Glycolide (PLGA and increasing concentration of silver (Ag nanoparticles and their effects on cell viability for biomedical applications. PLGA nanocomposite films, produced by solvent casting with 1 wt%, 3 wt% and 7 wt% of Ag nanoparticles were investigated and surface properties were characterized by atomic force microscopy and contact angle measurements. Antibacterial tests were performed using an Escherichia coli RB and Staphylococcus aureus 8325-4 strains. The cell viability and morphology were performed with a murine fibroblast cell line (L929 and a human osteosarcoma cell line (SAOS-2 by cell viability assay and electron microscopy observations. Matrix protein secretion and deposition were also quantified by enzyme-linked immunosorbent assay (ELISA. The results suggest that the PLGA film morphology can be modified introducing a small percentage of silver nanoparticles, which induce the onset of porous round-like microstructures and also affect the wettability. The PLGA/Ag films having silver nanoparticles of more than 3 wt% showed antibacterial effects against E. coli and S. aureus. Furthermore, silver-containing PLGA films displayed also a good cytocompatibility when assayed with L929 and SAOS-2 cells; indicating the PLGA/3Ag nanocomposite film as a promising candidate for tissue engineering applications.

  9. Encapsulation of Alpha-1 antitrypsin in PLGA nanoparticles: In Vitro characterization as an effective aerosol formulation in pulmonary diseases

    Directory of Open Access Journals (Sweden)

    Pirooznia Nazanin

    2012-05-01

    Full Text Available Abstract Background Alpha 1- antitrypsin (α1AT belongs to the superfamily of serpins and inhibits different proteases. α1AT protects the lung from cellular inflammatory enzymes. In the absence of α1AT, the degradation of lung tissue results to pulmonary complications. The pulmonary route is a potent noninvasive route for systemic and local delivery. The aerosolized α1AT not only affects locally its main site of action but also avoids remaining in circulation for a long period of time in peripheral blood. Poly (D, L lactide-co glycolide (PLGA is a biodegradable and biocompatible polymer approved for sustained controlled release of peptides and proteins. The aim of this work was to prepare a wide range of particle size as a carrier of protein-loaded nanoparticles to deposit in different parts of the respiratory system especially in the deep lung. Various lactide to glycolide ratio of the copolymer was used to obtain different release profile of the drug which covers extended and rapid drug release in one formulation. Results Nonaqueous and double emulsion techniques were applied for the synthesis of nanoparticles. Nanoparticles were characterized in terms of surface morphology, size distribution, powder X-ray diffraction (XRD, encapsulation efficiency, in vitro drug release, FTIR spectroscopy and differential scanning calorimetry (DSC. To evaluate the nanoparticles cytotoxicity, cell cytotoxicity test was carried out on the Cor L105 human epithelial lung cancer cell line. Nanoparticles were spherical with an average size in the range of 100 nm to 1μ. The encapsulation efficiency was found to be higher when the double emulsion technique was applied. XRD and DSC results indicated that α1AT encapsulated in the nanoparticles existed in an amorphous or disordered-crystalline status in the polymer matrix. The lactic acid to glycolic acid ratio affects the release profile of α1AT. Hence, PLGA with a 50:50 ratios exhibited the ability to release

  10. Enhanced local bioavailability of single or compound drugs delivery to the inner ear through application of PLGA nanoparticles via round window administration.

    Science.gov (United States)

    Cai, Hui; Wen, Xingxing; Wen, Lu; Tirelli, Nicola; Zhang, Xiao; Zhang, Yue; Su, Huanpeng; Yang, Fan; Chen, Gang

    2014-01-01

    In this paper, the potential of poly(D,L-lactide-co-glycolide acid) (PLGA) nanoparticles (NPs) for carrying single or compound drugs traversing the round window membrane (RWM) was examined after the round window (RW) administration of different NPs to guinea pigs. First, coumarin-6 was incorporated into PLGA NPs as a fluorescent probe to investigate its ability to cross the RWM. Then, PLGA NPs with salvianolic acid B (Sal B), tanshinone IIA (TS IIA), and total panax notoginsenoside (PNS) including notoginsenoside R1 (R1), ginsenoside Rg1 (Rg1), and ginsenoside Rb1 (Rb1) were developed to evaluate whether NPs loaded with compound drugs would pass through the RWM and improve the local bioavailability of these agents. PLGA NPs loaded with single or compound drugs were prepared by the emulsification solvent evaporation method, and their particle size distribution, particle morphology, and encapsulation efficiency were characterized. In vitro release study showed sustained-release profiles of Sal B, TS IIA, and PNS from the NPs. The pharmacokinetic results showed that NPs applied to the RWM significantly improved drug distribution within the inner ear. The AUC0-t of coumarin-6 in the perilymph (PL) following RW administration of NPs was 4.7-fold higher than that of coumarin-6 solution, and the Cmax was 10.9-fold higher. Furthermore, the AUC(0-t) of R1, Rg1, and Rb1 were 4.0-, 3.1-, and 7.1-fold greater, respectively, after the application of NPs compared to the compound solution, and the Cmax were, respectively, 14.4-, 10.0-, and 16.7-fold higher. These findings suggest that PLGA NPs with unique properties at the nanoscale dimensions have a powerful ability to transport single or compound drugs into the PL through the RWM and remarkably enhance the local bioavailability of the encapsulated drugs in the inner ear. The use of PLGA NPs as nanoscale delivery vehicles to carry drugs across the RWM may be a promising strategy for the treatment of inner ear diseases.

  11. Design of experiments for the development of poly(d,l-lactide-co-glycolide) nanoparticles loaded with Uncaria tomentosa

    International Nuclear Information System (INIS)

    Ribeiro, Ana Ferreira; Ferreira, Carina Torres Garruth; Santos, Juliana Fernandes dos; Cabral, Lúcio Mendes; Sousa, Valéria Pereira de

    2015-01-01

    Polymeric nanoparticles have been shown to be effective carriers for natural substances that possess anticancer properties. Incorporation of these natural substances into polymeric nanoparticles increases targeting of these drugs, thus reducing side effects. Uncaria tomentosa (UT) is a Peruvian Amazon plant (existing in the Brazilian Amazon rainforest) that possesses promising anti-tumor activity. This paper describes the development of poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles loaded with UT extract. The emulsion solvent evaporation method was utilized and the initial conditions were determined for the organic phase (OP) and the aqueous phase (AP). The influence of surfactant (type and concentration), PLGA concentration and AP volume on nanoparticle size, polydispersity index (PI), and entrapment efficiency (EE) was determined using a fractional factorial design (FFD). In addition, the formulation was optimized using a Box–Behnken design. After the conditions were optimized, UT nanoparticles were obtained using an OP composed of an ethyl acetate:acetone (3:2) mixture which contained the UT alkaloids and PLGA, and an AP composed of a buffered solution of Poloxamer 188 (pH 7.5). The optimized formulation produced an EE of 64.6 %, a particle size of 107.4 nm and a PI of 0.163. The preliminary experiments provided important information regarding the behavior of the nanoparticulate system and the FFD used in this study greatly facilitated the selection of the most optimal conditions for formulation development

  12. Design of experiments for the development of poly(d,l-lactide-co-glycolide) nanoparticles loaded with Uncaria tomentosa

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Ana Ferreira, E-mail: ana.ribeiro@ifrj.edu.br [Federal University of Rio de Janeiro, Department of Drugs and Pharmaceutics, Faculty of Pharmacy (Brazil); Ferreira, Carina Torres Garruth; Santos, Juliana Fernandes dos [Federal Institute of Education, Science and Technology of Rio de Janeiro, Faculty of Pharmacy (Brazil); Cabral, Lúcio Mendes; Sousa, Valéria Pereira de [Federal University of Rio de Janeiro, Department of Drugs and Pharmaceutics, Faculty of Pharmacy (Brazil)

    2015-02-15

    Polymeric nanoparticles have been shown to be effective carriers for natural substances that possess anticancer properties. Incorporation of these natural substances into polymeric nanoparticles increases targeting of these drugs, thus reducing side effects. Uncaria tomentosa (UT) is a Peruvian Amazon plant (existing in the Brazilian Amazon rainforest) that possesses promising anti-tumor activity. This paper describes the development of poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles loaded with UT extract. The emulsion solvent evaporation method was utilized and the initial conditions were determined for the organic phase (OP) and the aqueous phase (AP). The influence of surfactant (type and concentration), PLGA concentration and AP volume on nanoparticle size, polydispersity index (PI), and entrapment efficiency (EE) was determined using a fractional factorial design (FFD). In addition, the formulation was optimized using a Box–Behnken design. After the conditions were optimized, UT nanoparticles were obtained using an OP composed of an ethyl acetate:acetone (3:2) mixture which contained the UT alkaloids and PLGA, and an AP composed of a buffered solution of Poloxamer 188 (pH 7.5). The optimized formulation produced an EE of 64.6 %, a particle size of 107.4 nm and a PI of 0.163. The preliminary experiments provided important information regarding the behavior of the nanoparticulate system and the FFD used in this study greatly facilitated the selection of the most optimal conditions for formulation development.

  13. Design of experiments for the development of poly( d, l-lactide- co-glycolide) nanoparticles loaded with Uncaria tomentosa

    Science.gov (United States)

    Ribeiro, Ana Ferreira; Ferreira, Carina Torres Garruth; dos Santos, Juliana Fernandes; Cabral, Lúcio Mendes; de Sousa, Valéria Pereira

    2015-02-01

    Polymeric nanoparticles have been shown to be effective carriers for natural substances that possess anticancer properties. Incorporation of these natural substances into polymeric nanoparticles increases targeting of these drugs, thus reducing side effects. Uncaria tomentosa (UT) is a Peruvian Amazon plant (existing in the Brazilian Amazon rainforest) that possesses promising anti-tumor activity. This paper describes the development of poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles loaded with UT extract. The emulsion solvent evaporation method was utilized and the initial conditions were determined for the organic phase (OP) and the aqueous phase (AP). The influence of surfactant (type and concentration), PLGA concentration and AP volume on nanoparticle size, polydispersity index (PI), and entrapment efficiency (EE) was determined using a fractional factorial design (FFD). In addition, the formulation was optimized using a Box-Behnken design. After the conditions were optimized, UT nanoparticles were obtained using an OP composed of an ethyl acetate:acetone (3:2) mixture which contained the UT alkaloids and PLGA, and an AP composed of a buffered solution of Poloxamer 188 (pH 7.5). The optimized formulation produced an EE of 64.6 %, a particle size of 107.4 nm and a PI of 0.163. The preliminary experiments provided important information regarding the behavior of the nanoparticulate system and the FFD used in this study greatly facilitated the selection of the most optimal conditions for formulation development.

  14. In vivo study of ALA PLGA nanoparticles-mediated PDT for treating cutaneous squamous cell carcinoma

    Science.gov (United States)

    Wang, Xiaojie; Shi, Lei; Huang, Zheng; Wang, Xiuli

    2014-09-01

    Background: Squamous cell carcinoma (SCC) is a common skin cancer and its treatment is still a challenge. Although topical photodynamic therapy (PDT) is effective for treating in situ and superficial SCC, the effectiveness of topical ALA delivery to thick SCC can be limited by its bioavailability. Polylactic-co-glycolic acid nanopartieles (PLGA NPs) might provide a promising ALA delivery strategy. The aim of this study was to evaluate the efficacy of ALA PLGA NPs PDT for the treatment of cutaneous SCC in a mouse model. Methods: ALA loaded PLGA NPs were prepared and characterized. The therapeutic efficacy of ALA PLGA NP mediated PDT in treating UV-induced cutaneous SCC in the mice model were examined. Results: In vivo study showed that ALA PLGA NPs PDT were more effective than free ALA of the same concentration in treating mouse cutaneous SCC. Conclusion: ALA PLGA NPs provides a promising strategy for delivering ALA and treating cutaneous SCC.

  15. Development of andrographolide loaded PLGA microspheres: optimization, characterization and in vitro-in vivo correlation.

    Science.gov (United States)

    Jiang, Yunxia; Wang, Fang; Xu, Hui; Liu, Hui; Meng, Qingguo; Liu, Wanhui

    2014-11-20

    The purpose of this study was to develop a sustained-release drug delivery system based on the injectable PLGA microspheres loaded with andrographolide. The andrographolide loaded PLGA microspheres were prepared by emulsion solvent evaporation method with optimization of formulation using response surface methodology (RSM). Physicochemical characterization, in vitro release behavior and in vivo pharmacokinetics of the optimized formulation were then evaluated. The percent absorbed in vivo was determined by deconvolution using the Loo-Riegelman method, and then the in vitro-in vivo correlation (IVIVC) was established. Results showed that the microspheres were spherical with a smooth surface. Average particle size, entrapment efficiency and drug loading were found to be 53.18±2.11 μm, 75.79±3.02% and 47.06±2.18%, respectively. In vitro release study showed a low initial burst release followed by a prolonged release up to 9 days and the release kinetics followed the Korsmeyer-Peppas model. After a single intramuscular injection, the microspheres maintained relatively high plasma concentration of andrographolide over one week. A good linear relationship was observed between the in vitro and in vivo release behavior (R(2)=0.9951). These results suggest the PLGA microspheres could be developed as a potential delivery system for andrographolide with high drug loading capacity and sustained drug release. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Novel lansoprazole-loaded nanoparticles for the treatment of gastric acid secretion-related ulcers: in vitro and in vivo pharmacokinetic pharmacodynamic evaluation.

    Science.gov (United States)

    Alai, Milind; Lin, Wen Jen

    2014-05-01

    The objective of this study is to combine nanoparticle design and enteric coating technique to sustain the delivery of an acid-labile drug, lansoprazole (LPZ), in the treatment of acid reflux disorders. Lansoprazole-loaded Eudragit® RS100 nanoparticles (ERSNP-LPZ) as well as poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PLGANP-LPZ) were prepared using a solvent evaporation/extraction method. The effects of nanoparticle charge and permeation enhancers on lansoprazole uptake was assessed in Caco-2 cells. The confocal microscopic images revealed the successful localization of nanoparticles in the cytoplasm of Caco-2 cells. The cellular uptake of positively charged Eudragit nanoparticles was significantly higher than that of negatively charged PLGA nanoparticles, which were enhanced by sodium caprate via the transcellular pathway. Both types of nanoparticles exhibited sustained drug release behavior in vitro. The oral administration of enteric-coated capsules filled with nanoparticles sustained and prolonged the LPZ concentration up to 24 h in ulcer-induced Wistar rats, and 92.4% and 89.2% of gastric ulcers healed after a 7-day treatment with either EC-ERSNP1010-Na caprate or EC-PLGANP1005-Na caprate, respectively.

  17. Evaluation of PLGA containing anti-CTLA4 inhibited endometriosis progression by regulating CD4+CD25+Treg cells in peritoneal fluid of mouse endometriosis model.

    Science.gov (United States)

    Liu, Qi; Ma, Pingchuan; Liu, Lanxia; Ma, Guilei; Ma, Jingjing; Liu, Xiaoxuan; Liu, Yijin; Lin, Wanjun; Zhu, Yingjun

    2017-01-01

    Our study investigated poly(lactic-co-glycolic acid) (PLGA) as protein delivery vehicles encapsulate CTLA-4-antibody (anti-CTLA-4) which is essential for CD4+CD25+Treg cells suppressive function exposing superior potential for inhibiting endometriosis progress in mouse model than single anti-CTLA-4. Anti-CTLA-4 loaded PLGA combined to ligands CTLA-4 in surface of CD4+CD25+Treg cells which distributed in peritoneal fluid of mouse endometriosis model. The particle size, zeta potential of the anti-CTLA-4 loaded nanoparticles was detected by dynamic light scattering. Morphology of nanoparticles was evaluated by transmission electron microscopy (TEM). Confocal laser scanning microscopy (CLSM) indicated distribution of anti-CTLA-4 with PLGA or without in peritoneal fluid. Cumulative anti-CTLA-4 release from nanoparticles was evaluated by Micro BCA assay. The percentage of CD4+CD25+Treg cells in peritoneal fluid was demonstrated by flow cytometer. In vitro experiment we co-culture ectopic endometrial cells (EEC) with isolated CD4+CD25+Treg cells in peritoneal fluid (PF), proliferation and invasion of ectopic endometrial cells (EEC) was measured by BrdU ELISA assay and Matrigel invasion assay. In comparison with anti-CTLA-4 without nanoparticles, the bioconjugates PLGA/anti-CTLA-4 were tolerated in peritoneal fluid with a controlled release of anti-CTLA-4 in 3, 7, 14days. Moreover, PLGA/anti-CTLA-4 had superior protective regulation ability to reduce level of CD4+CD25+Treg cells in peritoneal fluid. Most strikingly, in vitro experiment, PLGA/anti-CTLA-4 exhibited better ability in inhibiting proliferation and invasion of ectopic endometrial cells in co-culture system compared with anti-CTLA-4. Progressively, PLGA/anti-CTLA-4 had better suppressive activity to inhibited IL-10 and TGF-beta secreted by CD4+CD25+Treg cells which indicating that PLGA/anti-CTLA-4 suppressed cells proliferation and invasion through reduced IL-10 and TGF-beta production. Thus, PLGA/anti-CTLA-4 may

  18. Development of a novel AMX-loaded PLGA/zein microsphere for root canal disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, F F O [Capes Foundation, Ministry of Education of Brazil, Cx. Postal 365, BrasIlia DF 70359-970 (Brazil); Luzardo-Alvarez, A; Blanco-Mendez, J [Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Universitario Sur s/n, 15782, Santiago de Compostela (Spain); Perez-Estevez, A; Seoane-Prado, R, E-mail: franciscofabio.oliveira@rai.usc.e [Departament of Microbiology and Parasitology, Medical School, University of Santiago de Compostela, R/de San Francisco, s/n, 15782, Santiago de Compostela (Spain)

    2010-10-01

    The aim of this study was to develop polymeric biodegradable microspheres (MSs) of poly(d-l lactide-co-glycolide) (PLGA) and zein capable of delivering amoxicillin (AMX) at significant levels for root canal disinfection. PLGA/zein MSs were prepared using a spray-drying technique. The systems were characterized in terms of particle size, morphology, drug loading and in vitro release. Drug levels were reached to be effective during the intracanal dressing in between visits during the endodontic treatment. In vitro release studies were carried out to understand the release profile of the MSs. Antimicrobial activity of AMX was performed by antibiograms. Enterococcus faecalis was the bacteria selected due to its prevalence in endodontic failure. Drug microencapsulation yielded MSs with spherical morphology and an average particle size of between 5 and 38 {mu}m. Different drug-release patterns were obtained among the formulations. Release features related to the MSs were strongly dependent on drug nature as it was demonstrated by using a hydrophobic drug (indomethacin). Finally, AMX-loaded MSs were efficient against E faecalis as demonstrated by the antibiogram results. In conclusion, PLGA/zein MSs prepared by spray drying may be a useful drug delivery system for root canal disinfection.

  19. Development of a novel AMX-loaded PLGA/zein microsphere for root canal disinfection

    International Nuclear Information System (INIS)

    Sousa, F F O; Luzardo-Alvarez, A; Blanco-Mendez, J; Perez-Estevez, A; Seoane-Prado, R

    2010-01-01

    The aim of this study was to develop polymeric biodegradable microspheres (MSs) of poly(d-l lactide-co-glycolide) (PLGA) and zein capable of delivering amoxicillin (AMX) at significant levels for root canal disinfection. PLGA/zein MSs were prepared using a spray-drying technique. The systems were characterized in terms of particle size, morphology, drug loading and in vitro release. Drug levels were reached to be effective during the intracanal dressing in between visits during the endodontic treatment. In vitro release studies were carried out to understand the release profile of the MSs. Antimicrobial activity of AMX was performed by antibiograms. Enterococcus faecalis was the bacteria selected due to its prevalence in endodontic failure. Drug microencapsulation yielded MSs with spherical morphology and an average particle size of between 5 and 38 μm. Different drug-release patterns were obtained among the formulations. Release features related to the MSs were strongly dependent on drug nature as it was demonstrated by using a hydrophobic drug (indomethacin). Finally, AMX-loaded MSs were efficient against E faecalis as demonstrated by the antibiogram results. In conclusion, PLGA/zein MSs prepared by spray drying may be a useful drug delivery system for root canal disinfection.

  20. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers

    International Nuclear Information System (INIS)

    Ding Hong; Yong, Ken-Tye; Roy, Indrajit; Hu Rui; Zhao Lingling; Law, Wing-Cheung; Ji Wei; Liu Liwei; Bergey, Earl J; Prasad, Paras N; Wu Fang; Zhao Weiwei

    2011-01-01

    In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l -1 . Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the α v β 3 integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.

  1. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers

    Energy Technology Data Exchange (ETDEWEB)

    Ding Hong; Yong, Ken-Tye; Roy, Indrajit; Hu Rui; Zhao Lingling; Law, Wing-Cheung; Ji Wei; Liu Liwei; Bergey, Earl J; Prasad, Paras N [Department of Chemistry, Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Wu Fang [Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Zhao Weiwei, E-mail: bergeye@buffalo.edu, E-mail: pnprasad@buffalo.edu [Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, NY 14215 (United States)

    2011-04-22

    In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l{sup -1}. Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the {alpha}{sub v{beta}3} integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.

  2. Enteric-coated capsules filled with mono-disperse micro-particles containing PLGA-lipid-PEG nanoparticles for oral delivery of insulin.

    Science.gov (United States)

    Yu, Fei; Li, Yang; Liu, Chang Sheng; Chen, Qin; Wang, Gui Huan; Guo, Wei; Wu, Xue E; Li, Dong Hui; Wu, Winston Duo; Chen, Xiao Dong

    2015-04-30

    The success of the oral delivery of insulin (INS) as a therapeutic protein drug would significantly improve the quality of life of diabetic patients who would otherwise receive multiple daily INS injections. The oral delivery of INS, however, is still limited in its delivery efficiency, which could be due to the chemical, enzymatic, and adsorption barriers. In this work, in an attempt to improve the delivery efficiency, the INS-loaded polymer-lipid hybrid nanoparticles (INS-PLGA-lipid-PEG NPs) were designed and constructed through a double-emulsion solvent evaporation technique, followed by formulation of the spherical micro-particles using a spray freeze dryer (SFD). This kind of dryers has a uniquely designed microfluidic aerosol nozzle (MFAN), ensuring the formation of uniform particles. The resulted particles of ∼212 μm could easily be reverted to discrete INS-PLGA-lipid-PEG NPs in an aqueous solution. The INS-PLGA-lipid-PEG NPs created in this work showed a highly negative surface charge, excellent entrapment efficiency (92.3%) and a sustained drug release (∼24 h). Confocal laser scanning microscopy and flow cytometer were used to show that the cellular uptake efficiency for the INS-PLGA-lipid-PEG NPs was more effective than the INS in Caco-2 cells. More importantly, the in vivo pharmacodynamics demonstrated that the orally delivered system induced a prolonged decrease in blood glucose levels among diabetic rats. The relative bioavailability of INS compared with subcutaneous injection in diabetic rats was found to be approximately 12%. These results suggested that the encapsulated INS-PLGA-lipid-PEG NPs are promising and should be investigated further in the near future as an effective INS oral delivery system. Copyright © 2015. Published by Elsevier B.V.

  3. Development of biodegradable polymer based tamoxifen citrate loaded nanoparticles and effect of some manufacturing process parameters on them: a physicochemical and in-vitro evaluation

    Directory of Open Access Journals (Sweden)

    Basudev Sahana

    2010-08-01

    Full Text Available Basudev Sahana, Kousik Santra, Sumit Basu, Biswajit MukherjeeDepartment of Pharmaceutical Technology, Jadavpur University, Kolkata, IndiaAbstract: The aim of the present study was to develop nanoparticles of tamoxifen citrate, a non-steroidal antiestrogenic drug used for the treatment of breast cancer. Biodegradable poly (D, L- lactide-co-glycolide-85:15 (PLGA was used to develop nanoparticles of tamoxifen citrate by multiple emulsification (w/o/w and solvent evaporation technique. Drug-polymer ratio, polyvinyl alcohol concentrations, and homogenizing speeds were varied at different stages of preparation to optimize the desired size and release profile of drug. The characterization of particle morphology and shape was performed by field emission scanning electron microscope (FE-SEM and particle size distribution patterns were studied by direct light scattering method using zeta sizer. In vitro drug release study showed that release profile of tamoxifen from biodegradable nanoparticles varied due to the change in speed of centrifugation for separation. Drug loading efficiency varied from 18.60% to 71.98%. The FE-SEM study showed that biodegradable nanoparticles were smooth and spherical in shape. The stability studies of tamoxifen citrate in the experimental nanoparticles showed the structural integrity of tamoxifen citrate in PLGA nanoparticles up to 60°C in the tested temperatures. Nanoparticles containing tamoxifen citrate could be useful for the controlled delivery of the drug for a prolonged period.Keywords: biodegradable, nanoparticles, PLGA, stability, tamoxifen citrate

  4. SN-38 loading capacity of hydrophobic polymer blend nanoparticles: formulation, optimization and efficacy evaluation.

    Science.gov (United States)

    Dimchevska, Simona; Geskovski, Nikola; Petruševski, Gjorgji; Chacorovska, Marina; Popeski-Dimovski, Riste; Ugarkovic, Sonja; Goracinova, Katerina

    2017-03-01

    One of the most important problems in nanoencapsulation of extremely hydrophobic drugs is poor drug loading due to rapid drug crystallization outside the polymer core. The effort to use nanoprecipitation, as a simple one-step procedure with good reproducibility and FDA approved polymers like Poly(lactic-co-glycolic acid) (PLGA) and Polycaprolactone (PCL), will only potentiate this issue. Considering that drug loading is one of the key defining characteristics, in this study we attempted to examine whether the nanoparticle (NP) core composed of two hydrophobic polymers will provide increased drug loading for 7-Ethyl-10-hydroxy-camptothecin (SN-38), relative to NPs prepared using individual polymers. D-optimal design was applied to optimize PLGA/PCL ratio in the polymer blend and the mode of addition of the amphiphilic copolymer Lutrol ® F127 in order to maximize SN-38 loading and obtain NPs with acceptable size for passive tumor targeting. Drug/polymer and polymer/polymer interaction analysis pointed to high degree of compatibility and miscibility among both hydrophobic polymers, providing core configuration with higher drug loading capacity. Toxicity studies outlined the biocompatibility of the blank NPs. Increased in vitro efficacy of drug-loaded NPs compared to the free drug was confirmed by growth inhibition studies using SW-480 cell line. Additionally, the optimized NP formulation showed very promising blood circulation profile with elimination half-time of 7.4 h.

  5. Oral DNA vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), against infectious haematopoietic necrosis virus using PLGA [Poly(D,L-Lactic-Co-Glycolic Acid)] nanoparticles.

    Science.gov (United States)

    Adomako, M; St-Hilaire, S; Zheng, Y; Eley, J; Marcum, R D; Sealey, W; Donahower, B C; Lapatra, S; Sheridan, P P

    2012-03-01

    A DNA vaccine against infectious haematopoietic necrosis virus (IHNV) is effective at protecting rainbow trout, Oncorhynchus mykiss, against disease, but intramuscular injection is required and makes the vaccine impractical for use in the freshwater rainbow trout farming industry. Poly (D,L-lactic-co-glycolic acid) (PLGA) is a U.S. Food and Drug Administration (FDA) approved polymer that can be used to deliver DNA vaccines. We evaluated the in vivo absorption of PLGA nanoparticles containing coumarin-6 when added to a fish food pellet. We demonstrated that rainbow trout will eat PLGA nanoparticle coated feed and that these nanoparticles can be detected in the epithelial cells of the lower intestine within 96 h after feeding. We also detected low levels of gene expression and anti-IHNV neutralizing antibodies when fish were fed or intubated with PLGA nanoparticles containing IHNV G gene plasmid. A virus challenge evaluation suggested a slight increase in survival at 6 weeks post-vaccination in fish that received a high dose of the oral vaccine, but there was no difference when additional fish were challenged at 10 weeks post-vaccination. The results of this study suggest that it is possible to induce an immune response using an orally delivered DNA vaccine, but the current system needs improvement. © 2012 Blackwell Publishing Ltd.

  6. Arginine-Glycine-Aspartic Acid-Modified Lipid-Polymer Hybrid Nanoparticles for Docetaxel Delivery in Glioblastoma Multiforme.

    Science.gov (United States)

    Shi, Kairong; Zhou, Jin; Zhang, Qianyu; Gao, Huile; Liu, Yayuan; Zong, Taili; He, Qin

    2015-03-01

    Hybrid nanoparticles consisting of lipids and the biodegradable polymer, poly (D,L-lactide-co-glycolide) (PLGA), were developed for the targeted delivery of the anticancer drug, docetaxel. Transmission electron microscopic observations confirmed the presence of a lipid coating over the polymeric core. Using coumarin-6 as a fluorescent probe, the uptake efficacy of RGD conjugated lipid coated nanoparticles (RGD-L-P) by C6 cells was increased significantly, compared with that of lipid-polymer hybrid nanoparticles (L-P; 2.5-fold higher) or PLGA-nanoparticles (PLGA-P; 1.76-fold higher). The superior tumor spheroid penetration of RGD-L-P indicated that RGD-L-P could target effectively and specifically to C6 cells overexpressing integrin α(v)β3. The anti-proliferative activity of docetaxel-loaded RGD-L-P against C6 cells was increased 2.69- and 4.13-fold compared with L-P and PLGA-P, respectively. Regarding biodistribution, the strongest brain-localized fluorescence signals were detected in glioblastoma multiforme (GBM)-bearing rats treated with 1,10-Dioctadecyl-3,3,30,30-tetramethylindotricarb-ocyanine iodide (DiR)-loaded RGD-L-P, compared to rats treated with DiR-loaded L-P or PLGA-P. The median survival time of GBM-bearing rats treated with docetaxel-loaded RGD-L-P was 57 days, a fold increase of 1.43, 1.78, 3.35, and 3.56 compared with animals given L-P (P PLGA-P (P < 0.05), Taxotere (P < 0.01) and saline (P < 0.01), respectively. Collectively, these results support RGD-L-P as a promising drug delivery system for the specific targeting and the treatment of GBM.

  7. Co-delivery of rapamycin- and piperine-loaded polymeric nanoparticles for breast cancer treatment.

    Science.gov (United States)

    Katiyar, Sameer S; Muntimadugu, Eameema; Rafeeqi, Towseef Amin; Domb, Abraham J; Khan, Wahid

    2016-09-01

    P-glycoprotein (P-gp) efflux is the major cause of multidrug resistance (MDR) in tumors when using anticancer drugs, moreover, poor bioavailability of few drugs is also due to P-gp efflux in the gut. Rapamycin (RPM) is in the clinical trials for breast cancer treatment, but its P-gp substrate property leads to poor oral bioavailability and efficacy. The objective of this study is to formulate and evaluate nanoparticles of RPM, along with a chemosensitizer (piperine, PIP) for improved oral bioavailability and efficacy. Poly(d,l-lactide-co-glycolide) (PLGA) was selected as polymer as it has moderate MDR reversal activity, which may provide additional benefits. The nanoprecipitation method was used to prepare PLGA nanoparticles with particle size below 150 nm, loaded with both drugs (RPM and PIP). Prepared nanoparticles showed sustained in vitro drug release for weeks, with initial release kinetics of zero order with non-Fickian transport, subsequently followed by Higuchi kinetics with Fickian diffusion. An everted gut sac method was used to study the effect of P-gp efflux on drug transport. This reveals that the uptake of the RPM (P-gp substrate) has been increased in the presence of chemosensitizer. Pharmacokinetic studies showed better absorption profile of RPM from polymeric nanoparticles compared to its suspension counterpart and improved bioavailability of 4.8-folds in combination with a chemosensitizer. An in vitro cell line study indicates higher efficacy of nanoparticles compared to free drug solution. Results suggest that the use of a combination of PIP with RPM nanoparticles would be a promising approach in the treatment of breast cancer.

  8. Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly(lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA)

    Science.gov (United States)

    Cruz, J.; Flórez, J.; Torres, R.; Urquiza, M.; Gutiérrez, J. A.; Guzmán, F.; Ortiz, C. C.

    2017-03-01

    Nanocarrier systems are currently being developed for peptide, protein and gene delivery to protect them in the blood circulation and in the gastrointestinal tract. Polylactic acid (PLA) and poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with a new antimicrobial GIBIM-P5S9K peptide were obtained by the double emulsion solvent extraction/evaporation method. PLA- and PLGA-NPs were spherical with sizes between 300 and 400 nm for PLA and 200 and 300 nm for PLGA and 20 mV. The peptide-loading efficiency of PLA-NP and PLGA-NPs was 75% and 55%, respectively. PLA- and PLGA-NPs released around 50% of this peptide over 8 h. In 10% human sera the size of peptide loaded PLA- and PLGA-NPs increased between 25.2% and 39.3%, the PDI changed from 3.2 to 5.1 and the surface charge from -7.15 to 14.6 mV. Both peptide loaded PLA- and PLGA-NPs at 0.5 μM peptide concentration inhibited the growth of Escherichia coli O157:H7 (E. coli O157:H7), methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas. aeruginosa (P. aeruginosa). In contrast, free peptide inhibited at 10 μM but did not inhibit at 0.5 and 1 μM. These PLA- and PLGA-NPs presented <10% hemolysis indicating that they are hemocompatible and promising for delivery and protection system of GIBIM-P5S9K peptide.

  9. Norfloxacin release from surfactant-free nanoparticles of poly (DL-lactide-co-glycolide) and biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, J.K. [Chosun College of Science and Technology, Gwangju (Korea); Jeong, Y.I. [Chonnam National University, Gwangju (Korea); Jang, M.K. [Suncheon National University, Suncheon (Korea); Lee, C.H. [Korea Food and Drug Administration, Seoul (Korea); Nah, J.W. [Suncheon National University, Suncheon (Korea)

    2002-07-01

    We have prepared the surfactant-free nanoparticles of poly(DL- lactide-co-glycolide)(PLGA) by dialysis method and their physicochemical properties such as particle size and drug contents were investigated against various solvent. The size of PLGA nanoparticles prepared by using dimethylacetamide (DMAc), dimethylformamide (DMF), and dimethylsulfoxide (DMSO) was smaller than that from acetone. Also, the order of drug contents was DMAc>DMF>DMSO=acetone. These phenomena could be expected from the fact that solvent affects the size of nanoparticles and drug contents. The PLGA nanoparticles have a good spherical shapes as observed from scanning electron microscopy (SEM) and transmission electron microscopy (TEM), Also, surfactant-free nanoparticles entrapping norfloxacin (NFx) have a good drug loading capacity without free-drug on the surface of nanoparticles confirmed by the analysis of X-ray powder diffraction. Release kinetics of NFx used as a model drug was governed not only by drug contents but also by particle size. Also, the biodegradation rate of PLGA nanoparticles prepared from DMF was faster than that prepared from acetone, indicating that the biodegradation of PLGA nanoparticles is size-dependent. (author). 25 refs., 3 tabs., 5 figs.

  10. Ebola Vaccination Using a DNA Vaccine Coated on PLGA-PLL/γPGA Nanoparticles Administered Using a Microneedle Patch.

    Science.gov (United States)

    Yang, Hung-Wei; Ye, Ling; Guo, Xin Dong; Yang, Chinglai; Compans, Richard W; Prausnitz, Mark R

    2017-01-01

    Ebola DNA vaccine is incorporated into PLGA-PLL/γPGA nanoparticles and administered to skin using a microneedle (MN) patch. The nanoparticle delivery system increases vaccine thermostability and immunogenicity compared to free vaccine. Vaccination by MN patch produces stronger immune responses than intramuscular administration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Engineering of budesonide-loaded lipid-polymer hybrid nanoparticles using a quality-by-design approach.

    Science.gov (United States)

    Leng, Donglei; Thanki, Kaushik; Fattal, Elias; Foged, Camilla; Yang, Mingshi

    2017-08-25

    Chronic obstructive pulmonary disease (COPD) is a complex disease, characterized by persistent airflow limitation and chronic inflammation. The purpose of this study was to design lipid-polymer hybrid nanoparticles (LPNs) loaded with the corticosteroid, budesonide, which could potentially be combined with small interfering RNA (siRNA) for COPD management. Here, we prepared LPNs based on the biodegradable polymer poly(dl-lactic-co-glycolic acid) (PLGA) and the cationic lipid dioleyltrimethylammonium propane (DOTAP) using a double emulsion solvent evaporation method. A quality-by-design (QbD) approach was adopted to define the optimal formulation parameters. The quality target product profile (QTPP) of the LPNs was identified based on risk assessment. Two critical formulation parameters (CFPs) were identified, including the theoretical budesonide loading and the theoretical DOTAP loading. The CFPs were linked to critical quality attributes (CQAs), which included the intensity-based hydrodynamic particle diameter (z-average), the polydispersity index (PDI), the zeta-potential, the budesonide encapsulation efficiency, the actual budesonide loading and the DOTAP encapsulation efficiency. A response surface methodology (RSM) was applied for the experimental design to evaluate the influence of the CFPs on the CQAs, and to identify the optimal operation space (OOS). All nanoparticle dispersions displayed monodisperse size distributions (PDIPLGA increases when increasing the initial amount of budesonide. The OOS was modeled by applying the QTPP. The OOS had a budesonide encapsulation efficiency higher than 30%, a budesonide loading above 15μg budesonide/mg PLGA, a zeta-potential higher than 35mV and a DOTAP encapsulation efficiency above 50%. This study shows the importance of systematic formulation design for understanding the effect of formulation parameters on the characteristics of LPNs, eventually resulting in the identification of an OOS. Copyright © 2017 Elsevier B

  12. PLGA nanoparticles for peptide receptor radionuclide therapy of neuroendocrine tumors: a novel approach towards reduction of renal radiation dose.

    Directory of Open Access Journals (Sweden)

    Geetanjali Arora

    Full Text Available BACKGROUND: Peptide receptor radionuclide therapy (PRRT, employed for treatment of neuroendocrine tumors (NETs is based on over-expression of Somatostatin Receptors (SSTRs on NETs. It is, however, limited by high uptake and retention of radiolabeled peptide in kidneys resulting in unnecessary radiation exposure thus causing nephrotoxicity. Employing a nanocarrier to deliver PRRT drugs specifically to the tumor can reduce the associated nephrotoxicity. Based on this, (177Lu-DOTATATE loaded PLGA nanoparticles (NPs were formulated in the present study, as a potential therapeutic model for NETs. METHODOLOGY AND FINDINGS: DOTATATE was labeled with Lutetium-177 ((177Lu (labeling efficiency 98%; R(f∼0.8. Polyethylene Glycol (PEG coated (177Lu-DOTATATE-PLGA NPs (50:50 and 75:25 formulated, were spherical with mean size of 304.5±80.8 and 733.4±101.3 nm (uncoated and 303.8±67.2 and 494.3±71.8 nm (coated for PLGA(50:50 and PLGA(75:25 respectively. Encapsulation efficiency (EE and In-vitro release kinetics for uncoated and coated NPs of PLGA (50:50 & 75:25 were assessed and compared. Mean EE was 77.375±4.98% & 67.885±5.12% (uncoated and 65.385±5.67% & 58.495±5.35% (coated. NPs showed initial burst release between 16.64-21.65% with total 42.83-44.79% over 21 days. The release increased with coating to 20.4-23.95% initially and 60.97-69.12% over 21 days. In-vivo studies were done in rats injected with (177Lu-DOTATATE and (177Lu-DOTATATE-NP (uncoated and PEG-coated by imaging and organ counting after sacrificing rats at different time points over 24 hr post-injection. With (177Lu-DOTATATE, renal uptake of 37.89±10.2%ID/g was observed, which reduced to 4.6±1.97% and 5.27±1.66%ID/g with uncoated and coated (177Lu-DOTATATE-NP. The high liver uptake with uncoated (177Lu-DOTATATE-NP (13.68±3.08% ID/g, reduced to 7.20±2.04%ID/g (p = 0.02 with PEG coating. CONCLUSION: PLGA NPs were easily formulated and modified for desired release properties. PLGA

  13. PEGylated apoptotic protein-loaded PLGA microspheres for cancer therapy

    Directory of Open Access Journals (Sweden)

    Byeon HJ

    2015-01-01

    Full Text Available Hyeong Jun Byeon,1 Insoo Kim,1 Ji Su Choi,1 Eun Seong Lee,2 Beom Soo Shin,3 Yu Seok Youn11Department of Pharmaceutical Sciences, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea; 2Division of Biotechnology, The Catholic University of Korea, Bucheon-si, Republic of Korea; 3Department of Pharmacy, College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, Republic of KoreaAbstract: The aim of the current study was to investigate the antitumor potential of poly(D,L-lactic-co-glycolic acid microspheres (PLGA MSs containing polyethylene glycol (PEG-conjugated (PEGylated tumor necrosis factor–related apoptosis-inducing ligand (PEG-TRAIL. PEG-TRAIL PLGA MSs were prepared by using a water-in-oil-in-water double-emulsion method, and the apoptotic activities of supernatants released from the PLGA MSs at days 1, 3, and 7 were examined. The antitumor effect caused by PEG-TRAIL PLGA MSs was evaluated in pancreatic Mia Paca-2 cell-xenografted mice. PEG-TRAIL PLGA MS was found to be spherical and 14.4±1.06 µm in size, and its encapsulation efficiency was significantly greater than that of TRAIL MS (85.7%±4.1% vs 43.3%±10.9%, respectively. The PLGA MS gradually released PEG-TRAIL for 14 days, and the released PEG-TRAIL was shown to have clear apoptotic activity in Mia Paca-2 cells, whereas TRAIL released after 1 day had a negligible activity. Finally, PEG-TRAIL PLGA MS displayed remarkably greater antitumor efficacy than blank or TRAIL PLGA MS in Mia Paca-2 cell-xenografted mice in terms of tumor volume and weight, apparently due to increased stability and well-retained apoptotic activity of PEG-TRAIL in PLGA MS. We believe that this PLGA MS system, combined with PEG-TRAIL, should be considered a promising candidate for treating pancreatic cancer.Keywords: Poly(D,L-lactic-co-glycolic acid, controlled release, PEGylation, TRAIL, pancreatic cancer

  14. Development of Drug Loaded Nanoparticles Binding to Hydroxyapatite Based on a Bisphosphonate Modified Nonionic Surfactant

    Directory of Open Access Journals (Sweden)

    Jiabin Zhang

    2015-01-01

    Full Text Available This study aimed at development of drug loaded nanoparticles which could bind to hydroxyapatite (HA to construct drug or growth factor releasing bone graft substitutes. To this end, the terminal hydroxyl group of a nonionic surfactant Brij 78 (polyoxyethylene (20 stearyl ether was first modified with pamidronate (Pa. Using Pa-Brij 78 as both a surfactant and an affinity ligand to HA, three different Pa surface functionalized nanoparticles were prepared, named as solid lipid nanoparticles (Pa-SNPs, nanoemulsions (Pa-NEMs, and PLGA nanoparticles (Pa-PNPs. A model drug curcumin was successfully encapsulated in the three nanoparticles. The sizes of Pa-NEM and Pa-PNP were around 150 nm and the size of Pa-SNP was around 90 nm with polydispersity indexes (PDIs less than 0.20. Drug encapsulation efficiencies of the three nanoparticles were all greater than 85%. Furthermore, the order of binding affinity of the nanoparticles to HA was Pa-PNP>Pa-NEM=Pa-SNP. After lyophilization, the sizes of the three nanoparticles were increased about 0.5–2.0-fold but their binding affinities to HA were almost the same as the fresh prepared nanoparticles. In conclusion, a Pa-modified Brij 78 was synthesized and used for fabrication of a series of drug loaded nanoparticles to construct drug-eluting HA-based bone graft substitutes.

  15. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer.

    Science.gov (United States)

    He, Zelai; Huang, Jingwen; Xu, Yuanyuan; Zhang, Xiangyu; Teng, Yanwei; Huang, Can; Wu, Yufeng; Zhang, Xi; Zhang, Huijun; Sun, Wenjie

    2015-12-08

    An amphiphilic copolymer, folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) was prepared and explored as a nanometer carrier for the co-delivery of cisplatin (cis-diaminodichloroplatinum, CDDP) and paclitaxel (PTX). CDDP and PTX were encapsulated inside the hydrophobic inner core and chelated to the middle shell, respectively. PEG provided the outer corona for prolonged circulation. An in vitro release profile of the CDDP + PTX-encapsulated nanoparticles revealed that the PTX chelation cross-link prevented an initial burst release of CDDP. After an incubation period of 24 hours, the CDDP+PTX-encapsulated nanoparticles exhibited a highly synergistic effect for the inhibition of A549 (FA receptor negative) and M109 (FA receptor positive) lung cancer cell line proliferation. Pharmacokinetic experiment and distribution research shows that nanoparticles have longer circulation time in the blood and can prolong the treatment times of chemotherapeutic drugs. For the in vivo treatment of A549 cells xeno-graft lung tumor, the CDDP+PTX-encapsulated nanoparticles displayed an obvious tumor inhibiting effect with an 89.96% tumor suppression rate (TSR). This TSR was significantly higher than that of free chemotherapy drug combination or nanoparticles with a single drug. For M109 cells xeno-graft tumor, the TSR was 95.03%. In vitro and in vivo experiments have all shown that the CDDP+PTX-encapsulated nanoparticles have better targeting and antitumor effects in M109 cells than CDDP+PTX-loaded PEG-PLGA nanoparticles (p nanoparticles came with reduced side-effects. No obvious body weight loss or functional changes occurred within blood components, liver, or kidneys during the treatment of A549 and M109 tumor-bearing mice with the CDDP+PTX-encapsulated nanoparticles. Thus, the FA modified amphiphilic copolymer-based combination of CDDP and PTX may provide useful guidance for effective and safe cancer chemotherapy, especially in tumors with

  16. Liver-targeting Resibufogenin-loaded poly(lactic-co-glycolic acid-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for liver cancer therapy

    Directory of Open Access Journals (Sweden)

    Chu QC

    2016-01-01

    Full Text Available Qiuchen Chu,1,* Hong Xu,2,* Meng Gao,1 Xin Guan,1 Hongyan Liu,1 Sa Deng,1 Xiaokui Huo,1 Kexin Liu,1 Yan Tian,1 Xiaochi Ma1 1College of Pharmacy, 2College of Basic Medical Sciences, Dalian Medical University, Dalian, People’s Republic of China *These authors contributed equally to this work Abstract: Liver cancer remains a major problem around the world. Resibufogenin (RBG is a major bioactive compound that was isolated from Chansu (also called toad venom or toad poison, which is a popular traditional Chinese medicine that is obtained from the skin secretions of giant toads. RBG has strong antitumor effects, but its poor aqueous solubility and its cardiotoxicity have limited its clinical use. The aim of this study was to formulate RBG-loaded poly(lactic-co-glycolic acid (PLGA-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticle (RPTN to enhance the treatment of liver cancer. RPTN, RBG-loaded PLGA nanoparticle (RPN, and RBG/coumarin-6-loaded PLGA-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticle (RCPTN were prepared. The cellular uptake of RCPTN by HepG2 and HCa-F cells was analyzed using confocal laser scanning microscopy. Apoptosis was induced in HepG2 cells by RPTN, RBG solution (RS, and 5-fluorouracil solution (used as the negative controls, as assayed using flow cytometry. LD50 (median lethal dose values were determined for RS and RPTN, and the liver-targeting properties were determined for RCPTN in intravenously injected mice. A pharmacokinetic study was conducted in rats, and the in vivo therapeutic effects of RPTN, RPN, and RS were examined in a mouse tumor model. The results showed that RCPTN simultaneously delivered both coumarin-6 and RBG into HepG2 and HCa-F cells. The ratio of apoptotic cells was increased in the RPTN group. The LD50 for RPTN was 2.02-fold higher than the value for RS. Compared to RS, RPTN and RPN both showed a significant difference in vivo not only in the pharmacodynamic study but also in

  17. Development of facile drug delivery platform of ranibizumab fabricated PLGA-PEGylated magnetic nanoparticles for age-related macular degeneration therapy.

    Science.gov (United States)

    Yan, Jian; Peng, Xifeng; Cai, Yulian; Cong, Wendong

    2018-06-01

    The present anti-angiogenic therapies for neovascular age-related macular degeneration require effective drug delivery systems for transfer drug molecules. Ranibizumab is an active humanized monoclonal antibody that counteracts active forms of vascular endothelial growth factor A in the neovascular age-related macular degeneration therapy. The development of ranibizumab-related therapies, we have designed the effective drug career with engineered magnetic nanoparticles (Fe 3 O 4 ) as a facile platform of ranibizumab delivery for the treatment of neovascular age-related macular degeneration. Ranibizumab conjugated iron oxide (Fe 3 O 4 )/PEGylated poly lactide-co-glycolide (PEG-PLGA) was successfully designed and the synthesized materials are analyzed different analytical techniques. The microscopic techniques (Scanning Electron Microscopy (SEM) & Transmission Electron Microscopy (TEM)) are clearly displayed that spherical nanoparticles into the PEG-PLGA matrix and presence of elements and chemical interactions confirmed by the results of energy dispersive X-ray analysis (EDX) and Fourier trans-form infrared (FTIR) spectroscopic methods. The in vitro anti-angiogenic evaluation of Fe 3 O 4 /PEG-PLGA polymer nanomaterial efficiently inhibits the tube formation in the Matrigel-based assay method by using human umbilical vein endothelial cells. Ranibizumab treated Fe 3 O 4 /PEG-PLGA polymer nanomaterials not disturbed cell proliferation and the results could not display the any significant differences in human endothelial cells. The present investigated results describe that Fe 3 O 4 /PEG-PLGA polymer nanomaterials can be highly favorable and novel formulation for the treatment of neovascular age-related macular degeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study

    Science.gov (United States)

    Bohrey, Sarvesh; Chourasiya, Vibha; Pandey, Archna

    2016-03-01

    Nanoparticles formulated from biodegradable polymers like poly(lactic-co-glycolic acid) (PLGA) are being extensively investigated as drug delivery systems due to their two important properties such as biocompatibility and controlled drug release characteristics. The aim of this work to formulated diazepam loaded PLGA nanoparticles by using emulsion solvent evaporation technique. Polyvinyl alcohol (PVA) is used as stabilizing agent. Diazepam is a benzodiazepine derivative drug, and widely used as an anticonvulsant in the treatment of various types of epilepsy, insomnia and anxiety. This work investigates the effects of some preparation variables on the size and shape of nanoparticles prepared by emulsion solvent evaporation method. These nanoparticles were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM). Zeta potential study was also performed to understand the surface charge of nanoparticles. The drug release from drug loaded nanoparticles was studied by dialysis bag method and the in vitro drug release data was also studied by various kinetic models. The results show that sonication time, polymer content, surfactant concentration, ratio of organic to aqueous phase volume, and the amount of drug have an important effect on the size of nanoparticles. Hopefully we produced spherical shape Diazepam loaded PLGA nanoparticles with a size range under 250 nm with zeta potential -23.3 mV. The in vitro drug release analysis shows sustained release of drug from nanoparticles and follow Korsmeyer-Peppas model.

  19. Local anesthetic effects of bupivacaine loaded lipid-polymer hybrid nanoparticles: In vitro and in vivo evaluation.

    Science.gov (United States)

    Ma, Pengju; Li, Ting; Xing, Huaixin; Wang, Suzhen; Sun, Yingui; Sheng, Xiugui; Wang, Kaiguo

    2017-05-01

    There is a compelling need for prolonged local anesthetic that would be used for analgesia with a single administration. However, due to the low molecular weight of local anesthetics (LA) (lidocaine, bupivacaine, procaine, dibucaine, etc), they present fast systemic absorption. The aim of the present study was to develop and evaluate bupivacaine lipid-polymer hybrid nanoparticles (BVC LPNs), and compared with BVC loaded PLGA nanoparticles (BVC NPs). Their morphology, particle size, zeta potential and drug loading capacity were evaluated. In vitro release study, stability and cytotoxicity were studied. In vivo evaluation of anesthetic effects was performed on animal models. A facile nanoprecipitation and self-assembly method was optimized to obtain BVC LPNs, composed of PLGA, lecithin and DSPE-PEG 2000 , of ∼175nm particle size. Compared to BVC NPs, BVC LPNs exhibited prolonged in vitro release in phosphate-buffered saline (pH=7.4). Further, BVC LPNs displayed enhanced in vitro stability in 10% FBS and lower cytotoxicity (the concentration of BVC ranging from 1.0μM to 20μM). In addition, BVC LPNs exhibited significantly prolonged analgesic duration. These results demonstrate that the LPNs could function as promising drug delivery system for overcoming the drawbacks of poor stability and rapid drug leakage, and prolonging the anesthetic effect with slight toxicity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Nanoparticle-mediated delivery of the antimicrobial peptide plectasin against Staphylococcus aureus in infected epithelial cells

    DEFF Research Database (Denmark)

    Water, Jorrit Jeroen; Smart, Simon; Franzyk, Henrik

    2015-01-01

    intracellularly in Calu-3 epithelial cells and in THP-1 cells, whereas A549 cells did not show significant uptake of nanoparticles. Overall, encapsulation of plectasin into PLGA-based nanoparticles appears to be a viable strategy to improve the efficacy of plectasin against infections in epithelial tissues....... epithelial cells might thus be a promising approach to combat such infections. In this work, plectasin, which is a cationic AMP of the defensin class, was encapsulated into poly(lactic-co-glycolic acid) (PLGA) nanoparticles using the double emulsion solvent evaporation method. The nanoparticles displayed...... high plectasin encapsulation efficiency (71-90%) and mediated release of the peptide over 24h. The antimicrobial efficacy of the peptide-loaded nanoparticles was investigated using bronchiolar epithelial Calu-3 cell monolayers infected with S. aureus. The plectasin-loaded nanoparticles displayed...

  1. Gelsolin Amyloidogenesis Is Effectively Modulated by Curcumin and Emetine Conjugated PLGA Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Ankit Srivastava

    Full Text Available Small molecule based therapeutic intervention of amyloids has been limited by their low solubility and poor pharmacokinetic characteristics. We report here, the use of water soluble poly lactic-co-glycolic acid (PLGA-encapsulated curcumin and emetine nanoparticles (Cm-NPs and Em-NPs, respectively, as potential modulators of gelsolin amyloidogenesis. Using the amyloid-specific dye Thioflavin T (ThT as an indicator along with electron microscopic imaging we show that the presence of Cm-NPs augmented amyloid formation in gelsolin by skipping the pre-fibrillar assemblies, while Em-NPs induced non-fibrillar aggregates. These two types of aggregates differed in their morphologies, surface hydrophobicity and secondary structural signatures, confirming that they followed distinct pathways. In spite of differences, both these aggregates displayed reduced toxicity against SH-SY5Y human neuroblastoma cells as compared to control gelsolin amyloids. We conclude that the cytotoxicity of gelsolin amyloids can be reduced by either stalling or accelerating its fibrillation process. In addition, Cm-NPs increased the fibrillar bulk while Em-NPs defibrillated the pre-formed gelsolin amyloids. Moreover, amyloid modulation happened at a much lower concentration and at a faster rate by the PLGA encapsulated compounds as compared to their free forms. Thus, besides improving pharmacokinetic and biocompatible properties of curcumin and emetine, PLGA conjugation elevates the therapeutic potential of both small molecules against amyloid fibrillation and toxicity.

  2. Evaluation of polymeric PLGA nanoparticles conjugated to curcumin for use in aPDT

    Directory of Open Access Journals (Sweden)

    Renata Celi Carvalho de Souza Pietra

    2017-07-01

    Full Text Available ABSTRACT Antimicrobial photodynamic therapy (aPDT involves the association of a photosensitizing agent with a light source with the goal of causing apoptosis or microbial lysing. The use of compounds with natural active principles is gaining prominence throughout the world. Several studies from groups that are linked to the development of innovations in the pharmaceutical market have used natural dyes, such as curcumin, the efficacy of which has been demonstrated in aPDT trials. Difficulties related to physicochemical stability, solubility and cell penetration are some of the challenges associated with this field. The present work aimed to prepare, investigate the characteristics and improve the photodynamic activity of PLGA-based nanoparticles loaded with curcumin for use in aPDT therapy. Using the simple technique of emulsion during the evaporation of a solvent, the particles were built, characterized and tested against microorganisms with importance for medicine and dentistry. The results revealed that the particles were able to protect the curcumin against degradation and eliminate some microorganism species at nanomolar concentrations.

  3. Chemical approach to solvent removal during nanoencapsulation: its application to preparation of PLGA nanoparticles with non-halogenated solvent

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngme [Ewha Womans University, College of Pharmacy (Korea, Republic of); Sah, Eric [University of Notre Dame, College of Science (United States); Sah, Hongkee, E-mail: hsah@ewha.ac.kr [Ewha Womans University, College of Pharmacy (Korea, Republic of)

    2015-11-15

    The objective of this study was to develop a new oil-in-water emulsion-based nanoencapsulation method for the preparation of PLGA nanoparticles using a non-halogenated solvent. PLGA (60–150 mg) was dissolved in 3 ml of methyl propionate, which was vortexed with 4 ml of a 0.5–4 % polyvinyl alcohol solution. This premix was sonicated for 2 min, added into 30 ml of the aqueous polyvinyl alcohol solution, and reacted with 3 ml of 10 N NaOH. Solvent removal was achieved by the alkaline hydrolysis of methyl propionate dissolved in an aqueous phase into water-soluble methanol and sodium propionate. It was a simple but effective technique to quickly harden nanoemulsion droplets into nanoparticles. The appearing PLGA nanoparticles were recovered by ultracentrifugation and/or dialysis, lyophilized with trehalose, and redispersed by water. This nanoencapsulation technique permitted a control of their mean diameters over 151.7 ± 3.8 to 440.2 ± 22.2 nm at mild processing conditions. When the aqueous polyvinyl alcohol concentration was set at ≥1 %, nanoparticles showed uniform distributions with polydispersity indices below 0.1. There were no significant changes in their mean diameters and size distribution patterns before and after lyophilization. When mestranol was encapsulated into nanoparticles, the drug was completely nanoencapsulated: depending on experimental conditions, their encapsulation efficiencies were determined to be 99.4 ± 7.2 to 105.8 ± 6.3 %. This simple, facile nanoencapsulation technique might have versatile applications for the preparation of polymeric nanoparticulate dosage forms.Graphical AbstractSchematic illustration of an innovative chemical approach to solvent removal during nanoencapsulation. Methyl propionate present in the aqueous continuous phase reacts with sodium hydroxide, thereby producing methanol and sodium propionate. Its alkaline hydrolysis allows the continuous extraction of the solvent out of nanoemulsion

  4. Chemical approach to solvent removal during nanoencapsulation: its application to preparation of PLGA nanoparticles with non-halogenated solvent

    International Nuclear Information System (INIS)

    Lee, Youngme; Sah, Eric; Sah, Hongkee

    2015-01-01

    The objective of this study was to develop a new oil-in-water emulsion-based nanoencapsulation method for the preparation of PLGA nanoparticles using a non-halogenated solvent. PLGA (60–150 mg) was dissolved in 3 ml of methyl propionate, which was vortexed with 4 ml of a 0.5–4 % polyvinyl alcohol solution. This premix was sonicated for 2 min, added into 30 ml of the aqueous polyvinyl alcohol solution, and reacted with 3 ml of 10 N NaOH. Solvent removal was achieved by the alkaline hydrolysis of methyl propionate dissolved in an aqueous phase into water-soluble methanol and sodium propionate. It was a simple but effective technique to quickly harden nanoemulsion droplets into nanoparticles. The appearing PLGA nanoparticles were recovered by ultracentrifugation and/or dialysis, lyophilized with trehalose, and redispersed by water. This nanoencapsulation technique permitted a control of their mean diameters over 151.7 ± 3.8 to 440.2 ± 22.2 nm at mild processing conditions. When the aqueous polyvinyl alcohol concentration was set at ≥1 %, nanoparticles showed uniform distributions with polydispersity indices below 0.1. There were no significant changes in their mean diameters and size distribution patterns before and after lyophilization. When mestranol was encapsulated into nanoparticles, the drug was completely nanoencapsulated: depending on experimental conditions, their encapsulation efficiencies were determined to be 99.4 ± 7.2 to 105.8 ± 6.3 %. This simple, facile nanoencapsulation technique might have versatile applications for the preparation of polymeric nanoparticulate dosage forms.Graphical AbstractSchematic illustration of an innovative chemical approach to solvent removal during nanoencapsulation. Methyl propionate present in the aqueous continuous phase reacts with sodium hydroxide, thereby producing methanol and sodium propionate. Its alkaline hydrolysis allows the continuous extraction of the solvent out of nanoemulsion

  5. Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy.

    Science.gov (United States)

    Pramual, Sasivimon; Lirdprapamongkol, Kriengsak; Svasti, Jisnuson; Bergkvist, Magnus; Jouan-Hureaux, Valérie; Arnoux, Philippe; Frochot, Céline; Barberi-Heyob, Muriel; Niamsiri, Nuttawee

    2017-08-01

    Polymer-lipid-PEG hybrid nanoparticles were investigated as carriers for the photosensitizer (PS), 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H,23H-porphine (pTHPP) for use in photodynamic therapy (PDT). A self-assembled nanoprecipitation technique was used for preparing two types of core polymers poly(d,l-lactide-co-glycolide) (PLGA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with lipid-PEG as stabilizer. The resulting nanoparticles had an average particle size of 88.5±3.4nm for PLGA and 215.0±6.3nm for PHBV. Both nanoparticles exhibited a core-shell structure under TEM with high zeta potential and loading efficiency. X-ray powder diffraction analysis showed that the encapsulated pTHPP molecules in polymeric nanoparticles no longer had peaks of free pTHPP in the crystalline state. The pTHPP molecules encapsulated inside the polymeric core demonstrated improved photophysical properties in terms of singlet oxygen generation and cellular uptake rate in a FTC-133 human thyroid carcinoma cell line, compared to non-encapsulated pTHPP. The pTHPP-loaded polymer-lipid-PEG nanoparticles showed better in vitro phototoxicity compared to free pTHPP, in both time- and concentration-dependent manners. Overall, this study provides detailed analysis of the photophysical properties of pTHPP molecules when entrapped within either PLGA or PHBV nanoparticle cores, and demonstrates the effectiveness of these systems for delivery of photosensitizers. The two polymeric systems may have different potential benefits, when used with cancer cells. For instance, the pTHPP-loaded PLGA system requires only a short time to show a PDT effect and may be suitable for topical PDT, while the delayed photo-induced cytotoxic effect of the pTHPP-loaded PHBV system may be more suitable for cancer solid tumors. Hence, both pTHPP-encapsulated polymer-lipid-PEG nanoparticles can be considered promising delivery systems for PDT cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Externally controlled triggered-release of drug from PLGA micro and nanoparticles.

    Directory of Open Access Journals (Sweden)

    Xin Hua

    Full Text Available Biofilm infections are extremely hard to eradicate and controlled, triggered and controlled drug release properties may prolong drug release time. In this study, the ability to externally control drug release from micro and nanoparticles was investigated. We prepared micro/nanoparticles containing ciprofloxacin (CIP and magnetic nanoparticles encapsulated in poly (lactic-co-glycolic acid PLGA. Both micro/nanoparticles were observed to have narrow size distributions. We investigated and compared their passive and externally triggered drug release properties based on their different encapsulation structures for the nano and micro systems. In passive release studies, CIP demonstrated a fast rate of release in first 2 days which then slowed and sustained release for approximately 4 weeks. Significantly, magnetic nanoparticles containing systems all showed ability to have triggered drug release when exposed to an external oscillating magnetic field (OMF. An experiment where the OMF was turned on and off also confirmed the ability to control the drug release in a pulsatile manner. The magnetically triggered release resulted in a 2-fold drug release increase compared with normal passive release. To confirm drug integrity following release, the antibacterial activity of released drug was evaluated in Pseudomonas aeruginosa biofilms in vitro. CIP maintained its antimicrobial activity after encapsulation and triggered release.

  7. Externally controlled triggered-release of drug from PLGA micro and nanoparticles.

    Science.gov (United States)

    Hua, Xin; Tan, Shengnan; Bandara, H M H N; Fu, Yujie; Liu, Siguo; Smyth, Hugh D C

    2014-01-01

    Biofilm infections are extremely hard to eradicate and controlled, triggered and controlled drug release properties may prolong drug release time. In this study, the ability to externally control drug release from micro and nanoparticles was investigated. We prepared micro/nanoparticles containing ciprofloxacin (CIP) and magnetic nanoparticles encapsulated in poly (lactic-co-glycolic acid) PLGA. Both micro/nanoparticles were observed to have narrow size distributions. We investigated and compared their passive and externally triggered drug release properties based on their different encapsulation structures for the nano and micro systems. In passive release studies, CIP demonstrated a fast rate of release in first 2 days which then slowed and sustained release for approximately 4 weeks. Significantly, magnetic nanoparticles containing systems all showed ability to have triggered drug release when exposed to an external oscillating magnetic field (OMF). An experiment where the OMF was turned on and off also confirmed the ability to control the drug release in a pulsatile manner. The magnetically triggered release resulted in a 2-fold drug release increase compared with normal passive release. To confirm drug integrity following release, the antibacterial activity of released drug was evaluated in Pseudomonas aeruginosa biofilms in vitro. CIP maintained its antimicrobial activity after encapsulation and triggered release.

  8. Preparation and Characterization of Estradiol-Loaded PLGA Nanoparticles Using Homogenization-Solvent Diffusion Method

    Directory of Open Access Journals (Sweden)

    R Dinarvand

    2008-09-01

    Full Text Available Background: The inherent shortcomings of conventional drug delivery systems containing estrogens and the potential of nanoparticles (NPs have offered tremendous scope for investigation. Although polymeric NPs have been used as drug carriers for many active agents, the use of appropriate polymer and method of NP preparation to overcome different challenges is very important. Materials and methods: Poly lactide-co-glycolide (PLGA NPs containing estradiol valerate were prepared by the modified spontaneous emulsification solvent diffusion method. Several parameters including the drug/polymer ratios in range of 2.5-10%, poly vinyl alcohol (PVA in concentration of 0-4% as stabilizer and internal phase volume and composition were examined to optimize formulation. The size distribution and morphology of the NPs, encapsulation efficacy and in vitro release profile in phosphate buffer medium (pH 7.4 during 12 hrs were then investigated. Results: The NPs prepared in this study were spherical with a relatively mono-dispersed size distribution. By adjustment of the process parameters, the size and the drug encapsulation efficacy as well as the drug release kinetics can be optimally controlled. The mean particle size of the best formula with encapsulation efficiency of 100% was 175 ± 19, in which release profile was best fitted to Higuchi's model of release which showed that release mechanism was mainly controlled by diffusion of the drug to the release medium. Conclusion: According to the size and surface properties of the prepared particles, it may be concluded that they are a good formulation for non-parenteral routes of administration.

  9. Preparation of a reproducible long-acting formulation of risperidone-loaded PLGA microspheres using microfluidic method.

    Science.gov (United States)

    Jafarifar, Elham; Hajialyani, Marziyeh; Akbari, Mona; Rahimi, Masoud; Shokoohinia, Yalda; Fattahi, Ali

    2017-09-01

    The aim of the present study is to prepare risperidone-loaded poly lactic-co-glycolic acid (PLGA) microspheres within microfluidic system and to achieve a formulation with uniform size and monotonic and reproducible release profile. In comparison to batch method, T-junction and serpentine chips were utilized and optimizing study was carried out at different processing parameters (e.g. PLGA and surfactant concentration and flow rates ratio of outer to inner phase). The computational fluid dynamic (CFD) modeling was performed, and loading and release study were carried out. CFD simulation indicates that increasing the flow rate of aqueous phase cause to decrease the droplet size, while the change in size of microspheres did not follow a specific pattern in the experimental results. The most uniform microspheres and narrowest standard deviation (66.79 μm ± 3.32) were achieved using T-junction chip, 1% polyvinylalcohol, 1% PLGA and flow rates ratio of 20. The microfluidic-assisted microspheres were more uniform with narrower size distribution. The release of risperidone from microspheres produced by the microfluidic method was more reproducible and closer to zero-order kinetic model. The release profile of formulation with 2:1 drug-to-polymer ratio was the most favorable release, in which 41.85% release could be achieved during 24 days.

  10. Bone Regeneration from PLGA Micro-Nanoparticles.

    Science.gov (United States)

    Ortega-Oller, Inmaculada; Padial-Molina, Miguel; Galindo-Moreno, Pablo; O'Valle, Francisco; Jódar-Reyes, Ana Belén; Peula-García, Jose Manuel

    2015-01-01

    Poly-lactic-co-glycolic acid (PLGA) is one of the most widely used synthetic polymers for development of delivery systems for drugs and therapeutic biomolecules and as component of tissue engineering applications. Its properties and versatility allow it to be a reference polymer in manufacturing of nano- and microparticles to encapsulate and deliver a wide variety of hydrophobic and hydrophilic molecules. It additionally facilitates and extends its use to encapsulate biomolecules such as proteins or nucleic acids that can be released in a controlled way. This review focuses on the use of nano/microparticles of PLGA as a delivery system of one of the most commonly used growth factors in bone tissue engineering, the bone morphogenetic protein 2 (BMP2). Thus, all the needed requirements to reach a controlled delivery of BMP2 using PLGA particles as a main component have been examined. The problems and solutions for the adequate development of this system with a great potential in cell differentiation and proliferation processes under a bone regenerative point of view are discussed.

  11. Formulation and evaluation of biodegradable nanoparticles for the oral delivery of fenretinide.

    Science.gov (United States)

    Graves, Richard A; Ledet, Grace A; Glotser, Elena Y; Mitchner, Demaurian M; Bostanian, Levon A; Mandal, Tarun K

    2015-08-30

    Fenretinide is an anticancer drug with low water solubility and poor bioavailability. The goal of this study was to develop biodegradable polymeric nanoparticles of fenretinide with the intent of increasing its apparent aqueous solubility and intestinal permeability. Three biodegradable polymers were investigated for this purpose: two different poly lactide-co-glycolide (PLGA) polymers, one acid terminated and one ester terminated, and one poly lactide-co-glycolide/polyethylene glycol (PLGA/PEG) diblock copolymer. Nanoparticles were obtained by using an emulsification solvent evaporation technique. The formulations were characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and particle size analysis. Dissolution studies and Caco-2 cell permeation studies were also carried out for all formulations. Ultra high performance liquid chromatography coupled with mass spectrometry (UPLC/MS) and ultraviolet detection was used for the quantitative determination of fenretinide. Drug loading and the type of polymer affected the nanoparticles' physical properties, drug release rate, and cell permeability. While the acid terminated PLGA nanoparticles performed the best in drug release, the ester terminated PLGA nanoparticles performed the best in the Caco-2 cell permeability assays. The PLGA/PEG copolymer nanoparticles performed better than the formulations with ester terminated PLGA in terms of drug release but had the poorest performance in terms of cell permeation. All three categories of formulations performed better than the drug alone in both drug release and cell permeation studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Improved photodynamic action of nanoparticles loaded with indium (III) phthalocyanine on MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Souto, Carlos Augusto Zanoni; Madeira, Klésia Pirola; Rettori, Daniel; Baratti, Mariana Ozello; Rangel, Letícia Batista Azevedo; Razzo, Daniel; Silva, André Romero da

    2013-01-01

    Indium (III) phthalocyanine (InPc) was encapsulated into nanoparticles of PEGylated poly(d,l-lactide-co-glycolide) (PLGA-PEG) to improve the photobiological activity of the photosensitizer. The efficacy of nanoparticles loaded with InPc and their cellular uptake was investigated with MCF-7 breast tumor cells, and compared with the free InPc. The influence of photosensitizer (PS) concentration (1.8–7.5 μmol/L), incubation time (1–2 h), and laser power (10–100 mW) were studied on the photodynamic effect caused by the encapsulated and the free InPc. Nanoparticles with a size distribution ranging from 61 to 243 nm and with InPc entrapment efficiency of 72 ± 6 % were used in the experiments. Only the photodynamic effect of encapsulated InPc was dependent on PS concentration and laser power. The InPc-loaded nanoparticles were more efficient in reducing MCF-7 cell viability than the free PS. For a light dose of 7.5 J/cm 2 and laser power of 100 mW, the effectiveness of encapsulated InPc to reduce the viability was 34 ± 3 % while for free InPc was 60 ± 7 %. Confocal microscopy showed that InPc-loaded nanoparticles, as well as free InPc, were found throughout the cytosol. However, the nanoparticle aggregates and the aggregates of free PS were found in the cell periphery and outside of the cell. The nanoparticles aggregates were generated due to the particles concentration used in the experiment because of the small loading of the InPc while the low solubility of InPc caused the formation of aggregates of free PS in the culture medium. The participation of singlet oxygen in the photocytotoxic effect of InPc-loaded nanoparticles was corroborated by electron paramagnetic resonance experiments, and the encapsulation of photosensitizers reduced the photobleaching of InPc

  13. Improved photodynamic action of nanoparticles loaded with indium (III) phthalocyanine on MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Souto, Carlos Augusto Zanoni [Federal Institute of Espirito Santo (Brazil); Madeira, Klesia Pirola [Federal University of Espirito Santo, Biotechnology Program/RENORBIO, Health Sciences Center (Brazil); Rettori, Daniel [Federal University of Sao Paulo, Department of Exact Sciences and Earth (Brazil); Baratti, Mariana Ozello [University of Campinas, Department of Cellular Biology (Brazil); Rangel, Leticia Batista Azevedo [Federal University of Espirito Santo, Department of Pharmaceutical Sciences (Brazil); Razzo, Daniel [University of Campinas, Department of Physical Chemistry, Institute of Chemistry (Brazil); Silva, Andre Romero da, E-mail: aromero@ifes.edu.br [Federal Institute of Espirito Santo (Brazil)

    2013-09-15

    Indium (III) phthalocyanine (InPc) was encapsulated into nanoparticles of PEGylated poly(d,l-lactide-co-glycolide) (PLGA-PEG) to improve the photobiological activity of the photosensitizer. The efficacy of nanoparticles loaded with InPc and their cellular uptake was investigated with MCF-7 breast tumor cells, and compared with the free InPc. The influence of photosensitizer (PS) concentration (1.8-7.5 {mu}mol/L), incubation time (1-2 h), and laser power (10-100 mW) were studied on the photodynamic effect caused by the encapsulated and the free InPc. Nanoparticles with a size distribution ranging from 61 to 243 nm and with InPc entrapment efficiency of 72 {+-} 6 % were used in the experiments. Only the photodynamic effect of encapsulated InPc was dependent on PS concentration and laser power. The InPc-loaded nanoparticles were more efficient in reducing MCF-7 cell viability than the free PS. For a light dose of 7.5 J/cm{sup 2} and laser power of 100 mW, the effectiveness of encapsulated InPc to reduce the viability was 34 {+-} 3 % while for free InPc was 60 {+-} 7 %. Confocal microscopy showed that InPc-loaded nanoparticles, as well as free InPc, were found throughout the cytosol. However, the nanoparticle aggregates and the aggregates of free PS were found in the cell periphery and outside of the cell. The nanoparticles aggregates were generated due to the particles concentration used in the experiment because of the small loading of the InPc while the low solubility of InPc caused the formation of aggregates of free PS in the culture medium. The participation of singlet oxygen in the photocytotoxic effect of InPc-loaded nanoparticles was corroborated by electron paramagnetic resonance experiments, and the encapsulation of photosensitizers reduced the photobleaching of InPc.

  14. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    Science.gov (United States)

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer

  15. PEGylated composite nanoparticles of PLGA and polyethylenimine for safe and efficient delivery of pDNA to lungs.

    Science.gov (United States)

    Kolte, Atul; Patil, Sushilkumar; Lesimple, Pierre; Hanrahan, John W; Misra, Ambikanandan

    2017-05-30

    Achieving stable, efficient and non-toxic pulmonary gene delivery is most challenging requirement for successful gene therapy to lung. Composite nanoparticles (NPs) of the poly(lactic-co-glycolic acid) (PLGA) and cationic polymer polyethyleneimine (PEI) is an efficient alternative to viral and liposomal vectors for the pulmonary delivery of pDNA. NPs with different weight ratios (0-12.5%w/w) of PLGA/PEI were prepared and characterized for size, morphology, surface charge, pDNA loading and in vitro release. The in vitro cell uptake and transfection studies in the CFBE41o-cell line revealed that NPs with 10% w/w PEI were more efficient but they exhibited significant cytotoxicity in MTT assays, challenging the safety of this formulation. Surface modifications of these composite NPs through PEGylation reduced toxicity and enhanced cellular uptake and pDNA expression. PEGylation improved diffusion of NPs through the mucus barrier and prevented uptake by pulmonary macrophages. Finally, PEGylated composite NPs were converted to DPI by lyophilization and combined with lactose carrier particles, which resulted in improved aerosolization properties and lung deposition, without affecting pDNA bioactivity. This study demonstrates that a multidisciplinary approach may enable the local delivery of pDNA to lung tissue for effective treatment of deadly lung diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. PLGA nanofiber membranes loaded with epigallocatechin-3-O-gallate are beneficial to prevention of postsurgical adhesions

    Directory of Open Access Journals (Sweden)

    Shin YC

    2014-08-01

    Full Text Available Yong Cheol Shin,1,* Won Jun Yang,1,* Jong Ho Lee,1 Jin-Woo Oh,2 Tai Wan Kim,3 Jong-Chul Park,4 Suong-Hyu Hyon,5 Dong-Wook Han1 1Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea; 2Department of Nanomaterials Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, Republic of Korea; 3Department of Design, College of Arts, Pusan National University, Busan, Republic of Korea; 4Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea; 5Center for Fiber and Textile Science, Kyoto Institute of Technology, Kyoto, Japan *These authors contributed equally to this work Abstract: This study concentrates on the development of biodegradable nanofiber membranes with controlled drug release to ensure reduced tissue adhesion and accelerated healing. Nanofibers of poly(lactic-co-glycolic acid (PLGA loaded with epigallocatechin-3-O-gallate (EGCG, the most bioactive polyphenolic compound in green tea, were electrospun. The physicochemical and biomechanical properties of EGCG-releasing PLGA (E-PLGA nanofiber membranes were characterized by atomic force microscopy, EGCG release and degradation profiles, and tensile testing. In vitro antioxidant activity and hemocompatibility were evaluated by measuring scavenged reactive oxygen species levels and activated partial thromboplastin time, respectively. In vivo antiadhesion efficacy was examined on the rat peritonea with a surgical incision. The average fiber diameter of E-PLGA membranes was approximately 300–500 nm, which was almost similar to that of pure PLGA equivalents. E-PLGA membranes showed sustained EGCG release mediated by controlled diffusion and PLGA degradation over 28 days. EGCG did not adversely affect the tensile strength of PLGA membranes, whereas it significantly decreased the elastic modulus and increased the strain at break. E-PLGA membranes were significantly effective in

  17. PEG-detachable lipid-polymer hybrid nanoparticle for delivery of chemotherapy drugs to cancer cells.

    Science.gov (United States)

    Du, Jiang-bo; Song, Yan-feng; Ye, Wei-liang; Cheng, Ying; Cui, Han; Liu, Dao-zhou; Liu, Miao; Zhang, Bang-le; Zhou, Si-yuan

    2014-08-01

    The experiment aimed to increase the drug-delivery efficiency of poly-lactic-co-glycolic acid (PLGA) nanoparticles. Lipid-polymer hybrid nanoparticles (LPNs-1) were prepared using PLGA as a hydrophobic core and FA-PEG-hyd-DSPE as an amphiphilic shell. Uniform and spherical nanoparticles with an average size of 185 nm were obtained using the emulsification solvent evaporation method. The results indicated that LPNs-1 showed higher drug loading compared with naked PLGA nanoparticles (NNPs). Drug release from LPNs-1 was faster in an acidic environment than in a neutral environment. LPNs-1 showed higher cytotoxicity on KB cells, A549 cells, MDA-MB-231 cells, and MDA-MB-231/ADR cells compared with free doxorubicin (DOX) and NNPs. The results also showed that, compared with free DOX and NNPs, LPNs-1 delivered more DOX to the nuclear of KB cells and MDA-MB-231/ADR cells. LPNs-1 induced apoptosis in KB cells and MDA-MB-231/ADR cells in a dose-dependent manner. The above data indicated that DOX-loaded LPNs-1 could kill not only normal tumor cells but also drug-resistant tumor cells. These results indicated that modification of PLGA nanoparticles with FA-PEG-hyd-DSPE could considerably increase the drug-delivery efficiency and LPNs-1 had potential in the delivery of chemotherapeutic agents in the treatment of cancer.

  18. Impact of surfactants on the target recognition of Fab-conjugated PLGA nanoparticles.

    Science.gov (United States)

    Kennedy, Patrick J; Perreira, Ines; Ferreira, Daniel; Nestor, Marika; Oliveira, Carla; Granja, Pedro L; Sarmento, Bruno

    2018-06-01

    Targeted drug delivery with nanoparticles (NPs) requires proper surface ligand presentation and availability. Surfactants are often used as stabilizers in the production of targeted NPs. Here, we evaluated the impact of surfactants on ligand functionalization and downstream molecular recognition. Our model system consisted of fluorescent poly(lactic-co-glycolic acid) (PLGA) NPs that were nanoprecipitated in one of a small panel of commonly-used surfactants followed by equivalent washes and conjugation of an engineered Fab antibody fragment. Size, polydispersity index and zeta potential were determined by dynamic light scattering and laser Doppler anemometry, and Fab presence on the NPs was assessed by enzyme-linked immunosorbent assay. Most importantly, Fab-decorated NP binding to the cell surface receptor was monitored by fluorescence-activated cell sorting. 2% polyvinyl alcohol, 1% sodium cholate, 0.5% Pluronic F127 (F127) and 2% Tween-80 were initially tested. Of the four surfactants tested, PLGA NPs in 0.5% F127 and 2% Tween-80 had the highest cell binding. These two surfactants were then retested in two different concentrations, 0.5% and 2%. The Fab-decorated PLGA NPs in 2% F127 had the highest cell binding. This study highlights the impact of common surfactants and their concentrations on the downstream targeting of ligand-decorated NPs. Similar principles should be applied in the development of future targeted nanosystems where surfactants are employed. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Critical solvent properties affecting the particle formation process and characteristics of celecoxib-loaded plga microparticles via spray-drying.

    Science.gov (United States)

    Wan, Feng; Bohr, Adam; Maltesen, Morten Jonas; Bjerregaard, Simon; Foged, Camilla; Rantanen, Jukka; Yang, Mingshi

    2013-04-01

    It is imperative to understand the particle formation mechanisms when designing advanced nano/microparticulate drug delivery systems. We investigated how the solvent power and volatility influence the texture and surface chemistry of celecoxib-loaded poly (lactic-co-glycolic acid) (PLGA) microparticles prepared by spray-drying. Binary mixtures of acetone and methanol at different molar ratios were applied to dissolve celecoxib and PLGA prior to spray-drying. The resulting microparticles were characterized with respect to morphology, texture, surface chemistry, solid state properties and drug release profile. The evaporation profiles of the feed solutions were investigated using thermogravimetric analysis (TGA). Spherical PLGA microparticles were obtained, irrespectively of the solvent composition. The particle size and surface chemistry were highly dependent on the solvent power of the feed solution. An obvious burst release was observed for the microparticles prepared by the feed solutions with the highest amount of poor solvent for PLGA. TGA analysis revealed distinct drying kinetics for the binary mixtures. The particle formation process is mainly governed by the PLGA precipitation rate, which is solvent-dependent, and the migration rate of celecoxib molecules during drying. The texture and surface chemistry of the spray-dried PLGA microparticles can therefore be tailored by adjusting the solvent composition.

  20. Magnetic poly(lactide-co-glycolide) (PLGA) and cellulose particles for MRI-based cell tracking

    Science.gov (United States)

    Nkansah, Michael K.; Thakral, Durga; Shapiro, Erik M.

    2010-01-01

    Biodegradable, superparamagnetic micro- and nanoparticles of poly(lactide-co-glycolide) (PLGA) and cellulose were designed, fabricated and characterized for magnetic cell labeling. Monodisperse nanocrystals of magnetite were incorporated into micro- and nanoparticles of PLGA and cellulose with high efficiency using an oil-in-water single emulsion technique. Superparamagnetic cores had high magnetization (72.1 emu/g). The resulting polymeric particles had smooth surface morphology and high magnetite content (43.3 wt% for PLGA and 69.6 wt% for cellulose). While PLGA and cellulose nanoparticles displayed highest r2* values per millimole of iron (399 s-1mM-1 for cellulose and 505 s-1mM-1 for PLGA), micron-sized PLGA particles had a much higher r2* per particle than either. After incubation for a month in citrate buffer (pH 5.5), magnetic PLGA particles lost close to 50% of their initial r2* molar relaxivity, while magnetic cellulose particles remained intact, preserving over 85% of their initial r2* molar relaxivity. Lastly, mesenchymal stem cells and human breast adenocarcinoma cells were magnetically labeled using these particles with no detectable cytotoxicity. These particles are ideally suited for non-invasive cell tracking in vivo via MRI and due to their vastly different degradation properties, offer unique potential for dedicated use for either short (PLGA-based particles) or long term (cellulose-based particles) experiments. PMID:21404328

  1. A PLGA-PEG-PLGA Thermosensitive Gel Enabling Sustained Delivery of Ropivacaine Hydrochloride for Postoperative Pain Relief.

    Science.gov (United States)

    Fu, Xudong; Zeng, Huilin; Guo, Jiaping; Liu, Hong; Shi, Zhen; Chen, Huhai; Li, Dezong; Xie, Xiangyang; Kuang, Changchun

    2017-01-01

    Postoperative pain is a complex physiological response to disease and tissue injury. Moderate-to-severe pain typically occurs within 48 h after surgery. Amino amide local anesthetics are widely applied to manage postoperative pain, and they have high efficacy, a low risk for addiction and limited side effects. However, these anesthetics also have short half-lives, often necessitating continuous injection to obtain satisfactory pain relief. In the current work, we used a poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG)-PLGA (PLGA-PEG-PLGA) temperature-sensitive gel to deliver a local anesthetic, ropivacaine hydrochloride (RP), to prolong its analgesic effect. We investigated the influence of polymer and drug concentration on gelation temperature and the in vitro drug release rate from the temperature-sensitive gel. RP-loaded PLGA-PEG-PLGA solution is a liquid at room temperature and forms a gel at temperatures slightly lower than body temperature. With regard to the gel's drug release rate, 37.5, 51.3 and 72.6% of RP was released at 12, 24 and 48 h, respectively. This in vitro drug release profile conformed to the Higuchi equation. To assess pain control efficacy when using the gel, we evaluated the mechanical paw withdrawal reflex threshold, thermal pain threshold and incision cumulative pain scores in a rat incisional model. The results showed that the anti-pain effect of a single injection of RP-loaded gel at the incision site lasted for 48 h, which is significantly longer than the effect produced by injection of RP solution alone. The use of RP-loaded thermosensitive gels could provide a promising method for managing postoperative pain.

  2. Exploration of a Doxorubicin-Polymer Conjugate in Lipid-Polymer Hybrid Nanoparticle Drug Delivery

    Science.gov (United States)

    Lough, Emily

    Nanoparticle (NP) drug delivery is a major focus in the research community because of its potential to use existing drugs in safer and more effective ways. Chemotherapy encapsulation in NPs shields the drug from the rest of the body while it is within the NP, with less systemic exposure leading to fewer off-target effects of the drug. However, passive loading of drugs into NPs is a suboptimal method, often leading to burst release upon administration. This work explores the impact of incorporating the drug-polymer conjugate doxorubicin-poly (lactic-co-glycolic) acid (Dox-PLGA) into a lipid-polymer hybrid nanoparticle (LPN). The primary difference in using a drug-polymer conjugate for NP drug delivery is the drug's release kinetics. Dox-PLGA LPNs showed a more sustained and prolonged release profile over 28 days compared to LPNs with passively loaded, unconjugated doxorubicin. This sustained release translates to cytotoxicity; when systemic circulation was simulated using dialysis, Dox-PLGA LPNs retained their cytotoxicity at a higher level than the passively loaded LPNs. The in vivo implication of preserving cytotoxic potency through a slower release profile is that the majority of Dox delivered via Dox-PLGA LPNs will be kept within the LPN until it reaches the tumor. This will result in fewer systemic side effects and more effective treatments given the higher drug concentration at the tumor site. An intriguing clinical application of this drug delivery approach lies in using Dox-PLGA LPNs to cross the blood-brain barrier (BBB). The incorporation of Dox-PLGA is hypothesized to have a protective effect on the BBB as its slow release profile will prevent drug from harming the BBB. Using induced pluripotent stem cells differentiated to human brain microvascular endothelial cells that comprise the BBB, the Dox-PLGA LPNs were shown to be less destructive to the BBB than their passively loaded counterparts. Dox-PLGA LPNs showed superior cytotoxicity against plated tumor

  3. Magnetic core-shell nanoparticles for drug delivery by nebulization

    LENUS (Irish Health Repository)

    Verma, Navin Kumar

    2013-01-23

    AbstractBackgroundAerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated.ResultsAverage particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 mug\\/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting.ConclusionWe have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has

  4. A Novel High Mechanical Property PLGA Composite Matrix Loaded with Nanodiamond-Phospholipid Compound for Bone Tissue Engineering.

    Science.gov (United States)

    Zhang, Fan; Song, Qingxin; Huang, Xuan; Li, Fengning; Wang, Kun; Tang, Yixing; Hou, Canglong; Shen, Hongxing

    2016-01-20

    A potential bone tissue engineering material was produced from a biodegradable polymer, poly(lactic-co-glycolic acid) (PLGA), loaded with nanodiamond phospholipid compound (NDPC) via physical mixing. On the basis of hydrophobic effects and physical absorption, we modified the original hydrophilic surface of the nanodiamond (NDs) with phospholipids to be amphipathic, forming a typical core-shell structure. The ND-phospholipid weight ratio was optimized to generate sample NDPC50 (i.e., ND-phospholipid weight ratio of 100:50), and NDPC50 was able to be dispersed in a PLGA matrix at up to 20 wt %. Compared to a pure PLGA matrix, the introduction of 10 wt % of NDPC (i.e., sample NDPC50-PF10) resulted in a significant improvement in the material's mechanical and surface properties, including a decrease in the water contact angle from 80 to 55°, an approximately 100% increase in the Young's modulus, and an approximate 550% increase in hardness, thus closely resembling that of human cortical bone. As a novel matrix supporting human osteoblast (hFOB1.19) growth, NDPC50-PFs with different amounts of NDPC50 demonstrated no negative effects on cell proliferation and osteogenic differentiation. Furthermore, we focused on the behaviors of NDPC-PFs implanted into mice for 8 weeks and found that NDPC-PFs induced acceptable immune response and can reduce the rapid biodegradation of PLGA matrix. Our results represent the first in vivo research on ND (or NDPC) as nanofillers in a polymer matrix for bone tissue engineering. The high mechanical properties, good in vitro and in vivo biocompatibility, and increased mineralization capability suggest that biodegradable PLGA composite matrices loaded with NDPC may potentially be useful for a variety of biomedical applications, especially bone tissue engineering.

  5. Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Mazur Steven

    2010-09-01

    Full Text Available Abstract Background The mutation in the cystic fibrosis transmembrane conductance regulator (CFTR gene results in CF. The most common mutation, ΔF508-CFTR, is a temperature-sensitive, trafficking mutant with reduced chloride transport and exaggerated immune response. The ΔF508-CFTR is misfolded, ubiquitinated, and prematurely degraded by proteasome mediated- degradation. We recently demonstrated that selective inhibition of proteasomal pathway by the FDA approved drug PS-341 (pyrazylcarbonyl-Phe-Leuboronate, a.k.a. Velcade or bortezomib ameliorates the inflammatory pathophysiology of CF cells. This proteasomal drug is an extremely potent, stable, reversible and selective inhibitor of chymotryptic threonine protease-activity. The apprehension in considering the proteasome as a therapeutic target is that proteasome inhibitors may affect proteostasis and consecutive processes. The affect on multiple processes can be mitigated by nanoparticle mediated PS-341 lung-delivery resulting in favorable outcome observed in this study. Results To overcome this challenge, we developed a nano-based approach that uses drug loaded biodegradable nanoparticle (PLGA-PEGPS-341 to provide controlled and sustained drug delivery. The in vitro release kinetics of drug from nanoparticle was quantified by proteasomal activity assay from days 1-7 that showed slow drug release from day 2-7 with maximum inhibition at day 7. For in vivo release kinetics and biodistribution, these drug-loaded nanoparticles were fluorescently labeled, and administered to C57BL6 mice by intranasal route. Whole-body optical imaging of the treated live animals demonstrates efficient delivery of particles to murine lungs, 24 hrs post treatment, followed by biodegradation and release over time, day 1-11. The efficacy of drug release in CF mice (Cftr-/- lungs was determined by quantifying the changes in proteasomal activity (~2 fold decrease and ability to rescue the Pseudomonas aeruginosa LPS (Pa

  6. Aspartic acid-based modified PLGA-PEG nanoparticles for bone targeting: in vitro and in vivo evaluation.

    Science.gov (United States)

    Fu, Yin-Chih; Fu, Tzu-Fun; Wang, Hung-Jen; Lin, Che-Wei; Lee, Gang-Hui; Wu, Shun-Cheng; Wang, Chih-Kuang

    2014-11-01

    Nanoparticles (NP) that target bone tissue were developed using PLGA-PEG (poly(lactic-co-glycolic acid)-polyethylene glycol) diblock copolymers and bone-targeting moieties based on aspartic acid, (Asp)(n(1,3)). These NP are expected to enable the transport of hydrophobic drugs. The molecular structures were examined by (1)H NMR or identified using mass spectrometry and Fourier transform infrared (FT-IR) spectra. The NP were prepared using the water miscible solvent displacement method, and their size characteristics were evaluated using transmission electron microscopy (TEM) and dynamic light scattering. The bone targeting potential of the NP was evaluated in vitro using hydroxyapatite affinity assays and in vivo using fluorescent imaging in zebrafish and rats. It was confirmed that the average particle size of the NP was <200 nm and that the dendritic Asp3 moiety of the PLGA-PEG-Asp3 NP exhibited the best apatite mineral binding ability. Preliminary findings in vivo bone affinity assays in zebrafish and rats indicated that the PLGA-PEG-ASP3 NP may display increased bone-targeting efficiency compared with other PLGA-PEG-based NP that lack a dendritic Asp3 moiety. These NP may act as a delivery system for hydrophobic drugs, warranting further evaluation of the treatment of bone disease. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. An HPLC Method for Microanalysis and Pharmacokinetics of Marine Sulfated Polysaccharide PSS-Loaded Poly Lactic-co-Glycolic Acid (PLGA Nanoparticles in Rat Plasma

    Directory of Open Access Journals (Sweden)

    Hua-Shi Guan

    2013-04-01

    Full Text Available This study was aimed at developing a sensitive and selective HPLC method with postcolumn fluorescence derivatization for the detection of propylene glycol alginate sodium sulfate (PSS in rat plasma. Plasma samples were prepared by a simple and fast ultrafiltration method. PSS was extracted from rat plasma with d-glucuronic acid as internal standard. Isocratic chromatographic separation was performed on a TSKgel G2500 PWxL column with the mobile phase of 0.1 M sodium sulfate at a flow rate of 0.5 mL/min. Analyte detection was achieved by fluorescence detection (FLD at 250 nm (excitation and 435 nm (emission using guanidine hydrochloride as postcolumn derivatizing reagent in an alkaline medium at 120 °C. The calibration curve was linear over a concentration range of 1–500 μg/mL, and the lower limit of detection (LLOD was found to be 250 ng/mL. This validated method was applied successfully to the pharmacokinetic study of PSS and PSS-loaded poly lactic-co-glycolic acid (PLGA nanoparticles (PSS-NP in rat plasma after a single intravenous (PSS only and oral administration (PSS and PSS-NP. Significant differences in the main pharmacokinetic parameters of PSS and PSS-NP were observed. The relative bioavailability of PSS-NP was 190.10% compared with PSS which shows that PSS-NP can improve oral bioavailability.

  8. Red Blood Cell Membrane-Cloaked Nanoparticles For Drug Delivery

    Science.gov (United States)

    Carpenter, Cody Westcott

    Herein we describe the development of the Red Blood Cell coated nanoparticle, RBC-NP. Purified natural erythrocyte membrane is used to coat drug-loaded poly(lacticco-glycolic acid) (PLGA). Synthetic PLGA co-polymer is biocompatible and biodegradable and has already received US FDA approval for drug-delivery and diagnostics. This work looks specifically at the retention of immunosuppressive proteins on RBC-NPs, right-sidedness of natural RBC membranes interfacing with synthetic polymer nanoparticles, sustained and retarded drug release of RBC-NPs as well as further surface modification of RBC-NPs for increased targeting of model cancer cell lines.

  9. Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer.

    Science.gov (United States)

    Zeisser-Labouèbe, Magali; Lange, Norbert; Gurny, Robert; Delie, Florence

    2006-12-01

    A photodynamic approach has been suggested to improve diagnosis and therapy of ovarian cancer. As Hypericin (Hy), a natural photosensitizer (PS) extracted from Hypericum perforatum, has been shown to be efficient in vitro and in vivo for the detection or treatment of other cancers, Hy could also be a potent tool for the treatment and detection of ovarian cancer. Due to its hydrophobicity, systemic administration of Hy is problematic. Thus, polymeric nanoparticles (NPs) of polylactic acid (PLA) or polylactic-co-glycolic acid (PLGA) were used as a drug delivery system. Hy-loaded NPs were produced with the following characteristics: (i) size in the 200-300 nm range, (ii) negative zeta potential, (iii) low residual PVAL and (iv) drug loading from 0.03 to 0.15% (w/w). Their in vitro photoactivity was investigated on the NuTu-19 ovarian cancer cell model derived from Fischer 344 rats and compared to free drug. Hy-loaded PLA NPs exhibited a higher photoactivity than free drug. Increasing light dose or incubation time with cells induced an enhanced activity of Hy-loaded PLA NPs. Increased NP drug loading had a negative effect on their photoactivity on NuTu-19 cells: at the same Hy concentration, the higher was the drug loading, the lower was the phototoxic effect. The influence of NP drug loading on the Hy release from NPs was also investigated.

  10. Lipid-Polymer Nanoparticles for Folate-Receptor Targeting Delivery of Doxorubicin.

    Science.gov (United States)

    Zheng, Mingbin; Gong, Ping; Zheng, Cuifang; Zhao, Pengfei; Luo, Zhenyu; Ma, Yifan; Cai, Lintao

    2015-07-01

    A biocompatible PLGA-lipid hybrid nanoparticles (NPs) was developed for targeted delivery of anticancer drugs with doxorubicin (DOX). The hydrodynamic diameter and zeta potential of DOX-loaded PLGA-lipid NPs (DNPs) were affected by the mass ratio of Lipid/PLGA or DSPE-PEG-COOH/Lecithin. At the 1:20 drug/polymer mass ratio, the mean hydrodynamic diameter of DNPs was the lowest (99.2 1.83 nm) and the NPs presented the encapsulation efficiency of DOX with 42.69 1.30%. Due to the folate-receptor mediated endocytosis, the PLGA-lipid NPs with folic acid (FA) targeting ligand showed significant higher uptake by folate-receptor-positive MCF-7 cells as compared to PLGA-lipid NPs without folate. Confocal microscopic observation and flow cytometry analysis also supported the enhanced cellular uptake of the FA-targeted NPs. The results indicated that the FA-targeted DNPs exhibited higher cytotoxicity in MCF-7 cells compared with non-targeted NPs. The lipid-polymer nanoparticles provide a solution of biocompatible nanocarrier for cancer targeting therapy.

  11. In vitro characterization and in vivo analgesic and anti-allodynic activity of PLGA-bupivacaine nanoparticles

    Science.gov (United States)

    Garcia, Xavier; Escribano, Elvira; Domenech, Josep; Queralt, Josep; Freixes, Joan

    2011-05-01

    An injectable controlled release system containing local anesthetics able to provide long-lasting analgesia in nociceptive and neuropathic pain could have a marked impact in pain management. In order to address this issue, bupivacaine, a widely used local anesthetic, has been nanoencapsulated using poly(lactic-co-glycolic acid) from an oil-in-water emulsion by the solvent evaporation technique. Nanoparticles were evaluated in vitro studying their drug release mechanism by fitting different model equations, and in vivo by testing its analgesic and anti-allodynic activity in front of heat-induced nociceptive pain and sciatic nerve chronic constriction injury in rats, respectively. The particle size of the PLGA nanoparticles obtained was of 453 ± 29 nm, the encapsulation efficiency, drug loading, and burst effect at 30 min were 82.10 ± 0.001, 45.06 ± 0.001, and 4.6 ± 0.6%, respectively. A prolonged release of the drug in comparison to bupivacaine solution was seen. The mean dissolution time (MDT) obtained for nanoparticles was relatively long (9.44 ± 0.56 h) proving the sustained release process, while the dissolution efficiency (DE) (84.10 ± 1.01%) was similar to the maximum percentage of drug released. Korsmeyer-Peppas was the best model that fitted our release data. A non-Fickian mechanism was concluded to be involved in the release of bupivacaine from the nanoparticles, taking into account the value of the diffusional exponent obtained ( n = 0.95). After local infiltration in the rat, the antinociceptive and anti-allodynic activity of the nanoencapsulated bupivacaine was longer lasting than that of bupivacaine solution. An increase in the values of the area under the curve (AUC) of the antinociceptive and anti-allodynic effect versus time of 67 and 36%, respectively, was observed when the drug was encapsulated.

  12. In vitro characterization and in vivo analgesic and anti-allodynic activity of PLGA-bupivacaine nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Xavier, E-mail: xavier.garcia@ipsen.com; Escribano, Elvira; Domenech, Josep; Queralt, Josep; Freixes, Joan [University of Barcelona, Department of Pharmacy and Pharmaceutical Technology, Biopharmaceuticals and Pharmacokinetics Unit, School of Pharmacy (Spain)

    2011-05-15

    An injectable controlled release system containing local anesthetics able to provide long-lasting analgesia in nociceptive and neuropathic pain could have a marked impact in pain management. In order to address this issue, bupivacaine, a widely used local anesthetic, has been nanoencapsulated using poly(lactic-co-glycolic acid) from an oil-in-water emulsion by the solvent evaporation technique. Nanoparticles were evaluated in vitro studying their drug release mechanism by fitting different model equations, and in vivo by testing its analgesic and anti-allodynic activity in front of heat-induced nociceptive pain and sciatic nerve chronic constriction injury in rats, respectively. The particle size of the PLGA nanoparticles obtained was of 453 {+-} 29 nm, the encapsulation efficiency, drug loading, and burst effect at 30 min were 82.10 {+-} 0.001, 45.06 {+-} 0.001, and 4.6 {+-} 0.6%, respectively. A prolonged release of the drug in comparison to bupivacaine solution was seen. The mean dissolution time (MDT) obtained for nanoparticles was relatively long (9.44 {+-} 0.56 h) proving the sustained release process, while the dissolution efficiency (DE) (84.10 {+-} 1.01%) was similar to the maximum percentage of drug released. Korsmeyer-Peppas was the best model that fitted our release data. A non-Fickian mechanism was concluded to be involved in the release of bupivacaine from the nanoparticles, taking into account the value of the diffusional exponent obtained (n = 0.95). After local infiltration in the rat, the antinociceptive and anti-allodynic activity of the nanoencapsulated bupivacaine was longer lasting than that of bupivacaine solution. An increase in the values of the area under the curve (AUC) of the antinociceptive and anti-allodynic effect versus time of 67 and 36%, respectively, was observed when the drug was encapsulated.

  13. In vitro characterization and in vivo analgesic and anti-allodynic activity of PLGA-bupivacaine nanoparticles

    International Nuclear Information System (INIS)

    Garcia, Xavier; Escribano, Elvira; Domenech, Josep; Queralt, Josep; Freixes, Joan

    2011-01-01

    An injectable controlled release system containing local anesthetics able to provide long-lasting analgesia in nociceptive and neuropathic pain could have a marked impact in pain management. In order to address this issue, bupivacaine, a widely used local anesthetic, has been nanoencapsulated using poly(lactic-co-glycolic acid) from an oil-in-water emulsion by the solvent evaporation technique. Nanoparticles were evaluated in vitro studying their drug release mechanism by fitting different model equations, and in vivo by testing its analgesic and anti-allodynic activity in front of heat-induced nociceptive pain and sciatic nerve chronic constriction injury in rats, respectively. The particle size of the PLGA nanoparticles obtained was of 453 ± 29 nm, the encapsulation efficiency, drug loading, and burst effect at 30 min were 82.10 ± 0.001, 45.06 ± 0.001, and 4.6 ± 0.6%, respectively. A prolonged release of the drug in comparison to bupivacaine solution was seen. The mean dissolution time (MDT) obtained for nanoparticles was relatively long (9.44 ± 0.56 h) proving the sustained release process, while the dissolution efficiency (DE) (84.10 ± 1.01%) was similar to the maximum percentage of drug released. Korsmeyer–Peppas was the best model that fitted our release data. A non-Fickian mechanism was concluded to be involved in the release of bupivacaine from the nanoparticles, taking into account the value of the diffusional exponent obtained (n = 0.95). After local infiltration in the rat, the antinociceptive and anti-allodynic activity of the nanoencapsulated bupivacaine was longer lasting than that of bupivacaine solution. An increase in the values of the area under the curve (AUC) of the antinociceptive and anti-allodynic effect versus time of 67 and 36%, respectively, was observed when the drug was encapsulated.

  14. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    Energy Technology Data Exchange (ETDEWEB)

    Reger, Nina A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Meng, Wilson S. [Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Gawalt, Ellen S., E-mail: gawalte@duq.edu [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219 (United States)

    2017-04-15

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  15. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    International Nuclear Information System (INIS)

    Reger, Nina A.; Meng, Wilson S.; Gawalt, Ellen S.

    2017-01-01

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  16. Biodegradable nanoparticles loaded with tetrameric melittin: preparation and membrane disruption evaluation.

    Science.gov (United States)

    Gonzalez-Horta, Azucena; Matamoros-Acosta, Arely; Chavez-Montes, Abelardo; Castro-Rios, Rocio; Lara-Arias, Jorge

    2017-10-01

    Melittin is the main component of bee venom consisting of 26 amino acids that has multiple effects, including antibacterial, antiviral and anti-inflammatory in various cell types. This peptide forms pores in biological membranes and triggers cell death. Therefore it has potential as an anti-cancer therapy. However, the therapeutic application of melittin is limited due to its main side effect, hemolysis, which is especially pronounced following intravenous administration. In the present study, we formulated tetrameric melittin-carrying poly-D,L-lactic-co-glycolic acid nanoparticles (PLGA-NPs) and analyzed the lytic activity of this system on liposomes that resembles breast cancer cells. Tetrameric melittin binds avidly to PLGA-NPs with an encapsulation efficiency of 97% and retains its lytic activity demonstrating the effectiveness of PLGA-NPs as nanocarriers for this cytolytic peptide.

  17. Preclinical Development and In Vivo Efficacy of Ceftiofur-PLGA Microparticles

    Science.gov (United States)

    Vilos, Cristian; Velasquez, Luis A.; Rodas, Paula I.; Zepeda, Katherine; Bong, Soung-Jae; Herrera, Natalia; Cantin, Mario; Simon, Felipe; Constandil, Luis

    2015-01-01

    Drug delivery systems based on polymeric microparticles represent an interesting field of development for the treatment of several infectious diseases for humans and animals. In this work, we developed PLGA microparticles loaded with ceftiofur (PLGA-cef), a third- generation cephalosporin that is used exclusively used in animals. PLGA-cef was prepared by the double emulsion w/o/w method, and exhibited a diameter in the range of 1.5–2.2 μm, and a negative ζ potential in the range of -35 to -55 mV. The loading yield of PLGA-cef was ~7% and encapsulation efficiency was approximately 40%. The pharmacokinetic study demonstrated a sustained release profile of ceftiofur for 20 days. PLGA-cef administrated in a single dose was more effective than ceftiofur non-encapsulated in rats challenged with S. Typhimurium. The in vivo toxicological evaluation showed that PLGA-cef did not affect the blood biochemical, hematological and hemostasis parameters. Overall, the PLGA-cef showed slow in vivo release profile, high antibacterial efficacy, and low toxicity. The results obtained supports the safe application of PLGA-cef as sustained release platform in the veterinary industry. PMID:25915043

  18. Preparation and In Vitro/Ex Vivo Evaluation of Moxifloxacin-Loaded PLGA Nanosuspensions for Ophthalmic Application.

    Science.gov (United States)

    Mudgil, Meetali; Pawar, Pravin K

    2013-01-01

    The aim of the present investigation was to prepare a colloidal ophthalmic formulation to improve the residence time of moxifloxacin. Moxifloxacin-loaded poly(dl-lactide-co-glycolide) (PLGA) nanosuspensions were prepared by using the solvent evaporation technique. The nanosuspensions were characterised physically by using different techniques like particle size, zeta potential, FTIR, DSC, and XRD analysis. In vitro and ex vivo studies of nanosuspensions were carried out using a modified USP dissolution apparatus and all-glass Franz diffusion cells, respectively. The antibacterial activities of the nanosuspension and marketed formulations were performed against S. aureus and P. aeroginosa. The moxifloxacin-loaded PLGA nanosuspensions showed uniform particle size, ranging between 164-490 nm with negative zeta potential for all batches. The percentage entrapment efficiency of the drug-loaded nano-suspension was found to be between 84.09 to 92.05%. In vitro drug release studies suggest that all of the formulations showed extended drug release profiles and follow Korsemeyer-Peppas release kinetics. In vitro corneal permeability was found to be comparable with that of the marketed formulation across isolated goat cornea, indicating the suitability of the nanosuspension formulation in the ophthalmic delivery of moxifloxacin. The optimised nano-suspension was found to be more active against S. aureus and P. aeruginosa compared to the marketed eye drops.

  19. Injectable nanoparticle-loaded hydrogel system for local delivery of sodium alendronate

    Czech Academy of Sciences Publication Activity Database

    Posadowska, U.; Pařízek, Martin; Filová, Elena; Wlodarczyk-Biegun, M.; Kamperman, M.; Bačáková, Lucie; Pamula, E.

    2015-01-01

    Roč. 485, 1-2 (2015), s. 31-40 ISSN 0378-5173 R&D Projects: GA MZd(CZ) NT13297 Institutional support: RVO:67985823 Keywords : sodium alendronate * PLGA * nanoparticles Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.994, year: 2015

  20. ICAM-1 targeted catalase encapsulated PLGA-b-PEG nanoparticles against vascular oxidative stress.

    Science.gov (United States)

    Sari, Ece; Tunc-Sarisozen, Yeliz; Mutlu, Hulya; Shahbazi, Reza; Ucar, Gulberk; Ulubayram, Kezban

    2015-01-01

    Targeted delivery of therapeutics is the favourable idea, whereas it is possible to distribute the therapeutically active drug molecule only to the site of action. For this purpose, in this study, catalase encapsulated poly(D,L-lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles were developed and an endothelial target molecule (anti-ICAM-1) was conjugated to this carrier system in order to decrease the oxidative stress level in the target site. According to the enzymatic activity results, initial catalase activity of nanoparticles was increased from 27.39 U/mg to up to 45.66 U/mg by adding 5 mg/mL bovine serum albumin (BSA). After 4 h, initial catalase activity was preserved up to 46.98% while free catalase retained less than 4% of its activity in proteolytic environment. Furthermore, FITC labelled anti-ICAM-1 targeted catalase encapsulated nanoparticles (anti-ICAM-1/CatNPs) were rapidly taken up by cultured endothelial cells and concomitantly endothelial cells were resistant to H2O2 induced oxidative impairment.

  1. Formulation and optimization of doxorubicin loaded polymeric nanoparticles using Box-Behnken design: ex-vivo stability and in-vitro activity.

    Science.gov (United States)

    Shaikh, Muhammad Vaseem; Kala, Manika; Nivsarkar, Manish

    2017-03-30

    Biodegradable nanoparticles (NPs) have gained tremendous interest for targeting chemotherapeutic drugs to the tumor environment. Inspite of several advances sufficient encapsulation along with the controlled release and desired size range have remained as considerable challenges. Hence, the present study examines the formulation optimization of doxorubicin loaded PLGA NPs (DOX-PLGA-NPs), prepared by single emulsion method for cancer targeting. Critical process parameters (CPP) were selected by initial screening. Later, Box-Behnken design (BBD) was used for analyzing the effect of the selected CPP on critical quality attributes (CQA) and to generate a design space. The optimized formulation was stabilized by lyophilization and was used for in-vitro drug release and in-vitro activity on A549 cell line. Moreover, colloidal stability of the NPs in the biological milieu was assessed. Amount of PLGA and PVA, oil:water ratio and sonication time were the selected independent factors for BBD. The statistical data showed that a quadratic model was fitted to the data obtained. Additionally, the lack of fit values for the models was not significant. The delivery system showed sustained release behavior over a period of 120h and was governed by Fickian diffusion. The multipoint analysis at 24, 48 and 72h showed gradual reduction in IC50 value of DOX-PLGA-NPs (p<0.05, Fig. 9). DOX-PLGA-NPs were found to be stable in the biological fluids indicating their in-vivo applicability. In conclusion, optimization of the DOX-PLGA-NPs by BBD yielded in a promising drug carrier for doxorubicin that could provide a novel treatment modality for cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Novel DiR and SPIO nanoparticles embedded PEG-PLGA nanobubbles as a multimodalimaging contrast agent.

    Science.gov (United States)

    Luo, Binhua; Zhang, Huajie; Liu, Xuhan; Rao, Rong; Wu, Yun; Liu, Wei

    2015-01-01

    Fluorescence dye DiR and superparamagnetic iron oxide nanoparticles (SPIONs) embedded in PEG-PLGA nanobubbles (DiR-SPIO-NBs) were produced using double emulsion method on a membrane of Shirasu porous glass (SPG). The nanobubbles encapsulated with DiR and SPIONs had a liquid core (perfluoropentane) and a PEG-PLGA shell. DiR-SPIO-NBs showed biocompatibility based on MTT cytotoxicity and hemolysis studies. The PFP encapsulated in the nanobubbles experienced phase transition under ultrasonic irradation. Nanobubbles dispersed well in saline over 3 months, and the relaxivity was 127.9 mM(-1)s(-1), suggesting that it could be used as a contrast agent in MRI. The MR and fluorescence images in vivo demonstrated that the signal intensity in the spleen and liver was significantly enhanced with the treatment of nanobubbles. In addition, results of ultrasound images suggested that the nanobubbles had persistent contrast ability. In conclusion, nanobubbles could be utilized as an US/MRI/fluorescence contrast agent.

  3. MO-FG-BRA-05: Next Generation Radiotherapy Biomaterials Loaded With Gold Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Cifter, G; Ngwa, W [Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (United States); Univ Massachusetts Lowell, Lowell, MA (United States); Sajo, E [Univ Massachusetts Lowell, Lowell, MA (United States); Korideck, H; Cormack, R; Makrigiorgos, G [Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (United States); Kumar, R [Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (United States); Northeastern University, Boston, MA (United States); Sridhar, S [Northeastern University, Boston, MA (United States)

    2015-06-15

    Purpose: It has been proposed that routinely used inert radiotherapy (RT) biomaterials (e.g. fiducials, spacers) can be upgraded to smarter ones by coating/loading them with radiosensitizing gold nanoparticles (GNPs), for sustained in-situ release after implantation to enhance RT. In this work, we developed prototypes of such RT biomaterials and investigated the sustained release of GNPs from the biomaterials as a function of design parameters. Methods: Prototype smart biomaterials were produced by incorporating the GNPs in poly(D,L-lactide-co-glycolide) (PLGA) polymer millirods during the gel phase of production. For comparison, commercially available spacers were also coated with a polymer film loaded with fluorescent GNP. Optical/spectroscopy methods were used to monitor in vitro release of GNPs over time as a function of different design parameters: polymer weighting, type, and initial (loading) GNP concentrations. Inductively coupled plasma mass spectrometry was employed to verify GNP release. Results: Results showed that gold nanoparticles could be successfully loaded in the new RT biomaterial prototypes. Burst release of GNPs could be achieved within 1 to 25 days depending on the preparation approach. Burst release was followed by sustained release profile over time. The amount of released GNP increased with increasing loading concentration as expected. The release profiles could also be customized as a function of polymer weighting, or preparation approaches. Conclusion: Considered together, our results highlight potential for the development of next generation RT biomaterials loaded with GNPs customizable to different RT schedules. Such biomaterials could be employed as needed instead of currently used inert spacers/fiducials at no additional inconvenience to patients, to enhance RT.

  4. MO-FG-BRA-05: Next Generation Radiotherapy Biomaterials Loaded With Gold Nanoparticles

    International Nuclear Information System (INIS)

    Cifter, G; Ngwa, W; Sajo, E; Korideck, H; Cormack, R; Makrigiorgos, G; Kumar, R; Sridhar, S

    2015-01-01

    Purpose: It has been proposed that routinely used inert radiotherapy (RT) biomaterials (e.g. fiducials, spacers) can be upgraded to smarter ones by coating/loading them with radiosensitizing gold nanoparticles (GNPs), for sustained in-situ release after implantation to enhance RT. In this work, we developed prototypes of such RT biomaterials and investigated the sustained release of GNPs from the biomaterials as a function of design parameters. Methods: Prototype smart biomaterials were produced by incorporating the GNPs in poly(D,L-lactide-co-glycolide) (PLGA) polymer millirods during the gel phase of production. For comparison, commercially available spacers were also coated with a polymer film loaded with fluorescent GNP. Optical/spectroscopy methods were used to monitor in vitro release of GNPs over time as a function of different design parameters: polymer weighting, type, and initial (loading) GNP concentrations. Inductively coupled plasma mass spectrometry was employed to verify GNP release. Results: Results showed that gold nanoparticles could be successfully loaded in the new RT biomaterial prototypes. Burst release of GNPs could be achieved within 1 to 25 days depending on the preparation approach. Burst release was followed by sustained release profile over time. The amount of released GNP increased with increasing loading concentration as expected. The release profiles could also be customized as a function of polymer weighting, or preparation approaches. Conclusion: Considered together, our results highlight potential for the development of next generation RT biomaterials loaded with GNPs customizable to different RT schedules. Such biomaterials could be employed as needed instead of currently used inert spacers/fiducials at no additional inconvenience to patients, to enhance RT

  5. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao-Xuan [Department of Orthopedics, Shandong University Qilu Hospital, Jinan, Shandong (China); Zhang, Xiu-Ping [School of Public Health, Fudan University, Shanghai (China); Xiao, Gui-Yong [School of Materials Science and Engineering, Shandong University, Jinan, Shandong (China); Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong (China); Hou, Yong; Cheng, Lei; Si, Meng; Wang, Shuai-Shuai [Department of Orthopedics, Shandong University Qilu Hospital, Jinan, Shandong (China); Li, Yu-Hua, E-mail: qiluyuhua@126.com [Department of Orthopedics, Shandong University Qilu Hospital, Jinan, Shandong (China); Nie, Lin, E-mail: hoho05@126.com [Department of Orthopedics, Shandong University Qilu Hospital, Jinan, Shandong (China)

    2016-03-01

    Avascular necrosis of the femoral head (ANFH) is difficult to treat due to high pressure and hypoxia, and reduced levels of growth factors such as bone morphogenetic protein (BMP), and vascular endothelial growth factor (VEGF). We generated a novel calcium phosphate (CPC) composite scaffold, which contains BMP-VEGF-loaded poly-lactic-co-glycolic acid (PLGA) microspheres (BMP-VEGF-PLGA-CPC). The BMP-VEGF-loaded microspheres have an encapsulation efficiency of 89.15% for BMP, and 78.55% for VEGF. The BMP-VEGF-PLGA-CPC scaffold also demonstrated a porosity of 62% with interconnected porous structures, and pore sizes of 219 μm and compressive strength of 6.60 MPa. Additionally, bone marrow mesenchymal stem cells (BMSCs) were seeded on scaffolds in vitro. Further characterization showed that the BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. Using a rabbit model of ANFH, BMP-VEGF-PLGA-CPC scaffolds were implanted into the bone tunnels of core decompression in the femoral head for 6 and 12 weeks. Radiographic and histological analysis demonstrated that the BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. These results indicate that the BMP-VEGF-PLGA-CPC scaffold may improve the therapeutic effect of core decompression surgery and be used as a treatment for ANFH. - Highlights: • BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. • BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. • BMP-VEGF-PLGA-CPC scaffolds provided a new approach for the treatment of avascular necrosis of the femoral head (ANFH).

  6. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head

    International Nuclear Information System (INIS)

    Zhang, Hao-Xuan; Zhang, Xiu-Ping; Xiao, Gui-Yong; Hou, Yong; Cheng, Lei; Si, Meng; Wang, Shuai-Shuai; Li, Yu-Hua; Nie, Lin

    2016-01-01

    Avascular necrosis of the femoral head (ANFH) is difficult to treat due to high pressure and hypoxia, and reduced levels of growth factors such as bone morphogenetic protein (BMP), and vascular endothelial growth factor (VEGF). We generated a novel calcium phosphate (CPC) composite scaffold, which contains BMP-VEGF-loaded poly-lactic-co-glycolic acid (PLGA) microspheres (BMP-VEGF-PLGA-CPC). The BMP-VEGF-loaded microspheres have an encapsulation efficiency of 89.15% for BMP, and 78.55% for VEGF. The BMP-VEGF-PLGA-CPC scaffold also demonstrated a porosity of 62% with interconnected porous structures, and pore sizes of 219 μm and compressive strength of 6.60 MPa. Additionally, bone marrow mesenchymal stem cells (BMSCs) were seeded on scaffolds in vitro. Further characterization showed that the BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. Using a rabbit model of ANFH, BMP-VEGF-PLGA-CPC scaffolds were implanted into the bone tunnels of core decompression in the femoral head for 6 and 12 weeks. Radiographic and histological analysis demonstrated that the BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. These results indicate that the BMP-VEGF-PLGA-CPC scaffold may improve the therapeutic effect of core decompression surgery and be used as a treatment for ANFH. - Highlights: • BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. • BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. • BMP-VEGF-PLGA-CPC scaffolds provided a new approach for the treatment of avascular necrosis of the femoral head (ANFH).

  7. Localised controlled release of simvastatin from porous chitosan–gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, Piergiorgio [Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield (United Kingdom); Nandagiri, Vijay Kumar [Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephen Green, Dublin 2 (Ireland); Daly, Jacqueline [Division of Biology, Department of Anatomy, Royal College of Surgeons in Ireland, 123, St. Stephen Green, Dublin 2 (Ireland); Chiono, Valeria; Mattu, Clara; Tonda-Turo, Chiara; Ciardelli, Gianluca [Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Ramtoola, Zebunnissa, E-mail: zramtoola@rcsi.ie [School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephen Green, Dublin 2 (Ireland)

    2016-02-01

    Localised controlled release of simvastatin from porous freeze-dried chitosan–gelatin (CH–G) scaffolds was investigated by incorporating simvastatin loaded poly-(DL-lactide-co-glycolide) acid (PLGA) microparticles (MSIMs) into the scaffolds. MSIMs at 10% w/w simvastatin loading were prepared using a single emulsion-solvent evaporation method. The MSIM optimal amount to be incorporated into the scaffolds was selected by analysing the effect of embedding increasing amounts of blank PLGA microparticles (BL-MPs) on the scaffold physical properties and on the in vitro cell viability using a clonal human osteoblastic cell line (hFOB). Increasing the BL-MP content from 0% to 33.3% w/w showed a significant decrease in swelling degree (from 1245 ± 56% to 570 ± 35%). Scaffold pore size and distribution changed significantly as a function of BL-MP loading. Compressive modulus of scaffolds increased with increasing BL-MP amount up to 16.6% w/w (23.0 ± 1.0 kPa). No significant difference in cell viability was observed with increasing BL-MP loading. Based on these results, a content of 16.6% w/w MSIM particles was incorporated successfully in CH–G scaffolds, showing a controlled localised release of simvastatin able to influence the hFOB cell proliferation and the osteoblastic differentiation after 11 days. - Highlights: • Simvastatin loaded PLGA microparticle engrafted porous CH–G scaffolds were produced. • The microparticle optimal amount to be incorporated into the scaffolds was studied. • Physical properties of scaffolds changed as a function of microparticle loading. • The level of simvastatin released enhanced cell proliferation and mineralisation.

  8. Localised controlled release of simvastatin from porous chitosan–gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application

    International Nuclear Information System (INIS)

    Gentile, Piergiorgio; Nandagiri, Vijay Kumar; Daly, Jacqueline; Chiono, Valeria; Mattu, Clara; Tonda-Turo, Chiara; Ciardelli, Gianluca; Ramtoola, Zebunnissa

    2016-01-01

    Localised controlled release of simvastatin from porous freeze-dried chitosan–gelatin (CH–G) scaffolds was investigated by incorporating simvastatin loaded poly-(DL-lactide-co-glycolide) acid (PLGA) microparticles (MSIMs) into the scaffolds. MSIMs at 10% w/w simvastatin loading were prepared using a single emulsion-solvent evaporation method. The MSIM optimal amount to be incorporated into the scaffolds was selected by analysing the effect of embedding increasing amounts of blank PLGA microparticles (BL-MPs) on the scaffold physical properties and on the in vitro cell viability using a clonal human osteoblastic cell line (hFOB). Increasing the BL-MP content from 0% to 33.3% w/w showed a significant decrease in swelling degree (from 1245 ± 56% to 570 ± 35%). Scaffold pore size and distribution changed significantly as a function of BL-MP loading. Compressive modulus of scaffolds increased with increasing BL-MP amount up to 16.6% w/w (23.0 ± 1.0 kPa). No significant difference in cell viability was observed with increasing BL-MP loading. Based on these results, a content of 16.6% w/w MSIM particles was incorporated successfully in CH–G scaffolds, showing a controlled localised release of simvastatin able to influence the hFOB cell proliferation and the osteoblastic differentiation after 11 days. - Highlights: • Simvastatin loaded PLGA microparticle engrafted porous CH–G scaffolds were produced. • The microparticle optimal amount to be incorporated into the scaffolds was studied. • Physical properties of scaffolds changed as a function of microparticle loading. • The level of simvastatin released enhanced cell proliferation and mineralisation.

  9. Precise engineering of dapivirine-loaded nanoparticles for the development of anti-HIV vaginal microbicides.

    Science.gov (United States)

    das Neves, José; Sarmento, Bruno

    2015-05-01

    Polymeric nanoparticles (NPs) have the potential to provide effective and safe delivery of antiretroviral drugs in the context of prophylactic anti-HIV vaginal microbicides. Dapivirine-loaded poly(d,l-lactic-co-glycolic acid) (PLGA) NPs were produced by an emulsion-solvent evaporation method, optimized for colloidal properties using a 3-factor, 3-level Box-Behnken experimental design, and characterized for drug loading, production yield, morphology, thermal behavior, drug release, in vitro cellular uptake, cytotoxicity and pro-inflammatory potential. Also, drug permeability/membrane retention in well-established HEC-1-A and CaSki cell monolayer models as mediated by NPs was assessed in the absence or presence of mucin. Box-Behnken design allowed optimizing monodisperse 170nm drug-loaded NPs. Drug release experiments showed an initial burst effect up to 4h, followed by sustained 24h release at pH 4.2 and 7.4. NPs were readily taken up by different genital and macrophage cell lines as assessed by fluorescence microscopy. Drug-loaded NPs presented lower or at least similar cytotoxicity as compared to the free drug, with up to around one-log increase in half-maximal cytotoxic concentration values. In all cases, no relevant changes in cell pro-inflammatory cytokine/chemokine production were observed. Dapivirine transport across cell monolayers was significantly decreased when mucin was present at the donor side with either NPs or the free drug, thus evidencing the influence of this natural glycoprotein in membrane permeability. Moreover, drug retention in cell monolayers was significantly higher for NPs in comparison with the free drug. Overall, obtained dapivirine-loaded PLGA NPs possess interesting technological and biological features that may contribute to their use as novel safe and effective vaginal microbicides. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Activation of Antigen-Specific CD8(+) T Cells by Poly-DL-Lactide/Glycolide (PLGA) Nanoparticle-Primed Gr-1(high) Cells.

    Science.gov (United States)

    Luo, Wen-Hui; Yang, Ya-Wun

    2016-04-01

    The aim of this study was to investigate the induction of antigen-specific T cell activation and cell cycle modulation by a poly-DL-lactide/glycolide (PLGA) nanoparticle (NP)-primed CD11b(+)Gr-1(high) subset isolated from mouse bone marrow. PLGA NPs containing the ovalbumin (OVA) antigen were prepared using the double emulsion and solvent evaporation method, and protein release rate and cell viability were determined. The Lin2(¯)CD11b(+)Gr-1(high)Ly6c(low) (Gr-1(high)) subset was sorted from the bone marrow of C57BL/6 J mice by fluorescence-activated cell sorting (FACS) and co-cultured with OT-I CD8(+) splenic T cells. Proliferation of OT-I CD8(+) T cells was monitored, and cell cycles were determined by 5-bromo-2'-deoxyuridine (BrdU) labeling. Treatment of Gr-1(high) cells with PLGA/OVA NPs upregulated expression of the SIINFEKL-H2K(b) complex in the context of MHC I. Co-cultures of OT-I CD8(+) T cells with the PLGA/OVA NP-primed Gr-1(high) cells induced the proliferation of T cells in vitro and modulated cell division and morphology. Treatment of Gr-1(high) cells with PLGA/OVA NPs also induced cell apoptosis and necrosis. This study demonstrated the function of PLGA/OVA NPs in the activation of OT-I CD8(+) T cells and the capability of cross-presentation via the Gr-1(high) polymorphonuclear subset from mouse bone marrow.

  11. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P; Vishwanatha, Jamboor K, E-mail: Jamboor.vishwanatha@unthsc.edu [Department of Molecular Biology and Immunology and Institute for Cancer Research, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-11-04

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high ({approx}97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  12. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    Science.gov (United States)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P.; Vishwanatha, Jamboor K.

    2011-11-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (~97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  13. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    International Nuclear Information System (INIS)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P; Vishwanatha, Jamboor K

    2011-01-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (∼97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  14. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head.

    Science.gov (United States)

    Zhang, Hao-Xuan; Zhang, Xiu-Ping; Xiao, Gui-Yong; Hou, Yong; Cheng, Lei; Si, Meng; Wang, Shuai-Shuai; Li, Yu-Hua; Nie, Lin

    2016-03-01

    Avascular necrosis of the femoral head (ANFH) is difficult to treat due to high pressure and hypoxia, and reduced levels of growth factors such as bone morphogenetic protein (BMP), and vascular endothelial growth factor (VEGF). We generated a novel calcium phosphate (CPC) composite scaffold, which contains BMP-VEGF-loaded poly-lactic-co-glycolic acid (PLGA) microspheres (BMP-VEGF-PLGA-CPC). The BMP-VEGF-loaded microspheres have an encapsulation efficiency of 89.15% for BMP, and 78.55% for VEGF. The BMP-VEGF-PLGA-CPC scaffold also demonstrated a porosity of 62% with interconnected porous structures, and pore sizes of 219 μm and compressive strength of 6.60 MPa. Additionally, bone marrow mesenchymal stem cells (BMSCs) were seeded on scaffolds in vitro. Further characterization showed that the BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. Using a rabbit model of ANFH, BMP-VEGF-PLGA-CPC scaffolds were implanted into the bone tunnels of core decompression in the femoral head for 6 and 12 weeks. Radiographic and histological analysis demonstrated that the BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. These results indicate that the BMP-VEGF-PLGA-CPC scaffold may improve the therapeutic effect of core decompression surgery and be used as a treatment for ANFH. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Sustained release donepezil loaded PLGA microspheres for injection: Preparation, in vitro and in vivo study

    Directory of Open Access Journals (Sweden)

    Wenjia Guo

    2015-10-01

    Full Text Available The purpose of this study was to develop a PLGA microspheres-based donepezil (DP formulation which was expected to sustain release of DP for one week with high encapsulation efficiency (EE. DP derived from donepezil hydrochloride was encapsulated in PLGA microspheres by the O/W emulsion-solvent evaporation method. The optimized formulation which avoided the crushing of microspheres during the preparation process was characterized in terms of particle size, morphology, drug loading and EE, physical state of DP in the matrix and in vitro and in vivo release behavior. DP microspheres were prepared successfully with average diameter of 30 µm, drug loading of 15.92 ± 0.31% and EE up to 78.79 ± 2.56%. Scanning electron microscope image showed it has integrated spherical shape with no drug crystal and porous on its surface. Differential scanning calorimetry and X-ray diffraction results suggested DP was in amorphous state or molecularly dispersed in microspheres. The Tg of PLGA was increased with the addition of DP. The release profile in vitro was characterized with slow but continuous release that lasted for about one week and fitted well with first-order model, which suggested the diffusion governing release mechanism. After single-dose administration of DP microspheres via subcutaneous injection in rats, the plasma concentration of DP reached peak concentration at 0.50 d, and then declined gradually, but was still detectable at 15 d. A good correlation between in vitro and in vivo data was obtained. The results suggest the potential use of DP microspheres for treatment of Alzheimer's disease over long periods.

  16. Purification of Drug Loaded PLGA Nanoparticles Prepared by Emulsification Solvent Evaporation Using Stirred Cell Ultrafiltration Technique.

    Science.gov (United States)

    Paswan, Suresh K; Saini, T R

    2017-12-01

    The emulsifiers in an exceedingly higher level are used in the preparation of drug loaded polymeric nanoparticles prepared by emulsification solvent evaporation method. This creates great problem to the formulator due to their serious toxicities when it is to be administered by parenteral route. The final product is therefore required to be freed from the used surfactants by the conventional purification techniques which is a cumbersome job. The solvent resistant stirred cell ultrafiltration unit (Millipore) was used in this study using polyethersulfone ultrafiltration membrane (Biomax®) having pore size of NMWL 300 KDa as the membrane filter. The purification efficiency of this technique was compared with the conventional centrifugation technique. The flow rate of ultrafiltration was optimized for removal of surfactant (polyvinyl alcohol) impurities to the acceptable levels in 1-3.5 h from the nanoparticle dispersion of tamoxifen prepared by emulsification solvent evaporation method. The present investigations demonstrate the application of solvent resistant stirred cell ultrafiltration technique for removal of toxic impurities of surfactant (PVA) from the polymeric drug nanoparticles (tamoxifen) prepared by emulsification solvent evaporation method. This technique offers added benefit of producing more concentrated nanoparticles dispersion without causing significant particle size growth which is observed in other purification techniques, e.g., centrifugation and ultracentrifugation.

  17. Multifunctional nanoparticles for prostate cancer therapy.

    Science.gov (United States)

    Chandratre, Shantanu S; Dash, Alekha K

    2015-02-01

    The relapse of cancer after first line therapy with anticancer agents is a common occurrence. This recurrence is believed to be due to the presence of a subpopulation of cells called cancer stem cells in the tumor. Therefore, a combination therapy which is susceptible to both types of cells is desirable. Delivery of this combinatorial approach in a nanoparticulate system will provide even a better therapeutic outcome in tumor targeting. The objective of this study was to develop and characterize nanoparticulate system containing two anticancer agents (cyclopamine and paclitaxel) having different susceptibilities toward cancer cells. Both drugs were entrapped in glyceryl monooleate (GMO)-chitosan solid lipid as well as poly(glycolic-lactic) acid (PLGA) nanoparticles. The cytotoxicity studies were performed on DU145, DU145 TXR, and Wi26 A4 cells. The particle size of drug-loaded GMO-chitosan nanoparticles was 278.4 ± 16.4 nm with a positive zeta potential. However, the PLGA particles were 234.5 ± 6.8 nm in size with a negative zeta potential. Thermal analyses of both nanoparticles revealed that the drugs were present in noncrystalline state in the matrix. A sustained in vitro release was observed for both the drugs in these nanoparticles. PLGA blank particles showed no cytotoxicity in all the cell lines tested, whereas GMO-chitosan blank particles showed substantial cytotoxicity. The types of polymer used for the preparation of nanoparticles played a major role and affected the in vitro release, cytotoxicity, and uptake of nanoparticles in the all the cell lines tested.

  18. Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: impact on antioxidant and antinitrosant properties

    Science.gov (United States)

    Betbeder, Didier; Lipka, Emmanuelle; Howsam, Mike; Carpentier, Rodolphe

    2015-01-01

    Purpose Curcumin exhibits antioxidant properties potentially beneficial for human health; however, its use in clinical applications is limited by its poor solubility and relative instability. Nanoparticles exhibit interesting features for the efficient distribution and delivery of curcumin into cells, and could also increase curcumin stability in biological systems. There is a paucity of information regarding the evolution of the antioxidant properties of nanoparticle-encapsulated curcumin. Method We described a simple method of curcumin encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles without the use of detergent. We assessed, in epithelial cells and in an acellular model, the evolution of direct antioxidant and antinitrosant properties of free versus PLGA-encapsulated curcumin after storage under different conditions (light vs darkness, 4°C vs 25°C vs 37°C). Results In epithelial cells, endocytosis and efflux pump inhibitors showed that the increased antioxidant activity of PLGA-encapsulated curcumin relied on bypassing the efflux pump system. Acellular assays showed that the antioxidant effect of curcumin was greater when loaded in PLGA nanoparticles. Furthermore, we observed that light decreased, though heat restored, antioxidant activity of PLGA-encapsulated curcumin, probably by modulating the accessibility of curcumin to reactive oxygen species, an observation supported by results from quenching experiments. Moreover, we demonstrated a direct antinitrosant activity of curcumin, enhanced by PLGA encapsulation, which was increased by light exposure. Conclusion These results suggest that the antioxidant and antinitrosant activities of encapsulated curcumin are light sensitive and that nanoparticle modifications over time and with temperature may facilitate curcumin contact with reactive oxygen species. These results highlight the importance of understanding effects of nanoparticle maturation on an encapsulated drug’s activity. PMID

  19. Ultrafine PEG-coated poly(lactic-co-glycolic acid) nanoparticles formulated by hydrophobic surfactant-assisted one-pot synthesis for biomedical applications.

    Science.gov (United States)

    Chu, Chih-Hang; Wang, Yu-Chao; Huang, Hsin-Ying; Wu, Li-Chen; Yang, Chung-Shi

    2011-05-06

    A novel method was developed for the one-pot synthesis of ultrafine poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs), using an emulsion solvent evaporation formulation method. Using either cetyltrimethylammonium bromide (CTAB) or poly(ethylene glycol)-distearyl phosphoethanolamine (PEGPE) as an oily emulsifier during the emulsion process, produced PLGA particle sizes of less than 50 nm, constituting a breakthrough in emulsion formulation methods. The yield of ultrafine PLGA NPs increased with PEGPE/PLGA ratio, reaching a plateau at around 85%, when the PEGPE/PLGA ratio reached 3:1. The PEGPE-PLGA NPs exhibited high drug loading content, reduced burst release, good serum stability, and enhanced cell uptake rate compared with traditional PLGA NPs. Sub-50 nm diameter PEG-coated ultrafine PLGA NPs show great potential for in vivo drug delivery systems.

  20. Preparation and In Vitro/Ex Vivo Evaluation of Moxifloxacin-Loaded PLGA Nanosuspensions for Ophthalmic Application

    OpenAIRE

    MUDGIL, Meetali; PAWAR, Pravin

    2013-01-01

    The aim of the present investigation was to prepare a colloidal ophthalmic formulation to improve the residence time of moxifloxacin. Moxifloxacin-loaded poly(dl-lactide-co-glycolide) (PLGA) nanosuspensions were prepared by using the solvent evaporation technique. The nanosuspensions were characterised physically by using different techniques like particle size, zeta potential, FTIR, DSC, and XRD analysis. In vitro and ex vivo studies of nanosuspensions were carried out using a modified USP d...

  1. Preparation, characterization, and in vitro and in vivo investigation of chitosan-coated poly (d,l-lactide-co-glycolide) nanoparticles for intestinal delivery of exendin-4

    Science.gov (United States)

    Wang, Mengshu; Zhang, Yong; Feng, Jiao; Gu, Tiejun; Dong, Qingguang; Yang, Xu; Sun, Yanan; Wu, Yongge; Chen, Yan; Kong, Wei

    2013-01-01

    Background Exendin-4 is an incretin mimetic agent approved for type 2 diabetes treatment. However, the required frequent injections restrict its clinical application. Here, the potential use of chitosan-coated poly (d,l-lactide-co-glycolide) (CS-PLGA) nanoparticles was investigated for intestinal delivery of exendin-4. Methods and results Nanoparticles were prepared using a modified water–oil–water (w/o/w) emulsion solvent-evaporation method, followed by coating with chitosan. The physical properties, particle size, and cell toxicity of the nanoparticles were examined. The cellular uptake mechanism and transmembrane permeability were performed in Madin-Darby canine kidney-cell monolayers. Furthermore, in vivo intraduodenal administration of exendin-4-loaded nanoparticles was carried out in rats. The PLGA nanoparticle coating with chitosan led to a significant change in zeta potential, from negative to positive, accompanied by an increase in particle size of ~30 nm. Increases in both the molecular weight and degree of deacetylation of chitosan resulted in an observable increase in zeta potential but no apparent change in the particle size of ~300 nm. Both unmodified PLGA and chitosan-coated nanoparticles showed only slight cytotoxicity. Use of different temperatures and energy depletion suggested that the cellular uptake of both types of nanoparticles was energy-dependent. Further investigation revealed that the uptake of PLGA nanoparticles occurred via caveolin-mediated endocytosis and that of CS-PLGA nanoparticles involved both macropinocytosis and clathrin-mediated endocytosis, as evidenced by using endocytic inhibitors. However, under all conditions, CS-PLGA nanoparticles showed a greater potential to be transported into cells, as shown by flow cytometry and confocal microscopy. Transmembrane permeability analysis showed that unmodified and modified PLGA nanoparticles could improve the transport of exendin-4 by up to 8.9- and 16.5-fold, respectively

  2. In vitro characterisation of PLGA nanoparticles encapsulating rifampicin and isoniazid - Towards IVIVC

    CSIR Research Space (South Africa)

    Booysen, L

    2010-09-01

    Full Text Available .43 15.8 8. 1% PEG-InH 281.1 0.35 67.65 24.8 8.52 9.1%Pluronic-InH 319.5 0.347 69 27.6 13.7 PLGA-rhd(1% PEG) 313.3 0.303 n/A n/A n/A PLGA-rhd(1% PLu) 442.7 0.293 n/A n/A n/A PLGA-poly-(lactic-co-glycolic) acid; PEG-poly ethylene glycol; d...

  3. Delivery of antagomiR204-conjugated gold nanoparticles from PLGA sheets and its implication in promoting osseointegration of titanium implant in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Liu X

    2017-09-01

    Full Text Available Xiangwei Liu,1,* Naiwen Tan,1,* Yuchao Zhou,1 Hongbo Wei,1,* Shuai Ren,1 Fan Yu,2 Hui Chen,3 Chengming Jia,4 Guodong Yang,5 Yingliang Song1 1State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry, 2Department of Prosthodontics, School of Stomatology, 3Department of Plastic Surgery, Tangdu Hospital, 4Department of Traditional Chinese Medicine, Xijing Hospital, 5Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China *These authors contributed equally to this work Abstract: Impaired osseointegration of the implant remains the big hurdle for dental implant therapy in diabetic patients. In this study, the authors first identified that miR204 was strikingly highly expressed in the bone mesenchymal stem cells (BMSCs of diabetic rats. Forced expression of miR204 repressed the osteogenic potential of BMSCs, while inhibition of miR204 significantly increased the osteogenic capacity. Moreover, the miR204 inhibitor was conjugated with gold nanoparticles (AuNP-antagomiR204 and dispersed them in the poly(lactic-co-glycolic acid (PLGA solution. The AuNP-antagomiR204 containing PLGA solution was applied for coating the surface of titanium implant. Electron microscope revealed that an ultrathin sheet was formed on the surface of the implant, and the AuNPs were evenly dispersed in the coated PLGA sheet. Cellular experiments revealed that these encapsulated AuNP-antagomiR204 were able to be released from the PLGA sheet and uptaken by adherent BMSCs. In vivo animal study further confirmed that the AuNP-antagomiR204 released from PLGA sheet promoted osseointegration, as revealed by microcomputerized tomography (microCT reconstruction and histological assay. Taken together, this study established that miR204 misexpression accounted for the deficient

  4. Preparation, characterization, and cytotoxicity of CPT/Fe2O3-embedded PLGA ultrafine composite fibers: a synergistic approach to develop promising anticancer material

    Directory of Open Access Journals (Sweden)

    Amna T

    2012-03-01

    /Fe2O3 composite fibers inhibited C2C12 cells significantly. Thus, the current work demonstrates that the CPT/Fe2O3-loaded PLGA composite fibers represent a promising chemotherapeutic system for enhancing anticancer drug efficacy and selectively targeting cancer cells in order to treat diverse cancers.Keywords: camptothecin, C2C12 cells, Fe2O3 nanoparticles, electrospinning, cytotoxicity

  5. Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: in vitro and in vivo investigations.

    Science.gov (United States)

    Fasehee, Hamidreza; Dinarvand, Rassoul; Ghavamzadeh, Ardeshir; Esfandyari-Manesh, Mehdi; Moradian, Hanieh; Faghihi, Shahab; Ghaffari, Seyed Hamidollah

    2016-04-21

    A folate-receptor-targeted poly (lactide-co-Glycolide) (PLGA)-Polyethylene glycol (PEG) nanoparticle is developed for encapsulation and delivery of disulfiram into breast cancer cells. After a comprehensive characterization of nanoparticles, cell cytotoxicity, apoptosis induction, cellular uptake and intracellular level of reactive oxygen species are analyzed. In vivo acute and chronic toxicity of nanoparticles and their efficacy on inhibition of breast cancer tumor growth is studied. The folate-receptor-targeted nanoparticles are internalized into the cells, induce reactive oxygen species formation, induce apoptosis and inhibit cell proliferation more efficiently compared to the untargeted nanoparticles. The acute and toxicity test show the maximum dose of disulfiram equivalent of nanoparticles for intra-venous injection is 6 mg/kg while show significant decrease in the breast cancer tumor growth rate. It is believed that the developed formulation could be used as a potential vehicle for successful delivery of disulfiram, an old and inexpensive drug, into breast cancer cells and other solid tumors.

  6. Size effect of PLGA spheres on drug loading efficiency and release profiles

    NARCIS (Netherlands)

    Dawes, G.J.S.; Fratila-Apachitei, L.E.; Mulia, K.; Apachitei, I.; Witkamp, G.J.; Duszczyk, J.

    2009-01-01

    Drug delivery systems (DDS) based on poly (lactide-co-glycolide) (PLGA) microspheres and nanospheres have been separately studied in previous works as a means of delivering bioactive compounds over an extended period of time. In the present study, two DDS having different sizes of the PLGA spheres

  7. Chlamydia trachomatis recombinant MOMP encapsulated in PLGA nanoparticles triggers primarily T helper 1 cellular and antibody immune responses in mice: a desirable candidate nanovaccine

    Directory of Open Access Journals (Sweden)

    Fairley SJ

    2013-05-01

    . trachomatis vaccine. The capacity of PLGA-rMOMP to trigger primarily Th1 immune responses in mice promotes it as a highly desirable candidate nanovaccine against C. trachomatis. Keywords: Chlamydia trachomatis, bacteria, vaccine, antibody, cytokines, PLGA nanoparticles 

  8. Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Z.X.; Zheng, W.; Li, L. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China)

    2011-02-15

    Graphical abstract: The fenbufen loaded PLGA/chitosan nanofibrous scaffolds were fabricated by electrospinning. The hydrophilicity of nanofibrous scaffold was enhanced with the increase of chitosan content. The drug release also is accelerated with chitosan increasing because the higher hydrophilicity makes drug diffusing from scaffold more easily. Research highlights: {yields} The average diameter increased with the increase of chitosan content and then decreased. {yields} The release rate of fenbufen increased with the increase of chitosan. {yields} The aligned nanofibrous scaffold exhibits lower drug release rate. {yields} The drug release could be controlled by crosslinking in glutaraldehyde vapor. - Abstract: In this study both aligned and randomly oriented poly(D,L-lactide-co-glycolide) (PLGA)/chitosan nanofibrous scaffold have been prepared by electrospinning. The ratio of PLGA to chitosan was adjusted to get smooth nanofiber surface. Morphological characterization using scanning electron microscopy showed that the aligned nanofiber diameter distribution obtained by electrospinning of polymer blend increased with the increase of chitosan content which was similar to that of randomly oriented nanofibers. The release characteristic of model drug fenbufen (FBF) from the FBF-loaded aligned and randomly oriented PLGA and PLGA/chitosan nanofibrous scaffolds was investigated. The drug release rate increased with the increase of chitosan content because the addition of chitosan enhanced the hydrophilicity of the PLGA/chitosan composite scaffold. Moreover, for the aligned PLGA/chitosan nanofibrous scaffold the release rate was lower than that of randomly oriented PLGA/chitosan nanofibrous scaffold, which indicated that the nanofiber arrangement would influence the release behavior. In addition, crosslinking in glutaraldehyde vapor would decrease the burst release of FBF from FBF-loaded PLGA/chitosan nanofibrous scaffold with a PLGA/chitosan ratio less than 9/1, which

  9. Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold

    International Nuclear Information System (INIS)

    Meng, Z.X.; Zheng, W.; Li, L.; Zheng, Y.F.

    2011-01-01

    Graphical abstract: The fenbufen loaded PLGA/chitosan nanofibrous scaffolds were fabricated by electrospinning. The hydrophilicity of nanofibrous scaffold was enhanced with the increase of chitosan content. The drug release also is accelerated with chitosan increasing because the higher hydrophilicity makes drug diffusing from scaffold more easily. Research highlights: → The average diameter increased with the increase of chitosan content and then decreased. → The release rate of fenbufen increased with the increase of chitosan. → The aligned nanofibrous scaffold exhibits lower drug release rate. → The drug release could be controlled by crosslinking in glutaraldehyde vapor. - Abstract: In this study both aligned and randomly oriented poly(D,L-lactide-co-glycolide) (PLGA)/chitosan nanofibrous scaffold have been prepared by electrospinning. The ratio of PLGA to chitosan was adjusted to get smooth nanofiber surface. Morphological characterization using scanning electron microscopy showed that the aligned nanofiber diameter distribution obtained by electrospinning of polymer blend increased with the increase of chitosan content which was similar to that of randomly oriented nanofibers. The release characteristic of model drug fenbufen (FBF) from the FBF-loaded aligned and randomly oriented PLGA and PLGA/chitosan nanofibrous scaffolds was investigated. The drug release rate increased with the increase of chitosan content because the addition of chitosan enhanced the hydrophilicity of the PLGA/chitosan composite scaffold. Moreover, for the aligned PLGA/chitosan nanofibrous scaffold the release rate was lower than that of randomly oriented PLGA/chitosan nanofibrous scaffold, which indicated that the nanofiber arrangement would influence the release behavior. In addition, crosslinking in glutaraldehyde vapor would decrease the burst release of FBF from FBF-loaded PLGA/chitosan nanofibrous scaffold with a PLGA/chitosan ratio less than 9/1, which would be beneficial

  10. Click chemistry on the surface of PLGA-b-PEG polymeric nanoparticles: a novel targetable fluorescent imaging nanocarrier

    Energy Technology Data Exchange (ETDEWEB)

    Pucci, Andrea; Locatelli, Erica [University of Bologna, Dipartimento di Chimica Industriale ' Toso Montanari' (Italy); Ponti, Jessica; Uboldi, Chiara [Institute for Health and Consumer Protection, Joint Research Centre, Nanobiosciences Unit (Italy); Molinari, Valerio; Comes Franchini, Mauro, E-mail: mauro.comesfranchini@unibo.it [University of Bologna, Dipartimento di Chimica Industriale ' Toso Montanari' (Italy)

    2013-08-15

    In the quest for biocompatible nanocarriers for biomedical applications, a great deal of effort is put on engineering the nanocomposites surface in order to render them specific to the particular purpose. We developed biocompatible PLGA-b-PEG-based nanoparticles carrying a double functionality (i.e., carboxylic and acetylenic) able to serve as flexible highly selective grafting centers for cancer diagnosis and treatment. As a proof of concept, the nanocarrier was successfully functionalized with a tailored fluorescent molecule by means of click chemistry and with a targeting agent specific for glioblastoma multiforme via amidic bond formation.

  11. Uptake and cytotoxicity of poly(D,L-lactide-co-glycolide) nanoparticles in human colon adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Katsikari, A. [Laboratory of General Microbiology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences and Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Patronidou, Chr.; Kiparissides, C. [Section of Analysis, Design and Control of Chemical Processes and Plants, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Arsenakis, M., E-mail: arsenaki@bio.auth.g [Laboratory of General Microbiology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences and Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)

    2009-12-15

    The main objectives of the present study were to evaluate the cytotoxicity and the mechanisms of uptake of biodegradable lactic acid-glycolic acid copolymer (PLGA) nanoparticle carrier systems in vitro using the human colon adenocarcinoma cell line Caco2. Nanoparticles (NPs) (PLGA 75:25) with an average diameter of 299.5 nm containing bovine serum albumin labeled with fluorescein isothiocyanate (BSA-FITC) as a fluorescent model protein marker were formulated by the double emulsion technique. Various parameters influencing the internalization process by Caco2 cells including concentration of NPs, duration of contact time and cell culture conditions were studied. After overnight exposure of NPs to cells at 37 deg. C, the cell uptake capacity varied in accord with NP concentration, over the 25-800 mug/ml concentration range tested. Maximal uptake of nanoparticles at 37 deg. C occurred at 4 h and was inhibited significantly at 4 deg. C. The extent of NPs internalization was evaluated by confocal laser scanning microscopy. Potential NP toxicity evaluated by modified MTS and lactate dehydrogenase (LDH) colorimetric cytotoxicity tests, measuring mitochondrial activity and membrane integrity respectively, showed that cell viability is significantly reduced at PLGA nanoparticle concentrations greater than 700 mug/ml after 24 and 48 h respectively. The results obtained in vitro for BSA-FITC loaded PLGA nanoparticles underline their potential as carriers for peptide delivery and their utility for the study of NP cell transport and trafficking mechanisms.

  12. Preparation, characterization, and in vitro and in vivo investigation of chitosan-coated poly (d,l-lactide-co-glycolide nanoparticles for intestinal delivery of exendin-4

    Directory of Open Access Journals (Sweden)

    Wang M

    2013-03-01

    Full Text Available Mengshu Wang,1* Yong Zhang,1* Jiao Feng,1 Tiejun Gu,1 Qingguang Dong,1 Xu Yang,2 Yanan Sun,1 Yongge Wu,1 Yan Chen,1 Wei Kong1 1National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, People’s Republic of China; 2BCHT Biopharm Co, Ltd, Changchun, People’s Republic of China*These authors contributed equally to this workBackground: Exendin-4 is an incretin mimetic agent approved for type 2 diabetes treatment. However, the required frequent injections restrict its clinical application. Here, the potential use of chitosan-coated poly (d,l-lactide-co-glycolide (CS-PLGA nanoparticles was investigated for intestinal delivery of exendin-4.Methods and results: Nanoparticles were prepared using a modified water–oil–water (w/o/w emulsion solvent-evaporation method, followed by coating with chitosan. The physical properties, particle size, and cell toxicity of the nanoparticles were examined. The cellular uptake mechanism and transmembrane permeability were performed in Madin-Darby canine kidney-cell monolayers. Furthermore, in vivo intraduodenal administration of exendin-4-loaded nanoparticles was carried out in rats. The PLGA nanoparticle coating with chitosan led to a significant change in zeta potential, from negative to positive, accompanied by an increase in particle size of ~30 nm. Increases in both the molecular weight and degree of deacetylation of chitosan resulted in an observable increase in zeta potential but no apparent change in the particle size of ~300 nm. Both unmodified PLGA and chitosan-coated nanoparticles showed only slight cytotoxicity. Use of different temperatures and energy depletion suggested that the cellular uptake of both types of nanoparticles was energy-dependent. Further investigation revealed that the uptake of PLGA nanoparticles occurred via caveolin-mediated endocytosis and that of CS-PLGA nanoparticles involved both macropinocytosis and clathrin-mediated endocytosis

  13. Efficacy of Poly-Lactic-Co-Glycolic Acid Micro- and Nanoparticles of Ciprofloxacin Against Bacterial Biofilms.

    Science.gov (United States)

    Thomas, Nicky; Thorn, Chelsea; Richter, Katharina; Thierry, Benjamin; Prestidge, Clive

    2016-10-01

    Bacterial biofilms are associated with a number of recurring infectious diseases and are a major cause for antibiotic resistance. Despite the broad use of polymeric microparticles and nanoparticles in biomedical research, it is not clear which particle size is more effective against biofilms. The purpose of this study was to evaluate the efficacy of sustained release poly-lactic-co-glycolic acid (PLGA) micro- and nanoparticles containing ciprofloxacin against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. The PLGA particles were prepared by the double emulsion solvent evaporation method. The resulting microparticles (12 μm) and nanoparticles (300 nm) contained drug loads of 7.3% and 4.5% (wt/wt) ciprofloxacin, respectively. Drug release was complete within 1 week following comparable release profiles for both particle sizes. Micro- and nanoparticles demonstrated a similar in vitro antibiofilm performance against mature P aeruginosa and S aureus with marked differences between the 2 strains. The sustained release of ciprofloxacin from micro- and nanoparticles over 6 days was equally effective as the continuous treatment with ciprofloxacin solution over the same period resulting in the eradication of culturable S aureus suggesting that reformulation of ciprofloxacin as sustained release PLGA micro- and nanoparticles might be valuable formulation approaches for the treatment of biofilms. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications.

    Science.gov (United States)

    Jiang, Tao; Yu, Xiaohua; Carbone, Erica J; Nelson, Clarke; Kan, Ho Man; Lo, Kevin W-H

    2014-11-20

    Delivering drugs specifically to bone tissue is very challenging due to the architecture and structure of bone tissue. Poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) hold great promise for the delivery of therapeutics to bone tissue. The goal of the present research was to formulate a PLGA-based NP drug delivery system for bone tissue exclusively. Since poly-aspartic acids (poly-Asp) peptide sequence has been shown to bind to hydroxyapatite (HA), and has been suggested as a molecular tool for bone-targeting applications, we fabricated PLGA-based NPs linked with poly-Asp peptide sequence. Nanoparticles made of methoxy - poly(ethylene glycol) (PEG)-PLGA and maleimide-PEG-PLGA were prepared using a water-in-oil-in-water double emulsion and solvent evaporation method. Fluorescein isothiocyanate (FITC)-tagged poly-Asp peptide was conjugated to the surface of the nanoparticles via the alkylation reaction between the sulfhydryl groups at the N-terminal of the peptide and the CC double bond of maleimide at one end of the polymer chain to form thioether bonds. The conjugation of FITC-tagged poly-Asp peptide to PLGA NPs was confirmed by NMR analysis and fluorescent microscopy. The developed nanoparticle system is highly aqueous dispersible with an average particle size of ∼80 nm. In vitro binding analyses demonstrated that FITC-poly-Asp NPs were able to bind to HA gel as well as to mineralized matrices produced by human mesenchymal stem cells and mouse bone marrow stromal cells. Using a confocal microscopy technique, an ex vivo binding study of mouse major organ ground sections revealed that the FITC-poly-Asp NPs were able to bind specifically to the bone tissue. In addition, proliferation studies indicated that our FITC-poly-Asp NPs did not induce cytotoxicity to human osteoblast-like MG63 cell lines. Altogether, these promising results indicated that this nanoscale targeting system was able to bind to bone tissue specifically and might have a great

  15. "Click" on PLGA-PEG and hyaluronic acid: Gaining access to anti-leishmanial pentamidine bioconjugates.

    Science.gov (United States)

    Scala, Angela; Piperno, Anna; Micale, Nicola; Mineo, Placido G; Abbadessa, Antonio; Risoluti, Roberta; Castelli, Germano; Bruno, Federica; Vitale, Fabrizio; Cascio, Antonio; Grassi, Giovanni

    2017-12-08

    Pentamidine (Pent), an antiparasitic drug used for the treatment of visceral leishmaniasis, has been modified with terminal azide groups and conjugated to two different polymer backbones (PLGA-PEG [PP] copolymer and hyaluronic acid [HA]) armed with alkyne end-groups. The conjugation has been performed by Copper Catalyzed Azido Alkyne Cycloaddition (CuAAC) using CuSO 4 /sodium ascorbate as metal source. The novel PP-Pent and HA-Pent bioconjugates are proposed, respectively, as non-targeted and targeted drug delivery systems against Leishmania infections. Moreover, Pent has been encapsulated into PP nanoparticles by the oil-in-water emulsion method, with the aim to compare the biological activity of the bioconjugates with that of the classical drug-loaded delivery system that physically entraps the therapeutic agent. Biological assays against Leishmania infantum amastigote-infected macrophages and primary macrophages revealed that Pent, either covalently conjugated with polymers or loaded into polymeric nanoparticles, turned out to be more potent and less toxic than the free Pent. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  16. Photoprotective efficiency of PLGA-curcumin nanoparticles versus curcumin through the involvement of ERK/AKT pathway under ambient UV-R exposure in HaCaT cell line.

    Science.gov (United States)

    Chopra, Deepti; Ray, Lipika; Dwivedi, Ashish; Tiwari, Shashi Kant; Singh, Jyoti; Singh, Krishna P; Kushwaha, Hari Narayan; Jahan, Sadaf; Pandey, Ankita; Gupta, Shailendra K; Chaturvedi, Rajnish Kumar; Pant, Aditya Bhushan; Ray, Ratan Singh; Gupta, Kailash Chand

    2016-04-01

    Curcumin (Cur) has been demonstrated to have wide pharmacological window including anti-oxidant and anti-inflammatory properties. However, phototoxicity under sunlight exposure and poor biological availability limits its applicability. We have synthesized biodegradable and non-toxic polymer-poly (lactic-co-glycolic) acid (PLGA) encapsulated formulation of curcumin (PLGA-Cur-NPs) of 150 nm size range. Photochemically free curcumin generates ROS, lipid peroxidation and induces significant UVA and UVB mediated impaired mitochondrial functions leading to apoptosis/necrosis and cell injury in two different origin cell lines viz., mouse fibroblasts-NIH-3T3 and human keratinocytes-HaCaT as compared to PLGA-Cur-NPs. Molecular docking studies suggested that intact curcumin from nanoparticles, bind with BAX in BIM SAHB site and attenuate it to undergo apoptosis while upregulating anti-apoptotic genes like BCL2. Real time studies and western blot analysis with specific phosphorylation inhibitor of ERK1 and AKT1/2/3 confirm the involvement of ERK/AKT signaling molecules to trigger the survival cascade in case of PLGA-Cur-NPs. Our finding demonstrates that low level sustained release of curcumin from PLGA-Cur-NPs could be a promising way to protect the adverse biological interactions of photo-degradation products of curcumin upon the exposure of UVA and UVB. Hence, the applicability of PLGA-Cur-NPs could be suggested as prolonged radical scavenging ingredient in curcumin containing products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Control of doxorubicin release from magnetic Poly(dl-lactide-co-glycolide) nanoparticles by application of a non-permanent magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Peça, Inês N. [Universidade Nova de Lisboa, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia (Portugal); Bicho, A.; Gardner, Rui [Instituto Gulbenkian de Ciência (Portugal); Cardoso, M. Margarida, E-mail: margarida.cardoso@fct.unl.pt [Universidade Nova de Lisboa, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia (Portugal)

    2015-11-15

    This work studied the effect of the application time of a non-permanent magnetic field on the rate of drug release from iron oxide polymeric nanoparticles. Magnetically responsive doxorubicin loaded poly(d-lactide-co-glycolide) (PLGA) nanoparticles were synthetized by the o/w solvent extraction/evaporation method and characterized. The produced particles show spherical shapes exhibiting a size between 200 and 400 nm, a drug loading of 3.6 % (w/w) and an iron concentration of 20.7 % (w/w). Cell cytotoxicity tests showed that unloaded magnetic PLGA nanoparticles were nontoxic. Concerning the therapeutic activity, doxorubicin-loaded magnetic particles cause a remarkable enhancement of the cell inhibition rates compared to their non-magnetic counterparts (40 against 7 % of dead cells). In vitro drug release studies performed under a non-permanent magnetic field show that the application time and the on/off cycle duration have a great influence with respect to the final amount and to the rate of drug release. The final amount and the rate of doxorubicin released increase with the time of field application reaching higher values for a higher number of pulses with a lower duration. Doxorubicin release mechanism has shown to be governed by Fickian diffusion in the absence of a magnetic field while in the presence of a magnetic field some controlled relaxation polymer chains might also be present. The results show that the drug release rate from magnetic PLGA nanoparticles can be modulated through the application time and the on/off cycles duration of a non-permanent magnetic field.

  18. A Biomimetic Approach to Active Self-Microencapsulation of Proteins in PLGA

    Science.gov (United States)

    Shah, Ronak B.; Schwendeman, Steven P.

    2014-01-01

    A biomimetic approach to organic solvent-free microencapsulation of proteins based on the self-healing capacity of poly (DL)-lactic-co-glycolic acid (PLGA) microspheres containing glycosaminoglycan-like biopolymers (BPs), was examined. To screen BPs, aqueous solutions of BP [high molecular weight dextran sulfate (HDS), low molecular weight dextran sulfate (LDS), chondroitin sulfate (CS), heparin (HP), hyaluronic acid (HA), chitosan (CH)] and model protein lysozyme (LYZ) were combined in different molar and mass ratios, at 37 °C and pH 7. The BP-PLGA microspheres (20–63 µm) were prepared by a double water-oil-water emulsion method with a range of BP content, and trehalose and MgCO3 to control microclimate pH and to create percolating pores for protein. Biomimetic active self-encapsulation (ASE) of proteins [LYZ, vascular endothelial growth factor165 (VEGF) and fibroblast growth factor (FgF-20)] was accomplished by incubating blank BP-PLGA microspheres in low concentration protein solutions at ~24 °C, for 48 h. Pore closure was induced at 42.5 °C under mild agitation for 42 h. Formulation parameters of BP-PLGA microspheres and loading conditions were studied to optimize protein loading and subsequent release. LDS and HP were found to bind >95% LYZ at BP:LYZ >0.125 w/w, whereas HDS and CS bound > 80% LYZ at BP:LYZ of 0.25–1 and 2% w/w of LYZ). Sulfated BP-PLGA microspheres were capable of loading LYZ (~2–7 % w/w), VEGF (~ 4% w/w), and FgF-20 (~2% w/w) with high efficiency. Protein loading was found to be dependent on the loading solution concentration, with higher protein loading obtained at higher loading solution concentration within the range investigated. Loading also increased with content of sulfated BP in microspheres. Release kinetics of proteins was evaluated in-vitro with complete release media replacement. Rate and extent of release were found to depend upon volume of release (with non-sink conditions observed 90 % of protein being enzymatically

  19. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering.

    Science.gov (United States)

    Zhao, Wen; Li, Jiaojiao; Jin, Kaixiang; Liu, Wenlong; Qiu, Xuefeng; Li, Chenrui

    2016-02-01

    Electrospun PLGA-based scaffolds have been applied extensively in biomedical engineering, such as tissue engineering and drug delivery system. Due to lack of the recognition sites on cells, hydropholicity and single-function, the applications of PLGA fibrous scaffolds are limited. In order to tackle these issues, many works have been done to obtain functional PLGA-based scaffolds, including surface modifications, the fabrication of PLGA-based composite scaffolds and drug-loaded scaffolds. The functional PLGA-based scaffolds have significantly improved cell adhesion, attachment and proliferation. Moreover, the current study has summarized the applications of functional PLGA-based scaffolds in wound dressing, vascular and bone tissue engineering area as well as drug delivery system. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Transferrin-Modified Nanoparticles for Photodynamic Therapy Enhance the Antitumor Efficacy of Hypocrellin A

    Directory of Open Access Journals (Sweden)

    Xi Lin

    2017-11-01

    Full Text Available Photodynamic therapy (PDT has emerged as a potent novel therapeutic modality that induces cell death through light-induced activation of photosensitizer. But some photosensitizers have characteristics of poor water-solubility and non-specific tissue distribution. These characteristics become main obstacles of PDT. In this paper, we synthesized a targeting drug delivery system (TDDS to improve the water-solubility of photosensitizer and enhance the ability of targeted TFR positive tumor cells. TDDS is a transferrin-modified Poly(D,L-Lactide-co-glycolide (PLGA and carboxymethyl chitosan (CMC nanoparticle loaded with a photosensitizer hypocrellin A (HA, named TF-HA-CMC-PLGA NPs. Morphology, size distribution, Fourier transform infrared (FT-IR spectra, encapsulation efficiency, and loading capacity of TF-HA-CMC-PLGA NPs were characterized. In vitro TF-HA-CMC-PLGA NPs presented weak dark cytotoxicity and significant photo-cytotoxicity with strong reactive oxygen species (ROS generation and apoptotic cancer cell death. In vivo photodynamic antitumor efficacy of TF-HA-CMC-PLGA NPs was investigated with an A549 (TFR positive tumor-bearing model in male athymic nude mice. TF-HA-CMC-PLGA NPs caused tumor delay with a remarkable tumor inhibition rate of 63% for 15 days. Extensive cell apoptosis in tumor tissue and slight side effects in normal organs were observed. The results indicated that TDDS has great potential to enhance PDT therapeutic efficacy.

  1. Poly(lactide-co-glycolide) nanofibrous scaffolds chemically coated with gold-nanoparticles as osteoinductive agents for osteogenesis

    Science.gov (United States)

    Lee, Donghyun; Heo, Dong Nyoung; Lee, Sang Jin; Heo, Min; Kim, Jeongho; Choi, Samjin; Park, Hun-Kuk; Park, Young Guk; Lim, Ho-Nam; Kwon, Il Keun

    2018-02-01

    Poly(lactide-co-glycolide) (PLGA) is a biocompatible and biodegradable polymer that has been widely used in devices for tissue engineering and drug delivery applications. Gold nanoparticles (GNPs) have also been used as biomaterials and have been found to have a positive effect on bone formation. In this study, we synthesized thiol end-capped PLGA (PLGA-SH) and used it for binding GNPs. This PLGA was processed into a sheet form via electrospinning. GNPs with an approximate size of 30 nm were attached onto the PLGA-SH sheet surfaces (PLGA-GNPs). This membrane was characterized by thermogravimetric analysis, ultraviolet/visible spectrophotometry, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and confocal laser scanning microscopy. Characterization results show that the GNPs are well attached on the PLGA-SH sheet and it is possible to control the GNPs load. Additionally, in-vitro results showed that PLGA-GNPs have good biocompatibility. They were also found to enhance osteogenic differentiation of human adipose derived stem cells. From these results, we have determined that the PLGA-GNP fibers can be useful as materials for bone regeneration and can also potentially serve as drug carriers.

  2. Formulation and Characterization of Acetaminophen Nanoparticles in Orally Disintegrating Films

    Science.gov (United States)

    AI-Nemrawi, Nusaiba K.

    in the pharmaceutical industry. These thin films are designed to dissolve within a few seconds without the need for water or chewing. The introduction of fast disintegrating dosage forms has solved some problems encountered in the administration of drugs to pediatric and elderly patients. This convenience provides both marketing advantages and higher patient compliance. Acetaminophen was chosen to be the model drug due to its safety. The amount of acetaminophen in each film is much below the therapeutic dose, but the purpose of using acetaminophen is to be an analytical tracer only. Films were formulated using hydroxypropyl methyl cellulose (HPMC) as film forming polymer, polyethylene glycol 400 (PEG) as a plasticizer and polyvinyl alcohol (PVA) as a NPs stabilizer. First of all, the effect of different Methocel grades and concentration, PEG 400 concentration and PVA 80% concentration on the films were determined. Ingredients that gave best physico-mechanical properties to the films were used in the formulation of ODFs that are loaded with the NPs. Nanoparticles were prepared by the emulsion-solvent evaporation method where acetone phase containing the drug and NPs forming polymers were added to water phase containing other additives. Three types of NPs were prepared: empty, loaded and loaded in ODF dispersion. The size, polydispersity index (PI), zeta potential and drug entrapment efficacy (EE) of NPs were measured. The effect of addition rate, agitation rate, viscosity of the continuous phase, PVA hydrolization, PLGA polymerization and the PLGA to PVA ratio on NPs properties was investigated. The nanoemulsions were cast to form films which were studied in vitro and ex-vivo. Furthermore, the mechanism of drug appearance in the receiver of a Franz cell was explored. Films were placed on a pork buccal membrane using a Franz cell and samples were withdrawn at specific time intervals. Samples were divided into two portions; one of them was extracted while the other was

  3. In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide)

    NARCIS (Netherlands)

    Zweers, M.L.T.; Engbers, G.H.M.; Grijpma, Dirk W.; Feijen, Jan

    2004-01-01

    Nanoparticles of poly(DL-lactic acid) (PDLLA), poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene oxide)–PLGA diblock copolymer (PEO–PLGA) were prepared by the salting-out method. The in vitro degradation of PDLLA, PLGA and PEO–PLGA nanoparticles in PBS (pH 7.4) at 37 °C was studied. The

  4. Ramizol® encapsulation into extended release PLGA micro- and nanoparticle systems for subcutaneous and intramuscular administration: in vitro and in vivo evaluation.

    Science.gov (United States)

    Wright, Leah; Rao, Shasha; Thomas, Nicky; Boulos, Ramiz A; Prestidge, Clive A

    2018-04-11

    Novel antibiotic Ramizol ® is advancing to clinical trials for the treatment of gastrointestinal Clostridium difficile associated disease. Despite this, previous studies have shown a rapid plasma clearance upon intravenous administration and low oral bioavailability indicating pure drug is unsuitable for systemic infection treatment following oral dosing. The current study aims to investigate the development of poly-lactic-(co-glycolic) acid (PLGA) particles to overcome this limitation and increase the systemic half-life following subcutaneous and intramuscular dosing. The development of new antibiotic treatments will help in combatting the rising incidence of antimicrobial resistance. Ramizol ® was encapsulated into PLGA nano and microparticles using nanoprecipitation and emulsification solvent evaporation techniques. Formulations were analyzed for particle size, loading level and encapsulation efficiency as well as in vitro drug release profiles. Final formulation was advanced to in vivo pharmacokinetic studies in Sprague-Dawley rats. Formulation technique showed major influence on particle size and loading levels with optimal loading of 9.4% and encapsulation efficiency of 92.06%, observed using emulsification solvent evaporation. Differences in formulation technique were also linked with subsequent differences in release profiles. Pharmacokinetic studies in Sprague-Dawley rats confirmed extended absorption and enhanced bioavailability following subcutaneous and intramuscular dosing with up to an 8-fold increase in T max and T 1/2 when compared to the oral and IV routes. Subcutaneous and intramuscular dosing of PLGA particles successfully increased systemic half-life and bioavailability of Ramizol ® . This formulation will allow further development of Ramizol ® for systemic infection eradication.

  5. Imipenem/cilastatin encapsulated polymeric nanoparticles for destroying carbapenem-resistant bacterial isolates.

    Science.gov (United States)

    Shaaban, Mona I; Shaker, Mohamed A; Mady, Fatma M

    2017-04-11

    Carbapenem-resistance is an extremely growing medical threat in antibacterial therapy as the incurable resistant strains easily develop a multi-resistance action to other potent antimicrobial agents. Nonetheless, the protective delivery of current antibiotics using nano-carriers opens a tremendous approach in the antimicrobial therapy, allowing the nano-formulated antibiotics to beat these health threat pathogens. Herein, we encapsulated imipenem into biodegradable polymeric nanoparticles to destroy the imipenem-resistant bacteria and overcome the microbial adhesion and dissemination. Imipenem loaded poly Ɛ-caprolactone (PCL) and polylactide-co-glycolide (PLGA) nanocapsules were formulated using double emulsion evaporation method. The obtained nanocapsules were characterized for mean particle diameter, morphology, loading efficiency, and in vitro release. The in vitro antimicrobial and anti adhesion activities were evaluated against selected imipenem-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa clinical isolates. The obtained results reveal that imipenem loaded PCL nano-formulation enhances the microbial susceptibility and antimicrobial activity of imipenem. The imipenem loaded PCL nanoparticles caused faster microbial killing within 2-3 h compared to the imipenem loaded PLGA and free drug. Successfully, PCL nanocapsules were able to protect imipenem from enzymatic degradation by resistant isolates and prevent the emergence of the resistant colonies, as it lowered the mutation prevention concentration of free imipenem by twofolds. Moreover, the imipenem loaded PCL eliminated bacterial attachment and the biofilm assembly of P. aeruginosa and K. pneumoniae planktonic bacteria by 74 and 78.4%, respectively. These promising results indicate that polymeric nanoparticles recover the efficacy of imipenem and can be considered as a new paradigm shift against multidrug-resistant isolates in treating severe bacterial infections.

  6. Pirfenidone nanoparticles improve corneal wound healing and prevent scarring following alkali burn.

    Directory of Open Access Journals (Sweden)

    Sushovan Chowdhury

    Full Text Available To evaluate the effects of pirfenidone nanoparticles on corneal re-epithelialization and scarring, major clinical challenges after alkali burn.Effect of pirfenidone on collagen I and α-smooth muscle actin (α-SMA synthesis by TGFβ induced primary corneal fibroblast cells was evaluated by immunoblotting and immunocytochemistry. Pirfenidone loaded poly (lactide-co-glycolide (PLGA nanoparticles were prepared, characterized and their cellular entry was examined in primary corneal fibroblast cells by fluorescence microscopy. Alkali burn was induced in one eye of Sprague Dawley rats followed by daily topical treatment with free pirfenidone, pirfenidone nanoparticles or vehicle. Corneal re-epithelialization was assessed daily by flourescein dye test; absence of stained area indicated complete re-epithelialization and the time for complete re-epithelialization was determined. Corneal haze was assessed daily for 7 days under slit lamp microscope and graded using a standard method. After 7 days, collagen I deposition in the superficial layer of cornea was examined by immunohistochemistry.Pirfenidone prevented (P<0.05 increase in TGF β induced collagen I and α-SMA synthesis by corneal fibroblasts in a dose dependent manner. Pirfenidone could be loaded successfully within PLGA nanoparticles, which entered the corneal fibroblasts within 5 minutes. Pirfenidone nanoparticles but not free pirfenidone significantly (P<0.05 reduced collagen I level, corneal haze and the time for corneal re-epithelialization following alkali burn.Pirfenidone decreases collagen synthesis and prevents myofibroblast formation. Pirfenidone nanoparticles improve corneal wound healing and prevent fibrosis. Pirfenidone nanoparticles are of potential value in treating corneal chemical burns and other corneal fibrotic diseases.

  7. Poly (D,L-lactide-co-glycolide nanoparticles: Uptake by epithelial cells and cytotoxicity

    Directory of Open Access Journals (Sweden)

    J. H. Hamman

    2014-03-01

    Full Text Available Nanoparticles as drug delivery systems offer benefits such as protection of the encapsulated drug against degradation, site-specific targeting and prolonged blood circulation times. The aim of this study was to investigate nanoparticle uptake into Caco-2 cell monolayers, their co-localization within the lysosomal compartment and their cytotoxicity in different cell lines. Rhodamine-6G labelled poly(D,L-lactide-co-glycolide (PLGA nanoparticles were prepared by a double emulsion solvent evaporation freeze-drying method. Uptake and co-localisation of PLGA nanoparticles in lysosomes were visualized by confocal laser scanning microscopy. The cytotoxicity of the nanoparticles was evaluated on different mammalian cells lines by means of Trypan blue exclusion and the MTS assay. The PLGA nanoparticles accumulated in the intercellular spaces of Caco-2 cell monolayers, but were also taken up transcellularly into the Caco-2 cells and partially co-localized within the lysosomal compartment indicating involvement of endocytosis during uptake. PLGA nanoparticles did not show cytotoxic effects in all three cell lines. Intact PLGA nanoparticles are therefore capable of moving across epithelial cell membranes partly by means of endocytosis without causing cytotoxic effects.

  8. Investigation on hemolytic effect of poly(lactic co-glycolic) acid nanoparticles synthesized using continuous flow and batch processes

    Energy Technology Data Exchange (ETDEWEB)

    Libi, Sumit; Calenic, Bogdan; Astete, Carlos E.; Kumar, Challa; Sabliov, Cristina M.

    2017-01-01

    Abstract

    With the increasing interest in polymeric nanoparticles for biomedical applications, there is a need for continuous flow methodologies that allow for the precise control of nanoparticle synthesis. Poly(lactide-co-glycolic) acid (PLGA) nanoparticles with diameters of 220–250 nm were synthesized using a lab-on-a-chip, exploiting the precise flow control offered by a millifluidic platform. The association and the effect of PLGA nanoparticles on red blood cells (RBCs) were compared for fluorescent PLGA nanoparticles made by this novel continuous flow process using a millifluidic chip and smaller PLGA nanoparticles made by a batch method. Results indicated that all PLGA nanoparticles studied, independent of the synthesis method and size, adhered to the surface of RBCs but had no significant hemolytic effect at concentrations lower than 10 mg/ml.

  9. Bone induction by biomimetic PLGA copolymer loaded with a novel synthetic RADA16-P24 peptide in vivo

    International Nuclear Information System (INIS)

    Pan, Haitao; Hao, Shaofei; Zheng, Qixin; Li, Jingfeng; Zheng, Jin; Hu, Zhilei; Yang, Shuhua; Guo, Xiaodong; Yang, Qin

    2013-01-01

    Bone morphogenetic protein-2 (BMP-2) is a key bone morphogenetic protein, and poly(lactic-co-glycolic acid) (PLGA) has been widely used as scaffold for clinical use to carry treatment protein. In the previous studies, we have synthesized BMP-2-related peptide (P24) and found its capacity of inducing bone regeneration. In this research, we have synthesized a new amphiphilic peptide Ac-RADA RADA RADA RADA S[PO4]KIPKASSVPTELSAISTLYLDDD-CONH2 (RADA16-P24) with an assembly peptide RADA16-Ion the P24 item of BMP2 to form divalent ion-induced gelatin. Two methods of physisorption and chemical cross-linking were used to bind RADA16-P24 onto the surface of the copolymer PLGA to synthesize RADA16-P24–PLGA, and its capacity of attaching bone marrow stromal cells (BMSCs) was evaluated in vitro and inducing ectopic bone formation was examined in vivo. In vitro our results demonstrated that RADA16-P24–PLGA copolymer prepared by physisorbing or prepared by chemical cross-linking had a peptide binding rate of (2.0180 ± 0.5296)% or (10.0820 ± 0.8405)% respectively (P < 0.05). In addition the BMSCs proliferated vigorously in the RADA16-P24–PLGA biomaterials. Significantly the percentage of BMSCs attached to RADA16-P24–PLGA composite prepared by chemical cross-linking and physisorbing were (71.4 ± 7.5) % or (46.7 ± 5.8) % (P < 0.05). The in vivo study showed that RADA16-P24–PLGA chemical cross-linking could better induce ectopic bone formation compared with RADA16-P24–PLGA physisorbing and PLGA. It is concluded that the PLGA copolymer is a good RADA16-P24 carrier. This novel RADA16-P24–PLGA composite has strong osteogenic capability. - Highlights: • We have synthesized a new RADA16-P24 amphiphilic peptide. • It is an assembly peptide RADA16-Ion the P24 to form divalent ion-induced gelatin. • RADA16-P24/PLGA could better induce etopia osteogenesis compared with PLGA. • RADA16-P24–PLGA has strong osteogenic capability

  10. Bone induction by biomimetic PLGA copolymer loaded with a novel synthetic RADA16-P24 peptide in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Haitao; Hao, Shaofei [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng, Qixin, E-mail: zheng-qx@163.com [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Li, Jingfeng [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Zheng, Jin; Hu, Zhilei; Yang, Shuhua; Guo, Xiaodong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yang, Qin [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-08-01

    Bone morphogenetic protein-2 (BMP-2) is a key bone morphogenetic protein, and poly(lactic-co-glycolic acid) (PLGA) has been widely used as scaffold for clinical use to carry treatment protein. In the previous studies, we have synthesized BMP-2-related peptide (P24) and found its capacity of inducing bone regeneration. In this research, we have synthesized a new amphiphilic peptide Ac-RADA RADA RADA RADA S[PO4]KIPKASSVPTELSAISTLYLDDD-CONH2 (RADA16-P24) with an assembly peptide RADA16-Ion the P24 item of BMP2 to form divalent ion-induced gelatin. Two methods of physisorption and chemical cross-linking were used to bind RADA16-P24 onto the surface of the copolymer PLGA to synthesize RADA16-P24–PLGA, and its capacity of attaching bone marrow stromal cells (BMSCs) was evaluated in vitro and inducing ectopic bone formation was examined in vivo. In vitro our results demonstrated that RADA16-P24–PLGA copolymer prepared by physisorbing or prepared by chemical cross-linking had a peptide binding rate of (2.0180 ± 0.5296)% or (10.0820 ± 0.8405)% respectively (P < 0.05). In addition the BMSCs proliferated vigorously in the RADA16-P24–PLGA biomaterials. Significantly the percentage of BMSCs attached to RADA16-P24–PLGA composite prepared by chemical cross-linking and physisorbing were (71.4 ± 7.5) % or (46.7 ± 5.8) % (P < 0.05). The in vivo study showed that RADA16-P24–PLGA chemical cross-linking could better induce ectopic bone formation compared with RADA16-P24–PLGA physisorbing and PLGA. It is concluded that the PLGA copolymer is a good RADA16-P24 carrier. This novel RADA16-P24–PLGA composite has strong osteogenic capability. - Highlights: • We have synthesized a new RADA16-P24 amphiphilic peptide. • It is an assembly peptide RADA16-Ion the P24 to form divalent ion-induced gelatin. • RADA16-P24/PLGA could better induce etopia osteogenesis compared with PLGA. • RADA16-P24–PLGA has strong osteogenic capability.

  11. Mechanisms of chitosan-coated poly(lactic-co-glycolic acid) nanoparticles for improving oral absorption of 7-ethyl-10-hydroxycamptothecin

    Science.gov (United States)

    Guo, Miao; Rong, Wen-Ting; Hou, Jie; Wang, Dong-Fang; Lu, Yu; Wang, Ying; Yu, Shu-Qin; Xu, Qian

    2013-06-01

    Chitosan-modified poly(lactic-co-glycolic acid) nanoparticles (CHI/PLGA NPs) loaded with 7-ethyl-10-hydroxycamptothecin (SN-38), named CHI/PLGA/SN-38 NPs, were successfully prepared using an oil-in-water (O/W) solvent evaporation method. The physicochemical properties of the novel NPs were characterized by DLS, Zeta potential, SEM, DSC, XRD, and FTIR. The encapsulation efficiency and drug loading content were 71.83 (±2.77)% and 6.79 (±0.26)%, respectively. In vitro drug release in the simulated gastric juice was lower than that in the intestinal juice. In situ single-pass intestinal perfusion (SPIP) studies indicated a dramatic improvement of drug absorption as a result of the synergistic effect between CHI and PLGA on P-glycoprotein (Pgp) inhibition. CHI/PLGA NPs showed high cellular uptake and low efflux for drugs in Caco-2 cells. The cytotoxicity studies revealed that CHI/PLGA NPs had a transient effect on the membrane integrity, but did not have an influence on cell viability. Based on the in vitro release studies, SPIP, and intracellular drug accumulation and transport investigations, we speculate rationally that CHI/PLGA NPs were mainly internalized in the form of intact NPs, thus escaping the recognition of enterocyte Pgp and avoiding efflux into the apical part of the enterocytes. After partial release of drugs inside the enterocytes, CHI/PLGA interfered with the microenvironment of Pgp and further weakened the Pgp-mediated efflux. Then, the drug-loaded NPs exited via the exocytose effect from the basal part of the enterocytes and entered the blood circulation. These results showed that CHI/PLGA NPs would be smart oral delivery carriers for antineoplastic agents that are also Pgp substrates.

  12. Loteprednol Etabonate Nanoparticles: Optimization via Box-Behnken Design Response Surface Methodology and Physicochemical Characterization.

    Science.gov (United States)

    Sah, Abhishek K; Suresh, Preeti K

    2017-01-01

    Abstract: The objective of the present work was to prepare and optimize the loteprednoletabonate (LE) loaded poly (D,L-lactide co-glycolide) (PLGA) polymer based nanoparticle carrier. The review on recent patents (US9006241, US20130224302A1, US2012/0028947A1) assisted in the selection of drug and polymer for designing nanoparticles for ocular delivery applications. The nanoparticles were prepared by solvent evaporation followed by high speed homogenization. Biodegradable polymer PLGA (50:50) grade was utilized to develop various formulations with different drug:polymer ratio. A Box-Behnken design with 33 factorial design was selected for the present study and 17 runs were carried out in totality. The influence of various process variables (viz., polymer concentration, homogenization speed and sonication time) on the characteristics of nanoparticles including the in vitro drug release profile were studied. The nanoparticulate formulations were evaluated for mean spherical diameter, polydispersity index (PDI), zeta potential, surface morphology, drug entrapment and in-vitro drug release profile. The entrapment efficiency, drug loading and mean particle size were found to be 96.31±1.68 %, 35.46±0.35 % and 167.6±2.1 nm respectively. The investigated process and formulation variables were found to have significant effect on the particle size, drug loading (DL), entrapment efficiency (EE), and in vitro drug release profile. A biphasic in vitro drug release profile was apparent from the optimized nanoparticles (NPs) for 24 hours. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: impact on antioxidant and antinitrosant properties

    Directory of Open Access Journals (Sweden)

    Betbeder D

    2015-08-01

    Full Text Available Didier Betbeder,1–4 Emmanuelle Lipka,1,2,5 Mike Howsam,6 Rodolphe Carpentier1–3 1U995-LIRIC, Inserm (Institut National de la Recherche Médicale, Lille, France; 2U995-LIRIC, CHRU de Lille, Lille, France; 3U995-LIRIC, Faculté de Médecine, Université de Lille, Lille, France; 4Faculté des Sciences du Sport, Université d’Artois, Arras, France; 5Faculté de Pharmacie, Université de Lille, Lille, France; 6Faculté de Pharmacie, Université de Lille, Centre Universitaire de Mesures et d’Analyses, Lille, France Purpose: Curcumin exhibits antioxidant properties potentially beneficial for human health; however, its use in clinical applications is limited by its poor solubility and relative instability. Nanoparticles exhibit interesting features for the efficient distribution and delivery of curcumin into cells, and could also increase curcumin stability in biological systems. There is a paucity of information regarding the evolution of the antioxidant properties of nanoparticle-encapsulated curcumin.Method: We described a simple method of curcumin encapsulation in poly-lactic-co-glycolic acid (PLGA nanoparticles without the use of detergent. We assessed, in epithelial cells and in an acellular model, the evolution of direct antioxidant and antinitrosant properties of free versus PLGA-encapsulated curcumin after storage under different conditions (light vs darkness, 4°C vs 25°C vs 37°C.Results: In epithelial cells, endocytosis and efflux pump inhibitors showed that the increased antioxidant activity of PLGA-encapsulated curcumin relied on bypassing the efflux pump system. Acellular assays showed that the antioxidant effect of curcumin was greater when loaded in PLGA nanoparticles. Furthermore, we observed that light decreased, though heat restored, antioxidant activity of PLGA-encapsulated curcumin, probably by modulating the accessibility of curcumin to reactive oxygen species, an observation supported by results from quenching

  14. Facile Synthesis of Curcumin-Loaded Starch-Maleate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2014-01-01

    Full Text Available We have demonstrated the loading of curcumin onto starch maleate (SM under mild conditions by mixing dissolved curcumin and SM nanoparticles separately in absolute ethanol and ethanol/aqueous (40 : 60 v/v, respectively. Curcumin-loaded starch-maleate (CurSM nanoparticles were subsequently precipitated from a homogeneous mixture of these solutions in absolute ethanol based on the solvent exchange method. TEM analysis indicated that the diameters of CurSM nanoparticles were ranged between 30 nm and 110 nm with a mean diameter of 50 nm. The curcumin loading capacity of SM as a function of loading duration was investigated using the UV-visible spectrophotometer. The loading of curcumin onto SM increased rapidly initially with loading duration, and the curcumin loading capacity of 15 mg/g was reached within 12 hours. CurSM nanoparticles exhibited substantially higher water solubility of 6.0 × 10−2 mg/mL which is about 300 times higher than that of pure curcumin. With enhanced water solubility and bioaccessibility of curcumin, the potential utility of CurSM nanoparticles in various biomedical applications is therefore envisaged.

  15. Biodegradable PLGA85/15 nanoparticles as a delivery vehicle for Chlamydia trachomatis recombinant MOMP-187 peptide

    International Nuclear Information System (INIS)

    Taha, Murtada A; Singh, Shree R; Dennis, Vida A

    2012-01-01

    Development of a Chlamydia trachomatis vaccine has been a formidable task partly because of an ineffective delivery system. Our laboratory has generated a recombinant peptide of C. trachomatis major outer membrane protein (MOMP) (rMOMP-187) and demonstrated that it induced at 20 μg ml −1 maximal interleukin (IL)-6 and IL-12p40 Th1 cytokines in mouse J774 macrophages. In a continuous pursuit of a C. trachomatis effective vaccine-delivery system, we encapsulated rMOMP-187 in poly(d,l-lactic-co-glycolic acid) (PLGA, 85:15 PLA/PGA ratio) to serve as a nanovaccine candidate. Physiochemical characterizations were assessed by Fourier transform-infrared spectroscopy, atomic force microscopy, Zetasizer, Zeta potential, transmission electron microcopy and differential scanning calorimetry. The encapsulated rMOMP-187 was small (∼200 nm) with an apparently smooth uniform oval structure, thermally stable (54 °C), negatively charged ( − 27.00 mV) and exhibited minimal toxicity at concentrations −1 to eukaryotic cells (>95% viable cells) over a 24–72 h period. We achieved a high encapsulation efficiency of rMOMP-187 (∼98%) in PLGA, a loading peptide capacity of 2.7% and a slow release of the encapsulated peptide. Stimulation of J774 macrophages with a concentration as low as 1 μg ml −1 of encapsulated rMOMP-187 evoked high production levels of the Th1 cytokines IL-6 (874 pg ml −1 ) and IL-12p40 (674 pg ml −1 ) as well as nitric oxide (8 μM) at 24 h post-stimulation, and in a dose-response and time-kinetics manner. Our data indicate the successful encapsulation and characterization of rMOMP-187 in PLGA and, more importantly, that PLGA enhanced the capacity of the peptide to induce Th1 cytokines and NO in vitro. These findings make this nanovaccine an attractive candidate in pursuit of an efficacious vaccine against C. trachomatis. (paper)

  16. Caffeic Acid-PLGA Conjugate to Design Protein Drug Delivery Systems Stable to Irradiation

    Directory of Open Access Journals (Sweden)

    Francesca Selmin

    2015-01-01

    Full Text Available This work reports the feasibility of caffeic acid grafted PLGA (g-CA-PLGA to design biodegradable sterile microspheres for the delivery of proteins. Ovalbumin (OVA was selected as model compound because of its sensitiveness of γ-radiation. The adopted grafting procedure allowed us to obtain a material with good free radical scavenging properties, without a significant modification of Mw and Tg of the starting PLGA (Mw PLGA = 26.3 ± 1.3 kDa vs. Mw g-CA-PLGA = 22.8 ± 0.7 kDa; Tg PLGA = 47.7 ± 0.8 °C vs. Tg g-CA-PLGA = 47.4 ± 0.2 °C. By using a W1/O/W2 technique, g-CA-PLGA improved the encapsulation efficiency (EE, suggesting that the presence of caffeic residues improved the compatibility between components (EEPLGA = 35.0% ± 0.7% vs. EEg-CA-PLGA = 95.6% ± 2.7%. Microspheres particle size distribution ranged from 15 to 50 µm. The zeta-potential values of placebo and loaded microspheres were −25 mV and −15 mV, respectively. The irradiation of g-CA-PLGA at the dose of 25 kGy caused a less than 1% variation of Mw and the degradation patterns of the non-irradiated and irradiated microspheres were superimposable. The OVA content in g-CA-PLGA microspheres decreased to a lower extent with respect to PLGA microspheres. These results suggest that g-CA-PLGA is a promising biodegradable material to microencapsulate biological drugs.

  17. Efficacy of rhBMP-2 loaded PCL/PLGA/β-TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit

    International Nuclear Information System (INIS)

    Shim, Jin-Hyung; Jeong, Chang-Mo; Huh, Jung-Bo; Jang, Jinah; Jeong, Sung-In; Cho, Dong-Woo; Yoon, Min-Chul

    2014-01-01

    We successfully fabricated a three-dimensional (3D) printing-based PCL/PLGA/β-TCP guided bone regeneration (GBR) membrane that slowly released rhBMP-2. To impregnate the GBR membrane with intact rhBMP-2, collagen solution encapsulating rhBMP-2 (5 µg ml −1 ) was infused into pores of a PCL/PLGA/β-TCP membrane constructed using a 3D printing system with four dispensing heads. In a release profile test, sustained release of rhBMP-2 was observed for up to 28 d. To investigate the efficacy of the GBR membrane on bone regeneration, PCL/PLGA/β-TCP membranes with or without rhBMP-2 were implanted in an 8 mm calvaria defect of rabbits. Bone formation was evaluated at weeks 4 and 8 histologically and histomorphometrically. A space making ability of the GBR membrane was successfully maintained in both groups, and significantly more new bone was formed at post-implantation weeks 4 and 8 by rhBMP-2 loaded GBR membranes. Interestingly, implantation with rhBMP-2 loaded GBR membranes led to almost entire healing of calvaria defects within 8 weeks. (paper)

  18. Antioxidant poly(lactic-co-glycolic) acid nanoparticles made with α-tocopherol-ascorbic acid surfactant.

    Science.gov (United States)

    Astete, Carlos E; Dolliver, Debra; Whaley, Meocha; Khachatryan, Lavrent; Sabliov, Cristina M

    2011-12-27

    The goal of the study was to synthesize a surfactant made of α-tocopherol (vitamin E) and ascorbic acid (vitamin C) of antioxidant properties dubbed as EC, and to use this surfactant to make poly(lactic-co-glycolic) acid (PLGA) nanoparticles. Self-assembled EC nanostructures and PLGA-EC nanoparticles were made by nanoprecipitation, and their physical properties (size, size distribution, morphology) were studied at different salt concentrations, surfactant concentrations, and polymer/surfactant ratios. EC surfactant was shown to form self-assembled nanostructures in water with a size of 22 to 138 nm in the presence of sodium chloride, or 12 to 31 nm when synthesis was carried out in sodium bicarbonate. Polymeric PLGA-EC nanoparticles presented a size of 90 to 126 nm for 40% to 120% mass ratio PLGA to surfactant. For the same mass ratios, the PLGA-Span80 formed particles measured 155 to 216 nm. Span80 formed bilayers, whereas EC formed monolayers at the interfaces. PLGA-EC nanoparticles and EC showed antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay measurements using UV and EPR techniques, antioxidant activity which is not characteristic to commercially available Span80. The thiobarbituric acid reactive substances (TBARS) assay for lipid peroxidation showed that PLGA nanoparticles with EC performed better as antioxidants than the EC nanoassembly or the free vitamin C. Nanoparticles were readily internalized by HepG2 cells and were localized in the cytoplasm. The newly synthesized EC surfactant was therefore found successful in forming uniform, small size polymeric nanoparticles of intrinsic antioxidant properties.

  19. PLGA nano/microparticles loaded with cresyl violet as a tracer for drug delivery: Characterization and in-situ hyperspectral fluorescence and 2-photon localization

    Energy Technology Data Exchange (ETDEWEB)

    Lunardi, Claure N., E-mail: clunardi@unb.br [Laboratory of Photochemistry and Nanobiotechnology, University of Brasília, Brasília (Brazil); Department of Biomedical Engineering and Radiology, Laboratory for Functional Optical Imaging, Columbia University, New York, NY (United States); Gomes, Anderson J. [Laboratory of Photochemistry and Nanobiotechnology, University of Brasília, Brasília (Brazil); Department of Biomedical Engineering and Radiology, Laboratory for Functional Optical Imaging, Columbia University, New York, NY (United States); Palepu, Sandeep; Galwaduge, P. Thilanka; Hillman, Elizabeth M.C. [Department of Biomedical Engineering and Radiology, Laboratory for Functional Optical Imaging, Columbia University, New York, NY (United States)

    2017-01-01

    Here we present the production, characterization and in-vivo assessment of cresyl violet-loaded biodegradable PLGA nano/microparticles (CV-NP and CV-MP). We demonstrate that the beneficial spectral characteristics of cresyl violet make it suitable as a tracer for particle-based drug delivery using both hyperspectral wide field and two-photon excited fluorescence microscopy. Particles were prepared using a cosolvent method, after which the physicochemical properties such as morphology, particle size, drug entrapment efficiency, drug loading and in vitro drug release behavior were measured in addition to spectroscopic properties, such as absorption, fluorescence and infrared spectra. The particles were then tested in an in vivo mouse model to assess their biodistribution characteristics. The location and integrity of particles after injection was determined using both hyperspectral fluorescence and two-photon microscopy within intact organs in situ. Our results show that cresyl violet is efficiently entrapped into PLGA particles, and that the particles are spherical in shape, ranging from 300 to 5070 nm in diameter. Particle biodistribution in the mouse was found to depend on particle size, as expected. Cresyl violet is shown to be an ideal tracer to assess the properties PLGA particle-based drug delivery in combination with our novel multi-scale optical imaging techniques for in-situ particle localization. - Highlights: • Cresyl violet entrapment into polymeric particles • Cresyl violet suitable as a tracer for particle-based drug delivery • Hyperspectral analysis of polymer nano/microparticles • Two-photon microscopy of polymeric nano/microparticles.

  20. Visualization of silver-decorated poly (DL-lactide-co-glycolide) nanoparticles and their efficacy against Staphylococcus epidermidis

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Chisato, E-mail: chisato@dpc.agu.ac.jp [Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University, 1-100, Kusumoto-cho, Chikusa-ku, Nagoya 464-8650 (Japan); Matsubara, Nobuhiro; Akachi, Yuki; Ogawa, Noriko [Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University, 1-100, Kusumoto-cho, Chikusa-ku, Nagoya 464-8650 (Japan); Kalita, Golap [Department of Frontier Materials, Nagoya Institute of Technology, Gokisocho, Showa-ku, Nagoya 466-8555 (Japan); Asaka, Toru [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokisocho, Showa-ku, Nagoya 466-8555 (Japan); Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokisocho, Showa-ku, Nagoya 466-8555 (Japan); Kawashima, Yoshiaki; Yamamoto, Hiromitsu [Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University, 1-100, Kusumoto-cho, Chikusa-ku, Nagoya 464-8650 (Japan)

    2017-03-01

    Understanding of self-protection activity of the bacteria and interaction with drug substances has significant importance for designing of effective drug delivery system for treatment of biofilm infections. Recently silver nanoparticle has attracted attention as antibacterial substance for drug delivery system because of its high antibacterial activity. Here, efflux of silver nanoparticles obtained from within the prepared silver-decorated poly (DL-lactide-co-glycolide) (Ag PLGA) nanoparticles derived from Staphylococcus epidermidis bacterial cell was successfully visualized using scanning transmission electron microscopy (STEM). We also revealed the interaction between prepared Ag PLGA nanoparticles and the bacterial cells at the nanoscale level using field emission scanning electron microscopy and STEM, after a pretreatment process by an ionic liquid. This finding is significant to understand a fundamental function of S. epidermidis bacterial cells, which is not explored previously. The results suggest that Ag PLGA nanoparticles could demonstrate high efficacy against biofilm infections. - Highlights: • Ag PLGA nanoparticles with high efficacy against biofilm infections were prepared. • Self-protection activity of bacteria against Ag nanoparticles was visualized by STEM. • Antibacterial mechanism of Ag PLGA nanoparticles against biofilm was proposed.

  1. ADJUVANT PROPERTIES OF NANOPARTICLES IMMOBILIZED RECOMBINANT DIPHTHERIA TOXOID FRAGMENT

    Directory of Open Access Journals (Sweden)

    T. O. Chudina

    2017-08-01

    Full Text Available The aim of the research was to compare the characteristics of nanoparticles with different chemical structure and size (colloidal gold Gold 1 and Gold 2, calcium phosphate CaP and poly(lactideco-glykolid PLGA 1 and 2 to find the most efficient carriers of antigen — recombinant diphtheria toxoid for per os immunization. According to the MTT test, all studied particles show no significant cytotoxic impact on the studied cells in vitro, with the exception of CaP nanoparticles, which in high concentrations have cytotoxic effect on the U937 cells, and Gold nanoparticles 1 and 2, that are able to inhibit growth of the L929 cells. The most effective phagocytosis by macrophage-like cells J774 is observed for PLGA nanoparticles 1 and 2 with the immobilized antigen, while Gold nanoparticles 1 and 2 with antigen can interact with the surface of these cells without being phagocytated by them. In BALB/c mice immunized per os with antigen immobilized on PLGA 1 and 2 as well as Gold 2 carriers, the concentration of specific IgA antibodies in blood significantly increases after the second immunization, compared with controls. In the group of mice treated with PLGA 2 conjugated antigen, the concentration of specific IgG in blood after the third immunization also increases. These results show the promise of nanoparticles PLGA 1 and 2 as adjuvant for immunization per os.

  2. Biocompatibility Assessment of Polyethylene Glycol-Poly L-Lysine-Poly Lactic-Co-Glycolic Acid Nanoparticles In Vitro and In Vivo.

    Science.gov (United States)

    Guo, Liting; Chen, Baoan; Liu, Ran; Xia, Guohua; Wang, Yonglu; Li, Xueming; Wei, Chen; Wang, Xuemei; Jiang, Hulin

    2015-05-01

    The present study was designed to evaluate the biocompatibility of nanoparticles polyethylene glycol (PEG)-poly L-lysine (PLL)-poly lactic-co-glycolic acid copolymer (PLGA) (PEG-PLL-PLGA) before clinical application. We applied some tests to assess the safety of PEG-PLL-PLGA nanoparticles (NPs). There was low cytotoxicity of PEG-PLL-PLGA NPs in vitro as detected by MTT assay. Cell apoptosis and intracellular accumulation of PEG-PLL-PLGA were determined by FCM assay. The apoptotic rate induced by nanoparticles and the fluorescence intensity of intracellular daunorubicin (DNR) demonstrated that DNR-PEG-PLL-PLGA could be taken up by the mouse fibroblast cells (L929 cells). Hemolysis test and micronucleus (MN) assay demonstrated that the nanoparticles have no obviously blood toxicity and genotoxicity. DNR-PEG-PLL-PLGA NPs were injected into mice through tail vein to calculate the median lethal dose (LD50), the results showed that they had a wide safe scale. Blood was taken by removing the eyeball of mice to study the influence of DNR-PEG-PLL-PLGA in hepatic and renal functions. The results revealed that there was no significant difference as compared with the control group. Interestingly, the pathologic changes of heart, liver, spleen, lung and kidney were observed in nanoparticles treated mice. Thus, this study demonstrates that PEG-PLL-PLGA NPs appear to be highly biocompatible and safe nanoparticles that can be suitable for further application in the treatment of tumor.

  3. PLGA based drug delivery systems: Promising carriers for wound healing activity.

    Science.gov (United States)

    Chereddy, Kiran Kumar; Vandermeulen, Gaëlle; Préat, Véronique

    2016-03-01

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Current treatment options are limited and require repeated administrations which led to the development of new therapeutics to satisfy the unmet clinical needs. Many potent wound healing agents were discovered but most of them are fragile and/or sensitive to in vivo conditions. Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer approved by food and drug administration and European medicines agency as an excipient for parenteral administrations. It is a well-established drug delivery system in various medical applications. The aim of the current review is to elaborate the applications of PLGA based drug delivery systems carrying different wound healing agents and also present PLGA itself as a wound healing promoter. PLGA carriers encapsulating drugs such as antibiotics, anti-inflammatory drugs, proteins/peptides, and nucleic acids targeting various phases/signaling cycles of wound healing, are discussed with examples. The combined therapeutic effects of PLGA and a loaded drug on wound healing are also mentioned. © 2016 by the Wound Healing Society.

  4. Hydroxycamptothecin-loaded nanoparticles enhance target drug delivery and anticancer effect

    Directory of Open Access Journals (Sweden)

    Li Su

    2008-05-01

    Full Text Available Abstract Background Hydroxycamptothecin (HCPT has been shown to have activity against a broad spectrum of cancers. In order to enhance its tissue-specific delivery and anticancer activity, we prepared HCPT-loaded nanoparticles made from poly(ethylene glycol-poly(γ-benzyl-L-glutamate (PEG-PBLG, and then studied their release characteristics, pharmacokinetic characteristics, and anticancer effects. PEG-PBLG nanoparticles incorporating HCPT were prepared by a dialysis method. Scanning electron microscopy (SEM was used to observe the shape and diameter of the nanoparticles. The HCPT release characteristics in vitro were evaluated by ultraviolet spectrophotometry. A high-performance liquid chromatography (HPLC detection method for determining HCPT in rabbit plasma was established. The pharmacokinetic parameters of HCPT/PEG-PBLG nanoparticles were compared with those of HCPT. Results The HCPT-loaded nanoparticles had a core-shell spherical structure, with a core diameter of 200 nm and a shell thickness of 30 nm. Drug-loading capacity and drug encapsulation were 7.5 and 56.8%, respectively. The HCPT release profile was biphasic, with an initial abrupt release, followed by sustained release. The terminal elimination half-lives (t 1/2 β of HCPT and HCPT-loaded nanoparticles were 4.5 and 10.1 h, respectively. Peak concentrations (Cmax of HCPT and HCPT-loaded nanoparticles were 2627.8 and 1513.5 μg/L, respectively. The apparent volumes of distribution of the HCPT and HCPT-loaded nanoparticles were 7.3 and 20.0 L, respectively. Compared with a blank control group, Lovo cell xenografts or Tca8113 cell xenografts in HCPT or HCPT-loaded nanoparticle treated groups grew more slowly and the tumor doubling times were increased. The tumor inhibition effect in the HCPT-loaded nanosphere-treated group was significantly higher than that of the HCPT-treated group (p 0.05. Conclusion Compared to the HCPT- and control-treated groups, the HCPT-loaded nanoparticle

  5. Ultrasound-sensitive nanoparticle aggregates for targeted drug delivery.

    Science.gov (United States)

    Papa, Anne-Laure; Korin, Netanel; Kanapathipillai, Mathumai; Mammoto, Akiko; Mammoto, Tadanori; Jiang, Amanda; Mannix, Robert; Uzun, Oktay; Johnson, Christopher; Bhatta, Deen; Cuneo, Garry; Ingber, Donald E

    2017-09-01

    Here we describe injectable, ultrasound (US)-responsive, nanoparticle aggregates (NPAs) that disintegrate into slow-release, nanoscale, drug delivery systems, which can be targeted to selective sites by applying low-energy US locally. We show that, unlike microbubble based drug carriers which may suffer from stability problems, the properties of mechanical activated NPAs, composed of polymer nanoparticles, can be tuned by properly adjusting the polymer molecular weight, the size of the nanoparticle precursors as well as the percentage of excipient utilized to hold the NPA together. We then apply this concept to practice by fabricating NPAs composed of nanoparticles loaded with Doxorubicin (Dox) and tested their ability to treat tumors via ultrasound activation. Mouse studies demonstrated significantly increased efficiency of tumor targeting of the US-activated NPAs compared to PLGA nanoparticle controls (with or without US applied) or intact NPAs. Importantly, when the Dox-loaded NPAs were injected and exposed to US energy locally, this increased ability to concentrate nanoparticles at the tumor site resulted in a significantly greater reduction in tumor volume compared to tumors treated with a 20-fold higher dose of the free drug. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Transferrin adsorption onto PLGA nanoparticles governs their interaction with biological systems from blood circulation to brain cancer cells.

    Science.gov (United States)

    Chang, Jiang; Paillard, Archibald; Passirani, Catherine; Morille, Marie; Benoit, Jean-Pierre; Betbeder, Didier; Garcion, Emmanuel

    2012-06-01

    Nanomedicines represent an alternative for the treatment of aggressive glioblastoma tumors. Behaviour of PLGA-nanoparticles (NPs) was here investigated as a function of their protein adsorption characteristics at the different biological interfaces they are expected to face in order to reach brain cancer cells. NPs were studied for size, zeta potential, blood half-life, in vitro endocytic behavior and in vivo accumulation within healthy rat brain and brain tumors. While slightly modifying size (80 to 90 nm) and zeta potential (-44 to -32 mV) protein coating of PLGA-NPs by bovine serum albumin (BSA) or transferrin (Tf) greatly prolonged their blood half-life when intravenously injected in rats and mice. In contrast with THP-1 monocytes, differentiated THP-1 macrophages, F98 glioma cells and astrocytes internalized BSA- and Tf-NPs in vitro. Increase of Tf-NP uptake by F98 cells through caveolae- and clathrin-mediated pathways supports specific interaction between Tf and overexpressed Tf-receptor. Finally, in vivo targeting of healthy brain was found higher with Tf-NPs than with BSA-NPs while both NPs entered massively within brain-developed tumors. Taken together, those data evidence that Tf-NPs represent an interesting nanomedicine to deliver anticancer drugs to glioma cells through systemic or locoregional strategies at early and late tumor stages.

  7. PLGA 50:50 nanoparticles of paclitaxel: Development, in vitro anti ...

    Indian Academy of Sciences (India)

    lation of novel drug delivery systems to deliver such extreme hydrophobic drug. ... drug delivery system for PTX using biodegradable PLGA. 50:50 .... To this, 200 μl of protein precipitat- ..... Murthy R R 2004 The AAPS Journal 6 Article 23.

  8. Comparative study of kanamycin sulphate microparticles and nanoparticles for intramuscular administration: preparation in vitro release and preliminary in vivo evaluation.

    Science.gov (United States)

    Mustafa, Sanaul; Devi, V Kusum; Pai, Roopa S

    2016-11-01

    Kanamycin sulphate (KS) is a Mycobacterium tuberculosis protein synthesis inhibitor. KS is polycationic, a property responsible for KS poor oral absorption half-life (2.5 h) and rapid renal clearance, which results in serious nephrotoxicity/ototoxicity. The current study aimed to develop KS-loaded PLGA vitamin-E-TPGS microparticles (MPs) and nanoparticles (NPs) to reduce the dosing frequency and dose-related adverse effect. In vitro release was sustained up to 10 days for KS PLGA-TPGS MPs and 13 days for KS PLGA-TPGS NPs in phosphate-buffered saline (PBS) pH 7.4. The in vivo pharmacokinetic test in Wistar rats showed that the AUC 0-∞ of KS PLGA-TPGS NPs (280.58 μg/mL*min) was about 1.62-fold higher than that of KS PLGA-TPGS MPs (172.30 μg/mL*min). Further, in vivo protein-binding assay ascribed 1.20-fold increase in the uptake of KS PLGA-TPGS NPs through the alveolar macrophage (AM). The studies, therefore, could provide another useful tool for successful development of KS MPs and NPs.

  9. The inhibitory effect of disulfiram encapsulated PLGA NPs on tumor growth: Different administration routes.

    Science.gov (United States)

    Fasehee, Hamidreza; Zarrinrad, Ghazaleh; Tavangar, Seyed Mohammad; Ghaffari, Seyed Hamidollah; Faghihi, Shahab

    2016-06-01

    The strong anticancer activity of disulfiram is hindered by its rapid degradation in blood system. A novel folate-receptor-targeted poly (lactide-co-glycolide) (PLGA)-polyethylene glycol (PEG) nanoparticle (NP) is developed for encapsulation and delivery of disulfiram into breast cancer tumor using passive (EPR effect) and active (folate receptor) targeting. The anticancer activity of disulfiram and its effect on caspase-3 activity and cell cycle are studied. The administration of encapsulated PLGA NPs using intra-peritoneal, intravenous and intra-tumor routes is investigated using animal model. Disulfiram shows strong cytotoxicity against MCF7 cell line. The activity of caspase-3 inhibited with disulfiram via dose dependent manner while the drug causes cell cycle arrest in G0/G1 and S phase time-dependently. The encapsulated disulfiram shows higher activity in apoptosis induction as compared to free drug. In nontoxic dose of encapsulated disulfiram, the highest and lowest efficacy of NPs in tumor growth inhibition is observed for intravenous injection and intraperitoneal injection. It is suggested that administration of disulfiram by targeted PLGA nanoparticles using intravenous injection would present an alternative therapeutic approach for solid tumor treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Tailoring Lipid and Polymeric Nanoparticles as siRNA Carriers towards the Blood-Brain Barrier – from Targeting to Safe Administration

    DEFF Research Database (Denmark)

    Gomes, Maria João; Fernandes, Carlos; Martins, Susana

    2017-01-01

    . The interaction of modified nanoparticles with brain endothelial cells increased 3-fold compared to non-modified lipid nanoparticles, and 4-fold compared to non-modified PLGA nanoparticles, respectively. These nanosystems, which were also demonstrated to be safe for human brain endothelial cells, without...... and efficient delivery to its target, two different nanoparticles platforms, solid lipid (SLN) and poly-lactic-co-glycolic (PLGA) nanoparticles were used in this study. Polymeric PLGA nanoparticles were around 115 nm in size and had 50 % of siRNA association efficiency, while SLN presented 150 nm...

  11. Recent Trends in Preparation of Poly(lactide-co-glycolide Nanoparticles by Mixing Polymeric Organic Solution with Antisolvent

    Directory of Open Access Journals (Sweden)

    Edel Sah

    2015-01-01

    Full Text Available In recent years, there have been a plethora of nanoengineering approaches for the development of poly(lactide-co-glycolide (PLGA nanoparticulate carrier systems. However, overlooking the multifaceted issues in the preparation and characterization of PLGA-based nanoparticles, many reports have been focused on their in vivo behaviors. It is imperative to fully assess technological aspects of a nanoencapsulation method of choice and to carefully evaluate the nanoparticle quality. The selection of a nanoencapsulation technique should consider drug property, nanoparticle quality, scale-up feasibility, manufacturing costs, personnel safety, environmental impact, waste disposal, and the like. Made in this review are the fundamentals of classical emulsion-templated nanoencapsulation methods used to prepare PLGA nanoparticles. More specifically, this review provides insight into emulsion solvent evaporation/extraction, salting-out, nanoprecipitation, membrane emulsification, microfluidic technology, and flow focusing. Innovative nanoencapsulation techniques are being developed to address many challenges existing in the production of PLGA-based nanoparticles. In addition, there are various out-of-the-box approaches for the development of novel PLGA hybrid systems that could deliver multiple drugs. Latest trends in these areas are also dealt with in this review. Relevant information might be helpful to those who prepare and develop PLGA-based nanoparticles that meet their specific demands.

  12. Micelle-templated, poly(lactic-co-glycolic acid nanoparticles for hydrophobic drug delivery

    Directory of Open Access Journals (Sweden)

    Nabar GM

    2018-01-01

    functionality, and can be produced at scale using electrospray.Conclusion: Encapsulation of PLGA within micelles provides a bottom-up route for the synthesis of sub-100 nm PLGA-based nanocarriers with enhanced stability and drug-loading capacity, and tunable drug release, suitable for potential clinical applications. Keywords: PLGA, nanoparticles, micelles, drug delivery, hydrophobic drug, block copolymer, glioma, electrospray

  13. Alpha-tocopheryl polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles for reversal of multidrug resistance in vitro

    International Nuclear Information System (INIS)

    Wang Ying; Lu Yu; Ding Liying; Liu Yaqing; Yu Shuqin; Guo Miao; Ron Wenting; Song Feifei

    2012-01-01

    Multidrug resistance (MDR) is one of the factors in the failure of anticancer chemotherapy. In order to enhance the anticancer effect of P-glycoprotein (P-gp) substrates, inhibition of the P-gp efflux pump on MDR cells is a good tactic. We designed novel multifunctional drug-loaded alpha-tocopheryl polyethylene glycol succinate (TPGS)/poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TPGS/PLGA/SN-38 NPs; SN-38 is 7-ethyl-10-hydroxy-camptothecin), with TPGS-emulsified PLGA NPs as the carrier and modulator of the P-gp efflux pump and SN-38 as the model drug. TPGS/PLGA/SN-38 NPs were prepared using a modified solvent extraction/evaporation method. Physicochemical characterizations of TPGS/PLGA/SN-38 NPs were in conformity with the principle of nano-drug delivery systems (nDDSs), including a diameter of about 200 nm, excellent spherical particles with a smooth surface, narrow size distribution, appropriate surface charge, and successful drug-loading into the NPs. The cytotoxicity of TPGS/PLGA/SN-38 NPs to MDR cells was increased by 3.56 times compared with that of free SN-38. Based on an intracellular accumulation study relative to the time-dependent uptake and efflux inhibition, we suggest novel mechanisms of MDR reversal of TPGS/PLGA NPs. Firstly, TPGS/PLGA/SN-38 NPs improved the uptake of the loaded drug by clathrin-mediated endocytosis in the form of unbroken NPs. Simultaneously, intracellular NPs escaped the recognition of P-gp by MDR cells. After SN-38 was released from TPGS/PLGA/SN-38 NPs in MDR cells, TPGS or/and PLGA may modulate the efflux microenvironment of the P-gp pump, such as mitochondria and the P-gp domain with an ATP-binding site. Finally, the controlled-release drug entered the nucleus of the MDR cell to induce cytotoxicity. The present study showed that TPGS-emulsified PLGA NPs could be functional carriers in nDDS for anticancer drugs that are also P-gp substrates. More importantly, to enhance the therapeutic effect of P-gp substrates, this work

  14. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine.

    Science.gov (United States)

    Moon, James J; Suh, Heikyung; Polhemus, Mark E; Ockenhouse, Christian F; Yadava, Anjali; Irvine, Darrell J

    2012-01-01

    The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide) acid (PLGA) "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA), was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs). Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.

  15. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine.

    Directory of Open Access Journals (Sweden)

    James J Moon

    Full Text Available The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide acid (PLGA "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA, was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs. Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.

  16. Facile Synthesis of Curcumin-Loaded Starch-Maleate Nanoparticles

    OpenAIRE

    Suh Cem Pang; Soon Hiang Tay; Suk Fun Chin

    2014-01-01

    We have demonstrated the loading of curcumin onto starch maleate (SM) under mild conditions by mixing dissolved curcumin and SM nanoparticles separately in absolute ethanol and ethanol/aqueous (40 : 60 v/v), respectively. Curcumin-loaded starch-maleate (CurSM) nanoparticles were subsequently precipitated from a homogeneous mixture of these solutions in absolute ethanol based on the solvent exchange method. TEM analysis indicated that the diameters of CurSM nanoparticles were ranged between 30...

  17. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation.

    Science.gov (United States)

    Cui, Fude; Shi, Kai; Zhang, Liqiang; Tao, Anjin; Kawashima, Yoshiaki

    2006-08-28

    Biodegradable nanoparticles loaded with insulin-phospholipid complex were prepared by a novel reverse micelle-solvent evaporation method, in which soybean phosphatidylcholine (SPC) was employed to improve the liposolubility of insulin, and biodegradable polymers as carrier materials to control drug release. Solubilization study, IR and X-ray diffraction analysis were employed to prove the complex formation. The effects of key parameters such as polymer/SPC weight ratio, organic phase and polymer type on the properties of the nanoparticles were investigated. Spherical particles of 200 nm mean diameter and a narrow size distribution were obtained under optimal conditions. The drug entrapment efficiency was up to 90%. The in vitro drug release was characterized by an initial burst and subsequent delayed release in both pH 6.8 and pH 1.2 dissolution mediums. The specific modality of drug release, i.e., free or SPC-combined, was investigated in the aid of ultracentrifugation and ultrafiltration methods. The influence of polymer type on the drug release was also discussed. The pharmacological effects of the nanoparticles made of PLGA 50/50 (Av.Mw 9500) were further evaluated to confirm their potential suitability for oral delivery. Intragastric administration of the 20 IU/kg nanoparticles reduced fasting plasma glucose levels to 57.4% within the first 8 h of administration and this continued for 12 h. PK/PD analysis indicated that 7.7% of oral bioavailability relative to subcutaneous injection was obtained.

  18. Positive effects of cell-free porous PLGA implants and early loading exercise on hyaline cartilage regeneration in rabbits.

    Science.gov (United States)

    Chang, Nai-Jen; Lin, Chih-Chan; Shie, Ming-You; Yeh, Ming-Long; Li, Chien-Feng; Liang, Peir-In; Lee, Kuan-Wei; Shen, Pei-Hsun; Chu, Chih-Jou

    2015-12-01

    The regeneration of hyaline cartilage remains clinically challenging. Here, we evaluated the therapeutic effects of using cell-free porous poly(lactic-co-glycolic acid) (PLGA) graft implants (PGIs) along with early loading exercise to repair a full-thickness osteochondral defect. Rabbits were randomly allocated to a treadmill exercise (TRE) group or a sedentary (SED) group and were prepared as either a PGI model or an empty defect (ED) model. TRE was performed as a short-term loading exercise; SED was physical inactivity in a free cage. The knees were evaluated at 6 and 12 weeks after surgery. At the end of testing, none of the knees developed synovitis, formed osteophytes, or became infected. Macroscopically, the PGI-TRE group regenerated a smooth articular surface, with transparent new hyaline-like tissue soundly integrated with the neighboring cartilage, but the other groups remained distinct at the margins with fibrous or opaque tissues. In a micro-CT analysis, the synthesized bone volume/tissue volume (BV/TV) was significantly higher in the PGI-TRE group, which also had integrating architecture in the regeneration site. The thickness of the trabecular (subchondral) bone was improved in all groups from 6 to 12 weeks. Histologically, remarkable differences in the cartilage regeneration were visible. At week 6, compared with SED groups, the TRE groups manifested modest inflammatory cells with pro-inflammatory cytokines (i.e., TNF-α and IL-6), improved collagen alignment and higher glycosaminoglycan (GAG) content, particularly in the PGI-TRE group. At week 12, the PGI-TRE group had the best regeneration outcomes, showing the formation of hyaline-like cartilage, the development of columnar rounded chondrocytes that expressed enriched levels of collagen type II and GAG, and functionalized trabecular bone with osteocytes. In summary, the combination of implanting cell-free PLGA and performing an early loading exercise can significantly promote the full

  19. Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves.

    Science.gov (United States)

    Mansoor, Fawad; Earley, Bernadette; Cassidy, Joseph P; Markey, Bryan; Doherty, Simon; Welsh, Michael D

    2015-08-21

    There is a need to improve vaccination against respiratory pathogens in calves by stimulation of local immunity at the site of pathogen entry at an early stage in life. Ideally such a vaccine preparation would not be inhibited by the maternally derived antibodies. Additionally, localized immune response at the site of infection is also crucial to control infection at the site of entry of virus. The present study investigated the response to an intranasal bovine parainfluenza 3 virus (BPI3V) antigen preparation encapsulated in PLGA (poly dl-lactic-co-glycolide) nanoparticles in the presence of pre-existing anti-BPI3V antibodies in young calves and comparing it to a commercially available BPI3V respiratory vaccine. There was a significant (P administration of the nanoparticle vaccine an early immune response was induced that continued to grow until the end of study and was not observed in the other treatment groups. Virus specific serum IgG response to both the nanoparticle vaccine and commercial live attenuated vaccine showed a significant (P local mucosal immunity induced by nanoparticle vaccine has obvious potential if it translates into enhanced protective immunity in the face of virus outbreak.

  20. Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, Farnaz, E-mail: Farnaz_ghorbani.1991@yahoo.com [Department of Biomedical Engineering, Tehran Science and Research Branch, Islamic Azad University, P. O. Box: 4515/775, Tehran (Iran, Islamic Republic of); Nojehdehian, Hanieh, E-mail: hanieh.nojehdehyan@gmail.com [Department of Dental Materials, School of Dentistry, Shahid Beheshti University of Medical Sciences, P.O. Box: 1983963113, Tehran (Iran, Islamic Republic of); Zamanian, Ali, E-mail: a-zamanian@merc.ac.ir [Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box: 14155-4777, Tehran (Iran, Islamic Republic of)

    2016-12-01

    Hydroxyapatite (HA)-gelatin scaffolds incorporated with dexamethasone-loaded polylactic-co-glycolic acid (PLGA) microspheres were synthesized by freeze casting technique. Scanning electron microscopy (SEM) micrographs demonstrated a unidirectional microstructure and a decrease in the pore size as a function of temperature gradient. Higher amounts of HA resulted in a decrease in the pore size. According to the results, at lower cooling rates, the formation of a lamellar structure decreased the mechanical strength, but at the same time, enhanced the swelling ratio, biodegradation rate and drug release level. On the other hand, higher weight ratios of HA increased the compressive strength, and reduced the swelling ratio, biodegradation rate and drug release level. The results obtained by furrier transform infrared spectroscopy (FTIR) and bioactivity analysis illustrated that the interactions of the materials support the apatite formation in the simulated body fluid (SBF) solution. Based on the obtained results, the synthesized composite scaffolds have the necessary mechanical and physicochemical features to support the regeneration of defects and to maintain their stability during the neo-tissue formation. - Highlights: • Freeze casting technique created unidirectional lamellar type microstructure. • Unidirectional microstructure of samples improved mechanical behavior, absorption, biodegradation rate and release behavior. • Hydroxyapatite-gelatin scaffolds demonstrated bioactive behavior and support new apatite layer formation. • Controlled release rate provided by dexamethasone loaded PLGA microspheres.

  1. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar-Mohammadi, Marziyeh [Textile Engineering Group, Department of Engineering, University of Bonab, Bonab (Iran, Islamic Republic of); Zamani, M. [Mechanical Engineering Department, National University of Singapore (Singapore); Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore (Singapore); Prabhakaran, M.P., E-mail: nnimpp@nus.edu.sg [Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore (Singapore); Bahrami, S. Hajir, E-mail: hajirb@aut.ac.ir [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ramakrishna, S. [Mechanical Engineering Department, National University of Singapore (Singapore); Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore (Singapore)

    2016-01-01

    Controlled drug release is a process in which a predetermined amount of drug is released for longer period of time, ranging from days to months, in a controlled manner. In this study, novel drug delivery devices were fabricated via blend electrospinning and coaxial electrospinning using poly lactic glycolic acid (PLGA), gum tragacanth (GT) and tetracycline hydrochloride (TCH) as a hydrophilic model drug in different compositions and their performance as a drug carrier scaffold was evaluated. Scanning electron microscopy (SEM) results showed that fabricated PLGA, blend PLGA/GT and core shell PLGA/GT nanofibers had a smooth and bead-less morphology with the diameter ranging from 180 to 460 nm. Drug release studies showed that both the fraction of GT within blend nanofibers and the core–shell structure can effectively control TCH release rate from the nanofibrous membranes. By incorporation of TCH into core–shell nanofibers, drug release was sustained for 75 days with only 19% of burst release within the first 2 h. The prolonged drug release, together with proven biocompatibility, antibacterial and mechanical properties of drug loaded core shell nanofibers make them a promising candidate to be used as drug delivery system for periodontal diseases. - Highlights: • Novel drug loaded blend (PG-TCH) and core shell nanofibers (PG(cs)-TCH) from PLGA and gum tragacanth (GT) fabricated • Prolonged release of TCH with lower burst release and high mechanical strength in wet and dry conditions for nanofibers • Proven cytocompatibility properties and low rigidity/stiffness suggest PG(cs)-TCH nanfiber for periodontal regeneration.

  2. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration

    International Nuclear Information System (INIS)

    Ranjbar-Mohammadi, Marziyeh; Zamani, M.; Prabhakaran, M.P.; Bahrami, S. Hajir; Ramakrishna, S.

    2016-01-01

    Controlled drug release is a process in which a predetermined amount of drug is released for longer period of time, ranging from days to months, in a controlled manner. In this study, novel drug delivery devices were fabricated via blend electrospinning and coaxial electrospinning using poly lactic glycolic acid (PLGA), gum tragacanth (GT) and tetracycline hydrochloride (TCH) as a hydrophilic model drug in different compositions and their performance as a drug carrier scaffold was evaluated. Scanning electron microscopy (SEM) results showed that fabricated PLGA, blend PLGA/GT and core shell PLGA/GT nanofibers had a smooth and bead-less morphology with the diameter ranging from 180 to 460 nm. Drug release studies showed that both the fraction of GT within blend nanofibers and the core–shell structure can effectively control TCH release rate from the nanofibrous membranes. By incorporation of TCH into core–shell nanofibers, drug release was sustained for 75 days with only 19% of burst release within the first 2 h. The prolonged drug release, together with proven biocompatibility, antibacterial and mechanical properties of drug loaded core shell nanofibers make them a promising candidate to be used as drug delivery system for periodontal diseases. - Highlights: • Novel drug loaded blend (PG-TCH) and core shell nanofibers (PG(cs)-TCH) from PLGA and gum tragacanth (GT) fabricated • Prolonged release of TCH with lower burst release and high mechanical strength in wet and dry conditions for nanofibers • Proven cytocompatibility properties and low rigidity/stiffness suggest PG(cs)-TCH nanfiber for periodontal regeneration

  3. Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thamake, S I; Raut, S L [Department of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107 (United States); Ranjan, A P; Vishwanatha, J K [Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Gryczynski, Z, E-mail: jamboor.vishwanatha@unthsc.edu [Center for Commercialization of Fluorescence Technology, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-01-21

    This work reports the surface functionalization of polymeric PLGA nanoparticles by non-covalent insertion of a homo-bifunctional chemical crosslinker, bis(sulfosuccinimidyl) suberate (BS3) for targeted cancer therapy. We dissolved BS3 in aqueous solution of PVA during formulation of nanoparticles by a modified solid/oil/water emulsion solvent evaporation method. The non-covalent insertion of BS3 was confirmed by Fourier transform infrared (FTIR) spectroscopy. Curcumin and annexin A2 were used as a model drug and a cell specific target, respectively. Nanoparticles were characterized for particle size, zeta potential and surface morphology. The qualitative assessment of antibody attachment was performed by transmission electron microscopy (TEM) as well as confocal microscopy. The optimized formulation showed antibody attachment of 86%. However, antibody attachment was abolished upon blocking the functional groups of BS3. The availability of functional antibodies was evaluated by the presence of a light chain fraction after gel electrophoresis. We further evaluated the in vitro release kinetics of curcumin from antibody coated and uncoated nanoparticles. The release of curcumin is enhanced upon antibody attachment and followed an anomalous release pattern. We also observed that the cellular uptake of nanoparticles was significantly higher in annexin A2 positive cells than in negative cells. Therefore, these results demonstrate the potential use of this method for functionalization as well as to deliver chemotherapeutic agents for treating cancer.

  4. Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy

    Science.gov (United States)

    Thamake, S. I.; Raut, S. L.; Ranjan, A. P.; Gryczynski, Z.; Vishwanatha, J. K.

    2011-01-01

    This work reports the surface functionalization of polymeric PLGA nanoparticles by non-covalent insertion of a homo-bifunctional chemical crosslinker, bis(sulfosuccinimidyl) suberate (BS3) for targeted cancer therapy. We dissolved BS3 in aqueous solution of PVA during formulation of nanoparticles by a modified solid/oil/water emulsion solvent evaporation method. The non-covalent insertion of BS3 was confirmed by Fourier transform infrared (FTIR) spectroscopy. Curcumin and annexin A2 were used as a model drug and a cell specific target, respectively. Nanoparticles were characterized for particle size, zeta potential and surface morphology. The qualitative assessment of antibody attachment was performed by transmission electron microscopy (TEM) as well as confocal microscopy. The optimized formulation showed antibody attachment of 86%. However, antibody attachment was abolished upon blocking the functional groups of BS3. The availability of functional antibodies was evaluated by the presence of a light chain fraction after gel electrophoresis. We further evaluated the in vitro release kinetics of curcumin from antibody coated and uncoated nanoparticles. The release of curcumin is enhanced upon antibody attachment and followed an anomalous release pattern. We also observed that the cellular uptake of nanoparticles was significantly higher in annexin A2 positive cells than in negative cells. Therefore, these results demonstrate the potential use of this method for functionalization as well as to deliver chemotherapeutic agents for treating cancer.

  5. Transfection Agent Induced Nanoparticle Cell Loading

    Directory of Open Access Journals (Sweden)

    Karin Montet-Abou

    2005-07-01

    Full Text Available Loading cells with magnetic nanoparticles, and tracking their fate in vivo by high resolution MRI, is an attractive approach for enhancing the efficacy of cell-based therapies including those utilizing hematopoietic stem cells, neuroprogenitor cells, and T cells. The transfection agent (internalization agent assisted loading with the Feridex IV® nanoparticle is an attractive method of loading because of the low cost of materials, and possible low regulatory barriers for eventual clinical use. We therefore explored the interaction between Feridex IV® and three internalization agents protamine (PRO, polylysine (PLL, and lipofectamine (LFA. Feridex reacted with internalization agents to form aggregates, except when either the internalization agent or Feridex was present in large excess. When Jurkat T cells were incubated with Feridex/LFA or Feridex/PRO mixtures, and washed by centrifugation, nanoparticle aggregates co-purified with cells. With C17.2 cells large iron oxide particles adhered to the cell surface. At 30 μg/mL Feridex and 3 μg/mL LFA, internalization was largely mediated by LFA and was largely cytoplasmic. However, we found that the conditions used to label cells with Feridex and transfection agents need to be carefully selected to avoid the problems of surface adsorption and nanoparticle precipitation.

  6. Paclitaxel loading in PLGA nanospheres affected the in vitro drug cell accumulation and antiproliferative activity

    Directory of Open Access Journals (Sweden)

    De Maria Ruggero

    2008-07-01

    Full Text Available Abstract Background PTX is one of the most widely used drug in oncology due to its high efficacy against solid tumors and several hematological cancers. PTX is administered in a formulation containing 1:1 Cremophor® EL (polyethoxylated castor oil and ethanol, often responsible for toxic effects. Its encapsulation in colloidal delivery systems would gain an improved targeting to cancer cells, reducing the dose and frequency of administration. Methods In this paper PTX was loaded in PLGA NS. The activity of PTX-NS was assessed in vitro against thyroid, breast and bladder cancer cell lines in cultures. Cell growth was evaluated by MTS assay, intracellular NS uptake was performed using coumarin-6 labelled NS and the amount of intracellular PTX was measured by HPLC. Results NS loaded with 3% PTX (w/w had a mean size Conclusion These findings suggest that the greater biological effect of PTX-NS could be due to higher uptake of the drug inside the cells as shown by intracellular NS uptake and cell accumulation studies.

  7. Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability

    Science.gov (United States)

    Luo, Haitao; Jiang, Bingbing; Li, Bingyun; Li, Zhaoliang; Jiang, Bing-Hua; Chen, Yi Charlie

    2012-01-01

    Ovarian cancer is one of the leading causes of cancer death for women throughout the Western world. Kaempferol, a natural flavonoid, has shown promise in the chemoprevention of ovarian cancer. A common concern about using dietary supplements for chemoprevention is their bioavailability. Nanoparticles have shown promise in increasing the bioavailability of some chemicals. Here we developed five different types of nanoparticles incorporating kaempferol and tested their efficacy in the inhibition of viability of cancerous and normal ovarian cells. We found that positively charged nanoparticle formulations did not lead to a significant reduction in cancer cell viability, whereas nonionic polymeric nanoparticles resulted in enhanced reduction of cancer cell viability. Among the nonionic polymeric nanoparticles, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) nanoparticles incorporating kaempferol led to significant reduction in cell viability of both cancerous and normal cells. Poly(DL-lactic acid-co-glycolic acid) (PLGA) nanoparticles incorporating kaempferol resulted in enhanced reduction of cancer cell viability together with no significant reduction in cell viability of normal cells compared with kaempferol alone. Therefore, both PEO-PPO-PEO and PLGA nanoparticle formulations were effective in reducing cancer cell viability, while PLGA nanoparticles incorporating kaempferol had selective toxicity against cancer cells and normal cells. A PLGA nanoparticle formulation could be advantageous in the prevention and treatment of ovarian cancers. On the other hand, PEO-PPO-PEO nanoparticles incorporating kaempferol were more effective inhibitors of cancer cells, but they also significantly reduced the viability of normal cells. PEO-PPO-PEO nanoparticles incorporating kaempferol may be suitable as a cancer-targeting strategy, which could limit the effects of the nanoparticles on normal cells while retaining their potency against cancer cells. We

  8. Polymeric Nanoparticles for Increasing Oral Bioavailability of Curcumin

    Directory of Open Access Journals (Sweden)

    Anita Umerska

    2018-03-01

    Full Text Available Despite the promising biological and antioxidant properties of curcumin, its medical applications are limited due to poor solubility in water and low bioavailability. Polymeric nanoparticles (NPs adapted to oral delivery may overcome these drawbacks. Properties such as particle size, zeta potential, morphology and encapsulation efficiency were assessed. Then, the possibility of storing these NPs in a solid-state form obtained by freeze-drying, in vitro curcumin dissolution and cytocompatibility towards intestinal cells were evaluated. Curcumin-loaded Eudragit® RLPO (ERL NPs showed smaller particle diameters (245 ± 2 nm and better redispersibility after freeze-drying than either poly(lactic-co-glycolic acid (PLGA or polycaprolactone (PCL NPs. The former NPs showed lower curcumin encapsulation efficiency (62% than either PLGA or PCL NPs (90% and 99%, respectively. Nevertheless, ERL NPs showed rapid curcumin release with 91 ± 5% released over 1 h. The three curcumin-loaded NPs proposed in this work were also compatible with intestinal cells. Overall, ERL NPs are the most promising vehicles for increasing the oral bioavailability of curcumin.

  9. Lecithin and PLGA-based self-assembled nanocomposite, Lecithmer: preparation, characterization, and pharmacokinetic/pharmacodynamic evaluation.

    Science.gov (United States)

    Varghese, Seby Elsy; Fariya, Mayur K; Rajawat, Gopal Singh; Steiniger, Frank; Fahr, Alfred; Nagarsenker, Mangal S

    2016-08-01

    The present study investigates the drug delivery potential of polymer lipid hybrid nanocomposites (Lecithmer®) composed of poly(D,L-lactide-co-glycolide (PLGA) and soya lecithin. Core-shell structure of Lecithmer was evident from cryo-TEM images. Daunorubicin (DNR) and lornoxicam (LNX)-incorporated Lecithmer nanocomposites were evaluated for anticancer and anti-inflammatory activity. DNR- and LNX-loaded Lecithmer had mean particle size of ∼335 and ∼282.7 nm, respectively. Lecithmer formulated with different cationic lipids resulted in lower particle size (∼120 nm) and positive zeta potential. Entrapment efficiency of DNR and LNX was 93.16 and 88.59 %, respectively. In vitro release of DNR from Lecithmer was slower compared to PLGA nanoparticles. DNR release from Lecithmer was significantly higher at pH 5.5 (80.96 %) as compared to pH 7.4 (55.95 %), providing advantage for selective tumor therapy. Similarly, sustained release of LNX (30 % in 10 h) was observed at pH 7.4. DNR in Lecithmer showed superior cytotoxicity on human erythroleukemic K562 cells. Pharmacokinetic study in Wistar rats with i.v. administered DNR-loaded Lecithmer showed higher volume of distribution, lower elimination rate constant, and longer half-life (81.68 L, 0.3535 h(-1), 1.96 h) as compared to DNR solution (57.46 L, 0.4237 h(-1), 1.635 h). Pharmacodynamic evaluation of orally administered LNX-loaded Lecithmer showed superior anti-inflammatory activity with maximum inhibition of 81.2 % vis-à-vis 53.57 % in case of LNX suspension. In light of these results, Lecithmer can be envisaged as a promising nanosystem for parenteral as well as oral drug delivery.

  10. In vivo pharmacological evaluation and efficacy study of methotrexate-encapsulated polymer-coated layered double hydroxide nanoparticles for possible application in the treatment of osteosarcoma.

    Science.gov (United States)

    Ray, Sayantan; Saha, Suman; Sa, Biswanath; Chakraborty, Jui

    2017-04-01

    Considering the existing drawbacks of methotrexate (MTX) with respect to its solubility and toxicity, we incorporated it in a nanoceramic matrix, Mg-Al-layered double hydroxide (LDH) to form LDH-MTX nanoparticles, and the same was in turn encapsulated in a nontoxic and biodegradable polymer, poly (D,L-lactide-co-glycolide) (PLGA), to arrest the initial burst release and dose-dumping-related toxicity, already reported by our group. Our present study was designed to evaluate the pharmacokinetics, tissue distribution, survival rate of the test animals, and antitumor efficacy of the PLGA-LDH-MTX nanoparticles and its counterpart without LDH, PLGA-MTX nanoparticles compared with bare MTX. The median lethal dose (LD 50 ) of the former was higher, compared with bare MTX, using Balb/c nude mice, indicating it to be completely safe for use. Also, a comparative pharmacokinetic and antitumour efficacy study using MTX, PLGA-MTX, and PLGA-LDH-MTX nanoparticles in osteosarcoma-induced Balb/c nude mice in vivo demonstrated superiority of PLGA-LDH-MTX as compared to PLGA-MTX and bare MTX. The results suggest that PLGA-LDH-MTX nanoparticles might exhibit potential advantages over the present-day chemotherapy over bare MTX, for the possibility of treatment of osteosarcoma.

  11. Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticle-mediated photodynamic therapy in a mouse model

    Directory of Open Access Journals (Sweden)

    Wang X

    2015-01-01

    Full Text Available Xiaojie Wang,1,2,* Lei Shi,2,* Qingfeng Tu,2 Hongwei Wang,3 Haiyan Zhang,2 Peiru Wang,2 Linglin Zhang,2 Zheng Huang,4 Feng Zhao,5 Hansen Luan,5 Xiuli Wang2 1Shanghai Skin Diseases Clinical College of Anhui Medical University, 2Shanghai Skin Disease Hospital, 3Huadong Hospital, Fudan University, Shanghai, 4MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Normal University, Fuzhou, 5National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, People’s Republic of China *These authors contributed equally to this study Background: Squamous cell carcinoma (SCC is a common skin cancer, and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP-assisted 5-aminolevulinic acid (ALA delivery for topical photodynamic therapy (PDT of cutaneous SCC.Materials and methods: Ultraviolet-induced cutaneous SCCs were established in hairless mice. ALA-loaded polylactic-co-glycolic acid (PLGA NPs were prepared and characterized. The kinetics of ALA PLGA NP-induced protoporphyrin IX fluorescence in SCCs, therapeutic efficacy of ALA NP-mediated PDT, and immune responses were examined.Results: PLGA NPs enhanced protoporphyrin IX production in SCC. ALA PLGA NP-mediated topical PDT was more effective than free ALA of the same concentration in treating cutaneous SCC.Conclusion: PLGA NPs provide a promising strategy for delivering ALA in topical PDT of cutaneous SCC. Keywords: 5-aminolevulinic acid (ALA, polylactic-co-glycolic acid (PLGA, nanoparticles (NPs, cutaneous squamous cell carcinoma (SCC, photodynamic therapy (PDT, microneedling

  12. Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles.

    Science.gov (United States)

    Zhao, Pengfei; Zheng, Mingbin; Yue, Caixia; Luo, Zhenyu; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Cai, Lintao

    2014-07-01

    A key challenge to strengthen anti-tumor efficacy is to improve drug accumulation in tumors through size control. To explore the biodistribution and tumor accumulation of nanoparticles, we developed indocyanine green (ICG) loaded poly (lactic-co-glycolic acid) (PLGA) -lecithin-polyethylene glycol (PEG) core-shell nanoparticles (INPs) with 39 nm, 68 nm and 116 nm via single-step nanoprecipitation. These INPs exhibited good monodispersity, excellent fluorescence and size stability, and enhanced temperature response after laser irradiation. Through cell uptake and photothermal efficiency in vitro, we demonstrated that 39 nm INPs were more easily be absorbed by pancreatic carcinoma tumor cells (BxPC-3) and showed better photothermal damage than that of 68 nm and 116 nm size of INPs. Simultaneously, the fluorescence of INPs offered a real-time imaging monitor for subcellular locating and in vivo metabolic distribution. Near-infrared imaging in vivo and photothermal therapy illustrated that 68 nm INPs showed the strongest efficiency to suppress tumor growth due to abundant accumulation in BxPC-3 xenograft tumor model. The findings revealed that a nontoxic, size-dependent, theranostic INPs model was built for in vivo cancer imaging and photothermal therapy without adverse effect. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Gyrospun antimicrobial nanoparticle loaded fibrous polymeric filters

    Energy Technology Data Exchange (ETDEWEB)

    Eranka Illangakoon, U.; Mahalingam, S.; Wang, K. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Cheong, Y.-K. [School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Canales, E. [Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 7JE (United Kingdom); Ren, G.G. [School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Cloutman-Green, E. [Department of Microbiology, Virology, and Infection Prevention Control, Great Ormond Street Hospital NHS Foundation Trust, London WCIN 3JH (United Kingdom); Edirisinghe, M., E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Ciric, L. [Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 7JE (United Kingdom)

    2017-05-01

    A one step approach to prepare hybrid nanoparticle embedded polymer fibres using pressurised gyration is presented. Two types of novel antimicrobial nanoparticles and poly(methylmethacrylate) polymer were used in this work. X-ray diffraction analysis of the nanoparticles revealed Ag, Cu and W are the main elements present in them. The concentration of the polymer solution and the nanoparticle concentration had a significant influence on the fibre diameter, pore size and morphology. Fibres with a diameter in the range of 6–20 μm were spun using 20 wt% polymer solutions containing 0.1, 0.25 and 0.5 wt% nanoparticles under 0.3 MPa working pressure and a rotational speed of 36,000 rpm. Continuous, bead-free fibre morphologies were obtained for each case. The pore size in the fibres varied between 36 and 300 nm. Successful incorporation of the nanoparticles in polymer fibres was confirmed by energy dispersive x-ray analysis. The fibres were also gyrospun on to metallic discs to prepare filters which were tested for their antibacterial activity on a suspension of Pseudomonas aeruginosa. Nanoparticle loaded fibres showed higher antibacterial efficacy than pure poly(methylmethacrylate) fibres. - Highlights: • Nanoparticles containing Ag, Cu and W were studied for antimicrobial activity. • Hybrid nanoparticle-polymeric fibres were prepared using pressurised gyration. • Fibre characteristics were tailored using material and forming process variables. • Nanoparticle loaded fibre mats show higher antibacterial efficacy.

  14. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.

    Science.gov (United States)

    Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta

    2016-08-01

    The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes.

  15. Elimination of mouse tumor cells from neonate spermatogonial cells utilizing cisplatin-entrapped folic acid-conjugated poly(lactic-co-glycolic acid) nanoparticles in vitro.

    Science.gov (United States)

    Shabani, Ronak; Ashjari, Mohsen; Ashtari, Khadijeh; Izadyar, Fariborz; Behnam, Babak; Khoei, Samideh; Asghari-Jafarabadi, Mohamad; Koruji, Morteza

    2018-01-01

    Some male survivors of childhood cancer are suffering from azoospermia. In addition, spermatogonial stem cells (SSCs) are necessary for the improvement of spermatogenesis subsequent to exposure to cytotoxic agents such as cisplatin. The aim of this study was to evaluate the anticancer activity of cisplatin-loaded folic acid-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) on mouse malignant cell line (EL4) and SSCs in vitro. SSCs were co-cultured with mouse malignant cell line (EL4) cells and divided into four culture groups: 1) control (cells were co-cultured in the culture medium), 2) co-cultured cells were treated with cisplatin (10 μg/mL), 3) co-cultured cells were treated with cisplatin-loaded folic acid-conjugated PLGA NPs, and 4) co-cultures were treated with folic acid-conjugated PLGA for 48 hours. The NPs were prepared, characterized, and targeted with folate. In vitro release characteristics, loading efficiency, and scanning electron microscopy and transmission electron microscopy images were studied. Cancer cells were assayed after treatment using flow cytometry and TUNEL assay. The co-cultures of SSCs and EL4 cells were injected into seminiferous tubules of the testes after treating with cis-diaminedichloroplatinum/PLGA NPs. The mean diameter of PLGA NPs ranged between 150 and 250 nm. The number of TUNEL-positive cells increased, and the expression of Bax and caspase-3 were upregulated in EL4 cells in Group 4 compared with Group 2. There was no pathological tumor in testes after transplantation with treated co-cultured cells. The PLGA NPs appeared to act as a promising carrier for cisplatin administration, which was consistent with a higher activation of apoptosis than free drug.

  16. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats.

    Science.gov (United States)

    Radwan, Mahasen A; AlQuadeib, Bushra T; Šiller, Lidija; Wright, Matthew C; Horrocks, Benjamin

    2017-11-01

    Amphotericin B (AMB) is used most commonly in severe systemic life-threatening fungal infections. There is currently an unmet need for an efficacious (AMB) formulation amenable to oral administration with better bioavailability and lower nephrotoxicity. Novel PEGylated polylactic-polyglycolic acid copolymer (PLGA-PEG) nanoparticles (NPs) formulations of AMB were therefore studied for their ability to kill Candida albicans (C. albicans). The antifungal activity of AMB formulations was assessed in C. albicans. Its bioavalability was investigated in nine groups of rats (n = 6). Toxicity was examined by an in vitro blood hemolysis assay, and in vivo nephrotoxicity after single and multiple dosing for a week by blood urea nitrogen (BUN) and plasma creatinine (PCr) measurements. The MIC of AMB loaded to PLGA-PEG NPs against C. albicans was reduced two to threefold compared with free AMB. Novel oral AMB delivery loaded to PLGA-PEG NPs was markedly systemically available compared to Fungizone® in rats. The addition of 2% of GA to the AMB formulation significantly (p bioavailability from 1.5 to 10.5% and the relative bioavailability was > 790% that of Fungizone®. The novel AMB formulations showed minimal toxicity and better efficacy compared to Fungizone®. No nephrotoxicity in rats was detected after a week of multiple dosing of AMB NPs based on BUN and PCr, which remained at normal levels. An oral delivery system of AMB-loaded to PLGA-PEG NPs with better efficacy and minimal toxicity was formulated. The addition of glycyrrhizic acid (GA) to AMB NPs formulation resulted in a significant oral absorption and improved bioavailability in rats.

  17. Formulation and in vitro evaluation of ibuprofen-loaded poly(D,L ...

    African Journals Online (AJOL)

    co-glycolide) (PLGA) microparticles. Methods: Ibuprofen-loaded microparticles containing PLGA were formulated using a emulsification/solvent evaporation method. Various concentrations of ibuprofen (200, 300, 400 and 0 mg) were loaded ...

  18. Comparative study of chitosan- and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids

    International Nuclear Information System (INIS)

    Durán-Lobato, Matilde; Martín-Banderas, Lucía; Gonçalves, Lídia M. D.; Fernández-Arévalo, Mercedes; Almeida, Antonio J.

    2015-01-01

    The cannabinoid derivative 1-naphthalenyl[4-(pentyloxy)-1-naphthalenyl]methanone (CB13) has an important therapeutic potential as analgesic in chronic pain states that respond poorly to conventional drugs. However, the incidence of its mild-to-moderate and dose-dependent adverse effects, as well as its pharmacokinetic profile, actually holds back its use in humans. Thus, the use of a suitable carrier system for oral delivery of CB13 becomes an attractive strategy to develop a valuable therapy. Polymeric poly(lactic-co-glycolic) acid (PLGA) and lipid nanoparticles (LNPs) are widely studied delivery vehicles that improve the bioavailability of lipophilic compounds and present special interest in oral delivery. Their surface can be modified to improve the adhesion of particles to the oral mucosa and increase their circulation time in blood with additives such as chitosan (CS) and polyethylene glycol (PEG), which can be feasibly incorporated onto these particles in a post-production step. In this work, CS- and PEG-modified polymeric PLGA and LNPs were successfully obtained and comparatively evaluated under the same experimental conditions as oral carriers for CB13. All the formulations presented adequate blood compatibility and absence of cytotoxicity in Caco-2 cells. Coating with CS led to a higher interaction with Caco-2 cells and a limited uptake in THP1 cells, while coating with PEG led to a limited uptake in Caco-2 cells and strongly prevented THP1 cells uptake. The performance of each formulation is discussed as a comparison of the potential of these carriers as oral delivery systems of CB13

  19. Comparative study of chitosan- and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids

    Science.gov (United States)

    Durán-Lobato, Matilde; Martín-Banderas, Lucía; Gonçalves, Lídia M. D.; Fernández-Arévalo, Mercedes; Almeida, Antonio J.

    2015-02-01

    The cannabinoid derivative 1-naphthalenyl[4-(pentyloxy)-1-naphthalenyl]methanone (CB13) has an important therapeutic potential as analgesic in chronic pain states that respond poorly to conventional drugs. However, the incidence of its mild-to-moderate and dose-dependent adverse effects, as well as its pharmacokinetic profile, actually holds back its use in humans. Thus, the use of a suitable carrier system for oral delivery of CB13 becomes an attractive strategy to develop a valuable therapy. Polymeric poly(lactic-co-glycolic) acid (PLGA) and lipid nanoparticles (LNPs) are widely studied delivery vehicles that improve the bioavailability of lipophilic compounds and present special interest in oral delivery. Their surface can be modified to improve the adhesion of particles to the oral mucosa and increase their circulation time in blood with additives such as chitosan (CS) and polyethylene glycol (PEG), which can be feasibly incorporated onto these particles in a post-production step. In this work, CS- and PEG-modified polymeric PLGA and LNPs were successfully obtained and comparatively evaluated under the same experimental conditions as oral carriers for CB13. All the formulations presented adequate blood compatibility and absence of cytotoxicity in Caco-2 cells. Coating with CS led to a higher interaction with Caco-2 cells and a limited uptake in THP1 cells, while coating with PEG led to a limited uptake in Caco-2 cells and strongly prevented THP1 cells uptake. The performance of each formulation is discussed as a comparison of the potential of these carriers as oral delivery systems of CB13.

  20. Comparative study of chitosan- and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids

    Energy Technology Data Exchange (ETDEWEB)

    Durán-Lobato, Matilde; Martín-Banderas, Lucía, E-mail: luciamartin@us.es [Universidad de Sevilla, Departmento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia (España) (Spain); Gonçalves, Lídia M. D. [Universidade de Lisboa, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade de Farmácia (Portugal); Fernández-Arévalo, Mercedes [Universidad de Sevilla, Departmento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia (España) (Spain); Almeida, Antonio J. [Universidade de Lisboa, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade de Farmácia (Portugal)

    2015-02-15

    The cannabinoid derivative 1-naphthalenyl[4-(pentyloxy)-1-naphthalenyl]methanone (CB13) has an important therapeutic potential as analgesic in chronic pain states that respond poorly to conventional drugs. However, the incidence of its mild-to-moderate and dose-dependent adverse effects, as well as its pharmacokinetic profile, actually holds back its use in humans. Thus, the use of a suitable carrier system for oral delivery of CB13 becomes an attractive strategy to develop a valuable therapy. Polymeric poly(lactic-co-glycolic) acid (PLGA) and lipid nanoparticles (LNPs) are widely studied delivery vehicles that improve the bioavailability of lipophilic compounds and present special interest in oral delivery. Their surface can be modified to improve the adhesion of particles to the oral mucosa and increase their circulation time in blood with additives such as chitosan (CS) and polyethylene glycol (PEG), which can be feasibly incorporated onto these particles in a post-production step. In this work, CS- and PEG-modified polymeric PLGA and LNPs were successfully obtained and comparatively evaluated under the same experimental conditions as oral carriers for CB13. All the formulations presented adequate blood compatibility and absence of cytotoxicity in Caco-2 cells. Coating with CS led to a higher interaction with Caco-2 cells and a limited uptake in THP1 cells, while coating with PEG led to a limited uptake in Caco-2 cells and strongly prevented THP1 cells uptake. The performance of each formulation is discussed as a comparison of the potential of these carriers as oral delivery systems of CB13.

  1. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery.

    Science.gov (United States)

    Chan, Juliana M; Zhang, Liangfang; Yuet, Kai P; Liao, Grace; Rhee, June-Wha; Langer, Robert; Farokhzad, Omid C

    2009-03-01

    Current approaches to encapsulate and deliver therapeutic compounds have focused on developing liposomal and biodegradable polymeric nanoparticles (NPs), resulting in clinically approved therapeutics such as Doxil/Caelyx and Genexol-PM, respectively. Our group recently reported the development of biodegradable core-shell NP systems that combined the beneficial properties of liposomal and polymeric NPs for controlled drug delivery. Herein we report the parameters that alter the biological and physicochemical characteristics, stability, drug release properties and cytotoxicity of these core-shell NPs. We further define scalable processes for the formulation of these NPs in a reproducible manner. These core-shell NPs consist of (i) a poly(D,L-lactide-co-glycolide) hydrophobic core, (ii) a soybean lecithin monolayer, and (iii) a poly(ethylene glycol) shell, and were synthesized by a modified nanoprecipitation method combined with self-assembly. Preparation of the NPs showed that various formulation parameters such as the lipid/polymer mass ratio and lipid/lipid-PEG molar ratio controlled NP physical stability and size. We encapsulated a model chemotherapy drug, docetaxel, in the NPs and showed that the amount of lipid coverage affected its drug release kinetics. Next, we demonstrated a potentially scalable process for the formulation, purification, and storage of NPs. Finally, we tested the cytotoxicity using MTT assays on two model human cell lines, HeLa and HepG2, and demonstrated the biocompatibility of these particles in vitro. Our data suggest that the PLGA-lecithin-PEG core-shell NPs may be a useful new controlled release drug delivery system.

  2. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation.

    Science.gov (United States)

    Zhao, Peiqi; Wang, Hanjie; Yu, Man; Liao, Zhenyu; Wang, Xianhuo; Zhang, Fei; Ji, Wei; Wu, Bing; Han, Jinghua; Zhang, Haichang; Wang, Huaqing; Chang, Jin; Niu, Ruifang

    2012-06-01

    A functional drug carrier comprised of folic acid modified lipid-shell and polymer-core nanoparticles (FLPNPs) including poly(D,L-lactide-co-glycolide) (PLGA) core, PEGylated octadecyl-quaternized lysine modified chitosan (PEG-OQLCS) as lipid-shell, folic acid as targeting ligand and cholesterol was prepared and evaluated for targeted delivery of paclitaxel (PTX). Confocal microscopy analysis confirmed the coating of the lipid-shell on the polymer-core. Physicochemical characterizations of FLPNPs, such as particle size, zeta potential, morphology, encapsulation efficiency, and in vitro PTX release, were also evaluated. The internalization efficiency and targeting ability of FLPNPs were demonstrated by flow cytometry and confocal microscopy. PTX loaded FLPNPs showed a significantly higher cytotoxicity than the commercial PTX formulation (Taxol®). The intravenous administration of PTX encapsulated FLPNPs led to tumor regression and improvement of animal survival in a murine model, compared with that observed with Taxol® and biodistribution study showed that PTX concentration in tumor for PTX encapsulated FLPNPs was higher than other PTX formulations. Our data indicate that PTX loaded FLPNPs are a promising nano-sized drug formulation for cancer therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Hybrid scaffolds based on PLGA and silk for bone tissue engineering.

    Science.gov (United States)

    Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Lee, Ok Joo; Kim, Jung-Ho; Park, Hyun Jung; Kim, Dong Wook; Kim, Dong-Kyu; Jang, Ji Eun; Khang, Gilson; Park, Chan Hum

    2016-03-01

    Porous silk scaffolds, which are considered to be natural polymers, cannot be used alone because they have a long degradation rate, which makes it difficult for them to be replaced by the surrounding tissue. Scaffolds composed of synthetic polymers, such as PLGA, have a short degradation rate, lack hydrophilicity and their release of toxic by-products makes them difficult to use. The present investigations aimed to study hybrid scaffolds fabricated from PLGA, silk and hydroxyapatite nanoparticles (Hap NPs) for optimized bone tissue engineering. The results from variable-pressure field emission scanning electron microscopy (VP-FE-SEM), equipped with EDS, confirmed that the fabricated scaffolds had a porous architecture, and the location of each component present in the scaffolds was examined. Contact angle measurements confirmed that the introduction of silk and HAp NPs helped to change the hydrophobic nature of PLGA to hydrophilic, which is the main constraint for PLGA used as a biomaterial. Thermo-gravimetric analysis (TGA) and FT-IR spectroscopy confirmed thermal decomposition and different vibrations caused in functional groups of compounds used to fabricate the scaffolds, which reflected improvement in their mechanical properties. After culturing osteoblasts for 1, 7 and 14 days in the presence of scaffolds, their viability was checked by MTT assay. The fluorescent microscopy results revealed that the introduction of silk and HAp NPs had a favourable impact on the infiltration of osteoblasts. In vivo experiments were conducted by implanting scaffolds in rat calvariae for 4 weeks. Histological examinations and micro-CT scans from these experiments revealed beneficial attributes offered by silk fibroin and HAp NPs to PLGA-based scaffolds for bone induction. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Irinotecan and 5-fluorouracil-co-loaded, hyaluronic acid-modified layer-by-layer nanoparticles for targeted gastric carcinoma therapy

    Directory of Open Access Journals (Sweden)

    Gao Z

    2017-09-01

    Full Text Available Zhuanglei Gao,1 Zhaoxia Li,2 Jieke Yan,3 Peilin Wang1 1Department of General Surgery, 2Department of Pediatrics, 3Department of Renal Transplantation, The Second Hospital of Shandong University, Jinan, Shandong, People’s Republic of China Abstract: For targeted gastric carcinoma therapy, hyaluronic acid (HA-modified layer-by-layer nanoparticles (NPs are applied for improving anticancer treatment efficacy and reducing toxicity and side effects. The aim of this study was to develop HA-modified NPs for the co-loading of irinotecan (IRN and 5-fluorouracil (5-FU. A novel polymer–chitosan (CH–HA hybrid formulation (HA–CH–IRN/5-FU NPs consisting of poly(D,L-lactide-co-glycolide (PLGA and IRN as the core, CH and 5-FU as a shell on the core and HA as the outmost layer was prepared. Its morphology, average size, zeta potential and drug encapsulation ability were evaluated. Human gastric carcinoma cells (MGC803 cells and cancer-bearing mice were used for the testing of in vitro cytotoxicity and in vivo antitumor efficiency of NPs. HA–CH–IRN/5-FU NPs displayed enhanced antitumor activity in vitro and in vivo than non-modified NPs, single drug-loaded NPs and drugs solutions. The results demonstrate that HA–CH–IRN/5-FU NPs can achieve impressive antitumor activity and the novel targeted drug delivery system offers a promising strategy for the treatment of gastric cancer. Keywords: gastric carcinoma, irinotecan, 5-fluorouracil, hyaluronic acid, layer-by-layer nanoparticles

  5. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents

    Directory of Open Access Journals (Sweden)

    Rouhani H

    2011-04-01

    Full Text Available R Dinarvand1,2, N Sepehri1, S Manoochehri1, H Rouhani1, F Atyabi1,21Department of Pharmaceutics, Faculty of Pharmacy, 2Nanotechnology Research Centre, Tehran University of Medical Sciences, Tehran, IranAbstract: The effectiveness of anticancer agents may be hindered by low solubility in water, poor permeability, and high efflux from cells. Nanomaterials have been used to enable drug delivery with lower toxicity to healthy cells and enhanced drug delivery to tumor cells. Different nanoparticles have been developed using different polymers with or without surface modification to target tumor cells both passively and/or actively. Polylactide-co-glycolide (PLGA, a biodegradable polyester approved for human use, has been used extensively. Here we report on recent developments concerning PLGA nanoparticles prepared for cancer treatment. We review the methods used for the preparation and characterization of PLGA nanoparticles and their applications in the delivery of a number of active agents. Increasing experience in the field of preparation, characterization, and in vivo application of PLGA nanoparticles has provided the necessary momentum for promising future use of these agents in cancer treatment, with higher efficacy and fewer side effects.Keywords: nanotechnology, polymeric nanocarriers, targeting, anticancer agents, surface modification

  6. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles

    DEFF Research Database (Denmark)

    Colombo, Stefano; Cun, Dongmei; Remaut, Katrien

    2015-01-01

    Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA) nano...... of transfection-competent siRNA-DOTAP lipoplexes from the LPNs. Based on these results, we suggest a model for the nanostructural characteristics of the LPNs, in which the siRNA is organized in lamellar superficial assemblies and/or as complexes entrapped in the polymeric matrix.......Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA......) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X...

  7. Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growth factor delivery in tissue engineering.

    Science.gov (United States)

    Wenk, Esther; Meinel, Anne J; Wildy, Sarah; Merkle, Hans P; Meinel, Lorenz

    2009-05-01

    The development of prototype scaffolds for either direct implantation or tissue engineering purposes and featuring spatiotemporal control of growth factor release is highly desirable. Silk fibroin (SF) scaffolds with interconnective pores, carrying embedded microparticles that were loaded with insulin-like growth factor I (IGF-I), were prepared by a porogen leaching protocol. Treatments with methanol or water vapor induced water insolubility of SF based on an increase in beta-sheet content as analyzed by FTIR. Pore interconnectivity was demonstrated by SEM. Porosities were in the range of 70-90%, depending on the treatment applied, and were better preserved when methanol or water vapor treatments were prior to porogen leaching. IGF-I was encapsulated into two different types of poly(lactide-co-glycolide) microparticles (PLGA MP) using uncapped PLGA (50:50) with molecular weights of either 14 or 35 kDa to control IGF-I release kinetics from the SF scaffold. Embedded PLGA MP were located in the walls or intersections of the SF scaffold. Embedment of the PLGA MP into the scaffolds led to more sustained release rates as compared to the free PLGA MP, whereas the hydrolytic degradation of the two PLGA MP types was not affected. The PLGA types used had distinct effects on IGF-I release kinetics. Particularly the supernatants of the lower molecular weight PLGA formulations turned out to release bioactive IGF-I. Our studies justify future investigations of the developed constructs for tissue engineering applications.

  8. Development of PLGA-lipid nanoparticles with covalently conjugated indocyanine green as a versatile nanoplatform for tumor-targeted imaging and drug delivery

    Directory of Open Access Journals (Sweden)

    Xin Y

    2016-11-01

    Full Text Available Yu Xin, Tie Liu, Chenlong Yang Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China Abstract: We have prepared novel poly(d,l-lactide-co-glycolide (PLGA lipid nanoparticles (PNPs that covalently conjugate folic acid (FA and indocyanine green (ICG, in addition to encapsulating resveratrol (RSV (FA-RSV/ICG-PLGA-lipid NPs, abbreviated as FA-RIPNPs; these nanoparticles have been developed for simultaneous targeted delivery of anticancer drug and fluorescence imaging. The FA-RIPNPs, with an average particle size of 92.8±2.1 nm, were prepared by a facile self-assembly-and-nanoprecipitation method, and they showed excellent stability and biocompatibility characteristics. The FA-RIPNPs exhibited an RSV encapsulation efficiency of approximately 65.6%±4.7% and a maximum release ratio of 78.2%±4.1% at pH 5.0 and 37°C. Confocal fluorescence images showed that FA-RIPNPs may facilitate a high cellular uptake via FA receptor-mediated endocytosis. Furthermore, FA-RIPNPs (containing 50 µg/mL RSV induced a 81.4%±2.1% U87 cell inhibition rate via apoptosis, a value that proved to be higher than what has been shown for free RSV (53.1%±1.1%, equivalent RSV concentration. With a formulated polyethylene glycol (PEG shell around the PLGA core, FA-RIPNPs prolonged the blood circulation of both free RSV and ICG, which approximately increased 6.96- and 39.4-fold (t1/2, respectively. Regarding FA-RIPNP use as a near-infrared probe, in vivo fluorescence images indicated a highly efficient accumulation of FA-RIPNPs in the tumor tissue, which proved to be approximately 2.8- and 12.6-fold higher than the RIPNPs and free ICG, respectively. Intravenous injection of FA-RIPNPs into U87 tumor-bearing mice demonstrated the best tumor inhibition effect for all tested drugs, including free RSV and RIPNPs, with no relapse, showing high biocompatibility and with no significant systemic in vivo toxicity over the

  9. Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres.

    Science.gov (United States)

    Araújo, J; Vega, E; Lopes, C; Egea, M A; Garcia, M L; Souto, E B

    2009-08-01

    Poly(lactide-co-glycolide) acid (PLGA) nanospheres incorporating flurbiprofen (FB) were produced by the solvent displacement technique, for ocular applications aiming to avoid/minimize inflammation induced by surgical trauma. In this work, a PLGA of low viscosity has been tested and the results obtained were compared with those previously reported by Vega et al. The physicochemical properties of the developed formulations were evaluated by measuring particle size, zeta potential and FB entrapment efficiency, showing no significant differences. Release studies demonstrated that the formulation produced with PLGA of higher viscosity revealed a slower drug release rate. Stability analysis, for a period of 75 days, was performed using three complementary methods: (i) turbidity experiments using a Turbiscan optical analyzer, (ii) particle size measurements, and (iii) zeta potential analysis. The results revealed long-term physicochemical stability suitability for ophthalmic use, being independent from the polymer viscosity. The ocular tolerance was assessed by an alternative in vitro method to animal experimentation, the HET-CAM. For all developed formulations no ocular irritancy has been detected.

  10. Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging.

    Science.gov (United States)

    Woranuch, Sarekha; Yoksan, Rangrong

    2013-07-25

    The aim of the present research was to study the possibility of using eugenol-loaded chitosan nanoparticles as antioxidants for active bio-based packaging material. Eugenol-loaded chitosan nanoparticles were incorporated into thermoplastic flour (TPF) - a model bio-based plastic - through an extrusion process at temperatures above 150°C. The influences of eugenol-loaded chitosan nanoparticles on crystallinity, morphology, thermal properties, radical scavenging activity, reducing power, tensile properties and barrier properties of TPF were investigated. Although the incorporation of 3% (w/w) of eugenol-loaded chitosan nanoparticles significantly reduced the extensibility and the oxygen barrier property of TPF, it provided antioxidant activity and improved the water vapor barrier property. In addition, TPF containing eugenol-loaded chitosan nanoparticles exhibited superior radical scavenging activity and stronger reducing power compared with TPF containing naked eugenol. The results suggest the applicability of TPF containing eugenol-loaded chitosan nanoparticles as an antioxidant active packaging material. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Cotransporting Ion is a Trigger for Cellular Endocytosis of Transporter-Targeting Nanoparticles: A Case Study of High-Efficiency SLC22A5 (OCTN2)-Mediated Carnitine-Conjugated Nanoparticles for Oral Delivery of Therapeutic Drugs.

    Science.gov (United States)

    Kou, Longfa; Yao, Qing; Sun, Mengchi; Wu, Chunnuan; Wang, Jia; Luo, Qiuhua; Wang, Gang; Du, Yuqian; Fu, Qiang; Wang, Jian; He, Zhonggui; Ganapathy, Vadivel; Sun, Jin

    2017-09-01

    OCTN2 (SLC22A5) is a Na + -coupled absorption transporter for l-carnitine in small intestine. This study tests the potential of this transporter for oral delivery of therapeutic drugs encapsulated in l-carnitine-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (LC-PLGA NPs) and discloses the molecular mechanism for cellular endocytosis of transporter-targeting nanoparticles. Conjugation of l-carnitine to a surface of PLGA-NPs enhances the cellular uptake and intestinal absorption of encapsulated drug. In both cases, the uptake process is dependent on cotransporting ion Na + . Computational OCTN2 docking analysis shows that the presence of Na + is important for the formation of the energetically stable intermediate complex of transporter-Na + -LC-PLGA NPs, which is also the first step in cellular endocytosis of nanoparticles. The transporter-mediated intestinal absorption of LC-PLGA NPs occurs via endocytosis/transcytosis rather than via the traditional transmembrane transport. The portal blood versus the lymphatic route is evaluated by the plasma appearance of the drug in the control and lymph duct-ligated rats. Absorption via the lymphatic system is the predominant route in the oral delivery of the NPs. In summary, LC-PLGA NPs can effectively target OCTN2 on the enterocytes for enhancing oral delivery of drugs and the critical role of cotransporting ions should be noticed in designing transporter-targeting nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering.

    Science.gov (United States)

    Khojasteh, Arash; Fahimipour, Farahnaz; Eslaminejad, Mohamadreza Baghaban; Jafarian, Mohammad; Jahangir, Shahrbanoo; Bastami, Farshid; Tahriri, Mohammadreza; Karkhaneh, Akbar; Tayebi, Lobat

    2016-12-01

    Bone tissue engineering is sought to apply strategies for bone defects healing without limitations and short-comings of using either bone autografts or allografts and xenografts. The aim of this study was to fabricate a thin layer poly(lactic-co-glycolic) acid (PLGA) coated beta-tricalcium phosphate (β-TCP) scaffold with sustained release of vascular endothelial growth factor (VEGF). PLGA coating increased compressive strength of the β-TCP scaffolds significantly. For in vitro evaluations, canine mesenchymal stem cells (cMSCs) and canine endothelial progenitor cells (cEPCs) were isolated and characterized. Cell proliferation and attachment were demonstrated and the rate of cells proliferation on the VEGF released scaffold was significantly more than compared to the scaffolds with no VEGF loading. A significant increase in expression of COL1 and RUNX2 was indicated in the scaffolds loaded with VEGF and MSCs compared to the other groups. Consequently, PLGA coated β-TCP scaffold with sustained and localized release of VEGF showed favourable results for bone regeneration in vitro, and this scaffold has the potential to use as a drug delivery device in the future. Copyright © 2016. Published by Elsevier B.V.

  13. PLGA and PHBV Microsphere Formulations and Solid-State Characterization

    DEFF Research Database (Denmark)

    Yang, Chiming; Plackett, David; Needham, David

    2009-01-01

    To develop and characterize the solid-state properties of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) microspheres for the localized and controlled release of fusidic acid (FA). The effects of FA loading and polymer composition on the me...... of a DCM-FA-rich phase in the forming microsphere....

  14. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance.

    Science.gov (United States)

    Liu, Yutao; Pan, Jie; Feng, Si-Shen

    2010-08-16

    This work developed a system of nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of anticancer drugs with paclitaxel as a model drug, in which the emphasis was given to the effects of the surfactant type and the optimization of the emulsifier amount used in the single emulsion solvent evaporation/extraction process for the nanoparticle preparation on the particle size, characters and in vitro performance. The drug loaded nanoparticles were characterized by laser light scattering (LLS) for size and size distribution, field-emission scanning electron microscopy (FESEM) for surface morphology, X-ray photoelectron spectroscopy (XPS) for surface chemistry, zetasizer for surface charge, and high performance liquid chromatography (HPLC) for drug encapsulation efficiency and in vitro drug release kinetics. MCF-7 breast cancer cells were employed to evaluate the cellular uptake and cytotoxicity. It was found that phospholipids of short chains such as 1,2-dilauroylphosphatidylocholine (DLPC) have great advantages over the traditional emulsifier poly(vinyl alcohol) (PVA), which is used most often in the literature, in preparation of nanoparticles of biodegradable polymers such as poly(D,L-lactide-co-glycolide) (PLGA) for desired particle size, character and in vitro cellular uptake and cytotoxicity. After incubation with MCF-7 cells at 0.250 mg/ml NP concentration, the coumarin-6 loaded PLGA NPs of DLPC shell showed more effective cellular uptake versus those of PVA shell. The analysis of IC(50), i.e. the drug concentration at which 50% of the cells are killed, demonstrated that our DLPC shell PLGA core NP formulation of paclitaxel could be 5.88-, 5.72-, 7.27-fold effective than the commercial formulation Taxol after 24, 48, 72h treatment, respectively. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Sustained release of estrogens from PEGylated nanoparticles for treatment of secondary spinal cord injury

    Science.gov (United States)

    Barry, John

    Spinal Cord Injury (SCI) is a debilitating condition which causes neurological damage and can result in paralysis. SCI results in immediate mechanical damage to the spinal cord, but secondary injuries due to inflammation, oxidative damage, and activated biochemical pathways leading to apoptosis exacerbate the injury. The only currently available treatment, methylprednisolone, is controversial because there is no convincing data to support its therapeutic efficacy for SCI treatment. In the absence of an effective SCI treatment option, 17beta-estradiol has gained significant attention for its anti-oxidant, anti-inflammatory, and anti-apoptotic abilities, all events associated with secondary. Sadly, 17beta-estradiol is associated with systemic adverse effects preclude the use of free estrogen even for local administration due to short drug half-life in the body. Biodegradable nanoparticles can be used to increase half-life after local administration and to bestow sustained release. Sustained release using PEGylated biodegradable polymeric nanoparticles constructed from poly(lactic-co-glycolic acid) (PLGA) will endow a consistent, low, but effective dose to be delivered locally. This will limit systemic effects due to local administration and low dose, sustained release. PLGA was chosen because it has been used extensively for sustained release, and has a record of safety in humans. Here, we show the in vitro efficacy of PEGylated nanoparticles loaded with 17beta-estradiol for treatment of secondary SCI. We achieved a high loading efficiency and controlled release from the particles over a several day therapeutic window. The particles also show neuroprotection in two in vitro cell culture models. Both the dose and pretreatment time with nanoparticles was evaluated in an effort to translate the treatment into an animal model for further study.

  16. Evaluating the Properties of Poly(lactic-co-glycolic acid) Nanoparticle Formulations Encapsulating a Hydrophobic Drug by Using the Quality by Design Approach.

    Science.gov (United States)

    Kozaki, Masato; Kobayashi, Shin-Ichiro; Goda, Yukihiro; Okuda, Haruhiro; Sakai-Kato, Kumiko

    2017-01-01

    We applied the Quality by Design (QbD) approach to the development of poly(lactic-co-glycolic acid) (PLGA) nanoparticle formulations encapsulating triamcinolone acetonide, and the critical process parameters (CPPs) were identified to clarify the correlations between critical quality attributes and CPPs. Quality risk management was performed by using an Ishikawa diagram and experiments with a fractional factorial design (ANOVA). The CPPs for particle size were PLGA concentration and rotation speed, and the CPP for relative drug loading efficiency was the poor solvent to good solvent volume ratio. By assessing the mutually related factors in the form of ratios, many factors could be efficiently considered in the risk assessment. We found a two-factor interaction between rotation speed and rate of addition of good solvent by using a fractional factorial design with resolution V. The system was then extended by using a central composite design, and the results obtained were visualized by using the response surface method to construct a design space. Our research represents a case study of the application of the QbD approach to pharmaceutical development, including formulation screening, by taking actual production factors into consideration. Our findings support the feasibility of using a similar approach to nanoparticle formulations under development. We could establish an efficient method of analyzing the CPPs of PLGA nanoparticles by using a QbD approach.

  17. Influence of different formulations and process parameters during the preparation of drug-loaded PLGA microspheres evaluated by multivariate data analysis

    Directory of Open Access Journals (Sweden)

    Vysloužil Jakub

    2014-12-01

    Full Text Available The main objective of this study was to evaluate the influence of the formulation and process parameters on PLGA microparticles containing a practically insoluble model drug (ibuprofen prepared by the o/w solvent evaporation method. Multivariate data analysis was used. The effects of altered stirring speed of a mechanical stirrer (600, 1000 rpm, emulsifier concentrations (PVA concentration 0.1 %, 1 % and solvent selection (dichloromethane, ethyl acetate on microparticle characteristics (encapsulation efficiency, drug loading, burst effect were observed. It was found that with increased stirring speed, the PVA concentration or the use of ethyl acetate had a significantly negative effect on encapsulation efficiency. In addition, ethyl acetate had an adverse effect on the burst effect, while increased stirring speed had the opposite effect. Drug load was not affected by any particular variable, but rather by the interactions of evaluated variables.

  18. Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy

    Science.gov (United States)

    Coburn, Jeannine M.; Cenis, José L.; Víllora, Gloria; Kaplan, David L.

    2018-01-01

    Curcumin, extracted from the rhizome of Curcuma longa, has been widely used in medicine for centuries due to its anti-inflammatory, anti-cancer, anti-oxidant and anti-microbial effects. However, its bioavailability during treatments is poor because of its low solubility in water, slow dissolution rate and rapid intestinal metabolism. For these reasons, improving the therapeutic efficiency of curcumin using nanocarriers (e.g., biopolymer nanoparticles) has been a research focus, to foster delivery of the curcumin inside cells due to their small size and large surface area. Silk fibroin from the Bombyx mori silkworm is a biopolymer characterized by its biocompatibility, biodegradability, amphiphilic chemistry, and excellent mechanical properties in various material formats. These features make silk fibroin nanoparticles useful vehicles for delivering therapeutic drugs, such as curcumin. Curcumin-loaded silk fibroin nanoparticles were synthesized using two procedures (physical adsorption and coprecipitation) more scalable than methods previously described using ionic liquids. The results showed that nanoparticle formulations were 155 to 170 nm in diameter with a zeta potential of approximately −45 mV. The curcumin-loaded silk fibroin nanoparticles obtained by both processing methods were cytotoxic to carcinogenic cells, while not decreasing viability of healthy cells. In the case of tumor cells, curcumin-loaded silk fibroin nanoparticles presented higher efficacy in cytotoxicity against neuroblastoma cells than hepatocarcinoma cells. In conclusion, curcumin-loaded silk fibroin nanoparticles constitute a biodegradable and biocompatible delivery system with the potential to treat tumors by local, long-term sustained drug delivery. PMID:29495296

  19. Preparation and Optimization OF Palm-Based Lipid Nanoparticles Loaded with Griseofulvin.

    Science.gov (United States)

    Huei Lim, Wen; Jean Tan, Yann; Sin Lee, Choy; Meng Er, Hui; Fung Wong, Shew

    2017-01-01

    Palm-based lipid nanoparticle formulation loaded with griseofulvin was prepared by solvent-free hot homogenization method. The griseofulvin loaded lipid nanoparticles were prepared via stages of optimisation, by altering the high pressure homogenisation (HPH) parameters, screening on palm-based lipids and Tween series surfactants and selection of lipid to surfactant ratios. A HPLC method has been validated for the drug loading capacity study. The optimum HPH parameter was determined to be 1500 bar with 5 cycles and among the palm-based lipid materials; Lipid C (triglycerides) was selected for the preparation of lipid nanoparticles. Tween 80 was chosen from the Tween series surfactants for its highest saturated solubility of griseofulvin at 53.1 ± 2.16 µg/mL. The optimum formulation of the griseofulvin loaded lipid nanoparticles demonstrated nano-range of particle size (179.8 nm) with intermediate distribution index (PDI) of 0.306, zeta potential of -27.9 mV and drug loading of 0.77%. The formulation was stable upon storage for 1 month at room temperature (25 ° C) and 45 ° C with consistent drug loading capacity.

  20. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity.

    Science.gov (United States)

    de Cristo Soares Alves, Aline; Mainardes, Rubiana Mara; Khalil, Najeh Maissar

    2016-03-01

    Gallic acid is an important polyphenol compound presenting various biological activities. The objective of this study was to prepare, characterize and evaluate poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated or not with polysorbate 80 (PS80) containing gallic acid. Nanoparticles coated or not with PS80 were produced by emulsion solvent evaporation method and presented a mean size of around 225 nm, gallic acid encapsulation efficiency of around 26% and zeta potential of -22 mV. Nanoparticle formulations were stable during storage, except nanoparticles coated with PS80 stored at room temperature. In vitro release profile demonstrated a quite sustained gallic acid release from nanoparticles and PS80-coating decreased drug release. Cytotoxicity over red blood cells was assessed and gallic acid-loaded PLGA nanoparticles at all analyzed concentrations demonstrated lack of hemolysis, while PS80-nanoparticles containing gallic acid were cytotoxic only in higher concentrations. Antioxidant potential of nanoparticles containing gallic acid was assessed and PLGA uncoated nanoparticles presented greater efficacy than PS80-coated PLGA nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A novel approach to fabricate dye-encapsulated polymeric micro- and nanoparticles by thin film dewetting technique.

    Science.gov (United States)

    Chatterjee, Manosree; Hens, Abhiram; Mahato, Kuldeep; Jaiswal, Namita; Mahato, Nivedita; Nagahanumaiah; Chanda, Nripen

    2017-11-15

    A new method is reported for fabrication of polymeric micro- and nanoparticles from an intermediate patterned surface originated by dewetting of a polymeric thin film. Poly (d, l-lactide-co-glycolide) or PLGA, a biocompatible polymer is used to develop a thin film over a clean glass substrate which dewets spontaneously in the micro-/nano-patterned surface of size range 50nm to 3.5µm. Since another water-soluble polymer, poly vinyl alcohol (PVA) is coated on the same glass substrate before PLGA thin film formation, developed micro-/nano-patterns are easily extracted in water in the form of micro- and nanoparticle mixture of size range 50nm to 3.0µm. This simplified method is also used to effectively encapsulate a dye molecule, rhodamine B inside the PLGA micro-/nanoparticles. The developed dye-encapsulated nanoparticles, PLGA-rhodamine are separated from the mixture and tested for in-vitro delivery application of external molecules inside human lung cancer cells. For the first time, the use of thin film dewetting technique is reported as a potential route for the synthesis of polymeric micro-/nanoparticles and effective encapsulation of external species therein. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Magnetic lipid nanoparticles loading doxorubicin for intracellular delivery: Preparation and characteristics

    International Nuclear Information System (INIS)

    Ying Xiaoying; Du Yongzhong; Hong Linghong; Yuan Hong; Hu Fuqiang

    2011-01-01

    Tumor intracellular delivery is an effective route for targeting chemotherapy to enhance the curative effect and minimize the side effect of a drug. In this study, the magnetic lipid nanoparticles with an uptake ability by tumor cells were prepared dispersing ferroso-ferric oxide nanoparticles in aqueous phase using oleic acid (OA) as a dispersant, and following the solvent dispersion of lipid organic solution. The obtained nanoparticles with 200 nm volume average diameter and -30 mV surface zeta potential could be completely removed by external magnetic field from aqueous solution. Using doxorubicin (DOX) as a model drug, the drug-loaded magnetic lipid nanoparticles were investigated in detail, such as the effects of OA, drug and lipid content on volume average diameter, zeta potential, drug encapsulation efficiency, drug loading, and in vitro drug release. The drug loading capacity and encapsulation efficiency were enhanced with increasing drug or lipid content, reduced with increasing OA content. The in vitro drug release could be controlled by changing drug or lipid content. Cellular uptake by MCF-7 cells experiment presented the excellent internalization ability of the prepared magnetic lipid nanoparticles. These results evidenced that the present magnetic lipid nanoparticles have potential for targeting therapy of antitumor drugs. - Research highlights: → A simple solvent diffusion method was developed to prepare magnetic lipid nanoparticles. → The doxorubicin-loaded magnetic lipid nanoparticles could be controlled by preparation recipe. → Magnetic lipid nanoparticles had internalization ability into tumor cells.

  3. Development of flurbiprofen-loaded nanoparticles with a narrow size distribution using sucrose.

    Science.gov (United States)

    Oh, Dong Hoon; Yan, Yi-Dong; Kim, Dong Wuk; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2014-02-01

    A novel flurbiprofen-loaded nanoemulsion which gave uniform emulsion droplets with a narrow size distribution was previously reported to be prepared using membrane emulsification method. The purpose of this study is to develop a novel flurbiprofen-loaded nanoparticle with a narrow size distribution and improved bioavailability. The nanoparticle was prepared by solidifying nanoemulsion using sucrose as a carrier via spray drying method. Its physicochemical properties were investigated using SEM, DSC and PXRD. Furthermore, dissolution and bioavailability in rats were evaluated compared to a flurbiprofen-loaded commercial product. The flurbiprofen-loaded nanoparticles with flurbiprofen/sucrose/surfactant mixture (1/20/2, weight ratio) gave good solidification and no stickiness. They associated with about 70,000-fold improved drug solubility and had a mean size of about 300 nm with a narrow size distribution. Flurbiprofen was present in a changed amorphous state in these nanoparticles. Moreover, the nanoparticles gave significantly shorter Tmax, and higher AUC and Cmax of the drug compared to the commercial product (p flurbiprofen-loaded nanoparticles prepared with sucrose by the membrane emulsification and spray drying method would be a potential candidate for orally delivering poorly water-soluble flurbiprofen with enhanced bioavailability.

  4. In Vitro Comparative Study of Oxygen Plasma Treated Poly(Lactic⁻Co⁻Glycolic) (PLGA) Membranes and Supported Nanostructured Oxides for Guided Bone Regeneration Processes.

    Science.gov (United States)

    Torres-Lagares, Daniel; Castellanos-Cosano, Lizett; Serrera-Figallo, Maria-Angeles; López-Santos, Carmen; Barranco, Angel; Rodríguez-González-Elipe, Agustín; Gutierrez-Perez, Jose-Luis

    2018-05-08

    (1) Background: The use of physical barriers to prevent the invasion of gingival and connective tissue cells into bone cavities during the healing process is called guided bone regeneration. The objective of this in-vitro study was to compare the growth of human osteoblasts on Poly(Lactic⁻co⁻Glycolic) (PLGA) membranes modified with oxygen plasma and Hydroxyapatite (HA), silicon dioxide (SiO₂), and titanium dioxide (TiO₂) composite nanoparticles, respectively. (2) Methods: All the membranes received a common treatment with oxygen plasma and were subsequently treated with HA nanostructured coatings (n = 10), SiO₂ (n = 10) and TiO₂ (n = 10), respectively and a PLGA control membrane (n = 10). The assays were performed using the human osteoblast line MG-63 acquired from the Center for Scientific Instrumentation (CIC) from the University of Granada. The cell adhesion and the viability of the osteoblasts were analyzed by means of light-field microphotographs of each condition with the inverted microscope Axio Observer A1 (Carl Zeiss). For the determination of the mitochondrial energy balance, the MitoProbe™ JC-1 Assay Kit was employed. For the determination of cell growth and the morphology of adherent osteoblasts, two techniques were employed: staining with phalloidin-TRITC and staining with DAPI. (3) Results: The modified membranes that show osteoblasts with a morphology more similar to the control osteoblasts follow the order: PLGA/PO₂/HA > PLGA/PO₂/SiO₂ > PLGA/PO₂/TiO₂ > PLGA ( p membranes was observed as follows: PLGA/PO₂/SiO₂ > PLGA/PO₂/HA > PLGA/PO₂/TiO₂ > PLGA ( p membranes PLGA/PO₂/HA and PLGA/PO₂/SiO₂. (4) Conclusion: The membrane in which osteoblasts show characteristics more similar to the control osteoblasts is the PLGA/PO₂/HA, followed by the PLGA/PO₂/SiO₂.

  5. Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Mercedes G. Montalbán

    2018-02-01

    Full Text Available Curcumin, extracted from the rhizome of Curcuma longa, has been widely used in medicine for centuries due to its anti-inflammatory, anti-cancer, anti-oxidant and anti-microbial effects. However, its bioavailability during treatments is poor because of its low solubility in water, slow dissolution rate and rapid intestinal metabolism. For these reasons, improving the therapeutic efficiency of curcumin using nanocarriers (e.g., biopolymer nanoparticles has been a research focus, to foster delivery of the curcumin inside cells due to their small size and large surface area. Silk fibroin from the Bombyx mori silkworm is a biopolymer characterized by its biocompatibility, biodegradability, amphiphilic chemistry, and excellent mechanical properties in various material formats. These features make silk fibroin nanoparticles useful vehicles for delivering therapeutic drugs, such as curcumin. Curcumin-loaded silk fibroin nanoparticles were synthesized using two procedures (physical adsorption and coprecipitation more scalable than methods previously described using ionic liquids. The results showed that nanoparticle formulations were 155 to 170 nm in diameter with a zeta potential of approximately −45 mV. The curcumin-loaded silk fibroin nanoparticles obtained by both processing methods were cytotoxic to carcinogenic cells, while not decreasing viability of healthy cells. In the case of tumor cells, curcumin-loaded silk fibroin nanoparticles presented higher efficacy in cytotoxicity against neuroblastoma cells than hepatocarcinoma cells. In conclusion, curcumin-loaded silk fibroin nanoparticles constitute a biodegradable and biocompatible delivery system with the potential to treat tumors by local, long-term sustained drug delivery.

  6. Fluoride loaded polymeric nanoparticles for dental delivery.

    Science.gov (United States)

    Nguyen, Sanko; Escudero, Carlos; Sediqi, Nadia; Smistad, Gro; Hiorth, Marianne

    2017-06-15

    The overall aim of the present paper was to develop fluoride loaded nanoparticles based on the biopolymers chitosan, pectin, and alginate, for use in dental delivery. First, the preparation of nanoparticles in the presence of sodium fluoride (NaF) as the active ingredient by ionic gelation was investigated followed by an evaluation of their drug entrapment and release properties. Chitosan formed stable, spherical, and monodisperse nanoparticles in the presence of NaF and tripolyphoshate as the crosslinker, whereas alginate and pectin were not able to form any definite nanostructures in similar conditions. The fluoride loading capacity was found to be 33-113ppm, and the entrapment efficiency 3.6-6.2% for chitosan nanoparticles prepared in 0.2-0.4% (w/w) NaF, respectively. A steady increase in the fluoride release was observed for chitosan nanoparticles prepared in 0.2% NaF both in pH5 and 7 until it reached a maximum at time point 4h and maintained at this level for at least 24h. Similar profiles were observed for formulations prepared in 0.4% NaF; however the fluoride was released at a higher level at pH5. The low concentration, but continuous delivery of fluoride from the chitosan nanoparticles, with possible expedited release in acidic environment, makes these formulations highly promising as dental delivery systems in the protection against caries development. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability.

    Science.gov (United States)

    Hu, Yun; Hoerle, Reece; Ehrich, Marion; Zhang, Chenming

    2015-12-01

    Lipid-polymer hybrid nanoparticles (NPs), consisting of a polymeric core and a lipid shell, have been intensively examined as delivery systems for cancer drugs, imaging agents, and vaccines. For applications in vaccine particularly, the hybrid NPs need to be able to protect the enclosed antigens during circulation, easily be up-taken by dendritic cells, and possess good stability for prolonged storage. However, the influence of lipid composition on the performance of hybrid NPs has not been well studied. In this study, we demonstrate that higher concentrations of cholesterol in the lipid layer enable slower and more controlled antigen release from lipid-poly(lactide-co-glycolide) acid (lipid-PLGA) NPs in human serum and phosphate buffered saline (PBS). Higher concentrations of cholesterol also promoted in vitro cellular uptake of hybrid NPs, improved the stability of the lipid layer, and protected the integrity of the hybrid structure during long-term storage. However, stabilized hybrid structures of high cholesterol content tended to fuse with each other during storage, resulting in significant size increase and lowered cellular uptake. Additional experiments demonstrated that PEGylation of NPs could effectively minimize fusion-caused size increase after long term storage, leading to improved cellular uptake, although excessive PEGylation will not be beneficial and led to reduced improvement. This paper reports the engineering of the lipid layer that encloses a polymeric nanoparticle, which can be used as a carrier for drug and vaccine molecules for targeted delivery. We demonstrated that the concentration of cholesterol is critical for the stability and uptake of the hybrid nanoparticles by dendritic cells, a targeted cell for the delivery of immune effector molecules. However, we found that hybrid nanoparticles with high cholesterol concentration tend to fuse during storage resulting in larger particles with decreased cellular uptake. This problem is

  8. Characterization and Antiproliferative Activity of Nobiletin-Loaded Chitosan Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ana G. Luque-Alcaraz

    2012-01-01

    Full Text Available Nobiletin is a polymethoxyflavonoid with a remarkable antiproliferative effect. In order to overcome its low aqueous solubility and chemical instability, the use of nanoparticles as carriers has been proposed. This study explores the possibility of binding nobiletin to chitosan nanoparticles, as well as to evaluate their antiproliferative activity. The association and loading efficiencies are 69.1% and 7.0%, respectively. The formation of an imine bond between chitosan amine groups and the carbonyl group of nobiletin, via Schiff-base, is proposed. Nobiletin-loaded chitosan nanoparticles exhibit considerable inhibition (IC50=8 μg/mL of cancerous cells, revealing their great potential for applications in cancer chemotherapy.

  9. Induction of mucosal immune responses and protection of cattle against direct-contact challenge by intranasal delivery with foot-and-mouth disease virus antigen mediated by nanoparticles

    Directory of Open Access Journals (Sweden)

    Pan L

    2014-12-01

    Full Text Available Li Pan,1,2 Zhongwang Zhang,1,2 Jianliang Lv,1,2 Peng Zhou,1,2 Wenfa Hu,1,2 Yuzhen Fang,1,2 Haotai Chen,1,2 Xinsheng Liu,1,2 Junjun Shao,1,2 Furong Zhao,1,2 Yaozhong Ding,1,2 Tong Lin,1,2 Huiyun Chang,1,2 Jie Zhang,1,2 Yongguang Zhang,1,2 Yonglu Wang1,2 1State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS, Lanzhou, Gansu, People’s Republic of China; 2Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People’s Republic of China Abstract: The aim of this study was to enhance specific mucosal, systemic, and cell-mediated immunity and to induce earlier onset of protection against direct-contact challenge in cattle by intranasal delivery of a nanoparticle-based nasal vaccine against type A foot-and-mouth disease (FMD. In this study, two kinds of nanoparticle-based nasal vaccines against type A FMD were designed: (1 chitosan-coated poly(lactic-co-glycolic acid (PLGA loaded with plasmid DNA (Chi-PLGA-DNA and (2 chitosan-trehalose and inactivated foot-and-mouth disease virus (FMDV (Chi-Tre-Inactivated. Cattle were immunized by an intranasal route with nanoparticles and then challenged for 48 hours by direct contact with two infected donor cattle per pen. Donors were inoculated intradermally in the tongue 48 hours before challenge, with 0.2 mL cattle-passaged FMDV. Serological and mucosal antibody responses were evaluated, and virus excretion and the number of contact infections were quantified. FMDV-specific secretory immunoglobulin (IgA (sIgA antibodies in nasal washes were initially detected at 4 days postvaccination (dpv with two kinds of nanoparticles. The highest levels of sIgA expression were observed in nasal washes, at 10 dpv, from animals with Chi-PLGA-DNA nanoparticles, followed by animals immunized once by intranasal route with

  10. Immunological evaluation of chitosan nanoparticles loaded with tetanus toxoid.

    Science.gov (United States)

    Ghalavand, M; Saadati, M; Ahmadi, A; Abbasi, E; Salimian, J

    2018-01-01

    The present study was aimed at comparing tetanus toxoid (TT)‑loaded-chitosan nanoparticles with aluminum hydroxide as a common vaccine adjuvant. Tetanus remains to be a major public health problem. Nanoparticles have been extensively used as immune adjuvants. Tetanus toxoid (TT) encapsulated in chitosan nanoparticles is considered to be a promising tetanus vaccine candidate. TT‑loaded chitosan nanoparticles were prepared by the ionic gelation method. The nanoparticles were studied by SEM for their size and morphology. In vivo study was conducted to evaluate the immunity response using mice divided into 4 groups and injected with encapsulated toxoid. The immune responses were then measured using indirect ELISA. The purity and integrity of antigen were confirmed by SDS-PAGE electrophoresis. The size of nanoparticles was estimated at 100 nm. As a result, the IgG antibody levels were 1.9, 1.76, and 0.87 in chitosan nanoparticles, aluminum hydroxide, and TT alone groups, respectively. Also, the immune responses were significantly higher in immunized groups compared to control groups vaccinated with free adjuvant vaccines (p chitosan nanoparticles were reasonable. It enhanced the immune responses as much as aluminum hydroxide adjuvant does and thus may be a good alternative candidate (Tab. 1, Fig. 3, Ref. 16).

  11. Ameliorating Amyloid-β Fibrils Triggered Inflammation via Curcumin-Loaded Polymeric Nanoconstructs

    Directory of Open Access Journals (Sweden)

    Andrea Ameruoso

    2017-10-01

    Full Text Available Inflammation is a common hallmark in several diseases, including atherosclerosis, cancer, obesity, and neurodegeneration. In Alzheimer’s disease (AD, growing evidence directly correlates neuronal damage with inflammation of myeloid brain cells, such as microglia. Here, polymeric nanoparticles were engineered and characterized for the delivery of anti-inflammatory molecules to macrophages stimulated via direct incubation with amyloid-β fibers. 200 nm spherical polymeric nanoconstructs (SPNs and 1,000 nm discoidal polymeric nanoconstructs (DPNs were synthesized using poly(lactic-co-glycolic acid (PLGA, polyethylene glycol (PEG, and lipid chains as building blocks. First, the internalization propensity in macrophages of both nanoparticles was assessed via cytofluorimetric and confocal microscopy analyses, demonstrating that SPNs are by far more rapidly taken up as compared to DPNs (99.6 ± 0.11 vs 14.4 ± 0.06%, within 24 h. Then, Curcumin-loaded SPNs (Curc-SPNs were realized by encapsulating Curcumin, a natural anti-inflammatory molecule, within the PLGA core of SPNs. Finally, Curc-SPNs were shown to diminish up to 6.5-fold the production of pro-inflammatory cytokines—IL-1β; IL-6, and TNF-α—in macrophages stimulated via amyloid-β fibers. Although more sophisticated in vitro models and systematic analyses on the blood–brain barrier permeability are critically needed, these findings hold potential in the development of nanoparticles for modulating inflammation in AD.

  12. In vitro evaluation of the genotoxicity of a family of novel MeO-PEG-poly(D,L-lactic-co-glycolic acid)-PEG-OMe triblock copolymer and PLGA nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    He Lili; Yang Likai; Zhang Zhirong; Gong Tao; Deng Li; Sun Xun [Key Laboratory of Drug Targeting and Novel Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Gu Zhongwei, E-mail: xunsun22@gmail.co [National Engineering Research Center for Biomaterials, Engineering Research Center of Biomaterials, Sichuan University, Chengdu 610064 (China)

    2009-11-11

    Despite the booming development of nanoparticle materials for pharmaceutical applications, studies on their genotoxicity are few. In our previous efforts to develop an intravenous nanoparticle material, a family of novel monomethoxy(polyethylene glycol)-poly(D,L-lactic-co-glycolic acid)-monomethoxy (PELGE) polymers was synthesized. The cytotoxicity and genotoxicity of nine kinds of selected blank PELGE and PLGA (poly(D,L-lactic and glycolic acid)) nanoparticles were evaluated using methyl thiazolyl tetrazolium (MTT), micronucleus (MN) and sister chromatid exchange (SCE) assays with or without the addition of a metabolic activation system (S9 mix), using Chinese hamster ovary (CHO) cells. The cytotoxicity of nanoparticles exhibited a dose-dependent response, with a concentration of 5 mg ml{sup -1} being the turning point. The frequencies of MN observed in samples treated with various nanoparticles were not statistically different from those seen in the negative controls in the presence or absence of the S9 mix. Also, no cell cycle delay was observed. The numbers of SCE per cell observed in samples treated with five kinds of PELGE nanoparticles were significantly greater than those found in the negative controls with or without the S9 mix. The discrepancies found in the two assays suggest that the five kinds of nanoparticles may produce only a weakly clastogenic response.

  13. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications.

    Science.gov (United States)

    Tahir, Nayab; Madni, Asadullah; Balasubramanian, Vimalkumar; Rehman, Mubashar; Correia, Alexandra; Kashif, Prince Muhammad; Mäkilä, Ermei; Salonen, Jarno; Santos, Hélder A

    2017-11-25

    Lipid-polymer hybrid nanoparticles (LPHNPs) are emerging platforms for drug delivery applications. In the present study, methotrexate loaded LPHNPs consisted of PLGA and Lipoid S100 were fabricated by employing a single-step modified nanoprecipitation method combined with self-assembly. A three factor, three level Box Behnken design using Design-Expert ® software was employed to access the influence of three independent variables on the particle size, drug entrapment and percent drug release. The optimized formulation was selected through numeric optimization approach. The results were supported with the ANOVA analysis, regression equations and response surface plots. Transmission electron microscope images indicated the nanosized and spherical shape of the LPHNPs with fair size distribution. The nanoparticles ranged from 176 to 308nm, which increased with increased polymer concentration. The increase in polymer and lipid concentration also increased the drug entrapment efficiency. The in vitro drug release was in range 70.34-91.95% and the release mechanism follow the Higuchi model (R 2 =0.9888) and Fickian diffusion (n<0.5). The in vitro cytotoxicity assay and confocal microscopy of the optimized formulation demonstrate the good safety and better internalization of the LPHNPs. The cell antiproliferation showed the spatial and controlled action of the nanoformulation as compared to the plain drug solution. The results suggest that LPHNPs can be a promising delivery system envisioned to safe, stable and potentially controlled delivery of methotrexate to the cancer cells to achieve better therapeutic outcomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. pH-dependent antibacterial effects on oral microorganisms through pure PLGA implants and composites with nanosized bioactive glass.

    Science.gov (United States)

    Hild, Nora; Tawakoli, Pune N; Halter, Jonas G; Sauer, Bärbel; Buchalla, Wolfgang; Stark, Wendelin J; Mohn, Dirk

    2013-11-01

    Biomaterials made of biodegradable poly(α-hydroxyesters) such as poly(lactide-co-glycolide) (PLGA) are known to decrease the pH in the vicinity of the implants. Bioactive glass (BG) is being investigated as a counteracting agent buffering the acidic degradation products. However, in dentistry the question arises whether an antibacterial effect is rather obtained from pure PLGA or from BG/PLGA composites, as BG has been proved to be antimicrobial. In the present study the antimicrobial properties of electrospun PLGA and BG45S5/PLGA fibres were investigated using human oral bacteria (specified with mass spectrometry) incubated for up to 24 h. BG45S5 nanoparticles were prepared by flame spray synthesis. The change in colony-forming units (CFU) of the bacteria was correlated with the pH of the medium during incubation. The morphology and structure of the scaffolds as well as the appearance of the bacteria were followed bymicroscopy. Additionally, we studied if the presence of BG45S5 had an influence on the degradation speed of the polymer. Finally, it turned out that the pH increase induced by the presence of BG45S5 in the scaffold did not last long enough to show a reduction in CFU. On the contrary, pure PLGA demonstrated antibacterial properties that should be taken into consideration when designing biomaterials for dental applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction

    International Nuclear Information System (INIS)

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi

    2015-01-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO 3 aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20–30 nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50 wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. - Highlights: • Silver mirror reaction was used to prepare nanofibers loaded with silver nanoparticles. • The SAED patterns demonstrated the monocrystallinity of silver nanocrystals. • The XRD results showed nanoparticles tended to be face-centered cubic single silver. • The material showed excellent antimicrobial activities against bacteria and fungi

  16. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration.

    Science.gov (United States)

    Ranjbar-Mohammadi, Marziyeh; Zamani, M; Prabhakaran, M P; Bahrami, S Hajir; Ramakrishna, S

    2016-01-01

    Controlled drug release is a process in which a predetermined amount of drug is released for longer period of time, ranging from days to months, in a controlled manner. In this study, novel drug delivery devices were fabricated via blend electrospinning and coaxial electrospinning using poly lactic glycolic acid (PLGA), gum tragacanth (GT) and tetracycline hydrochloride (TCH) as a hydrophilic model drug in different compositions and their performance as a drug carrier scaffold was evaluated. Scanning electron microscopy (SEM) results showed that fabricated PLGA, blend PLGA/GT and core shell PLGA/GT nanofibers had a smooth and bead-less morphology with the diameter ranging from 180 to 460 nm. Drug release studies showed that both the fraction of GT within blend nanofibers and the core-shell structure can effectively control TCH release rate from the nanofibrous membranes. By incorporation of TCH into core-shell nanofibers, drug release was sustained for 75 days with only 19% of burst release within the first 2h. The prolonged drug release, together with proven biocompatibility, antibacterial and mechanical properties of drug loaded core shell nanofibers make them a promising candidate to be used as drug delivery system for periodontal diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5.

    Science.gov (United States)

    Bahal, Raman; McNeer, Nicole Ali; Ly, Danith H; Saltzman, W Mark; Glazer, Peter M

    2013-01-01

    The development of a new class of peptide nucleic acids (PNAs), i.e., gamma PNAs (γPNAs), creates the need for a general and effective method for its delivery into cells for regulating gene expression in mammalian cells. Here we report the antisense activity of a recently developed hydrophilic and biocompatible diethylene glycol (miniPEG)-based gamma peptide nucleic acid called MPγPNAs via its delivery by poly(lactide-co-glycolide) (PLGA)-based nanoparticle system. We show that MPγPNA oligomers designed to bind to the selective region of chemokine receptor 5 (CC R5) transcript, induce potent and sequence-specific antisense effects as compared with regular PNA oligomers. In addition, PLGA nanoparticle delivery of MPγPNAs is not toxic to the cells. The findings reported in this study provide a combination of γPNA technology and PLGA-based nanoparticle delivery method for regulating gene expression in live cells via the antisense mechanism.

  18. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery

    Science.gov (United States)

    Tan, Qi; Liu, Weidong; Guo, Chenyu; Zhai, Guangxi

    2011-01-01

    Background The purpose of this study was to investigate lecithin-chitosan nanoparticles as a topical delivery system for quercetin. Methods Tocopheryl propylene glycol succinate was chosen to be the surfactant for the nanosystem. The mean particle size of the nanoparticles was 95.3 nm, and the entrapment efficiency and drug loading for quercetin were 48.5% and 2.45%, respectively. Topical delivery in vitro and in vivo of the quercetin-loaded nanoparticles was evaluated using quercetin propylene glycol solution as the control. Results Compared with quercetin solution, the quercetin-loaded nanoparticles showed higher permeation ability, and significantly increased accumulation of quercetin in the skin, especially in the epidermis. Microstructure observation of the skin surface after administration indicated that the interaction between ingredients of the nanoparticles and the skin surface markedly changed the morphology of the stratum corneum and disrupted the corneocyte layers, thus facilitating the permeation and accumulation of quercetin in skin. Conclusion Lecithin-chitosan nanoparticles are a promising carrier for topical delivery of quercetin. PMID:21904452

  19. In Vitro Comparative Study of Oxygen Plasma Treated Poly(Lactic–Co–Glycolic (PLGA Membranes and Supported Nanostructured Oxides for Guided Bone Regeneration Processes

    Directory of Open Access Journals (Sweden)

    Daniel Torres-Lagares

    2018-05-01

    Full Text Available (1 Background: The use of physical barriers to prevent the invasion of gingival and connective tissue cells into bone cavities during the healing process is called guided bone regeneration. The objective of this in-vitro study was to compare the growth of human osteoblasts on Poly(Lactic–co–Glycolic (PLGA membranes modified with oxygen plasma and Hydroxyapatite (HA, silicon dioxide (SiO2, and titanium dioxide (TiO2 composite nanoparticles, respectively. (2 Methods: All the membranes received a common treatment with oxygen plasma and were subsequently treated with HA nanostructured coatings (n = 10, SiO2 (n = 10 and TiO2 (n = 10, respectively and a PLGA control membrane (n = 10. The assays were performed using the human osteoblast line MG-63 acquired from the Center for Scientific Instrumentation (CIC from the University of Granada. The cell adhesion and the viability of the osteoblasts were analyzed by means of light-field microphotographs of each condition with the inverted microscope Axio Observer A1 (Carl Zeiss. For the determination of the mitochondrial energy balance, the MitoProbe™ JC-1 Assay Kit was employed. For the determination of cell growth and the morphology of adherent osteoblasts, two techniques were employed: staining with phalloidin-TRITC and staining with DAPI. (3 Results: The modified membranes that show osteoblasts with a morphology more similar to the control osteoblasts follow the order: PLGA/PO2/HA > PLGA/PO2/SiO2 > PLGA/PO2/TiO2 > PLGA (p < 0.05. When analysing the cell viability, a higher percentage of viable cells bound to the membranes was observed as follows: PLGA/PO2/SiO2 > PLGA/PO2/HA > PLGA/PO2/TiO2 > PLGA (p < 0.05, with a better energy balance of the cells adhered to the membranes PLGA/PO2/HA and PLGA/PO2/SiO2. (4 Conclusion: The membrane in which osteoblasts show characteristics more similar to the control osteoblasts is the PLGA/PO2/HA, followed by the PLGA/PO2/SiO2.

  20. Synthesis of Pyrimethanil-Loaded Mesoporous Silica Nanoparticles and Its Distribution and Dissipation in Cucumber Plants.

    Science.gov (United States)

    Zhao, Pengyue; Cao, Lidong; Ma, Dukang; Zhou, Zhaolu; Huang, Qiliang; Pan, Canping

    2017-05-16

    Mesoporous silica nanoparticles are used as pesticide carries in plants, which has been considered as a novel method to reduce the indiscriminate use of conventional pesticides. In the present work, mesoporous silica nanoparticles with particle diameters of 200-300 nm were synthesized in order to obtain pyrimethanil-loaded nanoparticles. The microstructure of the nanoparticles was observed by scanning electron microscopy. The loading content of pyrimethanil-loaded nanoparticles was investigated. After treatment on cucumber leaves, the concentrations of pyrimethanil were determined in different parts of cucumber over a period of 48 days using high performance liquid chromatography tandem mass spectrometry. It was shown that the pyrimethanil-loaded mesoporous silica nanoparticles might be more conducive to acropetal, rather than basipetal, uptake, and the dosage had almost no effect on the distribution and dissipation rate in cucumber plants. The application of the pesticide-loaded nanoparticles in leaves had a low risk of pyrimethanil accumulating in the edible part of the plant.

  1. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi, E-mail: yangdz@mail.buct.edu.cn

    2015-06-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO{sub 3} aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20–30 nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50 wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. - Highlights: • Silver mirror reaction was used to prepare nanofibers loaded with silver nanoparticles. • The SAED patterns demonstrated the monocrystallinity of silver nanocrystals. • The XRD results showed nanoparticles tended to be face-centered cubic single silver. • The material showed excellent antimicrobial activities against bacteria and fungi.

  2. Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection.

    Science.gov (United States)

    Deng, Yibin; Mathaes, Roman; Winter, Gerhard; Engert, Julia

    2014-10-15

    Epidermal powder immunisation (EPI) is being investigated as a promising needle-free delivery methods for vaccination. The objective of this work was to prepare a nanoparticles-in-microparticles (nano-in-micro) system, integrating the advantages of nanoparticles and microparticles into one vaccine delivery system for epidermal powder immunisation. Cationic mesoporous silica nanoparticles (MSNP-NH2) were prepared and loaded with ovalbumin as a model antigen. Loading was driven by electrostatic interactions. Ovalbumin-loaded silica nanoparticles were subsequently formulated into sugar-based microparticles by spray-freeze-drying. The obtained microparticles meet the size requirement for EPI. Confocal microscopy was used to demonstrate that the nanoparticles are homogeneously distributed in the microparticles. Furthermore, the silica nanoparticles in the dry microparticles can be re-dispersed in aqueous solution showing no aggregation. The recovered ovalbumin shows integrity compared to native ovalbumin. The present nano-in-micro system allows (1) nanoparticles to be immobilized and finely distributed in microparticles, (2) microparticle formation and (3) re-dispersion of nanoparticles without subsequent aggregation. The nanoparticles inside microparticles can (1) adsorb proteins to cationic shell/surface voids in spray-dried products without detriment to ovalbumin stability, (2) deliver antigens in nano-sized modes to allow recognition by the immune system. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Synthesis of protein-coated biocompatible methotrexate-loaded PLA-PEG-PLA nanoparticles for breast cancer treatment

    Directory of Open Access Journals (Sweden)

    Salam Massadeh

    2016-06-01

    Full Text Available Background: PLA-PEG-PLA triblock polymer nanoparticles are promising tools for targeted dug delivery. The main aim in designing polymeric nanoparticles for drug delivery is achieving a controlled and targeted release of a specific drug at the therapeutically optimal rate and choosing a suitable preparation method to encapsulate the drug efficiently, which depends mainly on the nature of the drug (hydrophilic or hydrophobic. In this study, methotrexate (MTX-loaded nanoparticles were prepared by the double emulsion method. Method: Biodegradable polymer polyethylene glycol-polylactide acid tri-block was used with poly(vinyl alcohol as emulsifier. The resulting methotrexate polymer nanoparticles were coated with bovine serum albumin in order to improve their biocompatibility. This study focused on particle size distribution, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release at various concentrations of PVA (0.5%, 1%, 2%, and 3%. Results: Reduced particle size of methotrexate-loaded nanoparticles was obtained using lower PVA concentrations. Enhanced encapsulation efficiency and loading capacity was obtained using 1% PVA. FT-IR characterization was conducted for the void polymer nanoparticles and for drug-loaded nanoparticles with methotrexate, and the protein-coated nanoparticles in solid state showed the structure of the plain PEG-PLA and the drug-loaded nanoparticles with methotrexate. The methotrexate-loaded PLA-PEG-PLA nanoparticles have been studied in vitro; the drug release, drug loading, and yield are reported. Conclusion: The drug release profile was monitored over a period of 168 hours, and was free of burst effect before the protein coating. The results obtained from this work are promising; this work can be taken further to develop MTX based therapies.

  4. Synthesis of protein-coated biocompatible methotrexate-loaded PLA-PEG-PLA nanoparticles for breast cancer treatment

    Science.gov (United States)

    Massadeh, Salam; Alaamery, Manal; Al-Qatanani, Shatha; Alarifi, Saqer; Bawazeer, Shahad; Alyafee, Yusra

    2016-01-01

    Background PLA-PEG-PLA triblock polymer nanoparticles are promising tools for targeted dug delivery. The main aim in designing polymeric nanoparticles for drug delivery is achieving a controlled and targeted release of a specific drug at the therapeutically optimal rate and choosing a suitable preparation method to encapsulate the drug efficiently, which depends mainly on the nature of the drug (hydrophilic or hydrophobic). In this study, methotrexate (MTX)-loaded nanoparticles were prepared by the double emulsion method. Method Biodegradable polymer polyethylene glycol-polylactide acid tri-block was used with poly(vinyl alcohol) as emulsifier. The resulting methotrexate polymer nanoparticles were coated with bovine serum albumin in order to improve their biocompatibility. This study focused on particle size distribution, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release at various concentrations of PVA (0.5%, 1%, 2%, and 3%). Results Reduced particle size of methotrexate-loaded nanoparticles was obtained using lower PVA concentrations. Enhanced encapsulation efficiency and loading capacity was obtained using 1% PVA. FT-IR characterization was conducted for the void polymer nanoparticles and for drug-loaded nanoparticles with methotrexate, and the protein-coated nanoparticles in solid state showed the structure of the plain PEG-PLA and the drug-loaded nanoparticles with methotrexate. The methotrexate-loaded PLA-PEG-PLA nanoparticles have been studied in vitro; the drug release, drug loading, and yield are reported. Conclusion The drug release profile was monitored over a period of 168 hours, and was free of burst effect before the protein coating. The results obtained from this work are promising; this work can be taken further to develop MTX based therapies.

  5. Essential oil-loaded lipid nanoparticles for wound healing.

    Science.gov (United States)

    Saporito, Francesca; Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Boselli, Cinzia; Icaro Cornaglia, Antonia; Mannucci, Barbara; Grisoli, Pietro; Vigani, Barbara; Ferrari, Franca

    2018-01-01

    Chronic wounds and severe burns are diseases responsible for severe morbidity and even death. Wound repair is a crucial process and tissue regeneration enhancement and infection prevention are key factors to minimize pain, discomfort, and scar formation. The aim of this work was the development of lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers [NLC]), to be loaded with eucalyptus or rosemary essential oils and to be used, as medical devices, to enhance healing of skin wounds. Lipid nanoparticles were based on natural lipids: cocoa butter, as solid lipid, and olive oil or sesame oil, as liquid lipids. Lecithin was chosen as surfactant to stabilize nanoparticles and to prevent their aggregation. The systems were prepared by high shear homogenization followed by ultrasound application. Nanoparticles were characterized for physical-chemical properties, bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward normal human dermal fibroblasts. Antimicrobial activity of nanoparticles was evaluated against two reference microbial strains, one of Staphylococcus aureus , the other of Streptococcus pyogenes . Finally, the capability of nanoparticles to promote wound healing in vivo was evaluated on a rat burn model. NLC based on olive oil and loaded with eucalyptus oil showed appropriate physical-chemical properties, good bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward fibroblasts, associated to antimicrobial properties. Moreover, the in vivo results evidenced the capability of these NLC to enhance the healing process. Olive oil, which is characterized by a high content of oleic acid, proved to exert a synergic effect with eucalyptus oil with respect to antimicrobial activity and wound repair promotion.

  6. Biotin-Conjugated Multilayer Poly [D,L-lactide-co-glycolide]-Lecithin-Polyethylene Glycol Nanoparticles for Targeted Delivery of Doxorubicin.

    Science.gov (United States)

    Dai, Yu; Xing, Han; Song, Fuling; Yang, Yue; Qiu, Zhixia; Lu, Xiaoyu; Liu, Qi; Ren, Shuangxia; Chen, Xijing; Li, Ning

    2016-09-01

    Multilayer nanoparticle combining the merits of liposome and polymer nanoparticle has been designed for the targeted delivery of doxorubicin (DOX) in cancer treatment. In this study, DOX-PLGA-lecithin-PEG-biotin nanoparticles (DOX-PLPB-NPs) were fabricated and functionalized with biotin for specific tumor targeting. Under the transmission electron microscopy observation, the lipid layer was found to be coated on the polymer core. The physical characteristics of PLPB-NPs were also evaluated. The confocal laser scanning microscopy confirmed the cellular uptake of nanoparticles and targeted delivery PLPB-NPs. The in vitro release experiment demonstrated a pH-depending release of DOX from drug-loaded PLPB-NPs. Cytotoxicity studies in HepG2 cells and in vivo antitumor experiment in tumor-bearing mice both proved DOX-PLPB-NPs showed the best inhibition effect of tumor proliferation. In biodistribution studies, DOX-PLPB-NPs showed a higher DOX concentration than free DOX and DOX-PLGA-lecithin-PEG nanoparticles (DOX-PLP-NPs) in tumor site, especially in 24 h, and the lowest DOX level in normal organs. The results were coincident with the strongest antitumor ability showed among in vivo antitumor experiment. Histopathology analysis demonstrated that DOX-PLPB-NPs exhibited the strongest antitumor ability and lowest cardiotoxicity. In brief, the PLPB-NPs were proved to be an efficient delivery system for tumor-targeting treatment. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization.

    Science.gov (United States)

    Grumezescu, V; Holban, A M; Grumezescu, A M; Socol, G; Ficai, A; Vasile, B S; Truscă, R; Bleotu, C; Lazar, V; Chifiriuc, C M; Mogosanu, G D

    2014-09-01

    Due to their persistence and resistance to the current therapeutic approaches, Staphylococcus aureus biofilm-associated infections represent a major cause of morbidity and mortality in the hospital environment. Since (+)-usnic acid (UA), a secondary lichen metabolite, possesses antimicrobial activity against Gram-positive cocci, including S. aureus, the aim of this study was to load magnetic polylactic-co-glycolic acid-polyvinyl alcohol (PLGA-PVA) microspheres with UA, then to obtain thin coatings using matrix-assisted pulsed laser evaporation and to quantitatively assess the capacity of the bio-nano-active modified surface to control biofilm formation by S. aureus, using a culture-based assay. The UA-loaded microspheres inhibited both the initial attachment of S. aureus to the coated surfaces, as well as the development of mature biofilms. In vitro bioevalution tests performed on the fabricated thin films revealed great biocompatibility, which may endorse them as competitive candidates for the development of improved non-toxic surfaces resistant to S. aureus colonization and as scaffolds for stem cell cultivation and tissue engineering.

  8. Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization

    International Nuclear Information System (INIS)

    Grumezescu, V; Grumezescu, A M; Ficai, A; Vasile, B S; Holban, A M; Lazar, V; Chifiriuc, C M; Socol, G; Truscă, R; Bleotu, C; Mogosanu, G D

    2014-01-01

    Due to their persistence and resistance to the current therapeutic approaches, Staphylococcus aureus biofilm-associated infections represent a major cause of morbidity and mortality in the hospital environment. Since (+)-usnic acid (UA), a secondary lichen metabolite, possesses antimicrobial activity against Gram-positive cocci, including S. aureus, the aim of this study was to load magnetic polylactic-co-glycolic acid-polyvinyl alcohol (PLGA-PVA) microspheres with UA, then to obtain thin coatings using matrix-assisted pulsed laser evaporation and to quantitatively assess the capacity of the bio-nano-active modified surface to control biofilm formation by S. aureus, using a culture-based assay. The UA-loaded microspheres inhibited both the initial attachment of S. aureus to the coated surfaces, as well as the development of mature biofilms. In vitro bioevalution tests performed on the fabricated thin films revealed great biocompatibility, which may endorse them as competitive candidates for the development of improved non-toxic surfaces resistant to S. aureus colonization and as scaffolds for stem cell cultivation and tissue engineering. (paper)

  9. Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization

    Energy Technology Data Exchange (ETDEWEB)

    Grumezescu, V; Grumezescu, A M; Ficai, A; Vasile, B S [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu Street no 1-7, 011061 Bucharest (Romania); Holban, A M; Lazar, V; Chifiriuc, C M [Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Aleea Portocalelor 1-3, Sector 5, 77206-Bucharest (Romania); Socol, G [Lasers Department, Plasma and Radiation Physics, National Institute for Lasers, PO Box MG-36, Bucharest-Magurele (Romania); Truscă, R [Metav SA - CD SA, 31 Rosetti Str., 020015 Bucharest (Romania); Bleotu, C [Stefan S Nicolau Institute of Virology, Bucharest (Romania); Mogosanu, G D, E-mail: grumezescu@yahoo.com [Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 PetruRareş Street, 200349 Craiova (Romania)

    2014-09-01

    Due to their persistence and resistance to the current therapeutic approaches, Staphylococcus aureus biofilm-associated infections represent a major cause of morbidity and mortality in the hospital environment. Since (+)-usnic acid (UA), a secondary lichen metabolite, possesses antimicrobial activity against Gram-positive cocci, including S. aureus, the aim of this study was to load magnetic polylactic-co-glycolic acid-polyvinyl alcohol (PLGA-PVA) microspheres with UA, then to obtain thin coatings using matrix-assisted pulsed laser evaporation and to quantitatively assess the capacity of the bio-nano-active modified surface to control biofilm formation by S. aureus, using a culture-based assay. The UA-loaded microspheres inhibited both the initial attachment of S. aureus to the coated surfaces, as well as the development of mature biofilms. In vitro bioevalution tests performed on the fabricated thin films revealed great biocompatibility, which may endorse them as competitive candidates for the development of improved non-toxic surfaces resistant to S. aureus colonization and as scaffolds for stem cell cultivation and tissue engineering. (paper)

  10. Critical solvent properties affecting the particle formation process and characteristics of celecoxib-loaded PLGA microparticles via spray-drying

    DEFF Research Database (Denmark)

    Wan, Feng; Bohr, Adam; Maltesen, Morten Jonas

    2013-01-01

    ) microparticles prepared by spray-drying. METHODS: Binary mixtures of acetone and methanol at different molar ratios were applied to dissolve celecoxib and PLGA prior to spray-drying. The resulting microparticles were characterized with respect to morphology, texture, surface chemistry, solid state properties...... and drug release profile. The evaporation profiles of the feed solutions were investigated using thermogravimetric analysis (TGA). RESULTS: Spherical PLGA microparticles were obtained, irrespectively of the solvent composition. The particle size and surface chemistry were highly dependent on the solvent...

  11. Evaluation of self-assembled HCPT-loaded PEG-b-PLA nanoparticles by comparing with HCPT-loaded PLA nanoparticles.

    Science.gov (United States)

    Yang, Xiangrui; Wu, Shichao; Wang, Yange; Li, Yang; Chang, Di; Luo, Yin; Ye, Shefang; Hou, Zhenqing

    2014-12-01

    We present a dialysis technique to prepare the 10-hydroxycamptothecin (HCPT)-loaded nanoparticles (NPs) using methoxypolyethylene glycol-poly(D,L-lactide) (PEG-b-PLA) and PLA, respectively. Both HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs were characterized by differential scanning calorimetry (DSC), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that the HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively. The HCPT-loaded PEG-b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs. The HCPT-loaded PEG-b-PLA NPs presented higher cytotoxicity than the HCPT-loaded PLA NPs. These results suggested that the HCPT-loaded PEG-b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs.

  12. Surface analysis of PEGylated nano-shields on nanoparticles installed by hydrophobic anchors

    DEFF Research Database (Denmark)

    Ebbesen, M F; Whitehead, Bradley Joseph; Gonzalez, Borja Ballarin

    2013-01-01

    and cellular interactions. Methods: Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were prepared with a hydrophilic PEGylated "nano-shield" inserted at different levels by hydrophobic anchoring using either a phospholipid-PEG conjugate or the copolymer PLGA-block-PEG by an emulsification/diffusion method....... Surface and bulk analysis was performed including X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance spectroscopy (NMR) and zeta potential. Cellular uptake was investigated in RAW 264.7 macrophages by flow cytometry. Results: Sub-micron nanoparticles were formed and the combination of (NMR...

  13. Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiang Wenqi

    2008-04-01

    Full Text Available Abstract Background It is expected that prolonged circulation of anticancer drugs will increase their anticancer activity while decreasing their toxic side effects. The purpose of this study was to prepare 5-fluorouracil (5-FU loaded block copolymers, with poly(γ-benzyl-L-glutamate (PBLG as the hydrophobic block and poly(ethylene glycol (PEG as the hydrophilic block, and then examine the 5-FU release characteristics, pharmacokinetics, and anticancer effects of this novel compound. Methods 5-FU loaded PEG-PBLG (5-FU/PEG-PBLG nanoparticles were prepared by dialysis and then scanning electron microscopy (SEM and transmission electron microscopy (TEM were used to observe the shape and size of the nanoparticles, and ultraviolet spectrophotometry was used to evaluate the 5-FU in vitro release characteristics. The pharmacokinetic parameters of 5-FU/PEG-PBLG nanoparticles in rabbit plasma were determined by measuring the 5-FUby high-performance liquid chromatography (HPLC. To study in vivo effects, LoVo cells (human colon cancer cell line or Tca8113 cells (human oral squamous cell carcinoma cell line were implanted in BALB/c nude mice that were subsequently treated with 5-FU or 5-FU/PEG-PBLG nanospheres. Results 5-FU/PEG-PBLG nanoparticles had a core-shell spherical structure with a diameter of 200 nm and a shell thickness of 30 nm. The drug loading capacity was 27.1% and the drug encapsulation was 61.5%. Compared with 5-FU, 5-FU/PEG-PBLG nanoparticles had a longer elimination half-life (t1/2, 33.3 h vs. 5 min, lower peak concentration (C, 4563.5 μg/L vs. 17047.3 μg/L, and greater distribution volume (VD, 0.114 L vs. 0.069 L. Compared with a blank control, LoVo cell xenografts and Tca8113 cell xenografts treated with 5-FU or 5-FU/PEG-PBLG nanoparticles grew slower and had prolonged tumor doubling times. 5-FU/PEG-PBLG nanoparticles showed greater inhibition of tumor growth than 5-FU (p 0.05. Conclusion In our model system, 5-FU/PEG-PBLG nanoparticles

  14. Synthesis and Characterization of Quantum Dot-Loaded Poly(lactic-co-glycolic) Acid Nanocomposite Fibers by an Electrospinning Process.

    Science.gov (United States)

    Ankireddy, Seshadri Reddy; Kim, Jongsung

    2017-04-01

    Poly(lactic-co-glycolic) acid (PLGA) is one of the most successfully developed biodegradable polymers. PLGA is a copolymer of polylactic and glycolic acid. In this work, quantum dot (QD)-loaded PLGA nanofibers were fabricated via a simple one-step electrospinning process. The surface morphology of the fibers was characterized by scanning electron microscopy (SEM). It was shown that the PLGA nanofibers had both smooth and rough surfaces with an average fiber diameter of 150 ± 25 nm and 350 ± 60 nm for the PLGA and QD-loaded PLGA nanofibers, respectively. The needle size, applied voltage, and solvent flow rate in the syringe were maintained at 23 G, 20 kV, and 1.5 mL/h, respectively. The SEM analysis showed that nanofibers with a very thin and uniform size were formed and the InP/ZnS QDs were homogeneously loaded into the PLGA nanofiber matrix. The thermal properties of the PLGA-QD nanofibers were explored by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The surface chemical structure and functionalities were characterized by Fourier transform infrared (FTIR) spectroscopy and X-ray powder diffraction (XRPD).

  15. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres.

    Science.gov (United States)

    Andhariya, Janki V; Choi, Stephanie; Wang, Yan; Zou, Yuan; Burgess, Diane J; Shen, Jie

    2017-03-30

    The objective of the present study was to develop a discriminatory and reproducible accelerated release testing method for naltrexone loaded parenteral polymeric microspheres. The commercially available naltrexone microsphere product (Vivitrol ® ) was used as the testing formulation in the in vitro release method development, and both sample-and-separate and USP apparatus 4 methods were investigated. Following an in vitro drug stability study, frequent media replacement and addition of anti-oxidant in the release medium were used to prevent degradation of naltrexone during release testing at "real-time" (37°C) and "accelerated" (45°C), respectively. The USP apparatus 4 method was more reproducible than the sample-and-separate method. In addition, the accelerated release profile obtained using USP apparatus 4 had a shortened release duration (within seven days), and good correlation with the "real-time" release profile. Lastly, the discriminatory ability of the developed accelerated release method was assessed using compositionally equivalent naltrexone microspheres with different release characteristics. The developed accelerated USP apparatus 4 release method was able to detect differences in the release characteristics of the prepared naltrexone microspheres. Moreover, a linear correlation was observed between the "real-time" and accelerated release profiles of all the formulations investigated, suggesting that the release mechanism(s) may be similar under both conditions. These results indicate that the developed accelerated USP apparatus 4 method has the potential to be an appropriate fast quality control tool for long-acting naltrexone PLGA microspheres. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Intranasal delivery of cationic PLGA nano/microparticles-loaded FMDV DNA vaccine encoding IL-6 elicited protective immunity against FMDV challenge.

    Directory of Open Access Journals (Sweden)

    Gang Wang

    Full Text Available Mucosal vaccination has been demonstrated to be an effective means of eliciting protective immunity against aerosol infections of foot and mouth disease virus (FMDV and various approaches have been used to improve mucosal response to this pathogen. In this study, cationic PLGA (poly(lactide-co-glycolide nano/microparticles were used as an intranasal delivery vehicle as a means administering FMDV DNA vaccine encoding the FMDV capsid protein and the bovine IL-6 gene as a means of enhancing mucosal and systemic immune responses in animals. Three eukaryotic expression plasmids with or without bovine IL-6 gene (pc-P12A3C, pc-IL2AP12A3C and pc-P12AIL3C were generated. The two latter plasmids were designed with the IL-6 gene located either before or between the P12A and 3C genes, respectively, as a means of determining if the location of the IL-6 gene affected capsid assembly and the subsequent immune response. Guinea pigs and rats were intranasally vaccinated with the respective chitosan-coated PLGA nano/microparticles-loaded FMDV DNA vaccine formulations. Animals immunized with pc-P12AIL3C (followed by animals vaccinated with pc-P12A3C and pc-IL2AP12A3C developed the highest levels of antigen-specific serum IgG and IgA antibody responses and the highest levels of sIgA (secretory IgA present in mucosal tissues. However, the highest levels of neutralizing antibodies were generated in pc-IL2AP12A3C-immunized animals (followed by pc-P12AIL3C- and then in pc-P12A3C-immunized animals. pc-IL2AP12A3C-immunized animals also developed stronger cell mediated immune responses (followed by pc-P12AIL3C- and pc-P12A3C-immunized animals as evidenced by antigen-specific T-cell proliferation and expression levels of IFN-γ by both CD4+ and CD8+ splenic T cells. The percentage of animals protected against FMDV challenge following immunizations with pc-IL2AP12A3C, pc-P12AIL3C or pc-P12A3C were 3/5, 1/5 and 0/5, respectively. These data suggested that intranasal delivery

  17. Near-infrared fluorescent aza-BODIPY dye-loaded biodegradable polymeric nanoparticles for optical cancer imaging

    International Nuclear Information System (INIS)

    Hamon, Casey L.; Dorsey, Christopher L.; Özel, Tuğba; Barnes, Eugenia M.; Hudnall, Todd W.; Betancourt, Tania

    2016-01-01

    Nanoparticles are being readily investigated as carriers for the delivery of imaging and therapeutic agents for the detection, monitoring, and treatment of cancer and other diseases. In the present work, the preparation of biodegradable polymeric nanoparticles loaded with a near-infrared fluorescent aza-boron dipyrromethene (NIR-BODIPY) derivative, and their use as contrast agents for optical imaging in cancer are described. Nanoparticles were prepared by nanoprecipitation of amphiphilic block copolymers of poly(lactic acid) and poly(ethylene glycol). The size, morphology, dye loading, spectral properties, quantum yield, cytocompatibility, and in vitro NIR imaging potential of the nanoparticles in breast and ovarian cancer cells were evaluated. Spherical nanoparticles of 30–70 nm in diameter were loaded with 0.73 w/w% BODIPY derivative. At this loading, the dye presented a fluorescence quantum yield in the same order of magnitude as in solution. Nanoparticle suspensions at concentrations up to 580 μg/mL were cytocompatible to breast (MDA-MB-231) and ovarian (SKOV-3 and Caov-3) cancer cells after a four-hour incubation period. Fluorescence microscopy images demonstrated the ability of the nanoparticles to act as imaging agents in all three cell lines in as little as 1 hour. The results shown indicate the potential of these NIR-BODIPY-loaded nanoparticles as contrast agents for near-infrared optical imaging in cancer.Graphical abstract

  18. Near-infrared fluorescent aza-BODIPY dye-loaded biodegradable polymeric nanoparticles for optical cancer imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hamon, Casey L.; Dorsey, Christopher L. [Texas State University, Department of Chemistry and Biochemistry (United States); Özel, Tuğba [Texas State University, Materials Science, Engineering, and Commercialization Program (United States); Barnes, Eugenia M.; Hudnall, Todd W.; Betancourt, Tania, E-mail: tb26@txstate.edu [Texas State University, Department of Chemistry and Biochemistry (United States)

    2016-07-15

    Nanoparticles are being readily investigated as carriers for the delivery of imaging and therapeutic agents for the detection, monitoring, and treatment of cancer and other diseases. In the present work, the preparation of biodegradable polymeric nanoparticles loaded with a near-infrared fluorescent aza-boron dipyrromethene (NIR-BODIPY) derivative, and their use as contrast agents for optical imaging in cancer are described. Nanoparticles were prepared by nanoprecipitation of amphiphilic block copolymers of poly(lactic acid) and poly(ethylene glycol). The size, morphology, dye loading, spectral properties, quantum yield, cytocompatibility, and in vitro NIR imaging potential of the nanoparticles in breast and ovarian cancer cells were evaluated. Spherical nanoparticles of 30–70 nm in diameter were loaded with 0.73 w/w% BODIPY derivative. At this loading, the dye presented a fluorescence quantum yield in the same order of magnitude as in solution. Nanoparticle suspensions at concentrations up to 580 μg/mL were cytocompatible to breast (MDA-MB-231) and ovarian (SKOV-3 and Caov-3) cancer cells after a four-hour incubation period. Fluorescence microscopy images demonstrated the ability of the nanoparticles to act as imaging agents in all three cell lines in as little as 1 hour. The results shown indicate the potential of these NIR-BODIPY-loaded nanoparticles as contrast agents for near-infrared optical imaging in cancer.Graphical abstract.

  19. Development and mechanistic insight into enhanced cytotoxic potential of hyaluronic acid conjugated nanoparticles in CD44 overexpressing cancer cells.

    Science.gov (United States)

    Saneja, Ankit; Nayak, Debasis; Srinivas, M; Kumar, Amit; Khare, Vaibhav; Katoch, Archana; Goswami, Anindya; Vishwakarma, Ram A; Sawant, Sanghapal D; Gupta, Prem N

    2017-01-15

    The overexpression of CD44 in cancer cells reroutes number of oncogenic pathways including the central Pi3K/Akt/NF-kB pathway leading to cancer progression and malignancy. Herein, we developed hyaluronic acid-modified poly(dl-lactic-co-glycolic acid)-poly (ethylene glycol) nanoparticles (PLGA-PEG-HA NPs) for targeted delivery of TTQ (thio-tetrazolyl analog of a clinical candidate, IC87114) to CD44 overexpressing cancer cells. The PLGA-PEG co-polymer was synthesized and characterized by NMR and FTIR. The co-polymer based nanoparticles were prepared by solvent evaporation method and hyaluronic acid (HA) was conjugated on to the nanoparticle surface via EDC/NHS chemistry. The PLGA-PEG-HA NPs had a desirable particle size (AFM). In vitro cytotoxicity and cellular uptake studies demonstrated higher cytotoxicity and enhanced intracellular accumulation of PLGA-PEG-HA NPs compared to PLGA-PEG NPs in high CD44 expressing MiaPaca-2 cells compared to MDA-MB-231 and MCF7 cells. At the molecular level, the PLGA-PEG-HA NPs were found to be inducing premature senescence with increase in senescence associated β-galactosidase activity and senescence specific marker p21 expression through modulation of Pi3K/Akt/NF-kB signaling pathway in MiaPaca-2 cells. These findings collectively indicated that HA-modified nanoparticles might serve as a promising nanocarrier for site-specific drug delivery, and can be explored further to increase the therapeutic efficacy of anticancer drugs via targeting to CD44 over-expressing cancer cells. Copyright © 2016. Published by Elsevier B.V.

  20. Formulation and Optimization of Polymeric Nanoparticles for Intranasal Delivery of Lorazepam Using Box-Behnken Design: In Vitro and In Vivo Evaluation

    Directory of Open Access Journals (Sweden)

    Deepak Sharma

    2014-01-01

    Full Text Available The aim of the present study was to optimize lorazepam loaded PLGA nanoparticles (Lzp-PLGA-NPs by investigating the effect of process variables on the response using Box-Behnken design. Effect of four independent factors, that is, polymer, surfactant, drug, and aqueous/organic ratio, was studied on two dependent responses, that is, z-average and % drug entrapment. Lzp-PLGA-NPs were successfully developed by nanoprecipitation method using PLGA as polymer, poloxamer as surfactant and acetone as organic phase. NPs were characterized for particle size, zeta potential, % drug entrapment, drug release behavior, TEM, and cell viability. Lzp-PLGA-NPs were characterized for drug polymer interaction using FTIR. The developed NPs showed nearly spherical shape with z-average 167–318 d·nm, PDI below 0.441, and −18.4 mV zeta potential with maximum % drug entrapment of 90.1%. In vitro drug release behavior followed Korsmeyer-Peppas model and showed initial burst release of 21.7±1.3% with prolonged drug release of 69.5±0.8% from optimized NPs up to 24 h. In vitro drug release data was found in agreement with ex vivo permeation data through sheep nasal mucosa. In vitro cell viability study on Vero cell line confirmed the safety of optimized NPs. Optimized Lzp-PLGA-NPs were radiolabelled with Technitium-99m for scintigraphy imaging and biodistribution studies in Sprague-Dawley rats to establish nose-to-brain pathway.

  1. Formulation and Optimization of Polymeric Nanoparticles for Intranasal Delivery of Lorazepam Using Box-Behnken Design: In Vitro and In Vivo Evaluation

    Science.gov (United States)

    Sharma, Deepak; Maheshwari, Dipika; Rana, Ravish; Bhatia, Shanu; Singh, Manisha; Gabrani, Reema; Sharma, Sanjeev K.; Ali, Javed; Sharma, Rakesh Kumar; Dang, Shweta

    2014-01-01

    The aim of the present study was to optimize lorazepam loaded PLGA nanoparticles (Lzp-PLGA-NPs) by investigating the effect of process variables on the response using Box-Behnken design. Effect of four independent factors, that is, polymer, surfactant, drug, and aqueous/organic ratio, was studied on two dependent responses, that is, z-average and % drug entrapment. Lzp-PLGA-NPs were successfully developed by nanoprecipitation method using PLGA as polymer, poloxamer as surfactant and acetone as organic phase. NPs were characterized for particle size, zeta potential, % drug entrapment, drug release behavior, TEM, and cell viability. Lzp-PLGA-NPs were characterized for drug polymer interaction using FTIR. The developed NPs showed nearly spherical shape with z-average 167–318 d·nm, PDI below 0.441, and −18.4 mV zeta potential with maximum % drug entrapment of 90.1%. In vitro drug release behavior followed Korsmeyer-Peppas model and showed initial burst release of 21.7 ± 1.3% with prolonged drug release of 69.5 ± 0.8% from optimized NPs up to 24 h. In vitro drug release data was found in agreement with ex vivo permeation data through sheep nasal mucosa. In vitro cell viability study on Vero cell line confirmed the safety of optimized NPs. Optimized Lzp-PLGA-NPs were radiolabelled with Technitium-99m for scintigraphy imaging and biodistribution studies in Sprague-Dawley rats to establish nose-to-brain pathway. PMID:25126544

  2. Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles

    International Nuclear Information System (INIS)

    Li, Su; Wang, Anxun; Jiang, Wenqi; Guan, Zhongzhen

    2008-01-01

    It is expected that prolonged circulation of anticancer drugs will increase their anticancer activity while decreasing their toxic side effects. The purpose of this study was to prepare 5-fluorouracil (5-FU) loaded block copolymers, with poly(γ-benzyl-L-glutamate) (PBLG) as the hydrophobic block and poly(ethylene glycol) (PEG) as the hydrophilic block, and then examine the 5-FU release characteristics, pharmacokinetics, and anticancer effects of this novel compound. 5-FU loaded PEG-PBLG (5-FU/PEG-PBLG) nanoparticles were prepared by dialysis and then scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the shape and size of the nanoparticles, and ultraviolet spectrophotometry was used to evaluate the 5-FU in vitro release characteristics. The pharmacokinetic parameters of 5-FU/PEG-PBLG nanoparticles in rabbit plasma were determined by measuring the 5-FUby high-performance liquid chromatography (HPLC). To study in vivo effects, LoVo cells (human colon cancer cell line) or Tca8113 cells (human oral squamous cell carcinoma cell line) were implanted in BALB/c nude mice that were subsequently treated with 5-FU or 5-FU/PEG-PBLG nanospheres. 5-FU/PEG-PBLG nanoparticles had a core-shell spherical structure with a diameter of 200 nm and a shell thickness of 30 nm. The drug loading capacity was 27.1% and the drug encapsulation was 61.5%. Compared with 5-FU, 5-FU/PEG-PBLG nanoparticles had a longer elimination half-life (t 1/2 , 33.3 h vs. 5 min), lower peak concentration (C, 4563.5 μg/L vs. 17047.3 μg/L), and greater distribution volume (V D , 0.114 L vs. 0.069 L). Compared with a blank control, LoVo cell xenografts and Tca8113 cell xenografts treated with 5-FU or 5-FU/PEG-PBLG nanoparticles grew slower and had prolonged tumor doubling times. 5-FU/PEG-PBLG nanoparticles showed greater inhibition of tumor growth than 5-FU (p < 0.01). In the PEG-PBLG nanoparticle control group, there was no tumor inhibition (p > 0.05). In our

  3. Depot injectable biodegradable nanoparticles loaded with recombinant human bone morphogenetic protein-2: preparation, characterization, and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Hassan AH

    2015-07-01

    Full Text Available Ali Habiballah Hassan,1 Khaled Mohamed Hosny,2,3 Zuahir A Murshid,1 Adel Alhadlaq,4 Ahmed Alyamani,5 Ghada Naguib6 1Department of Orthodontics, Faculty of Dentistry, 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 3Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt; 4Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh, 5Department of Oral Surgery, 6Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia Objective: The aim of this study is to utilize the biocompatibility characteristics of biodegradable polymers, viz, poly lactide-co-glycolide (PLGA and polycaprolactone (PCL, to prepare sustained-release injectable nanoparticles (NPs of bone morphogenetic protein-2 (BMP-2 for the repair of alveolar bone defects in rabbits. The influence of formulation parameters on the functional characteristics of the prepared NPs was studied to develop a new noninvasive injectable recombinant human BMP-2 (rhBMP-2 containing grafting material for the repair of alveolar bone clefts.Materials and methods: BMP-2 NPs were prepared using a water-in-oil-in-water double-emulsion solvent evaporation/extraction method. The influence of molar ratio of PLGA to PCL on a suitable particle size, encapsulation efficiency, and sustained drug release was studied. Critical size alveolar defects were created in the maxilla of 24 New Zealand rabbits divided into three groups, one of them treated with 5 µg/kg of rhBMP-2 NP formulations.Results: The results found that NPs formula prepared using blend of PLGA and PCL in 4:2 (w/w ratio showed the best sustained-release pattern with lower initial burst, and showed up to 62.7% yield, 64.5% encapsulation efficiency, 127 nm size, and more than 90% in vitro release. So, this formula was selected for

  4. Insulin-loaded poly(epsilon-caprolactone) nanoparticles: efficient, sustained and safe insulin delivery system.

    Science.gov (United States)

    de Araújo, Thiago M; Teixeira, Zaine; Barbosa-Sampaio, Helena C; Rezende, Luiz F; Boschero, Antonio C; Durán, Nelson; Höehr, Nelci F

    2013-06-01

    The aim of this work was to develop an efficient, biodegradable, biocompatible and safe controlled release system using insulin-loaded poly(epsilon-caprolactone) (PCL) nanoparticles. The insulin-loaded PCL nanoparticles were prepared by double emulsion method (water-in-oil-in-water) using Pluronic F68 as emulsifier. Using the double emulsion method a high insulin encapsulation efficiency (90.6 +/-1.6%) with a zeta potential of -29 +/-2.7 mV and average particle size of 796 +/-10.5 nm was obtained. Insulin-loaded PCL nanoparticles showed no toxicity to MIN6 cells. Insulin nanoparticles administered subcutaneously and intraperitoneally in rats reduced glycaemia of basal levels after 15 minutes, and presented a sustainable hypoglycemic effect on insulin-dependent type 1 diabetic rats, showing to be more efficient than unencapsulated insulin. Furthermore, these nanoparticles were not hepatotoxic, as evaluated by the effect over liver cell-death and oxidative stress scavenger system in rats. These results suggest that insulin-loaded PCL nanoparticles prepared by water-in-oil-in-water emulsion method are biocompatible, efficient and safe insulin-delivering system with controlled insulin release, which indicates that it may be a powerful tool for insulin-dependent patients care.

  5. Investigation on the ion pair amphiphiles and their in vitro release of amantadine drug based on PLGA–PEG–PLGA gel

    International Nuclear Information System (INIS)

    Yang, Xiaoxia; Ji, Xiaoqing; Shi, Chunhuan; Liu, Jing; Wang, Haiyang; Luan, Yuxia

    2014-01-01

    The amantadine drug and oleic acid surfactant are used to form amantadine-based ion pair amphiphiles based on proton transfer reaction between the drug and the surfactant molecules. The ion pair amphiphiles are characterized by 1 H-nuclear magnetic resonance, Fourier transform infrared spectroscopy, and X-ray diffraction. Self-assembly properties of amantadine-based ion pair amphiphiles are studied by surface tension determination, transmission electron microscopy, zeta potential, and dynamic light scattering. The aggregation behavior studies indicate that the as-prepared ion pair amphiphiles can self-assemble into vesicles with the size of 200–300 nm in aqueous solution. The drug release results show that the amantadine release rate could be well controlled by incorporating the amantadine-based ion pair vesicles in poly (lactic-co-glycolic acid)-poly (ethylene glycol)-poly (lactic-co-glycolic acid) (PLGA–PEG–PLGA) copolymer hydrogel. The drug release from the AT–OA vesicle-loaded PLGA–PEG–PLGA hydrogel is significantly inhibited in comparison with the AT-loaded PLGA–PEG–PLGA hydrogel. The present work thus demonstrates that the vesicle-loaded hydrogel is a good candidate for the drug delivery system with long-term controlled drug release behavior

  6. Development of Risperidone PLGA Microspheres

    Directory of Open Access Journals (Sweden)

    Susan D’Souza

    2014-01-01

    Full Text Available The aim of this study was to design and evaluate biodegradable PLGA microspheres for sustained delivery of Risperidone, with an eventual goal of avoiding combination therapy for the treatment of schizophrenia. Two PLGA copolymers (50 : 50 and 75 : 25 were used to prepare four microsphere formulations of Risperidone. The microspheres were characterized by several in vitro techniques. In vivo studies in male Sprague-Dawley rats at 20 and 40 mg/kg doses revealed that all formulations exhibited an initial burst followed by sustained release of the active moiety. Additionally, formulations prepared with 50 : 50 PLGA had a shorter duration of action and lower cumulative AUC levels than the 75 : 25 PLGA microspheres. A simulation of multiple dosing at weekly or 15-day regimen revealed pulsatile behavior for all formulations with steady state being achieved by the second dose. Overall, the clinical use of Formulations A, B, C, or D will eliminate the need for combination oral therapy and reduce time to achieve steady state, with a smaller washout period upon cessation of therapy. Results of this study prove the suitability of using PLGA copolymers of varying composition and molecular weight to develop sustained release formulations that can tailor in vivo behavior and enhance pharmacological effectiveness of the drug.

  7. Electrospraying technique for the fabrication of metronidazole contained PLGA particles and their release profile

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Zamani, Maedeh [Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Felice, Betiana [Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán, Av. Independencia 1800, Tucumán (Argentina); Ramakrishna, Seeram [Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2015-11-01

    Advanced engineering of materials for the development of drug delivery devices provides scope for novel and versatile strategies for treatment of various diseases. ‘Electrospraying’ was used to prepare PLGA microparticles and further encapsulate the drug, metronidazole (Met) within the particles to function as a drug delivery system. Two different solvents were utilized for the preparation of drug loaded PLGA particles, whereby the polymeric solution in dichloromethane (DCM) produced particles of bigger sizes than using trifluoroethanol (TFE). Scanning electron microscopy showed the spherical morphology of the particles, with sizes of 3946 ± 407 nm and 1774 ± 167 nm, respectively for PLGA-Met(DCM) and PLGA-Met(TFE). The FTIR spectroscopy proved the incorporation of metronidazole in the polymer, but without any specific drug–polymer interaction. The release of the drug from the particles was studied in phosphate buffered saline, where a sustained drug release was obtained for at least 41 days. Cytotoxicity evaluation of the drug extract using mesenchymal stem cells (MSCs) showed not hindering the proliferation of MSCs, and the cell phenotype was retained after incubation in the drug containing media. Electrospraying is suggested as a cost-effective and single step process for the preparation of polymeric microparticles for prolonged and controlled release of drug. - Highlights: • Electrospraying as a novel method for the fabrication of drug delivery device • Metronidazole encapsulated PLGA particles were fabricated by electrospraying. • Solvent DCM produced particles of double the size than using TFE. • Sustained release of metronidazole studied for a period of 41 days • Drug release pattern from particles followed Fickian diffusion. • PLGA-metronidazole particles can function as a substrate for periodontal regeneration.

  8. Cyclodextrin-PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release

    Science.gov (United States)

    Enoch, Israel V. M. V.; Ramasamy, Sivaraj; Mohiyuddin, Shanid; Gopinath, Packirisamy; Manoharan, R.

    2018-05-01

    Magnetic nanoparticles are envisaged to overcome the impediments in the methods of targeted drug delivery and hence cure cancer effectively. We report herein, manganese ferrite nanoparticles, coated with β-cyclodextrin-modified polyethylene glycol as a carrier for the drug, camptothecin. The particles are of the size of 100 nm and they show superparamagnetic behaviour. The saturation magnetization does not get diminished on polymer coverage of the nanoparticles. The β-cyclodextrin-polyethylene glycol conjugates are characterized using NMR and mass spectrometric techniques. By coating the magnetic nanoparticles with the cyclodextrin-tethered polymer, the drug-loading capacity is enhanced and the observed release of the drug is slow and sustained. The cell viability of HEK293 and HCT15 cells is evaluated and the cytotoxicity is enhanced when the drug is loaded in the polymer-coated magnetic nanoparticles. The noncovalent-binding based and enhanced drug loading on the nanoparticles and the sustained release make the nanocarrier a promising agent for carrying the payload to the target.

  9. Doxycycline delivery from PLGA microspheres prepared by a modified solvent removal method.

    Science.gov (United States)

    Patel, Roshni S; Cho, Daniel Y; Tian, Cheng; Chang, Amy; Estrellas, Kenneth M; Lavin, Danya; Furtado, Stacia; Mathiowitz, Edith

    2012-01-01

    We report on the development of a modified solvent removal method for the encapsulation of hydrophilic drugs within poly(lactic-co-glycolic acid) (PLGA). Using a water/oil/oil double emulsion, hydrophilic doxycycline was encapsulated within PLGA spheres with particle diameters ranging from approximately 600 nm to 19 µm. Encapsulation efficiencies of up to 74% were achieved for theoretical loadings from 1% to 10% (w/w), with biphasic release over 85 days with nearly complete release at the end of this time course. About 1% salt was added to the formulations to examine its effects on doxycycline release; salt modulated release only by increasing the magnitude of initial release without altering kinetics. Fourier transform infrared spectroscopy indicated no characteristic differences between doxycycline-loaded and control spheres. Differential scanning calorimetry and X-ray diffraction suggest that there may be a molecular dispersion of the doxycycline within the spheres and the doxycycline may be in an amorphous state, which could explain the slow, prolonged release of the drug.

  10. Drug loading and release on tumor cells using silk fibroin–albumin nanoparticles as carriers

    International Nuclear Information System (INIS)

    Subia, B; Kundu, S C

    2013-01-01

    Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin–albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin–albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules. (paper)

  11. Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Jae-Hwan Kim

    2016-02-01

    Full Text Available Resveratrol acts as a free radical scavenger and a potent antioxidant in the inhibition of numerous reactive oxygen species (ROS. The function of resveratrol and resveratrol-loaded nanoparticles in protecting human lung cancer cells (A549 against hydrogen peroxide was investigated in this study. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS assay was performed to evaluate the antioxidant properties. Resveratrol had substantially high antioxidant capacity (trolox equivalent antioxidant capacity value compared to trolox and vitamin E since the concentration of resveratrol was more than 50 μM. Nanoparticles prepared from β-lactoglobulin (β-lg were successfully developed. The β-lg nanoparticle showed 60 to 146 nm diameter in size with negatively charged surface. Non-cytotoxicity was observed in Caco-2 cells treated with β-lg nanoparticles. Fluorescein isothiocynate-conjugated β-lg nanoparticles were identified into the cell membrane of Caco-2 cells, indicating that nanoparticles can be used as a delivery system. Hydrogen peroxide caused accumulation of ROS in a dose- and time-dependent manner. Resveratrol-loaded nanoparticles restored H2O2-induced ROS levels by induction of cellular uptake of resveratrol in A549 cells. Furthermore, resveratrol activated nuclear factor erythroid 2-related factor 2-Kelch ECH associating protein 1 (Nrf2-Keap1 signaling in A549 cells, thereby accumulation of Nrf2 abundance, as demonstrated by western blotting approach. Overall, these results may have implications for improvement of oxidative stress in treatment with nanoparticles as a biodegradable and non-toxic delivery carrier of bioactive compounds.

  12. Nanoembedded Microparticles for Stabilization and Delivery of Drug-Loaded Nanoparticles

    DEFF Research Database (Denmark)

    Bohr, Adam; Water, Jorrit; Beck-Broichsitter, Moritz

    2015-01-01

    Nanoparticle-based pharmaceutical products are currently finding their way onto the market as a popular strategy to improve the therapeutic efficacy of numerous drugs, hereunder medications for a targeted treatment of severe diseases (e.g., cancer). Drug-loaded polymer and lipid nanoparticles...

  13. Biological Properties of Low-Toxic PLGA and PLGA/PHB Fibrous Nanocomposite Scaffolds for Osseous Tissue Regeneration. Evaluation of Potential Bioactivity

    Directory of Open Access Journals (Sweden)

    Boguslawa Żywicka

    2017-10-01

    Full Text Available Abstracts: The aim of the study was to evaluate the biocompatibility and bioactivity of two new prototype implants for bone tissue regeneration made from biodegradable fibrous materials. The first is a newly developed poly(l-lactide-co-glycolide, (PLGA, and the second is a blend of PLGA with synthetic poly([R,S]-3-hydroxybutyrate (PLGA/PHB. The implant prototypes comprise PLGA or PLGA/PHB nonwoven fabrics with designed pore structures to create the best conditions for cell proliferation. The bioactivity of the proposed implants was enhanced by introducing a hydroxyapatite material and a biologically active agent, namely, growth factor IGF1, encapsulated in calcium alginate microspheres. To assess the biocompatibility and bioactivity, allergenic tests and an assessment of the local reaction of bone tissue after implantation were performed. Comparative studies of local tissue response after implantation into trochanters for a period of 12 months were performed on New Zealand rabbits. Based on the results of the in vivo evaluation of the allergenic effects and the local tissue reaction 12 months after implantation, it was concluded that the two implant prototypes, PLGA + IGF1 and PLGA/PHB + IGF1, were characterized by high biocompatibility with the soft and bone tissues of the tested animals.

  14. PLGA/Nano-Zn O Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity

    International Nuclear Information System (INIS)

    Stankovic, A.; Stevanovic, M.; Sezen, M.; Milenkovic, M.; Kaisarevic, S.; Andric, N.

    2016-01-01

    Copolymer poly (DL-lactide-co-glycolide) (PLGA) is extensively investigated for various biomedical applications such as controlled drug delivery or carriers in the tissue engineering. In addition, zinc oxide (Zn O) is widely used in biomedicine especially for materials like dental composites, as a constituent of creams for the treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments and so on. Uniform, spherical Zn O nanoparticles (nano-Zn O) have been synthesized via microwave synthesis method. In addition to obtaining nano-Zn O, a further aim was to examine their immobilization in the PLGA polymer matrix (PLGA/nano-Zn O) and this was done by a simple physicochemical solvent/non solvent method. The samples were characterized by X-ray diffraction, scanning electron microscopy, laser diffraction particle size analyzer, differential thermal analysis, and thermal gravimetric analysis. The synthesized PLGA/nano-Zn O particles are spherical, uniform, and with diameters below 1μ. The influence of the different solvents and the drying methods during the synthesis was investigated too. The biocompatibility of the samples is discussed in terms of in vitro toxicity on human hepatoma HepG_2 cells by application of MTT assay and the antimicrobial activity was evaluated by broth micro dilution method against different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast Candida albicans)

  15. PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Ana Stanković

    2016-01-01

    Full Text Available Copolymer poly (DL-lactide-co-glycolide (PLGA is extensively investigated for various biomedical applications such as controlled drug delivery or carriers in the tissue engineering. In addition, zinc oxide (ZnO is widely used in biomedicine especially for materials like dental composites, as a constituent of creams for the treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments and so on. Uniform, spherical ZnO nanoparticles (nano-ZnO have been synthesized via microwave synthesis method. In addition to obtaining nano-ZnO, a further aim was to examine their immobilization in the PLGA polymer matrix (PLGA/nano-ZnO and this was done by a simple physicochemical solvent/nonsolvent method. The samples were characterized by X-ray diffraction, scanning electron microscopy, laser diffraction particle size analyzer, differential thermal analysis, and thermal gravimetric analysis. The synthesized PLGA/nano-ZnO particles are spherical, uniform, and with diameters below 1 µm. The influence of the different solvents and the drying methods during the synthesis was investigated too. The biocompatibility of the samples is discussed in terms of in vitro toxicity on human hepatoma HepG2 cells by application of MTT assay and the antimicrobial activity was evaluated by broth microdilution method against different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast Candida albicans.

  16. Endothelial cell-derived microparticles loaded with iron oxide nanoparticles: feasibility of MR imaging monitoring in mice.

    Science.gov (United States)

    Al Faraj, Achraf; Gazeau, Florence; Wilhelm, Claire; Devue, Cécile; Guérin, Coralie L; Péchoux, Christine; Paradis, Valérie; Clément, Olivier; Boulanger, Chantal M; Rautou, Pierre-Emmanuel

    2012-04-01

    To assess the feasibility of loading iron oxide nanoparticles in endothelial microparticles (EMPs), thereby enabling their noninvasive monitoring with magnetic resonance (MR) imaging in mice. Experiments were approved by the French Ministry of Agriculture. Endothelial cells, first labeled with anionic superparamagnetic nanoparticles, were stimulated to generate EMPs, carrying the nanoparticles in their inner compartment. C57BL/6 mice received an intravenous injection of nanoparticle-loaded EMPs, free nanoparticles, or the supernatant of nanoparticle-loaded EMPs. A 1-week follow-up was performed with a 4.7-T MR imaging device by using a gradient-echo sequence for imaging spleen, liver, and kidney and a radial very-short-echo time sequence for lung imaging. Comparisons were performed by using the Student t test. The signal intensity loss induced by nanoparticle-loaded EMPs or free nanoparticles was readily detected within 5 minutes after injection in the liver and spleen, with a more pronounced effect in the spleen for the magnetic EMPs. The kinetics of signal intensity attenuation differed for nanoparticle-loaded EMPs and free nanoparticles. No signal intensity changes were observed in mice injected with the supernatant of nanoparticle-loaded EMPs, confirming that cells had not released free nanoparticles, but only in association with EMPs. The results were confirmed by using Perls staining and immunofluorescence analysis. The strategy to generate EMPs with magnetic properties allowed noninvasive MR imaging assessment and follow-up of EMPs and opens perspectives for imaging the implications of these cellular vectors in diseases. © RSNA, 2012.

  17. Effect of n-HA with different surface-modified on the properties of n-HA/PLGA composite

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Liuyun, E-mail: jlytxg@163.com [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Xiong Chengdong; Chen Dongliang [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Jiang Lixin [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Graduated School of Chinese Academy of Sciences, Beijing 100039 (China); Pang Xiubing [Zhejiang Apeloa Medical Technology Co. Ltd, Jinhua 322118 (China)

    2012-10-15

    Graphical abstract: The bend strength of n-HA/PLGA composite with the unmodified n-HA becomes lower than that of PLGA. However, when n-HA was modified by different methods, the bend strength of g-n-HA/PLGA composites gets a little increase than PLGA, and the g3-n-HA/PLGA shows the highest bend strength at 3% g3-n-HA loading amount in weight, reached 162 MPa, which was 24.4% higher than that of pure PLGA. Highlights: Black-Right-Pointing-Pointer A new surface modification method for n-HA of combining stearic acid with surface-grafting L-lactic was adopted. Black-Right-Pointing-Pointer Three different surface modification methods for n-HA were compared in detail. Black-Right-Pointing-Pointer The new surface modification method was the most ideal method in this study. Black-Right-Pointing-Pointer The g3-n-HA/PLGA composite had the highest bending strength, which would be potential to be used as bone fracture internal fixation materials. - Abstract: Three different surface modification methods for nano-hydroxyapatite (n-HA) of stearic acid, grafted with L-lactide, combining stearic acid and surface-grafting L-lactic were adopted, respectively. The surface modification reaction and the effect of different methods were evaluated by Fourier transformation infrared (FTIR), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA), transmission electron microscopy (TEM). The results showed that n-HA surfaces were all successful modified, and the modification method of combining stearic acid and surface-grafting L-lactic had the greatest grafting amount and the best dispersion among the three modification methods. Then, the n-HA with three different surface modification and unmodified n-HA were introduced into PLGA, respectively, and a serials of n-HA/PLGA composites with 3% n-HA amount in weight were prepared by solution mixing, and the properties of n-HA/PLGA composites were also investigated by electromechanical universal tester and scanning electron

  18. Polymeric Nanoparticle-Based Photodynamic Therapy for Chronic Periodontitis in Vivo.

    Science.gov (United States)

    de Freitas, Laura Marise; Calixto, Giovana Maria Fioramonti; Chorilli, Marlus; Giusti, Juçaíra Stella M; Bagnato, Vanderlei Salvador; Soukos, Nikolaos S; Amiji, Mansoor M; Fontana, Carla Raquel

    2016-05-20

    Antimicrobial photodynamic therapy (aPDT) is increasingly being explored for treatment of periodontitis. Here, we investigated the effect of aPDT on human dental plaque bacteria in suspensions and biofilms in vitro using methylene blue (MB)-loaded poly(lactic-co-glycolic) (PLGA) nanoparticles (MB-NP) and red light at 660 nm. The effect of MB-NP-based aPDT was also evaluated in a clinical pilot study with 10 adult human subjects with chronic periodontitis. Dental plaque samples from human subjects were exposed to aPDT-in planktonic and biofilm phases-with MB or MB-NP (25 µg/mL) at 20 J/cm² in vitro. Patients were treated either with ultrasonic scaling and scaling and root planing (US + SRP) or ultrasonic scaling + SRP + aPDT with MB-NP (25 µg/mL and 20 J/cm²) in a split-mouth design. In biofilms, MB-NP eliminated approximately 25% more bacteria than free MB. The clinical study demonstrated the safety of aPDT. Both groups showed similar improvements of clinical parameters one month following treatments. However, at three months ultrasonic SRP + aPDT showed a greater effect (28.82%) on gingival bleeding index (GBI) compared to ultrasonic SRP. The utilization of PLGA nanoparticles encapsulated with MB may be a promising adjunct in antimicrobial periodontal treatment.

  19. Polymeric Nanoparticle-Based Photodynamic Therapy for Chronic Periodontitis in Vivo

    Directory of Open Access Journals (Sweden)

    Laura Marise de Freitas

    2016-05-01

    Full Text Available Antimicrobial photodynamic therapy (aPDT is increasingly being explored for treatment of periodontitis. Here, we investigated the effect of aPDT on human dental plaque bacteria in suspensions and biofilms in vitro using methylene blue (MB-loaded poly(lactic-co-glycolic (PLGA nanoparticles (MB-NP and red light at 660 nm. The effect of MB-NP-based aPDT was also evaluated in a clinical pilot study with 10 adult human subjects with chronic periodontitis. Dental plaque samples from human subjects were exposed to aPDT—in planktonic and biofilm phases—with MB or MB-NP (25 µg/mL at 20 J/cm2 in vitro. Patients were treated either with ultrasonic scaling and scaling and root planing (US + SRP or ultrasonic scaling + SRP + aPDT with MB-NP (25 µg/mL and 20 J/cm2 in a split-mouth design. In biofilms, MB-NP eliminated approximately 25% more bacteria than free MB. The clinical study demonstrated the safety of aPDT. Both groups showed similar improvements of clinical parameters one month following treatments. However, at three months ultrasonic SRP + aPDT showed a greater effect (28.82% on gingival bleeding index (GBI compared to ultrasonic SRP. The utilization of PLGA nanoparticles encapsulated with MB may be a promising adjunct in antimicrobial periodontal treatment.

  20. Dual drug-loaded nanoparticles on self-integrated scaffold for controlled delivery

    Directory of Open Access Journals (Sweden)

    Bennet D

    2012-07-01

    Full Text Available Devasier Bennet,1 Mohana Marimuthu,1 Sanghyo Kim,1 Jeongho An21Department of Bionanotechnology, Gachon University, Gyeonggi, Republic of Korea; 2Department of Polymer Science and Engineering, SunKyunKwan University, Gyeonggi, Republic of KoreaAbstract: Antioxidant (quercetin and hypoglycemic (voglibose drug-loaded poly-D,L-lactide-co-glycolide nanoparticles were successfully synthesized using the solvent evaporation method. The dual drug-loaded nanoparticles were incorporated into a scaffold film using a solvent casting method, creating a controlled transdermal drug-delivery system. Key features of the film formulation were achieved utilizing several ratios of excipients, including polyvinyl alcohol, polyethylene glycol, hyaluronic acid, xylitol, and alginate. The scaffold film showed superior encapsulation capability and swelling properties, with various potential applications, eg, the treatment of diabetes-associated complications. Structural and light scattering characterization confirmed a spherical shape and a mean particle size distribution of 41.3 nm for nanoparticles in the scaffold film. Spectroscopy revealed a stable polymer structure before and after encapsulation. The thermoresponsive swelling properties of the film were evaluated according to temperature and pH. Scaffold films incorporating dual drug-loaded nanoparticles showed remarkably high thermoresponsivity, cell compatibility, and ex vivo drug-release behavior. In addition, the hybrid film formulation showed enhanced cell adhesion and proliferation. These dual drug-loaded nanoparticles incorporated into a scaffold film may be promising for development into a transdermal drug-delivery system.Keywords: quercetin, voglibose, biocompatible materials, encapsulation, transdermal

  1. Design and elaboration of freeze-dried PLGA nanoparticles for the transcorneal permeation of carprofen: Ocular anti-inflammatory applications.

    Science.gov (United States)

    Parra, Alexander; Mallandrich, Mireia; Clares, Beatriz; Egea, María A; Espina, Marta; García, María L; Calpena, Ana C

    2015-12-01

    This work aimed the design and development of poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) for the ocular delivery of Carprofen (CP) by a central rotatable composite design 2(3)+ star. NPs showed adequate size for ocular administration (189.50 ± 1.67 nm), low polydispersity (0.01 ± 0.01), negative charge surface (-22.80 ± 0.66 mV) and optimal entrapment efficiency (74.70 ± 0.95%). Physicochemical analysis confirmed that CP was dispersed inside the NPs. The drug release followed a first order kinetic model providing greater sustained CP release after lyophilization. Ex vivo permeation analysis through isolated rabbit cornea revealed that a sufficient amount of CP was retained in the tissue avoiding excessive permeation and thus, potential systemic levels. Ex vivo ocular tolerance results showed no signs of ocular irritancy, which was also confirmed by in vivo Draize test. In vivo ocular anti-inflammatory efficacy test confirmed an optimal efficacy of NPs and its potential application in eye surgery. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Li L

    2014-02-01

    Full Text Available Lei Li,1,* Dongxi Xiang,2,* Sarah Shigdar,2 Wenrong Yang,3 Qiong Li,2 Jia Lin,4 Kexin Liu,1 Wei Duan2 1College of Pharmacy, Dalian Medical University, Dalian, People's Republic of China; 2School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia; 3School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, Australia; 4Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China *These authors contributed equally to this work Abstract: To improve the efficacy of drug delivery, active targeted nanotechnology-based drug delivery systems are gaining considerable attention as they have the potential to reduce side effects, minimize toxicity, and improve efficacy of anticancer treatment. In this work CUR-NPs (curcumin-loaded lipid-polymer-lecithin hybrid nanoparticles were synthesized and functionalized with ribonucleic acid (RNA Aptamers (Apts against epithelial cell adhesion molecule (EpCAM for targeted delivery to colorectal adenocarcinoma cells. These CUR-encapsulated bioconjugates (Apt-CUR-NPs were characterized for particle size, zeta potential, drug encapsulation, stability, and release. The in vitro specific cell binding, cellular uptake, and cytotoxicity of Apt-CUR-NPs were also studied. The Apt-CUR-NP bioconjugates exhibited increased binding to HT29 colon cancer cells and enhancement in cellular uptake when compared to CUR-NPs functionalized with a control Apt (P<0.01. Furthermore, a substantial improvement in cytotoxicity was achieved toward HT29 cells with Apt-CUR-NP bioconjugates. The encapsulation of CUR in Apt-CUR-NPs resulted in the increased bioavailability of delivered CUR over a period of 24 hours compared to that of free CUR in vivo. These results show that the EpCAM Apt-functionalized CUR-NPs enhance the targeting and drug

  3. A dual-application poly (dl-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering.

    Science.gov (United States)

    Boukari, Yamina; Qutachi, Omar; Scurr, David J; Morris, Andrew P; Doughty, Stephen W; Billa, Nashiru

    2017-11-01

    The development of patient-friendly alternatives to bone-graft procedures is the driving force for new frontiers in bone tissue engineering. Poly (dl-lactic-co-glycolic acid) (PLGA) and chitosan are well-studied and easy-to-process polymers from which scaffolds can be fabricated. In this study, a novel dual-application scaffold system was formulated from porous PLGA and protein-loaded PLGA/chitosan microspheres. Physicochemical and in vitro protein release attributes were established. The therapeutic relevance, cytocompatibility with primary human mesenchymal stem cells (hMSCs) and osteogenic properties were tested. There was a significant reduction in burst release from the composite PLGA/chitosan microspheres compared with PLGA alone. Scaffolds sintered from porous microspheres at 37 °C were significantly stronger than the PLGA control, with compressive strengths of 0.846 ± 0.272 MPa and 0.406 ± 0.265 MPa, respectively (p < 0.05). The formulation also sintered at 37 °C following injection through a needle, demonstrating its injectable potential. The scaffolds demonstrated cytocompatibility, with increased cell numbers observed over an 8-day study period. Von Kossa and immunostaining of the hMSC-scaffolds confirmed their osteogenic potential with the ability to sinter at 37 °C in situ.

  4. A reproducible accelerated in vitro release testing method for PLGA microspheres.

    Science.gov (United States)

    Shen, Jie; Lee, Kyulim; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2016-02-10

    The objective of the present study was to develop a discriminatory and reproducible accelerated in vitro release method for long-acting PLGA microspheres with inner structure/porosity differences. Risperidone was chosen as a model drug. Qualitatively and quantitatively equivalent PLGA microspheres with different inner structure/porosity were obtained using different manufacturing processes. Physicochemical properties as well as degradation profiles of the prepared microspheres were investigated. Furthermore, in vitro release testing of the prepared risperidone microspheres was performed using the most common in vitro release methods (i.e., sample-and-separate and flow through) for this type of product. The obtained compositionally equivalent risperidone microspheres had similar drug loading but different inner structure/porosity. When microsphere particle size appeared similar, porous risperidone microspheres showed faster microsphere degradation and drug release compared with less porous microspheres. Both in vitro release methods investigated were able to differentiate risperidone microsphere formulations with differences in porosity under real-time (37 °C) and accelerated (45 °C) testing conditions. Notably, only the accelerated USP apparatus 4 method showed good reproducibility for highly porous risperidone microspheres. These results indicated that the accelerated USP apparatus 4 method is an appropriate fast quality control tool for long-acting PLGA microspheres (even with porous structures). Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Magnetic poly(D,L-lactide) nanoparticles loaded with aliskiren: A promising tool for hypertension treatment

    International Nuclear Information System (INIS)

    Antal, Iryna; Kubovcikova, Martina; Zavisova, Vlasta; Koneracka, Martina; Pechanova, Olga; Barta, Andrej; Cebova, Martina; Antal, Vitaliy; Diko, Pavel; Zduriencikova, Martina; Pudlak, Michal; Kopcansky, Peter

    2015-01-01

    In this study anti-hypertensive drug called aliskiren was encapsulated in magnetic poly(D,L-lactide) nanoparticles by the modified nanoprecipitation method. The effect of magnetite and drug concentrations on the size distribution and zeta potential of polymer nanoparticles was investigated. The optimized loadings were as follows: theoretical magnetite loading was 20 mg/100 mg polymer nanoparticles and aliskiren was encapsulated in magnetic poly(D,L-lactide) nanoparticles at theoretical loading 0.6 mg aliskiren/100 mg magnetic polymer nanoparticles. The physicochemical characteristics of nanoparticles were studied, with spherical shape of nanoparticles sized between 58 and 227 nm being one of the observed results. Differential scanning calorimetry and infrared spectroscopy confirmed that aliskiren was successfully identified in the magnetic poly(D,L-lactide) nanoparticles. The in vivo experiments indicated that encapsulated aliskiren decreased blood pressure of the studied male spontaneously hypertensive rat even more significantly than common administered drug. - Highlights: • Anti-hypertensive drug called aliskiren was encapsulated in magnetic poly(D,L-lactide) nanoparticles by modified nanoprecipitation method. • The optimisation of magnetite and drug loading with regard to the size distribution and zeta potential was investigated. • The physicochemical characteristics of nanoparticles were studied by different techniques. • The in vivo experiments indicated that encapsulated aliskiren decreased blood pressure of the studied male spontaneously hypertensive rat even more significantly than common administered drug

  6. Magnetic poly(D,L-lactide) nanoparticles loaded with aliskiren: A promising tool for hypertension treatment

    Energy Technology Data Exchange (ETDEWEB)

    Antal, Iryna, E-mail: iryna.antal@saske.sk [Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Kosice (Slovakia); Kubovcikova, Martina; Zavisova, Vlasta; Koneracka, Martina [Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Kosice (Slovakia); Pechanova, Olga; Barta, Andrej; Cebova, Martina [Institute of Normal and Pathological Physiology, SAS, Bratislava (Slovakia); Antal, Vitaliy; Diko, Pavel [Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Kosice (Slovakia); Zduriencikova, Martina [Cancer Research Institute, SAS, Bratislava (Slovakia); Pudlak, Michal; Kopcansky, Peter [Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Kosice (Slovakia)

    2015-04-15

    In this study anti-hypertensive drug called aliskiren was encapsulated in magnetic poly(D,L-lactide) nanoparticles by the modified nanoprecipitation method. The effect of magnetite and drug concentrations on the size distribution and zeta potential of polymer nanoparticles was investigated. The optimized loadings were as follows: theoretical magnetite loading was 20 mg/100 mg polymer nanoparticles and aliskiren was encapsulated in magnetic poly(D,L-lactide) nanoparticles at theoretical loading 0.6 mg aliskiren/100 mg magnetic polymer nanoparticles. The physicochemical characteristics of nanoparticles were studied, with spherical shape of nanoparticles sized between 58 and 227 nm being one of the observed results. Differential scanning calorimetry and infrared spectroscopy confirmed that aliskiren was successfully identified in the magnetic poly(D,L-lactide) nanoparticles. The in vivo experiments indicated that encapsulated aliskiren decreased blood pressure of the studied male spontaneously hypertensive rat even more significantly than common administered drug. - Highlights: • Anti-hypertensive drug called aliskiren was encapsulated in magnetic poly(D,L-lactide) nanoparticles by modified nanoprecipitation method. • The optimisation of magnetite and drug loading with regard to the size distribution and zeta potential was investigated. • The physicochemical characteristics of nanoparticles were studied by different techniques. • The in vivo experiments indicated that encapsulated aliskiren decreased blood pressure of the studied male spontaneously hypertensive rat even more significantly than common administered drug.

  7. Transplantation of bone marrow-derived mesenchymal stem cells expressing elastin alleviates pelvic floor dysfunction.

    Science.gov (United States)

    Jin, Minfei; Chen, Ying; Zhou, Yun; Mei, Yan; Liu, Wei; Pan, Chenhao; Hua, Xiaolin

    2016-04-05

    Pelvic floor dysfunction (PFD) is a group of clinical conditions including stress urinary incontinence (SUI) and pelvic organ prolapse (POP). The abnormality of collagen and elastin metabolism in pelvic connective tissues is implicated in SUI and POP. To reconstitute the connective tissues with normal distribution of collagen and elastin, we transduced elastin to bone marrow-derived mesenchymal stem cells (BMSC). Elastin-expressing BMSCs were then differentiated to fibroblasts using bFGF, which produced collagen and elastin. To achieve the sustained release of bFGF, we formulated bFGF in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NP). In an in vitro cell culture system of 7 days, when no additional bFGF was administrated, the initial PLGA-loaded bFGF NP induced prolonged production of collagen and elastin from elastin-expressing BMSCs. In vivo, co-injection of PLGA-loaded bFGF NP and elastin-expressing BMSCs into the PFD rats significantly improved the outcome of urodynamic tests. Together, these results provided an efficient model of connective tissue engineering using BMSC and injectable PLGA-loaded growth factors. Our results provided the first instance of a multidisciplinary approach, combining both stem cell and nanoparticle technologies, for the treatment of PFD.

  8. Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sepehrinia, Kazem; Mohammadi, Aliasghar, E-mail: amohammadi@sharif.edu

    2016-05-15

    Highlights: • Properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. • The water or decane-loaded pores represent liquid bridging. • Addition of nanoparticles to liquid-loaded pores results in weakening of the liquid bridge. • The hydrophobicity of the pore wall increases in the presence of adsorbed fluorinated silica nanoparticles. - Abstract: Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the liquids. Adsorption of nanoparticles on the pore wall reduces the density of liquid molecules adjacent to the wall. The density of liquid molecules around the nanoparticles decreases significantly with increasing the number of trifluoromethyl groups on the nanoparticles’ surfaces. An increased hydrophobicity of the pore wall was observed in the presence of adsorbed fluorinated silica nanoparticles. Also, it is observed that increasing the number of the trifluoromethyl groups results in weakening of liquid bridges. Moreover, the free energy of adsorption on mineral surface was evaluated to be more favorable than that of aggregation of nanoparticles, which suggests nanoparticles adsorb preferably on mineral surface.

  9. Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation

    International Nuclear Information System (INIS)

    Sepehrinia, Kazem; Mohammadi, Aliasghar

    2016-01-01

    Highlights: • Properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. • The water or decane-loaded pores represent liquid bridging. • Addition of nanoparticles to liquid-loaded pores results in weakening of the liquid bridge. • The hydrophobicity of the pore wall increases in the presence of adsorbed fluorinated silica nanoparticles. - Abstract: Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the liquids. Adsorption of nanoparticles on the pore wall reduces the density of liquid molecules adjacent to the wall. The density of liquid molecules around the nanoparticles decreases significantly with increasing the number of trifluoromethyl groups on the nanoparticles’ surfaces. An increased hydrophobicity of the pore wall was observed in the presence of adsorbed fluorinated silica nanoparticles. Also, it is observed that increasing the number of the trifluoromethyl groups results in weakening of liquid bridges. Moreover, the free energy of adsorption on mineral surface was evaluated to be more favorable than that of aggregation of nanoparticles, which suggests nanoparticles adsorb preferably on mineral surface.

  10. In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems

    CSIR Research Space (South Africa)

    Semete, B

    2010-10-01

    Full Text Available distribution and retention following oral administration of PLGA particles was analyzed for 7 days. After 7 days, the particles remained detectable in the brain, heart, kidney, liver, lungs, and spleen. The results show that a mean percentage (40...

  11. Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery - comparative study with the gold standard (Tween 80): optimization, characterization and biodistribution.

    Science.gov (United States)

    Ishak, Rania A H; Mostafa, Nada M; Kamel, Amany O

    2017-11-01

    The blood-brain barrier is considered the leading physiological obstacle hindering the transport of neurotherapeutics to brain cells. The application of nanotechnology coupled with surfactant coating is one of the efficacious tactics overcoming this barrier. The aim of this study was to develop lipid polymer hybrid nanoparticles (LPHNPs), composed of a polymeric core and a phospholipid shell entangled, for the first time, with PEG-based surfactants (SAA) viz. TPGS or Solutol HS 15 in comparison with the gold standard Tween 80, aiming to enhance brain delivery and escape opsonization. LPHNPs were successfully prepared using modified single-step nanoprecipitation technique, loaded with the flavonoid rutin (RU), extracted from the flowers of Calendula officinalis L., and recently proved as a promising anti-Alzheimer. The effect of the critical process parameters (CPP) viz. PLGA amount, W lecithin /W PLGA ratio, and Tween 80 concentration on critical quality attributes (CQA); entrapment, size and size distribution, was statistically analyzed via design of experiments, and optimized using the desirability function. The optimized CPP were maintained while substituting Tween 80 with other PEG-SAA. All hybrid particles exhibited spherical shape with perceptible lipid shells. The biocompatibility of the prepared NPs was confirmed by hemolysis test. The pharmacokinetic assessments, post-intravenous administration to rats, revealed a significant higher RU bioavailability for NPs relative to drug solution. Biodistribution studies proved non-significant differences in RU accumulation within brain, but altered phagocytic uptake among various LPHNPs. The present study endorses the successful development of LPHNPs using PEG-SAA, and confirms the prospective applicability of TPGS and Solutol in enhancing brain delivery.

  12. Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B.

    Science.gov (United States)

    Khatri, Kapil; Goyal, Amit K; Gupta, Prem N; Mishra, Neeraj; Vyas, Suresh P

    2008-04-16

    This work investigates the preparation and in vivo efficacy of plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Chitosan pDNA nanoparticles were prepared using a complex coacervation process. Prepared nanoparticles were characterized for size, shape, surface charge, plasmid loading and ability of nanoparticles to protect DNA against nuclease digestion and for their transfection efficacy. Nasal administration of nanoparticles resulted in serum anti-HBsAg titre that was less compared to that elicited by naked DNA and alum adsorbed HBsAg, but the mice were seroprotective within 2 weeks and the immunoglobulin level was above the clinically protective level. However, intramuscular administration of naked DNA and alum adsorbed HBsAg did not elicit sIgA titre in mucosal secretions that was induced by nasal immunization with chitosan nanoparticles. Similarly, cellular responses (cytokine levels) were poor in case of alum adsorbed HBsAg. Chitosan nanoparticles thus produced humoral (both systemic and mucosal) and cellular immune responses upon nasal administration. The study signifies the potential of chitosan nanoparticles as DNA vaccine carrier and adjuvant for effective immunization through non-invasive nasal route.

  13. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer's disease.

    Science.gov (United States)

    Meng, Qingqing; Wang, Aiping; Hua, Hongchen; Jiang, Ying; Wang, Yiyun; Mu, Hongjie; Wu, Zimei; Sun, Kaoxiang

    2018-01-01

    Safe and effective delivery of therapeutic drugs to the brain is important for successful therapy of Alzheimer's disease (AD). To develop Huperzine A (HupA)-loaded, mucoadhesive and targeted polylactide-co-glycoside (PLGA) nanoparticles (NPs) with surface modification by lactoferrin (Lf)-conjugated N-trimethylated chitosan (TMC) (HupA Lf-TMC NPs) for efficient intranasal delivery of HupA to the brain for AD treatment. HupA Lf-TMC NPs were prepared using the emulsion-solvent evaporation method and optimized using the Box-Behnken design. The particle size, zeta potential, drug entrapment efficiency, adhesion and in vitro release behavior were investigated. The cellular uptake was investigated by fluorescence microscopy and flow cytometry. MTT assay was used to evaluate the cytotoxicity of the NPs. In vivo imaging system was used to investigate brain targeting effect of NPs after intranasal administration. The biodistribution of Hup-A NPs after intranasal administration was determined by liquid chromatography-tandem mass spectrometry. Optimized HupA Lf-TMC NPs had a particle size of 153.2±13.7 nm, polydispersity index of 0.229±0.078, zeta potential of +35.6±5.2 mV, drug entrapment efficiency of 73.8%±5.7%, and sustained release in vitro over a 48 h period. Adsorption of mucin onto Lf-TMC NPs was 86.9%±1.8%, which was significantly higher than that onto PLGA NPs (32.1%±2.5%). HupA Lf-TMC NPs showed lower toxicity in the 16HBE cell line compared with HupA solution. Qualitative and quantitative cellular uptake experiments indicated that accumulation of Lf-TMC NPs was higher than nontargeted analogs in 16HBE and SH-SY5Y cells. In vivo imaging results showed that Lf-TMC NPs exhibited a higher fluorescence intensity in the brain and a longer residence time than nontargeted NPs. After intranasal administration, Lf-TMC NPs facilitated the distribution of HupA in the brain, and the values of the drug targeting index in the mouse olfactory bulb, cerebrum (with hippocampus

  14. Folate decorated dual drug loaded nanoparticle: role of curcumin in enhancing therapeutic potential of nutlin-3a by reversing multidrug resistance.

    Directory of Open Access Journals (Sweden)

    Manasi Das

    Full Text Available Retinoblastoma is the most common intraocular tumor in children. Malfunctioning of many signaling pathways regulating cell survival or apoptosis, make the disease more vulnerable. Notably, resistance to chemotherapy mediated by MRP-1, lung-resistance protein (LRP is the most challenging aspect to treat this disease. Presently, much attention has been given to the recently developed anticancer drug nutlin-3a because of its non-genotoxic nature and potency to activate tumor suppressor protein p53. However, being a substrate of multidrug resistance protein MRP1 and Pgp its application has become limited. Currently, research has step towards reversing Multi drug resistance (MDR by using curcumin, however its clinical relevance is restricted by plasma instability and poor bioavailability. In the present investigation we tried to encapsulate nutlin-3a and curcumin in PLGA nanoparticle (NPs surface functionalized with folate to enhance therapeutic potential of nutlin-3a by modulating MDR. We document that curcumin can inhibit the expression of MRP-1 and LRP gene/protein in a concentration dependent manner in Y79 cells. In vitro cellular cytotoxicity, cell cycle analysis and apoptosis studies were done to compare the effectiveness of native drugs (single or combined and single or dual drug loaded nanoparticles (unconjugated/folate conjugated. The result demonstrated an augmented therapeutic efficacy of targeted dual drug loaded NPs (Fol-Nut-Cur-NPs over other formulation. Enhanced expression or down regulation of proapoptotic/antiapoptotic proteins respectively and down-regulation of bcl2 and NFκB gene/protein by Fol-Nut-Cur-NPs substantiate the above findings. This is the first investigation exploring the role of curcumin as MDR modulator to enhance the therapeutic potentiality of nutlin-3a, which may opens new direction for targeting cancer with multidrug resistance phenotype.

  15. Controlled-release of tetracycline and lovastatin by poly(D,L-lactide-co-glycolide acid)-chitosan nanoparticles enhances periodontal regeneration in dogs.

    Science.gov (United States)

    Lee, Bor-Shiunn; Lee, Chien-Chen; Wang, Yi-Ping; Chen, Hsiao-Jan; Lai, Chern-Hsiung; Hsieh, Wan-Ling; Chen, Yi-Wen

    2016-01-01

    Chronic periodontitis is characterized by inflammation of periodontal tissues, leading to bone resorption and tooth loss. The goal of treatment is to regenerate periodontal tissues including bone and cementum lost as a consequence of disease. The local delivery of tetracycline was proven to be effective in controlling localized periodontal infection without apparent side effects. Previous studies suggested that lovastatin has a significant role in new bone formation; however, the local delivery of lovastatin might enhance its therapeutic effects. A number of local delivery devices have been developed recently, including poly(D,L-lactide-co-glycolide acid) (PLGA) nanoparticles. The aim of this study was to develop a local delivery device, PLGA-lovastatin-chitosan-tetracycline nanoparticles, which allows the sequential release of tetracycline and lovastatin to effectively control local infection and promote bone regeneration in periodontitis. The size and microstructure of nanoparticles were examined by transmission electron microscopy, Nanoparticle Size Analyzer, and Fourier transform infrared spectroscopy. The release of tetracycline and lovastatin was quantified using a UV-Vis spectrophotometer. Furthermore, the cytotoxic effect and alkaline phosphatase activity of the nanoparticles in osteoblast cell cultures as well as antibacterial activity against periodontal pathogens were investigated. Finally, the bone regeneration potential of PLGA nanoparticles in three-walled defects in beagle dogs was investigated. The results indicated that PLGA-lovastatin-chitosan-tetracycline nanoparticles showed good biocompatibility, antibacterial activity, and increased alkaline phosphatase activity. The volumetric analysis from micro-CT revealed significantly increased new bone formation in defects filled with nanoparticles in dogs. This novel local delivery device might be useful as an adjunctive treatment in periodontal regenerative therapy.

  16. Development of Acyclovir-Loaded Albumin Nanoparticles and Improvement of Acyclovir Permeation Across Human Corneal Epithelial T Cells.

    Science.gov (United States)

    Suwannoi, Panita; Chomnawang, Mullika; Sarisuta, Narong; Reichl, Stephan; Müller-Goymann, Christel C

    2017-12-01

    The aim of the present study was to develop acyclovir (ACV) ocular drug delivery systems of bovine serum albumin (BSA) nanoparticles as well as to assess their in vitro transcorneal permeation across human corneal epithelial (HCE-T) cell multilayers. The ACV-loaded BSA nanoparticles were prepared by desolvation method along with physicochemical characterization, cytotoxicity, as well as in vitro transcorneal permeation studies across HCE-T cell multilayers. The nanoparticles appeared to be spherical in shape and nearly uniform in size of about 200 nm. The size of nanoparticles became smaller with decreasing BSA concentration, while the ratios of water to ethanol seemed not to affect the size. Increasing the amount of ethanol in desolvation process led to significant reduction of drug entrapment of nanoparticles with smaller size and more uniformity. The ACV-loaded BSA nanoparticles prepared were shown to have no cytotoxic effect on HCE-T cells used in permeation studies. The in vitro transcorneal permeation results revealed that ACV could permeate through the HCE-T cell multilayers significantly higher from BSA nanoparticles than from aqueous ACV solutions. The ACV-loaded BSA nanoparticles could be prepared by desolvation method without glutaraldehyde in the formulation. ACV could increasingly permeate through the multilayers of HCE-T cells from the ACV-loaded BSA nanoparticles. Therefore, the ACV-loaded BSA nanoparticles could be a highly potential ocular drug delivery system.

  17. Novel free paclitaxel-loaded poly(L-γ-glutamylglutamine–paclitaxel nanoparticles

    Directory of Open Access Journals (Sweden)

    Danbo Yang

    2011-01-01

    Full Text Available Danbo Yang1, Sang Van2, Xinguo Jiang3, Lei Yu1,21Biomedical Engineering and Technology Institute, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, People's Republic of China; 2Biomedical Group, Nitto Denko Technical Corporation, Oceanside, CA, USA; 3School of Pharmacy, Fudan University, Shanghai, People's Republic of ChinaAbstract: The purpose of this study was to develop a novel formulation of paclitaxel (PTX that would improve its therapeutic index. Here, we combined a concept of polymer–PTX drug conjugate with a concept of polymeric micelle drug delivery to form novel free PTX-loaded poly(L-γ-glutamylglutamine (PGG–PTX conjugate nanoparticles. The significance of this drug formulation emphasizes the simplicity, novelty, and flexibility of the method of forming nanoparticles that contain free PTX and conjugated PTX in the same drug delivery system. The results of effectively inhibiting tumor growth in mouse models demonstrated the feasibility of the nanoparticle formulation. The versatility and potential of this dual PTX drug delivery system can be explored with different drugs for different indications. Novel and simple formulations of PTX-loaded PGG–PTX nanoparticles could have important implications in translational medicines.Keywords: paclitaxel, polymeric micelle, poly(L-γ-glutamylglutamine–paclitaxel, nanoconjugate, nanoparticles

  18. Mechanistic analysis of Zein nanoparticles/PLGA triblock in situ forming implants for glimepiride

    Directory of Open Access Journals (Sweden)

    Ahmed OAA

    2016-02-01

    Full Text Available Osama Abdelhakim Aly Ahmed,1,2 Ahmed Samir Zidan,1,3 Maan Khayat4 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt; 3Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt; 4Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia Objectives: The study aims at applying pharmaceutical nanotechnology and D-optimal fractional factorial design to screen and optimize the high-risk variables affecting the performance of a complex drug delivery system consisting of glimepiride–Zein nanoparticles and inclusion of the optimized formula with thermoresponsive triblock copolymers in in situ gel. Methods: Sixteen nanoparticle formulations were prepared by liquid–liquid phase separation method according to the D-optimal fractional factorial design encompassing five variables at two levels. The responses investigated were glimepiride entrapment capacity (EC, particle size and size distribution, zeta potential, and in vitro drug release from the prepared nanoparticles. Furthermore, the feasibility of embedding the optimized Zein-based glimepiride nanoparticles within thermoresponsive triblock copolymers poly(lactide-co-glycolide-block-poly(ethylene glycol-block-poly(lactide-co-glycolide in in situ gel was evaluated for controlling glimepiride release rate. Results: Through the systematic optimization phase, improvement of glimepiride EC of 33.6%, nanoparticle size of 120.9 nm with a skewness value of 0.2, zeta potential of 11.1 mV, and sustained release features of 3.3% and 17.3% drug released after 2 and 24 hours, respectively, were obtained. These desirability functions were obtained at Zein and glimepiride loadings of 50 and 75 mg, respectively, utilizing

  19. In situ gelling dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma.

    Science.gov (United States)

    Katiyar, Shefali; Pandit, Jayamanti; Mondal, Rabi S; Mishra, Anil K; Chuttani, Krishna; Aqil, Mohd; Ali, Asgar; Sultana, Yasmin

    2014-02-15

    The most important risk associated with glaucoma is the onset and progression of intraocular pressure. The objective of this study was to formulate in situ gel of chitosan nanoparticles to enhance the bioavailability and efficacy of dorzolamide in the glaucoma treatment. Optimized nanoparticles were spherical in shape (particle size: 164 nm) with a loading efficiency of 98.1%. The ex vivo release of the optimized in situ gel nanoparticle formulation showed a sustained drug release as compared to marketed formulation. The gamma scintigraphic study of prepared in situ nanoparticle gel showed good corneal retention compared to marketed formulation. HET-CAM assay of the prepared formulation scored 0.33 in 5 min which indicates the non-irritant property of the formulation. Thus in situ gel of dorzolamide hydrochloride loaded nanoparticles offers a more intensive treatment of glaucoma and a better patient compliance as it requires fewer applications per day compared to conventional eye drops. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells.

    Science.gov (United States)

    Liang, Jin; Li, Feng; Fang, Yong; Yang, Wenjian; An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin; Hu, Qiuhui

    2014-03-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. Copyright © 2013. Published by

  1. Biodegradable nanoparticle-entrapped vaccine induces cross-protective immune response against a virulent heterologous respiratory viral infection in pigs.

    Directory of Open Access Journals (Sweden)

    Varun Dwivedi

    Full Text Available Biodegradable nanoparticle-based vaccine development research is unexplored in large animals and humans. In this study, we illustrated the efficacy of nanoparticle-entrapped UV-killed virus vaccine against an economically important respiratory viral disease of pigs called porcine reproductive and respiratory syndrome virus (PRRSV. We entrapped PLGA [poly (lactide-co-glycolides] nanoparticles with killed PRRSV antigens (Nano-KAg and detected its phagocytosis by pig alveolar macrophages. Single doses of Nano-KAg vaccine administered intranasally to pigs upregulated innate and PRRSV specific adaptive responses. In a virulent heterologous PRRSV challenge study, Nano-KAg vaccine significantly reduced the lung pathology and viremia, and the viral load in the lungs. Immunologically, enhanced innate and adaptive immune cell population and associated cytokines with decreased secretion of immunosuppressive mediators were observed at both mucosal sites and blood. In summary, we demonstrated the benefits of intranasal delivery of nanoparticle-based viral vaccine in eliciting cross-protective immune response in pigs, a potential large animal model.

  2. Dynamic mechanical behaviour of nanoparticle loaded biodegradable PVA films for vaginal drug delivery.

    Science.gov (United States)

    Traore, Yannick L; Fumakia, Miral; Gu, Jijin; Ho, Emmanuel A

    2018-03-01

    In this study, we investigated the viscoelastic and mechanical behaviour of polyvinyl alcohol films formulated along with carrageenan, plasticizing agents (polyethylene glycol and glycerol), and when loaded with nanoparticles as a model for potential applications as microbicides. The storage modulus, loss modulus and glass transition temperature were determined using a dynamic mechanical analyzer. Films fabricated from 2% to 5% polyvinyl alcohol containing 3 mg or 5 mg of fluorescently labeled nanoparticles were evaluated. The storage modulus and loss modulus values of blank films were shown to be higher than the nanoparticle-loaded films. Glass transition temperature determined using the storage modulus, and loss modulus was between 40-50℃ and 35-40℃, respectively. The tensile properties evaluated showed that 2% polyvinyl alcohol films were more elastic but less resistant to breaking compared to 5% polyvinyl alcohol films (2% films break around 1 N load and 5% films break around 7 N load). To our knowledge, this is the first study to evaluate the influence of nanoparticle and film composition on the physico-mechanical properties of polymeric films for vaginal drug delivery.

  3. Polymeric Nanoparticles as a Metolachlor Carrier: Water-Based Formulation for Hydrophobic Pesticides and Absorption by Plants.

    Science.gov (United States)

    Tong, Yujia; Wu, Yan; Zhao, Caiyan; Xu, Yong; Lu, Jianqing; Xiang, Sheng; Zong, Fulin; Wu, Xuemin

    2017-08-30

    Pesticide formulation is highly desirable for effective utilization of pesticide and environmental pollution reduction. Studies of pesticide delivery system such as microcapsules are developing prosperously. In this work, we chose polymeric nanoparticles as a pesticide delivery system and metolachlor was used as a hydrophobic pesticide model to study water-based mPEG-PLGA nanoparticle formulation. Preparation, characterization results showed that the resulting nanoparticles enhanced "water solubility" of hydrophobic metolachlor and contained no organic solvent or surfactant, which represent one of the most important sources of pesticide pollution. After the release study, absorption of Cy5-labeled nanoparticles into rice roots suggested a possible transmitting pathway of this metolachlor formulation and increased utilization of metolachlor. Furthermore, the bioassay test demonstrated that this nanoparticle showed higher effect than non-nano forms under relatively low concentrations on Oryza sativa, Digitaria sanguinalis. In addition, a simple cytotoxicity test involving metolachlor and metolachlor-loaded nanoparticles was performed, indicating toxicity reduction of the latter to the preosteoblast cell line. All of these results showed that those polymeric nanoparticles could serve as a pesticide carrier with lower environmental impact, comparable effect, and effective delivery.

  4. Artesunate-loaded chitosan/lecithin nanoparticles: preparation, characterization, and in vivo studies.

    Science.gov (United States)

    Chadha, Renu; Gupta, Sushma; Pathak, Natasha

    2012-12-01

    Artesunate (AST), the most widely used artemisnin derivative, has poor aqueous solubility and suffers from low oral bioavailability (~40%). Under these conditions, nanoparticles with controlled and sustained released properties can be a suitable solution for improving its biopharmaceuticals properties. This work reports the preparation and characterization of auto-assembled chitosan/lecithin nanoparticles loaded with AST and AST complexed with β-cyclodextrin (β-CD) to boost its antimalarial activity. The nanoparticles prepared by direct injection of lecithin alcoholic solution into chitosan/water solution have shown the particle size distribution below 300 nm. Drug entrapment efficiency was found to be maximum (90%) for nanoparticles containing 100 mg of AST. Transmission electron microscopy images show spherical shape with contrasted corona (chitosan) surrounded by a lipidic core (lecithin + isopropyl myristate). Differential scanning calorimeter thermograms demonstrated the presence of drug in drug-loaded nanoparticles along with the disappearance of decomposition exotherm suggesting the increased physical stability of drug in prepared formulations. Negligible changes in the characteristic peaks of drug in Fourier-transform infrared spectra indicated the absence of any interaction among the various components entrapped in the nanoparticle formulation. In vitro drug release behavior was found to be influenced by pH value. Increased in vivo antimalarial activity in terms of less mean percent parasitemia was observed in infected Plasmodium berghei mice after the oral administration of all the prepared nanoparticle formulations.

  5. Novel targeted siRNA-loaded hybrid nanoparticles: preparation, characterization and in vitro evaluation.

    Science.gov (United States)

    Dim, Nneka; Perepelyuk, Maryna; Gomes, Olukayode; Thangavel, Chellappagounder; Liu, Yi; Den, Robert; Lakshmikuttyamma, Ashakumary; Shoyele, Sunday A

    2015-09-26

    siRNAs have a high potential for silencing critical molecular pathways that are pathogenic. Nevertheless, their clinical application has been limited by a lack of effective and safe nanotechnology-based delivery system that allows a controlled and safe transfection to cytosol of targeted cells without the associated adverse effects. Our group recently reported a very effective and safe hybrid nanoparticle delivery system composing human IgG and poloxamer-188 for siRNA delivery to cancer cells. However, these nanoparticles need to be optimized in terms of particle size, loading capacity and encapsulation efficiency. In the present study, we explored the effects of certain production parameters on particle size, loading capacity and encapsulation efficiency. Further, to make these nanoparticles more specific in their delivery of siRNA, we conjugated anti-NTSR1-mAb to the surface of these nanoparticles to target NTSR1-overexpressing cancer cells. The mechanism of siRNA release from these antiNTSR1-mAb functionalized nanoparticles was also elucidated. It was demonstrated that the concentration of human IgG in the starting nanoprecipitation medium and the rotation speed of the magnetic stirrer influenced the encapsulation efficiency, loading capacity and the size of the nanoparticles produced. We also successfully transformed these nanoparticles into actively targeted nanoparticles by functionalizing with anti-NTSR1-mAb to specifically target NTSR1-overexpressing cancer cells, hence able to avoid undesired accumulation in normal cells. The mechanism of siRNA release from these nanoparticles was elucidated to be by Fickian diffusion. Using flow cytometry and fluorescence microscopy, we were able to confirm the active involvement of NTSR1 in the uptake of these anti-NTSR1-mAb functionalized hybrid nanoparticles by lung adenocarcinoma cells. This hybrid nanoparticle delivery system can be used as a platform technology for intracellular delivery of siRNAs to NTSR1

  6. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells

    International Nuclear Information System (INIS)

    Liang, Jin; Li, Feng; Fang, Yong; Yang, Wenjian; An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin; Hu, Qiuhui

    2014-01-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. - Highlights: • Tea polyphenol-loaded

  7. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jin [Key Laboratory of Tea Biochemistry and Biotechnology of Ministry of Education and Ministry of Agriculture, Anhui Agricultural University, Hefei 230036 (China); College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Li, Feng [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Fang, Yong; Yang, Wenjian [College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China); An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Hu, Qiuhui, E-mail: qiuhuihu@njau.edu.cn [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China)

    2014-03-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. - Highlights: • Tea polyphenol-loaded

  8. Preparation, physicochemical properties and biocompatibility of PBLG/PLGA/bioglass composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ning [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Qian, Junmin, E-mail: jmqian@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Jinlei [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ji, Chuanlei [The Orthopaedic Department, XiJing Hospital Affiliated to the Fourth Military Medical University, Xi' an 710032 (China); Xu, Weijun; Wang, Hongjie [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2017-02-01

    In this study, novel poly(γ-benzyl L-glutamate)/poly(lactic-co-glycolic acid)/bioglass (PBLG/PLGA/BG) composite scaffolds with different weight ratios were fabricated using a negative NaCl-templating method. The morphology, compression modulus and degradation kinetics of the scaffolds were characterized. The results showed that the PBLG/PLGA/BG composite scaffolds with a weight ratio of 5:5:1, namely PBLG5PLGA5BG composite scaffolds, displayed a pore size range of 50–500 μm, high compressive modulus (566.6 ± 8.8 kPa), suitable glass transition temperature (46.8 ± 0.2 °C) and low degradation rate (> 8 weeks). The in vitro biocompatibility of the scaffolds was evaluated with MC3T3-E1 cells by live-dead staining, MTT and ALP activity assays. The obtained results indicated that the PBLG5PLGA5BG composite scaffolds were more conducive to the adhesion, proliferation and osteoblastic differentiation of MC3T3-E1 cells than PBLG and PBLG/PLGA composite scaffolds. The in vivo biocompatibility of the scaffolds was evaluated in both SD rat subcutaneous model and rabbit tibia defect model. The results of H&E, Masson's trichrome and CD34 staining assays demonstrated that the PBLG5PLGA5BG composite scaffolds allowed the ingrowth of tissue and microvessels more effectively than PBLG/PLGA composite scaffolds. The results of digital radiography confirmed that the PBLG5PLGA5BG composite scaffolds significantly improved in vivo osteogenesis. Collectively, the PBLG5PLGA5BG composite scaffolds could be a promising candidate for tissue engineering applications. - Highlights: • Foamy PBLG/PLGA/bioglass composite scaffolds were fabricated by negative templating. • PBLG/PLGA/bioglass composite scaffolds displayed tunable physicochemical properties. • PBLG/PLGA/bioglass composite scaffolds had good biocompatibility in vitro and in vivo. • PBLG/PLGA/bioglass composite scaffolds could promote the healing of bone defects.

  9. Insulin-loaded polymeric mucoadhesive nanoparticles: development, characterization and cytotoxicity evaluation

    Directory of Open Access Journals (Sweden)

    Tiago Henrique Honorato Gatti

    2018-06-01

    Full Text Available Abstract Mucoadhesive nanoparticles are particularly interesting for delivery through nasal or pulmonary routes, as an approach to overcome the mucociliary clearance. Moreover, these nanoparticles are attractive for peptide and protein delivery, particularly for insulin to treat diabetes, as an alternative to conventional parenteral administration. Thus, chitosan, a cationic mucoadhesive polysaccharide found in shells of crustaceans, and the negatively-charged dextran sulfate are able to form nanoparticles through ionic condensation, representing a potential insulin carrier. Herein, chitosan/dextran sulfate nanoparticles at various ratios were prepared for insulin loading. Formulations were characterized for particle size, zeta potential, encapsulation efficiency, scanning electron microscopy, differential scanning calorimetry, and in vitro drug release. Moreover, the interaction with mucin and the cytotoxicity against a lung cell line were studied, which altogether have not been addressed before. Results evidenced that a proper selection of polyelectrolytes is necessary for smaller particle size formation and also the composition and zeta potential impact encapsulation efficiency, which is benefited by the positive charge of chitosan. Insulin remained stable after encapsulation as evidenced by calorimetric assays, and was released in a sustained manner in the first 10 h. Positively-charged nanoparticles based on chitosan/dextran-sulfate at the ratio of 6:4 successfully interacted with mucin, which is a prerequisite for delivery to mucus-containing tissues. Finally, insulin-loaded nanoparticles displayed no cytotoxicity effect against lung cells at tested concentrations, suggesting the potential for further in vivo studies.

  10. Dual tumor-targeted poly(lactic-co-glycolic acid–polyethylene glycol–folic acid nanoparticles: a novel biodegradable nanocarrier for secure and efficient antitumor drug delivery

    Directory of Open Access Journals (Sweden)

    Chen J

    2017-08-01

    Full Text Available Jia Chen,1,2,* Qi Wu,1,* Li Luo,1 Yi Wang,1 Yuan Zhong,1 Han-Bin Dai,1 Da Sun,1,3 Mao-Ling Luo,4 Wei Wu,1 Gui-Xue Wang1 1Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University, Chongqing, 2Institute of Laboratory Animals, Sichuan Academy of Medical Science, Sichuan Provincial People’s Hospital, Chengdu, 3Institute of Life Sciences, Wenzhou University, Wenzhou, 4School of Medicine, Wuhan University, Wuhan, China *These authors contributed equally to this work Abstract: Further specific target-ability development of biodegradable nanocarriers is extremely important to promote their security and efficiency in antitumor drug-delivery applications. In this study, a facilely prepared poly(lactic-co-glycolic acid (PLGA–polyethylene glycol (PEG–folic acid (FA copolymer was able to self-assemble into nanoparticles with favorable hydrodynamic diameters of around 100 nm and negative surface charge in aqueous solution, which was expected to enhance intracellular antitumor drug delivery by advanced dual tumor-target effects, ie, enhanced permeability and retention induced the passive target, and FA mediated the positive target. Fluorescence-activated cell-sorting and confocal laser-scanning microscopy results confirmed that doxorubicin (model drug loaded into PLGA-PEG-FA nanoparticles was able to be delivered efficiently into tumor cells and accumulated at nuclei. In addition, all hemolysis, 3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium, and zebrafish-development experiments demonstrated that PLGA-PEG-FA nanoparticles were biocompatible and secure for biomedical applications, even at high polymer concentration (0.1 mg/mL, both in vitro and in vivo. Therefore, PLGA-PEG-FA nanoparticles provide a feasible controlled-release platform for secure and efficient antitumor drug

  11. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease

    Science.gov (United States)

    Hua, Hongchen; Jiang, Ying; Wang, Yiyun; Mu, Hongjie; Wu, Zimei

    2018-01-01

    Background Safe and effective delivery of therapeutic drugs to the brain is important for successful therapy of Alzheimer’s disease (AD). Purpose To develop Huperzine A (HupA)-loaded, mucoadhesive and targeted polylactide-co-glycoside (PLGA) nanoparticles (NPs) with surface modification by lactoferrin (Lf)-conjugated N-trimethylated chitosan (TMC) (HupA Lf-TMC NPs) for efficient intranasal delivery of HupA to the brain for AD treatment. Methods HupA Lf-TMC NPs were prepared using the emulsion–solvent evaporation method and optimized using the Box–Behnken design. The particle size, zeta potential, drug entrapment efficiency, adhesion and in vitro release behavior were investigated. The cellular uptake was investigated by fluorescence microscopy and flow cytometry. MTT assay was used to evaluate the cytotoxicity of the NPs. In vivo imaging system was used to investigate brain targeting effect of NPs after intranasal administration. The biodistribution of Hup-A NPs after intranasal administration was determined by liquid chromatography–tandem mass spectrometry. Results Optimized HupA Lf-TMC NPs had a particle size of 153.2±13.7 nm, polydispersity index of 0.229±0.078, zeta potential of +35.6±5.2 mV, drug entrapment efficiency of 73.8%±5.7%, and sustained release in vitro over a 48 h period. Adsorption of mucin onto Lf-TMC NPs was 86.9%±1.8%, which was significantly higher than that onto PLGA NPs (32.1%±2.5%). HupA Lf-TMC NPs showed lower toxicity in the 16HBE cell line compared with HupA solution. Qualitative and quantitative cellular uptake experiments indicated that accumulation of Lf-TMC NPs was higher than nontargeted analogs in 16HBE and SH-SY5Y cells. In vivo imaging results showed that Lf-TMC NPs exhibited a higher fluorescence intensity in the brain and a longer residence time than nontargeted NPs. After intranasal administration, Lf-TMC NPs facilitated the distribution of HupA in the brain, and the values of the drug targeting index in the mouse

  12. Preparation, characterisation and antioxidant activities of rutin-loaded zein-sodium caseinate nanoparticles.

    Science.gov (United States)

    Zhang, Shuangling; Han, Yue

    2018-01-01

    Novel rutin-loaded zein-sodium caseinate nanoparticles (ZP) with antioxidant activity in aqueous medium were investigated. The results showed that the sodium caseinate concentrations, dosages of rutin and ethanol volume fractions significantly affected the zein nanoparticles' characteristics. Concerning the antioxidant properties, the highest values of rutin loaded ZP obtained using 2, 2-diphenyl-1-picrylhydrazyl scavenging and 2 and 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) decolourisation assays were 52.7% and 71.2%, respectively, and the total antioxidant capacity was 0.40 nmol g-1. The results suggest that zein-sodium caseinate nanoparticles can be used as a new nano carrier system for rutin or other water insoluble active ingredients.

  13. Hyaluronic acid/poly(lactic-co-glycolic acid) core/shell fiber meshes loaded with epigallocatechin-3-O-gallate as skin tissue engineering scaffolds.

    Science.gov (United States)

    Lee, Eun Ji; Lee, Jong Ho; Jin, Linhua; Jin, Oh Seong; Shin, Yong Cheol; Sang, Jin Oh; Lee, Jaebeom; Hyon, Suong-Hyu; Han, Dong-Wook

    2014-11-01

    In this study, hyaluronic acid (HA)/poly(lactic-co-glycolic acid, PLGA) core/shell fiber meshes loaded with epigallocatechin-3-O-gallate (EGCG) (HA/PLGA-E) for application to tissue engineering scaffolds for skin regeneration were prepared via coaxial electrospinning. Physicochemical properties of HA/PLGA-E core/shell fiber meshes were characterized by SEM, Raman spectroscopy, contact angle, EGCG release profiling and in vitro degradation. Biomechanical properties of HA/PLGA-E meshes were also investigated by a tensile strength test. SEM images showed that HA/PLGA-E fiber meshes had a three-dimensional interconnected pore structure with an average fiber diameter of about 1270 nm. Raman spectra revealed that EGCG was uniformly dispersed in the PLGA shell of meshes. HA/PLGA-E meshes showed sustained EGCG release patterns by controlled diffusion and PLGA degradation over 4 weeks. EGCG loading did not adversely affect the tensile strength and elastic modulus of HA/PLGA meshes, while increased their hydrophilicity and surface energy. Attachment of human dermal fibroblasts on HA/PLGA-E meshes was appreciably increased and their proliferation was steadily retained during the culture period. These results suggest that HA/PLGA-E core/shell fiber meshes can be potentially used as scaffolds supporting skin regeneration.

  14. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Meng QQ

    2018-02-01

    Full Text Available Qingqing Meng,1,* Aiping Wang,1,2,* Hongchen Hua,1 Ying Jiang,1 Yiyun Wang,1 Hongjie Mu,1 Zimei Wu,1 Kaoxiang Sun1 1School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People’s Republic of China; 2State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd, Yantai, People’s Republic of China *These authors contributed equally to this work Background: Safe and effective delivery of therapeutic drugs to the brain is important for successful therapy of Alzheimer’s disease (AD.Purpose: To develop Huperzine A (HupA-loaded, mucoadhesive and targeted polylactide-co-glycoside (PLGA nanoparticles (NPs with surface modification by lactoferrin (Lf-conjugated N-trimethylated chitosan (TMC (HupA Lf-TMC NPs for efficient intranasal delivery of HupA to the brain for AD treatment.Methods: HupA Lf-TMC NPs were prepared using the emulsion–solvent evaporation method and optimized using the Box–Behnken design. The particle size, zeta potential, drug entrapment efficiency, adhesion and in vitro release behavior were investigated. The cellular uptake was investigated by fluorescence microscopy and flow cytometry. MTT assay was used to evaluate the cytotoxicity of the NPs. In vivo imaging system was used to investigate brain targeting effect of NPs after intranasal administration. The biodistribution of Hup-A NPs after intranasal administration was determined by liquid chromatography–tandem mass spectrometry.Results: Optimized HupA Lf-TMC NPs had a particle size of 153.2±13.7 nm, polydispersity index of 0.229±0.078, zeta potential of +35.6±5.2 mV, drug entrapment efficiency of 73.8%±5.7%, and sustained release in vitro over a 48 h period. Adsorption of mucin onto Lf-TMC NPs was 86.9%±1.8%, which was significantly higher than that onto PLGA NPs (32.1%±2.5%. HupA Lf-TMC NPs showed lower toxicity

  15. Oxygen Sensing with Perfluorocarbon-Loaded Ultraporous Mesostructured Silica Nanoparticles.

    Science.gov (United States)

    Lee, Amani L; Gee, Clifford T; Weegman, Bradley P; Einstein, Samuel A; Juelfs, Adam R; Ring, Hattie L; Hurley, Katie R; Egger, Sam M; Swindlehurst, Garrett; Garwood, Michael; Pomerantz, William C K; Haynes, Christy L

    2017-06-27

    Oxygen homeostasis is important in the regulation of biological function. Disease progression can be monitored by measuring oxygen levels, thus producing information for the design of therapeutic treatments. Noninvasive measurements of tissue oxygenation require the development of tools with minimal adverse effects and facile detection of features of interest. Fluorine magnetic resonance imaging ( 19 F MRI) exploits the intrinsic properties of perfluorocarbon (PFC) liquids for anatomical imaging, cell tracking, and oxygen sensing. However, the highly hydrophobic and lipophobic properties of perfluorocarbons require the formation of emulsions for biological studies, though stabilizing these emulsions has been challenging. To enhance the stability and biological loading of perfluorocarbons, one option is to incorporate perfluorocarbon liquids into the internal space of biocompatible mesoporous silica nanoparticles. Here, we developed perfluorocarbon-loaded ultraporous mesostructured silica nanoparticles (PERFUMNs) as 19 F MRI detectable oxygen-sensing probes. Ultraporous mesostructured silica nanoparticles (UMNs) have large internal cavities (average = 1.8 cm 3 g -1 ), facilitating an average 17% loading efficiency of PFCs, meeting the threshold fluorine concentrations needed for imaging studies. Perfluoro-15-crown-5-ether PERFUMNs have the highest equivalent nuclei per PFC molecule and a spin-lattice (T 1 ) relaxation-based oxygen sensitivity of 0.0032 mmHg -1 s -1 at 16.4 T. The option of loading PFCs after synthesizing UMNs, rather than traditional in situ core-shell syntheses, allows for use of a broad range of PFC liquids from a single material. The biocompatible and tunable chemistry of UMNs combined with the intrinsic properties of PFCs makes PERFUMNs a MRI sensor with potential for anatomical imaging, cell tracking, and metabolic spectroscopy with improved stability.

  16. Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering

    International Nuclear Information System (INIS)

    Meng, Z.X.; Li, H.F.; Sun, Z.Z.; Zheng, W.; Zheng, Y.F.

    2013-01-01

    Surface mineralization is an effective method to produce calcium phosphate apatite coating on the surface of bone tissue scaffold which could create an osteophilic environment similar to the natural extracellular matrix for bone cells. In this study, we prepared mineralized poly(D,L-lactide-co-glycolide) (PLGA) and PLGA/gelatin electrospun nanofibers via depositing calcium phosphate apatite coating on the surface of these nanofibers to fabricate bone tissue engineering scaffolds by concentrated simulated body fluid method, supersaturated calcification solution method and alternate soaking method. The apatite products were characterized by the scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR), and X-ray diffractometry (XRD) methods. A large amount of calcium phosphate apatite composed of dicalcium phosphate dihydrate (DCPD), hydroxyapatite (HA) and octacalcium phosphate (OCP) was deposited on the surface of resulting nanofibers in short times via three mineralizing methods. A larger amount of calcium phosphate was deposited on the surface of PLGA/gelatin nanofibers rather than PLGA nanofibers because gelatin acted as nucleation center for the formation of calcium phosphate. The cell culture experiments revealed that the difference of morphology and components of calcium phosphate apatite did not show much influence on the cell adhesion, proliferation and activity. - Highlights: ► Ca–P phases were coated on PLGA/gelatin electrospun nanofiber membranes within 3 h. ► Ca–P coatings prepared by 3 methods exhibited different structures and components. ► The Ca–P coating weight increase depends on the apatite nucleation velocity. ► Surface hydrophilicity enhanced the velocity and quantity of apatite nucleation. ► The resulting Ca–P apatite coatings exhibit good biocompatibility to MG63 cells.

  17. Modification of PLGA Nanofibrous Mats by Electron Beam Irradiation for Soft Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Jae Baek Lee

    2015-01-01

    Full Text Available Biodegradable poly(lactide-co-glycolide (PLGA has found widespread use in modern medical practice. However, the degradation rate of PLGA should be adjusted for specific biomedical applications such as tissue engineering, drug delivery, and surgical implantation. This study focused on the effect of electron beam radiation on nanofibrous PLGA mats in terms of physical properties and degradation behavior with cell proliferation. PLGA nanofiber mats were prepared by electrospinning, and electron beam was irradiated at doses of 50, 100, 150, 200, 250, and 300 kGy. PLGA mats showed dimensional integrity after electron beam irradiation without change of fiber diameter. The degradation behavior of a control PLGA nanofiber (0 kGy and electron beam-irradiated PLGA nanofibers was analyzed by measuring the molecular weight, weight loss, change of chemical structure, and fibrous morphology. The molecular weight of the PLGA nanofibers decreased with increasing electron beam radiation dose. The mechanical properties of the PLGA nanofibrous mats were decreased with increasing electron beam irradiation dose. Cell proliferation behavior on all electron beam irradiated PLGA mats was similar to the control PLGA mats. Electron beam irradiation of PLGA nanofibrous mats is a potentially useful approach for modulating the biodegradation rate of tissue-specific nonwoven nanofibrous scaffolds, specifically for soft tissue engineering applications.

  18. Self-Assembled Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles: Intracellular Trafficking and Relevance for Oral Absorption.

    Science.gov (United States)

    Li, Qiuxia; Xia, Dengning; Tao, Jinsong; Shen, Aijun; He, Yuan; Gan, Yong; Wang, Chi

    2017-10-01

    Lipid-polymer hybrid nanoparticles (NPs) are advantageous for drug delivery. However, their intracellular trafficking mechanism and relevance for oral drug absorption are poorly understood. In this study, self-assembled core-shell lipid-polymer hybrid NPs made of poly(lactic-co-glycolic acid) (PLGA) and various lipids were developed to study their differing intracellular trafficking in intestinal epithelial cells and their relevance for oral absorption of a model drug saquinavir (SQV). Our results demonstrated that the endocytosis and exocytosis of hybrid NPs could be changed by varying the kind of lipid. A glyceride mixture (hybrid NPs-1) decreased endocytosis but increased exocytosis in Caco-2 cells, whereas the phospholipid (E200) (hybrid NPs-2) decreased endocytosis but exocytosis was unaffected as compared with PLGA nanoparticles. The transport of hybrid NPs-1 in cells involved various pathways, including caveolae/lipid raft-dependent endocytosis, and clathrin-mediated endocytosis and macropinocytosis, which was different from the other groups of NPs that involved only caveolae/lipid raft-dependent endocytosis. Compared with that of the reference formulation (nanoemulsion), the oral absorption of SQV-loaded hybrid NPs in rats was poor, probably due to the limited drug release and transcytosis of NPs across the intestinal epithelium. In conclusion, the intracellular processing of hybrid NPs in intestinal epithelia can be altered by adding lipids to the NP. However, it appears unfavorable to use PLGA-based NPs to improve oral absorption of SQV compared with nanoemulsion. Our findings will be essential in the development of polymer-based NPs for the oral delivery of drugs with the purpose of improving their oral absorption. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. In vitro digestion of curcuminoid-loaded lipid nanoparticles

    International Nuclear Information System (INIS)

    Noack, Andreas; Oidtmann, Johannes; Kutza, Johannes; Mäder, Karsten

    2012-01-01

    Curcuminoid-loaded lipid nanoparticles were produced by melt homogenization. The used lipid matrices were medium chain triglycerides, trimyristin (TM), and tristearin. The mean particle size of the preparations was between 130 and 180 nm. The incorporated curcuminoids revealed a good stability over a period of 12 months. The curcuminoid-loaded lipid nanoparticles were intended for the oral delivery of curcuminoids. Therefore, the fate of the triglyceride matrix in simulated gastric and simulated intestinal media under the influence of pepsin and pancreatin, respectively, was assessed. The degradation of the triglycerides was monitored by the pH–stat method and with high performance thin layer chromatography in connection with spectrodensitometry to quantify the different lipid fractions. The TM nanoparticles were not degraded in simulated gastric fluid (SGF), but the decomposition of the triglyceride matrix was rapid in the intestinal media. The digestion process was faster in the simulated fed state medium compared to the simulated fasted state medium. Additionally, the stability of the incorporated drug was tested in the respective physiological media. The curcuminoids showed an overall good stability in the different test media. The release of the curcuminoids from the lipid nanoparticles was determined by fluorescence imaging techniques. A slow release of the drug was found in phosphate buffer. In contrast, a more distinct release of the curcuminoids was verifiable in SGF and in simulated intestinal fluids. Overall, it was considered that the transfer of the drug into the outer media was mainly triggered by the lipid degradation and not by drug release.

  20. Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering.

    Science.gov (United States)

    Meng, Z X; Li, H F; Sun, Z Z; Zheng, W; Zheng, Y F

    2013-03-01

    Surface mineralization is an effective method to produce calcium phosphate apatite coating on the surface of bone tissue scaffold which could create an osteophilic environment similar to the natural extracellular matrix for bone cells. In this study, we prepared mineralized poly(D,L-lactide-co-glycolide) (PLGA) and PLGA/gelatin electrospun nanofibers via depositing calcium phosphate apatite coating on the surface of these nanofibers to fabricate bone tissue engineering scaffolds by concentrated simulated body fluid method, supersaturated calcification solution method and alternate soaking method. The apatite products were characterized by the scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR), and X-ray diffractometry (XRD) methods. A large amount of calcium phosphate apatite composed of dicalcium phosphate dihydrate (DCPD), hydroxyapatite (HA) and octacalcium phosphate (OCP) was deposited on the surface of resulting nanofibers in short times via three mineralizing methods. A larger amount of calcium phosphate was deposited on the surface of PLGA/gelatin nanofibers rather than PLGA nanofibers because gelatin acted as nucleation center for the formation of calcium phosphate. The cell culture experiments revealed that the difference of morphology and components of calcium phosphate apatite did not show much influence on the cell adhesion, proliferation and activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Fabrication of orderly nanostructured PLGA scaffolds using anodic aluminum oxide templates.

    Science.gov (United States)

    Wang, Gou-Jen; Lin, Yan-Cheng; Li, Ching-Wen; Hsueh, Cheng-Chih; Hsu, Shan-Hui; Hung, Huey-Shan

    2009-08-01

    In this research, two simple fabrication methods to fabricate orderly nanostructured PLGA scaffolds using anodic aluminum oxide (AAO) template were conducted. In the vacuum air-extraction approach, the PLGA solution was cast on an AAO template first. The vacuum air-extraction process was then applied to suck the semi-congealed PLGA into the nanopores of the AAO template to form a bamboo sprouts array of PLGA. The surface roughness of the nanostructured scaffolds, ranging from 20 nm to 76 nm, can be controlled by the sucking time of the vacuum air-extraction process. In the replica molding approach, the PLGA solution was cast on the orderly scraggy barrier-layer surface of an AAO membrane to fabricate a PLGA scaffold of concave nanostructure. Cell culture experiments using the bovine endothelial cells (BEC) demonstrated that the nanostructured PLGA membrane can increase the cell growing rate, especially for the bamboo sprouts array scaffolds with smaller surface roughness.

  2. Application of nanoparticles for oral delivery of acid-labile lansoprazole in the treatment of gastric ulcer: in vitro and in vivo evaluations

    Directory of Open Access Journals (Sweden)

    Alai M

    2015-06-01

    Full Text Available Milind Alai,1 Wen Jen Lin1,2 1Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, 2Drug Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan Abstract: The aim of this study was to develop nanoparticles for oral delivery of an acid-labile drug, lansoprazole (LPZ, for gastric ulcer therapy. LPZ-loaded positively charged Eudragit® RS100 nanoparticles (ERSNPs-LPZ and negatively charged poly(lactic-co-glycolic acid nanoparticles (PLGANPs-LPZ were prepared. The effect of charge on nanoparticle deposition in ulcerated and non-ulcerated regions of the stomach was investigated. The cellular uptake of nanoparticles in the intestine was evaluated in a Caco-2 cell model. The pharmacokinetic performance and ulcer healing response of LPZ-loaded nanoparticles following oral administration were evaluated in Wistar rats with induced ulcers. The prepared drug-loaded ERSNPs-LPZ and PLGANPs-LPZ possessed opposite surface charge (+38.5±0.3 mV versus -27.3±0.3 mV, respectively and the particle size was around 200 nm with a narrow size distribution. The negatively charged PLGANPs adhered more readily to the ulcerated region (7.22%±1.21% per cm2, whereas the positively charged ERSNPs preferentially distributed in the non-ulcerated region (8.29%±0.35% per cm2. Both ERSNPs and PLGANPs were prominent uptake in Caco-2 cells, too. The nanoparticles sustained and prolonged LPZ concentrations up to 24 hours, and the half-life and mean residence time of LPZ were prolonged by 3.5-fold and 4.5-fold, respectively, as compared with LPZ solution. Oral administration of LPZ-loaded nanoparticles healed 92.6%–95.7% of gastric ulcers in Wistar rats within 7 days. Keywords: nanoparticles, lansoprazole, Eudragit® RS100, PLGA

  3. Comparison of morphology and mechanical properties of PLGA bioscaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Leung, L; Chan, C; Baek, S; Naguib, Hani [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario, M5S 3G8 (Canada)], E-mail: naguib@mie.utoronto.ca

    2008-06-01

    In this study, bioscaffolds using poly(DL-lactide-co-glycolide) acid (PLGA) were fabricated and studied. The gas foaming/salt leaching technique in a batch foaming setup was employed, and the effects of material composition of PLGA on the morphology and mechanical properties using this process were investigated. Two material compositions of PLGA 50/50 and 85/15 were used, and characterization of scaffolds fabricated with these materials showed that a lower relative density can be achieved with an increasing poly(DL-lactide) acid (PDLLA) content; however, higher open-cell porosity was obtained with lower PDLLA content. Furthermore, the effect of PLGA composition on modulus of the scaffolds was minor.

  4. Multifunctional PLGA Nanobubbles as Theranostic Agents: Combining Doxorubicin and P-gp siRNA Co-Delivery Into Human Breast Cancer Cells and Ultrasound Cellular Imaging.

    Science.gov (United States)

    Yang, Hong; Deng, Liwei; Li, Tingting; Shen, Xue; Yan, Jie; Zuo, Liangming; Wu, Chunhui; Liu, Yiyao

    2015-12-01

    Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. One of the effective approaches to overcome MDR is to use nanoparticle-mediated the gene silence of chemotherapeutic export proteins by RNA interference to increase drug accumulation in drug resistant cancer cells. In this work, a new co-delivery system, DOX-PLGA/PEI/P-gp shRNA nanobubbles (NBs) around 327 nm, to overcome doxorubicin (DOX) resistance in MCF-7 human breast cancer was designed and developed. Positively charged polyethylenimine (PEI) were modified onto the surface of DOX-PLGA NBs through DCC/NHS crosslinking, and could efficiently condense P-gp shRNA into DOX-PLGA/PEI NBs at vector/shRNA weight ratios of 70:1 and above. An in vitro release profile demonstrated an efficient DOX release (more than 80%) from DOX-PLGA/PEI NBs at pH 4.4, suggesting a pH-responsive drug release for the multifunctionalized NBs. Cellular experimental results further showed that DOX-PLGA/PEI/P-gp shRNA NBs could facilitate cellular uptake of DOX into cells and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The IC50 of DOX-PLGA NBs against MCF-7/ADR cells was 2-fold lower than that of free DOX. The increased cellular uptake and nuclear accumulation of DOX delivered by DOX-PLGA/PEI/P-gp shRNA NBs in MCF-7/ADR cells was confirmed by fluorescence microscopy and fluorescence spectrophotometry, and might be owning to the down-regulation of P-gp and reduced the efflux of DOX. The cellular uptake mechanism of DOX-PLGA/PEI/P-gp shRNA NBs indicated that the macropinocytosis was one of the pathways for the uptake of NBs by MCF-7/ADR cells, which was also an energy-dependent process. Furthermore, the in vitro cellular ultrasound imaging suggested that the employment of the DOX-PLGA/PEI/P-gp shRNA NBs could efficiently enhance ultrasound imaging of cancer cells. These results demonstrated

  5. Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Z.X. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Li, H.F. [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Sun, Z.Z. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Zheng, W., E-mail: zhengwei@hrbeu.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2013-03-01

    Surface mineralization is an effective method to produce calcium phosphate apatite coating on the surface of bone tissue scaffold which could create an osteophilic environment similar to the natural extracellular matrix for bone cells. In this study, we prepared mineralized poly(D,L-lactide-co-glycolide) (PLGA) and PLGA/gelatin electrospun nanofibers via depositing calcium phosphate apatite coating on the surface of these nanofibers to fabricate bone tissue engineering scaffolds by concentrated simulated body fluid method, supersaturated calcification solution method and alternate soaking method. The apatite products were characterized by the scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR), and X-ray diffractometry (XRD) methods. A large amount of calcium phosphate apatite composed of dicalcium phosphate dihydrate (DCPD), hydroxyapatite (HA) and octacalcium phosphate (OCP) was deposited on the surface of resulting nanofibers in short times via three mineralizing methods. A larger amount of calcium phosphate was deposited on the surface of PLGA/gelatin nanofibers rather than PLGA nanofibers because gelatin acted as nucleation center for the formation of calcium phosphate. The cell culture experiments revealed that the difference of morphology and components of calcium phosphate apatite did not show much influence on the cell adhesion, proliferation and activity. - Highlights: Black-Right-Pointing-Pointer Ca-P phases were coated on PLGA/gelatin electrospun nanofiber membranes within 3 h. Black-Right-Pointing-Pointer Ca-P coatings prepared by 3 methods exhibited different structures and components. Black-Right-Pointing-Pointer The Ca-P coating weight increase depends on the apatite nucleation velocity. Black-Right-Pointing-Pointer Surface hydrophilicity enhanced the velocity and quantity of apatite nucleation. Black-Right-Pointing-Pointer The resulting Ca-P apatite coatings exhibit good biocompatibility to MG63 cells.

  6. Protective efficacy of cationic-PLGA microspheres loaded with DNA vaccine encoding the sip gene of Streptococcus agalactiae in tilapia.

    Science.gov (United States)

    Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Ma, Jiang-Yao; Hao, Le; Liu, Zhen-Xing

    2017-07-01

    Streptococcus agalactiae (S. agalactiae) is an important fish pathogen, which has received more attention in the past decade due to the increasing economic losses in the tilapia industry worldwide. As existing effective vaccines of S. agalactiae in fish have obvious disadvantage, to select immunoprotective antigens and package materials would undoubtedly contribute to the development of novel oral vaccines. In the present study, surface immunogenic protein (sip) was selected from the S. agalactiae serovar I a genomes as immunogenic protein in DNA vaccine form with cationic chitosan and biodegradable and biocompatible PLGA. The pcSip plasmid in cationic-PLGA was successfully expressed in tissues of immunized tilapia and the immunogenicity was assessed in tilapia challenge model. A significant increase was observed in the cytokine levels of IL-1β, TNF-α, CC1, CC2 in spleen and kidney tissues. Furthermore, immunized tilapia conferred different levels of protection against challenge with a lethal dose of highly virulent serovar I a S. agalactiae. Our results indicated that the pcSip plasmid in cationic-PLGA induced high level of antibodies and protection against S. agalactiae infection, could be effective oral DNA vaccine candidates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Biological Properties of Low-Toxicity PLGA and PLGA/PHB Fibrous Nanocomposite Implants for Osseous Tissue Regeneration. Part I: Evaluation of Potential Biotoxicity

    Directory of Open Access Journals (Sweden)

    Izabella Krucińska

    2017-11-01

    Full Text Available In response to the demand for new implant materials characterized by high biocompatibility and bioresorption, two prototypes of fibrous nanocomposite implants for osseous tissue regeneration made of a newly developed blend of poly(l-lactide-co-glycolide (PLGA and syntheticpoly([R,S]-3-hydroxybutyrate, PLGA/PHB, have been developed and fabricated. Afibre-forming copolymer of glycolide and l-lactide (PLGA was obtained by a unique method of synthesis carried out in blocksusing Zr(AcAc4 as an initiator. The prototypes of the implants are composed of three layers of PLGA or PLGA/PHB, nonwoven fabrics with a pore structure designed to provide the best conditions for the cell proliferation. The bioactivity of the proposed implants has been imparted by introducing a hydroxyapatite material and IGF1, a growth factor. The developed prototypes of implants have been subjected to a set of in vitro and in vivobiocompatibility tests: in vitro cytotoxic effect, in vitro genotoxicity and systemic toxicity. Rabbitsshowed no signs of negative reactionafter implantation of the experimental implant prototypes.

  8. Silver nanoparticle-loaded chitosan-starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties

    International Nuclear Information System (INIS)

    Yoksan, Rangrong; Chirachanchai, Suwabun

    2010-01-01

    The fabrication of silver nanoparticles was accomplished by γ-ray irradiation reduction of silver nitrate in a chitosan solution. The obtained nanoparticles were stable in the solution for more than six months, and showed the characteristic surface plasmon band at 411 nm as well as a positively charged surface with 40.4 ± 2.0 mV. The silver nanoparticles presented a spherical shape with an average size of 20-25 nm, as observed by TEM. Minimum inhibitory concentration (MIC) against E. coli, S. aureus and B. cereus of the silver nanoparticles dispersed in the γ-ray irradiated chitosan solution was 5.64 μg/mL. The silver nanoparticle-loaded chitosan-starch based films were prepared by a solution casting method. The incorporation of silver nanoparticles led to a slight improvement of the tensile and oxygen gas barrier properties of the polysaccharide-based films, with diminished water vapor/moisture barrier properties. In addition, silver nanoparticle-loaded films exhibited enhanced antimicrobial activity against E. coli, S. aureus and B. cereus. The results suggest that silver nanoparticle-loaded chitosan-starch based films can be feasibly used as antimicrobial materials for food packaging and/or biomedical applications.

  9. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes.

    Science.gov (United States)

    Ornelas-Megiatto, Cátia; Shah, Parth N; Wich, Peter R; Cohen, Jessica L; Tagaev, Jasur A; Smolen, Justin A; Wright, Brian D; Panzner, Matthew J; Youngs, Wiley J; Fréchet, Jean M J; Cannon, Carolyn L

    2012-11-05

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH(2)Cl(2) (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery.

  10. Electrospinnability of poly lactic-co-glycolic acid (PLGA)

    DEFF Research Database (Denmark)

    Liu, Xiaoli; Baldursdottir, Stefania G.; Aho, Johanna

    2017-01-01

    PURPOSE: In this study, the electrospinnability of poly(lactic-co-glycolic acid) (PLGA) solutions was investigated, with a focus on understanding the influence of molecular weight of PLGA, solvent type and solvent composition on the physical properties of electrospun nanofibers. METHOD: Various s...

  11. Preparation and characterization of ketoprofen loaded eudragit RS polymeric nanoparticles for controlled release

    International Nuclear Information System (INIS)

    Tuan Anh, Nguyen; Tuyen Dao, T P; Nhan Le, N T; Mau Chien, Dang; To Hoai, Nguyen; T Chi, Nguyen; Tran, T Khai

    2012-01-01

    Nanospheres containing ketoprofen (Keto) and polymer eudragit RS were prepared using an emulsion solvent evaporation method. The ultrasonic probe (VCX500, vibracell) was used as a tool to disperse oil phase into aqueous phase leading to water/oil emulsion. Nanoparticles were successfully prepared and their morphologies and diameters were confirmed by transmission electron microscope (TEM) and dynamic light scattering (DLS), respectively. The result showed that particles were spherical with submicron size. The particle size was dependent on the RS concentration, emulsification tools and the types of organic solvents. For the encapsulation ability, Keto-loaded RS nanoparticle showed 9.8% of Keto in nanoparticle, which was evaluated by high-performance liquid chromatography (HPLC). Moreover, the drug release behavior of Keto-loaded eudragit RS nanoparticle was also investigated in vitro at pH 7.4 and compared to referential profenid. (paper)

  12. Oleyl-hyaluronan micelles loaded with upconverting nanoparticles for bio-imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pospisilova, Martina, E-mail: martina.pospisilova@contipro.com; Mrazek, Jiri; Matuska, Vit; Kettou, Sofiane; Dusikova, Monika; Svozil, Vit; Nesporova, Kristina; Huerta-Angeles, Gloria; Vagnerova, Hana; Velebny, Vladimir [Contipro Biotech (Czech Republic)

    2015-09-15

    Hyaluronan (HA) represents an interesting polymer for nanoparticle coating due to its biocompatibility and enhanced cell interaction via CD44 receptor. Here, we describe incorporation of oleate-capped β–NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+} nanoparticles (UCNP-OA) into amphiphilic HA by microemulsion method. Resulting structures have a spherical, micelle-like appearance with a hydrodynamic diameter of 180 nm. UCNP-OA-loaded HA micelles show a good stability in PBS buffer and cell culture media. The intensity of green emission of UCNP-OA-loaded HA micelles in water is about five times higher than that of ligand-free UCNP, indicating that amphiphilic HA effectively protects UCNP luminescence from quenching by water molecules. We found that UCNP-OA-loaded HA micelles in concentrations up to 50 μg mL{sup −1} increase cell viability of normal human dermal fibroblasts (NHDF), while viability of human breast adenocarcinoma cells MDA–MB–231 is reduced at these concentrations. The utility of UCNP-OA-loaded HA micelles as a bio-imaging probe was demonstrated in vitro by successful labelling of NHDF and MDA–MB–231 cells overexpressing the CD44 receptor.

  13. Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles.

    Science.gov (United States)

    El-Naggar, Mehrez E; El-Rafie, M H; El-sheikh, M A; El-Feky, Gina S; Hebeish, A

    2015-11-01

    The current research work focuses on the medical application of the cost-effective cross-linked starch nanoparticles, for the transdermal delivery using Diclofenac sodium (DS) as a model drug. The prepared DS-cross-linked starch nanoparticles were synthesized using nanoprecipitation technique at different concentrations of sodium tripolyphosphate (STPP) in the presence of Tween 80 as a surfactant. The resultant cross-linked starch nanoparticles loaded with DS were characterized using world-class facilities such as TEM, DLS, FT-IR, XRD, and DSc. The efficiency of DS loading was also evaluated via entrapment efficiency as well as in vitro release and histopathological study on rat skin. The optimum nanoparticles formulation selected by the JMP(®) software was the formula that composed of 5% maize starch, 57.7mg DS and 0.5% STPP and 0.4% Tween 80, with particle diameter of about 21.04nm, polydispersity index of 0.2 and zeta potential of -35.3mV. It is also worth noting that this selected formula shows an average entrapment efficiency of 95.01 and sustained DS release up to 6h. The histophathological studies using the best formula on rat skin advocate the use of designed transdermal DS loaded cross-linked starch nanoparticles as it is safe and non-irritant to rat skin. The overall results indicate that, the starch nanoparticles could be considered as a good carrier for DS drug regarding the enhancement in its controlled release and successful permeation, thus, offering a promising nanoparticulate system for the transdermal delivery non-steroidal anti-inflammatory drug (NSAID). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Injectable Shear-Thinning CaSO4/FGF-18-Incorporated Chitin-PLGA Hydrogel Enhances Bone Regeneration in Mice Cranial Bone Defect Model.

    Science.gov (United States)

    Sivashanmugam, A; Charoenlarp, Pornkawee; Deepthi, S; Rajendran, Arunkumar; Nair, Shantikumar V; Iseki, Sachiko; Jayakumar, R

    2017-12-13

    For craniofacial bone regeneration, shear-thinning injectable hydrogels are favored over conventional scaffolds because of their improved defect margin adaptability, easier handling, and ability to be injected manually into deeper tissues. The most accepted method, after autografting, is the use of recombinant human bone morphogenetic protein-2 (BMP-2); however, complications such as interindividual variations, edema, and poor cost-efficiency in supraphysiological doses have been reported. The endogenous synthesis of BMP-2 is desirable, and a molecule which induces this is fibroblast growth factor-18 (FGF-18) because it can upregulate the BMP-2 expression  by supressing noggin. We developed a chitin-poly(lactide-co-glycolide) (PLGA) composite hydrogel by regeneration chemistry and then incorporated CaSO 4 and FGF-18 for this purpose. Rheologically, a 7-fold increase in the elastic modulus was observed in the CaSO 4 -incorporated chitin-PLGA hydrogels as compared to the chitin-PLGA hydrogel. Shear-thinning Herschel-Bulkley fluid nature was observed for both hydrogels. Chitin-PLGA/CaSO 4 gel showed sustained release of FGF-18. In vitro osteogenic differentiation showed an enhanced alkaline phosphatase (ALP) expression in the FGF-18-containing chitin-PLGA/CaSO 4 gel when compared to cells alone. Further, it was confirmed by studying the expression of osteogenic genes [RUNX2, ALP, BMP-2, osteocalcin (OCN), and osteopontin (OPN)], immunofluorescence staining of BMP-2, OCN, and OPN, and alizarin red S staining. Incorporation of FGF-18 in the hydrogel increased the endothelial cell migration. Further, the regeneration potential of the prepared hydrogels was tested in vivo, and longitudinal live animal μ-CT was performed. FGF-18-loaded chitin-PLGA/CaSO 4 showed early and almost complete bone healing in comparison with chitin-PLGA/CaSO 4 , chitin-PLGA/FGF-18, chitin-PLGA, and sham control systems, as confirmed by hematoxylin and eosin and osteoid tetrachrome stainings

  15. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles.

    Science.gov (United States)

    Li, Xuanyu; Jiang, Xingyu

    2017-12-24

    Microfluidic chips allow the rapid production of a library of nanoparticles (NPs) with distinct properties by changing the precursors and the flow rates, significantly decreasing the time for screening optimal formulation as carriers for drug delivery compared to conventional methods. The batch-to-batch reproducibility which is essential for clinical translation is achieved by precisely controlling the precursors and the flow rate, regardless of operators. Poly (lactic-co-glycolic acid) (PLGA) is the most widely used Food and Drug Administration (FDA)-approved biodegradable polymers. Researchers often combine PLGA with lipids or amphiphilic molecules to assemble into a core/shell structure to exploit the potential of PLGA-based NPs as powerful carriers for cancer-related drug delivery. In this review, we discuss the advantages associated with microfluidic chips for producing PLGA-based functional nanocomplexes for drug delivery. These laboratory-based methods can readily scale up to provide sufficient amount of PLGA-based NPs in microfluidic chips for clinical studies and industrial-scale production. Copyright © 2017. Published by Elsevier B.V.

  16. Formulation and process considerations for the design of sildenafil-loaded polymeric microparticles by vibrational spray-drying

    DEFF Research Database (Denmark)

    Beck-Broichsitter, Moritz; Bohr, Adam; Aragão-Santiago, Leticia

    2017-01-01

    CONTEXT AND OBJECTIVE: The current study reports the preparation and characterization of sildenafil-loaded poly(lactide-co-glycolide) (PLGA)-based microparticles (MPs) by means of vibrational spray-drying. Emphasis was placed on relevant formulation and process parameters with influence on the pr......CONTEXT AND OBJECTIVE: The current study reports the preparation and characterization of sildenafil-loaded poly(lactide-co-glycolide) (PLGA)-based microparticles (MPs) by means of vibrational spray-drying. Emphasis was placed on relevant formulation and process parameters with influence......), respectively. Furthermore, interactions between sildenafil and the PLGA matrix were observed for the spray-dried MPs. Optimization of spray-drying conditions allowed for a fabrication of defined MPs (size range of ∼4-8 μm) displaying a high sildenafil encapsulation efficiency (>90%) and sustained sildenafil...... properties of the prepared powders. CONCLUSION: Identification of relevant formulation and spray-drying parameters enabled the fabrication of tailored sildenafil-loaded PLGA-based MPs, which meet the needs of the individual application (e.g. controlled drug delivery to the lungs)....

  17. Paclitaxel-loaded redox-sensitive nanoparticles based on hyaluronic acid-vitamin E succinate conjugates for improved lung cancer treatment.

    Science.gov (United States)

    Song, Yu; Cai, Han; Yin, Tingjie; Huo, Meirong; Ma, Ping; Zhou, Jianping; Lai, Wenfang

    2018-01-01

    Lung cancer is the primary cause of cancer-related death worldwide. A redox-sensitive nanocarrier system was developed for tumor-targeted drug delivery and sufficient drug release of the chemotherapeutic agent paclitaxel (PTX) for improved lung cancer treatment. The redox-sensitive nanocarrier system constructed from a hyaluronic acid-disulfide-vitamin E succinate (HA-SS-VES, HSV) conjugate was synthesized and PTX was loaded in the delivery system. The physicochemical properties of the HSV nanoparticles were characterized. The redox-sensitivity, tumor-targeting and intracellular drug release capability of the HSV nanoparticles were evaluated. Furthermore, in vitro and in vivo antitumor activity of the PTX-loaded HSV nanoparticles was investigated in a CD44 over-expressed A549 tumor model. This HSV conjugate was successfully synthesized and self-assembled to form nanoparticles in aqueous condition with a low critical micelle concentration of 36.3 μg mL -1 . Free PTX was successfully entrapped into the HSV nanoparticles with a high drug loading of 33.5% (w/w) and an entrapment efficiency of 90.6%. Moreover, the redox-sensitivity of the HSV nanoparticles was confirmed by particle size change of the nanoparticles along with in vitro release profiles in different reducing environment. In addition, the HA-receptor mediated endocytosis and the potency of redox-sensitivity for intracellular drug delivery were further verified by flow cytometry and confocal laser scanning microscopic analysis. The antitumor activity results showed that compared to redox-insensitive nanoparticles and Taxol ® , PTX-loaded redox-sensitive nanoparticles exhibited much greater in vitro cytotoxicity and apoptosis-inducing ability against CD44 over-expressed A549 tumor cells. In vivo, the PTX-loaded HSV nanoparticles possessed much higher antitumor efficacy in an A549 mouse xenograft model and demonstrated improved safety profile. In summary, our PTX-loaded redox-sensitive HSV nanoparticles

  18. Dual stimuli-sensitive dendrimers: Photothermogenic gold nanoparticle-loaded thermo-responsive elastin-mimetic dendrimers.

    Science.gov (United States)

    Fukushima, Daichi; Sk, Ugir Hossain; Sakamoto, Yasuhiro; Nakase, Ikuhiko; Kojima, Chie

    2015-08-01

    Dendrimers are synthetic macromolecules with unique structures that can work as nanoplatforms for both photothermogenic gold nanoparticles (AuNPs) and thermosensitive elastin-like peptides (ELPs) with valine-proline-glycine-valine-glycine (VPGVG) repeats. In this study, photothermogenic AuNPs were loaded into thermo-responsive elastin-mimetic dendrimers (dendrimers conjugating ELPs at their periphery) to produce dual stimuli-sensitive nanoparticles. Polyamidoamine G4 dendrimers were modified with acetylated VPGVG and (VPGVG)2, and the resulting materials were named ELP1-den and ELP2-den, respectively. The AuNPs were prepared by the reduction of Au ions using a dendrimer-nanotemplated method. The AuNP-loaded elastin-mimetic dendrimers exhibited photothermal properties. ELP1-den and ELP2-den showed similar temperature-dependent changes in their conformations. Phase transitions were observed at around 55°C and 35°C for the AuNP-loaded ELP1-den and AuNP-loaded ELP2-den, respectively, but not for the corresponding PEGylated dendrimer. In contrast to the AuNP-loaded PEGylated dendrimer, AuNP-loaded ELP2-den readily associated with cells and induced efficient photocytotoxicity at 37°C. The cell association and the photocytotoxicity properties of AuNP-loaded ELP2-den could be controlled by temperature. These results therefore suggest that dual stimuli-sensitive dendrimer nanoparticles of this type could be used for photothermal therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Improved efficacy of cisplatin in combination with a nano-formulation of pentacyclic triterpenediol

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Noor [Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Qayum, Arem; Kumar, Ashok [Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001 (India); Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Khare, Vaibhav [Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Sharma, Parduman Raj [Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Andotra, Samar Singh [Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Singh, Shashank K. [Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001 (India); Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Koul, Surinder, E-mail: skoul@iiim.ac.in [Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Gupta, Prem N., E-mail: pngupta10@gmail.com [Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001 (India); Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India)

    2016-11-01

    Cisplatin is widely used for the treatment of various cancers including cervical, ovarian, lung and head and neck, however, its clinical success is limited owing to the dose-dependent adverse effects, mainly nephrotoxicity and neurotoxicity. In order to address this limitation, the present study was undertaken to investigate growth inhibitory effect of cisplatin in combination with a triterpenediol (3a, 24-dihydroxyurs-12-ene and 3a, 24-dihydroxyolean-12-ene, TPD) on human ovarian cancer cell line. Poly(dl-lactic-co-glycolic) acid nanoparticles loaded with TPD (TPD-PLGA-NPs) were successfully developed by emulsion solvent evaporation method. The TPD-PLGA-NPs were characterized for size distribution and zeta potential which was in order of 152.56 ± 3.01 nm and − 17.36 ± 0.37 mV respectively. The morphological evaluation was carried out by transmission electron microscopy and the formulation was also characterized using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The drug loading of the optimized formulation was 51.03 ± 1.52 μg/mg and the formulation exhibited sustained drug release profile. The in vitro cellular uptake study of coumarin-6 loaded PLGA nanoparticles in OVCAR-5 cells demonstrated a time dependent increase in uptake efficiency. Further, growth inhibitory effect of cisplatin was investigated in combination with TPD-PLGA-NPs. The combination index (CI) was < 1, indicating a synergistic interaction. Further, at 75% of cell growth inhibition (ED{sub 75}) the dose of cisplatin was reduced to 3.8 folds using this combination. The results indicated the potential of cisplatin and TPD-PLGA-NPs combination in order to reduce to dose limiting toxicities of the former. - Highlights: • TPD nanoparticles showed a time dependent increase in cellular uptake efficiency. • TPD nanoparticles showed synergistic interaction between cisplatin. • The dose of cisplatin was reduced to 3.8 folds using this combination

  20. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Kayal, S.; Ramanujan, R.V.

    2010-01-01

    Magnetic drug targeting is a drug delivery system that can be used in locoregional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by coprecipitation of iron oxide followed by coating with polyvinyl alcohol (PVA). Characterization was carried out using X-ray diffraction, TEM, TGA, FTIR and VSM techniques. The magnetic core of the carriers was magnetite (Fe 3 O 4 ), with average size of 10 nm. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. The amount of PVA bound to the iron oxide nanoparticles were estimated by thermogravimetric analysis (TGA) and the attachment of PVA to the iron oxide nanoparticles was confirmed by FTIR analysis. Doxorubicin (DOX) drug loading and release profiles of PVA coated iron oxide nanoparticles showed that up to 45% of adsorbed drug was released in 80 h, the drug release followed the Fickian diffusion-controlled process. The binding of DOX to the PVA was confirmed by FTIR analysis. The present findings show that DOX loaded PVA coated iron oxide nanoparticles are promising for magnetically targeted drug delivery.

  1. Evaluation of Anti-Cancer Properties of Pegylated Ethosomal ...

    African Journals Online (AJOL)

    227 nm while the cytotoxicity of the pegylated ethosomal nanoencapsulated Paclitaxel® was determined by 3-(4 ... respectively. The drug release pattern indicates that the half-life (t1/2) of the nanodrug was .... particles, ethanol and skin lipids [14]. Nanoparticles were .... PLGA-based diclofenac loaded nanoparticles. PLoS.

  2. Nanoparticles in Porous Microparticles Prepared by Supercritical Infusion and Pressure Quench Technology for Sustained Delivery of Bevacizumab

    Science.gov (United States)

    K.Yandrapu, Sarath; Upadhyay, Arun K.; Petrash, J. Mark; Kompella, Uday B.

    2014-01-01

    Nanoparticles in porous microparticles (NPinPMP), a novel delivery system for sustained delivery of protein drugs, was developed using supercritical infusion and pressure quench technology, which does not expose proteins to organic solvents or sonication. The delivery system design is based on the ability of supercritical carbon dioxide (SC CO2) to expand poly(lactic-co-glycolic) acid (PLGA) matrix but not polylactic acid (PLA) matrix. The technology was applied to bevacizumab, a protein drug administered once a month intravitreally to treat wet age related macular degeneration. Bevacizumab coated PLA nanoparticles were encapsulated into porosifying PLGA microparticles by exposing the mixture to SC CO2. After SC CO2 exposure, the size of PLGA microparticles increased by 6.9 fold. Confocal and scanning electron microscopy studies demonstrated the expansion and porosification of PLGA microparticles and infusion of PLA nanoparticles inside PLGA microparticles. In vitro release of bevacizumab from NPinPMP was sustained for 4 months. Size exclusion chromatography, fluorescence spectroscopy, circular dichroism spectroscopy, SDS-PAGE, and ELISA studies indicated that the released bevacizumab maintained its monomeric form, conformation, and activity. Further, in vivo delivery of bevacizumab from NPinPMP was evaluated using noninvasive fluorophotometry after intravitreal administration of Alexa Flour 488 conjugated bevacizumab in either solution or NPinPMP in a rat model. Unlike the vitreal signal from Alexa-bevacizumab solution, which reached baseline at 2 weeks, release of Alexa-bevacizumab from NPinPMP could be detected for 2 months. Thus, NPinPMP is a novel sustained release system for protein drugs to reduce frequency of protein injections in the therapy of back of the eye diseases. PMID:24131101

  3. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab.

    Science.gov (United States)

    Yandrapu, Sarath K; Upadhyay, Arun K; Petrash, J Mark; Kompella, Uday B

    2013-12-02

    Nanoparticles in porous microparticles (NPinPMP), a novel delivery system for sustained delivery of protein drugs, was developed using supercritical infusion and pressure quench technology, which does not expose proteins to organic solvents or sonication. The delivery system design is based on the ability of supercritical carbon dioxide (SC CO2) to expand poly(lactic-co-glycolic) acid (PLGA) matrix but not polylactic acid (PLA) matrix. The technology was applied to bevacizumab, a protein drug administered once a month intravitreally to treat wet age related macular degeneration. Bevacizumab coated PLA nanoparticles were encapsulated into porosifying PLGA microparticles by exposing the mixture to SC CO2. After SC CO2 exposure, the size of PLGA microparticles increased by 6.9-fold. Confocal and scanning electron microscopy studies demonstrated the expansion and porosification of PLGA microparticles and infusion of PLA nanoparticles inside PLGA microparticles. In vitro release of bevacizumab from NPinPMP was sustained for 4 months. Size exclusion chromatography, fluorescence spectroscopy, circular dichroism spectroscopy, SDS-PAGE, and ELISA studies indicated that the released bevacizumab maintained its monomeric form, conformation, and activity. Further, in vivo delivery of bevacizumab from NPinPMP was evaluated using noninvasive fluorophotometry after intravitreal administration of Alexa Fluor 488 conjugated bevacizumab in either solution or NPinPMP in a rat model. Unlike the vitreal signal from Alexa-bevacizumab solution, which reached baseline at 2 weeks, release of Alexa-bevacizumab from NPinPMP could be detected for 2 months. Thus, NPinPMP is a novel sustained release system for protein drugs to reduce frequency of protein injections in the therapy of back of the eye diseases.

  4. A designated centre for people with disabilities operated by Health Service Executive, Sligo

    LENUS (Irish Health Repository)

    Verma, Navin Kumar

    2013-01-23

    AbstractBackgroundAerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated.ResultsAverage particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 mug\\/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting.ConclusionWe have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has

  5. Biodegradable polymeric system for cisplatin delivery: Development, in vitro characterization and investigation of toxicity profile

    International Nuclear Information System (INIS)

    Alam, Noor; Khare, Vaibhav; Dubey, Ravindra; Saneja, Ankit; Kushwaha, Manoj; Singh, Gurdarshan; Sharma, Neelam; Chandan, Balkrishan; Gupta, Prem N.

    2014-01-01

    Cisplatin is one of the most potent anticancer agent used in the treatment of various solid tumors, however, its clinical use is limited due to severe adverse effects including nephrotoxicity. In this investigation cisplatin loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles were developed and characterized for various in vitro characteristics including size distribution, zeta potential, drug loading and release profile. PLGA nanoparticles were successfully developed as investigated using scanning electron microscopy and exhibited average particles size and zeta potential as 284.8 nm and − 15.8 mV, respectively. Fourier transform infrared spectroscopy and differential scanning calorimetry indicated an absence of any polymer–drug interactions. Cisplatin nanoparticles exhibited in vitro anticancer activity against A549 cells comparable to that of cisplatin solution. The biodistribution study in mice indicated that the kidney cisplatin level was significantly (p < 0.01) lower with cisplatin nanoparticles than cisplatin solution. Following two cycles of cisplatin treatment, a week apart, blood urea nitrogen level was found to be higher in case of cisplatin solution as compared to cisplatin nanoparticles. Further, there was a significant (p < 0.01) increase in plasma creatinine level in case of cisplatin solution as compared to cisplatin nanoparticles. Histopathological examination of kidney from cisplatin nanoparticles treated group revealed no kidney damage, however, a sign of nephrotoxicity was observed in the case of cisplatin solution. The results suggest that PLGA nanoparticle based formulation could be a potential option for cisplatin delivery. - Highlights: • Cisplatin is detected by LCMS following complexation with DDTC. • Nanoparticles showed lower cisplatin accumulation in the kidney. • Nephrotoxicity was evaluated by BUN and creatinine level and by histopathology. • Nanoparticles exhibited lower nephrotoxicity

  6. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes

    KAUST Repository

    Ornelas-Megiatto, Cá tia; Shah, Parth N.; Wich, Peter R.; Cohen, Jessica L.; Tagaev, Jasur A.; Smolen, Justin A.; Wright, Brian D.; Panzner, Matthew J.; Youngs, Wiley J.; Frechet, Jean; Cannon, Carolyn L.

    2012-01-01

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. © 2012 American Chemical Society.

  7. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes

    KAUST Repository

    Ornelas-Megiatto, Cátia

    2012-11-05

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. © 2012 American Chemical Society.

  8. Dual drug loaded chitosan nanoparticles-sugar--coated arsenal against pancreatic cancer.

    Science.gov (United States)

    David, Karolyn Infanta; Jaidev, Leela Raghav; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2015-11-01

    Pancreatic cancer is an aggressive form of cancer with poor survival rates. The increased mortality due to pancreatic cancer arises due to many factors such as development of multidrug resistance, presence of cancer stem cells, development of a stromal barrier and a hypoxic environment due to hypo-perfusion. The present study aims to develop a nanocarrier for a combination of drugs that can address these multiple issues. Quercetin and 5-fluorouracil were loaded in chitosan nanoparticles, individually as well as in combination. The nanoparticles were characterized for morphology, size, zeta potential, percentage encapsulation of drugs as well as their release profiles in different media. The dual drug-loaded carrier exhibited good entrapment efficiency (quercetin 95% and 5-fluorouracil 75%) with chitosan: quercetin: 5-fluorouracil in the ratio 3:1:2. The release profiles suggest that 5-fluorouracil preferentially localized in the periphery while quercetin was located towards the core of chitosan nanoparticles. Both drugs exhibited considerable association with the chitosan matrix. The dual drug-loaded carrier system exhibited significant toxicity towards pancreatic cancer cells both in the 2D as well as in the 3D cultures. We believe that the results from these studies can open up interesting options in the treatment of pancreatic cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Synthesis and their enhanced photoelectrochemical performance of ZnO nanoparticle-loaded CuO dandelion heterostructures under solar light

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guanying; Du, Bin; Liu, Lei; Zhang, Weiwei; Liang, Yujie; Shi, Honglong; Wang, Wenzhong, E-mail: wzhwangmuc@163.com

    2017-03-31

    Highlights: • ZnO/CuO nanoparticle/dandelion heterostructures were fabricated for the first time. • ZnO/CuO nanoparticle/dandelion heterostructures show enhanced PEC activity. • ZnO nanoparticle loading contents have significant effect on PEC water splitting. • Interaction, charge transfer and enhanced mechanism of photocatalyst were proposed. • p-n junction drives the photoexcited charges efficient separation. - Abstract: Here we report an easy and large-scale synthesis of three-dimensional (3D) ZnO nanoparticle-loaded CuO dandelion (denoted as n-ZnO/p-CuO nanoparticle/dandelion) heterostructures and their photoelectrochemical (PEC) water splitting under simulated solar light illumination. CuO dandelions were fabricated by a facile and cost-effective chemical strategy, in which the ribbon-like CuO nanoplates were first formed and then assembled into dandelion-like architectures. ZnO nanoparticle-loaded CuO dandelion heterostructures were fabricated by calcining Zn(Ac){sub 2}-loaded CuO dandelions. High resolution transmission electron microscope (HRTEM) studies demonstrate that intimate p-n junction is built between p-CuO and n-ZnO interface. The n-ZnO/p-CuO nanoparticle/dandelion photoelectrodes exhibit significant improvement in PEC water splitting to CuO dandelion photoelectrodes. The correlation between photocurrents and different loading contents of ZnO nanoparticles (NPs) is studied in which the n-ZnO/p-CuO nanoparticle/dandelion heterostructures with loading 4.6 wt% ZnO NPs show higher photocathodic current. The efficient separation of the photogenerated electrons and holes driven by the intimate p-n junction between p-type CuO and n-type ZnO interface is mainly contributed to the enhanced photoanode current. The achieved results in the present study offer a very useful strategy for designing p-n junction photoelectrodes for efficiency and low-cost PEC cells for clean solar hydrogen production.

  10. Formulation, characterization and pharmacokinetics of praziquantel-loaded hydrogenated castor oil solid lipid nanoparticles.

    Science.gov (United States)

    Xie, Shuyu; Pan, Baoliang; Wang, Ming; Zhu, Luyan; Wang, Fenghua; Dong, Zhao; Wang, Xiaofang; Zhou, WenZhong

    2010-07-01

    The purpose of this study was to formulate praziquantel (PZQ)-loaded hydrogenated castor oil (HCO) solid lipid nanoparticles (SLN) to enhance the bioavailability and prolong the systemic circulation of the drug. PZQ was encapsulated into HCO nanoparticles by a hot homogenization and ultrasonication method. The physicochemical characteristics of SLN were investigated by optical microscope, scanning electron microscopy and photon correlation spectroscopy. Pharmacokinetics were studied after oral, subcutaneous and intramuscular administration in mice. The diameter, polydispersivity index, zeta potential, encapsulation efficiency and loading capacity of the nanoparticles were 344.0 +/- 15.1 nm, 0.31 +/- 0.08, -16.7 +/- 0.5 mV, 62.17 +/- 6.53% and 12.43 +/- 1.31%, respectively. In vitro release of PZQ-loaded HCO-SLN exhibited an initial burst release followed by a sustained release. SLN increased the bioavailability of PZQ by 14.9-, 16.1- and 2.6-fold, and extended the mean residence time of the drug from 7.6, 6.6 and 8.2 to 95.9, 151.6 and 48.2 h after oral, subcutaneous and intramuscular administration, respectively. The PZQ-loaded HCO-SLN could be a promising formulation to enhance the pharmacological activity of PZQ.

  11. Comparison of cellular effects of starch-coated SPIONs and poly(lactic-co-glycolic acid) matrix nanoparticles on human monocytes.

    Science.gov (United States)

    Gonnissen, Dominik; Qu, Ying; Langer, Klaus; Öztürk, Cengiz; Zhao, Yuliang; Chen, Chunying; Seebohm, Guiscard; Düfer, Martina; Fuchs, Harald; Galla, Hans-Joachim; Riehemann, Kristina

    Within the last years, progress has been made in the knowledge of the properties of medically used nanoparticles and their toxic effects, but still, little is known about their influence on cellular processes of immune cells. The aim of our comparative study was to present the influence of two different nanoparticle types on subcellular processes of primary monocytes and the leukemic monocyte cell line MM6. We used core-shell starch-coated superparamagnetic iron oxide nanoparticles (SPIONs) and matrix poly(lactic-co-glycolic acid) (PLGA) nanoparticles for our experiments. In addition to typical biocompatibility testing like the detection of necrosis or secretion of interleukins (ILs), we investigated the impact of these nanoparticles on the actin cytoskeleton and the two voltage-gated potassium channels Kv1.3 and Kv7.1. Induction of necrosis was not seen for PLGA nanoparticles and SPIONs in primary monocytes and MM6 cells. Likewise, no alteration in secretion of IL-1β and IL-10 was detected under the same experimental conditions. In contrast, IL-6 secretion was exclusively downregulated in primary monocytes after contact with both nanoparticles. Two-electrode voltage clamp experiments revealed that both nanoparticles reduce currents of the aforementioned potassium channels. The two nanoparticles differed significantly in their impact on the actin cytoskeleton, demonstrated via atomic force microscopy elasticity measurement and phalloidin staining. While SPIONs led to the disruption of the respective cytoskeleton, PLGA did not show any influence in both experimental setups. The difference in the effects on ion channels and the actin cytoskeleton suggests that nanoparticles affect these subcellular components via different pathways. Our data indicate that the alteration of the cytoskeleton and the effect on ion channels are new parameters that describe the influence of nanoparticles on cells. The results are highly relevant for medical application and further

  12. Nanoparticle-Based Brachytherapy Spacers for Delivery of Localized Combined Chemoradiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajiv, E-mail: r.kumar@neu.edu [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts (United States); Belz, Jodi [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Markovic, Stacey [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts (United States); Jadhav, Tej; Fowle, William [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Niedre, Mark [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts (United States); Cormack, Robert; Makrigiorgos, Mike G. [Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts (United States); Sridhar, Srinivas [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts (United States)

    2015-02-01

    Purpose: In radiation therapy (RT), brachytherapy-inert source spacers are commonly used in clinical practice to achieve high spatial accuracy. These implanted devices are critical technical components of precise radiation delivery but provide no direct therapeutic benefits. Methods and Materials: Here we have fabricated implantable nanoplatforms or chemoradiation therapy (INCeRT) spacers loaded with silica nanoparticles (SNPs) conjugated containing a drug, to act as a slow-release drug depot for simultaneous localized chemoradiation therapy. The spacers are made of poly(lactic-co-glycolic) acid (PLGA) as matrix and are physically identical in size to the commercially available brachytherapy spacers (5 mm × 0.8 mm). The silica nanoparticles, 250 nm in diameter, were conjugated with near infrared fluorophore Cy7.5 as a model drug, and the INCeRT spacers were characterized in terms of size, morphology, and composition using different instrumentation techniques. The spacers were further doped with an anticancer drug, docetaxel. We evaluated the in vivo stability, biocompatibility, and biodegradation of these spacers in live mouse tissues. Results: The electron microscopy studies showed that nanoparticles were distributed throughout the spacers. These INCeRT spacers remained stable and can be tracked by the use of optical fluorescence. In vivo optical imaging studies showed a slow diffusion of nanoparticles from the spacer to the adjacent tissue in contrast to the control Cy7.5-PLGA spacer, which showed rapid disintegration in a few days with a burst release of Cy7.5. The docetaxel spacers showed suppression of tumor growth in contrast to control mice over 16 days. Conclusions: The imaging with the Cy7.5 spacer and therapeutic efficacy with docetaxel spacers supports the hypothesis that INCeRT spacers can be used for delivering the drugs in a slow, sustained manner in conjunction with brachytherapy, in contrast to the rapid clearance of the drugs when

  13. Nanoparticle-Based Brachytherapy Spacers for Delivery of Localized Combined Chemoradiation Therapy

    International Nuclear Information System (INIS)

    Kumar, Rajiv; Belz, Jodi; Markovic, Stacey; Jadhav, Tej; Fowle, William; Niedre, Mark; Cormack, Robert; Makrigiorgos, Mike G.; Sridhar, Srinivas

    2015-01-01

    Purpose: In radiation therapy (RT), brachytherapy-inert source spacers are commonly used in clinical practice to achieve high spatial accuracy. These implanted devices are critical technical components of precise radiation delivery but provide no direct therapeutic benefits. Methods and Materials: Here we have fabricated implantable nanoplatforms or chemoradiation therapy (INCeRT) spacers loaded with silica nanoparticles (SNPs) conjugated containing a drug, to act as a slow-release drug depot for simultaneous localized chemoradiation therapy. The spacers are made of poly(lactic-co-glycolic) acid (PLGA) as matrix and are physically identical in size to the commercially available brachytherapy spacers (5 mm × 0.8 mm). The silica nanoparticles, 250 nm in diameter, were conjugated with near infrared fluorophore Cy7.5 as a model drug, and the INCeRT spacers were characterized in terms of size, morphology, and composition using different instrumentation techniques. The spacers were further doped with an anticancer drug, docetaxel. We evaluated the in vivo stability, biocompatibility, and biodegradation of these spacers in live mouse tissues. Results: The electron microscopy studies showed that nanoparticles were distributed throughout the spacers. These INCeRT spacers remained stable and can be tracked by the use of optical fluorescence. In vivo optical imaging studies showed a slow diffusion of nanoparticles from the spacer to the adjacent tissue in contrast to the control Cy7.5-PLGA spacer, which showed rapid disintegration in a few days with a burst release of Cy7.5. The docetaxel spacers showed suppression of tumor growth in contrast to control mice over 16 days. Conclusions: The imaging with the Cy7.5 spacer and therapeutic efficacy with docetaxel spacers supports the hypothesis that INCeRT spacers can be used for delivering the drugs in a slow, sustained manner in conjunction with brachytherapy, in contrast to the rapid clearance of the drugs when

  14. Fabrication of Nanostructured PLGA Scaffolds Using Anodic Aluminum Oxide Templates

    OpenAIRE

    Hsueh , Cheng-Chih; Wang , Gou-Jen; Hsu , Shan-Hui; Hung , Huey-Shan

    2008-01-01

    Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838); International audience; PLGA (poly(lactic-co-glycolic acid)) is one of the most used biodegradable and biocompatible materials. Nanostructured PLGA even has great application potentials in tissue engineering. In this research, a fabrication technique for nanostructured PLGA membrane was investigated and developed. In this novel fabrication approach, an anodic aluminum oxide (AAO) film was use as the...

  15. Tailoring Lipid and Polymeric Nanoparticles as siRNA Carriers towards the Blood-Brain Barrier - from Targeting to Safe Administration.

    Science.gov (United States)

    Gomes, Maria João; Fernandes, Carlos; Martins, Susana; Borges, Fernanda; Sarmento, Bruno

    2017-03-01

    Blood-brain barrier is a tightly packed layer of endothelial cells surrounding the brain that acts as the main obstacle for drugs enter the central nervous system (CNS), due to its unique features, as tight junctions and drug efflux systems. Therefore, since the incidence of CNS disorders is increasing worldwide, medical therapeutics need to be improved. Consequently, aiming to surpass blood-brain barrier and overcome CNS disabilities, silencing P-glycoprotein as a drug efflux transporter at brain endothelial cells through siRNA is considered a promising approach. For siRNA enzymatic protection and efficient delivery to its target, two different nanoparticles platforms, solid lipid (SLN) and poly-lactic-co-glycolic (PLGA) nanoparticles were used in this study. Polymeric PLGA nanoparticles were around 115 nm in size and had 50 % of siRNA association efficiency, while SLN presented 150 nm and association efficiency close to 52 %. Their surface was functionalized with a peptide-binding transferrin receptor, in a site-oriented manner confirmed by NMR, and their targeting ability against human brain endothelial cells was successfully demonstrated by fluorescence microscopy and flow cytometry. The interaction of modified nanoparticles with brain endothelial cells increased 3-fold compared to non-modified lipid nanoparticles, and 4-fold compared to non-modified PLGA nanoparticles, respectively. These nanosystems, which were also demonstrated to be safe for human brain endothelial cells, without significant cytotoxicity, bring a new hopeful breath to the future of brain diseases therapies.

  16. Ibuprofen-loaded poly(lactic-co-glycolic acid films for controlled drug release

    Directory of Open Access Journals (Sweden)

    Pang JM

    2011-04-01

    Full Text Available Jianmei Pang1, Yuxia Luan1, Feifei Li1, Xiaoqing Cai1, Jimin Du2, Zhonghao Li31School of Pharmaceutical Science, Shandong University, Jinan, Shandong Province, PR China; 2School of Chemistry and Chemical Engineering, Anyang Normal University, Henan Province, PR China; 3School of Materials Science and Engineering, Shandong University, Jinan, Shandong Province, PR ChinaAbstract: Ibuprofen- (IBU loaded biocompatible poly(lactic-co-glycolic acid (PLGA films were prepared by spreading polymer/ibuprofen solution on the nonsolvent surface. By controlling the weight ratio of drug and polymer, different drug loading polymer films can be obtained. The synthesized ibuprofen-loaded PLGA films were characterized with scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry. The drug release behavior of the as-prepared IBU-loaded PLGA films was studied to reveal their potential application in drug delivery systems. The results show the feasibility of the as-obtained films for controlling drug release. Furthermore, the drug release rate of the film could be controlled by the drug loading content and the release medium. The development of a biodegradable ibuprofen system, based on films, should be of great interest in drug delivery systems.Keywords: ibuprofen, controlled release, poly(lactic-co-glycolic acid, films

  17. NECL1 coated PLGA as favorable conduits for repair of injured peripheral nerve

    International Nuclear Information System (INIS)

    Xu, Fuben; Zhang, Kun; Lv, Peizhen; Lu, Rongbin; Zheng, Li; Zhao, Jinmin

    2017-01-01

    Restoration of normal neurological function of transected peripheral nerve challenged regenerative medicine and surgery. Previous studies showed that Nectin-like molecule 1 (NECL1) is one of the important adhesion molecules on the axons and Schwann cells is located along the internodes in direct apposition to NECL1. In this study, we fabricated PLGA membrane pre-coated with NECL1, mimicking the natural axons to enhance the adhesion of Schwann cells. Investigation of the cellular response in vitro was performed by detecting cytotoxicity, proliferation, morphology, viability, specific markers and Scanning Electron Microscopy (SEM) of Schwann cells cultured in PLGA. Further, the NECL1-coated PLGA conduits were used for peripheral nerve repair after sciatic nerve defect was constructed. Results showed that PLGA-coated NECL1 enhanced cell proliferation compared with PLGA, as evidenced by MTT analysis, cell viability assay and histological evaluation. RT-PCR results showed that GDNF (glial cell line-derived neurotrophic factor), BDNF (brain-derived neurotrophic factor), CNTF (ciliary neurotrophic factor) and neurotrophic factors of axonal regeneration were highly expressed in PLGA/NECL1 group. S100, which is Schwann cell marker, was also elevated in PLGA-NCEL1 in both mRNA and protein expression as demonstrated by PCR and immunohistochemical examination. Moreover, in vivo study showed that implantation of PLGA/NCEL1 tubes in bridging the nerve defect can significantly improve Schwann cell aggregation and attachment and greatly enhance the functional recovery of nerve regeneration as compared with control and PLGA groups. Therefore, the novel blend of PLGA/NECL1 conduits proved to be promising candidate for tissue engineering scaffold. - Highlights: • A fabricated PLGA tubes pre-coated with Nectin-like molecule 1 (NECL1) strategy for sciatic nerve regeneration is proposed. • The NECL1 coated PLGA can promote Schwann cells adhesion and growth meanwhile maintain the

  18. Zirconia-doped nanoparticles: organic coating, polymeric entrapment and application as dual-imaging agents

    OpenAIRE

    Rebuttini, Valentina; Pucci, Andrea; Arosio, Paolo; Bai, Xue; Locatelli, Erica; Pinna, Nicola; Lascialfari, Alessandro; Franchini, Mauro Comes

    2013-01-01

    Zirconia nanoparticles doped with Eu3+, Tb3+ and Gd3+ ions have been synthesized following the benzyl alcohol route. The nanoparticles were coated with N-hydroxydodecanamide and encapsulated in PLGA-b-PEG-COOH nanomicelles. The magnetic and fluorescent properties of these hybrid nanocarriers were investigated, proving them to be potential dual-imaging contrast agents.

  19. Layer-by-layer polyelectrolyte-polyester hybrid microcapsules for encapsulation and delivery of hydrophobic drugs.

    Science.gov (United States)

    Luo, Rongcong; Venkatraman, Subbu S; Neu, Björn

    2013-07-08

    A two-step process is developed to form layer-by-layer (LbL) polyelectrolyte microcapsules, which are able to encapsulate and deliver hydrophobic drugs. Spherical porous calcium carbonate (CaCO3) microparticles were used as templates and coated with a poly(lactic acid-co-glycolic acid) (PLGA) layer containing hydrophobic compounds via an in situ precipitation gelling process. PLGA layers that precipitated from N-methyl-2-pyrrolidone (NMP) had a lower loading and smoother surface than those precipitated from acetone. The difference may be due to different viscosities and solvent exchange dynamics. In the second step, the successful coating of multilayer polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) onto the PLGA coated CaCO3 microparticles was confirmed with AFM and ζ-potential studies. The release of a model hydrophobic drug, ibuprofen, from these hybrid microcapsules with different numbers of PAH/PSS layers was investigated. It was found that the release of ibuprofen decreases with increasing layer numbers demonstrating the possibility to control the release of ibuprofen with these novel hybrid microcapsules. Besides loading of hydrophobic drugs, the interior of these microcapsules can also be loaded with hydrophilic compounds and functional nanoparticles as demonstrated by loading with Fe3O4 nanoparticles, forming magnetically responsive dual drug releasing carriers.

  20. Fabrication and characterization of novel antimicrobial films derived from thymol-loaded zein-sodium caseinate (SC) nanoparticles.

    Science.gov (United States)

    Li, Kang-Kang; Yin, Shou-Wei; Yang, Xiao-Quan; Tang, Chuan-He; Wei, Zi-Hao

    2012-11-21

    The objective of this research was to fabricate novel antimicrobial films based on zein colloidal nanoparticles coated with sodium caseinate (SC), an emulsifier/stabilizer. Thymol-loaded zein-SC nanoparticles were prepared using an antisolvent technique, with the average particle size and zeta potential about 200 ± 20 nm and -40 mV, respectively. Zein-SC nanoparticle-based films exhibited higher mechanical resistance and water barrier capacity than the SC films and concomitant good extensibility as compared with zein films. Thymol loadings endowed zein-SC nanoparticle-based films with antimicrobial activity against Escherichia coli and Salmonella as well as DPPH radical scavenging activity. Water vapor permeability, microstructure, mechanical, and controlled release properties of the films were evaluated. The possible relationship between some selected physical properties and microstructure were also discussed. Atomic force microscopy (AFM) analysis indicated that thymol loadings resulted in the emergence phenomena of the nanoparticles to form large particles or packed structure, consisting of clusters of nanoparticles, within the film matrix, in a thymol loading dependent manner. The appearance of large particles or an agglomerate of particles may weaken the compactness of protein network of films and thus impair the water barrier capacity, mechanical resistance, and extensibility of the films. The release kinetics of thymol from nanoparticle-based films can be described as a two-step biphasic process, that is, an initial burst effect followed by subsequent slower release, and zein-SC nanoparticles within the films matrices gave them the ability to sustain the release of thymol. In addition, a schematic illustration of the formation pathway of zein-SC nanoparticle-based films with or without thymol was proposed to illuminate the possible relationship between some selected physical properties and the microstructure of the films.