WorldWideScience

Sample records for load water heating

  1. Optimization of Boiler Heat Load in Water-Heating Boiler-House

    Directory of Open Access Journals (Sweden)

    B. A. Bayrashevsky

    2009-01-01

    Full Text Available An analytical method for optimization of water-heating boiler loads has been developed on the basis of approximated semi-empirical dependences pertaining to changes of boiler gross efficiency due to its load. A complex (∂tух/∂ξΔξ is determined on the basis of a systematic analysis (monitoring of experimental data and the Y. P. Pecker’s formula for calculation of balance losses q2. This complex makes it possible to set a corresponding correction to a standard value of the boiler gross efficiency due to contamination of heating surfaces.Software means for optimization of water-heating boilers has been developed and it is recommended to be applied under operational conditions.

  2. Effect of seasonal changes in use patterns and cold inlet water temperature on water-heating loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, D.W.; Shedd, A.C. [D.W. Abrams, P.E. and Associates, Atlanta, GA (United States)

    1996-11-01

    This paper presents long-term test data obtained in 20 commercial buildings and 16 residential sites. The information illustrates the effects of variations in hot water load determinants and the effect on energy use. It also is useful as a supplement to the load profiles presented in the ASHRAE Handbooks and other design references. The commercial facilities include supermarkets, fast-food restaurants, full-service restaurants, commercial kitchens, a motel, a nursing home, a hospital, a bakery, and laundry facilities. The residential sites ere selected to provide test sites with higher-than-average hot water use. They include 13 single-family detached residences, one 14-unit apartment building, and two apartment laundries. Test data are available at measurement intervals of 1 minute for the residential sites and 15 minutes for the commercial sites. Summary data in tabular and graphical form are presented for average daily volumetric hot water use and cold inlet water temperature. Measured cold inlet water temperature and volumetric hot water use figures are compared to values typically used for design and analysis. Conclusions are offered regarding the effect of cold water inlet temperature and variations in hot water use on water-heating load and energy use. Recommendations for the use of the information presented in water-heating system design, performance optimization, and performance analysis conclude the paper.

  3. Appropriate heat load ratio of generator for different types of air cooled lithium bromide–water double effect absorption chiller

    International Nuclear Information System (INIS)

    Li, Zeyu; Liu, Jinping

    2015-01-01

    Highlights: • Effect of heat load ratio of generator on the performance was analyzed. • The performance is sensitive to heat load ratio of generator. • The appropriate heat load ratio of generator for four systems was obtained. • The change of appropriate heat load ratio of generator for four systems was studied. - Abstract: The lower coefficient of performance and higher risk of crystallization in the higher surrounding temperature is the primary disadvantage of air cooled lithium bromide–water double effect absorption chiller. Since the coefficient of performance and risk of crystallization strongly depend on the heat load ratio of generator, the appropriate heat load ratio of generator can improve the performance as the surrounding temperature is higher. The paper mainly deals with the appropriate heat load ratio of generator of air cooled lithium bromide–water double effect absorption chiller. Four type systems named series, pre-parallel, rear parallel and reverse parallel flow configuration were considered. The corresponding parametric model was developed to analyze the comprehensive effect of heat load ratio of generator on the coefficient of performance and risk of crystallization. It was found that the coefficient of performance goes up linearly with the decrease of heat load ratio of generator. Simultaneously, the risk of crystallization also rises slowly at first but increases fast finally. Consequently, the appropriate heat load ratio of generator for the series and pre-parallel flow type systems is suggested to be 0.02 greater than the minimum heat load ratio of generator and that for the rear parallel and reverse parallel flow chillers should be 0.01 higher than the minimum heat load ratio of generator. Besides, the changes of minimum heat load ratio of generator for different type systems with the working condition were analyzed and compared. It was found that the minimum heat load ratio of generator goes up with the increase of

  4. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  5. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group; German, A. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group; Dakin, B. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group; Springer, D. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  6. Analysis of chiller units capacity for different heat loads considering variation of ambient air and cooling water temperature

    International Nuclear Information System (INIS)

    Coman, Aurelia Camelia; Tenescu, Mircea

    2010-01-01

    The paper purpose is to analyze the chiller units capacity to determine whether they can cope with high air and cooling water temperatures during summer time to remove heat loads imposed from Heating, Ventilation and Air Conditioning (HVAC) units in a CANDU 6 Nuclear Power Plant. The starting point is calculation of the overall heat transfer coefficient at the evaporator and condenser. They are used in heat balance equations of heat exchangers. A mathematical model was developed that simulates the refrigeration cycle to assess the response of chilled water system and its performance at different heat loads. In this analysis there were calculated values for inlet/outlet chilled water temperature and the refrigerant cycle thermodynamic parameters (condenser and evaporator pressure/temperature, refrigerant mass flowrate, refrigerant quality at the evaporator, refrigerant vapour superheated temperature at the compressor outlet, refrigerant subcooled temperature at the condenser outlet). To find the adequate functioning parameters of the installation, the MathCAD 13 software was used in all cases analyzed. The behaviour of the chiller units was investigated by examining the variation of three basic parameters, namely: - cooling water (river water) temperature; - air temperature; - heat load. The simultaneous variation of these three independent parameters allows to identify the actual chillers unit operating point (including chiller trip). (authors)

  7. Heat load studies of a water-cooled minichannel monochromator for synchrotron x-ray beams

    Science.gov (United States)

    Freund, Andreas K.; Arthur, John R.; Zhang, Lin

    1997-12-01

    We fabricated a water-cooled silicon monochromator crystal with small channels for the special case of a double-crystal fixed-exit monochromator design where the beam walks across the crystal when the x-ray energy is changed. The two parts of the cooled device were assembled using a new technique based on low melting point solder. The bending of the system produced by this technique could be perfectly compensated by mechanical counter-bending. Heat load tests of the monochromator in a synchrotron beam of 75 W total power, 3 mm high and 15 mm wide, generated by a multipole wiggler at SSRL, showed that the thermal slope error of the crystal is 1 arcsec/40 W power, in full agreement with finite element analysis. The cooling scheme is adequate for bending magnet beamlines at the ESRF and present wiggler beamlines at the SSRL.

  8. Deemed Savings Estimates for Legacy Air Conditioning and WaterHeating Direct Load Control Programs in PJM Region

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles

    2007-03-01

    During 2005 and 2006, the PJM Interconnection (PJM) Load Analysis Subcommittee (LAS) examined ways to reduce the costs and improve the effectiveness of its existing measurement and verification (M&V) protocols for Direct Load Control (DLC) programs. The current M&V protocol requires that a PURPA-compliant Load Research study be conducted every five years for each Load-Serving Entity (LSE). The current M&V protocol is expensive to implement and administer particularly for mature load control programs, some of which are marginally cost-effective. There was growing evidence that some LSEs were mothballing or dropping their DLC programs in lieu of incurring the expense associated with the M&V. This project had several objectives: (1) examine the potential for developing deemed savings estimates acceptable to PJM for legacy air conditioning and water heating DLC programs, and (2) explore the development of a collaborative, regional, consensus-based approach for conducting monitoring and verification of load reductions for emerging load management technologies for customers that do not have interval metering capability.

  9. Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes: Tucson, Arizona and Chico, California (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-11-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  10. High heat load synchrotron optics

    International Nuclear Information System (INIS)

    Mills, D.M.

    1993-01-01

    Third generation synchrotron radiation sources currently being constructed worldwide will produce x-ray beams of unparalleled power and power density. These high heat fluxes coupled with the stringent dimensional requirements of the x-ray optical components pose a prodigious challenge to designers of x-ray optical elements, specifically x-ray mirrors and crystal monochromators. Although certain established techniques for the cooling of high heat flux components can be directly applied to this problem, the thermal management of high heat load x-ray optical components has several unusual aspects that may ultimately lead to unique solutions. This manuscript attempts to summarize the various approaches currently being applied to this undertaking and to point out the areas of research that require further development

  11. Variation and design criterion of heat load ratio of generator for air cooled lithium bromide–water double effect absorption chiller

    International Nuclear Information System (INIS)

    Li, Zeyu; Liu, Liming; Liu, Jinping

    2016-01-01

    Highlights: • Design criterion of heat load ratio of generator is vital to system performance. • Heat load ratio of generator changes with working condition. • Change of heat load ratio of generator for four systems was obtained and compared. • Design criterion of heat load ratio of generator was presented. - Abstract: The heat load ratio of generator (HLRG) is a special system parameter because it is not fixed at the design value but changes with the working condition. For the air cooled chiller, the deviation from the design working condition occurs easily due to the variation of the surrounding temperature. The system is likely to suffer from crystallization when the working condition is different from the designed one if the HLRG is designed improperly. Consequently, the design criterion of HLRG based on a broad range of working condition is essential and urgent to the development of air cooled lithium bromide–water double effect absorption chiller. This paper mainly deals with the variation of HLRG with the working condition as well as corresponding design criterion. Four types of double effect chillers named series, pre-parallel, rear parallel and reverse parallel flow system were considered. The parametric model was developed by the introduction of a new thermodynamic relationship of generator. The change of HLRG for different types of chillers with the working condition was analyzed and compared. The corresponding design criterion of HLRG was presented. This paper is helpful for further improvement of the performance and reliability of air cooled lithium bromide–water double effect absorption chiller.

  12. Generation of Domestic Hot Water, Space Heating and Driving Pattern Profiles for Integration Analysis of Active Loads in Low Voltage Grids

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker; Pigazo, Alberto; Bak-Jensen, Birgitte

    2013-01-01

    at household level. Despite of the well-known flexible service that this kind of loads can provide, their flexibility is highly dependent of the domestic hot water and space heating demand and the driving habits of each user. This paper presents two methodologies employed to randomly generate thermal power......The changes in the Danish energy sector, consequence of political agreements, are expected to have direct impact in the actual power distribution systems. Large number of electric boiler, heat pumps and electric vehicles are planned and will cope large percentage of the future power consumption...... demand and electric vehicle driving profiles, to be used for power grid calculations. The generated thermal profiles relied on a statistical analysis made from real domestic hot water and space heating data from 25 households of a typical Danish residential area. The driving profiles instead were formed...

  13. Load Management in District Heating Operation

    OpenAIRE

    Li, Hongwei; Wang, Stephen Jia

    2015-01-01

    Smooth operation of district heating system will avoid installation of expensive peak heat boilers, improve plant partial load performance, increase the system redundancy for further network expansion and improve its resilience to ensuresecurity of supply during severe heating seasons. The peak heating load can be reduced through building demand side management. The building thermal mass can be used to shift the heating supply under the circumstance withoutjeopardizing the consumer thermal co...

  14. APS high heat load monochromator

    International Nuclear Information System (INIS)

    Lee, W.K.; Mills, D.

    1993-02-01

    This document contains the design specifications of the APS high heat load (HHL) monochromator and associated accessories as of February 1993. It should be noted that work is continuing on many parts of the monochromator including the mechanical design, crystal cooling designs, etc. Where appropriate, we have tried to add supporting documentation, references to published papers, and calculations from which we based our decisions. The underlying philosophy behind performance specifications of this monochromator was to fabricate a device that would be useful to as many APS users as possible, that is, the design should be as generic as possible. In other words, we believe that this design will be capable of operating on both bending magnet and ID beamlines (with the appropriate changes to the cooling and crystals) with both flat and inclined crystal geometries and with a variety of coolants. It was strongly felt that this monochromator should have good energy scanning capabilities over the classical energy range of about 4 to 20 keywith Si (111) crystals. For this reason, a design incorporating one rotation stage to drive both the first and second crystals was considered most promising. Separate rotary stages for the first and second crystals can sometimes provide more flexibility in their capacities to carry heavy loads (for heavily cooled first crystals or sagittal benders of second crystals), but their tuning capabilities were considered inferior to the single axis approach

  15. High thermal load receiving heat plate

    International Nuclear Information System (INIS)

    Shibutani, Jun-ichi; Shibayama, Kazuhito; Yamamoto, Keiichi; Uchida, Takaho.

    1993-01-01

    The present invention concerns a high thermal load heat receiving plate such as a divertor plate of a thermonuclear device. The high thermal load heat receiving plate of the present invention has a cooling performance capable of suppressing the temperature of an armour tile to less than a threshold value of the material against high thermal loads applied from plasmas. Spiral polygonal pipes are inserted in cooling pipes at a portion receiving high thermal loads in the high temperature load heat receiving plate of the present invention. Both ends of the polygonal pipes are sealed by lids. An area of the flow channel in the cooling pipes is thus reduced. Heat conductivity on the cooling surface of the cooling pipes is increased in the high thermal load heat receiving plate having such a structure. Accordingly, temperature elevation of the armour tile can be suppressed. (I.S.)

  16. Scheduling of radio-controlled heating load

    International Nuclear Information System (INIS)

    Fox, B.; McCartney, A.I.; McCann, B.M.

    1998-01-01

    An economic loading program has been adapted to enable it to obtain an optimum heat-load profile to meet the forecast heat requirement. The heat load is represented by a 'generator' whose load is constrained to be negative. The incremental cost of this unit is a heat energy price. This is adjusted to obtain a heat profile containing the requisite energy. The profile is then used by a dynamic programming algorithm to derive a commitment pattern for each block. A case study is presented which shows that the procedure can minimise heat energy cost. It is also shown that use of the proposed method results in less generator load cycling. This reduced regulation duty should improve reliability. (author)

  17. Load Management in District Heating Operation

    DEFF Research Database (Denmark)

    Li, Hongwei; Wang, Stephen Jia

    2015-01-01

    Smooth operation of district heating system will avoid installation of expensive peak heat boilers, improve plant partial load performance, increase the system redundancy for further network expansion and improve its resilience to ensure security of supply during severe heating seasons. The peak...... heating load can be reduced through building demand side management. The building thermal mass can be used to shift the heating supply under the circumstance without jeopardizing the consumer thermal comfort. In this paper, the multi-agent framework is applied to a simplified building dynamic model...

  18. Geothermal use of the Wiesbaden thermal water with high minerals content for heat base load supply of the town hall and affiliated buildings. Geothermische Nutzung des hochmineralisierten Wiesbadener Thermalwassers fuer die Grundlastwaermedeckung des Rathauses und angeschlossener Baulichkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Riedle, K.

    1991-10-01

    Within the framework of the large-scale renovation of the spa center Wiesbaden also heat base load supply of all heat consumers is realized with extracted thermal energy. As the thermal water has a high mineral content a delivery method has to be used, which avoids incrustations in form of calcareous sediments, sulphur sludges and iron ochre as well as the escape of the well gas CO{sub 2} and the diffusion of atmospheric oxygene that has an oxidative effect. For this purpose a closed system is used with which the water is drawn off, delivered, stored and distributed. In the second part of the report the heat supply system of the town hall is presented which consists of a direct heat exchange system of thermal water, of residual thermal heat utilization with heat pumps, a cogeneration system as well as of gas boilers to cover peak loads. (BWI).

  19. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.

  20. Load Frequency Control by use of a Number of Both Heat Pump Water Heaters and Electric Vehicles in Power System with a Large Integration of Renewable Energy Sources

    Science.gov (United States)

    Masuta, Taisuke; Shimizu, Koichiro; Yokoyama, Akihiko

    In Japan, from the viewpoints of global warming countermeasures and energy security, it is expected to establish a smart grid as a power system into which a large amount of generation from renewable energy sources such as wind power generation and photovoltaic generation can be installed. Measures for the power system stability and reliability are necessary because a large integration of these renewable energy sources causes some problems in power systems, e.g. frequency fluctuation and distribution voltage rise, and Battery Energy Storage System (BESS) is one of effective solutions to these problems. Due to a high cost of the BESS, our research group has studied an application of controllable loads such as Heat Pump Water Heater (HPWH) and Electric Vehicle (EV) to the power system control for reduction of the required capacity of BESS. This paper proposes a new coordinated Load Frequency Control (LFC) method for the conventional power plants, the BESS, the HPWHs, and the EVs. The performance of the proposed LFC method is evaluated by the numerical simulations conducted on a power system model with a large integration of wind power generation and photovoltaic generation.

  1. Heat plumes in waters

    International Nuclear Information System (INIS)

    Haeuser, J.

    1977-01-01

    With the aid of a time-dependent, two-dimensional remote-field model - remote-field meaning that region of the water where the effect of the discharge of cooling water on the flow velocity is negligible - three parameters of importance for the water quality in waters are determined. Distributions are calculated for temperature, biochemical need of oxygen and oxygen content. The influence of water depth is accounted for by integration over the vertical axis. Allowance is made for turbulence by taking the time means of the respective variables. The influence of a time-dependent heat flow through the free surface is taken into account as well as a variation in time of the flow velocity, occuring, e.g., in tidal rivers (Elbe). (orig.) [de

  2. Allowable heat load on the edge of the ITER first wall panel beryllium flat tiles

    Directory of Open Access Journals (Sweden)

    R. Mitteau

    2017-08-01

    Full Text Available Plasma facing components are usually qualified to a given heat load density applied at the top face of the armour tiles with normal incidence angle. When employed in tokamak fusion machines, heat loading on the tile sides is possible due to optimised shaping, that doesn't provide edge shadowing for all design situations. An edge heat load may occur both at the tile and component scales. The edge load needs to be controlled and quantified. The adequate control of edge heat loads is especially critical for water cooled components that uses armour tiles which are bonded to the heat sink, for ensuring the long-term integrity of the tile bonding. An edge heat load allowance criterion of 10% of the top heat load is proposed. The 10% criterion is supported by experimental heat flux tests.

  3. ELM induced divertor heat loads on TCV

    Science.gov (United States)

    Marki, J.; Pitts, R. A.; Horacek, J.; Tskhakaya, D.; TCV Team

    2009-06-01

    Results are presented for heat loads at the TCV outer divertor target during ELMing H-mode using a fast IR camera. Benefitting from a recent surface cleaning of the entire first wall graphite armour, a comparison of the transient thermal response of freshly cleaned and untreated tile surfaces (coated with thick co-deposited layers) has been performed. The latter routinely exhibit temperature transients exceeding those of the clean ones by a factor ˜3, even if co-deposition throughout the first days of operation following the cleaning process leads to the steady regrowth of thin layers. Filaments are occasionally observed during the ELM heat flux rise phase, showing a spatial structure consistent with energy release at discrete toroidal locations in the outer midplane vicinity and with individual filaments carrying ˜1% of the total ELM energy. The temporal waveform of the ELM heat load is found to be in good agreement with the collisionless free streaming particle model.

  4. ELM induced divertor heat loads on TCV

    Energy Technology Data Exchange (ETDEWEB)

    Marki, J., E-mail: janos.marki@epfl.c [Centre de Recherches en Physique des Plasmas (CRPP), Ecole Polytechnique Federale de Lausanne (EPFL), Association Euratom - Confederation Suisse, CH-1015 Lausanne (Switzerland); Pitts, R.A. [Centre de Recherches en Physique des Plasmas (CRPP), Ecole Polytechnique Federale de Lausanne (EPFL), Association Euratom - Confederation Suisse, CH-1015 Lausanne (Switzerland); Horacek, J. [Institute of Plasma Physics, Association EUROATOM-IPP.CR, Za Slovankou 3, 182 00 Prague 8 (Czech Republic); Tskhakaya, D. [Association EURATOM-OAW, Institut fuer Theoretische Physik, A-6020 Innsbruck (Austria)

    2009-06-15

    Results are presented for heat loads at the TCV outer divertor target during ELMing H-mode using a fast IR camera. Benefitting from a recent surface cleaning of the entire first wall graphite armour, a comparison of the transient thermal response of freshly cleaned and untreated tile surfaces (coated with thick co-deposited layers) has been performed. The latter routinely exhibit temperature transients exceeding those of the clean ones by a factor approx3, even if co-deposition throughout the first days of operation following the cleaning process leads to the steady regrowth of thin layers. Filaments are occasionally observed during the ELM heat flux rise phase, showing a spatial structure consistent with energy release at discrete toroidal locations in the outer midplane vicinity and with individual filaments carrying approx1% of the total ELM energy. The temporal waveform of the ELM heat load is found to be in good agreement with the collisionless free streaming particle model.

  5. Analyzing Design Heating Loads in Superinsulated Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-06-16

    The U.S. Department of Energy’s Building America research team Consortium for Advanced Residential Buildings (CARB) worked with the EcoVillage cohousing community in Ithaca, New York, on the Third Residential EcoVillage Experience neighborhood. This communityscale project consists of 40 housing units—15 apartments and 25 single-family residences. Units range in size from 450 ft2 to 1,664 ft2 and cost from $80,000 for a studio apartment to $235,000 for a three- or four-bedroom single-family home. For the research component of this project, CARB analyzed current heating system sizing methods for superinsulated homes in cold climates to determine if changes in building load calculation methodology should be recommended. Actual heating energy use was monitored and compared to results from the Air Conditioning Contractors of America’s Manual J8 (MJ8) and the Passive House Planning Package software. Results from that research indicate that MJ8 significantly oversizes heating systems for superinsulated homes and that thermal inertia and internal gains should be considered for more accurate load calculations.

  6. Analyzing Design Heating Loads in Superinsulated Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-06-01

    Super-insulated homes offer many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for super insulated homes.

  7. Effect of transient heating loads on beryllium

    International Nuclear Information System (INIS)

    Kupriyanov, Igor B.; Porezanov, Nicolay P.; Nikolaev, Georgyi N.; Kurbatova, Liudmila A.; Podkovyrov, Vyacheslav L.; Muzichenko, Anatoliy D.; Zhitlukhin, Anatoliy M.; Khimchenko, Leonid N.; Gervash, Alexander A.

    2014-01-01

    Highlights: • We study the effect of transient plasma loads on beryllium erosion and surface microstructure. • Beryllium targets were irradiated by plasma streams with energy of 0.5–1 MJ/m 2 at ∼250 °C. • Under plasma loads 0.5–1 MJ/m 2 cracking of beryllium surface is rather slight. • Under 0.5 MJ/m 2 the mass loss of Be is no more than 0.2 g/m 2 shot and decreasing with shots number. • Under 1 MJ/m 2 maximum mass loss of beryllium was 3.7 g/m 2 shot and decreasing with shots number. - Abstract: Beryllium will be used as a plasma facing material for ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of ITER first wall. The results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility are presented. The Be/CuCrZr mock-ups were exposed to upto 100 shots by deuterium plasma streams with pulse duration of 0.5 ms at ∼250 °C and average heat loads of 0.5 and 1 MJ/m 2 . Experiments were performed at 250 °C. The evolution of surface microstructure and cracks morphology as well as beryllium mass loss are investigated under erosion process

  8. STUDY ON HEAT DYNAMIC LOADING OF RUBBER

    Directory of Open Access Journals (Sweden)

    T. I. Igumenova

    2015-01-01

    Full Text Available A number of studies on heat buildup in tire rubber surface scan method samples using a thermal imaging camera. Investigated the exothermic chemical reaction mechanical destruction rubber when loading designs permanent cyclic stretching with deformation of the working zone 50%. Percentage of deformation of the working zone was chosen on the basis of the actual data on the stretch-compression zone "Rusk" tires, which is the maximum level difference of deformation during run-in. Experiment plan provided for periodic relaxation samples of at least 72 hours for more accurate simulation of operation process of structural products. Created and processed data on temperature changes in samples for bar and line profile for rubber compounds with the introduction of nanomodifiers (fulleren technical carbon in comparison with the control sample without him. The data obtained reflect the nature of heat depending on the composition of the compound. Identified common patterns of thermal nature of physico-chemical process mechanical destruction rubbers. For rubber with nanomodifikatorom there has been an increase in the temperature interval reaction from a minimum to a maximum 2 degrees that is also linked to the rise in the average temperature of the reaction on the histogram also at 2-3 degrees of deformation under the same conditions and the level of cyclic loading. However, the temperature in the control sample that is associated with the beginning of the formation of hardened rubber structures, economies of Mallinz-Petrikeev, occurs with delay twice compared with modified Fullerenes. Measurement of physic-mechanical indicators selected in the course of testing of samples showed the beginning of formation of structure with increased strength of samples in the sample temperature zone that corresponds to the thermal effect of èndotermičeskomu recombination reactions of macromolecules.

  9. 10 CFR 434.518 - Service water heating.

    Science.gov (United States)

    2010-01-01

    ... buildings. The same service water heating load assumptions shall be made in calculating Design Energy... 1110 Restaurant 390 Health 135 Multi-family High Rise Residential 2 1700 1 This value is the number to...

  10. The annual number of days that solar heated water satisfies a specified demand temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yohanis, Y.G. [Thermal Systems Engineering Group, Faculty of Engineering, University of Ulster, BT37 0QB Northern Ireland (United Kingdom); Popel, O.; Frid, S.E. [Non-traditional Renewable Energy Sources, Institute for High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya str., IVTAN, Moscow 127412 (Russian Federation); Norton, B. [Dublin Institute of Technology, Aungier Street, Dublin 2 (Ireland)

    2006-08-15

    An analysis of solar water heating systems determines the number of days in each month when solar heated water wholly meets demand above a set temperature. The approach has been used to investigate the potential contribution to water heating loads of solar water heating in two UK locations. Correlations between the approach developed and the use of solar fractions are discussed. (author)

  11. Increasing economic benefits by load-shifting of electrical heat pumps

    OpenAIRE

    Laveyne, Joannes; Zwaenepoel, Brecht; Van Eetvelde, Greet; Vandevelde, Lieven

    2014-01-01

    Electrical heating is still widely used in the process industry. While the use of immersion heaters for the production of hot water or steam is declining, the adoption rate of electrical heat pumps is increasing rapidly. Heat pumps show great flexibility and potential for energy savings, e.g. through low temperature waste heat recuperation. In combination with thermal storage they also allow for load shifting. Because their main power source is electricity, which up to now cannot be stored ef...

  12. Heat exchanger for solar water heaters

    Science.gov (United States)

    Cash, M.; Krupnick, A. C.

    1977-01-01

    Proposed efficient double-walled heat exchanger prevents contamination of domestic water supply lines and indicates leakage automatically in solar as well as nonsolar heat sources using water as heat transfer medium.

  13. Heat Loads On Tore Supra ICRF Launchers Plasma Facing Components

    International Nuclear Information System (INIS)

    Bremond, S.; Colas, L.; Chantant, M.; Beaumont, B.; Ekedahl, A.; Goniche, M.; Moreau, P.; Mitteau, R.

    2005-01-01

    Understanding the heat loads on Ion Cyclotron Range of Frequency launchers plasma facing components is a crucial task both for operating present tokamaks and for designing ITER ICRF launchers as these loads may limit the RF power coupling capability. Tore Supra facility is particularly well suited to take this issue. Parametric studies have been performed which enables to get an overall detailed picture of the different heat loads on several areas, pointing to different mechanisms at the origin of the heat power fluxes. Lessons are drawned both with regards to Tore Supra possible operational limits and to ITER ICRF launcher design

  14. Heat disposal in water environment

    International Nuclear Information System (INIS)

    Harleman, D.R.F.

    1975-01-01

    The need for continuing development of techniques for predicting temperature distributions due to waste heat discharges into lakes, rivers, estuaries, and the oceans is presented. Diffusion of buoyant jets is examined, including heated surface jets and multiple jets issuing from a submerged multiport diffuser. In the near-field analysis of surface jets the important problems are related to the lateral spreading caused by buoyancy. Comparison of theoretical predictions with laboratory and field observations is given. The mechanics of multiport diffusers for heated discharges in shallow receiving waters are explained in contrast to sewage diffusers. The important problem is the degree to which stratification can be maintained in order to minimize local reintrainment and reduction of dilution capacity. Criteria for stable and unstable flow regimes are provided. A mathematical model for temperature distribution, with or without waste heat addition, in unsteady flows under time-varying meteorological conditions is given. (auth)

  15. Non-parametric method for separating domestic hot water heating spikes and space heating

    DEFF Research Database (Denmark)

    Bacher, Peder; de Saint-Aubain, Philip Anton; Christiansen, Lasse Engbo

    2016-01-01

    In this paper a method for separating spikes from a noisy data series, where the data change and evolve over time, is presented. The method is applied on measurements of the total heat load for a single family house. It relies on the fact that the domestic hot water heating is a process generating...

  16. Surface heat loads on the ITER divertor vertical targets

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Carpentier-Chouchana, S.; Escourbiac, F.; Hirai, T.; Panayotis, S.; Pitts, R.A.; Corre, Y.; Dejarnac, Renaud; Firdaouss, M.; Kočan, M.; Komm, Michael; Kukushkin, A.; Languille, P.; Missirlian, M.; Zhao, W.; Zhong, G.

    2017-01-01

    Roč. 57, č. 4 (2017), č. článku 046025. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : ITER * divertor * ELM heat load * inter-ELM heat load * tungsten Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa5e2a

  17. Thermal to Electric Energy Conversion for Cyclic Heat Loads

    Science.gov (United States)

    Whitehead, Benjamin E.

    Today, we find cyclic heat loads almost everywhere. When we drive our cars, the engines heat up while we are driving and cool while parked. Processors heat while the computer is in use at the office and cool when idle at night. The sun heats the earth during the day and the earth radiates that heat into space at night. With modern technology, we have access to a number of methods to take that heat and convert it into electricity, but, before selecting one, we need to identify the parameters that inform decision making. The majority of the parameters for most systems include duty cycle, total cost, weight, size, thermal efficiency, and electrical efficiency. However, the importance of each of these will depend on the application. Size and weight take priority in a handheld device, while efficiency dominates in a power plant, and duty cycle is likely to dominate in highly demanding heat pump applications. Over the past decade, developments in semiconductor technology has led to the creation of the thermoelectric generator. With no moving parts and a nearly endlessly scalable nature, these generators present interesting opportunities for taking advantage of any source of waste heat. However, these generators are typically only capable of 5-8% efficiency from conversion of thermal to electric energy. [1]. Similarly, advancements in photovoltaic cells has led to the development of thermophotovoltaics. By heating an emitter to a temperature so it radiates light, a thermophotovoltaic cell then converts that light into electricity. By selecting materials that emit light in the optimal ranges of the appropriate photovoltaic cells, thermophotovoltaic systems can potentially exceed the current maximum of 10% efficiency. [2]. By pressurizing certain metal powders with hydrogen, hydrogen can be bound to the metal, creating a metal hydride, from which hydrogen can be later re-extracted under the correct pressure and temperature conditions. Since this hydriding reaction is

  18. Optimization between heating load and entropy-production rate for endoreversible absorption heat-transformers

    International Nuclear Information System (INIS)

    Sun Fengrui; Qin Xiaoyong; Chen Lingen; Wu Chih

    2005-01-01

    For an endoreversible four-heat-reservoir absorption heat-transformer cycle, for which a linear (Newtonian) heat-transfer law applies, an ecological optimization criterion is proposed for the best mode of operation of the cycle. This involves maximizing a function representing the compromise between the heating load and the entropy-production rate. The optimal relation between the ecological criterion and the COP (coefficient of performance), the maximum ecological criterion and the corresponding COP, heating load and entropy production rate, as well as the ecological criterion and entropy-production rate at the maximum heating load are derived using finite-time thermodynamics. Moreover, compared with the heating-load criterion, the effects of the cycle parameters on the ecological performance are studied by numerical examples. These show that achieving the maximum ecological criterion makes the entropy-production rate decrease by 77.0% and the COP increase by 55.4% with only 27.3% heating-load losses compared with the maximum heating-load objective. The results reflect that the ecological criterion has long-term significance for optimal design of absorption heat-transformers

  19. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  20. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernStar Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernStar Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernStar Building America Partnership, St. Paul, MN (United States); Olsen, R. [NorthernStar Building America Partnership, St. Paul, MN (United States); Hewett, M. [NorthernStar Building America Partnership, St. Paul, MN (United States)

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  1. Maximal heat loading of electrostatic deflector's septum at the cyclotron

    International Nuclear Information System (INIS)

    Arzumanov, A.; Borissenko, A.

    2002-01-01

    An electrostatic deflector is used for extraction of accelerated particles at the isochronous cyclotron U-150 (Institute of Nuclear Physics, Kazakhstan). Efficiency of beam extraction depends on a set of factors. Decisive is heat state of the septum and essentially beam extraction is limited by beam power dissipation on the deflector. Due to the works carried on for radioisotope production, determination of septum's maximal heat loading, optimization of the septum's geometry represent the interest. Maximum heat loading of deflector's septum and it's dependence on septum's geometry and thermal-physical properties of septum's material are presented in the paper as result of numerical calculation. The obtained results are discussed

  2. Demand side management in South Africa at industrial residence water heating systems using in line water heating methodology

    International Nuclear Information System (INIS)

    Rankin, R.; Rousseau, P.G.

    2008-01-01

    The South African electrical utility, ESKOM, currently focuses its demand side management (DSM) initiatives on controlling electrical load between 18:00 and 20:00 each day, which is the utility's peak demand period. Funding is provided to energy service companies (ESCo's) to implement projects that can achieve load shifting out of this period. This paper describes how an improved in line water heating concept developed in previous studies was implemented into several real life industrial sanitary water heating systems to obtain the DSM load shift required by ESKOM. Measurements from a selection of these plants are provided to illustrate the significant load reductions that are being achieved during 18:00-20:00. The measured results also show that the peak load reduction is achieved without adversely affecting the availability of sufficient hot water to the persons using the showering and washing facilities served by the water heating system. A very good correlation also exists between these measured results and simulations that were done beforehand to predict the DSM potential of the project. The in line water heater concept provides an improved solution for DSM at sanitary water heating systems due to the stratified manner in which hot water is supplied to the tanks. This provides an improved hot water supply to users when compared to conventional in tank heating systems, even with load shifting being done. It also improves the storage efficiency of a plant, thereby allowing the available storage capacity of a plant to be utilized to its full extent for load shifting purposes

  3. Influence of boiler load on water tubes burnout

    Energy Technology Data Exchange (ETDEWEB)

    Said, S.A.M.; Habib, M.A.; Badr, H.M.; Mansour, R. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Mechanical Engineering

    2009-07-01

    The influence of boiler loads on water tube burnout was investigated. The in-service boiler had 2 burners at different levels located in the front of the burner's wall. Homogenous-flow and separated-flow models were designed to simulate the water circulation and combustion processes inside the boiler tubes. Heat flux calculations were derived by solving the conservation of mass, momentum, and energy equations and species concentration as well as by solving turbulence, reaction rate, and radiation model equations. Results of the study showed that heat flux during full loads ranged from close to 0 to 270 kW/m2. The right side screen wall of the burner exhibited higher heat flux values in the middle region of the wall where large areas were subjected to heat flux close to a maximum of 270 kW/m2. Results also included reductions in heat flux values at partial loads. Maximum values were reduced from 270 kW/m2 ato 230 kW/m2 at 75 per cent capacity and 200 kW/m2 at 60 per cent capacity. The rate of steam generation increased from 0.1 kg/s to 0.153 kg/s when the distance from the burner wall increased from 2 meters to 12 meters. 10 refs., 10 figs.

  4. Heat loads on Tore Supra ICRF Launchers Plasma Facing Components

    International Nuclear Information System (INIS)

    Bremond, S.; Colas, L.; Beaumont, B.; Chantant, M.; Goniche, M.; Mitteau, R.

    2005-01-01

    Understanding the heat loads on Ion Cyclotron Range of Frequency (ICRF) launchers plasma-facing components is a crucial task both for operating present tokamaks and for designing ITER ICRF launchers as these loads may limit the RF power coupling capability. Tore Supra facility is particularly well suited to take this issue. Parametric studies have been performed which enables to get an overall detailed picture of the different heat loads on several areas, pointing to different mechanisms at the origin of the heat power fluxes. It is found that the most critical items for Tore-Supra operation are localized heat loads on the Faraday screen top left corner and vertical edges. Warming up close to maximum temperature limit originally set for protection of the plasma-facing components is found of high power pulses, but no erosion was observed after detailed inspection of the launcher in Tore-Supra vessel. Yet, the associated heat loads could be limiting for Tore-Supra operation in the future, and some dedicated work is under progress to improve the understanding of these power fluxes, pointing out the importance of getting a better knowledge of particle flows in the scrape of layer

  5. Online short-term heat load forecasting for single family houses

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2013-01-01

    . Every hour the hourly heat load for each house the following two days is forecasted. The forecast models are adaptive linear time-series models and the climate inputs used are: ambient temperature, global radiation, and wind speed. A computationally efficient recursive least squares scheme is used......This paper presents a method for forecasting the load for heating in a single-family house. Both space and hot tap water heating are forecasted. The forecasting model is built using data from sixteen houses in Sønderborg, Denmark, combined with local climate measurements and weather forecasts...... variations in the heat load signal (predominant only for some houses), peaks presumably from showers, shifts in resident behavior, and uncertainty of the weather forecasts for longer horizons, especially for the solar radiation....

  6. Origin of excess heat generated during loading Pd-impregnated alumina powder with deuterium and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriyeva, O., E-mail: olga.dmitriyeva@colorado.edu [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309-0425 (United States); Coolescence LLC, 2450 Central Ave Ste F, Boulder, CO 80301 (United States); Cantwell, R.; McConnell, M. [Coolescence LLC, 2450 Central Ave Ste F, Boulder, CO 80301 (United States); Moddel, G. [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309-0425 (United States)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer We studied heat produced by hydrogen and deuterium in Pd-impregnated alumina powder. Black-Right-Pointing-Pointer Samples were fabricated using light and heavy water isotopes and varied the gas used for loading. Black-Right-Pointing-Pointer Incorporation of hydrogen and deuterium influenced the amount of heat released or consumed. Black-Right-Pointing-Pointer Pd nanoparticles appear to catalyze hydrogen/deuterium (H/D) exchange chemical reactions. Black-Right-Pointing-Pointer Anomalous heating can be accounted for by chemical rather than nuclear reactions. - Abstract: We studied heat production in Pd-impregnated alumina powder in the presence of hydrogen and deuterium gases, investigating claims of anomalous heat generated as a result of nuclear fusion, usually referred to as a low energy nuclear reaction (LENR). By selecting the water isotope used to fabricate the material and then varying the gas used for loading, we were able to influence the amount of heat released or consumed. We suggest that Pd in its nanoparticle form catalyzes hydrogen/deuterium (H/D) exchange reactions in the material. This hypothesis is supported by heat measurements, residual gas analysis (RGA) data, and calculations of energy available from H/D exchange reactions. Based on the results we conclude that the origin of the anomalous heat generated during deuterium loading of Pd-enriched alumina powder is chemical rather than nuclear.

  7. Origin of excess heat generated during loading Pd-impregnated alumina powder with deuterium and hydrogen

    International Nuclear Information System (INIS)

    Dmitriyeva, O.; Cantwell, R.; McConnell, M.; Moddel, G.

    2012-01-01

    Highlights: ► We studied heat produced by hydrogen and deuterium in Pd-impregnated alumina powder. ► Samples were fabricated using light and heavy water isotopes and varied the gas used for loading. ► Incorporation of hydrogen and deuterium influenced the amount of heat released or consumed. ► Pd nanoparticles appear to catalyze hydrogen/deuterium (H/D) exchange chemical reactions. ► Anomalous heating can be accounted for by chemical rather than nuclear reactions. - Abstract: We studied heat production in Pd-impregnated alumina powder in the presence of hydrogen and deuterium gases, investigating claims of anomalous heat generated as a result of nuclear fusion, usually referred to as a low energy nuclear reaction (LENR). By selecting the water isotope used to fabricate the material and then varying the gas used for loading, we were able to influence the amount of heat released or consumed. We suggest that Pd in its nanoparticle form catalyzes hydrogen/deuterium (H/D) exchange reactions in the material. This hypothesis is supported by heat measurements, residual gas analysis (RGA) data, and calculations of energy available from H/D exchange reactions. Based on the results we conclude that the origin of the anomalous heat generated during deuterium loading of Pd-enriched alumina powder is chemical rather than nuclear.

  8. Exergoeconomic optimization of an ammonia–water hybrid absorption–compression heat pump for heat supply in a spraydrying facility

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    Spray-drying facilities are among the most energy intensive industrial processes. Using a heat pump to recover waste heat and replace gas combustion has the potential to attain both economic and emissions savings. In the case examined a drying gas of ambient air is heated to 200 C yielding a heat...... load of 6.1 MW. The exhaust air from the drying process is 80 C. The implementation of anammonia–water hybrid absorption–compression heat pump to partly cover the heat load is investigated. A thermodynamic analysis is applied to determine optimal circulation ratios for a number of ammonia mass...... fractions and heat pump loads. An exergo economic optimization is applied to minimize the lifetime cost of the system. Technological limitations are imposed to constrain the solution to commercial components. The best possible implementation is identified in terms of heat load, ammonia mass fraction...

  9. Surface heat loads during major disruptions in INTOR

    International Nuclear Information System (INIS)

    Mioduszewski, P.

    1981-01-01

    The thermal energy contained in the INTOR plasma is assumed to be about 200 MJ. In a major plasma disruption this energy is dumped into parts of the first wall in a time short compared to the energy confinement time. To estimate the surface heat load due to this energy dump, two major parameters are not sufficiently well known at present: the disruption time and the affected first wall surface area. To get a certain idea of the heat loads to be expected, we have employed the model of conserved flux tubes which are successively scraped-off at the first wall. The results reveal that even for a homogeneous deposition in the toroidal direction the heat load is too high for some parts of the first wall. Since, however, the presumptions are very uncertain to date, experiments will have to be set up to study the energy deposition during disruptions. (author)

  10. Short-term heat load forecasting for single family houses

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Nielsen, Henrik Aalborg

    2013-01-01

    This paper presents a method for forecasting the load for space heating in a single-family house. The forecasting model is built using data from sixteen houses located in Sønderborg, Denmark, combined with local climate measurements and weather forecasts. Every hour the hourly heat load for each...... house the following two days is forecasted. The forecast models are adaptive linear time-series models and the climate inputs used are: ambient temperature, global radiation and wind speed. A computationally efficient recursive least squares scheme is used. The models are optimized to fit the individual...... noise and that practically all correlation to the climate variables are removed. Furthermore, the results show that the forecasting errors mainly are related to: unpredictable high frequency variations in the heat load signal (predominant only for some houses), shifts in resident behavior patterns...

  11. Heat transfer issues in high-heat-load synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Mills, D.M.

    1994-09-01

    In this paper, a short description of the synchrotron radiation x-ray sources and the associated power loads is given, followed by a brief description of typical synchrotron components and their heat load. It is emphasized that the design goals for most of these components is to limit (a) temperature, (b) stresses, or (c) strains in the system. Each design calls for a different geometry, material selection, and cooling scheme. Cooling schemes that have been utilized so far are primarily single phase and include simple macrochannel cooling, microchannel cooling, contact cooling, pin-post cooling, porous-flow cooling, jet cooling, etc. Water, liquid metals, and various cryogenic coolants have been used. Because the trend in x-ray beam development is towards brighter (i.e., more powerful) beams and assuming that no radical changes in the design of x-ray generating machines occurs in the next few years, it is fair to state that the utilization of various effective cooling schemes and, in particular, two-phase flow (e.g., subcooled boiling) warrants further investigation. This, however, requires a thorough examination of stability and reliability of two-phase flows for high-heat-flux components operating in ultrahigh vacuum with stringent reliability requirements

  12. Startup analysis for a high temperature gas loaded heat pipe

    Science.gov (United States)

    Sockol, P. M.

    1973-01-01

    A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.

  13. Calorimetric measurement of heat load in full non-inductive LHCD plasmas on TRIAM-1M

    International Nuclear Information System (INIS)

    Hanada, K.; Shinoda, N.; Sugata, T.; Sasaki, K.; Zushi, H.; Nakamura, K.; Sato, K.N.; Sakamoto, M.; Idei, H.; Hasegawa, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.

    2007-01-01

    Calorimetric measurements using the temperature increment of cooling-water were carried out to estimate the heat load distribution on the plasma facing components (PFCs) in the limiter discharges on TRIAM-1M. Line averaged electron density, n e , and LH power, P LH , dependences of the heat load on PFCs were measured. The heat load on the limiters was proportional to n e 1.5 in the range of n e =0.2-1.0x10 19 m -3 and P LH 1 in the range of P LH =0.005-0.09MW. For P LH >0.1MW, the plasma transition to an enhanced current drive (ECD) mode appeared and the n e dependences on the heat load on the limiter moderated. This indicates that the heat flux to scrape-off layer (SOL) region was reduced due to the improvement of the plasma confinement. The up-down asymmetry of the heat load on the vacuum vessel was enhanced in the ECD mode, which may be caused by the increasing of the direct loss of energetic electrons

  14. Influence of the heater material on the critical heat load at boiling of liquids on surfaces with different sizes

    Science.gov (United States)

    Anokhina, E. V.

    2010-05-01

    Data on critical heat loads q cr for the saturated and unsaturated pool boiling of water and ethanol under atmospheric pressure are reported. It is found experimentally that the critical heat load does not necessarily coincide with the heat load causing burnout of the heater, which should be taken into account. The absolute values of q cr for the boiling of water and ethanol on copper surfaces 65, 80, 100, 120, and 200 μm in diameter; tungsten surface 100 μm in diameter; and nichrome surface 100 μm in diameter are obtained experimentally.

  15. Transient Performance of Air-cooled Condensing Heat Exchanger in Long-term Passive Cooling System during Decay Heat Load

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In the event of a 'loss of coolant accident'(LOCA) and a non-LOCA, the secondary passive cooling system would be activated to cool the steam in a condensing heat exchanger that is immersed in an emergency cooldown tank (ECT). Currently, the capacities of these ECTs are designed to be sufficient to remove the sensible and residual heat from the reactor coolant system for 72 hours after the occurrence of an accident. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. Therefore, the tank should be refilled regularly from an auxiliary water supply system when the system is used for more than 72 hours. Otherwise, the system would fail to dissipate heat from the condensing heat exchanger due to the loss of the cooling water. Ultimately, the functionality of the passive cooling system would be seriously compromised. As a passive means of overcoming the water depletion in the tank, Kim et al. applied for a Korean patent covering the concept of a long-term passive cooling system for an ECT even after 72 hours. This study presents transient performance of ECT with installing air-cooled condensing heat exchanger under decay heat load. The cooling capacity of an air-cooled condensing heat exchanger was evaluated to determine its practicality.

  16. HEAT PUMP USING SUBSOIL WATERS AS LOW TEMPERATURE HEAT SOURCE

    Directory of Open Access Journals (Sweden)

    Denysova Alla

    2015-08-01

    Full Text Available One of the basic directions of perfection of heat supply systems is the tendency of transition to the low-temperature heating systems based on application of heat pump installations. We consider heat supply system with heat pump installations using subsoil waters. Numerical simulation of thermal processes in the elements of a single-stage and double-stage heat pump systems has been worked out. Values of depths of wells and their quantity, necessary for effective operation of the offered installations, and values of capacity of electric water pumps for subsoil waters unit are calculated. Capacity of compressor electric drive and coefficient of performance of heat pump for the conditions of the city of Odessa are presented.

  17. Analysis of sweeping heat loads on divertor plate materials

    International Nuclear Information System (INIS)

    Hassanein, A.

    1991-01-01

    The heat flux on the divertor plate of a fusion reactor is probably one of the most limiting constraints on its lifetime. The current heat flux profile on the outer divertor plate of a device like ITER is highly peaked with narrow profile. The peak heat flux can be as high as 30--40 MW/m 2 with full width at half maximum (FWHM) is in the order of a few centimeters. Sweeping the separatrix along the divertor plate is one of the options proposed to reduce the thermomechanical effects of this highly peaked narrow profile distribution. The effectiveness of the sweeping process is investigated parametrically for various design values. The optimum sweeping parameters of a particular heat load will depend on the design of the divertor plate as well as on the profile of such a heat load. In general, moving a highly peaked heat load results in substantial reduction of the thermomechanical effects on the divertor plate. 3 refs., 8 figs

  18. Long-distance heat transport by hot water

    International Nuclear Information System (INIS)

    Munser, H.; Reetz, B.

    1990-01-01

    From the analysis of the centralized heat supply in the GDR energy-economical and ecological indispensable developments of long-distance heat systems in conurbation are derived. The heat extraction from a nuclear power plant combined with long- distance hot-water transport over about 110 kilometres is investigated and presented as a possibility to perspective base load heat demands for the district around Dresden. By help of industrial-economic, hydraulic and thermic evaluations of first design variants of the transit system the acceptance of this ecologic and energetic preferred solution is proved and requirements for its realization are shown

  19. Use of salt hydrates as a heat storage medium for loading latent heat stores

    Energy Technology Data Exchange (ETDEWEB)

    Wasel-Nielen, J.; Merkenich, K.; Gehrig, O.; Sommer, K.

    1985-05-15

    The use of salt hydrate melting in the loading process is not favourable from the technical and energy point of view. According to the invention, a saturated solution is filled into the store at the required phase conversion point. This can be done by neutralization (e.g. a reaction between H/sub 3/PO4/NaOH/H/sub 2/O in the mol ratio of 1/2/10 gives Na/sub 2/HPO/sub 4/.12H/sub 2/O corresponding to Na/sub 2/SO/sub 4/.10H/sub 2/O), or by conversion of acid/basic salts with bases/acids respectively (e.g.Na/sub 3/PO/sub 4//H/sub 3/PO/sub 4//H/sub 2/O in the ratio 2/1/36 to Na/sub 2/HPO/sub 4/.12H/sub 2/O, analogous to K/sub 3/PO/sub 4/.7H/sub 2/O, KF.4H/sub 2/O or CaCl/sub 2/.6H/sub 2/O). During the process one must ensure accurate dosing and good mixing. A saturated solution is also available by dissolving salts free of water/or with little water in appropriate quantities of water below the melting point of the required hydrate. Such systems are used where the phase change heat exceeds the heat capacity of the water at this temperature and the hydrates should contain at least three crystal water molecules more than the nearest hydrate.

  20. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  1. Combined Space and Water Heating: Next Steps to Improved Performance

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States)

    2016-07-13

    A combined space- and water-heating (combi) system uses a high-efficiency direct-vent burner that eliminates safety issues associated with natural draft appliances. Past research with these systems shows that using condensing water heaters or boilers with hydronic air handling units can provide both space and water heating with efficiencies of 90% or higher. Improved controls have the potential to reduce complexity and improve upon the measured performance. This project demonstrates that controls can significantly benefit these first-generation systems. Laboratory tests and daily load/performance models showed that the set point temperature reset control produced a 2.1%–4.3% (20–40 therms/year) savings for storage and hybrid water heater combi systems operated in moderate-load homes. The full modulation control showed additional savings over set point control (in high-load homes almost doubling the savings: 4%–5% over the no-control case). At the time of installation the reset control can be implemented for $200–$400, which would provide paybacks of 6–25 years for low-load houses and 3–15 years for high-load houses. Full modulation implementation costs would be similar to the outdoor reset and would provide paybacks of 5-½–20 years for low-load houses and 2-½–10 years for high-load houses.

  2. Particle loading rates for HVAC filters, heat exchangers, and ducts.

    Science.gov (United States)

    Waring, M S; Siegel, J A

    2008-06-01

    The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles. The results in this paper suggest important factors that lead to particle deposition on HVAC components in residential and commercial buildings. This knowledge informs the development and comparison of control strategies to limit particle deposition. The predicted mass loading rates allow for the assessment of pressure drop and indoor air quality consequences that result from particle mass loading onto HVAC system components.

  3. Water Replacement Schedules in Heat Stress

    Science.gov (United States)

    Londeree, Ben R.; and others

    1969-01-01

    Although early ingestion of cold water appears to lead to greater relief from heat stress during physical exertion than late ingestion, this difference is reduced toward the end of an hour's work in high heat and humidity. (CK)

  4. High Heat Load Diamond Monochromator Project at ESRF

    International Nuclear Information System (INIS)

    Van aerenbergh, P.; Detlefs, C.; Haertwig, J.; Lafford, T. A.; Masiello, F.; Roth, T.; Schmid, W.; Wattecamps, P.; Zhang, L.

    2010-01-01

    Due to its outstanding thermal properties, diamond is an attractive alternative to silicon as a monochromator material for high intensity X-ray beams. To date, however, the practical applications have been limited by the small size and relatively poor crystallographic quality of the crystals available. The ESRF Diamond Project Group has studied the perfection of diamonds in collaboration with industry and universities. The group has also designed and tested different stress-free mounting techniques to integrate small diamonds into larger X-ray optical elements. We now propose to develop a water-cooled Bragg-Bragg double crystal monochromator using diamond (111) crystals. It will be installed on the ESRF undulator beamline, ID06, for testing under high heat load. This monochromator will be best suited for the low energy range, typically from ∼3.4 keV to 15 keV, due to the small size of the diamonds available and the size of the beam footprint. This paper presents stress-free mounting techniques studied using X-ray diffraction imaging, and their thermal-mechanical analysis by finite element modelling, as well as the status of the ID06 monochromator project.

  5. Workshop on high heat load x-ray optics

    International Nuclear Information System (INIS)

    1990-01-01

    A workshop on ''High Heat Load X-Ray Optics'' was held at Argonne National Laboratory on August 3--5, 1989. The object of this workshop was to discuss recent advances in the art of cooling x-ray optics subject to high heat loads from synchrotron beams. The cooling of the first optical element in the intense photon beams that will be produced in the next generation of synchrotron sources is recognized as one of the major challenges that must be faced before one will be able to use these very intense beams in future synchrotron experiments. Considerable advances have been made in this art during the last few years, but much work remains to be done before the heating problem can be said to be completely solved. Special emphasis was placed on recent cooling experiments and detailed ''finite element'' and ''finite difference'' calculations comparing experiment with theory and extending theory to optimize performance

  6. Heat exchangers in heavy water reactor systems

    International Nuclear Information System (INIS)

    Mehta, S.K.

    1988-01-01

    Important features of some major heat exchange components of pressurized heavy water reactors and DHRUVA research reactor are presented. Design considerations and nuclear service classifications are discussed

  7. Wasted Heat Engine Utilization in Central AC Condenser Type Water Chiller for Economical Energy Water Heaters

    Directory of Open Access Journals (Sweden)

    I Made Rasta

    2012-11-01

    Full Text Available Central AC type water chiller is a refrigeration machine that release heat to environment. Heat energy that released to environment comes from room heat load that absorbed by machine and heat from compressor. The best form in using this loss energy is heat recovery water heater technology, where this machine will take heat from condenser by a heat exchanger to heating water. Refrigerant will flow in the heat exchanger before entering condenser, after that refrigerant flow to other components such as, expansion valve, evaporator, compressor and than return again to condenser, this process will be cycling regularly (closed cycle. Based on experimental and analysis result especially for AC with capacity 2 Pk, and tank capacity 75 liter, with water heater recovery device obtained that: (1 Compressor power consumption decrease from 1.66 kW to 1.59kW. (2 Heat rejected from condenser and used by water heater has ratio 4.683 kJ/s and 1.59 kJ/s, with water heater efficiency is 32.2%. (3 Maximum water temperature can be reached are in range 34oC – 47.5oC in 10-150 minutes and flow rate is 0.5 – 2.5 liter /min

  8. Combined Space and Water Heating: Next Steps to Improved Performance

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States)

    2016-07-13

    A combined space- and water-heating (combi) system uses a high-efficiency direct-vent burner that eliminates safety issues associated with natural draft appliances. Past research with these systems shows that using condensing water heaters or boilers with hydronic air handling units can provide both space and water heating with efficiencies of 90% or higher. Improved controls have the potential to reduce complexity and improve upon the measured performance. This project demonstrates that controls can significantly benefit these first-generation systems. Laboratory tests and daily load/performance models showed that the set point temperature reset control produced a 2.1%-4.3% (20-40 therms/year) savings for storage and hybrid water heater combi systems operated in moderate-load homes.

  9. Dynamic Loading of Carrara Marble in a Heated State

    Science.gov (United States)

    Wong, Louis Ngai Yuen; Li, Zhihuan; Kang, Hyeong Min; Teh, Cee Ing

    2017-06-01

    Useable land is a finite space, and with a growing global population, countries have been exploring the use of underground space as a strategic resource to sustain the growth of their society and economy. However, the effects of impact loading on rocks that have been heated, and hence the integrity of the underground structure, are still not fully understood and has not been included in current design standards. Such scenarios include traffic accidents and explosions during an underground fire. This study aims to provide a better understanding of the dynamic load capacity of Carrara marble at elevated temperatures. Dynamic uniaxial compression tests are performed on Carrara marble held at various temperatures using a split-Hopkinson Pressure Bar (SHPB) setup with varying input force. A customized oven is included in the SHPB setup to allow for testing of the marble specimens in a heated state. After the loading test, a three-wave analysis is performed to obtain the dynamic stress-strain curve of the specimen under loading. The fragments of the failed specimens were also collected and dry-sieved to obtain the particle size distribution. The results reveal that the peak stress of specimens that have been heated is negatively correlated with the heating temperature. However, the energy absorbed by the specimens at peak stress at all temperatures is similar, indicating that a significant amount of energy is dissipated via plastic deformation. Generally, fragment size is also found to show a negative correlation with heating temperature and loading pressure. However, in some cases this relationship does not hold true, probably due to the occurrence of stress shadowing. Linear Elastic Fracture Mechanics has been found to be generally applicable to specimens tested at low temperatures; but at higher temperatures, Elastic-Plastic Fracture Mechanics will give a more accurate prediction. Another contribution of this study is to show that other than the peak stress of the

  10. Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Ribik B.; Atwell, Matt; Cheek, Ann; Agarwal, Muskan; Hong, Steven; Patel, Aashini,; Nguyen, Lisa; Posada, Luciano

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft’s radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a “topper” to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. Studies conducted in this paper investigate utilizing water’s high latent heat of formation as a PCM, as opposed to traditional waxes, and corresponding complications surrounding freezing water in an enclosed volume. Work highlighted in this study is primarily visual and includes understanding ice formation, freeze front propagation, and the solidification process of water/ice. Various test coupons were constructed of copper to emulate the interstitial pin configuration (to aid in conduction) of the proposed water PCM HX design. Construction of a prototypic HX was also completed in which a flexible bladder material and interstitial pin configurations were tested. Additionally, a microgravity flight was conducted where three copper test articles were frozen continuously during microgravity and 2-g periods and individual water droplets were frozen during microgravity.

  11. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C Keith [ORNL; Uselton, Robert B. [Lennox Industries, Inc; Shen, Bo [ORNL; Baxter, Van D [ORNL; Shrestha, Som S [ORNL

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  12. Optimal control of a fuel cell/wind/PV/grid hybrid system with thermal heat pump load

    CSIR Research Space (South Africa)

    Sichilalu, S

    2016-10-01

    Full Text Available This paper presents an optimal energy management strategy for a grid-tied photovoltaic–wind-fuel cell hybrid power supply system. The hybrid system meets the load demand consisting of an electrical load and a heat pump water heater supplying thermal...

  13. Solar-assisted heat pump – A sustainable system for low-temperature water heating applications

    International Nuclear Information System (INIS)

    Chaturvedi, S.K.; Gagrani, V.D.; Abdel-Salam, T.M.

    2014-01-01

    Highlights: • DX-SAHP water heaters systems are economical as well as energy conserving. • The economic analysis is performed using the life cycle cost (LCC) analysis. • LCC can be optimized with respect to the collector area at a specific temperature. • For high load temperature range a two stage heat pump system is more appropriate. - Abstract: Direct expansion solar assisted heat pump systems (DX-SAHP) have been widely used in many applications including water heating. In the DX-SAHP systems the solar collector and the heat pump evaporator are integrated into a single unit in order to transfer the solar energy to the refrigerant. The present work is aimed at studying the use of the DX-SAHP for low temperature water heating applications. The novel aspect of this paper involves a detailed long-term thermo-economic analysis of the energy conservation potential and economic viability of these systems. The thermal performance is simulated using a computer program that incorporates location dependent radiation, collector, economic, heat pump and load data. The economic analysis is performed using the life cycle cost (LCC) method. Results indicate that the DX-SAHP water heaters systems when compared to the conventional electrical water heaters are both economical as well as energy conserving. The analysis also reveals that the minimum value of the system life cycle cost is achieved at optimal values of the solar collector area as well as the compressor displacement capacity. Since the cost of SAHP system presents a barrier to mass scale commercialization, the results of the present study indicating that the SAHP life cycle cost can be minimized by optimizing the collector area would certainly be helpful in lowering, if not eliminating, the economic barrier to these systems. Also, at load temperatures higher than 70 °C, the performance of the single stage heat pump degrades to the extent that its cost and efficiency advantages over the electric only system are

  14. Adaptive control in series load PWM induction heating inverters

    Science.gov (United States)

    Szelitzky, Tibor; Henrietta Dulf, Eva

    2013-12-01

    Permanent variations of the electric properties of the load in induction heating equipment make difficult to control the plant. To overcome these disadvantages, the authors propose a new approach based on adaptive control methods. For real plants it is enough to present desired performances or start-up variables for the controller, from which the algorithms tune the controllers by itself. To present the advantages of the proposed controllers, comparisons are made to a PI controller tuned through Ziegler-Nichols method.

  15. Exergoeconomic optimization of an ammonia-water hybrid heat pump for heat supply in a spray drying facility

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2014-01-01

    Spray drying facilities are among the most energy intensive industrial processes. Using a heat pump to recover waste heat and replace gas combustion has the potential to attain both economic and emissions savings. In the case examined a drying gas of ambient air is heated to 200 XC. The inlet flow...... rate is 100,000 m3/h which yields a heat load of 6.1 MW. The exhaust air from the drying process is 80 XC. The implementation of an ammonia-water hybrid absorption-compression heat pump to partly cover the heat load is investigated. A thermodynamic analysis is applied to determine optimal circulation...... ratios for a number of ammonia mass fractions and heat pump loads. An exergoeconomic optimization is applied to minimize the lifetime cost of the system. Technological limitations are applied to constrain the solution to commercial components. The best possible implementation is identified in terms...

  16. Potential for solar water heating in Zimbabwe

    NARCIS (Netherlands)

    Batidzirai, B.; Lysen, E.H.; van Egmond, S.; van Sark, W.G.J.H.M.

    2009-01-01

    This paper discusses the economic, social and environmental benefits from using solar water heating (SWH) in Zimbabwe. By comparing different water heating technology usage in three sectors over a 25-year period, the potential of SWH is demonstrated in alleviating energy and economic problems that

  17. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  18. Increase of COP for heat transformer in water purification systems. Part I - Increasing heat source temperature

    International Nuclear Information System (INIS)

    Siqueiros, J.; Romero, R.J.

    2007-01-01

    The integration of a water purification system in a heat transformer allows a fraction of heat obtained by the heat transformer to be recycled, increasing the heat source temperature. Consequently, the evaporator and generator temperatures are also increased. For any operating conditions, keeping the condenser and absorber temperatures and also the heat load to the evaporator and generator, a higher value of COP is obtained when only the evaporator and generator temperatures are increased. Simulation with proven software compares the performance of the modeling of an absorption heat transformer for water purification (AHTWP) operating with water/lithium bromide, as the working fluid-absorbent pair. Plots of enthalpy-based coefficients of performance (COP ET ) and the increase in the coefficient of performance (COP) are shown against absorber temperature for several thermodynamic operating conditions. The results showed that proposed (AHTWP) system is capable of increasing the original value of COP ET more than 120%, by recycling part of the energy from a water purification system. The proposed system allows to increase COP values from any experimental data for water purification or any other distillation system integrated to a heat transformer, regardless of the actual COP value and any working fluid-absorbent pair

  19. Solar heating and hot water system installed at Listerhill, Alabama

    Science.gov (United States)

    1978-01-01

    The Solar system was installed into a new building and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

  20. Improving Automation Routines for Automatic Heating Load Detection in Buildings

    Directory of Open Access Journals (Sweden)

    Stephen Timlin

    2012-11-01

    Full Text Available Energy managers use weather compensation data and heating system cut off routines to reduce heating energy consumption in buildings and improve user comfort. These routines are traditionally based on the calculation of an estimated building load that is inferred from the external dry bulb temperature at any point in time. While this method does reduce heating energy consumption and accidental overheating, it can be inaccurate under some weather conditions and therefore has limited effectiveness. There remains considerable scope to improve on the accuracy and relevance of the traditional method by expanding the calculations used to include a larger range of environmental metrics. It is proposed that weather compensation and automatic shut off routines that are commonly used could be improved notably with little additional cost by the inclusion of additional weather metrics. This paper examines the theoretical relationship between various external metrics and building heating loads. Results of the application of an advanced routine to a recently constructed building are examined, and estimates are made of the potential savings that can be achieved through the use of the routines proposed.

  1. Solar heating and hot water system installed at Cherry Hill, New Jersey

    Science.gov (United States)

    1979-01-01

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  2. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  3. Beam heat load investigations with a cold vacuum chamber for diagnostics in a synchrotron light source

    Energy Technology Data Exchange (ETDEWEB)

    Voutta, Robert

    2016-04-22

    The beam heat load is a crucial input parameter for the cryogenic design of superconducting insertion devices. To understand the discrepancies between the predicted heat load of an electron beam to a cold bore and the heat load observed in superconducting devices, a cold vacuum chamber for diagnostics has been built. Extensive beam heat load measurements were performed at the Diamond light source. They are analysed systematically and combined with complementary impedance bench measurements.

  4. Role of Solar Water Heating in Multifamily Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Williamson, James [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-04-08

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: 1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads; 2) Because of better scale, SDHW systems in multifamily buildings cost significantly less per dwelling than in single-family homes; 3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating; and 4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support from the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.

  5. Oligonol supplementation modulates plasma volume and osmolality and sweating after heat load in humans.

    Science.gov (United States)

    Lee, JeongBeom; Shin, YoungOh; Murota, Hiroyuki

    2015-05-01

    Oligonol is a low-molecular-weight polyphenol that possesses antioxidant and anti-inflammatory properties. This study investigated the effects of Oligonol supplementation on sweating response, plasma volume (PV), and osmolality (Osm) after heat load in human volunteers. We conducted a placebo-controlled crossover trial. Participants took a daily dose of 200 mg Oligonol or placebo for 1 week. After a 2-week washout period, the subjects were switched to the other study arm. As a heat load, half-body immersion into hot water (42°C±0.5°C for 30 min) was performed in an automated climate chamber. Tympanic and mean body temperature (Tty, mTb) and whole-body sweat loss volume (WBSLV) were measured. Changes in PV, Osm, and serum levels of aldosterone and sodium were analyzed. Oligonol intake attenuated increases in Tty, mTb, and WBSLV after heat load compared with the placebo (Pbody temperature and excessive sweating under heat load in healthy humans, but interpretation of the results requires caution due to the potent diuretic effect of Oligonol.

  6. Water calorimetry: The heat defect

    International Nuclear Information System (INIS)

    Klassen, N.V.; Ross, C.K.

    1997-01-01

    Domen developed a sealed water calorimeter at NIST to measure absorbed dose to water from ionizing radiation. This calorimeter exhibited anomalous behavior using water saturated with gas mixtures of H 2 O 2 . Using computer simulations of the radiolysis of water, the authors show that the observed behavior can be explained if, in the gas mixtures, the amount-of-substance of H 2 and of O 2 differed significantly from 50%. The authors also report the results of simulations for other dilute aqueous solutions that are used for water calorimetry--pure water, air-saturated water, and H 2 -saturated water. The production of H 2 O 2 was measured for these aqueous solutions and compared to simulations. The results indicate that water saturated with a gas mixture containing an amount-of-substance of H 2 of 50% and of O 2 of 50% is suitable for water calorimetry if the water is stirred and is in contact with a gas space of similar volume. H 2 -saturated water does not require a gas space but O 2 contamination must be guarded against. The lack of a scavenger for OH radicals in pure water means that, depending on the water purity, some pure water might require a large priming dose to remove reactive impurities. The experimental and theoretical problems associated with air-saturated water and O 2 -saturated water in water calorimeters are discussed

  7. Emissions from three wood-fired domestic central heating boilers - heat load dependence

    International Nuclear Information System (INIS)

    Karlsson, M.L.

    1992-01-01

    The flue gases from three wood-fired domestic central heating boilers have been characterized. Measurements were made at three part loads; 3, 7 and 15 kW. Two of the boilers were modern multi-fuel boilers, with inverse firing and natural draught. The third boiler was a single-fuel wood boiler, with inverse firing and combustion air supply through a fan. All boilers were environmentally approved; the tar emissions were below 30 mg/MJ at nominal heat load. The following parameters were measured: - CO, CO 2 , NO x , total hydrocarbons (THC), - tar and particulates, - twelve volatile organic compounds (VOC). The limit value for tar emission was heavily exceeded for all three boilers at the part loads at which they were tested. For the two multi-fuel boilers the tar emissions decreased with increasing load level, while the opposite was found for the wood boiler with a fan. The NO x emissions varied between 20 and 120 mg/MJ. The multi-fuel boilers showed increasing NO x emissions with increasing heat load. The single-fuel wood boiler showed NO x emissions at about 60 mg/MJ, independent of load level. The CO and THC levels in general were high. The CO levels varied between 1000 and 2000 mg/MJ. While the THC levels varied between 300 and 4000 mg/MJ. Broadly speaking, the CO and THC levels decreased with increasing load levels for the multi-fuel boilers. For the single-fuel wood boiler the CO and THC levels were roughly the same at all load levels. Out of the twelve VOC compounds which were measured, the following could be detected and quantified. With FTIR analysis: Methane, ethylene, propene and acetylene. With GC analysis: Methanol, phenol and acetic acid. (1 ref., 31 figs., 7 tabs.)

  8. Solar water heating system for a lunar base

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1992-01-01

    An investigation of the feasibility of using a solar water heater for a lunar base is described. During the investigation, computer codes were developed to model the lunar base configuration, lunar orbit, and heating systems. Numerous collector geometries, orientation variations, and system options were identified and analyzed. The results indicate that the recommended solar water heater could provide 88 percent of the design load and would not require changes in the overall lunar base design. The system would give a 'safe-haven' water heating capability and use only 7 percent to 10 percent as much electricity as an electric heating system. As a result, a fixed position photovoltaic array can be reduced by 21 sq m.

  9. Reduction of repository heat load using advanced fuel cycles

    International Nuclear Information System (INIS)

    Preston, Jeff; Miller, L.F.

    2008-01-01

    With the geologic repository at Yucca Mountain already nearing capacity full before opening, advanced fuel cycles that introduce reprocessing, fast reactors, and temporary storage sites have the potential to allow the repository to support the current reactor fleet and future expansion. An uncertainty analysis methodology that combines Monte Carlo distribution sampling, reactor physics data simulation, and neural network interpolation methods enable investigation into the factor reduction of heat capacity by using the hybrid fuel cycle. Using a Super PRISM fast reactor with a conversion ratio of 0.75, burn ups reach up to 200 MWd/t that decrease the plutonium inventory by about 5 metric tons every 12 years. Using the long burn up allows the footprint of 1 single core loading of FR fuel to have an integral decay heat of about 2.5x10 5 MW*yr over a 1500 year period that replaces the footprint of about 6 full core loadings of LWR fuel for the number of years required to fuel the FR, which have an integral decay heat of about.3 MW*yr for the same time integral. This results in an increase of a factor of 4 in repository support capacity from implementing a single fast reactor in an equilibrium cycle. (authors)

  10. Workshop on high heat load x-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    A workshop on High Heat Load X-Ray Optics'' was held at Argonne National Laboratory on August 3--5, 1989. The object of this workshop was to discuss recent advances in the art of cooling x-ray optics subject to high heat loads from synchrotron beams. The cooling of the first optical element in the intense photon beams that will be produced in the next generation of synchrotron sources is recognized as one of the major challenges that must be faced before one will be able to use these very intense beams in future synchrotron experiments. Considerable advances have been made in this art during the last few years, but much work remains to be done before the heating problem can be said to be completely solved. Special emphasis was placed on recent cooling experiments and detailed finite element'' and finite difference'' calculations comparing experiment with theory and extending theory to optimize performance.

  11. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.

    Science.gov (United States)

    Tu, Y D; Wang, R Z; Ge, T S; Zheng, X

    2017-01-12

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  12. Analysis of Water Recovery Rate from the Heat Melt Compactor

    Science.gov (United States)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2013-01-01

    Human space missions generate trash with a substantial amount of plastic (20% or greater by mass). The trash also contains water trapped in food residue and paper products and other trash items. The Heat Melt Compactor (HMC) under development by NASA Ames Research Center (ARC) compresses the waste, dries it to recover water and melts the plastic to encapsulate the compressed trash. The resulting waste disk or puck represents an approximately ten-fold reduction in the volume of the initial trash loaded into the HMC. In the current design concept being pursued, the trash is compressed by a piston after it is loaded into the trash chamber. The piston face, the side walls of the waste processing chamber and the end surface in contact with the waste can be heated to evaporate the water and to melt the plastic. Water is recovered by the HMC in two phases. The first is a pre-process compaction without heat or with the heaters initially turned on but before the waste heats up. Tests have shown that during this step some liquid water may be expelled from the chamber. This water is believed to be free water (i.e., not bound with or absorbed in other waste constituents) that is present in the trash. This phase is herein termed Phase A of the water recovery process. During HMC operations, it is desired that liquid water recovery in Phase A be eliminated or minimized so that water-vapor processing equipment (e.g., condensers) downstream of the HMC are not fouled by liquid water and its constituents (i.e., suspended or dissolved matter) exiting the HMC. The primary water recovery process takes place next where the trash is further compacted while the heated surfaces reach their set temperatures for this step. This step will be referred to herein as Phase B of the water recovery process. During this step the waste chamber may be exposed to different selected pressures such as ambient, low pressure (e.g., 0.2 atm), or vacuum. The objective for this step is to remove both bound and

  13. Series load induction heating inverter state estimator using Kalman filter

    Directory of Open Access Journals (Sweden)

    Szelitzky T.

    2011-12-01

    Full Text Available LQR and H2 controllers require access to the states of the controlled system. The method based on description function with Fourier series results in a model with immeasurable states. For this reason, we proposed a Kalman filter based state estimator, which not only filters the input signals, but also computes the unobservable states of the system. The algorithm of the filter was implemented in LabVIEW v8.6 and tested on recorded data obtained from a 10-40 kHz series load frequency controlled induction heating inverter.

  14. Prototype solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  15. Basic principles of solar water heating

    CSIR Research Space (South Africa)

    Page-Shipp, RJ

    1980-09-10

    Full Text Available This article correctly reflects the principles of Solar Water Heating as they pertain to South African conditions. However, it was written in 1980 and the global energy situation has changed considerably. Furthermore, modern commercial units...

  16. Simulating tokamak PFC performance using simultaneous dual beam particle loading with pulsed heat loading

    Science.gov (United States)

    Sinclair, Gregory; Gonderman, Sean; Tripathi, Jitendra; Ray, Tyler; Hassanein, Ahmed

    2017-10-01

    The performance of plasma facing components (PFCs) in a fusion device are expected to change due to high flux particle loading during operation. Tungsten (W) is a promising PFC candidate material, due to its high melting point, high thermal conductivity, and low tritium retention. However, ion irradiation of D and He have each shown to diminish the thermal strength of W. This work investigates the synergistic effect between ion species, using dual beam irradiation, on the thermal response of W during ELM-like pulsed heat loading. Experiments studied three different loading conditions: laser, laser + He+, and laser + He+ + D+. 100 eV He+ and D+ exposures used a flux of 3.0-3.5 x 1020 m-2 s-1. ELM-like loading was applied using a pulsed Nd:YAG laser at an energy density of 0.38-1.51 MJ m-2 (3600 1 ms pulses at 1 Hz). SEM imaging revealed that laser + He+ loading at 0.76 MJ m-2 caused surface melting, inhibiting fuzz formation. Increasing the laser fluence decreased grain size and increased surface pore density. Thermally-enhanced migration of trapped gases appear to reflect resultant molten morphology. This work was supported by the National Science Foundation PIRE project.

  17. Heat loads on plasma facing components during disruptions on JET

    International Nuclear Information System (INIS)

    Arnoux, G.; Riccardo, V.; Fundamenski, W.; Loarte, A.; Huber, A.

    2009-01-01

    For the first time, fast measurements of heat loads on the main chamber plasma facing components (about 1 ms time resolution) during disruptions are taken on JET. The timescale of energy deposition during the thermal quench is estimated and compared with the timescale of the core plasma collapse measured with soft x-ray diagnostic. The energy deposition time is 3-8 times longer than the plasma energy collapse during density limit disruptions or radiative limit disruptions. This factor is rather in the range 1.5-4 for vertical displacement events. The heat load profiles measured during the thermal quench show substantial broadening of the power footprint on the upper dump plate. The scrape-off layer power width is increased by a factor of 3 for the density limit disruptions. The far scrape-off layer is characterized by a steeper gradient which could be explained by shadowing of the dump plate by other main chamber plasma facing components such as the outer limiter.

  18. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  19. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott; Poynot, Joe

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research and experimentation to the full scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Design and construction of these HX's led to successful testing of both PCM HX's.

  20. High Heat Load Properties of Ultra Fine Grain Tungsten

    International Nuclear Information System (INIS)

    Zhou, Z.; Du, J.; Ge, C.; Linke, J.; Pintsuk, G.; Song, S.X.

    2007-01-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 μm, 1 μm and 3 μm were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m 2 respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m 2 . Particle erosions occurred for tungsten with 3 μm size at 0.33 GW/m 2 and for tungsten with 0.2 and 1 μm size at 0.55 GW/m 2 . The weight loss of tungsten with 0.2, 1 and 3 μm size are 2,0.1,0.6 mg respectively at 0.88 GW/m 2 . The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 μm size has the best performance. (authors)

  1. High Heat Load Properties of Ultra Fine Grain Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Du, J.; Ge, C. [Lab. of Special Ceramic and P/M, University of Science and Technology, 100083 Beijing (China); Linke, J.; Pintsuk, G. [FZJ-Forschungszentrum Juelich GmbH, Association Euratom-FZJ, Institut fur Plasmaphysik, Postfach 1913, D-52425 Juelich (Germany); Song, S.X. [Research Center on Fusion Materials (RCFM), University of Science and Technology Beijing (USTB), 100083 Beijing (China)

    2007-07-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 {mu}m, 1 {mu}m and 3 {mu}m were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m{sup 2} respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m{sup 2}. Particle erosions occurred for tungsten with 3 {mu}m size at 0.33 GW/m{sup 2} and for tungsten with 0.2 and 1 {mu}m size at 0.55 GW/m{sup 2}. The weight loss of tungsten with 0.2, 1 and 3 {mu}m size are 2,0.1,0.6 mg respectively at 0.88 GW/m{sup 2}. The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 {mu}m size has

  2. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation Industry Team (BSC), Somerville, MA (United States)

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  3. Heat Load and Cooling Configurations of the PEFP DTL

    International Nuclear Information System (INIS)

    Kim, Han Sung; Kwon, Hyeok Jung; Cho, Yong Sub

    2012-01-01

    A 100 MeV proton linac is under development for Proton Engineering Frontier Project (PEFP). It consists of a 50 keV injector, 3 MeV RFQ and 100 MeV DTL. The accelerated proton beam can be extracted at 20 MeV and 100 MeV by using bending magnets. Therefore, the DTL for PEFP can be divided into two sections; one for 20 MeV DTL and the other is 100 MeV DTL. The 20 MeV DTL is composed of 4 tanks and driven by a single klystron. Duty factor of the 20 MeV section is 24%. To accelerate the beam from 20 MeV to 100 MeV, we use 7 tanks, which are driven by 7 independent RF sources. Duty factor of the 100 MeV section is reduced to 8%. From the viewpoint of the heat load, there are several differences between the 20 MeV section and 100 MeV section. First, as mentioned before, the duty factors are different. Second, the accelerating gradient is changed from 1.3 MV/m for 20 MeV section to 2.58 MV/m for 100 MeV section. Third, the types of the electroquadrupole magnets inside each drift tube are different. For the 20 MeV section, we used the pool type quadrupole magnets made of enamel wires due to the limited space. The hollow conductor type quadrupole magnets are used for 100 MeV section. The heat generations of each quadrupole magnet are 1.5 kW and 0.4 kW for 20 MeV section and 100 MeV section, respectively. Detailed heat load of DTL and the configuration of cooling loop are presented in this paper

  4. Heat load limits for TRU drums on pads

    International Nuclear Information System (INIS)

    Steimke, J.L.; McKinley, M.S.

    1993-08-01

    Some of the Trans-Uranic (TRU) waste generated at SRS is packaged in 55 gallon, galvanized steel drums and stored on concrete pads that are exposed to the weather. It was necessary to compute how much heat can be generated by the waste in these drums without exceeding the temperature limits of the contents of the drum. This report documents the calculation of heat load limits for the drum, which depend on the temperature limits of the contents of the drum. The applicable temperature limits for the contents of the drum are the melting temperature of the polyethylene liner, 284 ± 8 F, the combustion temperature of paper, 450 F and the decomposition temperature of anionic resin, 190 F. One part of the analysis leading to the heat load limits was the collection of weather records on solar flux, wind speed and air temperature. Another part of the task was an experimental measurement of two important properties of the drum lid, the emittance and the absorptance. As used here, emittance is the rate at which an object emits infrared thermal radiation divided by the rate at which a perfect black body at the same temperature emits thermal radiation. Absorptance is the rate at which an object absorbs solar radiation divided by the rate at which a perfect black body absorbs radiation. For nine locations on each of eight typical weathered drum lids the measured emittance ranged from 0.73 ± 0.05 to 1.00 ± 0.07 (95% confidence level) and the average emittance for the eight lids was 0.85. For the eight drum lids the measured absorptance ranged from 0.64 ± 0.07 to 0.79 ± 0.07 with an average absorptance for the eight lids of 0.739

  5. Heat Load and Cooling Configurations of the PEFP DTL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Sung; Kwon, Hyeok Jung; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    A 100 MeV proton linac is under development for Proton Engineering Frontier Project (PEFP). It consists of a 50 keV injector, 3 MeV RFQ and 100 MeV DTL. The accelerated proton beam can be extracted at 20 MeV and 100 MeV by using bending magnets. Therefore, the DTL for PEFP can be divided into two sections; one for 20 MeV DTL and the other is 100 MeV DTL. The 20 MeV DTL is composed of 4 tanks and driven by a single klystron. Duty factor of the 20 MeV section is 24%. To accelerate the beam from 20 MeV to 100 MeV, we use 7 tanks, which are driven by 7 independent RF sources. Duty factor of the 100 MeV section is reduced to 8%. From the viewpoint of the heat load, there are several differences between the 20 MeV section and 100 MeV section. First, as mentioned before, the duty factors are different. Second, the accelerating gradient is changed from 1.3 MV/m for 20 MeV section to 2.58 MV/m for 100 MeV section. Third, the types of the electroquadrupole magnets inside each drift tube are different. For the 20 MeV section, we used the pool type quadrupole magnets made of enamel wires due to the limited space. The hollow conductor type quadrupole magnets are used for 100 MeV section. The heat generations of each quadrupole magnet are 1.5 kW and 0.4 kW for 20 MeV section and 100 MeV section, respectively. Detailed heat load of DTL and the configuration of cooling loop are presented in this paper

  6. Pulse mitigation and heat transfer enhancement techniques. Volume 3: Liquid sodium heat transfer facility and transient response of sodium heat pipe to pulse forward and reverse heat load

    Science.gov (United States)

    Chow, L. C.; Hahn, O. J.; Nguyen, H. X.

    1992-08-01

    This report presents the description of a liquid sodium heat transfer facility (sodium loop) constructed to support the study of transient response of heat pipes. The facility, consisting of the loop itself, a safety system, and a data acquisition system, can be safely operated over a wide range of temperature and sodium flow rate. The transient response of a heat pipe to pulse heat load at the condenser section was experimentally investigated. A 0.457 m screen wick, sodium heat pipe with an outer diameter of 0.127 m was tested under different heat loading conditions. A major finding was that the heat pipe reversed under a pulse heat load applied at the condenser. The time of reversal was approximately 15 to 25 seconds. The startup of the heat pipe from frozen state was also studied. It was found that during the startup process, at least part of the heat pipe was active. The active region extended gradually down to the end of the condenser until all of the working fluid in the heat pipe was molten.

  7. Heat transfer with a split water channel

    International Nuclear Information System (INIS)

    Krinsky, S.

    1978-01-01

    The heat transfer problem associated with the incidence of synchrotron radiation upon a vacuum chamber wall cooled by a single water channel was previously studied, and a numerical solution to the potential problem was found using the two-dimensional magnet program POISSON. Calculations were extended to consider the case of a split water channel using POISSON to solve the potential problem for a given choice of parameters. By optimizing the dimensions, boiling of the water can be avoided. A copper chamber is a viable solution to the heat transfer problem at a beam port

  8. Simulation of cracks in tungsten under ITER specific heat loads

    International Nuclear Information System (INIS)

    Peschany, S.

    2006-01-01

    The problem of high tritium retention in co-deposited carbon layers on the walls of ITER vacuum chamber motivates investigation of materials for the divertor armour others than carbon fibre composite (CFC). Tungsten is most probable material for CFC replacement as the divertor armour because of high vaporisation temperature and heat conductivity. In the modern ITER design tungsten is a reference material for the divertor cover, except for the separatrix strike point armoured with CFC. As divertor armour, tungsten should withstand severe heat loads at off-normal ITER events like disruptions, ELMs and vertical displacement events. Experiments on tungsten heating with plasma streams and e-beams have shown an intense crack formation at the surface of irradiated sample [ V.I. Tereshin, A.N. Bandura, O.V. Byrka et al. Repetitive plasma loads typical for ITER type-I ELMs: Simulation at QSPA Kh-50.PLASMA 2005. ed. By Sadowski M.J., AIP Conference Proceedings, American Institute of Physics, 2006, V 812, p. 128-135., J. Linke. Private communications.]. The reason for tungsten cracking under severe heat loads is thermo stress. It appears as due to temperature gradient in solid tungsten as in resolidified layer after cooling down. Both thermo stresses are of the same value, but the gradiental stress is compressive and the stress in the resolidified layer is tensile. The last one is most dangerous for crack formation and it was investigated in this work. The thermo stress in tungsten that develops during cooling from the melting temperature down to room temperature is ∼ 8-16 GPa. Tensile strength of tungsten is much lower, < 1 GPa at room temperature, and at high temperatures it drops at least for one order of magnitude. As a consequence, various cracks of different characteristic scales appear at the heated surface of the resolidified layer. For simulation of the cracks in tungsten the numeric code PEGASUS-3D [Pestchanyi and I. Landman. Improvement of the CFC structure to

  9. Study on heat under dynamic loading of rubber

    Directory of Open Access Journals (Sweden)

    T. I. Igumenova

    2016-01-01

    Full Text Available A number of studies on heat buildup in tire rubber surface scan method samples using a thermal imaging camera. Investigated the exothermic chemical reaction mechanical destruction rubber when loading designs permanent cyclic stretching with deformation of the working zone 50%. Percentage of deformation of the working zone was chosen on the basis of the actual data on the stretch-compression zone "Rusk" tires, which is the maximum level difference of deformation during run-in. Experiment plan provided for periodic relaxation samples of at least 72 hours for more accurate simulation of operation process of structural products. Created and processed data on temperature changes in samples for bar and line profile for rubber compounds with the introduction of nanomodificator (fullerene-containing technical carbon in comparison with the control sample without him. The data obtained reflect the nature of heat depending on the composition of the compound. Identified common patterns of thermal nature of physicochemical process mechanical destruction rubbers. For rubber with nanomodifikatorom there has been an increase in the temperature interval reaction from a minimum to a maximum 2 degrees that is also linked to the rise in the average temperature of the reaction on the histogram also at 2-3 degrees of deformation under the same conditions and the level of cyclic loading. However, the temperature in the control sample that is associated with the beginning of the formation of hardened rubber structures, economies of Mallinza-Petrikeeva, occurs with delay twice compared with modified Fullerenes. Measurement of physic-mechanical indicators selected in the course of testing of samples showed the beginning of formation of structure with increased strength of samples in the sample temperature zone that corresponds to the thermal effect of èndotermičeskomu recombination reactions of macromolecules.

  10. An analysis of representative heating load lines for residential HSPF ratings

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirement (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28

  11. Beryllium armoured target for extreme heat and neutron loading conditions

    International Nuclear Information System (INIS)

    Mazul, I.; Gervash, A.; Giniyatulin, R.

    2004-01-01

    Beryllium is a primary candidate as a target material for high-energy protons conversion into neutrons used for different applications. In order to get higher neutron flux the conversion area has to be minimized - in our case the target is limited by 1-2 liter volume. This target generates about 5·10 13 fast neutrons per second and removes of 150 kW thermal power deposited by proton beam (30 mA, 5 MeV), coming from linac. The operational condition of the converter is close to the condition of Be-armored components in fusion reactors: high thermal and neutron fluxes and active cooling. Therefore achievements in development of water-cooled high heat flux components for fusion application can be used for design of Be converter and vice versa. However for medical application the using of high-activated heat sink materials such as Cu and SS is strongly limited. So, new materials (Be, Al, Zr) and new joining technologies in comparison with the achievements in fusion area have to be used for construction of such Be converter. In order to reduce amount of heat sink materials in the target saddle-block geometry for Be armor is suggested and developed. Results of R and D works on the development of water cooled Be target for converter are presented, including data on selected materials, technological trials and mockups high heat flux testing. Preliminary design of Be neutron converter for medical applications based on R and D results is presented. (author)

  12. Solar Water Heating System for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Syaifurrahman

    2018-01-01

    Full Text Available Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  13. Solar Water Heating System for Biodiesel Production

    Science.gov (United States)

    Syaifurrahman; Usman, A. Gani; Rinjani, Rakasiwi

    2018-02-01

    Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  14. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads.

  15. Experimental study of heat transfer and pressure drop characteristics of air/water and air-steam/water heat exchange in a polymer compact heat exchanger

    NARCIS (Netherlands)

    Cheng, L.; Geld, van der C.W.M.

    2005-01-01

    Experiments of heat transfer and pressure drop in a polymer compact heat exchanger made of PolyVinyliDene-Fluoride were conducted under various conditions for air/water heat exchange and air-steam/water heat exchange, respectively. The overall heat transfer coefficients of air-steam/water heat

  16. Modelling and multi-scenario analysis for electric heat tracing system combined with low temperature district heating for domestic hot water supply

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    Low temperature district heating (LTDH) is a cost-efficient way of supplying space heating and domestic hot water (DHW) for buildings in urban areas. However, there is concern that the potential hygiene problems (Legionella) might occur if LTDH is implemented, especially for large buildings...... performance on heat loss saving, and it also gave benefits to district heating network by sharing part of the heating load....

  17. Corrosion Fatigue in District Heating Water Tanks

    DEFF Research Database (Denmark)

    Maahn, Ernst Emanuel

    1996-01-01

    Three candidate materials for construction of buffer tanks for district heating water have been tested for corrosion fatigue properties in a district heating water environment. The investigation included Slow Strain Rate Testing of plain tensile specimens, crack initiation testing by corrosion...... fatigue of plain tensile specimens and crack growth rate determination for Compact Tensile Specimens under corrosion fatigue conditions. The three materials are equal with respect to stress corrosion sensibility and crack initiation. Crack growth rate is increased with a factor of 4-6 relative to an inert...

  18. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, T. [Gas Technology Inst., Des Plaines, IL (United States); Scott, S. [Gas Technology Inst., Des Plaines, IL (United States)

    2013-03-01

    Homebuilders are exploring more cost-effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads and found that the tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system, among other key findings.

  19. Transient modelling of heat loading of phase change material for energy storage

    Directory of Open Access Journals (Sweden)

    Asyraf W.M.

    2017-01-01

    Full Text Available As the development of solar energy is getting advance from time to time, the concentration solar technology also get the similar attention from the researchers all around the globe. This technology concentrate a large amount of energy into main spot. To collect all the available energy harvest from the solar panel, a thermal energy storage is required to convert the heat energy to one of the purpose such as electrical energy. With the idea of energy storage application that can be narrow down to commercial application such as cooking stove. Using latent heat type energy storage seem to be appropriate with the usage of phase change material (PCM that can release and absorb heat energy at nearly constant temperature by changing its state. Sodium nitrate (NaNO3 and potassium nitrate (KNO3 was selected to use as PCM in this project. This paper focus on the heat loading process and the melting process of the PCM in the energy storage using a computer simulation. The model of the energy storage was created as solid three dimensional modelling using computer aided software and the geometry size of it depend on how much it can apply to boil 1 kg of water in cooking application. The materials used in the tank, heat exchanger and the heat transfer fluid are stainless steel, copper and XCELTHERM MK1, respectively. The analysis was performed using a commercial simulation software in a transient state. The simulation run on different value of velocity but kept controlled under laminar state only, then the relationship of velocity and heat distribution was studied and the melting process of the PCM also has been analyzed. On the effect of heat transfer fluid velocity, the higher the velocity resulted in higher the rate of heat transfer. The comparison between the melting percentages of the PCMs under test conditions show that NaNO3 melts quite faster than KNO3.

  20. Cluster analysis of residential heat load profiles and the role of technical and household characteristics

    DEFF Research Database (Denmark)

    Carmo, Carolina; Christensen, Toke Haunstrup

    2016-01-01

    of the temporality of the energy demand is needed. This paper contributes to this by focusing on the daily load profiles of energy demand for heating of Danish dwellings with heat pumps. Based on hourly recordings from 139 dwellings and employing cluster and regression analysis, the paper explores patterns...... (typologies) in daily heating load profiles and how these relate to socio-economic and technical characteristics of the included households. The study shows that the load profiles vary according to the external load conditions. Two main clusters were identified for both weekdays and weekends and across load...

  1. Design of a Solar Water Heating System for Kuti Hall, University of ...

    African Journals Online (AJOL)

    Monthly average daily irradiance in plane of solar collector and Cold water temperature calculated from weather data collated to determine heating load. Mathematical model was developed based on heat transfer, thermal and optical and energy performance of collector. The absorber plate area, dimensions of solar ...

  2. Using geothermal water for greenhouse heating

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir

    2006-01-01

    Full Text Available On construction with dimensions 15 x 5 x 2 m, conditions of temperature transmission and vegetables growth are examined. We have been cultivating pepper, cucumber, small cucumber, tomato, and lattice. Over ground heating has been used, consisting of one bent pipe with radius of 10 mm, in the shape of hairpin along the both sides of the construction. Underground heating consists of six pipes with radius of 20 mm on the depth of 350-400 mm. There have been measured the temperature inside construction, the temperature outside construction, the waterflow, and water temperature flowing into and out of the construction. The approximate heating flow factor K is determined by both the equation: heating balance equation and basic equation for temperature transmition. Vegetable growth has been watching during the period of time from March to November 2005.

  3. Water Quality Assessment and Total Maximum Daily Loads Information (ATTAINS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality Assessment TMDL Tracking And Implementation System (ATTAINS) stores and tracks state water quality assessment decisions, Total Maximum Daily Loads...

  4. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Rubik B.; Poynot, Joe; Giglio, Tony; Ungar, Gene K.

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to meet the full heat rejection demands. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HX's do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research on freeze front propagation to a full-scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Two units, Units A and B, were constructed and differed only in their midplate design. Both units failed multiple times during testing. This report highlights learning outcomes from these tests and are applied to a final sub-scale PCM HX which is slated to be tested on the ISS in early 2017.

  5. Hot water preparation using heat-pumps and loading control on the secondary side. Measurements made on an installation in Uttwil, Switzerland - Final report; Warmwasserbereitung mit Waermepumpe und sekundaerseitiger Laderegelung. Messungen an einer Anlage in Uttwil - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hans Mayer, M. [Mayer Ingenieur GmbH, Diessenhofen (Switzerland); Gabathuler, H. R. [Gabathuler Beratung GmbH, Diessenhofen, (Switzerland); Baumgartner, T. [Baumgartner und Partner AG, Rapperswil-Jona (Switzerland)

    2009-06-15

    The object of the project is to prepare basic documentation enabling domestic hot water heating systems to be designed for detached houses, apartment houses, school buildings, swimming pools, hotels, etc. - i.e. installations of any size - using regular commercial heat pumps, heat exchangers and storage tanks, having optimum energy performance and remaining fault-free both in winter and in summer operation. Studies performed in 2007 demonstrated that domestic hot-water temperatures of 54 to 57 {sup o}C could be achieved without auxiliary electrical heating using an external heat exchanger and with step charging, whereby seasonal performance factors of 3.15 to 3.33 were achieved. In the present project, the advantages of anti-legionella circuits with storage control in the secondary circuit are investigated on a test installation in Uttwil (Canton of Thurgau) on the basis of measurement. The measurements were performed using a ground source heat pump with scroll compressor and intermediate steam injection, enabling a maximum condenser exit temperature of 65 {sup o}C to be achieved. The following conclusions were reached in the studies: (i) For installations with normal domestic hot-water consumption (e.g. in residential buildings), cold water strata appear in the lower part of the storage tank. In this case, therefore, step charging in normal operation up to a temperature of about 57 {sup o}C is more advantageous. With this, seasonal performance factors of around 3.33 can be achieved (see 2007 studies). (ii) For installations with only low domestic hot-water consumption, in which the temperature reduction in the storage tank is mainly due to the recirculation system (typical for office buildings), stratified charging is preferable. For a domestic hot-water temperature of 57 {sup o}C, a seasonal performance factor of around 2.6 and for domestic hot-water temperatures above 60 {sup o}C, a seasonal performance factor of 2.5 is more realistic. (iii) The first

  6. Progress of High Heat Flux Component Manufacture and Heat Load Experiments in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Lian, Y.; Xu, Z.; Chen, J.; Chen, L.; Wang, Q.; Duan, X., E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, Chengu (China); Luo, G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yan, Q. [University of Science and Technology Beijing, Beijing (China)

    2012-09-15

    Full text: High heat flux components for first wall and divertor are the key subassembly of the present fusion experiment apparatus and fusion reactors in the future. It is requested the metallurgical bonding among the plasma facing materials (PFMs), heat sink and support materials. As to PFMs, ITER grade vacuum hot pressed beryllium CN-G01 was developed in China and has been accepted as the reference material of ITER first wall. Additionally pure tungsten and tungsten alloys, as well as chemical vapor deposition (CVD) W coating are being developed for the aims of ITER divertor application and the demand of domestic fusion devices, and significant progress has been achieved. For plasma facing components (PFCs), high heat flux components used for divertor chamber are being studied according to the development program of the fusion experiment reactor of China. Two reference joining techniques of W/Cu mockups for ITER divertor chamber are being developed, one is mono-block structure by pure copper casting of tungsten surface following by hot iso-static press (HIP), and another is flat structure by brazing. The critical acceptance criteria of high heat flux components are their high heat load performance. A 60 kW Electron-beam Material testing Scenario (EMS-60) has been constructed at Southwestern Institute of Physics (SWIP),which adopts an electron beam welding gun with maximum energy of 150 keV and 150 x 150 mm{sup 2} scanning area by maximum frame rate of 30 kHz. Furthermore, an Engineering Mockup testing Scenario (EMS-400) facility with 400 kW electron-beam melting gun is under construction and will be available by the end of this year. After that, China will have the comprehensive capability of high heat load evaluation from PFMs and small-scale mockups to engineering full scale PFCs. A brazed W/CuCrZr mockup with 25 x 25 x 40 mm{sup 3} in dimension was tested at EMS-60. The heating and cooling time are 10 seconds and 15 seconds, respectively. The experiment

  7. Solar water heating in the hotel industry

    Energy Technology Data Exchange (ETDEWEB)

    Urbanek, A

    1981-01-01

    There is an increasing number of hotels, pensions, guest-houses and boarding-houses whose owners attempt to lower their energy cost - especially for water heating in summer - by installing solar systems. The article presents some examples of buildings in West Germany.

  8. Solar Hot Water Heating by Natural Convection.

    Science.gov (United States)

    Noble, Richard D.

    1983-01-01

    Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)

  9. Diffuse Ceiling Ventilation and the Influence of Room Height and Heat Load Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Vilsbøll, Rasmus W; Liu, Li

    2015-01-01

    Diffuse ceiling (inlet) ventilation is an air distribution system that supplies air from the entire ceiling surface, giving a low supply velocity. The flow pattern in the room is controlled by the heat sources. The system generates high mixing flow and the air velocities in the room are expected...... to be not much influenced by the flow rate to the room but dependent on the heat load. Previous studies have shown that diffuse ceiling ventilation has an ability to remove large heat loads without compromising the indoor climate. However, recent experiments indicate that the maximum accepted heat load decreases...... with a large room height and it decreases in connection with certain heat load distributions. Room geometries and heat load distributions that are optimal for diffuse ceiling ventilation are discussed. A simplified design procedure is introduced....

  10. Oligonol Supplementation Affects Leukocyte and Immune Cell Counts after Heat Loading in Humans

    Directory of Open Access Journals (Sweden)

    Jeong Beom Lee

    2014-06-01

    Full Text Available Oligonol is a low-molecular-weight form of polyphenol and has antioxidant and anti-inflammatory activity, making it a potential promoter of immunity. This study investigates the effects of oligonol supplementation on leukocyte and immune cell counts after heat loading in 19 healthy male volunteers. The participants took a daily dose of 200 mg oligonol or a placebo for 1 week. After a 2-week washout period, the subjects were switched to the other study arm. After each supplement, half-body immersion into hot water was made, and blood was collected. Then, complete and differential blood counts were performed. Flow cytometry was used to enumerate and phenotype lymphocyte subsets. Serum concentrations of interleukin (IL-1β and IL-6 in blood samples were analyzed. Lymphocyte subpopulation variables included counts of total T cells, B cells, and natural killer (NK cells. Oligonol intake attenuated elevations in IL-1β (an 11.1-fold change vs. a 13.9-fold change immediately after heating; a 12.0-fold change vs. a 12.6-fold change 1h after heating and IL-6 (an 8.6-fold change vs. a 9.9-fold change immediately after heating; a 9.1-fold change vs. a 10.5-fold change 1h after heating immediately and 1 h after heating in comparison to those in the placebo group. Oligonol supplementation led to significantly higher numbers of leukocytes (a 30.0% change vs. a 21.5% change immediately after heating; a 13.5% change vs. a 3.5% change 1h after heating and lymphocytes (a 47.3% change vs. a 39.3% change immediately after heating; a 19.08% change vs. a 2.1% change 1h after heating relative to those in the placebo group. Oligonol intake led to larger increases in T cells, B cells, and NK cells at rest (p < 0.05, p < 0.05, and p < 0.001, respectively and immediately after heating (p < 0.001 in comparison to those in the placebo group. In addition, levels of T cells (p < 0.001 and B cells (p < 0.001 were significantly higher 1 h after heating in comparison to those in

  11. Heat Transfer in Directional Water Transport Fabrics

    Directory of Open Access Journals (Sweden)

    Chao Zeng

    2016-10-01

    Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.

  12. Study of heat and hydraulic diffusions in clays under thermal loading

    International Nuclear Information System (INIS)

    Djeran, I.

    1993-01-01

    This study is a cost-sharing research programme on radioactive waste disposal and radioactive waste management. The thermal conductivity of clays is the fundamental parameter which governs the thermal diffusion and the pore pressure of the rock mass under thermal loading. Experiments have been undertaken in a reduced model, respecting representative boundary conditions. They show that the thermal conductivity depends on temperature in an unfavourable sense to the decrease of heat. On the other hand, the outflow of pore water, from the source to the exterior, has a low amplitude. A single model of porous medium allows the observations and illustrates the effects of the variation of conductivity on the behaviour of rock mass. Finally, thanks to the numerical formulations specially developed, we examine the incident of the particularities of proposed models on the thermohydromechanical behaviour of geometrically simple structures subjected to a given thermal loading

  13. Heat load and deuterium plasma effects on SPS and WSP tungsten

    Directory of Open Access Journals (Sweden)

    Vilémová Monika

    2015-06-01

    Full Text Available Tungsten is a prime choice for armor material in future nuclear fusion devices. For the realization of fusion, it is necessary to address issues related to the plasma–armor interactions. In this work, several types of tungsten material were studied, i.e. tungsten prepared by spark plasma sintering (SPS and by water stabilized plasma spraying (WSP technique. An intended surface porosity was created in the samples to model hydrogen/helium bubbles. The samples were subjected to a laser heat loading and a radiation loading of deuterium plasma to simulate edge plasma conditions of a nuclear fusion device (power density of 108 W/cm2 and 107 W/cm2, respectively, in the pulse intervals up to 200 ns. Thermally induced changes in the morphology and the damage to the studied surfaces are described. Possible consequences for the fusion device operation are pointed out.

  14. Tungsten recrystallization and cracking under ITER-relevant heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Budaev, V.P., E-mail: Budaev@mail.ru [NRC «Kurchatov Institute», Akademika Kurchatova pl., Moscow (Russian Federation); Martynenko, Yu.V. [NRC «Kurchatov Institute», Akademika Kurchatova pl., Moscow (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow (Russian Federation); Karpov, A.V.; Belova, N.E. [NRC «Kurchatov Institute», Akademika Kurchatova pl., Moscow (Russian Federation); Zhitlukhin, A.M. [SRC RF TRINITI, Moscow Region (Russian Federation); Klimov, N.S., E-mail: klimov@triniti.ru [SRC RF TRINITI, Moscow Region (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow (Russian Federation); Podkovyrov, V.L.; Barsuk, V.A.; Putrik, A.B.; Yaroshevskaya, A.D. [SRC RF TRINITI, Moscow Region (Russian Federation); Giniyatulin, R.N. [Efremov Institute, St. Petersburg (Russian Federation); Safronov, V.M. [Institution «Project Center ITER», Moscow (Russian Federation); SRC RF TRINITI, Moscow Region (Russian Federation); Khimchenko, L.N. [Institution «Project Center ITER», Moscow (Russian Federation)

    2015-08-15

    The tungsten surface structure was analyzed after the test in the QSPA-T under heat loads relevant to those expected in the ITER during disruptions. Repeated pulses lead to the melting and the resolidification of the tungsten surface layer of ∼50 μm thickness. There is ∼50 μm thickness intermediate layer between the original structure and the resolidified layer. The intermediate layer is recrystallized and has a random grains’ orientation whereas the resolidified layer and basic structure have texture with preferable orientation 〈1 0 0〉 normal to the surface. The cracks which were normal to the surface were observed in the resolidified layer as well as the cracks which were parallel to the surface at the depth up to 300 μm. Such cracks can result in the brittle destruction which is a hazard for the full tungsten divertor of the ITER. The theoretical analysis of the crack formation reasons and a possible consequence for the ITER are given.

  15. Refrigerant charge management in a heat pump water heater

    Science.gov (United States)

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  16. Power load limits of the WENDELSTEIN 7-X target elements-comparison of experimental results and design values for power loads up to the critical heat flux

    International Nuclear Information System (INIS)

    Greuner, H; Boeswirth, B; Boscary, J; Leuprecht, A; Plankensteiner, A

    2007-01-01

    The power load limits of the WENDELSTEIN7-X divertor target elements were experimentally evaluated with heat loads considerably exceeding the expected operating conditions. The water-cooled elements are designed for steady-state heat flux of 10 MW m -2 and to remove a power load up to 100 kW. The elements must allow a limited operation time at 12 MW m -2 steady-state and should not fail for short pulses of up to 15 MW m -2 for cooling conditions in the subcooled nucleate boiling regime. In the framework of the qualification phase, pre-series target elements were loaded up to 24 MW m -2 without loss of CFC tiles. A critical heat flux at the target of 31 MW m -2 was achieved. The paper discusses the results of the tests performed at the high heat flux test facility GLADIS. The experimental results compared to transient nonlinear fine element method (FEM) calculations confirm a high thermal safety margin of the target design sufficient for plasma operation in W7-X

  17. A solar assisted heat-pump dryer and water heater

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Chou, S.K.; Jahangeer, K.A.; Rahman, S.M.A.

    2006-01-01

    Growing concern about the depletion of conventional energy resources has provided impetus for considerable research and development in the area of alternative energy sources. A solar assisted heat pump dryer and water heater found to be one of the solutions while exploring for alternative energy sources. The heat pump system is used for drying and water heating applications with the major share of the energy derived from the sun and the ambient. The solar assisted heat pump dryer and water heater has been designed, fabricated and tested. The performance of the system has been investigated under the meteorological conditions of Singapore. The system consists of a variable speed reciprocating compressor, evaporator-collector, storage tank, air cooled condenser, auxiliary heater, blower, dryer, dehumidifier, and air collector. The drying medium used is air and the drying chamber is configured to carry out batch drying of good grains. A water tank connected in series with the air cooled condenser delivers hot water for domestic applications. The water tank also ensures complete condensation of the refrigerant vapour. A simulation program is developed using Fortran language to evaluate the performance of the system and the influence of different variables. The performance indices considered to evaluate the performance of the system are: Solar Fraction (SF), Coefficient of Performance (COP) and Specific Moisture Extraction Rate (SMER). A COP value of 7.5 for a compressor speed of 1800 rpm was observed. Maximum collector efficiencies of 0.86 and 0.81 have been found for evaporator-collector and air collector, respectively. A value of the SMER of 0.79 has been obtained for a load of 20 kg and a compressor speed of 1200 rpm

  18. Solar heating and hot water system installed at Cherry Hill, New Jersey. [Hotels

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-16

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system went into operation November 8, 1978 and is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are General Electric Company liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  19. Simulation and analysis on thermodynamic performance of surface water source heat pump system

    Institute of Scientific and Technical Information of China (English)

    Nan Lv; Qing Zhang; Zhenqian Chen; Dongsheng Wu

    2017-01-01

    This work established a thermodynamic performance model of a heat pump system containing a heat pump unit model, an air conditioning cooling and heating load calculation model, a heat exchanger model and a water pump performance model based on mass and energy balances. The thermodynamic performance of a surface water source heat pump air conditioning system was simulated and verified by comparing the simulation results to an actual engineering project. In addition, the effects of the surface water temperature, heat exchanger structure and surface water pipeline transportation system on the thermodynamic performance of the heat pump air conditioning system were analyzed. Under the simulated conditions in this paper with a cooling load of 3400 kW, the results showed that a 1 ℃ decrease in the surface water temperature leads to a 2.3 percent increase in the coefficient of performance; furthermore, an additional 100 m of length for the closed-loop surface water heat exchanger tube leads to a 0.08 percent increase in the coefficient of performance. To decrease the system energy consumption, the optimal working point should be specified according to the surface water transportation length.

  20. Heated water jet in coflowing turbulent stream

    International Nuclear Information System (INIS)

    Shirazi, M.A.; McQuivey, R.S.; Keefer, T.N.

    1974-01-01

    Effects of ambient turbulence on temperature and salinity distributions of heated water and neutrally buoyant saltwater jets were studied for a wide range of densimetric jet Froude numbers, jet discharge velocities, and ambient turbulence levels in a 4-ft-wide channel. Estimates of vertical and lateral diffusivity coefficients for heat and for salt were obtained from salinity and temperature distributions taken at several stations downstream of the injection point. Readily usable correlations are presented for plume center-line temperature, plume width, and trajectory. The ambient turbulence affects the gross behavior characteristics of the plume. The effects vary with the initial jet Froude number and the jet to ambient velocity ratio. Heat and salinity are transported similarly and the finite source dimensions and the initial jet characteristics alter the numerical value of the diffusivity

  1. Theory of energy level and its application in water-loop heat pump system

    International Nuclear Information System (INIS)

    Yu, Qi Dong

    2017-01-01

    Highlights: • Novel theory of saving energy and its application in water loop heat pump. • Reverse energy caused by units to water loop and its solution. • New method for determining the energy-saving range of water loop heat pump. • Capacity model of auxiliary heat source and its size for all building types. • Advice for reducing total energy consumption of water loop heat pump. - Abstract: It is a difficult problem to how to determine the reverse energy caused by units to water loop when a water-loop heat pump (WLHP) is in cooling and heating simultaneous mode, which not only has a great impact on energy-saving rate but also decides the use of auxiliary heat source in winter. This paper presents a theory of energy level to improve the research on WLHP system by using the relationship among building, circulating water and units. In this theory, the circulating water replaces building load as a new method to convert the reverse energy into energy change of circulating water and the equation of energy level also is built to determine the energy-saving range of WLHP system and report the capacity model of auxiliary heat source for all building types. An office building with different auxiliary powers is tested to analyze system operation characteristic and the effect of auxiliary heat source on unit and system and the results validate previous conclusions and suggest that an energy balance should be considered between units and auxiliary power to improve overall operation.

  2. On estimation of reliability for pipe lines of heat power plants under cyclic loading

    International Nuclear Information System (INIS)

    Verezemskij, V.G.

    1986-01-01

    One of the possible methods to obtain a quantitative estimate of the reliability for pipe lines of the welded heat power plants under cyclic loading due to heating-cooling and due to vibration is considered. Reliability estimate is carried out for a common case of loading by simultaneous cycles with different amplitudes and loading asymmetry. It is shown that scattering of the breaking number of cycles for the metal of welds may perceptibly decrease reliability of the welded pipe line

  3. Sensitivity Analysis of Depletion Parameters for Heat Load Evaluation of PWR Spent Fuel Storage Pool

    International Nuclear Information System (INIS)

    Kim, In Young; Lee, Un Chul

    2011-01-01

    As necessity of safety re-evaluation for spent fuel storage facility has emphasized after the Fukushima accident, accuracy improvement of heat load evaluation has become more important to acquire reliable thermal-hydraulic evaluation results. As groundwork, parametric and sensitivity analyses of various storage conditions for Kori Unit 4 spent fuel storage pool and spent fuel depletion parameters such as axial burnup effect, operation history, and specific heat are conducted using ORIGEN2 code. According to heat load evaluation and parametric sensitivity analyses, decay heat of last discharged fuel comprises maximum 80.42% of total heat load of storage facility and there is a negative correlation between effect of depletion parameters and cooling period. It is determined that specific heat is most influential parameter and operation history is secondly influential parameter. And decay heat of just discharged fuel is varied from 0.34 to 1.66 times of average value and decay heat of 1 year cooled fuel is varied from 0.55 to 1.37 times of average value in accordance with change of specific power. Namely depletion parameters can cause large variation in decay heat calculation of short-term cooled fuel. Therefore application of real operation data instead of user selection value is needed to improve evaluation accuracy. It is expected that these results could be used to improve accuracy of heat load assessment and evaluate uncertainty of calculated heat load.

  4. Summer Indoor Heat Pump Water Heater Evaluation in a Hot-Dry Climate

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States); Seitzler, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-01

    Heat pump water heaters offer a significant opportunity to improve water heating performance for the over 40% of U.S. households that heat domestic hot water using electric resistance storage water heaters. Numerous field studies have also been completed documenting performance in a variety of climates and applications. More recent evaluation efforts have focused attention on the performance of May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summer space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water energy savings.

  5. Field Monitoring Protocol. Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, C. E. [Mountain Energy Partnership, Longmont, CO (United States)

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  6. Field Monitoring Protocol: Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  7. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-11-22

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  8. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation; Weitzel, E. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation

    2017-03-03

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  9. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-03-01

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  10. Automatic ID heat load generation in ANSYS code

    International Nuclear Information System (INIS)

    Wang, Zhibi.

    1992-01-01

    Detailed power density profiles are critical in the execution of a thermal analysis using a finite element (FE) code such as ANSYS. Unfortunately, as yet there is no easy way to directly input the precise power profiles into ANSYS. A straight-forward way to do this is to hand-calculate the power of each node or element and then type the data into the code. Every time a change is made to the FE model, the data must be recalculated and reentered. One way to solve this problem is to generate a set of discrete data, using another code such as PHOTON2, and curve-fit the data. Using curve-fitted formulae has several disadvantages. It is time consuming because of the need to run a second code for generation of the data, curve-fitting, and doing the data check, etc. Additionally, because there is no generality for different beamlines or different parameters, the above work must be repeated for each case. And, errors in the power profiles due to curve-fitting result in errors in the analysis. To solve the problem once and for all and with the capability to apply to any insertion device (ID), a program for ED power profile was written in ANSYS Parametric Design Language (APDL). This program is implemented as an ANSYS command with input parameters of peak magnetic field, deflection parameter, length of ID, and distance from the source. Once the command is issued, all the heat load will be automatically generated by the code

  11. Demand side management for commercial buildings using an in line heat pump water heating methodology

    International Nuclear Information System (INIS)

    Rankin, Riaan; Rousseau, Pieter G.; Eldik, Martin van

    2004-01-01

    Most of the sanitary hot water used in South African buildings is heated by means of direct electrical resistance heaters. This is one of the major contributors to the undesirably high morning and afternoon peaks imposed on the national electricity supply grid. For this reason, water heating continues to be of concern to the electricity supplier, ESCOM. Previous studies, conducted by the Potchefstroom University for Christian Higher Education in South Africa, indicated that extensive application of the so called inline heat pump water heating methodology in commercial buildings could result in significant demand side management savings to ESKOM. Furthermore, impressive paybacks can be obtained by building owners who choose to implement the design methodology on existing or new systems. Currently, a few examples exist where the design methodology has been successfully implemented. These installations are monitored with a fully web centric monitoring system that allows 24 h access to data from each installation. Based on these preliminary results, a total peak demand reduction of 108 MW can be achieved, which represents 18% of the peak load reduction target set by ESKOM until the year 2015. This represents an avoided cost of approximately MR324 (ZAR) [Int J Energy Res 25(4) (1999) 2000]. Results based on actual data from the monitored installations shows a significant peak demand reduction for each installation. In one installation, a hotel with an occupancy of 220 people, the peak demand contribution of the hot water installation was reduced by 86%, realizing a 36% reduction in peak demand for the whole building. The savings incurred by the building owner also included significant energy consumption savings due to the superior energy efficiency of the heat pump water heater. The combined savings result in a conservatively calculated straight payback period of 12.5 months, with an internal rate of return of 98%. The actual cost of water heating is studied by

  12. Economic Model Predictive Control for Hot Water Based Heating Systems in Smart Buildings

    DEFF Research Database (Denmark)

    Awadelrahman, M. A. Ahmed; Zong, Yi; Li, Hongwei

    2017-01-01

    This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating system consists of an air source heat pump (ASHP) incorporated with a hot water tank...... as active Thermal Energy Storage (TES), where two optimization problems are integrated together to optimize both the ASHP electricity consumption and the building heating consumption utilizing a heat dynamic model of the building. The results show that the proposed EMPC can save the energy cost by load...

  13. Heat Load Sharing in a Capillary Pumped Loop with Multiple Evaporators and Multiple Condensers

    Science.gov (United States)

    Ku, Jentung

    2005-01-01

    This paper describes the heat load sharing function among multiple parallel evaporators in a capillary pumped loop (CPL). In the normal mode of operation, the evaporators cool the instruments by absorbing the waste heat. When an instruments is turned off, the attached evaporator can keep it warm by receiving heat from other evaporators serving the operating instruments. This is referred to as heat load sharing. A theoretical basis of heat load sharing is given first. The fact that the wicks in the powered evaporators will develop capillary pressure to force the generated vapor to flow to cold locations where the pressure is lower leads to the conclusion that heat load sharing is an inherent function of a CPL with multiple evaporators. Heat load sharing has been verified with many CPLs in ground tests. Experimental results of the Capillary Pumped Loop 3 (CAPL 3) Flight Experiment are presented in this paper. Factors that affect the amount of heat being shared are discussed. Some constraints of heat load sharing are also addressed.

  14. Shallow-water loading tides in Japan from superconducting gravimetry

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Hoyer, J.L.

    2004-01-01

    energetic constituents in the tide gauge observations are also seen in the gravity observations due to their loading effects on the deformation of the Earth. Even though the shallow-water tides at the Japanese east coast have an amplitude of only a few millimetres. they are still able to Generate a loading...... signal at gravity sites located several hundred kilometres inland. In particular, the S-3, S-4 and S-5 solar tides occur in both gravity and tide gauge observations. It is indicated that in other shelf regions with large shallow water tides, the shallow water loading signals account for a significant...

  15. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  16. Application of an intermediate LWR for electricity production and hot-water district heating

    International Nuclear Information System (INIS)

    1983-05-01

    The objective of the study is to evaluate the technical and economic feasibility of a 400 MWe Consolidated Nuclear Steam System (CNSS) for supplying district heat to the Minneapolis/St. Paul area. A total of three CNSS reactor sites, located various distances from the Minneapolis-St. Paul area load center, are evaluated. The distance from the load center is determined by the credited safety features of the plant design. Each site is also evaluated for three different hot water supply/return temperatures providing a total of nine CNSS study cases. The cost of district heat delivered to the load center is determined for each case

  17. Integrating wind power using intelligent electric water heating

    International Nuclear Information System (INIS)

    Fitzgerald, Niall; Foley, Aoife M.; McKeogh, Eamon

    2012-01-01

    Dwindling fossil fuel resources and pressures to reduce greenhouse gas emissions will result in a more diverse range of generation portfolios for future electricity systems. Irrespective of the portfolio mix the overarching requirement for all electricity suppliers and system operators is to instantaneously meet demand, to operate to standards and reduce greenhouse gas emissions. Therefore all electricity market participants will ultimately need to use a variety of tools to balance the power system. Thus the role of demand side management with energy storage will be paramount to integrate future diverse generation portfolios. Electric water heating has been studied previously, particularly at the domestic level to provide load control, peak shave and to benefit end-users financially with lower bills, particularly in vertically integrated monopolies. In this paper a number of continuous direct load control demand response based electric water heating algorithms are modelled to test the effectiveness of wholesale electricity market signals to study the system benefits. The results are compared and contrasted to determine which control algorithm showed the best potential for energy savings, system marginal price savings and wind integration.

  18. Analyses of divertor high heat-flux components on thermal and electromagnetic loads

    Energy Technology Data Exchange (ETDEWEB)

    Araki, M.; Kitamura, K.; Suzuki, S. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Urata, K. [Mitsubishi Geavy Industries Ltd., 2-5-1, Marunouchi,Chiyoda-ku, Tokyo 100 (Japan)

    1998-09-01

    In the International Thermonuclear Experimental Reactor (ITER), the divertor high heat-flux components are subjected not to only severe heat and particle loads, but also to large electromagnetic loads during reactor operation. A great deal of R and D has been carried out throughout the world with regard to the design of robust high heat-flux components. Based on R and D results, small and intermediate size mock-ups constructed from various armor tile materials have been successfully developed with respect to a thermomechanical point of view. However, little analysis has been carried out with regard to the elastic stresses induced with in the high heat-flux components via the electromagnetic loads during a plasma disruption. Furthermore, past research has only considered thermomechanical and electromagnetic loadings separately and uncoupled. Therefore, a systematic analysis of the combined effects of thermomechanical and electromagnetic loadings has been performed, with the analytical results assessed by ASME section 3 evaluation code. (orig.) 20 refs.

  19. Analyses of divertor high heat-flux components on thermal and electromagnetic loads

    International Nuclear Information System (INIS)

    Araki, M.; Kitamura, K.; Suzuki, S.

    1998-01-01

    In the International Thermonuclear Experimental Reactor (ITER), the divertor high heat-flux components are subjected not to only severe heat and particle loads, but also to large electromagnetic loads during reactor operation. A great deal of R and D has been carried out throughout the world with regard to the design of robust high heat-flux components. Based on R and D results, small and intermediate size mock-ups constructed from various armor tile materials have been successfully developed with respect to a thermomechanical point of view. However, little analysis has been carried out with regard to the elastic stresses induced with in the high heat-flux components via the electromagnetic loads during a plasma disruption. Furthermore, past research has only considered thermomechanical and electromagnetic loadings separately and uncoupled. Therefore, a systematic analysis of the combined effects of thermomechanical and electromagnetic loadings has been performed, with the analytical results assessed by ASME section 3 evaluation code. (orig.)

  20. Integration of space heating and hot water supply in low temperature district heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2016-01-01

    District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating...... is required by the consumer. We study conventional district heating at different temperatures and compare the energy and exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature district heating. This includes direct...

  1. Environmental Monitoring, Water Quality - Total Maximum Daily Load (TMDL)

    Data.gov (United States)

    NSGIC Education | GIS Inventory — The Clean Water Act Section 303(d) establishes the Total Maximum Daily Load (TMDL) program. The purpose of the TMDL program is to identify sources of pollution and...

  2. Design and heat load analysis of support structure of CR superconducting dipole magnet for FAIR

    International Nuclear Information System (INIS)

    Zhu Yinfeng; Wu Songtao; Wu Weiyue; Xu Houchang; Liu Changle

    2008-01-01

    In order to meet the requirement of the Collector ring (CR) dipole superconducting magnet of FAIR in the process of operation, meanwhile, and to ensure the heat loads coming from the support structures to be lower than the design demands, the 3D models of support structures have been constructed with CATIA, then the calculation of low-temperature heat-load and the structure analysis have been done with ANSYS, the support structure material, 316LN+G10, is decided according to the heat-load calculation and the structure optimization, these results are necessary for manufacturing the formal magnet. (authors)

  3. Heating load of buildings. Room heat from decentralized renewable electricity; Heizlast von Gebaeuden. Raumwaerme aus dezentral erneuerbarem Strom

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Frank

    2013-10-15

    If one would like to get the heating load of a building by using peripheral generated electrical energy from photovoltaics or small wind power, one must deal with both the specific building, as well as the heating load, the heating temperature limit and the differentiation of specific heating period for the building. Here, a ground source heat pump with an intelligent energy storage system seems to be the first choice. [German] Moechte man mit dezentral erzeugter elektrischer Energie aus Photovoltaik oder Kleinst-Windkraft die Heizlast eines Gebaeudes besorgen, muss man sich sowohl mit dem spezifischen Gebaeude, als auch mit der Heizlast, der Heizgrenztemperatur und der Differenzierung der spezifischen Heizperiode fuer das Gebaeude auseinandersetzen. Dabei scheint eine erdgekoppelte Waermepumpe mit einem intelligenten Speichersystem die erste Wahl.

  4. Greenhouse heating with a fresh water floating collector solar pond

    International Nuclear Information System (INIS)

    Arbel, A.; Sokolov, M.

    1991-01-01

    The fresh water floating collector solar pond was investigated both experimentally and theoretically in a previous work, and it is now matched, by simulation, with the heat load requirements of a greenhouse. Results of the simulation indicate that such a pond is a potential energy source for greenhouse heating. This is especially true when the material properties are such that solar absorption and storage are enhanced. This paper reports that to demonstrate this point, three sets of collectors constructed with materials of different physical (radiation) properties were tested. One set is constructed of common materials which are readily available and are normally used as covers for greenhouses. The second set made of improved materials which are also available but have a smaller long-wave transmittance. The last set made of ideal material which additionally possesses selective radiation absorption properties. Collectors made of ideal materials make a superior solar pond; thus, manufacturing films with improved properties should become a worthwhile challenge for the agricultural polyethylene-films industry. Preliminary economic studies indicate that even with the low oil (<$20/Bbl) prices which exist between 1986-1989, the fresh water floating collectors solar pond provides an economically attractive alternative to the conventional oil-burning heating system. This is especially true in mild climate areas and when the large initial investment is justified by long-term greenhouse utilization planning

  5. Identification of critical equipment and determination of operational limits in helium refrigerators under pulsed heat load

    Science.gov (United States)

    Dutta, Rohan; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2014-01-01

    Large-scale helium refrigerators are subjected to pulsed heat load from tokamaks. As these plants are designed for constant heat loads, operation under such varying load may lead to instability in plants thereby tripping the operation of different equipment. To understand the behavior of the plant subjected to pulsed heat load, an existing plant of 120 W at 4.2 K and another large-scale plant of 18 kW at 4.2 K have been analyzed using a commercial process simulator Aspen Hysys®. A similar heat load characteristic has been applied in both quasi steady state and dynamic analysis to determine critical stages and equipment of these plants from operational point of view. It has been found that the coldest part of both the cycles consisting JT-stage and its preceding reverse Brayton stage are the most affected stages of the cycles. Further analysis of the above stages and constituting equipment revealed limits of operation with respect to variation of return stream flow rate resulted from such heat load variations. The observations on the outcome of the analysis can be used for devising techniques for steady operation of the plants subjected to pulsed heat load.

  6. The effect of load factor on fission product decay heat from discharged reactor fuel

    International Nuclear Information System (INIS)

    Davies, B.S.J.

    1978-07-01

    A sum-of-exponentials expression representing the decay heat power following a burst thermal irradiation of 235 U has been used to investigate the effect of load factor during irradiation on subsequent decay heat production. A sequence of random numbers was used to indicate reactor 'on' and 'off' periods for irradiations which continued for a total of 1500 days at power and were followed by 100 days cooling. It was found that for these conditions decay heat is almost proportional to load factor. Estimates of decay heat uncertainty arising from the random irradiation pattern are also given. (author)

  7. Simulation of hybrid ground-coupled heat pump with domestic hot water heating systems using HVACSIM+

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ping; Yang, Hongxing [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Spitler, Jeffrey D. [School of Mechanical Engineering, Oklahoma State University (United States); Fang, Zhaohong [Ground Source Heat Pump Research Center, Shandong University of Architecture and Engineering, Jinan (China)

    2008-07-01

    A hybrid ground-coupled heat pump (HGCHP) with domestic hot water (DHW) supply system has been proposed in this paper for space cooling/heating and DHW supply for residential buildings in hot-climate areas. A simulation model for this hybrid system is established within the HVACSIM+ environment. A sample system, applied for a small residential apartment located in Hong Kong, is hourly simulated in a typical meteorological year. The conventional GCHP system and an electric heater for DHW supply are also modeled and simulated on an hourly basis within the HVACSIM+ for comparison purpose. The results obtained from this case study show that the HGCHP system can effectively alleviate the imbalanced loads of the ground heat exchanger (GHE) and can offer almost 95% DHW demand. The energy saving for DHW heating is about 70% compared with an electric heater. This proposed scheme, i.e. the HGCHP with DHW supply, is suitable to residential buildings in hot-climate areas, such as in Hong Kong. (author)

  8. On the development of an innovative gas-fired heating appliance based on a zeolite-water adsorption heat pump; system description and seasonal gas utilization efficiency

    International Nuclear Information System (INIS)

    Dawoud, Belal

    2014-01-01

    The main objective of this work is to introduce an innovative hybrid heating appliance incorporating a gas condensing boiler and a zeolite-water adsorption heat pump. The condensing boiler is applied to drive the zeolite-water heat pump for the heating base-load and to assist the heat pump in the so called “mixed operation” mode, in which both the heat pump and the condensing boiler are working in series to cover medium heating demands. Peak heating demands are covered by the condensing boiler in the so called “direct heating” mode. The three operation modes of the hybrid heating appliance have been technically described. In addition, the laboratory test conditions for estimating the seasonal heating performance according to the German Guideline VDI 4650-2 have been introduced. For both heating systems 35/28 °C and 55/45 °C, which represent the typical operating conditions of floor and high temperature radiating heating systems in Europe, seasonal heating gas utilization efficiencies of 1.34 and 1.26 have been measured, respectively with a ground heat source. In two field test installations in one-family houses in Germany, the introduced heating appliance showed 27% more seasonal gas utilization efficiency for heating and domestic hot water production, which is equivalent to a CO 2 -emission reduction of 20% compared to the gas condensing boiler technology

  9. Surface morphology changes of tungsten exposed to high heat loading with mixed hydrogen/helium beams

    International Nuclear Information System (INIS)

    Greuner, H.; Maier, H.; Balden, M.; Böswirth, B.; Elgeti, S.; Schmid, K.; Schwarz-Selinger, T.

    2014-01-01

    We discuss the surface morphology modification of W samples observed after simultaneous heat and particle loading using a mixed H/He particle beam with a He concentration of 1 at.%. The applied heat flux of 10 MW/m 2 is representative for the normal operation of the divertor of DEMO or a power plant. The long pulse high heat flux experiments on actively water-cooled W samples were performed in the GLADIS facility at surface temperatures between 600 °C and 2000 °C. This allows together with the applied total fluences between 1 × 10 24 m −2 and 1 × 10 26 m −2 the temperature- and fluence dependent study of the growing nano-structures. We analyse in detail the surface modifications up to a depth of several μm by scanning electron microscopy combined with focussed ion beam preparation. The hydrogen and helium release of the samples is analysed by long term thermal desorption spectroscopy and compared with the prediction of a diffusion trapping model

  10. Effects of laboratory heating, cyclic pore pressure, and cyclic loading on fracture properties of asphalt mixture.

    Science.gov (United States)

    2012-04-01

    This study involved the identification and evaluation of laboratory conditioning methods and testing protocols considering heat oxidation, moisture, and load that more effectively simulate asphalt mixture aging in the field, and thereby help to prope...

  11. Process for loading latent heat stores. Verfahren zur Beschickung von Latentwaermespeichern

    Energy Technology Data Exchange (ETDEWEB)

    Wasel-Nielen, J.; Merkenich, K.; Gehrig, O.; Sommer, K.

    1981-06-11

    The use of salt hydrate melting in the loading process is not favourable from the technical and energy point of view. According to the invention, a saturated solution is filled into the store at the required phase conversion point. This can be done by neutralization (e.g. a reaction between H/sub 3/PO/sub 4//NAOH/H/sub 2/O in the mol ratio of 1/2/10 gives Na/sub 2/HPO/sub 4/.12H/sub 2/O corresponding to Na/sub 2/SO/sub 4/.10H/sub 2/O), or by conversion of acid/basic salts with bases/acids respectively (e.g. Na/sub 3/PO/sub 4//H/sub 3/PO/sub 4//H/sub 2/O in the ratio 2/1/36 to Na/sub 2/HPO/sub 4/.12H/sub 2/O, analogous to K/sub 3/PO/sub 4/.7H/sub 2/O, KF.4H/sub 2/O or CaCl/sub 2/.6H/sub 2/O). During the process one must ensure accurate dosing and good mixing. A saturated solution is also available by dissolving salts free of water/or with little water in appropriate quantities of water below the melting point of the required hydrate. Such systems are used where the phase change heat exceeds the heat capacity of the water at this temperature and the hydrates should contain at least three crystal water molecules more than the nearest hydrate.

  12. Effect of heat loads on the plasma facing components of demo

    Energy Technology Data Exchange (ETDEWEB)

    Igitkhanov, Yu., E-mail: juri.igitkhanov@partner.kit.edu [ITEP, Karlsruhe Institute of Technology (Germany); Fetzer, R. [IHM, Karlsruhe Institute of Technology (Germany); Bazylev, B. [INR, Karlsruhe Institute of Technology (Germany)

    2016-11-01

    Highlights: • Under the DEMO1 stationary operation the nominal power fluxes along the magnetic field at the FW blanket modules is expected about 50 MW/m{sup 2}. • In the current design and averaged incident angle about 3–4.5° (similar to ITER) the engineering power load to the FW is expected within 2.5÷3.9 MW/m{sup 2}. • In the case of the unmitigated Type I ELMs unavoidable in the higher confinement H-mode of operation energy load per ELM is about 20 MJ/m{sup 2} along the field line, arriving at a frequency of 0.8 Hz with deposition time of 0.6 ms per each ELM. - Abstract: In this paper we analyse a thermo-hydraulic performance of the first wall blanket module during the stationary DEMO operation with the edge localized mode (ELM). Heat loads are estimated based on scaling arguments and predictions from the peeling-ballooning ELM model. Effect of parallel heat fluxes intersecting with the first wall panels and avoidance of overheating by inclination of the panels are considered. The material temperatures of the W/EUROFER sandwich type module with water cooling stainless steel tube and Cu alloy compliance embedded into EUROFER is calculated by using the MEMOS code. The calculations were carried out indicating the required geometric parameters as well as the cooling conditions which allow keeping materials temperatures within allowable engineering limits. Effect of inclination of the first wall plates to avoid the misalignment problems is considered.

  13. Investigation of a heat storage for a solar heating system for combined space heating and domestic hot water supply for homeowner´s association "Bakken"

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1998-01-01

    A heat storage for a solar heating system for combined space heating and domestic hot water supply was tested in a laboratory test facility.The heat storage consist of a mantle tank with water for the heating system and of a hot water tank, which by means of thermosyphoning is heated by the water...

  14. Hydraulic loading, stability and water quality of Nakivubo wetland ...

    African Journals Online (AJOL)

    Nakivubo wetland, which has performed tertiary water treatment for Kampala city for the past 40 years, is ecologically stressed by agricultural and infrastructural developments. Field studies were carried out to assess the hydraulic loading, pollution profile, stability and water quality of this wetland. The upper and lower ...

  15. Influence of Hudiara Drain Water Irrigation on Trace Elements Load ...

    African Journals Online (AJOL)

    ... Drain Water Irrigation on Trace Elements Load In Soil And Uptake By Vegetables. ... This polluted water not only contains organic matter and crop nutrients but also ... Plant samples were collected at maturity from all the monitoring points. ... (DO), Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) ...

  16. Data-Driven Machine-Learning Model in District Heating System for Heat Load Prediction: A Comparison Study

    Directory of Open Access Journals (Sweden)

    Fisnik Dalipi

    2016-01-01

    Full Text Available We present our data-driven supervised machine-learning (ML model to predict heat load for buildings in a district heating system (DHS. Even though ML has been used as an approach to heat load prediction in literature, it is hard to select an approach that will qualify as a solution for our case as existing solutions are quite problem specific. For that reason, we compared and evaluated three ML algorithms within a framework on operational data from a DH system in order to generate the required prediction model. The algorithms examined are Support Vector Regression (SVR, Partial Least Square (PLS, and random forest (RF. We use the data collected from buildings at several locations for a period of 29 weeks. Concerning the accuracy of predicting the heat load, we evaluate the performance of the proposed algorithms using mean absolute error (MAE, mean absolute percentage error (MAPE, and correlation coefficient. In order to determine which algorithm had the best accuracy, we conducted performance comparison among these ML algorithms. The comparison of the algorithms indicates that, for DH heat load prediction, SVR method presented in this paper is the most efficient one out of the three also compared to other methods found in the literature.

  17. Research of the heat exchanging processes running in the heating and hot water supply loops of the coil heat exchangers

    Directory of Open Access Journals (Sweden)

    Ірина Геннадіївна Шитікова

    2016-11-01

    Full Text Available The fuel-energy complex research has made it possible to disclose a huge power-saving potential in the municipal heat-and-power engineering. Power-and-resource-saving units and systems are becoming extremely urgent because of the power engineering crisis expansion. The self-adjusting heat supply system from the individual heating points with the heat-accumulating units and coil heat exchangers for independent heating and water supply systems has been examined. Coil heat exchangers are used in municipal heating for heat transfer (e.g. geothermal waters for the independent mains of the heating and hot water supply systems. The heat engineering calculation of the heating and accumulating unit with the coil heat exchanger for independent heat supply systems from individual heater was performed and experimental data were received at the experimental industrial unit under the laboratory conditions. The peculiarities of the flows in the intertubular space, their influence on the heat exchange and temperatures of the first and intermediate mains have been shown. It is important to know the processes running inside the apparatus to be able to improve the technical characteristics of the three-loop coil heat exchanger. The task solution will make it possible to save the materials consumption for the three-loop coil heat exchangers in the future

  18. Online short-term forecast of greenhouse heat load using a weather forecast service

    DEFF Research Database (Denmark)

    Vogler-Finck, P. J.C.; Bacher, P.; Madsen, Henrik

    2017-01-01

    the performance of recursive least squares for predicting the heat load of individual greenhouses in an online manner. Predictor inputs (weekly curves terms and weather forecast inputs) are selected in an automated manner using a forward selection approach. Historical load measurements from 5 Danish greenhouses...... mean square error of the prediction was within 8–20% of the peak load for the set of consumers over the 8 months period considered....

  19. Engineering Analysis of Thermal-Load Components in the Process of Heating of Pet Preforms

    Science.gov (United States)

    Sidorov, D. É.; Kolosov, A. E.; Kazak, I. A.; Pogorelyi, A. V.

    2018-05-01

    The influence of thermal-load components (convection, collimated and uncollimated components of infrared radiation) in the process of production of PET packaging on the heating of PET preforms has been assessed. It has been established that the collimated component of infrared radiation ensures most (up to 70%) of the thermal energy in the process of heating of a PET preform.

  20. Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods

    NARCIS (Netherlands)

    Suryanarayana, Gowri; Lago Garcia, J.; Geysen, Davy; Aleksiejuk, Piotr; Johansson, Christian

    2018-01-01

    Recent research has seen several forecasting methods being applied for heat load forecasting of district heating networks. This paper presents two methods that gain significant improvements compared to the previous works. First, an automated way of handling non-linear dependencies in linear

  1. At what level of heat load are age-related impairments in the ability to dissipate heat evident in females?

    Directory of Open Access Journals (Sweden)

    Jill M Stapleton

    Full Text Available Studies have reported that older females have impaired heat loss responses during work in the heat compared to young females. However, it remains unclear at what level of heat stress these differences occur. Therefore, we examined whole-body heat loss [evaporative (HE and dry heat loss, via direct calorimetry] and changes in body heat storage (∆Hb, via direct and indirect calorimetry in 10 young (23±4 years and 10 older (58±5 years females matched for body surface area and aerobic fitness (VO2peak during three 30-min exercise bouts performed at incremental rates of metabolic heat production of 250 (Ex1, 325 (Ex2 and 400 (Ex3 W in the heat (40°C, 15% relative humidity. Exercise bouts were separated by 15 min of recovery. Since dry heat gain was similar between young and older females during exercise (p=0.52 and recovery (p=0.42, differences in whole-body heat loss were solely due to HE. Our results show that older females had a significantly lower HE at the end of Ex2 (young: 383±34 W; older: 343±39 W, p=0.04 and Ex3 (young: 437±36 W; older: 389±29 W, p=0.008, however no difference was measured at the end of Ex1 (p=0.24. Also, the magnitude of difference in the maximal level of HE achieved between the young and older females became greater with increasing heat loads (Ex1=10.2%, Ex2=11.6% and Ex3=12.4%. Furthermore, a significantly greater ∆Hb was measured for all heat loads for the older females (Ex1: 178±44 kJ; Ex2: 151±38 kJ; Ex3: 216±25 kJ, p=0.002 relative to the younger females (Ex1: 127±35 kJ; Ex2: 96±45 kJ; Ex3: 146±46 kJ. In contrast, no differences in HE or ∆Hb were observed during recovery (p>0.05. We show that older habitually active females have an impaired capacity to dissipate heat compared to young females during exercise-induced heat loads of ≥325 W when performed in the heat.

  2. A concept of passive safety pressurized water reactor system with inherent matching nature of core heat generation and heat removal

    International Nuclear Information System (INIS)

    Murao, Yoshio; Araya, Fumimasa; Iwamura, Takamichi; Okumura, Keisuke

    1995-01-01

    The reduction of manpower in operation and maintenance by simplification of the system are essential to improve the safety and the economy of future light water reactors. At the Japan Atomic Energy Research Institute (JAERI), a concept of a simplified passive safety reactor system JPSR was developed for this purpose and in the concept minimization of developing work and conservation of scale-up capability in design were considered. The inherent matching nature of core heat generation and heat removal rate is introduced by the core with high reactivity coefficient for moderator density and low reactivity coefficient for fuel temperature (Doppler effect) and once-through steam generators (SGs). This nature makes the nuclear steam supply system physically-slave for the steam and energy conversion system by controlling feed water mass flow rate. The nature can be obtained by eliminating chemical shim and adopting in-vessel control rod drive mechanism (CRDM) units and a low power density core. In order to simplify the system, a large pressurizer, canned pumps, passive residual heat removal systems with air coolers as a final heat sink and passive coolant injection system are adopted and the functions of volume and boron concentration control and seal water supply are eliminated from the chemical and volume control system (CVCS). The emergency diesel generators and auxiliary component cooling system of 'safety class' for transferring heat to sea water as a final heat sink in emergency are also eliminated. All of systems are built in the containment except for the air coolers of the passive residual heat removal system. The analysis of the system revealed that the primary coolant expansion in 100% load reduction in 60 s can be mitigated in the pressurizer without actuating the pressure relief valves and the pressure in 50% load change in 30 s does not exceed the maximum allowable pressure in accidental conditions in regardless of pressure regulation. (author)

  3. Direct contact heat transfer characteristics between melting alloy and water

    International Nuclear Information System (INIS)

    Kinoshita, Izumi; Nishi, Yoshihisa; Furuya, Masahiro

    1995-01-01

    As a candidate for an innovative steam generator for fast breeder reactors, a heat exchanger with direct contact heat transfer between melting alloy and water was proposed. The evaluation of heat transfer characteristics of this heat exchanger is one of the research subjects for the design and development of the steam generator. In this study, the effect of the pressure on heat transfer characteristics and the required degree of superheating of melting alloy above water saturation temperature are evaluated during the direct contact heat transfer experiment by injecting water into Wood's alloy. In the experiment, the pressure, the temperature of the Wood's alloy, the flow rate of feed water, and the depth of the feed water injection point are varied as parameters. As a result of the experiment, the product of the degree of Wood's alloy superheating above water saturation temperature and the depth of the feed water injection point is constant for each pressure. This constant increases as the pressure rises. (author)

  4. Ferrocyanide safety program: Heat load and thermal characteristics determination for selected tanks

    International Nuclear Information System (INIS)

    McLaren, J.M.; Cash, R.J.

    1993-11-01

    An analysis was conducted to determine the heat loads, conductivities, and heat distributions of waste tanks 241-BY-105, -106, -108, -110, -111, and 241-C-109 at the Hanford Site. The heat distribution of tank 241-BY-111 was determined to be homogeneously distributed throughout the sludge contained in the tank. All of the other tanks, with the exception of 241-C-109, showed evidence of a heat-producing layer at the bottom of the tanks. No evidence of a heat-producing layer in a position above the bottom was found. The thermal conductivities were determined to be within the ranges found by previous laboratory and computer analysis. The heat loads of the tanks were found to be below 2.81 kW (9,600 Btu/hr)

  5. Assessing heat load in drylot dairy cattle: Refining on-farm sampling methodology.

    Science.gov (United States)

    Tresoldi, Grazyne; Schütz, Karin E; Tucker, Cassandra B

    2016-11-01

    Identifying dairy cattle experiencing heat stress and adopting appropriate mitigation strategies can improve welfare and profitability. However, little is known about how cattle use heat abatement resources (shade, sprayed water) on drylot dairies. It is also unclear how often we need to observe animals to measure high heat load, or the relevance of specific aspects of this response, particularly in terms of panting. Our objectives were to describe and determine sampling intervals to measure cattle use of heat abatement resources, respiration rate (RR) and panting characteristics (drooling, open mouth, protruding tongue), and to evaluate the relationship between the latter 2. High-producing cows were chosen from 4 drylots (8 cows/dairy, n=32) and observed for at least 5.9h (1000 to 1800h, excluding milking) when air temperature, humidity, and the combined index averaged 33°C, 30%, and 79, respectively. Use of heat abatement resources was recorded continuously; RR and the presence and absence of each panting characteristic were recorded every 5min. From the observed values, estimates using the specified sub-sampling intervals were calculated for heat abatement resource use (1, 5, 10, 15, 20, 30, 60, 90, and 120min), and for RR and panting (10, 15, 20, 30, 60, 90, and 120min). Estimates and observed values were compared using linear regression. Sampling intervals were considered accurate if they met 3 criteria: R 2 ≥0.9, intercept=0, and slope=1. The relationship between RR and each panting characteristic was analyzed using mixed models. Cows used shade (at corral or over feed bunk) and feed bunk area (where water was sprayed) for about 90 and 50% of the observed time, respectively, and used areas with no cooling for 2min at a time, on average. Cows exhibited drooling (34±4% of observations) more often than open mouth and protruding tongue (11±3 and 8±3% of observations, respectively). Respiration rate varied depending on the presence of panting (with vs

  6. Combined impact of transient heat loads and steady-state plasma exposure on tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Alexander, E-mail: A.Huber@fz-juelich.de [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Wirtz, Marius; Sergienko, Gennady; Steudel, Isabel [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Arakcheev, Aleksey; Burdakov, Aleksander [Budker Institute of Nuclear Physics (BINP), Novosibirsk 630090 (Russian Federation); Esser, Hans Guenter; Freisinger, Michaele; Kreter, Arkadi; Linke, Jochen; Linsmeier, Christian; Mertens, Philippe; Möller, Sören; Philipps, Volker; Pintsuk, Gerald; Reinhart, Michael; Schweer, Bernd [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Shoshin, Andrey [Budker Institute of Nuclear Physics (BINP), Novosibirsk 630090 (Russian Federation); Terra, Alexis; Unterberg, Bernhard [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany)

    2015-10-15

    Highlights: • W-samples under combined loading conditions show a lower damage threshold. • The pre-loaded W-samples show a lower damage threshold due to the D- embrittlement. • Pronounced increase of the D retention has been observed during the combined loads. • Enhanced blister formation has been observed under combined loading conditions. - Abstract: Cracking thresholds and crack patterns in tungsten targets have been studied in recent experiments after repetitive ITER-like ELM heat pulses in combination with plasma exposure in PSI-2 (Γ{sub target} = 2.5–4.0 × 10{sup 21} m{sup −2} s{sup −1}, ion energy on surface E{sub ion} = 60 eV, T{sub e} ≈ 10 eV). The heat pulses were simulated by laser irradiation. A Nd:YAG laser with energy per pulse of up to 32 J and a duration of 1 ms at the fundamental wavelength (λ = 1064 nm, repetition rate 0.5 Hz) was used to irradiate ITER-grade W samples with repetitive heat loads. In contrast to pure thermal exposure with a laser beam where the damage threshold under pure heat loads for ITER-grade W lies between 0.38 and 0.76 GW/m{sup 2}, the experiments with pre-loaded W-samples as well as under combined loading conditions show a lower damage threshold of 0.3 GW/m{sup 2}. This is probably due to deuterium embrittlement and/or a higher defect concentration in a region close to the surface due to supersaturation with deuterium. A pronounced increase in the D retention (more than a factor of five) has been observed during the combined transient heat loads and plasma exposure. Enhanced blister formation has been observed under these combined loading conditions.

  7. Combined impact of transient heat loads and steady-state plasma exposure on tungsten

    International Nuclear Information System (INIS)

    Huber, Alexander; Wirtz, Marius; Sergienko, Gennady; Steudel, Isabel; Arakcheev, Aleksey; Burdakov, Aleksander; Esser, Hans Guenter; Freisinger, Michaele; Kreter, Arkadi; Linke, Jochen; Linsmeier, Christian; Mertens, Philippe; Möller, Sören; Philipps, Volker; Pintsuk, Gerald; Reinhart, Michael; Schweer, Bernd; Shoshin, Andrey; Terra, Alexis; Unterberg, Bernhard

    2015-01-01

    Highlights: • W-samples under combined loading conditions show a lower damage threshold. • The pre-loaded W-samples show a lower damage threshold due to the D- embrittlement. • Pronounced increase of the D retention has been observed during the combined loads. • Enhanced blister formation has been observed under combined loading conditions. - Abstract: Cracking thresholds and crack patterns in tungsten targets have been studied in recent experiments after repetitive ITER-like ELM heat pulses in combination with plasma exposure in PSI-2 (Γ_t_a_r_g_e_t = 2.5–4.0 × 10"2"1 m"−"2 s"−"1, ion energy on surface E_i_o_n = 60 eV, T_e ≈ 10 eV). The heat pulses were simulated by laser irradiation. A Nd:YAG laser with energy per pulse of up to 32 J and a duration of 1 ms at the fundamental wavelength (λ = 1064 nm, repetition rate 0.5 Hz) was used to irradiate ITER-grade W samples with repetitive heat loads. In contrast to pure thermal exposure with a laser beam where the damage threshold under pure heat loads for ITER-grade W lies between 0.38 and 0.76 GW/m"2, the experiments with pre-loaded W-samples as well as under combined loading conditions show a lower damage threshold of 0.3 GW/m"2. This is probably due to deuterium embrittlement and/or a higher defect concentration in a region close to the surface due to supersaturation with deuterium. A pronounced increase in the D retention (more than a factor of five) has been observed during the combined transient heat loads and plasma exposure. Enhanced blister formation has been observed under these combined loading conditions.

  8. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  9. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1998-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  10. Domestic Hot Water Production with Ground Source Heat Pump in Apartment Buildings

    Directory of Open Access Journals (Sweden)

    Jukka Yrjölä

    2015-08-01

    Full Text Available Producing domestic hot water (DHW with a ground source heat pump (GSHP is challenging due to the high temperature (HT of DHW. There are many studies proving the better performance of cascade heat pumps compared to single-stage heat pumps when the difference between the condensing and the evaporation temperature is large. In this system approach study, different GSHP arrangements are described and computationally compared. A two-stage heat pump arrangement is introduced in which water tanks of the heating system are utilized for warming up the DHW in two stages. It is shown that the electricity consumption with this two-stage system is approximately 31% less than with the single-stage heat pump and 12% less than with the cascade system. Further, both low temperature (LT and HT heat pumps can run alone, which is not common in cascade or other two-stage heat pumps. This is advantageous because the high loads of the space heating and DHW production are not simultaneous. Proper insulation of the DHW and recirculation pipe network is essential, and drying towel rails or other heating coils should be avoided when aiming for a high efficiency. The refrigerants in the calculations are R407C for the LT heat pump and R134a for the HT heat pump. Investment costs are excluded from calculations.

  11. An expert system for pressurized water reactor load maneuvers

    International Nuclear Information System (INIS)

    Chaung Lin; Jungping Chen; Yihjiunn Lin; Lianshin Lin

    1993-01-01

    Restartup after reactor shutdown and load-follow operations are the important tasks in operating pressurized water reactors. Generally, the most efficient method is to apply constant axial offset control (CAOC) strategy during load maneuvers. An expert system using CAOC strategy, fuzzy reasoning, a two-node core model, and operational constraints has been developed. The computation time is so short that this system, which leads to an approximate closed-loop control, could be useful for on-site calculation

  12. Thermoregulatory responses to acute heat loads in rats following spontaneous running.

    Science.gov (United States)

    Sugimoto, N; Shido, O; Sakurada, S; Nagasaka, T

    1999-02-01

    Earlier studies showed that spontaneous exercise training in rodents shifted their core temperature and thermoeffector thresholds to high levels. The present study investigated heat loss and heat production responses to acute heat loads of exercise-trained rats. The exercise-trained rats were allowed to run in a running wheel freely for 6 months, while the sedentary controls were denied access to the wheel during the same period. Then, they were loosely restrained and put in a direct calorimeter. After thermal equilibrium had been attained, they were warmed for 30 min with an intraperitoneal electric heater (internal heating). At least 2 h later, the rats were externally warmed for 90 min by raising the ambient temperature from 24 to 38C (external warming). Hypothalamic temperature (Thy), evaporative and nonevaporative heat loss (R+C+K) and heat production were measured. Internal and external heating significantly increased Thy. During internal heating, the magnitude of the increase in Thy was significantly smaller and the amount of increase in (R+C+K) was significantly greater in the exercise-trained rats than in the controls. The slope showing the relationship between Thy and (R+C+K) in the trained rats was significantly steeper than that in the controls. During external warming, the magnitude of increase in Thy of the exercise-trained rats was significantly greater than that of the controls. The slope showing the relationship between Thy and (R+C+K) in the trained rats was not different from that in the controls. Changes in evaporative heat loss and heat production during the two types of heat load did not differ between the two groups. The results suggest that, in rats, exercise training with voluntary running improves heat tolerance through enhancing nonevaporative heat loss response. However, this may be the case only when the rats are subjected to a direct internal heat load.

  13. Global gray water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2015-01-01

    This is the first global assessment of nitrogen-related water pollution in river basins with a specification of the pollution by economic sector, and by crop for the agricultural sector. At a spatial resolution of 5 by 5 arc minute, we estimate anthropogenic nitrogen (N) loads to freshwater,

  14. Loading functions for assessment of water pollution from nonpoint sources

    International Nuclear Information System (INIS)

    McElroy, A.D.; Chiu, S.Y.; Nebgen, J.W.; Aleti, A.; Bennett, F.W.

    1976-05-01

    Methods for evaluating the quantity of water pollutants generated from nonpoint sources including agriculture, silviculture, construction, mining, runoff from urban areas and rural roads, and terrestrial disposal are developed and compiled for use in water quality planning. The loading functions, plus in some instances emission values, permit calculation of nonpoint source pollutants from available data and information. Natural background was considered to be a source and loading functions were presented to estimate natural or background loads of pollutants. Loading functions/values are presented for average conditions, i.e., annual average loads expressed as metric tons/hectare/year (tons/acre/year). Procedures for estimating seasonal or 30-day maximum and minimum loads are also presented. In addition, a wide variety of required data inputs to loading functions, and delineation of sources of additional information are included in the report. The report also presents an evaluation of limitations and constraints of various methodologies which will enable the user to employ the functions realistically

  15. Damage process of high purity tungsten coatings by hydrogen beam heat loads

    International Nuclear Information System (INIS)

    Tamura, S.; Tokunaga, K.; Yoshida, N.; Taniguchi, M.; Ezato, K.; Sato, K.; Suzuki, S.; Akiba, M.; Tsunekawa, Y.; Okumiya, M.

    2005-01-01

    To investigate the synergistic effects of heat load and hydrogen irradiation, cyclic heat load tests with a hydrogen beam and a comparable electron beam were performed for high purity CVD-tungsten coatings. Surface modification was examined as a function of the peak temperature by changing the heat flux. Scanning Electron Microscopy analysis showed that the surface damage caused by the hydrogen beam was more severe than that by the electron beam. In the hydrogen beam case, cracking at the surface occurred at all peak temperatures examined from 300 deg. C to 1600 deg. C. These results indicate that the injected hydrogen induces embrittlement for the CVD-tungsten coating

  16. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    International Nuclear Information System (INIS)

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-01-01

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in a circular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mass velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel

  17. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-10-03

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.

  18. Long-duration heat load measurement approach by novel apparatus design and highly efficient algorithm

    Science.gov (United States)

    Zhu, Yanwei; Yi, Fajun; Meng, Songhe; Zhuo, Lijun; Pan, Weizhen

    2017-11-01

    Improving the surface heat load measurement technique for vehicles in aerodynamic heating environments is imperative, regarding aspects of both the apparatus design and identification efficiency. A simple novel apparatus is designed for heat load identification, taking into account the lessons learned from several aerodynamic heating measurement devices. An inverse finite difference scheme (invFDM) for the apparatus is studied to identify its surface heat flux from the interior temperature measurements with high efficiency. A weighted piecewise regression filter is also proposed for temperature measurement prefiltering. Preliminary verification of the invFDM scheme and the filter is accomplished via numerical simulation experiments. Three specific pieces of apparatus have been concretely designed and fabricated using different sensing materials. The aerodynamic heating process is simulated by an inductively coupled plasma wind tunnel facility. The identification of surface temperature and heat flux from the temperature measurements is performed by invFDM. The results validate the high efficiency, reliability and feasibility of heat load measurements with different heat flux levels utilizing the designed apparatus and proposed method.

  19. Long-duration heat load measurement approach by novel apparatus design and highly efficient algorithm

    International Nuclear Information System (INIS)

    Zhu, Yanwei; Yi, Fajun; Meng, Songhe; Zhuo, Lijun; Pan, Weizhen

    2017-01-01

    Improving the surface heat load measurement technique for vehicles in aerodynamic heating environments is imperative, regarding aspects of both the apparatus design and identification efficiency. A simple novel apparatus is designed for heat load identification, taking into account the lessons learned from several aerodynamic heating measurement devices. An inverse finite difference scheme (invFDM) for the apparatus is studied to identify its surface heat flux from the interior temperature measurements with high efficiency. A weighted piecewise regression filter is also proposed for temperature measurement prefiltering. Preliminary verification of the invFDM scheme and the filter is accomplished via numerical simulation experiments. Three specific pieces of apparatus have been concretely designed and fabricated using different sensing materials. The aerodynamic heating process is simulated by an inductively coupled plasma wind tunnel facility. The identification of surface temperature and heat flux from the temperature measurements is performed by invFDM. The results validate the high efficiency, reliability and feasibility of heat load measurements with different heat flux levels utilizing the designed apparatus and proposed method. (paper)

  20. Vibrations in water-gas heat exchangers. Design and tests

    International Nuclear Information System (INIS)

    Alexandre, M.; Allard, G.; Vangedhen, A.

    1981-01-01

    It is shown on an example how to make a complete list of the possible vibrations and how to use the data of tests and technical literature to predict damaging vibrations. The water-heavy gas tubular heat-exchanger in case is briefly described. The sources of mechanical excitations are a compressor and earthquake loadings. The various eigenmodes are described and it is shown that no resonance is possible with the compressor and that the effect of the earthquake is negligible. The excitation of the tubes by the gas flow is examined by means of Connors stability criterion; and there is no resonance with the Benard-von Karman vortices. The magnification of this latter excitation by acoustical waves is not to be feared. Satisfactory tests have been carried successively on tubes, on the casing, on the casing plus part of the tubes, on a complete prototype in workshop and in operation on site [fr

  1. Prediction of critical heat flux for water in uniformly heated vertical ...

    African Journals Online (AJOL)

    Keywords: CHF - Heat transfer - Water vapor - Porous coated tubes. Auteur correspondant ... electrical and mechanical characteristics were well validated. Figure. 1 shows ... resistance to vapor filtration from the heating wall to the liquid bulk.

  2. Power generation and heating performances of integrated system of ammonia–water Kalina–Rankine cycle

    International Nuclear Information System (INIS)

    Zhang, Zhi; Guo, Zhanwei; Chen, Yaping; Wu, Jiafeng; Hua, Junye

    2015-01-01

    Highlights: • Integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) is investigated. • Ammonia–water Rankine cycle is operated for cogenerating room heating-water in winter. • Kalina cycle with higher efficiency is operated for power generation in other seasons. • Power recovery efficiency accounts thermal efficiency and waste heat absorbing ratio. • Heating water with 70 °C and capacity of 55% total reclaimed heat load is cogenerated. - Abstract: An integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) for power generation and heating is introduced. The Kalina cycle has large temperature difference during evaporation and small one during condensation therefore with high thermal efficiency for power generation, while the ammonia–water Rankine cycle has large temperature difference during condensation as well as evaporation, thus it can be adopted to generate heating-water as a by-product in winter. The integrated system is based on the Kalina cycle and converted to the Rankine cycle with a set of valves. The performances of the AWKRC system in different seasons with corresponding cycle loops were studied and analyzed. When the temperatures of waste heat and cooling water are 300 °C and 25 °C respectively, the thermal efficiency and power recovery efficiency of Kalina cycle are 20.9% and 17.4% respectively in the non-heating seasons, while these efficiencies of the ammonia–water Rankine cycle are 17.1% and 13.1% respectively with additional 55.3% heating recovery ratio or with comprehensive efficiency 23.7% higher than that of the Kalina cycle in heating season

  3. Integration of Space Heating and Hot Water Supply in Low Temperature District Heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2014-01-01

    pipes, where the water is at the highest temperature. The heat loss may be lowered by decreasing the temperatures in the network for which reason low temperature networks are proposed as a low loss solution for future district heating. However, the heating demand of the consumers involve both domestic......District heating makes it possible to provide heat for many consumers in an efficient manner. In particular, district heating based on combined heat and power production is highly efficient. One disadvantage of district heating is that there is a significant heat loss from the pipes...... to the surrounding ground. In larger networks involving both transmission and distribution systems, the heat loss is most significant from the distribution network. An estimate is that about 80-90 % of the heat loss occurs in the distribution system. In addition, the heat loss is naturally highest from the forward...

  4. Installation package for a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  5. Experimental study of plasma energy transfer and material erosion under ELM-like heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E., E-mail: garkusha@ipp.kharkov.u [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Makhlaj, V.A.; Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Landman, I. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Tereshin, V.I.; Aksenov, N.N.; Bandura, A.N. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2009-06-15

    Main features of plasma-surface interaction and energy transfer to tokamak plasma facing components are studied at different heat loads in ELM simulation experiments with the plasma gun QSPA Kh-50. Repetitive plasma exposures of tungsten, graphite and different combined W-C targets were performed at the pulse duration of 0.25 ms and the heat loads varied in the range 0.2-2.5 MJ/m{sup 2}. The onset of vapor shield in front of the surface was investigated. The evaporation is immediately followed by a saturation of surface heat load if further increasing the impact energy. The presence of graphite essentially decreases the heat flux to the nearby tungsten surface, which is due to the carbon vapor shield. Droplet splashing at the tungsten surface and formation of hot spots on the graphite surface are discussed.

  6. Experimental study of plasma energy transfer and material erosion under ELM-like heat loads

    International Nuclear Information System (INIS)

    Garkusha, I.E.; Makhlaj, V.A.; Chebotarev, V.V.; Landman, I.; Tereshin, V.I.; Aksenov, N.N.; Bandura, A.N.

    2009-01-01

    Main features of plasma-surface interaction and energy transfer to tokamak plasma facing components are studied at different heat loads in ELM simulation experiments with the plasma gun QSPA Kh-50. Repetitive plasma exposures of tungsten, graphite and different combined W-C targets were performed at the pulse duration of 0.25 ms and the heat loads varied in the range 0.2-2.5 MJ/m 2 . The onset of vapor shield in front of the surface was investigated. The evaporation is immediately followed by a saturation of surface heat load if further increasing the impact energy. The presence of graphite essentially decreases the heat flux to the nearby tungsten surface, which is due to the carbon vapor shield. Droplet splashing at the tungsten surface and formation of hot spots on the graphite surface are discussed.

  7. Experiences with tungsten coatings in high heat flux tests and under plasma load in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Herrmann, A; Greuner, H; Fuchs, J C; Marne, P de; Neu, R

    2009-01-01

    ASDEX Upgrade was operated with about 6400 s plasma discharge during the scientific program in 2007/2008 exploring tungsten as a first wall material in tokamaks. In the first phase, the heating power was restricted to 10 MW. It was increased to 15 MW in the second phase. During this operational period, a delamination of the 200 μm W-VPS coating happened at 2 out of 128 tiles of the outer divertor and an unscheduled opening was required. In the third phase, ASDEX Upgrade was operated with partly predamaged tiles and up to 15 MW heating power. The target load was actively controlled by N 2 -seeding. This paper presents the screening test of target tiles in the high heat flux test facility GLADIS, experiences with operation and detected damages of the outer divertor as well as the heat load to the outer divertor and the reasons for the toroidal asymmetry of the divertor load.

  8. Thermally determining flow and/or heat load distribution in parallel paths

    Science.gov (United States)

    Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.

    2016-12-13

    A method including obtaining calibration data for at least one sub-component in a heat transfer assembly, wherein the calibration data comprises at least one indication of coolant flow rate through the sub-component for a given surface temperature delta of the sub-component and a given heat load into said sub-component, determining a measured heat load into the sub-component, determining a measured surface temperature delta of the sub-component, and determining a coolant flow distribution in a first flow path comprising the sub-component from the calibration data according to the measured heat load and the measured surface temperature delta of the sub-component.

  9. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  10. Thermodynamic Heat Water by The Condenser of Refrigerator

    International Nuclear Information System (INIS)

    Ben Slama, Romdhane

    2009-01-01

    The present innovation relates to the coupling of a refrigerator to a cumulus to heat water and this, thanks to the heat yielded to the level of the condenser of the refrigerating system even. The heating of water is carried out thus without energy over consumption. The quantity of heat transferred by the water-cooled condenser is sufficient to raise the temperature of this latter with 60 degree at the end of five hours. This can satisfy completely or partially the requirements out of hot water of a family which can distribute its requirements out of hot water all along the day and the week. The quantity of heat recovered by water to heat rises with four multiples the power consumption by the compressor. The system thus makes it possible to save energy and to safeguard the environment

  11. Solutions to mitigate heat loads due to electrons on sensitive components of ITER HNB beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Emanuele, E-mail: emanuele.sartori@gmail.com [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Veltri, Pierluigi; Dalla Palma, Mauro; Agostinetti, Piero [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Hemsworth, Ronald; Singh, Mahendrajit [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Serianni, Gianluigi [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy)

    2016-11-01

    Highlights: • Energetic electrons leaking out of the ITER HNB accelerator are simulated. • Electrons generated along the ITER HNB beamline are simulated. • Heat loads and heat load maps on cryopumps are calculated for ITER HNB and test facility. • Protection solutions that will be installed are presented and their effect discussed. - Abstract: The operation of neutral beam injectors for plasma heating and current drive in a fusion device provides challenges in the thermal management of beamline components. Sensitive components such as the cryogenic pumps at beamline periphery shall be protected from the heat flux due to stray electrons. These are emitted by the negative ion accelerator or generated along the beamline by interaction of fast electrons, ions or atoms with background gas and surfaces. In this article the case of the ITER Heating Neutral Beam (HNB) and its test facility MITICA is discussed, for which the beam parameters and the required pulse length of one hour is a major leap forward with respect to the present experience with neutral beam systems. The engineering solutions adopted for effective cryopump protection against the heat load from electrons are described. The use of three-dimensional numerical simulations of particle trajectories in the complex geometry of the beamline was needed for the quantitative estimations of the heat loads. The presented solutions were optimized to minimize the impact on gas pumping and on the functionality of other components.

  12. Comfort air temperature influence on heating and cooling loads of a residential building

    Science.gov (United States)

    Stanciu, C.; Șoriga, I.; Gheorghian, A. T.; Stanciu, D.

    2016-08-01

    The paper presents the thermal behavior and energy loads of a two-level residential building designed for a family of four, two adults and two students, for different inside comfort levels reflected by the interior air temperature. Results are intended to emphasize the different thermal behavior of building elements and their contribution to the building's external load. The most important contributors to the building thermal loss are determined. Daily heating and cooling loads are computed for 12 months simulation in Bucharest (44.25°N latitude) in clear sky conditions. The most important aspects regarding sizing of thermal energy systems are emphasized, such as the reference months for maximum cooling and heating loads and these loads’ values. Annual maximum loads are encountered in February and August, respectively, so these months should be taken as reference for sizing thermal building systems, in Bucharest, under clear sky conditions.

  13. Optimum load distribution between heat sources based on the Cournot model

    Science.gov (United States)

    Penkovskii, A. V.; Stennikov, V. A.; Khamisov, O. V.

    2015-08-01

    One of the widespread models of the heat supply of consumers, which is represented in the "Single buyer" format, is considered. The methodological base proposed for its description and investigation presents the use of principles of the theory of games, basic propositions of microeconomics, and models and methods of the theory of hydraulic circuits. The original mathematical model of the heat supply system operating under conditions of the "Single buyer" organizational structure provides the derivation of a solution satisfying the market Nash equilibrium. The distinctive feature of the developed mathematical model is that, along with problems solved traditionally within the bounds of bilateral relations of heat energy sources-heat consumer, it considers a network component with its inherent physicotechnical properties of the heat network and business factors connected with costs of the production and transportation of heat energy. This approach gives the possibility to determine optimum levels of load of heat energy sources. These levels provide the given heat energy demand of consumers subject to the maximum profit earning of heat energy sources and the fulfillment of conditions for formation of minimum heat network costs for a specified time. The practical realization of the search of market equilibrium is considered by the example of a heat supply system with two heat energy sources operating on integrated heat networks. The mathematical approach to the solution search is represented in the graphical form and illustrates computations based on the stepwise iteration procedure for optimization of levels of loading of heat energy sources (groping procedure by Cournot) with the corresponding computation of the heat energy price for consumers.

  14. Response of NSTX liquid lithium divertor to high heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, T., E-mail: tabrams@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Jaworski, M.A. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Kallman, J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Foley, E.L. [Nova Photonics, Inc., Princeton, NJ 08543 (United States); Gray, T.K. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kugel, H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Levinton, F. [Nova Photonics, Inc., Princeton, NJ 08543 (United States); McLean, A.G. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2013-07-15

    Samples of the NSTX Liquid Lithium Divertor (LLD) with and without an evaporative Li coating were directly exposed to a neutral beam ex-situ at a power of ∼1.5 MW/m{sup 2} for 1–3 s. Measurements of front face and bulk sample temperature were obtained. Predictions of temperature evolution were derived from a 1D heat flux model. No macroscopic damage occurred when the “bare” sample was exposed to the beam but microscopic changes to the surface were observed. The Li-coated sample developed a lithium hydroxide (LiOH) coating, which did not change even when the front face temperature exceeded the pure Li melting point. These results are consistent with the lack of damage to the LLD surface and imply that heating alone may not expose pure liquid Li if the melting point of surface impurities is not exceeded. This suggests that flow and heat are needed for future PFCs requiring a liquid Li surface.

  15. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Xu, Jihuan; Yu, Xiaotong

    2013-01-01

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  16. Enhanced water use efficiency in global terrestrial ecosystems under increasing aerosol loadings

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaoliang; Chen, Min; Liu, Yaling; Miralles, Diego G.; Wang, Faming

    2017-05-01

    Aerosols play a crucial role in the climate system, affecting incoming radiation and cloud formation. Based on a modelling framework that couples ecosystem processes with the atmospheric transfer of radiation, we analyze the effect of aerosols on surface incoming radiation, gross primary productivity (GPP), water losses from ecosystems through evapotranspiration (ET) and ecosystem water use efficiency (WUE, defined as GPP/ET) for 2003–2010 and validate them at global FLUXNET sites. The total diffuse radiation increases under relatively low or intermediate aerosol loadings, but decreases under more polluted conditions. We find that aerosol-induced changes in GPP depend on leaf area index, aerosol loading and cloudiness. Specifically, low and moderate aerosol loadings cause increases in GPP for all plant types, while heavy aerosol loadings result in enhancement (decrease) in GPP for dense (sparse) vegetation. On the other hand, ET is mainly negatively affected by aerosol loadings due to the reduction in total incoming radiation. Finally, WUE shows a consistent rise in all plant types under increasing aerosol loadings. Overall, the simulated daily WUE compares well with observations at 43 eddy-covariance tower sites (R2=0.84 and RMSE=0.01gC (kg H2O)-1) with better performance at forest sites. In addition to the increasing portions of diffuse light, the rise in WUE is also favored by the reduction in radiation- and heat-stress caused by the aerosols, especially for wet and hot climates.

  17. Research of waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water

    Science.gov (United States)

    Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin

    2018-02-01

    The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.

  18. Heat losses through pipe connections in hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Fan, Jianhua; Furbo, Simon

    2007-01-01

    The heat loss from pipe connections at the top of hot water storage tanks with and without a heat trap is investigated theoretically and compared to similar experimental investigations. Computational Fluid Dynamics (CFD) is used for the theoretical analysis. The investigations show that the heat...... loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe, that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further......, calculations show that the yearly thermal performance of solar domestic hot water systems is strongly reduced if the hot water tank has a thermal bridge located at the top of the tank....

  19. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Ommen, Torben Schmidt; Elmegaard, Brian

    2012-01-01

    In this paper we present and analyse the feasibility of a district heating (DH) consumer unit with micro heat pump for domestic hot water (DHW) preparation in a low temperature (40 °C) DH network. We propose a micro booster heat pump of high efficiency (COP equal to 5,3) in a consumer DH unit...... in order to boost the temperature of the district heating water for heating the DHW. The paper presents the main designs of the suggested system and different alternative micro booster heat pump concepts. Energy efficiency and thermodynamic performance of these concepts are calculated and compared....... The results show that the proposed system has the highest efficiency. Furthermore, we compare thermodynamic and economic performance of the suggested heat pump-based concept with different solutions, using electric water heater. The micro booster heat pump system has the highest annualised investment (390 EUR...

  20. Performance variations of river water source heat pump system according to heat exchanger capacity variations

    International Nuclear Information System (INIS)

    Park, Seong Ryong; Baik, Young Jin; Lee, Young Soo; Kim, Hee Hwan

    2003-01-01

    The utilization of unused energy is important because it can afford to offer a chance to increase energy efficiency of a heat pump system. One of the promising unused energy sources is river water. It can be used as a heat source in both heating and cooling effectively with its superior features as a secondary working fluids. In this study, the performance of a 5HP heat pump system using river water as a heat source is investigated by both experiment and simulation. According to system simulation results, performance improvement of condenser seems more effective than that of evaporator for better COPH. The serial connection is also preferred among several methods to improve plate type heat exchanger performance. The experimental results show that the hot water of 50∼60 .deg. C can be acquired from water heat source of 5∼9 .deg. C with COPH of 2.7∼3.5

  1. Heat Loads Due To Small Penetrations In Multilayer Insulation Blankets

    Science.gov (United States)

    Johnson, W. L.; Heckle, K. W.; E Fesmire, J.

    2017-12-01

    The main penetrations (supports and piping) through multilayer insulation systems for cryogenic tanks have been previously addressed by heat flow measurements. Smaller penetrations due to fasteners and attachments are now experimentally investigated. The use of small pins or plastic garment tag fasteners to ease the handling and construction of multilayer insulation (MLI) blankets goes back many years. While it has long been understood that penetrations and other discontinuities degrade the performance of the MLI blanket, quantification of this degradation has generally been lumped into gross performance multipliers (often called degradation factors or scale factors). Small penetrations contribute both solid conduction and radiation heat transfer paths through the blanket. The conduction is down the stem of the structural element itself while the radiation is through the hole formed during installation of the pin or fastener. Analytical models were developed in conjunction with MLI perforation theory and Fourier’s Law. Results of the analytical models are compared to experimental testing performed on a 10 layer MLI blanket with approximately 50 small plastic pins penetrating the test specimen. The pins were installed at ∼76-mm spacing inches in both directions to minimize the compounding of thermal effects due to localized compression or lateral heat transfer. The testing was performed using a liquid nitrogen boil-off calorimeter (Cryostat-100) with the standard boundary temperatures of 293 K and 78 K. Results show that the added radiation through the holes is much more significant than the conduction down the fastener. The results are shown to be in agreement with radiation theory for perforated films.

  2. A novel monochromator for high heat-load synchrotron x-ray radiation

    International Nuclear Information System (INIS)

    Khounsary, A.M.

    1992-01-01

    The high heat load associated with the powerful and concentrated x-ray beams generated by the insertion devices at a number of present and many of the future (planned or under construction) synchrotron radiation facilities pose a formidable engineering challenge in the designer of the monochromators and other optical devices. For example, the Undulator A source on the Advanced Photon Source (APS) ring (being constructed at the Argonne National Laboratory) will generate as much as 10 kW of heat deposited on a small area (about 1 cm 2 ) of the first optics located some 24 m from the source. The peak normal incident heat flux can be as high as 500 W/mm 2 . Successful utilization of the intense x-ray beams from insertion devices critically depends on the development, design, and availability of optical elements that provide acceptable performance under high heat load. Present monochromators can handle, at best, heat load levels that are an order of magnitude lower than those generated by such sources. The monochromator described here and referred to as the open-quote inclinedclose quotes monochromator can provide a solution to high heat-load problems

  3. The economics of supplying the supplementary heat in a closed loop water source heat pump system

    International Nuclear Information System (INIS)

    Johnson, R.P.; Bartkus, V.E.; Singh, J.B.

    1993-01-01

    The paper describes the details of a research and demonstration project that will be completed in August 1992 at a healthcare facility in northeastern Pennsylvania. The purpose of the project is to compare the economics of several methods of supplying the supplementary heating in a facility served by a closed loop water source heat pump system. The systems being tested include a storage hot water tank with electric resistance heaters and three air source heat pumps that have the ability to supply the same heat during on-peak hours as well as off-peak hours. The paper compares the projected operating costs of the following: (1) Gas boiler supplying the supplementary heat. (2) Stored hot water supplying the supplementary heat which is generated and stored during off-peak hours using resistance heat on PP ampersand L's offpeak rate. (3) Stored hot water supplying the supplementary heat generated during off-peak hours using the air source heat pumps on PP ampersand L's off-peak rate. (4) Hot water generated by the air source heat pumps supplying the supplementary loop heating on PP ampersand L's general service and time-of-day electric rates. It is generally known in the HVAC industry that a closed loop water source heat pump system can provide one of the most efficient means of space conditioning to a building with high internal gains by transferring the excess heat available in one part of the building to another part of the building where it may be needed for heating. The following flow diagram depicts the relationship of the air source heat pumps with the storage tanks and the building closed water loop

  4. Thermodynamic analysis of vapor compression heat pump cycle for tap water heating and development of CO_2 heat pump water heater for residential use

    International Nuclear Information System (INIS)

    Saikawa, Michiyuki; Koyama, Shigeru

    2016-01-01

    Highlights: • The ideal vapor compression cycle for tap water heating and its COP were defined. • It was verified theoretically that CO_2 achieves the highest COP for tap water heating. • The prototype of CO_2 heat pump water heater for residential use was developed. • Further COP improvement of CO_2 heat pump water heater was estimated. - Abstract: The ideal vapor compression cycle for tap water heating and its coefficient of performance (COP) have been studied theoretically at first. The ideal cycle is defined as the cycle whose high temperature heat source varies temperature with constant specific heat and other processes are same as the reverse Carnot cycle. The COP upper limit of single stage compression heat pump cycle for tap water heating with various refrigerants such as fluorocarbons and natural refrigerants was calculated. The refrigerant which achieves the highest COP for supplying hot water is CO_2. Next, the prototype of CO_2 heat pump water heater for residential use has been developed. Its outline and experimental results are described. Finally its further possibility of COP improvement has been studied. The COP considered a limit from a technical point of view was estimated about 6.0 at the Japanese shoulder season (spring and autumn) test condition of heating water from 17 °C to 65 °C at 16 °C heat source air temperature (dry bulb)/12 °C (wet bulb).

  5. Glycol-Substitute for High Power RF Water Loads

    CERN Document Server

    Ebert, Michael

    2005-01-01

    In water loads for high power rf applications, power is dissipated directly into the coolant. Loads for frequencies below approx. 1GHz are ordinarily using an ethylene glycol-water mixture as coolant. The rf systems at DESY utilize about 100 glycol water loads with powers ranging up to 600kW. Due to the increased ecological awareness, the use of glycol is now considered to be problematic. In EU it is forbidden to discharge glycol into the waste water system. In case of cooling system leakages one has to make sure that no glycol is lost. Since it is nearly impossible to avoid any glycol loss in large rf systems, a glycol-substitute was searched for and found. The found sodium-molybdate based substitute is actually a additive for corrosion protection in water systems. Sodium-molybdate is ecologically harmless; for instance, it is also used as fertilizer in agriculture. A homoeopathic dose of 0.4% mixed into deionised water gives better rf absorption characteristics than a 30% glycol mixture. The rf coolant feat...

  6. Terrestrial water load and groundwater fluctuation in the Bengal Basin

    NARCIS (Netherlands)

    Burgess, W.G.; Shamsudduha, M.; Taylor, R.G.; Zahid, A.; Ahmed, K.M.; Mukherjee, A.; Lapworth, D.J.; Bense, V.F.

    2017-01-01

    Groundwater-level fluctuations represent hydraulic responses to changes in groundwater storage due to aquifer recharge and drainage as well as to changes in stress that include water mass loading and unloading above the aquifer surface. The latter 'poroelastic' response of confined aquifers is a

  7. Experimental Research of a Water-Source Heat Pump Water Heater System

    OpenAIRE

    Zhongchao Zhao; Yanrui Zhang; Haojun Mi; Yimeng Zhou; Yong Zhang

    2018-01-01

    The heat pump water heater (HPWH), as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available wat...

  8. Water-mineral interaction in hygromechanics of clays exposed to environmental loads

    International Nuclear Information System (INIS)

    Hueckel, T.A.

    1992-01-01

    Water-mineral interaction in narrow interstices (<3 nm) in dense, saturated clays is discussed in view of recent experimental findings and molecular dynamics simulations. Consequences to the macroscopic behavior are considered. A mixture theory for two interacting constituents is developed. Effects of temperature and chemicals are discussed. A postulate of mass transfer of absorbed water from solid to fluid fraction caused by thermal or chemical load is then discussed. Theory of plasticity of clays affected by heat or chemicals is developed to deal with the effects of thermal and chemical consolidation

  9. Erosion of newly developed CFCs and Be under disruption heat loads

    Science.gov (United States)

    Nakamura, K.; Akiba, M.; Araki, M.; Dairaku, M.; Sato, K.; Suzuki, S.; Yokoyama, K.; Linke, J.; Duwe, R.; Bolt, H.; Roedig, M.

    1996-10-01

    An evaluation of the erosion under disruption heat loads is very important to the lifetime prediction of divertor armour tiles of next fusion devices such as ITER. In particular, erosion data on CFCs (carbon fiber reinforced composites) and beryllium (Be) as the armour materials is urgently required in the ITER design. For CFCs, high heat flux experiments on the newly developed CFCs with high thermal conductivity have been performed under the heat flux of around 800-2000 MW/m 2 and the pulse length of 2-5 ms in JAERI electron beam irradiation systems (JEBIS). As a result, the weight losses of B 4C doped CFCs after heating were almost same to those of the non doped CFC up to 5 wt% boron content. For Be, we have carried out our first disruption experiments on S65/C grade Be specimens in the Juelich divertor test facility in hot cells (JUDITH) facility as a frame work of the J—EU collaboration. The heating conditions were heat loads of 1250-5000 MW/m 2 for 2-8 ms, and the heated area was 3 × 3 mm 2. As a result, the protuberances of the heated area of Be were observed under the lower heat flux.

  10. Erosion of newly developed CFCs and Be under disruption heat loads

    International Nuclear Information System (INIS)

    Nakamura, K.; Duwe, R.; Bolt, H.; Roedig, M.

    1996-01-01

    An evaluation of the erosion under disruption heat loads is very important to the lifetime prediction of divertor armour tiles of next fusion devices such as ITER. In particular, erosion data on CFCs (carbon fiber reinforced composites) and beryllium (Be) as the armour materials is urgently required in the ITER design. For CFCs, high heat flux experiments on the newly developed CFCs with high thermal conductivity have been performed under the heat flux of around 800-2000 MW/m 2 and the pulse length of 2-5 ms in JAERI electron beam irradiation systems (JEBIS). As a result, the weight losses of B 4 C doped CFCs after heating were almost same to those of the non doped CFC up to 5 wt% boron content. For Be, we have carried out our first disruption experiments on S65/C grade Be specimens in the Juelich divertor test facility in hot cells (JUDITH) facility as a frame work of the J-EU collaboration. The heating conditions were heat loads of 1250-5000 MW/m 2 for 2-8 ms, and the heated area was 3 x 3 mm 2 . As a result, the protuberances of the heated area of Be were observed under the lower heat flux. (orig.)

  11. Solar heating systems for heating and hot water

    Energy Technology Data Exchange (ETDEWEB)

    Schnaith, G; Dittrich, K

    1980-07-01

    Deutsche Bundesbahn has shown an interest in solar heating systems, too. The items discussed include the useful radiation energy, design features of collectors, heat carrier media, safeguards and profitability studies. The system installed by Deutsche Bundesbahn in the social services building of the Munich-Laim railway workshop is described. In conclusion, the test results of the first few months of service are given. In order to obtain unambiguous results, it appears indispensable to arrange for an additional total trial period of not less than two years and to conduct tests also on further systems presently under construction.

  12. Solar water heating and its prospect for timber drying application

    Energy Technology Data Exchange (ETDEWEB)

    Yin, B T

    1982-01-01

    The technical requirements for timber drying are discussed, and the possibility of using a solar water heating system to substitute for conventional fuel in a modern kiln is looked into from heat transfer considerations. At the moment, conventional fuel is used to generate steam for the heating of air in a kiln. If hot water is to be substitued for steam as the heating medium, the heating coil size required is larger. This size is determined relative to that of a steam coil for similar kiln operating temperatures. 5 references.

  13. Application of quasi-steady-state plasma streams for simulation of ITER transient heat loads

    International Nuclear Information System (INIS)

    Bandura, A.N.; Chebotarev, V.V.; Garkusha, I.E.; Makhlaj, V.A.; Marchenko, A.K.; Solyakov, D.G.; Tereshin, V.I.; Trubchaninov, S.A.; Tsarenko, A.V.; Landman, I.

    2004-01-01

    The paper presents experimental investigations of energy characteristics of the plasma streams generated with quasi-steady-state plasma accelerator QSPA Kh-50 and adjustment of plasma parameters from the point of view its applicability for simulation of transient plasma heat loads expected for ITER disruptions and type I ELMs. Possibility of generation of high-power magnetized plasma streams with ion impact energy up to 0.6 keV, pulse length of 0.25 ms and heat loads varied in wide range from 0.5 to 30 MJ/m 2 has been demonstrated and some features of plasma interaction with tungsten targets in dependence on plasma heat loads are discussed. (author)

  14. High heat load properties of nanostructured, recrystallized W–1.1TiC

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, K., E-mail: tokunaga@riam.kyushu-u.ac.jp [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Kurishita, H.; Arakawa, H.; Matsuo, S. [International Research Center for Nuclear Materials Science, IMR, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Hotta, T. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Araki, K.; Miyamoto, Y.; Fujiwara, T.; Nakamura, K. [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Takida, T.; Kato, M.; Ikegaya, A. [A.L.M.T. Corp., Toyama 931-8543 (Japan)

    2013-11-15

    Steady state (1973 K, 180 s) and repeated (723 K–1524 K, 380 times) heat loading experiments of ITER grade W and toughened, fine-grained, recrystallized W–1.1TiC (TFGR W–1.1TiC) have been performed using an electron beam irradiation system. In ITER grade W, the irradiation around 1973 K causes recrystallization and grain growth up to the average diameters of 50–100 μm. Repeated irradiations cause significant surface roughening, cracking at grain boundaries and surface exfoliation. On the other hand, TFGR W–1.1TiC does not exhibit any surface roughening or cracking after repeated heat loading although grain boundaries on the surface of TFGR W–1.1TiC can be observed after irradiation at around 1973 K 180 s by steady state heat loading.

  15. Performance of an optimally contact-cooled high-heat-load mirror at the APS

    International Nuclear Information System (INIS)

    Cai, Z.; Khounsary, A.; Lai, B.; McNulty, I.; Yun, W.

    1998-01-01

    X-ray undulator beamlines at third-generation synchrotrons facilities use either a monochromator or a mirror as the first optical element. In this paper, the thermal and optical performance of an optimally designed contact-cooled high-heat-load x-ray mirror used as the first optical element on the 2ID undulator beamline at the Advanced Photon Source (APS) is reported. It is shown that this simple and economical mirror design can comfortably handle the high heat load of undulator beamlines and provide good performance with long-term reliability and ease of operation. Availability and advantages of such mirrors can make the mirror-first approach to high-heat-load beamline design an attractive alternative to monochromator-first beamlines in many circumstances

  16. Effect of design geometry of the demo first wall on the plasma heat load

    Directory of Open Access Journals (Sweden)

    Yu. Igitkhanov

    2016-12-01

    Full Text Available In this work we analyse the effect of W armour surface shaping on the heat load on the W/EUROFER DEMO sandwich type first wall blanket module with the water coolant. The armour wetted area is varied by changing the inclination and height of the «roof» type armor surface. The deleterious effect of leading edge at the tiles corner caused by misalignment is replaced in current design by rounded corners. Analysis has been carried out by means of the MEMOS code to assess the influence of the thickness of the layers and effect of the magnetic field inclination. Calculations show the evolution of the maximum temperatures in the tungsten, EUROFER, Cu allow and the stainless-steel water tube for different level of surface inclination (chamfering and in the case of rounded corners used in the current design. It is shown that the blanket module materials remain within a proper temperature range only at shallow incident angle if the width of EUROFER is reduced at list twice compare with the reference case.

  17. Photo-catalysis water splitting by platinum-loaded zeolite A

    Science.gov (United States)

    Cheng, Jing; Gao, Changda; Jing, Ming; Lu, Jian; Lin, Hui; Han, Zhaoxia; Ni, Zhengji; Zhang, Dawei

    2018-05-01

    Under the λ≥420 nm visible light illumination, the Pt4+ ions exchanged LTA zeolite powders without further heat-treatment presented H2 evolution at a rate of 5 μl/(15 mg·h) via photocatalysis water splitting. It was shown that the efficiency of H2 generation by the Pt4+ exchanged LTA zeolite powders without further heat-treatment was higher than the counterpart of the samples with heat treatment. In addition, the samples with lower Pt loading concentration showed higher H2 evolution rate than those of higher Pt loading did. The higher H2 evolution efficiency can be attributed to the effective isolation of water molecules and Pt at the atomic or the few atom ‘cluster’ scale by LTA zeolite’s periodical porous structure, which ensures a more efficient electron transfer efficiency for H2 evolution. However, after extra heat treatment, the Pt atoms reduced from Pt4+ in LTA zeolite’s cavities may tend to migrate to the surface and then form nano-particles, which led to the lower H2 evolution efficiency.

  18. District heating and heat storage using the solution heat of an ammonia/water system

    International Nuclear Information System (INIS)

    Taube, M.; Peier, W.; Mayor, J.C.

    1976-01-01

    The article describes a model for the optimum use of the heat energy generated in a nuclear power station for district heating and heat storage taking account of the electricity and heat demand varying with time. (HR/AK) [de

  19. Research and Development Roadmap for Water Heating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting Inc.; Gagne, Claire [Navigant Consulting Inc.; Baxter, Van D [ORNL; Lutz, James [Lawrence Berkeley National Laboratory (LBNL); Merrigan, Tim [National Renewable Energy Laboratory (NREL); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL)

    2011-10-01

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  20. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  1. Experimental study of heat transfer to the N2O4 dissociating coolant in the circular tube with variable heat load on the wall

    International Nuclear Information System (INIS)

    Golovnya, V.N.; Kolykhan, L.I.

    1983-01-01

    The results of the experimental study of heat transfer to N 2 O 4 dissociating coolant with a sinusoidal law of heat flux density variation by length are presented. The heat transfer process has been studied at subcritical and supercritical parameters and different substance aggregation states. Maximum error of heat transfer coefficient determination don't exceed 15%. The esimation of the effect of variable heat load on heat transfer has been condUcted by comparison of experimental data on the Nusselt number change along the tube length with that calculated using conventional relations for the conditions of uniform heat release. It is shown that heat transfer is enhanced in the region of heat load qsub(c) growth while its intensity is decreased in the region of heat flux reduction. The quantitative effect of qsub(c) variation on heat transfer can be regarded for by the method of superpositions

  2. Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling

    Energy Technology Data Exchange (ETDEWEB)

    Lustbader, Jason Aaron; Kekelia, Bidzina; Tomerlin, Jeff; Kreutzer, Cory J.; Yeakel, Skip; Adelman, Steven; Luo, Zhiming; Zehme, John

    2016-04-05

    Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation

  3. Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lustbader, Jason; Kekelia, Bidzina; Tomerlin, Jeff; Kreutzer, Cory; Adelman, Steve; Yeakel, Skip; Luo, Zhiming; Zehme, John

    2016-03-24

    Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation

  4. Graphene oxide-loaded shortening as an environmentally friendly heat transfer fluid with high thermal conductivity

    Directory of Open Access Journals (Sweden)

    Vongsetskul Thammasit

    2017-01-01

    Full Text Available Graphene oxide-loaded shortening (GOS, an environmentally friendly heat transfer fluid with high thermal conductivity, was successfully prepared by mixing graphene oxide (GO with a shortening. Scanning electron microscopy revealed that GO particles, prepared by the modified Hummer’s method, dispersed well in the shortening. In addition, the latent heat of GOS decreased while their viscosity and thermal conductivity increased with increasing the amount of loaded GO. The thermal conductivity of the GOS with 4% GO was higher than that of pure shortening of ca. three times, from 0.1751 to 0.6022 W/mK, and increased with increasing temperature. The GOS started to be degraded at ca. 360°C. After being heated and cooled at 100°C for 100 cycles, its viscosity slightly decreased and no chemical degradation was observed. Therefore, the prepared GOS is potentially used as environmentally friendly heat transfer fluid at high temperature.

  5. Fusion surface material melting, ablation, and ejection under high heat loading

    International Nuclear Information System (INIS)

    Holliday, M.R.; Doster, J.M.; Gilligan, J.G.

    1986-01-01

    Limiters, divertor plates, and sections of the first wall are exposed to intense heat loads during normal operation and plasma disruptions. This results in severe thermal stresses as well as erosion of the surface material. Large surface areas of compact high-field tokamaks are expected to be exposed to these high heat loads. The need for a fast and accurate computational model describing the heat transfer and phase change process has arisen as a part of the larger model of the plasma-edge region. The authors report on a solution scheme that has been developed that minimizes computational time for this time-dependent, one-dimensional, moving boundary problem. This research makes use of the heat balance integral technique, which is at least an order of magnitude faster than previous finite difference techniques. In addition, we report on the effect of molten material ejection (by external forces) on the total surface erosion rate

  6. High heat load properties of TiC dispersed Mo alloys

    International Nuclear Information System (INIS)

    Tokunaga, Kazutoshi; Yoshida, Naoaki; Miura, Yasushi; Kurishita, Hiroaki; Kitsunai, Yuji; Kayano, Hideo.

    1996-01-01

    Electron beam high heat load experiment of new developed three kinds of TiC dispersed Mo alloys (Mo-0.1wt%TiC, Mo-0.5wt%TiC and Mo-1.0wt%TiC) was studied so as to evaluate it's high heat load at using as the surface materials of divertor. The obtained results indicated that cracks were not observed by embrittlement by recrystallization until about 2200degC of surface temperature and the gas emission properties were not different from sintered molibdenum. However, at near melting point, deep cracks on grain boundary and smaller gas emission than that of sintered Mo were observed. So that, we concluded that TiC dispersed Mo alloy was good surface materials used under the conditions of the stationary heat flux and less than the melting point, although not good one to be melted under nonstationary large heat flux. (S.Y.)

  7. Measurements of Bremsstrahlung radiation and X-ray heat load to cryostat on SECRAL

    International Nuclear Information System (INIS)

    Zhao, H.Y.; Cao, Y.; Lu, W.; Zhang, W.H.; Zhao, H.W.; Zhang, X.Z.; Zhu, Y.H.; Li, X.X.; Xie, D.Z.

    2012-01-01

    The measurement of Bremsstrahlung radiation from ECR (Electron Cyclotron Resonance) plasma can yield certain information about the ECR heating process and the plasma confinement, and more important it can give a plausible estimate of the X-ray heat load to the cryostat of a superconducting ECR source. To better understand the additional heat load to the cryostat due to Bremsstrahlung radiation, the axial Bremsstrahlung measurements have been conducted on SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) with different source parameters. In addition, the heat load induced by intense X-ray or even γ-ray was estimated in terms of liquid helium consumption. The relationship between these two parameters is presented here. Thick-target Bremsstrahlung, induced by the collision of hot electrons with the wall or the source electrode, is much more intensive compared with the radiation produced in the plasma and, consequently, much more difficult to shield off. In this paper the presence of the thick-target Bremsstrahlung is correlated with the magnetic confinement configuration, specifically, the ratio of B(last) to B(ext). And possible solutions to reduce the X-ray heat load induced by Bremsstrahlung radiation are proposed and discussed. It appears that by choosing an appropriate ratio of B(last) to B(ext) the thick-target Bremsstrahlung radiation can be avoided effectively. The paper is followed by the associated poster

  8. Heat load of a GaAs photocathode in an SRF electron gun

    International Nuclear Information System (INIS)

    Wang Erdong; Zhao Kui; Jorg Kewisch; Ilan Ben-Zvi; Andrew Burrill; Trivini Rao; Wu Qiong; Animesh Jain; Ramesh Gupta; Doug Holmes

    2011-01-01

    A great deal of effort has been made over the last decades to develop a better polarized electron source for high energy physics. Several laboratories operate DC guns with a gallium arsenide photocathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved by using a superconducting radio frequency (SRF) electron gun, which delivers beams of a higher brightness than that from DC guns because the field gradient at the cathode is higher. SRF guns with metal and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since a bulk gallium arsenide (GaAs) photocathode is normal conducting, a problem arises from the heat load stemming from the cathode. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and verification by measuring the quality factor of the gun with and without the cathode at 2 K. We simulate heat generation and flow from the GaAs cathode using the ANSYS program. By following the findings with the heat load model, we designed and fabricated a new cathode holder (plug) to decrease the heat load from GaAs. (authors)

  9. Simulation of Be armour cracking under ITER-like transient heat loads

    OpenAIRE

    Pestchanyi, S.; Spilker, B.; Bazylev, B.

    2015-01-01

    Simulation of beryllium cracking under action of multiple severe surface heatings has been performed using the PEGASUS-3D code and verified by experiments in the JUDITH 1 facility. Analysis of the results has revealed beryllium thermo conductivity degradation under action of repetitive pulsed heat load due to accumulation of the cracks in the surface layer. Thermo conductivity degradation is found to be at least 4 times after 100 pulses in JUDITH 1 facility. An analytical model for the Be cra...

  10. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  11. Containment loads due to direct containment heating and associated hydrogen behavior: Analysis and calculations with the CONTAIN code

    International Nuclear Information System (INIS)

    Williams, D.C.; Bergeron, K.D.; Carroll, D.E.; Gasser, R.D.; Tills, J.L.; Washington, K.E.

    1987-05-01

    One of the most important unresolved issues governing risk in many nuclear power plants involves the phenomenon called direct containment heating (DCH), in which it is postulated that molten corium ejected under high pressure from the reactor vessel is dispersed into the containment atmosphere, thereby causing sufficient heating and pressurization to threaten containment integrity. Models for the calculation of potential DCH loads have been developed and incorporated into the CONTAIN code for severe accident analysis. Using CONTAIN, DCH scenarios in PWR plants having three different representative containment types have been analyzed: Surry (subatmospheric large dry containment), Sequoyah (ice condenser containment), and Bellefonte (atmospheric large dry containment). A large number of parameter variation and phenomenological uncertainty studies were performed. Response of DCH loads to these variations was found to be quite complex; often the results differ substantially from what has been previously assumed concerning DCH. Containment compartmentalization offers the potential of greatly mitigating DCH loads relative to what might be calculated using single-cell representations of containments, but the actual degree of mitigation to be expected is sensitive to many uncertainties. Dominant uncertainties include hydrogen combustion phenomena in the extreme environments produced by DCH scenarios, and factors which affect the rate of transport of DCH energy to the upper containment. In addition, DCH loads can be aggravated by rapid blowdown of the primary system, co-dispersal of moderate quantities of water with the debris, and quenching of de-entrained debris in water; these factors act by increasing steam flows which, in turn, accelerates energy transport. It may be noted that containment-threatening loads were calculated for a substantial portion of the scenarios treated for some of the plants considered

  12. Whites excrete a water load more rapidly than blacks.

    Science.gov (United States)

    Weder, Alan B; Gleiberman, Lillian; Sachdeva, Amit

    2009-04-01

    A recent report demonstrated a racial difference in response to furosemide compatible with increased ion reabsorption in the thick ascending limb of the loop of Henle in blacks. Urinary dilution is another function of the loop-diuretic-sensitive Na,K,2Cl cotransporter in the thick ascending limb, and racial differences in urinary diluting capacity have not been reported previously. We assessed diluting segment (cortical thick ascending limb and distal convoluted tubule) function in black and white normotensives in 2 studies using a water-loading approach. In both studies, we found that whites excreted a water load more rapidly than blacks. In the first study, the final free water clearance rates (mean+/-SD) were 7.3+/-4.7 mL/min in whites (n=17, 7 females and 10 males) and 3.8+/-3.6 mL/min in blacks (n=14, 9 females and 5 males; Pwater clearance rates were 8.3+/-2.6 mL/min in whites (n=17, 8 females and 9 males) and 6.4+/-1.8 mL/min in blacks (n=11, 8 females and 3 males; Pwater excretion. We conclude that our observations are most consistent with a lower capacity of ion reabsorption in the renal diluting segment in blacks. Slower excretion of an acute water load may have been an advantage during natural selection of humans living in arid, hot climates.

  13. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  14. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  15. Results of high heat flux tests of tungsten divertor targets under plasma heat loads expected in ITER and tokamaks (review)

    Energy Technology Data Exchange (ETDEWEB)

    Budaev, V. P., E-mail: budaev@mail.ru [National Research Centre Kurchatov Institute (Russian Federation)

    2016-12-15

    Heat loads on the tungsten divertor targets in the ITER and the tokamak power reactors reach ~10MW m{sup −2} in the steady state of DT discharges, increasing to ~0.6–3.5 GW m{sup −2} under disruptions and ELMs. The results of high heat flux tests (HHFTs) of tungsten under such transient plasma heat loads are reviewed in the paper. The main attention is paid to description of the surface microstructure, recrystallization, and the morphology of the cracks on the target. Effects of melting, cracking of tungsten, drop erosion of the surface, and formation of corrugated and porous layers are observed. Production of submicron-sized tungsten dust and the effects of the inhomogeneous surface of tungsten on the plasma–wall interaction are discussed. In conclusion, the necessity of further HHFTs and investigations of the durability of tungsten under high pulsed plasma loads on the ITER divertor plates, including disruptions and ELMs, is stressed.

  16. Effect of Physical Load on Aerobic Exercise Performance during Heat Stress.

    Science.gov (United States)

    Kenefick, Robert W; Heavens, Kristen R; Luippold, Adam J; Charkoudian, Nisha; Schwartz, Steven A; Cheuvront, Samuel N

    2017-12-01

    This study aimed to investigate the effect of increasing external loads on 5-km treadmill time trial (TT) performance in 20°C and 40°C environmental conditions and to construct an ecologically relevant performance prediction decision aid. Twenty-six male and four female volunteers (age, 23.5 ± 6.9 yr; weight, 76.0 ± 8.9 kg; height, 1.75 ± 0.07 m; V˙O2peak, 50.7 ± 4.5 mL·kg·min) participated in a counterbalanced, mixed-model design, with each subject assigned to a load group (20%, 30%, or 50% body mass (BM); n = 10 per group). Volunteers performed three, self-paced 5-km familiarization TT (treadmill) without external load. Each volunteer then performed a 5-km TT in each environment with loads of either 20% (n = 10), 30% (n = 10), or 50% (n = 10) of BM. 1) Loads of (20%, 30%, and 50% of BM) impaired 5-km TT performance compared with that when unloaded (P exercise trials, an ecologically valid decision aid was developed from self-paced data, in which pace (km·h) can be predicted for individual levels of heat, load, or heat + load in combination.

  17. Beam heat load due to geometrical and resistive wall impedance in COLDDIAG

    Science.gov (United States)

    Casalbuoni, S.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Spataro, B.

    2012-11-01

    One of the still open issues for the development of superconductive insertion devices is the understanding of the heat intake from the electron beam. With the aim of measuring the beam heat load to a cold bore and the hope to gain a deeper understanding in the underlying mechanisms, a cold vacuum chamber for diagnostics (COLDDIAG) was built. It is equipped with the following instrumentation: retarding field analyzers to measure the electron flux, temperature sensors to measure the beam heat load, pressure gauges, and mass spectrometers to measure the gas content. Possible beam heat load sources are: synchrotron radiation, wakefield effects due to geometrical and resistive wall impedance and electron/ion bombardment. The flexibility of the engineering design will allow the installation of the cryostat in different synchrotron light sources. COLDDIAG was first installed in the Diamond Light Source (DLS) in 2011. Due to a mechanical failure of the thermal transition of the cold liner, the cryostat had to be removed after one week of operation. After having implemented design changes in the thermal liner transition, COLDDIAG has been reinstalled in the DLS at the end of August 2012. In order to understand the beam heat load mechanism it is important to compare the measured COLDDIAG parameters with theoretical expectations. In this paper we report on the analytical and numerical computation of the COLDDIAG beam heat load due to coupling impedances deriving from unavoidable step transitions, ports used for pumping and diagnostics, surface roughness, and resistive wall. The results might have an important impact on future technological solutions to be applied to cold bore devices.

  18. The use of helical heat exchanger for heat recovery domestic water-cooled air-conditioners

    International Nuclear Information System (INIS)

    Yi Xiaowen; Lee, W.L.

    2009-01-01

    An experimental study on the performance of a domestic water-cooled air-conditioner (WAC) using tube-in-tube helical heat exchanger for preheating of domestic hot water was carried out. The main aims are to identify the comprehensive energy performance (space cooling and hot water preheating) of the WAC and the optimum design of the helical heat exchanger taking into account the variation in tap water flow rate. A split-type WAC was set up for experimental study at different indoor and outdoor conditions. The cooling output, the amount of recovered heat, and the power consumption for different hot water flow rates were measured. The experimental results showed that the cooling coefficient of performance (COP) of the WAC improves with the inclusion of the heat recovery option by a minimum of 12.3%. This can be further improved to 20.6% by an increase in tap water flow rate. Same result was observed for the comprehensive COP of the WAC. The maximum achievable comprehensive COP was 4.92 when the tap water flow rate was set at 7.7 L/min. The overall heat transfer coefficient of the helical heat exchanger under various operating conditions were determined by Wilson plot. A mathematical model relating the over all heat transfer coefficient to the outer pipe diameter was established which provides a convenient way of optimising the design of the helical heat exchanger

  19. Optimization of Solar Water Heating System under Time and Spatial Partition Heating in Rural Dwellings

    Directory of Open Access Journals (Sweden)

    Yanfeng Liu

    2017-10-01

    Full Text Available This paper proposes the application of time and spatial partition heating to a solar water heating system. The heating effect and system performance were analyzed under the continuous and whole space heating and time and spatial partition heating using TRNSYS. The results were validated by comparing with the test results of the demonstration building. Compared to continuous and whole space heating, the use of time and spatial partition heating increases the solar fraction by 16.5%, reduces the auxiliary heating by 7390 MJ, and reduces the annual operation cost by 2010 RMB. Under time and spatial partition heating, optimization analyses were conducted for the two system capacity parameters of the solar collector area and tank volume and the one operation parameter of auxiliary heater setting outlet temperature. The results showed that a reasonable choice of the solar collector area can reduce the dynamic annual cost, the increased tank volume is advantageous to heat storage, and the auxiliary heater setting outlet temperature have greater influence on the indoor heating effect. The advanced opening of solar water heating system and the normal opening of passive air vents are recommended. Based on the comparison of the two modes, the time and spatial partition heating technology is a better choice for rural dwellings.

  20. Simulation of Be armour cracking under ITER-like transient heat loads

    Directory of Open Access Journals (Sweden)

    S. Pestchanyi

    2016-12-01

    Full Text Available Simulation of beryllium cracking under action of multiple severe surface heatings has been performed using the PEGASUS-3D code and verified by experiments in the JUDITH 1 facility. Analysis of the results has revealed beryllium thermo conductivity degradation under action of repetitive pulsed heat load due to accumulation of the cracks in the surface layer. Thermo conductivity degradation is found to be at least 4 times after 100 pulses in JUDITH 1 facility. An analytical model for the Be cracking threshold under action of arbitrary heat pulses has been developed.

  1. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  2. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-07-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  3. A Study of Ballast Water Treatment Using Engine Waste Heat

    Science.gov (United States)

    Balaji, Rajoo; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri bin; Ismail, Nasrudin bin; Ahmad, Badruzzaman bin; Ismail, Mohd Arif bin

    2018-05-01

    Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 °C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14-33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55-75 °C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell-Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species' mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were > 95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.

  4. Measurement of water lost from heated geologic salt

    International Nuclear Information System (INIS)

    Hohlfelder, J.J.

    1979-07-01

    This report describes three methods used to measure the rate at which water is lost from heated geologic salt. The three methods were employed in each of a series of proof tests which were performed to evaluate instrumentation designed to measure the water-loss rate. It was found that the water lost from heated, 1-kg salt specimens which were measured according to these three methods was consistent to within an average 9 percent

  5. Heat recovery networks synthesis of large-scale industrial sites: Heat load distribution problem with virtual process subsystems

    International Nuclear Information System (INIS)

    Pouransari, Nasibeh; Maréchal, Francois

    2015-01-01

    Highlights: • Synthesizing industrial size heat recovery network with match reduction approach. • Targeting TSI with minimum exchange between process subsystems. • Generating a feasible close-to-optimum network. • Reducing tremendously the HLD computational time and complexity. • Generating realistic network with respect to the plant layout. - Abstract: This paper presents a targeting strategy to design a heat recovery network for an industrial plant by dividing the system into subsystems while considering the heat transfer opportunities between them. The methodology is based on a sequential approach. The heat recovery opportunity between process units and the optimal flow rates of utilities are first identified using a Mixed Integer Linear Programming (MILP) model. The site is then divided into a number of subsystems where the overall interaction is resumed by a pair of virtual hot and cold stream per subsystem which is reconstructed by solving the heat cascade inside each subsystem. The Heat Load Distribution (HLD) problem is then solved between those packed subsystems in a sequential procedure where each time one of the subsystems is unpacked by switching from the virtual stream pair back into the original ones. The main advantages are to minimize the number of connections between process subsystems, to alleviate the computational complexity of the HLD problem and to generate a feasible network which is compatible with the minimum energy consumption objective. The application of the proposed methodology is illustrated through a number of case studies, discussed and compared with the relevant results from the literature

  6. Influence of resonant magnetic perturbations on transient heat load deposition and fast ion losses

    International Nuclear Information System (INIS)

    Rack, Michael Thomas

    2014-01-01

    Thermonuclear fusion is the energy conversion process which keeps the sun shining. For the last six decades, researchers have been investigating the physics involved in order to enable the usage of this energy supply on Earth. The most promising candidates for fusion power plants are based on magnetic confinement of plasma to provide the ideal conditions for efficient thermonuclear fusion in well controlled surroundings. One important aspect is the control of instabilities that occur in the edge region of the plasma and lead to an ejection of huge amounts of energy. Magnetic perturbation fields which are resonant in the plasma edge are found to modify the plasma favourably and reduce the impact of these instabilities. This dissertation focuses on the effects of resonant magnetic perturbation fields on the ejected energy as well as on the drawbacks of these perturbation fields. The transient energy ejection which is triggered by the instabilities causes extreme heat loads on the wall components in fusion devices. Therefore, it is crucial to understand how resonant magnetic perturbation fields affect the heat load deposition. Furthermore, the impact of resonant magnetic perturbation fields on the confinement of fast ions is an important aspect as fast ions are still required to be well confined in order to avoid additional wall loads and increase the fusion efficiency. Recent upgrades on the Joint European Torus allow for a detailed study of the heat load deposition profiles caused by transient events. Throughout this work, the new features are used for the study of the modifications of the transient heat load depositions that occur if resonant magnetic perturbation fields are applied. This leads to a further understanding of the processes involved during the plasma edge instabilities. Additionally, an alternative method using lower hybrid waves for applying resonant magnetic perturbations is investigated. Furthermore, a new diagnostic, capable of detecting fast ion

  7. Influence of resonant magnetic perturbations on transient heat load deposition and fast ion losses

    Energy Technology Data Exchange (ETDEWEB)

    Rack, Michael Thomas

    2014-07-11

    Thermonuclear fusion is the energy conversion process which keeps the sun shining. For the last six decades, researchers have been investigating the physics involved in order to enable the usage of this energy supply on Earth. The most promising candidates for fusion power plants are based on magnetic confinement of plasma to provide the ideal conditions for efficient thermonuclear fusion in well controlled surroundings. One important aspect is the control of instabilities that occur in the edge region of the plasma and lead to an ejection of huge amounts of energy. Magnetic perturbation fields which are resonant in the plasma edge are found to modify the plasma favourably and reduce the impact of these instabilities. This dissertation focuses on the effects of resonant magnetic perturbation fields on the ejected energy as well as on the drawbacks of these perturbation fields. The transient energy ejection which is triggered by the instabilities causes extreme heat loads on the wall components in fusion devices. Therefore, it is crucial to understand how resonant magnetic perturbation fields affect the heat load deposition. Furthermore, the impact of resonant magnetic perturbation fields on the confinement of fast ions is an important aspect as fast ions are still required to be well confined in order to avoid additional wall loads and increase the fusion efficiency. Recent upgrades on the Joint European Torus allow for a detailed study of the heat load deposition profiles caused by transient events. Throughout this work, the new features are used for the study of the modifications of the transient heat load depositions that occur if resonant magnetic perturbation fields are applied. This leads to a further understanding of the processes involved during the plasma edge instabilities. Additionally, an alternative method using lower hybrid waves for applying resonant magnetic perturbations is investigated. Furthermore, a new diagnostic, capable of detecting fast ion

  8. Heat load imposed on reactor vessels during in-vessel retention of core melts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su-Hyeon; Chung, Bum-Jin, E-mail: bjchung@khu.ac.kr

    2016-11-15

    Highlights: • Angular heat load on reactor vessel by natural convection of oxide pool was measured. • High Ra was achieved by using mass transfer experiments based on analogy concept. • Measured Nusselt numbers agreed reasonably with the other existing studies. • Three different types of volumetric heat sources were compared. • They didn’t affect the heat flux of the top plate but affected those of the reactor vessel. - Abstract: We measured the heat load imposed on reactor vessels by natural convection of the oxide pool in severe accidents. Based on the analogy between heat and mass transfer, mass transfer experiments were performed using a copper sulfate electroplating system. A modified Rayleigh number of the order 10{sup 14} was achieved in a small facility with a height of 0.1 m. Three different types of volumetric heat sources were compared and the average Nusselt number of the curved surface was 39% lower, whereas in the case of the top plate was 6% higher than in previous studies with a two-dimensional geometry due to the high Sc value of this study. Reliable experimental data on the angular heat flux ratios were reported compared to those of the BALI and SIGMA CP facilities in terms of fluctuations and consistency.

  9. Wave Loads on Ships Sailing in Restricted Water Depth

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena; Jensen, Jørgen Juncher

    2003-01-01

    depth for a container vessel. The results show that if the water depth is less than two times the draft of the vessel, the wave-induced bending moment becomes significant larger than in deep water with the same sea state description. The peak in the frequency response function for the wave bending......The wave-induced bending moment in ships is the most important sea load parameter for ships larger than 100m in length. Hence, any rational ship design procedure must include a reasonable accurate determination of this load and a large amount of various hydrodynamic formulations have been published......, ranging from semi-empirical formulas to three-dimensional non-linear procedures. A review of the state-of-the art can be found in ISSC.VI.1 (2000). These procedures must be combined with operational and sea state information to predict the probability distribution of the maximum wave-induced bending...

  10. Damage and fatigue crack growth of Eurofer steel first wall mock-up under cyclic heat flux loads. Part 1: Electron beam irradiation tests

    Energy Technology Data Exchange (ETDEWEB)

    You, J.H., E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching (Germany); Höschen, T. [Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching (Germany); Pintsuk, G. [Forschungszentrum Jülich GmbH, IEK2, Euratom Association, 52425 Jülich (Germany)

    2014-04-15

    Highlights: • Clear evidence of microscopic damage and crack formation at the notch root in the early stage of the fatigue loading (50–100 load cycles). • Propagation of fatigue crack at the notch root in the course of subsequent cyclic heat-flux loading followed by saturation after roughly 600 load cycles. • No sign of damage on the notch-free surface up to 800 load cycles. • No obvious effect of the pulse time duration on the crack extension. • Slight change in the grain microstructure due to the formation of sub-grain boundaries by plastic deformation. - Abstract: Recently, the idea of bare steel first wall (FW) is drawing attention, where the surface of the steel is to be directly exposed to high heat flux loads. Hence, the thermo-mechanical impacts on the bare steel FW will be different from those of the tungsten-coated one. There are several previous works on the thermal fatigue tests of bare steel FW made of austenitic steel with regard to the ITER application. In the case of reduced-activation steel Eurofer97, a candidate structural material for the DEMO FW, there is no report on high heat flux tests yet. The aim of the present study is to investigate the thermal fatigue behavior of the Eurofer-based bare steel FW under cyclic heat flux loads relevant to DEMO operation. To this end, we conducted a series of electron beam irradiation tests with heat flux load of 3.5 MW/m{sup 2} on water-cooled mock-ups with an engraved thin notch on the surface. It was found that the notch root region exhibited a marked development of damage and fatigue cracks whereas the notch-free surface manifested no sign of crack formation up to 800 load cycles. Results of extensive microscopic investigation are reported.

  11. Change of water environment in the inner bay in consideration of heat balance

    International Nuclear Information System (INIS)

    Wada, Akira; Miyaike, Katsuto

    1983-01-01

    The study on the effect of warm water discharged from large capacity thermal and nuclear power stations on the local climate around the power stations is necessary for promoting the development of power resources in harmony with natural environment. In this study, Mikawa Bay was selected as the object of research, and the simulation analysis of water temperature was carried out by the water column model, based on the result of analysis of the local weather and sea observation data. Thus, the amount of heat exchange between the atmosphere and sea water in natural sea area was grasped, and how the change in the amount of heat exchange when the thermal load due to warm water discharge was imposed is ranked in natural sea environment was examined. The variation of surface water temperature in Mikawa Bay tended to be large in summer and small in winter. It was clarified that the factor controlling the water temperature in the bay was the variation of climatic factors. In the sea area where the effect of open sea water was relatively small, the variation of water temperature was able to be expressed by the water column model. The change in the amount of heat exchange in the range of warm water diffusion with 2 deg C temperature rise was determined. (Kato, I.)

  12. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Bohac, D. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Huelman, P. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2017-03-03

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  13. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, St. Paul, MN (United States)

    2017-03-01

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  14. Measurements of loop antenna loading in RF heating experiments on the KT-5C tokamak

    International Nuclear Information System (INIS)

    Zhai Kan; Deng Bihe; Wen Yizhi; Wan Shude; Liu Wandong; Yu Wen; Yu Changxun

    1997-01-01

    A new method to measure the loop antenna loadings in the RF wave heating experiments (IBWH at reasonable RF power with relatively low frequency) on the KT-5C device is presented. The method is characterized by determining the RF current ratio only, so it eases the needs of instruments and simplifies the requirements for calibration and data processing in the experiments

  15. Nuclear heat-load limits for above-grade storage of solid transuranium wastes

    International Nuclear Information System (INIS)

    Clontz, B.G.

    1978-06-01

    Nuclear safety and heat load limits were established for above-grade storage of transuranium (TRU) wastes. Nuclear safety limits were obtained from a study by J.L. Forstner and are summarized. Heat load limits are based on temperature calculations for TRU waste drums stored in concrete containers (hats), and results are summarized. Waste already in storage is within these limits. The limiting factors for individual drum heat load limits were (1) avoidance of temperatures in excess of 190 0 F (decomposition temperature of anion resin) when anion resin is present in a concrete hat, and (2) avoidance of temperatures in excess of 450 0 F (ignition temperature of paper) at any point inside a waste drum. The limiting factor for concrete had heat load limits was avoidance of temperatures in excess of 265 0 F (melt point of high density polyethylene) at the drum liners. A temperature profile for drums and hats filled to recommended limits is shown. Equations and assumptions used were conservative

  16. FILM-30: A Heat Transfer Properties Code for Water Coolant

    International Nuclear Information System (INIS)

    MARSHALL, THERON D.

    2001-01-01

    A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function of temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating

  17. Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas

    Science.gov (United States)

    1979-01-01

    The solar system, installed in a new building, was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The liquid flat plate collectors are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. The solar heating facility is described and drawings are presented of the completed system which was declared operational in September 1978, and has functioned successfully since.

  18. Analysis of an effective solution to excessive heat supply in a city primary heating network using gas-fired boilers for peak-load compensation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hai-Chao; Jiao, Wen-Ling; Zou, Ping-Hua; Liu, Jing-Cheng [School of Municipal and Environmental Engineering, Harbin Institute of Technology, mail box 2645, 202 Haihe Road, Nangang District, Harbin 150090 (China)

    2010-11-15

    Through investigation of the Dengfeng heating network in the city of Daqing, China, for the 2007-2008 heating season, we found serious problems of excessive heat supply in the primary heating network. Therefore, we propose the application of gas-fired boilers in underperforming heating substations as peak-load heat sources to effectively adapt to the regulation demands of seasonal heat-load fluctuations and reduce the excessive heat supply. First, we calculated the excessive heat supply rates (EHSRs) of five substations using detailed investigative data. We then discussed the feasibility of the proposed scheme providing energy savings from both energetic and exergetic points of view. The results showed that the average EHSR of the five substations between January and March was 20.57% of the gross heat production but consequently reduced to 6.24% with the installation of the gas-fired boilers. Therefore, the combined heating scheme with coal as the basic heat-source and gas-fired boilers as peak-load heat sources is energy-efficient to some extent, although requires the use of natural gas. Meanwhile, the exergy decreased by 10.97%, which indicates that the combined heating scheme effectively reduces the primary energy consumption and pollutant emission of the heating systems. (author)

  19. Thermodynamic analysis on an instantaneous water heating system of shower wastewater source heat pump

    Directory of Open Access Journals (Sweden)

    Yuguo Wu

    2018-09-01

    Full Text Available Water reuse and desalination systems are energy intensive processes, and their increasing use is leading energy consumption within water systems to be an increasingly important issue. Shower wastewater contains large amounts of heat, so there is an opportunity to recover energy from shower water to offset energy consumption elsewhere in water systems. This paper found ways to increase the output of hot water and lower the energy consumption by establishing a thermodynamic model of an instantaneous wastewater source heat pump. The system proved to be very effective, the heating COP (coefficient of performance can reach 3.3 even in the winter. Under the conditions of limited heat transfer area, reducing the suction pressure of a compressor is a more feasible way to increase the hot water output to meet the needs of users rather than increasing the discharge pressure. Besides, increasing the heat transfer area of the evaporator is a more effective option. When the heat transfer area of evaporator varies from 0.5 to 1.0 square meters, a notable change is that the heating COP increases from 3.283 to 3.936. The heating COP in a system with a recuperator can reach 5.672, almost double that compared to the original systems.

  20. Performance of synchrotron x-ray monochromators under heat load: How reliable are the predictions?

    International Nuclear Information System (INIS)

    Freund, A.K.; Hoszowska, J.; Migliore, J.-S.; Mocella, V.; Zhang, L.; Ferrero, C.

    2000-01-01

    With the ongoing development of insertion devices with smaller gaps the heat load generated by modern synchrotron sources increases continuously. To predict the overall performance of experiments on beam lines it is of crucial importance to be able to predict the efficiency of x-ray optics and in particular that of crystal monochromators. We report on a detailed comparison between theory and experiment for a water-cooled silicon crystal exposed to bending magnet radiation of up to 237 W total power and 1.3 W/mm2 power density. The thermal deformation has been calculated by the code ANSYS and its output has been injected into a finite difference code based on the Takagi-Taupin diffraction theory for distorted crystals. Several slit settings, filters and reflection orders were used to vary the geometrical conditions and the x-ray penetration depth in the crystal. In general, good agreement has been observed between the calculated and the observed values for the rocking curve width

  1. Low-Cost Solar Water Heating Research and Development Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  2. Analysis of the beam induced heat loads on the LHC arc beam screens during Run 2

    CERN Document Server

    Iadarola, Giovanni; Dijkstal, Philipp; Mether, Lotta; CERN. Geneva. ATS Department

    2017-01-01

    During Run 2 the Large Hadron Collider (LHC) has been routinely operated with 25 ns bunch spacing. In these conditions large heat loads have been measured on the beam screens of the superconducting magnets, together with other observations indicating that an electron cloud develops in the beam chambers. The analysis of these heat loads has revealed several interesting features allowing to pinpoint peculiar characteristics of the observed beam-induced heating. This document describes the main findings of this analysis including the evolution taking place during the run, the observed dependence on the beam conditions and the results from special tests and dedicated instrumentation. The differences observed in the behavior of the eight LHC arcs are also discussed.

  3. Calculation of cracking under pulsed heat loads in tungsten manufactured according to ITER specifications

    International Nuclear Information System (INIS)

    Arakcheev, A.S.; Skovorodin, D.I.; Burdakov, A.V.; Shoshin, A.A.; Polosatkin, S.V.; Vasilyev, A.A.; Postupaev, V.V.; Vyacheslavov, L.N.; Kasatov, A.A.; Huber, A.; Mertens, Ph; Wirtz, M.; Linsmeier, Ch; Kreter, A.; Löwenhoff, Th; Begrambekov, L.; Grunin, A.; Sadovskiy, Ya

    2015-01-01

    A mathematical model of surface cracking under pulsed heat load was developed. The model correctly describes a smooth brittle–ductile transition. The elastic deformation is described in a thin-heated-layer approximation. The plastic deformation is described with the Hollomon equation. The time dependence of the deformation and stresses is described for one heating–cooling cycle for a material without initial plastic deformation. The model can be applied to tungsten manufactured according to ITER specifications. The model shows that the stability of stress-relieved tungsten deteriorates when the base temperature increases. This proved to be a result of the close ultimate tensile and yield strengths. For a heat load of arbitrary magnitude a stability criterion was obtained in the form of condition on the relation of the ultimate tensile and yield strengths.

  4. Packaged solar water heating technology: twenty years of progress

    International Nuclear Information System (INIS)

    Morrison, Graham; Wood, Byard

    2000-01-01

    The world market for packaged solar water heaters is reviewed, and descriptions are given of the different types of solar domestic water heaters (SDWH), design concepts for packaged SDWH, thermosyphon SDWH, evacuated insulation and excavated tube collectors, seasonally biased solar collectors, heat pump water heaters, and photovoltaic water heaters. The consumer market value for SDWHs is explained, and the results of a survey of solar water heating are summarised covering advantages, perceived disadvantages, the relative importance of purchase decision factors, experience with system components, and the most frequent maintenance problems. The durability, reliability, and performance of SDWHs are discussed

  5. Performance of a LiBr-water absorption chiller operating with plate heat exchangers

    International Nuclear Information System (INIS)

    Vega, M. de; Almendros-Ibanez, J.A.; Ruiz, G.

    2006-01-01

    This paper studies the performance of a lithium bromide-water absorption chiller operating with plate heat exchangers (PHE). The overall heat transfer coefficients in the desorber, the condenser and the solution heat recoverer are calculated using the correlations provided in the literature for evaporation, condensation and liquid to liquid heat transfer in PHEs. The variable parameters are the external driving temperatures. In the desorber, the inlet temperature of the hot fluid ranges from 75 deg. C to 105 deg. C. In the condenser and the absorber, the inlet temperature of the cooling water goes from 20 deg. C to 40 deg. C. The coefficient of performance (COP) obtained ranges from 0.5 to 0.8 for cooling duties ranging from 2 kW to 12 kW. The chiller response to different hot fluid temperatures and circulated mass flow rates is also presented. The performance and the internal parameters of the chiller at part load are, therefore, calculated. A higher efficiency results when the solution pumped from the absorber to the desorber decreases. The heat transfer analysis of the PHEs is also presented. The overall heat transfer coefficient in the desorber, equal to 790 W/m 2 K at the design conditions, is also analysed at part load. The condenser performance can be represented by a similar relationship found in conventional air cooled condensers

  6. Consumer impacts on dividends from solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F.; Levermore, G. [University of Manchester, Manchester (United Kingdom); Lynch, H. [Centre for Alternative Technology, Machynlleth, University of East London, London (United Kingdom)

    2011-01-15

    Common domestic solar water heating system usage patterns were investigated by a survey of 55 installations. These usage patterns were modelled by simulation based on the actual occupants' use of boiler or other auxiliary heating control strategies. These strategies were not optimal, as often assumed. The effectiveness of the technology was found to be highly sensitive to the time settings used for auxiliary water heating, and the 65% of solar householders using their boilers in the mornings were found to be forgoing 75% of their potential savings. Additionally, 92% of consumers were found to be small households, whose potential savings were only 23% of those of larger households, which use more hot water. Overall the majority (at least 60%) of the systems surveyed were found to be achieving no more than 6% of their potential savings. Incorporating consideration of Legionella issues, results indicate that if solar thermal technology is to deliver its potential to CO2 reduction targets: solar householders must avoid any use of their auxiliary water heating systems before the end of the main warmth of the day, grants for solar technology should be focused on households with higher hot water demands, and particularly on those that are dependent on electricity for water heating, health and safety requirements for hot water storage must be reviewed and, if possible, required temperatures should be set at a lower level, so that carbon savings from solar water heating may be optimized.

  7. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  8. Heating of water by nuclear power stations

    International Nuclear Information System (INIS)

    1974-01-01

    The aim of this note is to examine: the thermal conditions of the Rhone in its present state; heating caused by the building of nuclear power stations; the main hydrobiological and ecological characteristics of the Rhone [fr

  9. Development of a nonazeotropic heat pump for crew hygiene water heating

    Science.gov (United States)

    Walker, David H.; Deming, Glenn I.

    1991-01-01

    A heat pump system is currently under development to produce hot water for crew hygiene on future manned space missions. The heat pump uses waste heat sources and a nonazeotropic working fluid in a highly efficient cycle. The potential benefits include a reduction in peak power draw from 2 to 5 kW for electric cartridge heaters to just more than 100 W for the heat pump. As part of the heat pump development project, a unique high efficiency compressor was developed to maintain lubrication in a zero-gravity environment.

  10. Installation package for a sunspot cascade solar water heating system

    Science.gov (United States)

    1980-01-01

    Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.

  11. Heat Convection at the Density Maximum Point of Water

    Science.gov (United States)

    Balta, Nuri; Korganci, Nuri

    2018-01-01

    Water exhibits a maximum in density at normal pressure at around 4° degree temperature. This paper demonstrates that during cooling, at around 4 °C, the temperature remains constant for a while because of heat exchange associated with convective currents inside the water. Superficial approach implies it as a new anomaly of water, but actually it…

  12. Evaporation heat transfer of hot water from horizontal free service

    International Nuclear Information System (INIS)

    Koizumi, Y.; Ebihara, Y.; Hirota, T.; Murase, M.

    2011-01-01

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35 o C ~ 65 o C. Cold air was approximately 25 o C. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  13. Evaporation heat transfer of hot water from horizontal free service

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Y.; Ebihara, Y.; Hirota, T. [Shinshu Univ., Ueda, Nagano (Japan); Murase, M. [INSS, Mihama-cho, Fukui (Japan)

    2011-07-01

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35{sup o}C ~ 65{sup o}C. Cold air was approximately 25{sup o}C. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  14. Decontamination of drinking water by direct heating in solar panels.

    Science.gov (United States)

    Fjendbo Jørgensen, A J; Nøhr, K; Sørensen, H; Boisen, F

    1998-09-01

    A device was developed for direct heating of water by solar radiation in a flow-through system of copper pipes. An adjustable thermostat valve prevents water below the chosen temperature from being withdrawn. The results show that it is possible to eliminate coliform and thermotolerant coliform bacteria from naturally contaminated river water by heating to temperatures of 65 degrees C or above. Artificial additions of Salmonella typhimurium, Streptococcus faecalis and Escherichia coli to contaminated river water were also inactivated after heating to 65 degrees C and above. The total viable count could be reduced by a factor of 1000. The heat-resistant bacteria isolated from the Mlalakuva River (Tanzania) were spore-forming bacteria which exhibited greater heat resistance than commonly used test bacteria originating from countries with colder climates. To provide a good safety margin it is recommended that an outlet water temperature of 75 degrees C be used. At that temperature the daily production was about 501 of decontaminated water per m2 of solar panel, an amount that could be doubled by using a heat exchanger to recycle the heat.

  15. Changes in heat load profile of typical Danish multi-storey buildings when energy-renovated and supplied with low-temperature district heating

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2013-01-01

    end-use savings are implemented in buildings concurrent with the application of low-temperature district heating (LTDH), the heat profiles of the buildings will change. Reducing peak loads is important, since this is the dimensioning foundation for future district heating systems. To avoid oversized...

  16. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B.; Janeschitz, G. [Forschungszentrum Karlsruhe GmbH, FZK, Karlsruhe (Germany); Landman, I.; Pestchanyi, S. [FZK-Forschungszentrum Karlsruhe, Association Euratom-FZK, Technik und Umwelt, Karlsruhe (Germany); Loarte, A. [EFDA Close Support Unit Garching, Garching bei Munchen(Germany)

    2007-07-01

    Full text of publication follows: Operation of ITER at high fusion gain is assumed to be the H-mode. A characteristic feature of this regime is the transient release of energy from the confined plasma onto divertor and the first wall by multiple ELMs (about 10{sup 4} ELMs per ITER discharge), which can play a determining role in the erosion rate and lifetime of these components. It is expected that about 50-70 % of the ELM energy releases onto divertor armour and the rest is dumped onto the First Wall (FW) armour. The expected energy heat loads on the ITER divertor and FW during Type I ELM are in range 0.5 - 4 MJ/m{sup 2} in timescales of 0.3-0.6 ms. In case of the ITER disruptions the material evaporated from the divertor expands into the SOL and generates significant radiation heating of the FW armour up to several GW/m2 during a few milliseconds that can also lead to the its melting and noticeable damage. Beryllium macro-brush armour (Be-brushes) is foreseen as plasma FW facing component (PFC) in ITER. During the intense transient events in ITER the surface melting, melt motion, melt splashing and evaporation are seen as the main mechanisms of Be-erosion. The expected erosion of the ITER plasma facing components under transient energy loads can be properly estimated by numerical simulations using the codes MEMOS and PHEMOBRID validated against experimental data obtained at the plasma gun facilities QSPA-T, MK-200UG and QSPA-Kh50 that provide a way to simulate the energy loads expected in ITER in laboratory experiments. The numerical simulations were carried out for the expected ITER ELMs for the heat loads in the range 0.5 - 3.0 MJ/m{sup 2} and the timescale up 0.6 ms and ITER disruptions for the heat loads in the range 2 - 13 MJ/m{sup 2} in timescales of 1-5 ms. Radiation heat loads at the FW armour from the vapour expanded into the SOL were calculated using the codes FOREV-2 and TOKES for both ITER ELM and ITER disruption scenarios. Melt layer damage of the Be

  17. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    International Nuclear Information System (INIS)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2007-01-01

    Full text of publication follows: Operation of ITER at high fusion gain is assumed to be the H-mode. A characteristic feature of this regime is the transient release of energy from the confined plasma onto divertor and the first wall by multiple ELMs (about 10 4 ELMs per ITER discharge), which can play a determining role in the erosion rate and lifetime of these components. It is expected that about 50-70 % of the ELM energy releases onto divertor armour and the rest is dumped onto the First Wall (FW) armour. The expected energy heat loads on the ITER divertor and FW during Type I ELM are in range 0.5 - 4 MJ/m 2 in timescales of 0.3-0.6 ms. In case of the ITER disruptions the material evaporated from the divertor expands into the SOL and generates significant radiation heating of the FW armour up to several GW/m2 during a few milliseconds that can also lead to the its melting and noticeable damage. Beryllium macro-brush armour (Be-brushes) is foreseen as plasma FW facing component (PFC) in ITER. During the intense transient events in ITER the surface melting, melt motion, melt splashing and evaporation are seen as the main mechanisms of Be-erosion. The expected erosion of the ITER plasma facing components under transient energy loads can be properly estimated by numerical simulations using the codes MEMOS and PHEMOBRID validated against experimental data obtained at the plasma gun facilities QSPA-T, MK-200UG and QSPA-Kh50 that provide a way to simulate the energy loads expected in ITER in laboratory experiments. The numerical simulations were carried out for the expected ITER ELMs for the heat loads in the range 0.5 - 3.0 MJ/m 2 and the timescale up 0.6 ms and ITER disruptions for the heat loads in the range 2 - 13 MJ/m 2 in timescales of 1-5 ms. Radiation heat loads at the FW armour from the vapour expanded into the SOL were calculated using the codes FOREV-2 and TOKES for both ITER ELM and ITER disruption scenarios. Melt layer damage of the Be FW macro

  18. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    Science.gov (United States)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2009-04-01

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  19. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany)], E-mail: bazylev@ihm.fzk.de; Janeschitz, G. [Forschungszentrum Karlsruhe, Fusion, P.O. Box 3640, 76021 Karlsruhe (Germany); Landman, I.; Pestchanyi, S. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Loarte, A. [ITER Organisation, Cadarache, 13108 Saint Paul Lez Durance Cedex (France)

    2009-04-30

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  20. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    International Nuclear Information System (INIS)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2009-01-01

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  1. Local heat transfer where heated rods touch in axially flowing water

    International Nuclear Information System (INIS)

    Kast, S.J.

    1983-05-01

    An anlaytic model is developed to predict the azimuthal width of a stablesteam blanket region near the line of contact between two heated rods cooled by axially flowing water at high pressure. The model is intended to aid analysis of reduced surface heat transfer capability for the abnormal configuration of nuclear fuel rods bowed into contact in the core of a pressurized water nuclear reactor. The analytic model predicts the azimuthal width of the steam blanket zone having reduced surface heat transfer as a function of rod average heat flux, subchannel coolant conditions and rod dimensions. The analytic model is developed from a heat balance between the heat generated in the wall of a heated empty tube and the heat transported away by transverse mixing and axial convection in the coolant subchannel. The model is developed for seveal geometries including heated rods in line contact, a heated rod touching a short insulating plane and a heated rod touching the inside of a metal guide tube

  2. Evaluation method for radiative heat transfer in polydisperse water droplets

    International Nuclear Information System (INIS)

    Maruyama, Shigenao; Nakai, Hirotaka; Sakurai, Atsushi; Komiya, Atsuki

    2008-01-01

    Simplifications of the model for nongray radiative heat transfer analysis in participating media comprised of polydisperse water droplets are presented. Databases of the radiative properties for a water droplet over a wide range of wavelengths and diameters are constructed using rigorous Mie theory. The accuracy of the radiative properties obtained from the database interpolation is validated by comparing them with those obtained from the Mie calculations. The radiative properties of polydisperse water droplets are compared with those of monodisperse water droplets with equivalent mean diameters. Nongray radiative heat transfer in the anisotropic scattering fog layer, including direct and diffuse solar irradiations and infrared sky flux, is analyzed using REM 2 . The radiative heat fluxes within the fog layer containing polydisperse water droplets are compared with those in the layer containing monodisperse water droplets. Through numerical simulation of the radiative heat transfer, polydisperse water droplets can be approximated by using the Sauter diameter, a technique that can be useful in several research fields, such as engineering and atmospheric science. Although this approximation is valid in the case of pure radiative transfer problems, the Sauter diameter is reconfirmed to be the appropriate diameter for approximating problems in radiative heat transfer, although volume-length mean diameter shows better accordance in some cases. The CPU time for nongray radiative heat transfer analysis with a fog model is evaluated. It is proved that the CPU time is decreased by using the databases and the approximation method for polydisperse particulate media

  3. Solar-assisted gas-energy water-heating feasibility for apartments

    Science.gov (United States)

    Davis, E. S.

    1975-01-01

    Studies of residential energy use, solar-energy technology for buildings, and the requirements for implementing technology in the housing industry led to a project to develop a solar water heater for apartments. A design study for a specific apartment was used to establish a solar water-heater cost model which is based on plumbing contractor bids and manufacturer estimates. The cost model was used to size the system to minimize the annualized cost of hot water. The annualized cost of solar-assisted gas-energy water heating is found to be less expensive than electric water heating but more expensive than gas water heating. The feasibility of a natural gas utility supplying the auxiliary fuel is evaluated. It is estimated that gas-utilizing companies will find it profitable to offer solar water heating as part of a total energy service option or on a lease basis when the price of new base-load supplies of natural gas reaches $2.50-$3.00 per million Btu.

  4. Effect of LED lighting on the cooling and heating loads in office buildings

    International Nuclear Information System (INIS)

    Ahn, Byung-Lip; Jang, Cheol-Yong; Leigh, Seung-Bok; Yoo, Seunghwan; Jeong, Hakgeun

    2014-01-01

    Highlights: • Application of heat control strategy reduces total energy consumption of LED lighting. • Convective heat from LED lighting should be emitted outdoors during cooling period. • Seasonal optimization of convective heat lowers total energy consumption. - Abstract: LED lighting has the potential to provide energy savings, and in many countries, there are policies to encourage its use owing to its higher efficiency and longer life in comparison to other lighting fixtures. However, since 75–85% of the light electric power in LED lights is still generated as heat, the sole use of LED lighting in a building could have a negative effect on the cooling load. In this paper, we study the heating properties of LED lighting and establish a management strategy to exploit these properties to reduce the energy used for heating and cooling of buildings. Using a simulation program, the energy consumption of the Green Building in Daejeon, Korea, and the virtual building provided by the U.S. Department of Energy (DOE) was computed according for different light fixtures. A control strategy is more applicable to LED lighting than to general fluorescent lighting, especially for the cooling of a building, because the use of a return-air duct and the heat sinks on the LED fixtures allow the heat to be better directed. Deployment of LED lights in combination with such a control strategy can help to increase the energy efficiency of a building

  5. Seasonal performance evaluation of electric air-to-water heat pump systems

    International Nuclear Information System (INIS)

    Dongellini, Matteo; Naldi, Claudia; Morini, Gian Luca

    2015-01-01

    A numerical model for the calculation of the seasonal performance of different kinds of electric air-to-water heat pumps is presented. The model is based on the procedure suggested by the European standard EN 14825 and the Italian standard UNI/TS 11300-4, which specify the guidelines for calculation of the seasonal performance of heat pumps during the heating season (SCOP), the cooling season (SEER) and for the production of domestic hot water. In order to consider the variation of outdoor conditions the developed model employs the bin-method. Different procedures are proposed in the paper for the analysis of the seasonal performance of mono-compressor, multi-compressor and variable speed compressor air-to-water heat pumps. The numerical results show the influence of the effective operating mode of the heat pumps on the SCOP value and put in evidence the impact of the design rules on the seasonal energy consumption of these devices. The study also highlights the importance of the correct sizing of the heat pump in order to obtain high seasonal efficiency and it shows that, for a fixed thermal load, inverter-driven and multi-compressor heat pumps have to be slightly oversized with respect to mono-compressor ones in order to obtain for the same building the highest SCOP values. - Highlights: • A model for the prediction of seasonal performance of HPs has been developed. • The model considers mono-compressor, multi-compressor and inverter-driven HPs. • The procedure takes into account HPs performances at partial load. • Optimization of heat pump sizing depending on its control system.

  6. Prototype implementation and experimental analysis of water heating using recovered waste heat of chimneys

    Directory of Open Access Journals (Sweden)

    Mahmoud Khaled

    2015-03-01

    Full Text Available This work discusses a waste heat recovery system (WHRS applied to chimneys for heating water in residential buildings. A prototype illustrating the suggested system is implemented and tested. Different waste heat scenarios by varying the quantity of burned firewood (heat input are experimented. The temperature at different parts of the WHRS and the gas flow rates of the exhaust pipes are measured. Measurements showed that the temperature of 95 L tank of water can be increased by 68 °C within one hour. Obtained results show that the convection and radiation exchanges at the bottom surface of the tank have a considerable impact on the total heat transfer rate of the water (as high as 70%.

  7. Computational Simulation of a Water-Cooled Heat Pump

    Science.gov (United States)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  8. Corrosion protection of steel in ammonia/water heat pumps

    Science.gov (United States)

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  9. Optimal design of solar water heating systems | Alemu | Zede Journal

    African Journals Online (AJOL)

    Solar water heating systems are usually designed using simplified equation of annual efficiency of the heating system from solar radiation incident on the collector during the year and empirical values of annual efficiency. The pe1formance of the preliminary design is predicted by using either/chart method or by translate it ...

  10. Impact of water hardness on energy consumption of geyser heating ...

    African Journals Online (AJOL)

    Therefore, the Eskom Research, Testing, and Development Business Unit embarked on a study to examine total water hardness as a chemical parameter that may impact the power consumption of electrical geyser heating elements. An accelerated scaling method was developed to lime-scale the geyser heating elements ...

  11. Grey water characterisation and pollutant loads in an urban slum

    International Nuclear Information System (INIS)

    Katukiza, A. Y.; Ronteltap, M.; Niwagaba, C. B.; Kansiime, F.; Lens, P. N. L.

    2015-01-01

    On-site sanitation provisions in urban slums rarely prioritise grey water management, yet it forms the largest fraction of wastewater. This study was carried out to characterise grey water and quantify its pollutant loads in Bwaise III (Uganda) and to provide data for grey water management in urban slums of developing countries. Samples were collected for analysis from ten representative households as well as from four tertiary drains and the main drainage channel for 7 months in two dry seasons. Grey water production was found to comprise 85 % of the domestic water consumption. The chemical oxygen demand concentration in the grey water generated by laundry, in the kitchen and in the bathroom was 9,225 ± 1,200 mg L-1, 71,250 ± 1,011 mg L-1 and 4,675 ± 750 mg L-1, while the BOD5 (biochemical oxygen demand) to COD ratio was 0.24 ± 0.05, 0.33 ± 0.08 and 0.31 ± 0.07, respectively. The maximum concentration of Escherichia coli and total coliforms was 2.05 9 107 cfu (100 mL)-1 and 1.75 9 108 cfu (100 mL)-1, respectively, in grey water from the bathroom, while that of Salmonella spp. was 7.32 9 106 cfu (100 mL)-1 from laundry. Analysis of variance (ANOVA) showed a significant difference in the concentration of COD, total suspended solids, total organic carbon, dissolved organic carbon, total phosphorus, sodium adsorption ratio, oil and grease, and Salmonella spp. in grey water from laundry, bathroom and kitchen (p/0.05). The high loads of COD ([500 kg day-1), total suspended solids ([200 kg day-1), nutrients (8.3 kg TKN day-1 and 1.4 kg total phosphorus day-1) and microorganisms (106 to 109 cfu c-1 day-1) originating from grey water in Bwaise III show that grey water poses a threat to the environment and a risk to human health in urban slums. Therefore, there is a need to prioritise grey water treatment in urban slums of developing countries to achieve adequate sanitation.

  12. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    Science.gov (United States)

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  13. Energy performance of air-to-water and water-to-water heat pumps in hotel applications

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Chan, Wilco W.

    2003-01-01

    We present work on measurement of the energy performance of heat pumps for hotel operations in subtropical climates. Two city hotels in Hong Kong were investigated. The first case was an application of an air-to-water heat pump to provide heating for an outdoor swimming pool during the heating season. The second case was the installation of three water-to-water heat pumps to complement an existing boiler system for hot water supply. The heating energy output and corresponding electricity use were measured. The heat pump energy efficiency was evaluated in terms of the coefficient of performance (COP), defined as the heating energy output to the electrical energy use. The air-to-water heat pump provided 49.1 MW h heating while consuming 24.6 MW h electricity during the 6((1)/(2))-month heating season from mid-October to April. For the water-to-water heat pumps, the estimated annual heating output and the electricity use were 952 and 544 MW h, respectively. It was found that the heat pumps generally operated in a COP range of 1.5-2.4, and the payback period was about two years, which was considered financially attractive

  14. More power and less loads in wind farms. 'Heat and flux'

    Energy Technology Data Exchange (ETDEWEB)

    Corten, G.P.; Schaak, P. [ECN Wind Energy, Petten (Netherlands)

    2004-11-01

    We consider a farm as a single energy extracting body instead of a superposition of individual energy extractors, i.e. wind turbines. As a result we found two new hypotheses called Heat and Flux. Both hypotheses reveal that the classical operation of turbines in a wind farm at the Lanchester-Betz optimum does not lead to maximum farm output. However, when the turbines at the windward side of the farm are operated below their optimum, then the power of the turbines under the lee increases in such a way that the net farm production increases slightly. Next to this production advantage of Heat and Flux operation there is also a loading advantage. The average axial loading of the upwind turbines of a farm is reduced in a 'Heat and Flux'-farm. As a result those turbines generate less turbines so that the fatigue loads of the downwind turbines reduce too. The results were confirmed by in a boundary layer tunnel by means of differential measurements between a 'Heat and Flux'-farm and a classical farm.

  15. Heat exchanger with dirt separator for the use of the heat energy of waste water

    Energy Technology Data Exchange (ETDEWEB)

    1975-11-13

    Well-known heat exchanger systems consist of separate heat exchangers and dirt separators. In the case here in question both devices form a unit. A finned tube heat exchanger is positioned in the center of the dirt separator and is given extra protection through deflection sheets. A safety overflow is supplied so that no residue can appear in the waste water line when decanting.

  16. The Effect of Thermal Mass on Annual Heat Load and Thermal Comfort in Cold Climate Construction

    DEFF Research Database (Denmark)

    Stevens, Vanessa; Kotol, Martin; Grunau, Bruno

    2016-01-01

    been shown to reduce the annual heating demand. However, few studies exist regarding the effects of thermal mass in cold climates. The purpose of this research is to determine the effect of high thermal mass on the annual heat demand and thermal comfort in a typical Alaskan residence using energy......Thermal mass in building construction refers to a building material's ability to absorb and release heat based on changing environmental conditions. In building design, materials with high thermal mass used in climates with a diurnal temperature swing around the interior set-point temperature have...... modeling software. The model simulations show that increased thermal mass can decrease the risk of summer overheating in Alaskan residences. They also show that increased thermal mass does not significantly decrease the annual heat load in residences located in cold climates. These results indicate...

  17. Influence of ambient temperatures on performance of a CO2 heat pump water heating system

    International Nuclear Information System (INIS)

    Yokoyama, Ryohei; Shimizu, Takeshi; Ito, Koichi; Takemura, Kazuhisa

    2007-01-01

    In residential applications, an air-to-water CO 2 heat pump is used in combination with a domestic hot water storage tank, and the performance of this system is affected significantly not only by instantaneous ambient air and city water temperatures but also by hourly changes of domestic hot water consumption and temperature distribution in the storage tank. In this paper, the performance of a CO 2 heat pump water heating system is analyzed by numerical simulation. A simulation model is created based on thermodynamic equations, and the values of model parameters are estimated based on measured data for existing devices. The calculated performance is compared with the measured one, and the simulation model is validated. The system performance is clarified in consideration of seasonal changes of ambient air and city water temperatures

  18. Accurate green water loads calculation using naval hydro pack

    Science.gov (United States)

    Jasak, H.; Gatin, I.; Vukčević, V.

    2017-12-01

    An extensive verification and validation of Finite Volume based CFD software Naval Hydro based on foam-extend is presented in this paper for green water loads. Two-phase numerical model with advanced methods for treating the free surface is employed. Pressure loads on horizontal deck of Floating Production Storage and Offloading vessel (FPSO) model are compared to experimental results from [1] for three incident regular waves. Pressure peaks and integrals of pressure in time are measured on ten different locations on deck for each case. Pressure peaks and integrals are evaluated as average values among the measured incident wave periods, where periodic uncertainty is assessed for both numerical and experimental results. Spatial and temporal discretization refinement study is performed providing numerical discretization uncertainties.

  19. Solar power from the supermarket. Water heating, space heating and air conditioning with solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    The different ways of utilizing solar energy are discussed. So far, top water heating is still the most practicable and most economical solution. Model houses with solar collectors, built by BBC and Philips, are dealt with in particular.

  20. Subscale Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Sheth, Rubik; Hansen, Scott

    2016-01-01

    Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

  1. Kinetic modeling of divertor heat load fluxes in the Alcator C-Mod and DIII-D tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Pankin, A. Y. [Tech-X Corporation, Boulder, Colorado 80303 (United States); Rafiq, T.; Kritz, A. H. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Park, G. Y. [National Fusion Research Institute, Daejeon, 305-333 (Korea, Republic of); Chang, C. S.; Ku, S. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Brunner, D.; Hughes, J. W.; LaBombard, B.; Terry, J. L. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Groebner, R. J. [General Atomics, San Diego, California 92121 (United States)

    2015-09-15

    The guiding-center kinetic neoclassical transport code, XGC0 [Chang et al., Phys. Plasmas 11, 2649 (2004)], is used to compute the heat fluxes and the heat-load width in the outer divertor plates of Alcator C-Mod and DIII-D tokamaks. The dependence of the width of heat-load fluxes on neoclassical effects, neutral collisions, and anomalous transport is investigated using the XGC0 code. The XGC0 code includes realistic X-point geometry, a neutral source model, the effects of collisions, and a diffusion model for anomalous transport. It is observed that the width of the XGC0 neoclassical heat-load is approximately inversely proportional to the total plasma current I{sub p.} The scaling of the width of the divertor heat-load with plasma current is examined for an Alcator C-Mod discharge and four DIII-D discharges. The scaling of the divertor heat-load width with plasma current is found to be weaker in the Alcator C-Mod discharge compared to scaling found in the DIII-D discharges. The effect of neutral collisions on the 1/I{sub p} scaling of heat-load width is shown not to be significant. Although inclusion of poloidally uniform anomalous transport results in a deviation from the 1/I{sub p} scaling, the inclusion of the anomalous transport that is driven by ballooning-type instabilities results in recovering the neoclassical 1/I{sub p} scaling. The Bohm or gyro-Bohm scalings of anomalous transport do not strongly affect the dependence of the heat-load width on plasma current. The inclusion of anomalous transport, in general, results in widening the width of neoclassical divertor heat-load and enhances the neoclassical heat-load fluxes on the divertor plates. Understanding heat transport in the tokamak scrape-off layer plasmas is important for strengthening the basis for predicting divertor conditions in ITER.

  2. Heat Pump Water Heater Ducting Strategies with Encapsulated Attics in Climate Zones 2 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, M. L. [Southface Energy Inst., Atlanta, GA (United States); Francisco, A. [Southface Energy Inst., Atlanta, GA (United States); Roberts, S. G. [Southface Energy Inst., Atlanta, GA (United States)

    2016-05-01

    The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas.

  3. Grids heat loading of an ion source in two-stage acceleration system

    International Nuclear Information System (INIS)

    Okumura, Yoshikazu; Ohara, Yoshihiro; Ohga, Tokumichi

    1978-05-01

    Heat loading of the extraction grids, which is one of the critical problems limiting the beam pulse duration at high power level, has been investigated experimentally, with an ion source in a two-stage acceleration system of four multi-aperture grids. The loading of each grid depends largely on extraction current and grid gap pressures; it decreases with improvement of the beam optics and with decrease of the pressures. In optimum operating modes, its level is typically less than -- 2% of the total beam power or -- 200 W/cm 2 at beam energies of 50 - 70 kV. (auth.)

  4. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    Science.gov (United States)

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  5. The structural design of the experimental equipment for unconventional heating water using heat transfer surfaces located in the heat source

    Directory of Open Access Journals (Sweden)

    Jandačka J.

    2013-04-01

    Full Text Available Flue gas temperature at throat of most industrially produced fireplaces is around 250 to 350 °C. It's quite interesting thermal potential, which can be even before sucking up the chimney back utilize. One of the potential uses of this device to heat the hot water. Article refers to the structural design of such a device, which works with the transfer of heat through a substance changes phase from liquid to steam in a sealed tube (heat pipe. Benefits of heat pipes is their light weight, the thermal effect of a rapid and low maintenance costs.

  6. The structural design of the experimental equipment for unconventional heating water using heat transfer surfaces located in the heat source

    Science.gov (United States)

    Kaduchová, K.; Lenhard, R.; Gavlas, S.; Jandačka, J.

    2013-04-01

    Flue gas temperature at throat of most industrially produced fireplaces is around 250 to 350 °C. It's quite interesting thermal potential, which can be even before sucking up the chimney back utilize. One of the potential uses of this device to heat the hot water. Article refers to the structural design of such a device, which works with the transfer of heat through a substance changes phase from liquid to steam in a sealed tube (heat pipe). Benefits of heat pipes is their light weight, the thermal effect of a rapid and low maintenance costs.

  7. Plasma arginine vasopressin response to water load during labour

    International Nuclear Information System (INIS)

    Singhi, Sunit; Parshad, Omkar

    1985-01-01

    To find out whether plasma vasopressin (Psub(AVP)) response to a water load during pregnancy is inappropriately high, as had been speculated, we measured Psub(AVP)by radioimmunoassay in 30 women at the time of delivery. Ten women had received infusion of aqueous glucose solution during labour for hydration (GW group); another ten received infusion of glucose solution as a vehicle for oxytocin (IOT group), and ten women did not receive any intrapartum intravenous fluid therapy (controls). Serum sodium and osmolality were also determined in all the subjects. Psub(AVP) levels were significantly lower in GW (0.70 +- 0.4 pg/ml) and OT groups (0.7 +- 0.6 pg/ml) (P<0.05). Significant negative correlation was seen between the amount of glucose solution infused and levels of Psub(AVP) (r = -0.66; P<0.01), while a significant positive correlation was seen between Psub(AVP) and serum sodium (r = 0.61; P<0.01). These findings suggest that during labour, the physiological relationship between serum osmolality and Psub(AVP) in intact, and the infusion of a water load in the form of aqueous glucose solution is attended by an expected lowering of Psub(AVP). We infer that inappropriate ADH response is not the cause of water retention and hyponatremia often seen in women receiving aqueous glucose solution during labor. (author)

  8. Plasma arginine vasopressin response to water load during labour

    Energy Technology Data Exchange (ETDEWEB)

    Singhi, S. (West Indies Univ., Mona (Jamaica). Dept. of Child Health); Parshad, O. (West Indies Univ., Mona (Jamaica). Dept. of Physiology)

    1985-02-01

    To find out whether plasma vasopressin (Psub(AVP)) response to a water load during pregnancy is inappropriately high, as had been speculated, we measured Psub(AVP)by radioimmunoassay in 30 women at the time of delivery. Ten women had received infusion of aqueous glucose solution during labour for hydration (GW group); another ten received infusion of glucose solution as a vehicle for oxytocin (IOT group), and ten women did not receive any intrapartum intravenous fluid therapy (controls). Serum sodium and osmolality were also determined in all the subjects. Psub(AVP) levels were significantly lower in GW (0.70 +- 0.4 pg/ml) and OT groups (0.7 +- 0.6 pg/ml) (P < 0.05). Significant negative correlation was seen between the amount of glucose solution infused and levels of Psub(AVP) (r = -0.66; P < 0.01), while a significant positive correlation was seen between Psub(AVP) and serum sodium (r = 0.61; P < 0.01). These findings suggest that during labour, the physiological relationship between serum osmolality and Psub(AVP) in intact, and the infusion of a water load in the form of aqueous glucose solution is attended by an expected lowering of Psub(AVP). We infer that inappropriate ADH response is not the cause of water retention and hyponatremia often seen in women receiving aqueous glucose solution during labor.

  9. Water and nutrient budgets at field and regional scale : travel times of drainage water and nutrient loads to surface water

    NARCIS (Netherlands)

    Eertwegh, van den G.A.P.H.

    2002-01-01

    Keywords : water and nutrient budget, travel time of drainage water, dual-porosity concept, agricultural nutrient losses, loads to surface water, field-scale experiments, regional-scale

  10. Methods for computing water-quality loads at sites in the U.S. Geological Survey National Water Quality Network

    Science.gov (United States)

    Lee, Casey J.; Murphy, Jennifer C.; Crawford, Charles G.; Deacon, Jeffrey R.

    2017-10-24

    The U.S. Geological Survey publishes information on concentrations and loads of water-quality constituents at 111 sites across the United States as part of the U.S. Geological Survey National Water Quality Network (NWQN). This report details historical and updated methods for computing water-quality loads at NWQN sites. The primary updates to historical load estimation methods include (1) an adaptation to methods for computing loads to the Gulf of Mexico; (2) the inclusion of loads computed using the Weighted Regressions on Time, Discharge, and Season (WRTDS) method; and (3) the inclusion of loads computed using continuous water-quality data. Loads computed using WRTDS and continuous water-quality data are provided along with those computed using historical methods. Various aspects of method updates are evaluated in this report to help users of water-quality loading data determine which estimation methods best suit their particular application.

  11. Numerical simulation of shock absorbers heat load for semi-active vehicle suspension system

    Directory of Open Access Journals (Sweden)

    Demić Miroslav D.

    2016-01-01

    Full Text Available Dynamic simulation, based on modelling, has a significant role during to the process of vehicle development. It is especially important in the first design stages, when relevant parameters are to be defined. Shock absorber, as an executive part of a semi-active suspension system, is exposed to thermal loads which can lead to its damage and degradation of characteristics. Therefore, this paper attempts to analyze a conversion of mechanical work into heat energy by use of a method of dynamic simulation. The issue of heat dissipation from the shock absorber has not been taken into consideration.

  12. New heating load calculation in practice; Neue Heizlastberechnung in der Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Kroeber, C [REHAU AG und Co., REHAU-Akademie, Erlangen (Germany)

    2004-07-01

    First the heating demand/standard heat load of the building is calculated related to DIN 4701 and than by DIN EN 12831. The topic is to considerate not new formulas and calculation steps but looking on the results of the calculation and discussing it. (GL) [German] Am Beispiel eines Mehrfamilienhauses soll dieser Frage auf den Grund gegangen werden. Dazu wird der Norm-Waermebedarf/die Norm-Heizlast des Gebaeudes zuerst nach DIN 4701 und dann nach DIN EN 12831 berechnet. Dabei liegt der Schwerpunkt der Betrachtung nicht auf den neuen Berechnungsansaetzen und Formeln, sondern vielmehr auf der Betrachtung der Berechnungsergebnisse. (orig.)

  13. Potentials of heat recovery from 850C LEP cooling water

    International Nuclear Information System (INIS)

    Koelling, M.

    1982-06-01

    Most of the cooling water from LEP has a too low temperature (30 to 40 0 C) to be considered for economical recovery of energy. However, it is hoped that the heat from the klystrons be removed at a temperature of 85 0 C and that this part of the LEP cooling water might be used for saving primary energy. In this study different possibilities have been investigated to make use of the waste heat for heating purposes during winter time, for saving energy in the refrigeration process in summer and for power generation. Cost estimates for these installations are also given and show their economic drawbacks. (orig.)

  14. Measuring the Heat Load on the Flight ASTRO-H Soft Xray Spectrometer Dewar

    Science.gov (United States)

    DiPirro, M.; Shirron, P.; Yoshida, S.; Kanao, K.; Tsunematsu, S.; Fujimoto, R.; Sneiderman, G.; Kimball, M.; Ezoe, Y.; Ishikawa, K.; hide

    2015-01-01

    The Soft Xray Spectrometer (SXS) instrument on-board the ASTRO-H X-ray mission is based on microcalorimeters operating at 50 mK. Low temperature is achieved by use of an adiabatic demagnetization refrigerator (ADR) cyclically operating up to a heat sink at either 1.2 K or 4.5 K. The 1.2 K heat sink is provided by a 40 liter superfluid helium dewar. The parasitic heat to the helium from supports, plumbing, wires, and radiation, and the cyclic heat dumped by the ADR operation determine the liquid helium lifetime. To measure this lifetime we have used various techniques to rapidly achieve thermal equilibrium and then measure the boil-off rate of the helium. We have measured a parasitic heat of 650 microwatts and a cyclic heat of 100 microwatts for a total of 750 microwatts. This closely matches the predicted heat load. Starting with a fill level at launch of more than 33 liters results in a lifetime of greater than 4 years for the liquid helium. The techniques and accuracy for this measurement will be explained in this paper.

  15. High-heat-load monochromator options for the RIXS beamline at the APS with the MBA lattice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zunping, E-mail: zpliu@anl.gov; Gog, Thomas, E-mail: gog@aps.anl.gov; Stoupin, Stanislav A.; Upton, Mary H.; Ding, Yang; Kim, Jung-Ho; Casa, Diego M.; Said, Ayman H.; Carter, Jason A.; Navrotski, Gary [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439 (United States)

    2016-07-27

    With the MBA lattice for APS-Upgrade, tuning curves of 2.6 cm period undulators meet the source requirements for the RIXS beamline. The high-heat-load monochromator (HHLM) is the first optical white beam component. There are four options for the HHLM such as diamond monochromators with refrigerant of either water or liquid nitrogen (LN{sub 2}), and silicon monochromators of either direct or indirect cooling system. Their performances are evaluated at energy 11.215 keV (Ir L-III edge). The cryo-cooled diamond monochromator has similar performance as the water-cooled diamond monochromator because GaIn of the Cu-GaIn-diamond interface becomes solid. The cryo-cooled silicon monochromators perform better, not only in terms of surface slope error due to thermal deformation, but also in terms of thermal capacity.

  16. Experimental study on fouling in the heat exchangers of surface water heat pumps

    International Nuclear Information System (INIS)

    Bai, Xuelian; Luo, Te; Cheng, Kehui; Chai, Feng

    2014-01-01

    Fouling in the heat exchangers plays a key role on the performance of surface water heat pumps. It is also the basement for the system design criteria and operation energy efficiency. In this paper, experimental measurements are performed both in the field and the laboratory with different water qualities, temperatures and velocities. The research will focus on the dynamic growth characteristics of fouling and its main components. By studying the variation rules of fouling resistance, the fouling resistance allowance for certain water condition is recommended. Furthermore, a fouling prediction model in surface water heat pump will be developed and validated based on elaborating with fouling principle under specified water conditions. - Highlights: • Field and laboratory experiments are taken to measure the fouling variation. • Fouling growth process can be divided into four stages. • We recommend fouling resistance allowances for certain conditions. • A fouling prdiction model is developed and validated

  17. Status of the ITER full-tungsten divertor shaping and heat load distribution analysis

    International Nuclear Information System (INIS)

    Carpentier-Chouchana, S; Hirai, T; Escourbiac, F; Durocher, A; Fedosov, A; Ferrand, L; Kocan, M; Kukushkin, A S; Jokinen, T; Komarov, V; Lehnen, M; Merola, M; Mitteau, R; Pitts, R A; Sugihara, M; Firdaouss, M; Stangeby, P C

    2014-01-01

    In September 2011, the ITER Organization (IO) proposed to begin operation with a full-tungsten (W) armoured divertor, with the objective of taking a decision on the final target material (carbon fibre composite or W) by the end of 2013. This period of 2 years would enable the development of a full-W divertor design compatible with nuclear operations, the investigation of further several physics R and D aspects associated with the use of W targets and the completion of technology qualification. Beginning with a brief overview of the reference heat load specifications which have been defined for the full-W engineering activity, this paper will report on the current status of the ITER divertor shaping and will summarize the results of related three-dimensional heat load distribution analysis performed as part of the design validation. (paper)

  18. Tungsten erosion under plasma heat loads typical for ITER type I Elms and disruptions

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine)]. E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Byrka, O.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Landman, I.S. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Makhlaj, V.A. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Marchenko, A.K. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Solyakov, D.G. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Tereshin, V.I. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Trubchaninov, S.A. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Tsarenko, A.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine)

    2005-03-01

    The behavior of pure sintered tungsten under repetitive plasma heat loads of {approx}1 MJ/m{sup 2} (which is relevant to ITER ELMs) and 25 MJ/m{sup 2} (ITER disruptions) is studied with the quasi-steady-state plasma accelerator QSPA Kh-50. The ELM relevant heat loads have resulted in formation of two kinds of crack networks, with typical sizes of 10-20 {mu}m and {approx}1 mm, at the surface. Tungsten preheating to 600 deg. C indicates that fine intergranular cracks are probably caused by thermal stresses during fast resolidification of the melt, whereas large cracks are the result of ductile-to-brittle transition. For several hundreds of ELM-like exposures, causing surface melting, the melt motion does not dominate the profile of the melt spot. The disruption relevant experiments demonstrated that melt motion became the main factor of tungsten damage.

  19. An Optimal Control Approach for an Overall Cryogenic Plant Under Pulsed Heat Loads

    CERN Document Server

    Gómez Palacin, Luis; Blanco Viñuela, Enrique; Maekawa, Ryuji; Chalifour, Michel

    2015-01-01

    This work deals with the optimal management of a cryogenic plant composed by parallel refrigeration plants, which provide supercritical helium to pulsed heat loads. First, a data reconciliation approach is proposed to estimate precisely the refrigerator variables necessary to deduce the efficiency of each refrigerator. Second, taking into account these efficiencies, an optimal operation of the system is proposed and studied. Finally, while minimizing the power consumption of the refrigerators, the control system maintains stable operation of the cryoplant under pulsed heat loads. The management of the refrigerators is carried out by an upper control layer, which balances the relative production of cooling power in each refrigerator. In addition, this upper control layer deals with the mitigation of malfunctions and faults in the system. The proposed approach has been validated using a dynamic model of the cryoplant developed with EcosimPro software, based on first principles (mass and energy balances) and the...

  20. Erosion simulation of first wall beryllium armour after ITER transient heat loads and runaway electrons action

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B., E-mail: boris.bazylev@kit.edu [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Igitkhanov, Yu.; Landman, I.; Pestchanyi, S. [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Loarte, A. [ITER Organisation, Cadarache, 13108 Saint Paul Lez Durance Cedex (France)

    2011-10-01

    Beryllium is foreseen as plasma facing armour for the first wall (FW) in ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) and runaway electrons impact are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting, evaporation, and melt motion, which determine the life-time of the plasma facing components. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the J x B forces are analyzed for bulk Be and different sizes of Be-brushes. The damage of the FW due to heat loads caused by runaway electrons is numerically simulated.

  1. Erosion simulation of first wall beryllium armour after ITER transient heat loads and runaway electrons action

    International Nuclear Information System (INIS)

    Bazylev, B.; Igitkhanov, Yu.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2011-01-01

    Beryllium is foreseen as plasma facing armour for the first wall (FW) in ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) and runaway electrons impact are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting, evaporation, and melt motion, which determine the life-time of the plasma facing components. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the J x B forces are analyzed for bulk Be and different sizes of Be-brushes. The damage of the FW due to heat loads caused by runaway electrons is numerically simulated.

  2. Water and heat balances in Doñana wetlands

    Directory of Open Access Journals (Sweden)

    A. Ramos-Fuertes

    2016-10-01

    Full Text Available This paper presents the main results of the study of water balance and surface heat balance in the Doñana marshlands. The study was based on a broad base of hydrometeorological data taken at 10 minute intervals from 2006 to 2011 by a network of six measuring stations located in areas of vegetation-free marsh. This information is used to characterize, at different time scales, the thermal behavior of the marsh by analyzing its hydrometeorology centering on the surface heat fluxes. Thus, we have modeled and analyzed the heat flux between the water and flooded soil and the processes of heat transfer between the water surface and the atmosphere. Special attention has been paid to evaporation, on which the marsh draining process depends.

  3. Experimental investigate of heat transfer for graphene/water nanofluid in micro heat exchanger

    Science.gov (United States)

    Abd Elhafez, S. E.; Abo-Zahhad, E. M.; El-Shazly, A. H.; El-Kady, M. F.

    2017-02-01

    In this investigation, the heat transfer characteristics of graphene nano platelets (GNPs)/water nanofluid were studied in a micro heat exchanger (MHE). The micro heat exchanger performance was also examined. The test setup was worked out in the laminar regime with Reynold numbers varying between 100 and 400GNPs/water nanofluid was prepared three different concentrations (0.025 wt. %, 0.05 wt. % and 0.1 wt. %) using ultrasonic wave. The influence of mass flow rate, inlet temperatures and weight fraction on the overall heat transfer coefficient (U) and logarithmic mean temperature (LMTD) were examined. The results showed considerable enhancement on the overall heat transfer coefficient of graphene/water nanofluid and the MHE effectiveness. A maximum enhancement on overall heat transfer coefficient was reached to 150% at Re=100 by 0.1wt% nanofluid. The effectiveness of micro heat exchanger was enhanced by increase weight fraction of graphene nanoparticle. Moreover, the experimental results showed that 0.1 wt. % GNPs/water nanofluid, flowing through MHE, has had high pressure drop, and pumping power, when it has been compared with 0.5 wt. % and 0.025 wt.%.

  4. Heating and Domestic Hot Water Systems in Buildings Supplied by Low-Temperature District Heating

    DEFF Research Database (Denmark)

    Brand, Marek

    solutions simply redirect the bypassed water back to the DH network without additional cooling, but bypassed water can instead be redirected to floor heating in the bathroom to be further cooled and thus reduce heat loss from the DH network while improving comfort for occupants and still ensure fast DHW...... increased risk of Legionella if the DH substation and DHW system are designed for the low-temperature supply conditions. To ensure the fast provision of DHW during non-heating periods, the supply service pipe should be kept warm, preferably with the bypass solution redirecting the bypass flow to bathroom...... temperature. To accord with the literature, the modelling of internal heat gains reflected the improved efficiency of equipment by reduction of value from 5W/m2 to 4.2W/m2, also modelled as intermittent heat gains based on a realistic week schedule. Furthermore, the indoor set-point temperature was increased...

  5. Laser re-melting of tungsten damaged by transient heat loads

    Czech Academy of Sciences Publication Activity Database

    Loewenhoff, Th.; Linke, J.; Matějíček, Jiří; Rasinski, M.; Vostřák, M.; Wirtz, M.

    2016-01-01

    Roč. 9, December (2016), s. 165-170 ISSN 2352-1791. [International Conference of Fusion Reactor Material (ICFRM-17) /17./. Aachen, 11.10.2015-16.10.2015] R&D Projects: GA ČR(CZ) GA14-12837S Institutional support: RVO:61389021 Keywords : Plasma facing material * Laser surface remelting * Transient heat load * Tungsten Subject RIV: JG - Metallurgy http://dx.doi.org/10.1016/j.nme.2016.04.004

  6. Ion orbit modelling of ELM heat loads on ITER divertor vertical targets.

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Carpentier-Chouchana, S.; Dejarnac, Renaud; Escourbiac, F.; Hirai, T.; Komm, Michael; Kukushkin, A.; Panayotis, S.; Pitts, R.A.

    2017-01-01

    Roč. 12, August (2017), s. 75-83 ISSN 2352-1791. [International Conference on Plasma Surface Interactions 2016, PSI2016 /22./. Roma, 30.05.2016-03.06.2016] Institutional support: RVO:61389021 Keywords : ITER * Divertor * ELM heat loads Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) http://www.sciencedirect.com/science/article/pii/S2352179116302745

  7. Erosion dynamics of tungsten fuzz during ELM-like heat loading

    Science.gov (United States)

    Sinclair, G.; Tripathi, J. K.; Hassanein, A.

    2018-04-01

    Transient heat loading and high-flux particle loading on plasma facing components in fusion reactors can lead to surface melting and possible erosion. Helium-induced fuzz formation is expected to exacerbate thermal excursions, due to a significant drop in thermal conductivity. The effect of heating in edge-localized modes (ELMs) on the degradation and erosion of a tungsten (W) fuzz surface was examined experimentally in the Ultra High Flux Irradiation-II facility at the Center for Materials Under Extreme Environment. W foils were first exposed to low-energy He+ ion irradiation at a fluence of 2.6 × 1024 ions m-2 and a steady-state temperature of 1223 K. Then, samples were exposed to 1000 pulses of ELM-like heat loading, at power densities between 0.38 and 1.51 GW m-2 and at a steady-state temperature of 1223 K. Comprehensive erosion analysis measured clear material loss of the fuzz nanostructure above 0.76 GW m-2 due to melting and splashing of the exposed surface. Imaging of the surface via scanning electron microscopy revealed that sufficient heating at 0.76 GW m-2 and above caused fibers to form tendrils to conglomerate and form droplets. Repetitive thermal loading on molten surfaces then led to eventual splashing. In situ erosion measurements taken using a witness plate and a quartz crystal microbalance showed an exponential increase in mass loss with energy density. Compositional analysis of the witness plates revealed an increase in the W 4f signal with increasing energy density above 0.76 GW m-2. The reduced thermal stability of the fuzz nanostructure puts current erosion predictions into question and strengthens the importance of mitigation techniques.

  8. Influenced prior loading on the creep fatigue damage accumulation of heat resistant steels

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Scholz, A.

    1990-01-01

    On two heat resistant power plant steels the influence of prior strain cycling on the creep rupture behaviour and the influence of prior creep loading on the strain cycling behaviour is investigated. These influences concern the number of cycles to failure and the rupture time being the reference values of the generalized damage accumulation rule and they are used for a creep fatigue analysis of the results of long term service-type strain cycling tests. (orig.) [de

  9. Thermal simulation of different construction types in six climatic regions on heating and cooling loads

    CSIR Research Space (South Africa)

    Kumirai, T

    2012-10-01

    Full Text Available reduces its heating and cooling loads the most. 3. Applying both roof and ceiling insulation should always be avoided. 4. Building insulation is an effective intervention in all climatic regions. 5. Slightly increasing the thermal mass of a wall... were designed to evaluate the following: ? Case A ? base case ? Case B ? insulated walls ? Case C ? insulated walls and insulated ceiling ? Case D ? insulated walls, insulated ceiling and roof ? Case E ? increased thermal mass wall and insulated...

  10. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    International Nuclear Information System (INIS)

    Benafan, O.; Padula, S. A.; Skorpenske, H. D.; An, K.; Vaidyanathan, R.

    2014-01-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel ® 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ∼1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes

  11. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Benafan, O., E-mail: othmane.benafan@nasa.gov [NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio 44135 (United States); Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, Florida 32816 (United States); Padula, S. A. [NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio 44135 (United States); Skorpenske, H. D.; An, K. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Vaidyanathan, R. [Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, Florida 32816 (United States)

    2014-10-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel{sup ®} 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ~1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.

  12. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norfolk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norfolk, CT (United States)

    2016-02-05

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publically available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(TM), A.O. Smith Voltex(R), and Stiebel Eltron Accelera(R) 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  13. The Droplets Condensate Centering in the Vapour Channel of Short Low Temperature Heat Pipes at High Heat Loads

    Science.gov (United States)

    Seryakov, A. V.; Shakshin, S. L.; Alekseev, A. P.

    2017-11-01

    The results of experimental studies of the process of condensate microdroplets centering contained in the moving moist vapour in the vapour channel of short heat pipes (HPs) for large thermal loads are presented. A vapour channel formed by capillary-porous insert in the form of the inner Laval-liked nozzle along the entire length of the HP. In the upper cover forming a condensation surface in the HP, on the diametrical line are installed capacitive sensors, forming three capacitors located at different distances from the longitudinal axis of the vapour channel. With increasing heat load and the boil beginning in the evaporator a large amount of moist vapour in the vapour channel of HP occur the pressure pulsation with frequency of 400-500 Hz and amplitude up to 1·104Pa. These pulsations affect the moving of the inertial droplets subsystem of the vapour and due to the heterogeneity of the velocity profile around the particle flow in the vapour channel at the diameter of microdroplets occurs transverse force, called the Saffman force and shear microdroplets to the center of vapour channel. Using installed in the top cover capacitors we can record the radial displacement of the condensable microdroplets.

  14. Solar Space and Water Heating for Hospital --Charlottesville, Virginia

    Science.gov (United States)

    1982-01-01

    Solar heating system described in an 86-page report consists of 88 single-glazed selectively-coated baseplate collector modules, hot-water coils in air ducts, domestic-hot-water preheat tank, 3,000 Gallon (11,350-1) concrete urethane-insulated storage tank and other components.

  15. Value Stream Mapping for Evaluation of Load Scheduling Possibilities in a District Heating Plant

    Directory of Open Access Journals (Sweden)

    Raivo Melsas

    2016-09-01

    Full Text Available The aim of this paper is to provide a solution for load scheduling by implementing value stream mapping, which is a straightforward enough for production management. Decision makers in the industry should have a clear understanding about positive effect from load scheduling and its effect to production outcome and process availability. Value stream mapping is a well-known process optimization tool from lean production philosophy. The aim of value stream mapping is to shorten the lead time of industrial processes and to reduce the intermediate stock amounts. By complementing value stream map with process energy intensity and energy stored in intermediate stocks, we can promote load scheduling possibilities. Our methodology provides a tool that is understandable and traceable for industry-minded decision makers. Finally, we present a real life test example for the new methodology, which is based on the production process of a district heating plant.

  16. Titanium tritide radioisotope heat source development: palladium-coated titanium hydriding kinetics and tritium loading tests

    International Nuclear Information System (INIS)

    Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom

    2012-01-01

    We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

  17. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1976-01-01

    Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government-furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.

  18. Heat insulation device for reactor pressure vessel in water

    International Nuclear Information System (INIS)

    Nakamura, Heiichiro; Tanaka, Yoshimi.

    1993-01-01

    Outer walls of a reactor pressure vessel are covered with water-tight walls made of metals. A heat insulation metal material is disposed between them. The water tight walls are joined by welding and flanges. A supply pipeline for filling gases and a discharge pipeline are in communication with the inside of the water tight walls. Further, a water detector is disposed in the midway of the gas discharge pipeline. With such a constitution, the following advantages can be attained. (1) Heat transfer from the reactor pressure vessel to water of a reactor container can be suppressed by filled gases and heat insulation metal material. (2) Since the pressure at the inside of the water tight walls can be equalized with the pressure of the inside of the reactor container, the thickness of the water-tight walls can be reduced. (3) Since intrusion of water to the inside of the walls due to rupture of the water tight walls is detected by the water detector, reactor scram can be conducted rapidly. (4) The sealing property of the flange joint portion is sufficient and detaching operation thereof is easy. (I.S.)

  19. Buoyancy effects in vertical rectangular duct with coplanar magnetic field and single sided heat load

    Science.gov (United States)

    Kostichev, P. I.; Poddubnyi, I. I.; Razuvanov, N. G.

    2017-11-01

    In some DEMO blanket designs liquid metal flows in vertical ducts of rectangular cross-section between ceramic breeder units providing their cooling. Heat exchange in these conditions is governed by the influence of magnetic field (coplanar) and by buoyancy effects that depend on the flow orientation to the gravity vector (downward and upward flow). Magnetohydrodynamic and heat transfer of liquid metal in vertical rectangular ducts is not well researched. Experimental study of buoyancy effects in rectangular duct with coplanar magnetic field for one-sided heat load and downward and upward flowsis presented in this paper. The detail research with has been done on mercury MHD close loop with using of the probe technique allow to discover several advantageous and disadvantageous effects. The intensive impact of buoyancy force has been observed in a few regime of downward flow which has been laminarized by magnetic field. Due to the development in the flow of the secondary large-scale vortices heat transfer improved and the temperature fluctuations of the abnormally high intensity have been fixed. On the contrary, in the upward flow the buoyancy force stabilized the flow which lead to decreasing of the turbulence heat transfer ratio and, consequently, deterioration of heat transfer.

  20. Mitigation of divertor heat loads by strike point sweeping in high power JET discharges

    Science.gov (United States)

    Silburn, S. A.; Matthews, G. F.; Challis, C. D.; Frigione, D.; Graves, J. P.; Mantsinen, M. J.; Belonohy, E.; Hobirk, J.; Iglesias, D.; Keeling, D. L.; King, D.; Kirov, K.; Lennholm, M.; Lomas, P. J.; Moradi, S.; Sips, A. C. C.; Tsalas, M.; Contributors, JET

    2017-12-01

    Deliberate periodic movement (sweeping) of the high heat flux divertor strike lines in tokamak plasmas can be used to manage the heat fluxes experienced by exhaust handling plasma facing components, by spreading the heat loads over a larger surface area. Sweeping has recently been adopted as a routine part of the main high performance plasma configurations used on JET, and has enabled pulses with 30 MW plasma heating power and 10 MW radiation to run for 5 s without overheating the divertor tiles. We present analysis of the effectiveness of sweeping for divertor temperature control on JET, using infrared camera data and comparison with a simple 2D heat diffusion model. Around 50% reduction in tile temperature rise is obtained with 5.4 cm sweeping compared to the un-swept case, and the temperature reduction is found to scale slower than linearly with sweeping amplitude in both experiments and modelling. Compatibility of sweeping with high fusion performance is demonstrated, and effects of sweeping on the edge-localised mode behaviour of the plasma are reported and discussed. The prospects of using sweeping in future JET experiments with up to 40 MW heating power are investigated using a model validated against existing experimental data.

  1. Mitigation of divertor heat loads by strike point sweeping in high power JET discharges

    International Nuclear Information System (INIS)

    Silburn, S A; Matthews, G F; Challis, C D; Belonohy, E; Iglesias, D; Keeling, D L; King, D; Kirov, K; Lomas, P J; Frigione, D; Graves, J P; Mantsinen, M J; Hobirk, J; Lennholm, M; Moradi, S; Sips, A C C; Tsalas, M

    2017-01-01

    Deliberate periodic movement (sweeping) of the high heat flux divertor strike lines in tokamak plasmas can be used to manage the heat fluxes experienced by exhaust handling plasma facing components, by spreading the heat loads over a larger surface area. Sweeping has recently been adopted as a routine part of the main high performance plasma configurations used on JET, and has enabled pulses with 30 MW plasma heating power and 10 MW radiation to run for 5 s without overheating the divertor tiles. We present analysis of the effectiveness of sweeping for divertor temperature control on JET, using infrared camera data and comparison with a simple 2D heat diffusion model. Around 50% reduction in tile temperature rise is obtained with 5.4 cm sweeping compared to the un-swept case, and the temperature reduction is found to scale slower than linearly with sweeping amplitude in both experiments and modelling. Compatibility of sweeping with high fusion performance is demonstrated, and effects of sweeping on the edge-localised mode behaviour of the plasma are reported and discussed. The prospects of using sweeping in future JET experiments with up to 40 MW heating power are investigated using a model validated against existing experimental data. (paper)

  2. Current Status and Performance Tests of Korea Heat Load Test Facility KoHLT-EB

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sukkwon; Jin, Hyunggon; Shin, Kyuin; Choi, Boguen; Lee, Eohwak; Yoon, Jaesung; Lee, Dongwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Duckhoi; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A commissioning test has been scheduled to establish the installation and preliminary performance experiments of the copper hypervapotron mockups. And a qualification test will be performed to evaluate the CuCrZr duct liner in the ITER neutral beam injection facility and the ITER first wall small-scale mockups of the semi-prototype, at up to 1.5 and 5 MW/m{sup 2} high heat flux. Also, this system will be used to test other PFCs for ITER and materials for tokamak reactors. Korean high heat flux test facility(KoHLT-EB; Korea Heat Load Test facility - Electron Beam) by using an electron beam system has been constructed in KAERI to perform the qualification test for ITER blanket FW semi-prototype mockups, hypervapotron cooling devices in fusion devices, and other ITER plasma facing components. The commissioning and performance tests with the supplier of e-gun system have been performed on November 2012. The high heat flux test for hypervapotron cooling device and calorimetry were performed to measure the surface heat flux, the temperature profile and cooling performance. Korean high heat flux test facility for the plasma facing components of nuclear fusion machines will be constructed to evaluate the performance of each component. This facility for the plasma facing materials will be equipped with an electron beam system with a 60 kV acceleration gun.

  3. The cryogenic cooling program in high-heat-load optics at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Rogers, C.S.

    1993-07-01

    This paper describes some of the aspects of the cryogenic optics program at the Advanced Photon Source (APS). A liquid-nitrogen-cooled, high-vacuum, double crystal monochromator is being fabricated at Argonne National Laboratory (ANL). A pumping system capable of delivering a variable flow rate of up to 10 gallons per minute of pressurized liquid nitrogen and removing 5 kilowatts of x-ray power is also being constructed. This specialized pumping system and monochromator will be used to test the viability of cryogenically cooled, high-heat-load synchrotron optics. It has been determined that heat transfer enhancement will be required for optics used with APS insertion devices. An analysis of a porous-matrix-enhanced monochromator crystal is presented. For the particular case investigated, a heat transfer enhancement factor of 5 to 6 was calculated

  4. Engineering for high heat loads on ALS [Advanced Light Source] beamlines

    International Nuclear Information System (INIS)

    DiGennaro, R.; Swain, T.

    1989-08-01

    This paper discussed general thermal engineering problems and specific categories of thermal design issues for high photon flux beam lines at the LBL Advanced Light Source: thermal distortion of optical surfaces and elevated temperatures of thermal absorbers receiving synchrotron radiation. A generic design for water-cooled heat absorbers is described for use with ALS photon shutters, beam defining apertures, and heat absorbing masks. Also, results of in- situ measurements of thermal distortion of a water-cooled mirror in a synchrotron radiation beam line are compared with calculated performance estimates. 17 refs., 2 figs

  5. Experimental analysis of an air–water heat pump with micro-channel heat exchanger

    International Nuclear Information System (INIS)

    Brignoli, Riccardo; Cecchinato, Luca; Zilio, Claudio

    2013-01-01

    A multi-port extruded (MPE) aluminium flat tube air heat exchanger was compared to a round tube finned coil (FC). The MPE heat exchanger has parallel flow vertical tube configuration with headers in horizontal position and conventional folded louvred fins. The two heat exchangers were mounted on a 10 kW cooling capacity R410A packaged air heat pump. They were sized to approximately obtain the same cooling and heating capacities in chiller and heating mode, respectively. Climatic room steady state tests without frosting phenomena occurring during heat pump operation, demonstrated that the round tube and the flat tube heat exchanger performance are comparable. The MPE heat exchanger was tested with different refrigerant inlet distributor/outlet tubes configurations to investigate the effect of liquid refrigerant distribution. Cycling frosting/defrosting operations were tested with two equivalent machines placed in parallel outdoor and working at full load condition, one of the units was equipped with the MPE heat exchanger while the other mounted a standard finned coil. Penalization factors were analytically introduced to evaluate frosting associated heating energy and energy efficiency degradation. Test results indicate that both the heat pumps are penalized by frost formation but both the penalization factors are higher for the MPE-unit than the FC-unit one in the −6 to 4 °C air dry bulb temperature range. For the two units, a roughly linear dependence of the heating energy penalization factor and of the energy efficiency factor from the difference between outdoor air and saturated air at the evaporation temperature humidity ratio can be pointed out. - Highlights: ► A multi-port aluminium flat tube heat exchanger was compared to a round tube finned one in a heat pump application. ► In steady state tests without frosting the round and the flat tube heat exchanger are comparable. ► Different inlet distributor/outlet tubes configurations were tested to

  6. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Raha, A.; Srivastava, A.; Rao, I.S.; Majumdar, M.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2μS/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are

  7. Studies on representative disruption scenarios, associated electromagnetic and heat loads and operation window in ITER

    International Nuclear Information System (INIS)

    Fujieda, Hirobumi; Shimada, Michiya; Kawano, Yasunori; Ohmori, Junji; Neyatani, Yuzuru; Sugihara, Masayoshi; Gribov, Yuri; Ioki, Kimihiro; Khayrutdinov, Rustan; Lukash, Victor

    2007-07-01

    The impacts of plasma disruptions on ITER have been investigated in detail to confirm the robustness of the design of the machine to the potential consequential loads. The loads include both electromagnetic (EM) and heat loads on the in-vessel components and the vacuum vessel (VV). Several representative disruption scenarios are specified based on newly derived physics guidelines for the shortest current quench time as well as the maximum product of halo current fraction and toroidal peaking factor arising from disruptions in ITER. Disruption simulations with the DINA code and EM load analyses with a 3D finite element method (FEM) code are performed for these scenarios. Some margins are confirmed in the EM load on in-vessel components due to induced eddy and halo currents for these representative scenarios. However, the margins are not very large. The heat load on various parts of the first wall due to the vertical movement and the thermal quench (TQ) is calculated with a 2D heat conduction code based on the database of heat deposition during disruptions and simulation results with the DINA code. It is found that the beryllium (Be) wall will not melt during the vertical movement. Significant melting is anticipated for the upper Be wall and tungsten divertor baffle due to the TQ after the vertical movement. However, its impact could be substantially mitigated by implementing a reliable detection system of the vertical movement and a mitigation system, e.g., massive noble gas injection (MGI). Some melting of the upper Be wall is anticipated at major disruptions (MD). At least several tens of unmitigated disruptions must be considered even if an advanced prediction/mitigation system is implemented. With these unmitigated disruptions, the loss of Be layer is expected to be within approx. = 30-100 μm/event out of 10 mm thick Be first wall. Various post processing programs of the results simulated with the DINA code, which are developed for the design work, are

  8. Performance of commercially available solar and heat pump water heaters

    International Nuclear Information System (INIS)

    Lloyd, C.R.; Kerr, A.S.D.

    2008-01-01

    Many countries are using policy incentives to encourage the adoption of energy-efficient hot water heating as a means of reducing greenhouse gas emissions. Such policies rely heavily on assumed performance factors for such systems. In-situ performance data for solar and heat pump hot water systems, however, are not copious in the literature. Otago University has been testing some systems available in New Zealand for a number of years. The results obtained are compared to international studies of in-situ performance of solar hot water systems and heat pump hot water systems, by converting the results from the international studies into a single index suitable for both solar and heat pump systems (COP). Variability in the international data is investigated as well as comparisons to model results. The conclusions suggest that there is not too much difference in performance between solar systems that have a permanently connected electric boost backup and heat pump systems over a wide range of environmental temperatures. The energy payback time was also calculated for electric boost solar flat plate systems as a function of both COP and hot water usage for a given value of embodied energy. The calculations generally bode well for solar systems but ensuring adequate system performance is paramount. In addition, such systems generally favour high usage rates to obtain good energy payback times

  9. The scientific base of heating water by microwave

    Energy Technology Data Exchange (ETDEWEB)

    Akdoğan, Ender, E-mail: ender.akdogan@tpe.gov.tr [Department of Physics Engineering, Ankara University, Dögol St. Tandoğan Ankara 06560 Türkiye (Turkey); Çiftçi, Muharrem, E-mail: muharrem-ciftci@windowslive.com [Author" 1 Department of Physics, Ankara University, Dögol St. Tandoğan Ankara 06560 Türkiye (Turkey)

    2016-03-25

    This article is based on the master thesis [4] related to our invention which was published in World Intellectual Property Organization (WO/2011/048506) as a microwave water heater. In the project, a prototype was produced to use microwave in industrial heating. In order to produce the prototype, the most appropriate material kind for microwave-water experiments was determined by a new energy loss rate calculation technique. This new energy loss calculation is a determinative factor for material permeability at microwave frequency band (1-100 GHz). This experimental series aim to investigate the rationality of using microwave in heating industry. Theoretically, heating water by microwave (with steady frequency 2.45 GHz) is analyzed from sub-molecular to Classical Mechanic results of heating. In the study, we examined Quantum Mechanical base of heating water by microwave experiments. As a result, we derived a Semi-Quantum Mechanical equation for microwave-water interactions and thus, Wien displacement law can be derived to verify experimental observations by this equation.

  10. Global Anthropogenic Phosphorus Loads to Fresh Water, Grey Water Footprint and Water Pollution Levels: A High-Resolution Global Study

    Science.gov (United States)

    Mekonnen, M. M.; Hoekstra, A. Y. Y.

    2014-12-01

    We estimated anthropogenic phosphorus (P) loads to freshwater, globally at a spatial resolution level of 5 by 5 arc minute. The global anthropogenic P load to freshwater systems from both diffuse and point sources in the period 2002-2010 was 1.5 million tonnes per year. China contributed about 30% to this global anthropogenic P load. India was the second largest contributor (8%), followed by the USA (7%), Spain and Brazil each contributing 6% to the total. The domestic sector contributed the largest share (54%) to this total followed by agriculture (38%) and industry (8%). Among the crops, production of cereals had the largest contribution to the P loads (32%), followed by fruits, vegetables, and oil crops, each contributing about 15% to the total. We also calculated the resultant grey water footprints, and relate the grey water footprints per river basin to runoff to calculate the P-related water pollution level (WPL) per catchment.

  11. Heat pump using dual heat sources of air and water. Performance in cooling mode; Mizu kuki ryonetsugen heat pump no kenkyu. Reibo unten ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S; Miura, N [Kanagawa Institute of Technology, Kanagawa (Japan); Uchikawa, Y [Kubota Corp., Osaka (Japan)

    1997-11-25

    When a heat pump is used for cooling purpose, it is possible to utilize different kinds of waste water as high-heat sources. However, these heat sources would have their temperatures vary with seasons and time in a day. Therefore, a discussion was given on performance of a heat pump when water and air heat sources are used for condensers during cooling operation independently, in series and in parallel, respectively. The air condenser shows an equivalent COP as compared with the water condenser when air temperature is lower by about 8 degC than water temperature. At the same heat source temperature, the COP for the water condenser indicated a value higher by about 0.6 than the case of the air condenser. A method to use condensers in parallel experiences little contribution from the air heat source, and performance of the heat pump decreases below the case of using the water heat source independently when the air heat source temperature becomes higher than that of the water heat source. In the case of series use in which a water condenser is installed in front and an air condenser in rear, its effect is exhibited when temperature in the air heat source is lower than that in the water heat source. Better performance was shown than in operating the water heat source independently. 2 refs., 9 figs.

  12. An assessment of solar hot water heating in the Washington, D.C. area - Implications for local utilities

    Science.gov (United States)

    Stuart, M. W.

    1980-04-01

    A survey of residential solar hot water heating in the Washington, D.C. area is presented with estimates of the total solar energy contribution per year. These estimates are examined in relation to a local utility's peak-load curves to determine the impact of a substantial increase in solar domestic hot water use over the next 20 yr in the area of utility management. The results indicate that a 10% market penetration of solar water heaters would have no detrimental effect on the utility's peak-load profile and could save several million dollars in new plant construction costs.

  13. Economic and safety aspects of using moderator heat for feed water heating in a nuclear power plant

    International Nuclear Information System (INIS)

    Patwegar, I.A.; Dutta, Anu; Chaki, S.K.; Venkat Raj, V.

    2002-01-01

    Full text: In the proposed advanced heavy water reactor (AHWR), coolant and moderator are separated by the coolant channel. The coolant absorbs most of the fission heat produced in the reactor core. However, the moderator absorbs about 5 to 6 % of the fission heat. In a reactor producing 750 MW(th) power, this moderator heat is about 40 MW. In the present Indian PHWR (pressurized heavy water reactor) systems, this moderator heat is lost to a sink through the moderator heat exchangers, which are cooled by process water. This paper presents the results of the steam cycle analysis carried out for AHWR using moderator heat exchangers as part of the feed heating system. The present study is an attempt to determine the gain in electrical output (MW) if moderator heat is utilized for feed water heating. The operational and safety aspects of using moderator heat are also discussed in the paper

  14. Configuration of dishwasher to improve energy efficiency of water heating

    Science.gov (United States)

    Gluesenkamp, Kyle R.

    2018-04-24

    A washing machine includes a sealed tub for accepting articles to be washed. A liquid circulation circuit sprays a pressurized liquid (e.g. water, detergent, solvent) around the articles to clean them. The liquid circulation circuit is in thermal contact with a hot side of a thermoelectric device. A heat sink is in thermal contact with both a cold side of the thermoelectric device and a heat sink charging circuit. A liquid is successively directed one or more times through the liquid circulation circuit with the thermoelectric device powered on, and then directed one or more times through the heat sink charging circuit with the thermoelectric device powered off. Finally, the liquid is discharged from the tub after having its temperature lowered by heat exchange to the heat sink.

  15. EPB standard EN ISO 52016: calculation of the building’s energy needs for heating and cooling, internal temperatures and heating and cooling load

    NARCIS (Netherlands)

    Dijk, H.A.L. van; Spiekman, M.E.; Hoes-van Oeffelen, E.C.M.

    2016-01-01

    EN ISO 52016-1 presents a coherent set of calculation methods at different levels of detail, for the (sensible) energy needs for the space heating and cooling and (latent) energy needs (de)humidification of a building and/or internal temperatures and heating and/or cooling loads, including the

  16. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    International Nuclear Information System (INIS)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    This study investigated the performances of five different substation configurations in single-family houses supplied with ULTDH (ultra-low-temperature district heating). The temperature at the heat plant is 46 °C and around 40 °C at the substations. To avoid the proliferation of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic performance of the substations, separate models were built based on standard assumptions. The relative heat and electricity delivered for preparing DHW were calculated. The results showed that substations with storage tanks and heat pumps have high relative electricity demand, which leads to higher integrated costs considering both heat and electricity for DHW preparation. The substations with in-line electric heaters have low relative electricity usage because very little heat is lost due to the instantaneous DHW preparation. Accordingly, the substations with in-line electric heaters would have the lowest energy cost for DHW preparation. To achieve optimal design and operation for the ULTDH substation, the electricity peak loads of the in-line electric heaters were analysed according to different DHW-heating strategies. - Highlights: • Five different substations supplied with ultra-low-temperature district heating were measured. • The relative heat and electricity delivered for DHW preparation were modelled for different substations. • The levelized cost of the five substations in respect of DHW preparation was calculated. • The feasibility of applying instantaneous electric heater with normal power supply was tested.

  17. Flow film boiling heat transfer in water and Freon-113

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Shiotsu, Masahiro; Sakurai, Akira

    2002-01-01

    Experimental apparatus and method for film boiling heat transfer measurement on a horizontal cylinder in forced flow of water and Freon-113 under pressurized and subcooled conditions were developed. The experiments of film boiling heat transfer from single horizontal cylinders with diameters ranging from 0.7 to 5 mm in saturated and subcooled water and Freon-113 flowing upward perpendicular to the cylinders were carried out for the flow velocities ranging from 0 to 1 m/s under system pressures ranging from 100 to 500 kPa. Liquid subcoolings ranged from 0 to 50 K, and the cylinder surface superheats were raised up to 800 K for water and 400 K for Freon-113. The film boiling heat transfer coefficients obtained were depended on surface superheats, flow velocities, liquid subcoolings, system pressures and cylinder diameters. The effects of these parameters were systematically investigated under wider ranges of experimental conditions. It was found that the heat transfer coefficients are higher for higher flow velocities, subcoolings, system pressures, and for smaller cylinder diameters. The observation results of film boiling phenomena were obtained by a high-speed video camera. A new correlation for subcooled flow film boiling heat transfer was derived by modifying authors' correlation for saturated flow film boiling heat transfer with authors' experimental data under wide subcooled conditions. (author)

  18. Costs for heating and hot water more than halved

    International Nuclear Information System (INIS)

    Haag, J.

    2005-01-01

    This article describes how solar technology provides three-quarters of the water-heating energy requirements of a Swiss chalet in Riederalp. Advances in solar heating technology and the reduction of prices over the past few years are discussed. The installation, which uses vacuum-tube collectors that are integrated into the balustrades of the south-facing balconies of the three-storey chalet with holiday apartments, is briefly described. The partial financial support provided by the local authorities is discussed as is the word-of-mouth propaganda triggered off in this mountain resort which has led to increased interest in the combination of solar energy and traditional heating forms

  19. Contact heating of water products of combustion of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Aronov, I Z

    1978-01-01

    The USSR's NIIST examined the processes and equipment for heating water by submerged combustion using natural gas. Written for engineers involved with the design and application of thermal engineering equipment operating with natural gas, the book emphasizes equipment, test results, and methods of calculating heat transfer for contact gas economizers developed by Scientific Research Institute of Sanitary Engineering and other Soviet organizations. The economic effectiveness of submerged-combustion heating depends on several factors, including equipment design. Recommendations cover cost-effective designs and applications of contact economizers and boilers.

  20. Delay of turbulent by surface heating in water

    International Nuclear Information System (INIS)

    Arakeri, V.H.

    1980-01-01

    Boundary layer flow visualization studies in water on a 1.5 cal tangent ogive body with surface heating are reported. Existing laminar boundary layer separation was observed to be eliminated with sufficient surface heating. In addition, transition location was observed to be significantly delayed. With surface temperature difference of about 27 0 C no disturbances in the boundary layer could be detected up to (X/D) = 2.5 as compared to observed transition at about (X/D) = 1.32 under slightly heated conditions. Present observations are found to be in agreement with the theoretical computations of Wazzan et al. in a qualitative sense. (orig.)

  1. Some features of an economical central heating water supply

    International Nuclear Information System (INIS)

    Glaeser, G.

    1990-01-01

    This paper is concerned with the necessary savings of energy and fuel as well as reduction of pollutant emission in the field of central district heat supply. Results of studies on solving these problems are presented. To provide thermal power based on heating water essential features of the district heating system in the GDR are outlined and advantages, resources and limits of specific solutions quantified. Finally, selected systems are evaluated as to energy and cost expenses, and some conclusions are drawn for future concepts. (author)

  2. Supercritical water gasification with decoupled pressure and heat transfer modules

    KAUST Repository

    Dibble, Robert

    2017-09-14

    The present invention discloses a system and method for supercritical water gasification (SCWG) of biomass materials wherein the system includes a SCWG reactor and a plurality of heat exchangers located within a shared pressurized vessel, which decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed and fabricated in manner that would support commercial scaled-up SCWG operations. By using heat exchangers coupled to the reactor in a series configuration, significant efficiencies are achieved by the present invention SCWG system over prior known SCWG systems.

  3. Economic feasibility of solar water and space heating.

    Science.gov (United States)

    Bezdek, R H; Hirshberg, A S; Babcock, W H

    1979-03-23

    The economic feasibility in 1977 and 1978 of solar water and combined water and space heating is analyzed for single-family detached residences and multi-family apartment buildings in four representative U.S. cities: Boston, Massachusetts; Washington, D.C.; Grand Junction, Colorado; and Los Angeles, California. Three economic decision criteria are utilized: payback period, years to recovery of down payment, and years to net positive cash flow. The cost competitiveness of the solar systems compared to heating systems based on electricity, fuel oil, and natural gas is then discussed for each city, and the impact of the federal tax credit for solar energy systems is assessed. It is found that even without federal incentives some solar water and space heating systems are competitive. Enactment of the solar tax credit, however, greatly enhances their competitiveness. The implications of these findings for government tax and energy pricing policies are discussed.

  4. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  5. Mass transfer experiments for the heat load during in-vessel retention of core melt

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Kyun; Chung, Bum Jin [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of)

    2016-08-15

    We investigated the heat load imposed on the lower head of a reactor vessel by the natural convection of the oxide pool in a severe accident. Mass transfer experiments using a CuSO{sub 4}–H{sub 2}SO{sub 4} electroplating system were performed based on the analogy between heat and mass transfer. The Ra′{sub H} of 10{sup 14} order was achieved with a facility height of only 0.1 m. Three different volumetric heat sources were compared; two had identical configurations to those previously reported, and the other was designed by the authors. The measured Nu's of the lower head were about 30% lower than those previously reported. The measured angular heat flux ratios were similar to those reported in existing studies except for the peaks appearing near the top. The volumetric heat sources did not affect the Nu of the lower head but affected the Nu of the top plate by obstructing the rising flow from the bottom.

  6. Nuclear boiling heat transfer and critical heat flux in titanium dioxide-water nanofluids

    International Nuclear Information System (INIS)

    Okawa, Tomio; Takamura, Masahiro; Kamiya, Takahito

    2011-01-01

    Nucleate boiling heat transfer was experimentally studied for saturated pool boiling of water-based nanofluids. Since significant nanoparticle deposition on the heated surface was observed after the nucleate boiling in nanofluids, measurement of CHF was also carried out using the nanoparticle deposited heated surface; pure water was used in the CHF measurement. In the present work, the heated surface was a 20 mm diameter cupper surface, and titanium-dioxide was selected as the material of nanoparticles. Experiments were performed for upward- and downward-facing surfaces. Although the CHFs for the downward-facing surface were generally lower than those for the upward-facing surface, the CHFs for the nanoparticle deposited surface were about 1.9 times greater than those for the bare surface in both the configurations. The CHF improvement corresponded well to the reduction of the surface contact angle. During the nucleate boiling in nanofluids, the boiling heat transfer showed peculiar behavior; it was first deteriorated, then improved, and finally approached to an equilibrium state. This observation indicated that the present nanofluid had competing effects to deteriorate and improve the nucleate boiling heat transfer. It was assumed that the wettability and the roughness of the heated surface were influenced by the deposited nanoparticles to cause complex variation of the number of active nucleation sites. During the nucleate boiling of pure water using the downward-facing surface, a sudden increase in the wall temperature was observed stochastically probably due to the accumulation of bubbles beneath the heated surface. Such behavior was not observed when the pure water was replaced by the nanofluid. (author)

  7. Experimental investigation of water sprayed finned heat exchanger tube bundles

    International Nuclear Information System (INIS)

    Sommer, A.

    1987-07-01

    Experimental investigations have been made to study the performance of two finned tube-bundle heat exchangers (FORGO type) when wetted by water sprays. The heat exchangers are designed to cool water in a dry cooling tower. The test-elements had a frontal area of 1 m 2 . The water sprays were created by 20 nozzles, 200 mm in front of the heat exchangers. Air velocities at the inlet of the coolers were in the range 0,8 m/s to 12 m/s and initial temperature differences ITD reached 45 degrees C. The test facility was designed to determine the combined latent and sensible heat fluxes in the wetted heat exchanger, the airside pressure drop and the air humidity and temperature at the exchanger inlet and outlet, and to measure the weight of the water wetting the cooler's surface. The sprayed test elements were investigated in different positions, but most of the experiments were carried out in the position with the fins horizontal

  8. Federal technology alert. Parabolic-trough solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  9. Behaviour of candidate materials for fusion applications under high surface heat loads

    International Nuclear Information System (INIS)

    Bolt, H.; Nickel, H.; Kuroda, T.; Miyahara, A.

    1988-07-01

    High heat fluxes to in-vessel components of nuclear fusion devices (tokamaks) during normal operation and abnormal operation conditions are one of the governing issues in the selection of a plasma facing material and the design of first wall components. Their failure under high heat loads during service can severely influence the further operability of the entire fusion device. In order to determine the response of candidate materials to high heat fluxes an experimental program was carried out using the 10 MW Neutral Beam Injection Test Stand of the Institute for Plasma Physics of Nagoya University. Metal samples, 13 different fine grain graphites, carbon - carbon composites, and pyrolytic carbon samples were subjected to heat loads between 16 and 117 MW/m 2 and pulse durations of 50 to 950 ms. Afterwards the resulting structural changes as well as threshold values for the occurance of material damage were determined. The main damage observed on carbon materials was cracking in the case of graphites and pyrolytic carbon and erosion in the case of graphites and carbon - carbon composites. Processes leading to such damage were discussed and described in form of models. Parallel to these laboratory experiments numerical analyses of the response of graphite materials to high heat fluxes were carried out. The results are in general agreement with the experimentally determined values. In order to verify the results from experiments and numerical analyses, graphite test limiters were exposed to about 900 discharges in the JIPP T-IIU tokamak. These proof tests fully confirmed the results obtained. (orig.) [de

  10. Neurocontrol of Pressurized Water Reactors in Load-Follow Operations

    International Nuclear Information System (INIS)

    Lin Chaung; Shen Chihming

    2000-01-01

    The neurocontrol technique was applied to control a pressurized water reactor (PWR) in load-follow operations. Generalized learning or direct inverse control architecture was adopted in which the neural network was trained off-line to learn the inverse model of the PWR. Two neural network controllers were designed: One provided control rod position, which controlled the axial power distribution, and the other provided the change in boron concentration, which adjusted core total power. An additional feedback controller was designed so that power tracking capability was improved. The time duration between control actions was 15 min; thus, the xenon effect is limited and can be neglected. Therefore, the xenon concentration was not considered as a controller input variable, which simplified controller design. Center target strategy and minimum boron strategy were used to operate the reactor, and the simulation results demonstrated the effectiveness and performance of the proposed controller

  11. Risk Assessment of Heating, Ventilating, and Air-Conditioning Strategies in Low-Load Homes

    Energy Technology Data Exchange (ETDEWEB)

    Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)

    2016-02-17

    "Modern, energy efficient homes conforming to the Zero Energy Ready Home standard face the challenge of meeting high customer expectations for comfort. Traditional heating, ventilation, and air conditioning (HVAC) sizing and control strategies may be insufficient to adequately condition each zone due to unique load patterns in each room caused by a number of factors. These factors include solar heat gains, occupant-related gains, and gains associated with appliances and electronics. Because of shrinking shell loads, these intermittent factors are having an increasingly significant impact on the thermal load in each zone. Consequently, occupant comfort can be compromised. To evaluate the impact of climate and house geometry, as well as HVAC system and control strategies on comfort conditions, IBACOS analyzed the results of 99 TRNSYS multiple-zone simulations. The results of this analysis indicate that for simple-geometry and single-story plans, a single zone and thermostat can adequately condition the entire house. Demanding house geometry and houses with multiple stories require the consideration of multiple thermostats and multiple zones.

  12. Saturated flow boiling heat transfer in water-heated vertical annulus

    International Nuclear Information System (INIS)

    Sun Licheng; Yan Changqi; Sun Zhonning

    2005-01-01

    This paper describes the saturated flow boiling heat transfer characteristics of water at 1 atm and low velocities in water-heated vertical annuli with equivalent diameters of 10 mm and 6 mm. Test section is consisted of two concentric circular tubes outer of which is made of quartz, so the whole test courses can be visualized. There are three main flow patterns of bubble flow, churn flow and churn-annular flow in the annuli, most important of which is churn flow. Flooding is the mechanism of churn flow and churn can enhance the heat transport between steam and water; Among the three factors of mass flux, inlet subcooling and annulus width, the last one has great effect on heat transport, moderately decreasing the annulus width can enhance the heat transfer; Combined annular flow model with theory of flooding and turbulent Prandtl Number, the numerical value of heat flux is given, the shape of test boiling curve and that of calculated by model is very alike, but there is large discrepancy between test data and calculated results, the most possible reason is that some parameters given by fluid flooding model are based on experimental data of common circular tubes, but not of annuli. Doing more research on flooding in annulus, particularly narrow annulus, is necessary for calculating the saturated boiling in annulus. (authors)

  13. Turbulent heat transfer for heating of water in a short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Noda, Nobuaki

    2008-01-01

    The turbulent heat transfer coefficients for the flow velocities (u=4.0 to 21 m/s), the inlet liquid temperatures (T in =296.5 to 353.4 K), the inlet pressures (P in =810 to 1014 kPa) and the increasing heat inputs (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured by an experimental water loop. The Platinum test tubes of test tube inner diameters (d=3, 6 and 9 mm), heated lengths (L=32.7 to 100 mm), ratios of heated length to inner diameter (L/d=5.51 to 33.3) and wall thickness (δ=0.3, 0.4 and 0.5 mm) with surface roughness (Ra=0.40 to 0.78 μm) are used in this work. The turbulent heat transfer data for Platinum test tubes were compared with the values calculated by other workers' correlations for the turbulent heat transfer. The influence of Reynolds number (Re), Prandtl number (Pr), Dynamic viscosity (μ) and L/d on the turbulent heat transfer is investigated into details and, the widely and precisely predictable correlation of the turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data. The correlation can describe the turbulent heat transfer coefficients obtained in this work for the wide range of the temperature difference between heater inner surface temperature and average bulk liquid temperature (ΔT L =5 to 140 K) with d=3, 6 and 9 mm, L=32.7 to 100 mm and u=4.0 to 21 m/s within ±15%, difference. (author)

  14. Turbulent heat transfer for heating of water in a short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Noda, Nobuaki

    2007-01-01

    The turbulent heat transfer coefficients for the flow velocities (u=4.0 to 21 m/s), the inlet liquid temperatures (T in =296.5 to 353.4 K), the inlet pressures (P in =810 to 1014 kPa) and the increasing heat inputs (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured by the experimental water loop. The Platinum test tubes of test tube inner diameters (d=3, 6 and 9 mm), heated lengths (L=32.7 to 100 mm), ratios of heated length to inner diameter (L/d=5.51 to 33.3) and wall thicknesses (δ=0.3, 0.4 and 0.5 mm) with surface roughness (Ra=0.40 to 0.78 μm) are used in this work. The turbulent heat transfer data for Platinum test tubes were compared with the values calculated by other workers' correlations for the turbulent heat transfer. The influences of Reynolds number (Re), Prandtl number (Pr), Dynamic viscosity (μ) and L/d on the turbulent heat transfer are investigated into details and, the widely and precisely predictable correlation of the turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data. The correlation can describe the turbulent heat transfer coefficients obtained in this work for wide range of the temperature difference between heater inner surface temperature and average bulk liquid temperature (ΔT L =5 to 140 K) with d=3, 6 and 9 mm, L=32.7 to 100 mm and u=4.0 to 21 m/s within ±15% difference. (author)

  15. Analysis for Involvement of TPP Operating in Accordance with Heating Schedule to Passing Through Failures of Electric Load Schedules

    Directory of Open Access Journals (Sweden)

    V. I. Nazarov

    2013-01-01

    Full Text Available The paper describes technical and economic evaluation of various methods pertaining to passing through failures of electric load at TPP which is operating in accordance with heating schedule.

  16. Effect of stationary high heat flux and transient ELMs-like heat loads on the divertor PFCs

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, B., E-mail: bruno.riccardi@f4e.europa.eu [Fusion for Energy, ITER Department, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Gavila, P. [Fusion for Energy, ITER Department, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Giniatulin, R. [Efremov Institute, 196641 St. Petersburg (Russian Federation); Kuznetsov, V. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, 142190 Troitsk, Moscow Region (Russian Federation); Rulev, R. [Efremov Institute, 196641 St. Petersburg (Russian Federation); Klimov, N.; Kovalenko, D.; Barsuk, V. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, 142190 Troitsk, Moscow Region (Russian Federation); Koidan, V.; Korshunov, S. [NRC “Kurchatov Institute”, Moscow (Russian Federation)

    2013-10-15

    The experimental evaluation of the divertor plasma facing components (PFCs) lifetime under transient events, such as edge localized modes (ELMs) and high heat flux (HHF) thermal fatigue expected during ITER normal operations and slow transient events is here presented. The experiments have been performed in the frame of an EU/RF collaboration. For carbon fiber composite material the erosion is caused by PAN fiber damage whilst the erosion of tungsten is determined by the melt layer movement and crack formation. The conclusion of this study is that, in addition to the structural change produced in the armor materials by ELMs-like loads, some mock ups showed also a degradation of the thermal fatigue performances.

  17. Simultaneous optimization of water and heat exchange networks

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhiyou; Hou, Yanlong; Li, Xiaoduan; Wang, Jingtao [Tianjin University, Tianjin (China)

    2014-04-15

    This paper focuses on the simultaneous optimization of the heat-integrated water allocation networks. A mathematic model is established to illustrate the modified state-space representation of this problem. An easy logical method is employed to help identify the streams of hot or cold ones. In this model, the water exchange networks (WEN), heat exchange networks (HEN), and the interactions between the WEN and HEN combine together as one unity. Thus, the whole network can be solved at one time, which enhances the possibility to get a global optimal result. Examples from the literature and a PVC plant are analyzed to illustrate the accuracy and applicability of this method.

  18. Core-Sheath Paraffin-Wax-Loaded Nanofibers by Electrospinning for Heat Storage.

    Science.gov (United States)

    Lu, Yuan; Xiao, Xiudi; Zhan, Yongjun; Huan, Changmeng; Qi, Shuai; Cheng, Haoliang; Xu, Gang

    2018-04-18

    Paraffin wax (PW) is widely used for smart thermoregulation materials due to its good thermal performance. However, the leakage and low thermal conductivity of PW hinder its application in the heat storage field. Accordingly, developing effective methods to address these issues is of great importance. In this study, we explored a facile approach to obtain PW-loaded core-sheath structured flexible nanofibers films via coaxial electrospinning technique. The PW as the core layer was successfully encapsulated by the sheath-layer poly(methyl methacrylate). The diameter of the fiber core increased from 395 to 848 nm as the core solution speed rate increased from 0.1 to 0.5 mL/h. In addition, it can be seen that higher core solution speed rate could lead to higher PW encapsulation efficiency according to the transmission electron microscopy results. The core-sheath nanofiber films, moreover, possessed the highest latent heat of 58.25 J/g and solidifying enthalpy of -56.49 J/g. In addition, we found that after 200 thermal cycles, there was little change in latent heat, which demonstrated that it is beneficial for the PW-loaded core-sheath structure to overcome the leakage issue and enhance thermal stability properties for the thermoregulation film.

  19. TOKES studies of the thermal quench heat load reduction in mitigated ITER disruptions

    Directory of Open Access Journals (Sweden)

    S. Pestchanyi

    2017-08-01

    Full Text Available Disruption mitigation by massive gas injection (MGI of Ne gas has been simulated using the 3D TOKES code that includes the injectors of the Disruption Mitigation System (DMS as it will be implemented in ITER. The simulations have been done using a quasi-3D approach, which gives an upper limit for the radiation heat load (notwithstanding possible asymmetries in radial heat flux associated with MHD. The heating of the first wall from the radiation flash has been assessed with respect to injection quantity, the number of injectors, and their location for an H-mode ITER discharge with 280MJ of thermal energy. Simulations for the maximum quantity of Ne (8kPam3 have shown that wall melting can be avoided by using solely the three injectors in the upper ports, whereas shallow melting occurred when the midplane injector had been added. With all four injectors, melting had been avoided for a smaller neon quantity of 250Pam3 that provides still a sufficient radiation level for thermal load mitigation.

  20. Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs

    Science.gov (United States)

    Žuvela-Aloise, Maja; Andre, Konrad; Schwaiger, Hannes; Bird, David Neil; Gallaun, Heinz

    2018-02-01

    The study examines the potential of urban roofs to reduce the urban heat island (UHI) effect by changing their reflectivity and implementing vegetation (green roofs) using the example of the City of Vienna. The urban modelling simulations are performed based on high-resolution orography and land use data, climatological observations, surface albedo values from satellite imagery and registry of the green roof potential in Vienna. The modelling results show that a moderate increase in reflectivity of roofs (up to 0.45) reduces the mean summer temperatures in the densely built-up environment by approximately 0.25 °C. Applying high reflectivity materials (roof albedo up to 0.7) leads to average cooling in densely built-up area of approximately 0.5 °C. The green roofs yield a heat load reduction in similar order of magnitude as the high reflectivity materials. However, only 45 % of roof area in Vienna is suitable for greening and the green roof potential mostly applies to industrial areas in city outskirts and is therefore not sufficient for substantial reduction of the UHI effect, particularly in the city centre which has the highest heat load. The strongest cooling effect can be achieved by combining the green roofs with high reflectivity materials. In this case, using 50 or 100 % of the green roof potential and applying high reflectivity materials on the remaining surfaces have a similar cooling effect.

  1. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    Science.gov (United States)

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-11-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  2. In-situ imaging of tungsten surface modification under ITER-like transient heat loads

    Directory of Open Access Journals (Sweden)

    A.A. Vasilyev

    2017-08-01

    Full Text Available Experimental research on behavior of rolled tungsten plates under intense transient heat loads generated by a powerful (a total power of up to 7 MW long-pulse (0.1–0.3ms electron beam with full irradiation area of 2 cm2 was carried out. Imaging of the sample by the fast CCD cameras in the NIR range and with illumination by the 532nm continuous-wave laser was applied for in-situ surface diagnostics during exposure. In these experiments tungsten plates were exposed to heat loads 0.5–1MJ/m2 with a heat flux factor (Fhf close to and above the melting threshold of tungsten at initial room temperature. Crack formation and crack propagation under the surface layer were observed during multiple exposures. Overheated areas with excessive temperature over surrounding surface of about 500K were found on severely damaged samples more than 5ms after beam ending. The application of laser illumination enables to detect areas of intense tungsten melting near crack edges and crack intersections.

  3. THE INFLUENCE OF REPOSITORY THERMAL LOAD ON MULTIPHASE FLOW AND HEAT TRANSFER IN THE UNSATURATED ZONE OF YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    Yu-Shu Wu; Sumit Mukhopadhyay; Keni Zhang; G.S. Bodvarsson

    2006-01-01

    This paper investigates the impact of proposed repository thermal-loading on mountain-scale flow and heat transfer in the unsaturated fractured rock of Yucca Mountain, Nevada. In this context, a model has been developed to study the coupled thermal-hydrological (TH) processes at the scale of the entire Yucca Mountain. This mountain-scale TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the latest rock thermal and hydrological properties. The TH model consists of a two-dimensional north-south vertical cross section across the entire unsaturated zone model domain and uses refined meshes near and around the proposed repository block, based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climatic conditions. The model simulations provide insights into thermally affected liquid saturation, gas- and liquid-phase fluxes, and elevated water and rock temperature, which in turn allow modelers to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts

  4. The Influence of Proposed Repository Thermal Load on Multiphase Flow and Heat Transfer in the Unsaturated Zone of Yucca Mountain

    International Nuclear Information System (INIS)

    Wu, Y.-S.; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, G.S.

    2006-01-01

    This paper investigates the impact of proposed repository thermal-loading on mountain-scale flow and heat transfer in the unsaturated fractured rock of Yucca Mountain, Nevada. In this context, a model has been developed to study the coupled thermal-hydrological (TH)processes at the scale of the entire Yucca Mountain. This mountain-scale TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the latest rock thermal and hydrological properties. The TH model consists of a two-dimensional north-south vertical cross section across the entire unsaturated zone model domain and uses refined meshes near and around the proposed repository block, based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climatic conditions. The model simulations provide insights into thermally affected liquid saturation, gas- and liquid-phase fluxes, and elevated water and rock temperature, which in turn allow modelers to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts

  5. Heat as a tracer to determine streambed water exchanges

    Science.gov (United States)

    Constantz, J.

    2010-01-01

    This work reviews the use of heat as a tracer of shallow groundwater movement and describes current temperature-based approaches for estimating streambed water exchanges. Four common hydrologic conditions in stream channels are graphically depicted with the expected underlying streambed thermal responses, and techniques are discussed for installing and monitoring temperature and stage equipment for a range of hydrological environments. These techniques are divided into direct-measurement techniques in streams and streambeds, groundwater techniques relying on traditional observation wells, and remote sensing and other large-scale advanced temperatureacquisition techniques. A review of relevant literature suggests researchers often graphically visualize temperature data to enhance conceptual models of heat and water flow in the near-stream environment and to determine site-specific approaches of data analysis. Common visualizations of stream and streambed temperature patterns include thermographs, temperature envelopes, and one-, two-, and three-dimensional temperature contour plots. Heat and water transport governing equations are presented for the case of transport in streambeds, followed by methods of streambed data analysis, including simple heat-pulse arrival time and heat-loss procedures, analytical and time series solutions, and heat and water transport simulation models. A series of applications of these methods are presented for a variety of stream settings ranging from arid to continental climates. Progressive successes to quantify both streambed fluxes and the spatial extent of streambeds indicate heat-tracing tools help define the streambed as a spatially distinct field (analogous to soil science), rather than simply the lower boundary in stream research or an amorphous zone beneath the stream channel.

  6. Optimization for steady-state and hybrid operations of ITER by using scaling models of divertor heat load

    International Nuclear Information System (INIS)

    Murakami, Yoshiki; Itami, Kiyoshi; Sugihara, Masayoshi; Fujieda, Hirobumi.

    1992-09-01

    Steady-state and hybrid mode operations of ITER are investigated by 0-D power balance calculations assuming no radiation and charge-exchange cooling in divertor region. Operation points are optimized with respect to divertor heat load which must be reduced to the level of ignition mode (∼5 MW/m 2 ). Dependence of the divertor heat load on the variety of the models, i.e., constant-χ model, Bohm-type-χ model and JT-60U empirical scaling model, is also discussed. The divertor heat load increases linearly with the fusion power (P FUS ) in all models. The possible highest fusion power much differs for each model with an allowable divertor heat load. The heat load evaluated by constant-χ model is, for example, about 1.8 times larger than that by Bohm-type-χ model at P FUS = 750 MW. Effect of reduction of the helium accumulation, improvements of the confinement capability and the current-drive efficiency are also investigated aiming at lowering the divertor heat load. It is found that NBI power should be larger than about 60 MW to obtain a burn time longer than 2000 s. The optimized operation point, where the minimum divertor heat load is achieved, does not depend on the model and is the point with the minimum-P FUS and the maximum-P NBI . When P FUS = 690 MW and P NBI = 110 MW, the divertor heat load can be reduced to the level of ignition mode without impurity seeding if H = 2.2 is achieved. Controllability of the current-profile is also discussed. (J.P.N.)

  7. Numerical analyses of a water pool under loadings caused by a condensation induced water hammer

    Energy Technology Data Exchange (ETDEWEB)

    Timperi, A.; Paettikangas, T.; Calonius, K.; Tuunanen, J.; Poikolainen, J.; Saarenheimo, A. [VTT Industrial Systems (Finland)

    2004-03-01

    Three-dimensional simulations of a rapidly condensing steam bubble in a water pool have been performed by using the commercial computational fluid dynamics (CFD) code Star-CD. The condensing bubble was modelled by using a mass sink in a single-phase calculation. The pressure load on the wall of the pool was determined and transferred to the structural analyses code ABAQUS. The analyses were done for a test pool at Lappeenranta University of Technology. The structural integrity of the pool during steam experiments was investigated by assuming as a test load the rapid condensation of a steam bubble with a diameter of 20 cm. The mass sink for modelling the collapse of the bubble was deter-mined from the potential theory of incompressible fluid. The rapid condensation of the bubble within 25 ms initiated a strong condensation water hammer. The maximum amplitude of the pressure load on the pool wall was approximately 300 kPa. The loads caused by the high compression waves lasted only about 0.4 ms. The loadings caused by larger bubbles or more rapid collapse could not be calculated with the present method. (au)

  8. Assessing and Reducing Miscellaneous Electric Loads (MELs) in Lodging

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Emily M.

    2011-09-01

    Miscellaneous electric loads (MELs) are the loads outside of a building's core functions of heating, ventilating, air conditioning, lighting, and water heating. This report reviews methods to reduce MELs in lodging.

  9. Water depth effects on impact loading, kinematic and physiological variables during water treadmill running.

    Science.gov (United States)

    Macdermid, Paul W; Wharton, Josh; Schill, Carina; Fink, Philip W

    2017-07-01

    The purpose of this study was to compare impact loading, kinematic and physiological responses to three different immersion depths (mid-shin, mid-thigh, and xiphoid process) while running at the same speed on a water based treadmill. Participants (N=8) ran on a water treadmill at three depths for 3min. Tri-axial accelerometers were used to identify running dynamics plus measures associated with impact loading rates, while heart rate data were logged to indicate physiological demand. Participants had greater peak impact accelerations (prunning immersed to the xiphoid process. Physiological effort determined by heart rate was also significantly less (prunning immersed to the xiphoid process. Water immersed treadmill running above the waistline alters kinematics of gait, reduces variables associated with impact, while decreasing physiological demand compared to depths below the waistline. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Advantages of the in-situ LTP distortion profile test on high-heat-load mirrors and applications

    International Nuclear Information System (INIS)

    Qian, S.; Jark, W.; Sostero, G.; Gambitta, A.; Mazzolini, F.; Savoia, A.

    1996-01-01

    The first in-situ distortion profile measurement of a high heat load mirror by use of the penta-prism LTP is presented. A maximum height distortion of 0.47 micron in tangential direction over a length of 180 mm was measured for an internally water-cooled mirror of a undulator beam line at ELETTRA while exposed to a total emitted power of 600 W (undulator gap 30 mm and current 180 mA). The experiment has an accuracy and repeatability of 0.04 micron. The test schematic and the test equipment are presented. Two measuring methods to scan a penta-prism being installed either outside or inside the vacuum chamber are introduced. Advantages and some possible applications of adopting the penta-prism LTP to make the in-situ profile test are explained

  11. Energy saving analysis on mine-water source heat pump in a residential district of Henan province, central China

    Science.gov (United States)

    Wang, Hong; Duan, Huanlin; Chen, Aidong

    2018-02-01

    In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.

  12. Numerical Simulation of Pulsation Flow in the Vapour Channel of Short Low Temperature Heat Pipes at High Heat Loads

    Science.gov (United States)

    Seryakov, A. V.; Konkin, A. V.

    2017-11-01

    The results of the numerical simulation of pulsations in the Laval-liked vapour channel of short low-temperature range heat pipes (HPs) are presented. The numerical results confirmed the experimentally obtained increase of the frequency of pulsations in the vapour channel of short HPs with increasing overheat of the porous evaporator relative to the boiling point of the working fluid. The occurrence of pressure pulsations inside the vapour channel in a short HPs is a complex phenomenon associated with the boiling beginning in the capillary-porous evaporator at high heat loads, and appearance the excess amount of vapour above it, leading to the increase in pressure P to a value at which the boiling point TB of the working fluid becomes higher than the evaporator temperature Tev. Vapour clot spreads through the vapour channel and condense, and then a rarefaction wave return from condenser in the evaporator, the boiling in which is resumed and the next cycle of the pulsations is repeated. Numerical simulation was performed using finite element method implemented in the commercial program ANSYS Multiphisics 14.5 in the two-dimensional setting of axis symmetric moist vapour flow with third kind boundary conditions.

  13. Methodology for estimation of potential for solar water heating in a target area

    International Nuclear Information System (INIS)

    Pillai, Indu R.; Banerjee, Rangan

    2007-01-01

    Proper estimation of potential of any renewable energy technology is essential for planning and promotion of the technology. The methods reported in literature for estimation of potential of solar water heating in a target area are aggregate in nature. A methodology for potential estimation (technical, economic and market potential) of solar water heating in a target area is proposed in this paper. This methodology links the micro-level factors and macro-level market effects affecting the diffusion or adoption of solar water heating systems. Different sectors with end uses of low temperature hot water are considered for potential estimation. Potential is estimated at each end use point by simulation using TRNSYS taking micro-level factors. The methodology is illustrated for a synthetic area in India with an area of 2 sq. km and population of 10,000. The end use sectors considered are residential, hospitals, nursing homes and hotels. The estimated technical potential and market potential are 1700 m 2 and 350 m 2 of collector area, respectively. The annual energy savings for the technical potential in the area is estimated as 110 kW h/capita and 0.55 million-kW h/sq. km. area, with an annual average peak saving of 1 MW. The annual savings is 650-kW h per m 2 of collector area and accounts for approximately 3% of the total electricity consumption of the target area. Some of the salient features of the model are the factors considered for potential estimation; estimation of electrical usage pattern for typical day, amount of electricity savings and savings during the peak load. The framework is general and enables accurate estimation of potential of solar water heating for a city, block. Energy planners and policy makers can use this framework for tracking and promotion of diffusion of solar water heating systems. (author)

  14. Antenna loading and electron heating experiments of ICRF wave in TNT-A tokamak

    International Nuclear Information System (INIS)

    Shinohara, Shunjiro; Asakura, Nobuyuki; Naito, Masahiro; Miyamoto, Kenro

    1984-01-01

    Antenna loading resistance and electron heating effects of ICRF wave were investigated in TNT-A tokamak. Lodaing resistance increased with the mean plasma density and decreased with the input power. The effect of the distance between the plasma and antenna surface on loading resistance was studied and had good agreements with the calculated results. The increase in the soft Xray emissivity was larger in the presence of ion-ion hybrid and/or ion cyclotron resonance layer in the plasma than that in the absence of them. With the absorbed power up to two times of the ohmic power, the central electron temperature increased by 20%, the soft Xray emissivity increased by 80% and the mean plasma density decreased by 10%, while the total radiation loss increased slightly (by 15%). (author)

  15. Stochastic clustering of material surface under high-heat plasma load

    Science.gov (United States)

    Budaev, Viacheslav P.

    2017-11-01

    The results of a study of a surface formed by high-temperature plasma loads on various materials such as tungsten, carbon and stainless steel are presented. High-temperature plasma irradiation leads to an inhomogeneous stochastic clustering of the surface with self-similar granularity - fractality on the scale from nanoscale to macroscales. Cauliflower-like structure of tungsten and carbon materials are formed under high heat plasma load in fusion devices. The statistical characteristics of hierarchical granularity and scale invariance are estimated. They differ qualitatively from the roughness of the ordinary Brownian surface, which is possibly due to the universal mechanisms of stochastic clustering of material surface under the influence of high-temperature plasma.

  16. Heat Acclimation and Water-Immersion Deconditioning: Responses to Exercise

    Science.gov (United States)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Haines, R. F.; Greenleaf, J. E.

    1977-01-01

    Simulated subgravity conditions, such as bed rest and water immersion, cause a decrease in a acceleration tolerance (3, 4), tilt tolerance (3, 9, 10), work capacity (5, 7), and plasma volume (1, 8-10). Moderate exercise training performed during bed rest (4) and prior to water immersion (5) provides some protection against the adverse effects of deconditioning, but the relationship between exercise and changes due to deconditioning remains unclear. Heat acclimation increases plasma and interstitial volumes, total body water, stroke volume (11), and tilt tolerance (6) and may, therefore, be a more efficient method of ameliorating deconditioning than physical training alone. The present study was undertaken to determine the effects of heat acclimation and moderate physical training, performed in cool conditions, on water-immersion deconditioning.

  17. Fitness-related differences in the rate of whole-body evaporative heat loss in exercising men are heat-load dependent.

    Science.gov (United States)

    Lamarche, Dallon T; Notley, Sean R; Louie, Jeffrey C; Poirier, Martin P; Kenny, Glen P

    2018-01-01

    What is the central question of this study? Aerobic fitness modulates heat loss, but the heat-load threshold at which fitness-related differences in heat loss occur in young healthy men remains unclear. What is the main finding and its importance? We demonstrate using direct calorimetry that aerobic fitness modulates heat loss in a heat-load-dependent manner, with fitness-related differences occurring between young men who have low and high fitness when the heat load is ∼≥500 W. Although aerobic fitness has been known for some time to modulate heat loss, our findings define the precise heat-load threshold at which fitness-related differences occur. The effect of aerobic fitness (defined as rate of peak oxygen consumption) on heat loss during exercise is thought to be related to the level of heat stress. However, it remains unclear at what combined exercise and environmental (net) heat-load threshold these fitness-related differences occur. To identify this, we assessed whole-body heat exchange (dry and evaporative) by direct calorimetry in young (22 ± 3 years) men matched for physical characteristics with low (Low-fit; 39.8 ± 2.5 ml O 2  kg -1  min -1 ), moderate (Mod-fit; 50.9 ± 1.2 ml O 2  kg -1  min -1 ) and high aerobic fitness (High-fit; 62.0 ± 4.4 ml O 2  kg -1  min -1 ; each n = 8), during three 30 min bouts of cycling in dry heat (40°C, 12% relative humidity) at increasing rates of metabolic heat production of 300 (Ex1), 400 (Ex2) and 500 W (Ex3), each followed by a 15 min recovery period. Each group was exposed to a similar net heat load (metabolic plus ∼100 W dry heat gain; P = 0.83) during each exercise bout [∼400 (Ex1), ∼500 (Ex2) and ∼600 W (Ex3); P fit (Ex2, 466 ± 21 W; Ex3, 557 ± 26 W) compared with the Low-fit group (Ex2, 439 ± 22 W; Ex3, 511 ± 20 W) during Ex2 and Ex3 (P ≤ 0.03). Conversely, evaporative heat loss for the Mod-fit group did not differ from either the High-fit or Low

  18. Experimental simulation and analysis of off-normal heat loads accompanying plasma disruptions

    International Nuclear Information System (INIS)

    Laan, J.G. van der; Bakker, J.; Stad, R.C.L. van der; Klippel, H.T.

    1990-12-01

    The plasma disruption heat load is simulated experimentally using a pulsed laser beam with high energy density and short pulse duration (0.2-20 mm) covering a certain range of ITER design values. The present status of the laser heat flux test facility and new experimental tools are described. Spatial and time resolved profiles of the laser beam are given. Experimental results are presented including the variation of angle of incidence of the laser beam relative to the material surface. The nature and effects of the induced vapour plume are discussed. Materials studied are relevant to the ITER design. Experimental results are compared with numerical calculations. Some implications for the design of First Wall and Divertor of ITER are addressed. (author). 13 refs.; 5 figs

  19. Self-castellation of tungsten monoblock under high heat flux loading and impact of material properties

    Directory of Open Access Journals (Sweden)

    S. Panayotis

    2017-08-01

    Full Text Available In the full-tungsten divertor qualification program at ITER Organization, macro-cracks, so called self-castellation were found in a fraction of tungsten monoblocks during cyclic high heat flux loading at 20MW/m2. The number of monoblocks with macro-cracks varied with the tungsten products used as armour material. In order to understand correlation between the macro-crack appearance and W properties, an activity to characterize W monoblock materials was launched at the IO. The outcome highlighted that the higher the recrystallization resistance, the lower the number of cracks detected during high heat flux tests. Thermo-mechanical finite element modelling demonstrated that the maximum surface temperature ranges from 1800 °C to 2200 °C and in this range recrystallization of tungsten occurred. Furthermore, it indicated that loss of strength due to recrystallization is responsible for the development of macro-cracks in the tungsten monoblock.

  20. Thermal shock fracture of graphite armor plate under the heat load of plasma disruption

    International Nuclear Information System (INIS)

    Horie, Tomoyoshi; Seki, Masahiro; Ohmori, Junji

    1989-01-01

    Experiments on the thermal shock brittle fracture of graphite plates were performed. Thermal loading which simulated a plasma disruption was produced by an electron beam facility. Pre-cracks produced on the surface propagated to the inside of the specimen even if the thermal stress on the surface was compressive. Two mechanisms are possible to produce tensile stress around the crack tip under thermal shock conditions. Temperature, thermal stress, and the stress intensity factor for the specimen were analyzed based on the finite element method for various heating conditions. The trend of experimental results under the asymmetric heating agrees qualitatively with the analytical results. This phenomenon is important for the design of plasma facing components made of graphite. Establishment of a lifetime prediction procedure including fatigue, fatigue crack growth, and brittle fracture is needed for graphite armors. (orig.)

  1. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents

    International Nuclear Information System (INIS)

    Greene, John P.; Gabor, Rachel; Neubauer, Janelle

    2001-01-01

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or 'wobbled' beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material

  2. Self-castellation of tungsten monoblock under high heat flux loading and impact of material properties

    OpenAIRE

    Panayotis, S.; Hirai, T.; Wirtz, Marius; Barabash, V.; Durocher, A.; Escourbiac, F.; Linke, J.; Loewenhoff, Th.; Merola, M.; Pintsuk, G.; Uytdenhouwen, I.

    2017-01-01

    In the full-tungsten divertor qualification program at ITER Organization, macro-cracks, so called self-castellation were found in a fraction of tungsten monoblocks during cyclic high heat flux loading at 20MW/m2. The number of monoblocks with macro-cracks varied with the tungsten products used as armour material. In order to understand correlation between the macro-crack appearance and W properties, an activity to characterize W monoblock materials was launched at the IO. The outcome highligh...

  3. Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Balša Terzić

    2014-10-01

    Full Text Available In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab’s Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.

  4. Performance of large-scale helium refrigerators subjected to pulsed heat load from fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, R.; Ghosh, P.; Chowdhury, K. [Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur (India)

    2012-07-01

    The immediate effect of pulsed heat load from fusion devices in helium refrigerators is wide variation in mass flow rate of low pressure stream returning to the cold-box. In this paper, a four expander based modified Claude cycle has been analyzed in quasi steady and dynamic simulations using Aspen HYSYS to identify critical equipment that may be affected due to such flow rate fluctuations at the return stream and their transient performance. Additional constraints on process parameters over steady state design have been identified. Suitable techniques for mitigation of fluctuation of return stream have also been explored. (author)

  5. Performance of large-scale helium refrigerators subjected to pulsed heat load from fusion devices

    International Nuclear Information System (INIS)

    Dutta, R.; Ghosh, P.; Chowdhury, K.

    2012-01-01

    The immediate effect of pulsed heat load from fusion devices in helium refrigerators is wide variation in mass flow rate of low pressure stream returning to the cold-box. In this paper, a four expander based modified Claude cycle has been analyzed in quasi steady and dynamic simulations using Aspen HYSYS to identify critical equipment that may be affected due to such flow rate fluctuations at the return stream and their transient performance. Additional constraints on process parameters over steady state design have been identified. Suitable techniques for mitigation of fluctuation of return stream have also been explored. (author)

  6. Heat load and deuterium plasma effects on SPS and WSP tungsten

    Czech Academy of Sciences Publication Activity Database

    Vilémová, Monika; Matějíček, Jiří; Nevrlá, Barbara; Chernyshova, M.; Gasior, P.; Kowalska-Strzeciwilk, E.; Jäger, Aleš

    2015-01-01

    Roč. 60, č. 2 (2015), s. 275-283 ISSN 0029-5922. [Kudowa Summer School 2014 "Towards Fusion Energy"/12./. Kudowa Zdrój, 09.06.2014-13.06.2014] R&D Projects: GA ČR(CZ) GA14-12837S Institutional support: RVO:61389021 ; RVO:68378271 Keywords : Tungsten * fusion * heat loading * irradiation * bubbles * surface damage Subject RIV: JJ - Other Materials; JJ - Other Materials (FZU-D) Impact factor: 0.546, year: 2015 http://www.nukleonika.pl/www/back/full/vol60_2015/v60n2p275f.pdf

  7. Electron temperature and heat load measurements in the COMPASS divertor using the new system of probes

    Czech Academy of Sciences Publication Activity Database

    Adámek, Jiří; Seidl, Jakub; Horáček, Jan; Komm, Michael; Eich, T.; Pánek, Radomír; Cavalier, J.; Devitre, A.; Peterka, Matěj; Vondráček, Petr; Stöckel, Jan; Šesták, David; Grover, Ondřej; Bílková, Petra; Böhm, Petr; Varju, Jozef; Havránek, Aleš; Weinzettl, Vladimír; Lovell, J.; Dimitrova, Miglena; Mitošinková, Klára; Dejarnac, Renaud; Hron, Martin

    2017-01-01

    Roč. 57, č. 11 (2017), č. článku 116017. ISSN 0029-5515 R&D Projects: GA ČR(CZ) GA15-10723S; GA ČR(CZ) GA16-14228S; GA MŠk(CZ) LM2015045 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : COMPASS * divertor * heat load * ELM * electron temperature * Ball-pen probe Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa7e09

  8. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents

    International Nuclear Information System (INIS)

    Greene, J. P.; Gabor, R.; Neubauer, J.

    2000-01-01

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or wobbled beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material

  9. Design of serially connected ammonia-water hybrid absorption-compression heat pumps for district heating with the utilisation of a geothermal heat source

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2016-01-01

    District heating (DH) can reduce the primary energy consumption in urban areas with significant heat demands. The design of a serially connected ammonia-water hybrid absorption-compression heat pump system was investigated for operation in the Greater Copenhagen DH network in Denmark, in order...... to supply 7.2 MW heat at 85 °C utilizing a geothermal heat source at 73 °C. Both the heat source and heat sink experience a large temperature change over the heat transfer process, of which a significant part may be achieved by direct heat exchange. First a generic study with a simple representation...

  10. Thermal performance of a modified ammonia–water power cycle for reclaiming mid/low-grade waste heat

    International Nuclear Information System (INIS)

    Junye, Hua; Yaping, Chen; Jiafeng, Wu

    2014-01-01

    Highlights: • A modified Kalina cycle is proposed for power and heat cogeneration from mid/low-grade waste heat. • A water-cooling solution cooler is set for cogeneration of sanitary or heating hot water. • Work concentration is determined for suitable turbine inlet pressure and positive back pressure. • Basic concentration should match work concentration for higher efficiency. • Sanitary water with 50.7 °C and capacity of a quarter of total reclaimed heat load is cogenerated. - Abstract: A modified Kalina cycle was simulated, which is a triple-pressure ammonia–water power cycle adding a preheater and a water-cooling solution cooler to the original loop. The cycle acquires higher power recovery efficiency by realizing proper internal recuperation and suitable temperature-difference in phase change processes to match both heat source and cooling water. The influences of some key parameters on the thermodynamic performance of the cycle were discussed, including the work and basic concentrations of solution, circulation multiple and the turbine inlet temperature. It is shown that the basic concentration should match the work concentration for higher efficiency. Although higher work concentration could be slightly beneficial to cycle efficiency, the work concentration is mainly determined by considering the suitable turbine inlet/back pressure. Besides, this cycle can be used as a cogeneration system of power and sanitary or heating hot water. The calculation example presented finally with the turbine inlet parameters of 300 °C/6 MPa and the cycle lowest temperature of 30 °C shows that the power recovery efficiency reaches 15.87%, which is about 16.6% higher than that of the steam Rankine cycle. And it also provides 50.7 °C sanitary water with about a quarter of the total heating load reclaimed

  11. Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage

    Science.gov (United States)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping

    2010-01-01

    In a previous study, vane-rotor shock interactions and heat transfer on the rotor blade of a highly loaded transonic turbine stage were simulated. The geometry consists of a high pressure turbine vane and downstream rotor blade. This study focuses on the physics of flow and heat transfer in the rotor tip, casing and hub regions. The simulation was performed using the Unsteady Reynolds-Averaged Navier-Stokes (URANS) code MSU-TURBO. A low Reynolds number k-epsilon model was utilized to model turbulence. The rotor blade in question has a tip gap height of 2.1 percent of the blade height. The Reynolds number of the flow is approximately 3x10(exp 6) per meter. Unsteadiness was observed at the tip surface that results in intermittent "hot spots". It is demonstrated that unsteadiness in the tip gap is governed by inviscid effects due to high speed flow and is not strongly dependent on pressure ratio across the tip gap contrary to published observations that have primarily dealt with subsonic tip flows. The high relative Mach numbers in the tip gap lead to a choking of the leakage flow that translates to a relative attenuation of losses at higher loading. The efficacy of new tip geometry is discussed to minimize heat flux at the tip while maintaining choked conditions. In addition, an explanation is provided that shows the mechanism behind the rise in stagnation temperature on the casing to values above the absolute total temperature at the inlet. It is concluded that even in steady mode, work transfer to the near tip fluid occurs due to relative shearing by the casing. This is believed to be the first such explanation of the work transfer phenomenon in the open literature. The difference in pattern between steady and time-averaged heat flux at the hub is also explained.

  12. Heat Pump Water Heater Ducting Strategies with Encapsulated Attics in Climate Zones 2 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, M. L. [Southface Energy Inst., Upper Marlboro, MD (United States); Francisco, A.; Roberts, S. G.

    2016-05-01

    The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas. Exhaust ducts should be insulated to avoid condensation on the exterior, however this imposes a risk of condensation occurring in the duct's interior near the HPWH due to large variation of temperatures between the compressor and the duct and the presence of bulk moisture around the condenser. The HPWH's air conditioning impact on HVAC equipment loads is minimal when the intake and exhaust air streams are connected to a sealed attic and not the living space. A HPWH is not suitable as a replacement dehumidifier in sealed attics as peak moisture loads were observed to only be reduced if the heat pump operated during the morning. It appears that the intake air temperature and humidity was the most dominant variable affecting HPWH performance. Different ducting strategies such as exhaust duct only, intake duct only, and exhaust and intake ducting did not have any effect on HPWH performance.

  13. Solar hot-water generation and heating - Kombi-Kompakt+

    International Nuclear Information System (INIS)

    Haller, M.; Vogelsanger, P.

    2005-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes new testing facilities at the Institute for Solar Technology in Rapperswil, Switzerland, that allow the testing of solar systems the whole year through. The systems tested feature the combined generation of heat for hot water storage vessels and heat for space heating. The test method used, the Concise Cycle Test (CCT) is described. The results of tests made on a large number of systems demonstrate that it is especially important to have a test system that allows the solar market to be protected from unsatisfactory systems. Good co-operation with manufactures is noted. As the test method includes tests with secondary energy sources such as oil or gas, certain problems in this area were discovered and corrected. Further tests are to be made with systems using biomass as a secondary source of heat

  14. Twin cities institutional issues study cogenerated hot water district heating

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, R. E.; Leas, R.; Kolb, J. O.

    1979-01-01

    Community district heating, utilizing hot water produced through electrical/thermal cogeneration, is seen as an integral part of Minnesota's Energy Policy and Conservation Plan. Several studies have been conducted which consider the technical and institutional issues affecting implementation of cogenerated district heating in the Minneapolis and St. Paul Metropolitan Area. The state of the technical art of cogenerated hot water district heating is assumed to be transferable from European experience. Institutional questions relating to such factors as the form of ownership, financing, operation, regulation, and product marketability cannot be transferred from the European experience, and have been the subject of an extensive investigation. The form and function of the Institutional Issues Study, and some of the preliminary conclusions and recommendations resulting from the study are discussed.

  15. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    The preliminary design review on the development of a multi-family solar heating and domestic hot water prototype system is presented. The report contains the necessary information to evaluate the system. The system consists of the following subsystems: collector, storage, transport, control and Government-furnished site data acquisition.

  16. Solar Space and Water Heating for School -- Dallas, Texas

    Science.gov (United States)

    1982-01-01

    90 page report gives overview of retrofitted solar space-heating and hot-water system installation for 61-year-old high school. Description, specifications, modifications, plan drawings for roof, three floors, basement, correspondence, and documents are part of report.

  17. Role of Solar Water Heating in Multifamily Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Williamson, James [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2016-04-01

    With support from the U.S. Department of Energy Building America Program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in the spring of 2014, and CARB has been monitoring the performance of the water-heating systems since May 2014.

  18. Coupled equations for transient water flow, heat flow, and ...

    Indian Academy of Sciences (India)

    interacting processes, including flow of fluids, deformation of porous materials, chemical reactions, and transport of ... systems involving the flow of water, heat, and deformation. Such systems are ..... Defined thus, αI is independent of boundary con- ditions in an ... perature change with free deformation at constant total stress ...

  19. Exergy analysis of an experimental heat transformer for water purification

    International Nuclear Information System (INIS)

    Rivera, W.; Huicochea, A.; Martinez, H.; Siqueiros, J.; Juarez, D.; Cadenas, E.

    2011-01-01

    First and second law of thermodynamics have been used to analyze the performance of an experimental heat transformer used for water purification. The pure water is produced in the auxiliary condenser delivering an amount of heat, which is recycled into the heat transformer increasing the heat source temperatures and also the internal, external and exergy coefficients of performance. The theoretical and experimental study was divided into two parts. In the first part, a second law analysis was carried out to the experimental system showing that the absorber and the condenser are the components with the highest irreversibilities. In the second part, with the results obtained from the second law analysis, new test runs were carried out at similar conditions than the former but varying only one selected temperature at the time. Comparing the COP (coefficient of performance) between the old and new test runs, it was shown that higher internal, external and exergy coefficients of performance were obtained in all the new test runs. Also it was shown that the ECOP (exergy coefficient of performance) increases with an increment of the amount of the purified water produced and with the decrease of the flow ratio. -- Research highlights: → By the first time an experimental results of a heat transformer for water purification with heat recycling has been presented. → An exergy analysis has been carried out in order to identify the irreversibilities in the main components of the system. → With the results obtained of the second law analysis new experimental test runs were carried out minimizing the system irreversibilities and furthermore increasing the system efficiency.

  20. Energy density enhancement of chemical heat storage material for magnesium oxide/water chemical heat pump

    International Nuclear Information System (INIS)

    Myagmarjav, Odtsetseg; Zamengo, Massimiliano; Ryu, Junichi; Kato, Yukitaka

    2015-01-01

    A novel candidate chemical heat storage material having higher reaction performance and higher thermal conductivity used for magnesium oxide/water chemical heat pump was developed in this study. The material, called EML, was obtained by mixing pure Mg(OH)_2 with expanded graphite (EG) and lithium bromide (LiBr), which offer higher thermal conductivity and reactivity, respectively. With the aim to achieve a high energy density, the EML composite was compressed into figure of the EML tablet (ϕ7.1 mm × thickness 3.5 mm). The compression force did not degrade the reaction conversion, and furthermore it enabled us to achieve best heat storage and output performances. The EML tablet could store heat of 815.4 MJ m_t_a_b"−"3 at 300 °C within 120 min, which corresponded to almost 4.4 times higher the heat output of the EML composite, and therefore, the EML tablet is the solution which releases more heat in a shorter time. A relatively larger volumetric gross heat output was also recorded for the EML tablet, which was greater than one attained for the EML composite at certain temperatures. As a consequence, it is expected that the EML tablet could respond more quickly to sudden demand of heat from users. It was concluded that the EML tablet demonstrated superior performances. - Highlights: • A new chemical heat storage material, donated as EML, was developed. • EML composite made from pure Mg(OH)_2, expanded graphite and lithium bromide. • EML tablet was demonstrated by compressing the EML composite. • Compression force did not degrade the conversion in dehydration and hydration. • EML tablet demonstrated superior heat storage and output performances.

  1. Discussion on application of water source heat pump technology to uranium mines

    International Nuclear Information System (INIS)

    An Qiang

    2011-01-01

    Application of water source heat pump units in recovering waste heat from uranium mines is discussed, and several forms of waste heat recovery are introduced. The problems in the application of water source heat pump technology are analyzed. Analysis results show that the water source heat pump technology has broad application prospects in uranium mines, and it is a way to exchange existing structure of heat and cold sources in uranium mines. (authors)

  2. Variable electricity and steam from salt, helium and sodium cooled base-load reactors with gas turbines and heat storage - 15115

    International Nuclear Information System (INIS)

    Forsberg, C.; McDaniel, P.; Zohuri, B.

    2015-01-01

    Advances in utility natural-gas-fired air-Brayton combed cycle technology is creating the option of coupling salt-, helium-, and sodium-cooled nuclear reactors to Nuclear air-Brayton Combined Cycle (NACC) power systems. NACC may enable a zero-carbon electricity grid and improve nuclear power economics by enabling variable electricity output with base-load nuclear reactor operations. Variable electricity output enables selling more electricity at times of high prices that increases plant revenue. Peak power is achieved using stored heat or auxiliary fuel (natural gas, bio-fuels, hydrogen). A typical NACC cycle includes air compression, heating compressed air using nuclear heat and a heat exchanger, sending air through a turbine to produce electricity, reheating compressed air, sending air through a second turbine, and exhausting to a heat recovery steam generator (HRSG). In the HRSG, warm air produces steam that is used to produce added electricity. For peak power production, auxiliary heat (natural gas, stored heat) is added before the air enters the second turbine to raise air temperatures and power output. Like all combined cycle plants, water cooling requirements are dramatically reduced relative to other power cycles because much of the heat rejection is in the form of hot air. (authors)

  3. Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing

    International Nuclear Information System (INIS)

    Bessa, Vanessa M.T.; Prado, Racine T.A.

    2015-01-01

    Growing global concern regarding climate change motivates technological studies to minimize environmental impacts. In this context, solar water heating (SWH) systems are notably prominent in Brazil, primarily because of the abundance of solar energy in the country. However, SWH designs have not always been perfectly developed. In most projects, the installation option of the solar system only considers the electric power economy aspects and not the particular characteristics of each climatic zone. Thus, the primary objective of this paper is to assess the potential of carbon dioxide reduction with the use of SWH in comparison with electric showers in social housing in several Brazilian climatic zones. The Brazilian government authorities have created public policies to encourage the use of these technologies primarily among the low-income population. The results of this paper indicate that hot climactic regions demonstrate a low reduction of CO 2 emissions with SWH installations. Thus, solar radiation is not useful for water heating in those regions, but it does lead to a large fraction of household cooling loads, implying a demand for electrical energy for air conditioning or requiring the adoption of passive techniques to maintain indoor temperatures below threshold values. -- Graphical abstract: Display Omitted -- Highlights: •Brazil has created public policies to increase the use of solar water heating in social housing. •We have evaluated the potential for reduction of CO 2 emissions installing solar water heating. •We have found that the coldest regions have the greatest potential for reducing emissions. •Passive technologies for thermal comfort in hot climate households are more useful than solar water heating systems

  4. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, K. [Kobe Univ. of Mercantile Marine (Japan); Shiotsu, M.; Sakurai, A. [Kyoto Univ. (Japan)

    1995-09-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q{sub max}, on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q{sub o}e{sup t/T}, with periods, {tau}, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q{sub max}. Two main mechanisms of q{sub max} exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q{sub max} for long period range belonging to the former mechanism becomes longer and the q{sub max}mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q{sub max} for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling.

  5. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    International Nuclear Information System (INIS)

    Fukuda, K.; Shiotsu, M.; Sakurai, A.

    1995-01-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q max , on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q o e t/T , with periods, τ, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q max . Two main mechanisms of q max exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q max for long period range belonging to the former mechanism becomes longer and the q max mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q max for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling

  6. Heat load of a P-doped GaAs photocathode in SRF electron gun

    International Nuclear Information System (INIS)

    Wang, E.; Ben-Zvi, I.; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q.; Jain, A.; Gupta, R.; Holmes, D.

    2010-01-01

    Many efforts were made over the last decades to develop a better polarized electron source for the high energy physics. Several laboratories operate DC guns with the Gallium-Arsenide photo-cathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved using a Superconducting RF electron gun, which delivers beams of higher brightness than DC guns does, because the field gradient at the cathode is higher. SRF guns with metal cathodes and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since the cathode will be normal conducting, the problem about the heat load stemming from the cathode arises. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and the verification by measuring the quality factor of the gun with and without cathode.

  7. Heat Load Measurements on a Large Superconducting Magnet An Application of a Void Fraction Meter

    CERN Document Server

    Pengo, R; Junker, S; Passardi, Giorgio; ten Kate, H H J

    2004-01-01

    ATLAS is one of the two major experiments of the LHC project at CERN using cryogenics. The superconducting magnet system of ATLAS is composed of the Barrel Toroid (BT), two End Caps Toroids and the Central Solenoid. The BT is formed of 8 race-track superconducting dipoles, each one 25 m long and 5 m wide. A reduced scale prototype (named B0) of one of the 8 dipoles, about one third of the length, has been constructed and tested in a dedicated cryogenic facility at CERN. To simulate the final thermal and hydraulic operating conditions, the B0 was cooled by a forced flow of 4.5 K saturated liquid helium provided by a centrifugal pump of 80 g/s nominal capacity. Both static and dynamic heat loads, generated by the induced currents on the B0 casing during a slow dump or a ramp up, have been measured to verify the expected thermal budget of the entire BT. The instrument used for the heat load measurements was a Void Fraction Meter (VFM) installed on the magnet return line. The instrument constructed at CERN was ca...

  8. Importance of Drinking Water Temperature for Heat Stressed Pregnant Ossimi Ewes During Summer of Egypt

    International Nuclear Information System (INIS)

    Habeeb, A.A.M.; EL-Tarabany, A.A.; Gad, A.E.

    2012-01-01

    The number of 45 pregnant does with the same age and average live body weight were used in the present study. The does reared under summer hot conditions where the averages of ambient temperature and relative humidity values were 35.0 degree C and 62.5% respectively during June, July and August, 2009. Pregnant does were divided randomly into three equal groups. The 1st group drinking tap water from the source of water in the farm (30±2 degree C) and served as control. The animals in the 2nd and 3rd groups drinking cool water (20±2 degree C) and cooled water (10±2 degree C), respectively, along the experimental period which started 12 weeks before expected parturition (8 hrs daily) from 10.00 to 18.00 hrs. The results showed that drinking cool water or cold water decreased the heat load of summer season on pregnant Ossimi ewes. The respiration rate and temperatures of rectal, skin and ear values decreased significantly while daily feed intake, dry matter intake and water intake values increased significantly due to treatments when compared to those drank warm water. Blood components concentrations and estradiol, progesterone and parathormone levels in ewes drank cool or cold water were significantly higher than its levels in ewes drank warm water. The opposite was found in cortisol levels

  9. Transient turbulent heat transfer for heating of water in a short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Kai, Naoto; Shirai, Yasuyuki; Masuzaki, Suguru

    2011-01-01

    The transient turbulent heat transfer coefficients in a short vertical Platinum test tube were systematically measured for the flow velocities (u=4.0 to 13.6 m/s), the inlet liquid temperatures (T in =296.93 to 304.81 K), the inlet pressures (P in =794.39 to 858.27 kPa) and the increasing heat inputs (Q 0 exp(t/τ), exponential periods, τ, of 18.6 ms to 25.7 s) by an experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The Platinum test tubes of test tube inner diameters (d=3 and 6 mm), heated lengths (L=66.5 and 69.6 mm), effective lengths (L eff =56.7 and 59.2 mm), ratios of heated length to inner diameter (L/d=22.16 and 11.6), ratios of effective length to inner diameter (L eff /d=18.9 and 9.87) and wall thickness (δ=0.5 and 0.4 mm) with average surface roughness (Ra=0.40 and 0.45 μm) were used in this work. The surface heat fluxes between the two potential taps were given the difference between the heat generation rate per unit surface area and the rate of change of energy storage in the test tube obtained from the faired average temperature versus time curve. The heater inner surface temperature between the two potential taps was also obtained by solving the unsteady heat conduction equation in the test tube under the conditions of measured average temperature and heat generation rate per unit surface area of the test tube. The transient turbulent heat transfer data for Platinum test tubes were compared with the values calculated by authors' correlation for the steady state turbulent heat transfer. The influence of inner diameter (d), ratio of effective length to inner diameter (L eff /d), flow velocity (u) and exponential period (τ) on the transient turbulent heat transfer is investigated into details and the widely and precisely predictable correlation of the transient turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data and authors' studies for the

  10. Transient turbulent heat transfer for heating of water in a short vertical tube

    International Nuclear Information System (INIS)

    Hata, Koichi; Kai, Naoto; Shirai, Yasuyuki; Masuzaki, Suguru

    2011-01-01

    The transient turbulent heat transfer coefficients in a short vertical Platinum test tube were systematically measured for the flow velocities (u=4.0 to 13.6 m/s), the inlet liquid temperatures (T in =296.93 to 304.81 K), the inlet pressures (P in =794.39 to 858.27 kPa) and the increasing heat inputs (Q 0 exp(t/τ), exponential periods, τ, of 18.6 ms to 25.7 s) by an experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The Platinum test tubes of test tube inner diameters (d=3 and 6 mm), heated lengths (L=66.5 and 69.6 mm), effective lengths (L eff =56.7 and 59.2 mm), ratios of heated length to inner diameter (L/d=22.16 and 11.6), ratios of effective length to inner diameter (L eff /d=18.9 and 9.87) and wall thickness (δ=0.5 and 0.4 mm) with average surface roughness (Ra=0.40 and 0.45 μm) were used in this work. The surface heat fluxes between the two potential taps were given the difference between the heat generation rate per unit surface area and the rate of change of energy storage in the test tube obtained from the faired average temperature versus time curve. The heater inner surface temperature between the two potential taps was also obtained by solving the unsteady heat conduction equation in the test tube under the conditions of measured average temperature and heat generation rate per unit surface area of the test tube. The transient turbulent heat transfer data for Platinum test tubes were compared with the values calculated by authors' correlation for the steady state turbulent heat transfer. The influence of inner diameter (d), ratio of effective length to inner diameter (L eff /d), flow velocity (u) and exponential period (τ) on the transient turbulent heat transfer is investigated into details and the widely and precisely predictable correlation of the transient turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data and authors' studies for the

  11. Fitness-related differences in the rate of whole-body total heat loss in exercising young healthy women are heat-load dependent.

    Science.gov (United States)

    Lamarche, Dallon T; Notley, Sean R; Poirier, Martin P; Kenny, Glen P

    2018-03-01

    What is the central question of this study? Aerobic fitness modulates heat loss, albeit the heat load at which fitness-related differences occur in young healthy women remains unclear. What is the main finding and its importance? We demonstrate using direct calorimetry that fitness modulates heat loss in a heat-load dependent manner, with differences occurring between young women of low and high fitness and matched physical characteristics when the metabolic heat load is at least 400 W in hot, dry conditions. Although fitness has been known for some time to modulate heat loss, our findings define the metabolic heat load at which fitness-related differences occur. Aerobic fitness has recently been shown to alter heat loss capacity in a heat-load dependent manner in young men. However, given that sex-related differences in heat loss capacity exist, it is unclear whether this response is consistent in women. We therefore assessed whole-body total heat loss in young (21 ± 3 years old) healthy women matched for physical characteristics, but with low (low-fit; 35.8 ± 4.5 ml O 2  kg -1  min -1 ) or high aerobic fitness (high-fit; 53.1 ± 5.1 ml O 2  kg -1  min -1 ; both n = 8; indexed by peak oxygen consumption), during three 30 min bouts of cycling performed at increasing rates of metabolic heat production of 250 (Ex1), 325 (Ex2) and 400 W (Ex3), each separated by a 15 min recovery, in hot, dry conditions (40°C, 11% relative humidity). Whole-body total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat content was measured as the temporal summation of heat production and loss. Total heat loss did not differ during Ex1 (low-fit, 215 ± 16 W; high-fit, 231 ± 20 W; P > 0.05) and Ex2 (low-fit, 278 ± 15 W; high-fit, 301 ± 20 W; P > 0.05), but was lower in the low-fit (316 ± 21 W) compared with the high-fit women (359 ± 32

  12. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  13. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  14. Comparison of three systems of solar water heating by thermosiphon

    Science.gov (United States)

    Hernández, E.; Guzmán, R. E.

    2016-02-01

    The main purpose of this project was to elaborate a comparison between three water heating systems; using two plane water heating solar collector and another using a vacuum tube heater, all of them are on top of the cafeteria's roof on building of the “Universidad Pontificia Bolivariana” in Bucaramanga, Colombia. Through testing was determined each type of water heating systems' performance, where the Stainless Steel tube collector reached a maximum efficiency of 71.58%, the Copper Tubing Collector a maximum value of 76.31% and for the Vacuum Tube Heater Collector a maximum efficiency of 72.33%. The collector with copper coil was the system more efficient. So, taking into account the Performance and Temperature Curves, along with the weather conditions at the time of the testing we determined that the most efficient Solar Heating System is the one using a Vacuum Tube Heater Collector. Reaching a maximum efficiency of 72.33% and a maximum temperature of 62.6°C.

  15. Methodology used to calculate moderator-system heat load at full power and during reactor transients in CANDU reactors

    International Nuclear Information System (INIS)

    Aydogdu, K.

    1998-01-01

    Nine components determine the moderator-system heat load during full-power operation and during a reactor power transient in a CANDU reactor. The components that contribute to the total moderator-system heat load at any time consist of the heat generated in the calandria tubes, guide tubes and reactivity mechanisms, moderator and reflector; the heat transferred from calandria shell, the inner tubesheets and the fuel channels; and the heat gained from moderator pumps and heat lost from piping. The contributions from each of these components will vary with time during a reactor transient. The sources of heat that arise from the deposition of nuclear energy can be divided into two categories, viz., a) the neutronic component (which is directly proportional to neutronic power), which includes neutron energy absorption, prompt-fission gamma absorption and capture gamma absorption; and b) the fission-product decay-gamma component, which also varies with time after initiation of the transient. An equation was derived to calculate transient heat loads to the moderator. The equation includes two independent variables that are the neutronic power and fission-product decay-gamma power fractions during the transient and a constant term that represents the heat gained from moderator pumps and heat lost from piping. The calculated heat load in the moderator during steady-state full-power operation for a CANDU 6 reactor was compared with available measurements from the Point Lepreau, Wolsong 1 and Gentilly-2 nuclear generating stations. The calculated and measured values were in reasonably good agreement. (author)

  16. Performance Test of Korea Heat Load Test Facility (KoHLT-EB) for the Plasma Facing Components of Fusion Reactor

    International Nuclear Information System (INIS)

    Kim, Suk-Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won; Cho, Seungyon

    2014-01-01

    The main components of the plasma facing components (PFCs) in the tokamak are the blanket first wall and divertor, which include the armour materials, the heat sink with the cooling mechanism, and the diagnostics devices for the temperature measurement. The Korea Heat Load Test facility by using electron beam (KoHLT-EB) has been operating for the plasma facing components to develop fusion engineering. This electron beam facility was constructed using a 300 kW electron gun and a cylindrical vacuum chamber. Performance tests were carried out for the calorimetric calibrations with Cu dummy mockup and for the heat load test of large Cu module. For the simulation of the heat load test of each mockup, the preliminary thermal-hydraulic analyses with ANSYS-CFX were performed. For the development of the plasma facing components in the fusion reactors, test mockups were fabricated and tested in the high heat flux test facility. To perform a beam profile test, an assessment of the possibility of electron beam Gaussian power density profile and the results of the absorbed power for that profile before the test starts are needed. To assess the possibility of a Gaussian profile, for the qualification test of the Gaussian heat load profile, a calorimeter mockup and large Cu module were manufactured to simulate real heat. For this high-heat flux test, the Korean high-heat flux test facility using an electron beam system was constructed. In this facility, a cyclic heat flux test will be performed to measure the surface heat flux, surface temperature profile, and cooling capacity

  17. Performance Test of Korea Heat Load Test Facility (KoHLT-EB) for the Plasma Facing Components of Fusion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The main components of the plasma facing components (PFCs) in the tokamak are the blanket first wall and divertor, which include the armour materials, the heat sink with the cooling mechanism, and the diagnostics devices for the temperature measurement. The Korea Heat Load Test facility by using electron beam (KoHLT-EB) has been operating for the plasma facing components to develop fusion engineering. This electron beam facility was constructed using a 300 kW electron gun and a cylindrical vacuum chamber. Performance tests were carried out for the calorimetric calibrations with Cu dummy mockup and for the heat load test of large Cu module. For the simulation of the heat load test of each mockup, the preliminary thermal-hydraulic analyses with ANSYS-CFX were performed. For the development of the plasma facing components in the fusion reactors, test mockups were fabricated and tested in the high heat flux test facility. To perform a beam profile test, an assessment of the possibility of electron beam Gaussian power density profile and the results of the absorbed power for that profile before the test starts are needed. To assess the possibility of a Gaussian profile, for the qualification test of the Gaussian heat load profile, a calorimeter mockup and large Cu module were manufactured to simulate real heat. For this high-heat flux test, the Korean high-heat flux test facility using an electron beam system was constructed. In this facility, a cyclic heat flux test will be performed to measure the surface heat flux, surface temperature profile, and cooling capacity.

  18. Impact of heated waters on water quality and macroinvertebrate community in the Narew River (Poland

    Directory of Open Access Journals (Sweden)

    Krolak Elzbieta

    2017-07-01

    Full Text Available The effect of heated waters from coal-burning power stations on the water parameters and the occurrence of macroinvertebrates depends on the individual characteristics of the river to which the heated waters are discharged. The objective of the study was to assess the impact of heated water from the Ostrołęka Power Station on selected water properties and the macroinvertebrate community in the Narew River. Samples were collected in years: 2013-2016 along two river stretches: upstream and downstream of the canal. The water temperature was higher and the oxygen concentrations were lower at the downstream sites compared to the upstream sites of the canal. The values of conductivity, concentrations of nitrates, phosphates, chlorides and calcium were similar at the sampling sites. A total of 33 families of macrozoobenthos were found. The numbers of families were positively correlated with the temperature and conductivity and negatively correlated with oxygen. The heated waters were found to have no effect on the Shannon-Wiener diversity index. The inflow of heated waters increased the percentage of Gammaridae, represented by species Dikerogammarus haemobaphes (Eichwald, 1841 and decreased the percentage of Chironomidae. The presence of the thermophilous bivalve Sinanodonta woodiana (Lea, 1934 was noted downstream of the canal.

  19. Heat recovery from shower water; Warmteterugwinning uit douchewater

    Energy Technology Data Exchange (ETDEWEB)

    Heidemans, J. [Hei-Tech, Emmen (Netherlands)

    2011-09-15

    With a payback period of several years, heat recovery from shower water in swimming pools but also in, for example, apartment buildings are an attractive form of energy saving. Possible are savings from 30 to 50% on energy, which is tested and proved by measurements in the heat exchanger of showers in a swimming pool in Denmark. [Dutch] Met een terugverdientijd van enkele jaren is warmteterugwinning uit douchewater in zwembaden maar ook in bijvoorbeeld sporthallen en appartementengebouwen een aantrekkelijke vorm van energiebesparing. Er kan een besparing worden gerealiseerd van 30 tot 50% op het energiegebruik van het douchewater. Metingen aan een douchewarmtewisselaar in een zwembad in Denemarken tonen dit aan.

  20. Design of water and heat recovery networks for the simultaneous minimisation of water and energy consumption

    International Nuclear Information System (INIS)

    Polley, Graham Thomas; Picon-Nunez, Martin; Lopez-Maciel, Jose de Jesus

    2010-01-01

    This paper describes procedures for the design of processes in which water and energy consumption form a large part of the operating cost. Good process design can be characterised by a number of properties, amongst the most important are: efficient use of raw materials, low capital cost and good operability. In terms of thermodynamic analysis these processes can be characterised as being either a 'pinch' problem or a 'threshold' problem. This paper concentrates on developing designs for problems of the threshold type. Most of the problems discussed by previous workers have been of this type. With these properties in mind this work looks at the design of integrated water and energy systems that exhibit the following features: 1. minimum water consumption, 2. minimum energy consumption, and 3. simple network structure. The approach applies for single contaminant. It is shown that the water conservation problem and the heat recovery problems can be de-coupled and the water conservation options should be established first. It is then shown that the number of heaters and heat recovery units required for the system, the quantity and type of hot utility needed for the plant and the complexity of the heat recovery network can all be determined without having to design any heat recovery network. This allows the engineer to select the better water conservation option before embarking on the design of the heat recovery network. For this type of problem the design of the heat recovery network itself is usually simple and straightforward.

  1. An analytical method for defining the pump`s power optimum of a water-to-water heat pump heating system using COP

    Directory of Open Access Journals (Sweden)

    Nyers Jozsef

    2017-01-01

    Full Text Available This paper analyzes the energy efficiency of the heat pump and the complete heat pump heating system. Essentially, the maximum of the coefficient of performance of the heat pump and the heat pump heating system are investigated and determined by applying a new analytical optimization procedure. The analyzed physical system consists of the water-to-water heat pump, circulation and well pump. In the analytical optimization procedure the "first derivative equal to zero" mathematical method is applied. The objective function is the coefficient of performance of the heat pump, and the heat pump heating system. By using the analytical optimization procedure and the objective function, as the result, the local and the total energy optimum conditions with respect to the mass flow rate of hot and cold water i. e. the power of circulation or well pump are defined.

  2. Urban summer heat load. Meteorological data as a proxy for metropolitan biodiversity

    Energy Technology Data Exchange (ETDEWEB)

    Kappes, Heike [Naturalis Biodiversity Center, Leiden (Netherlands); Katzschner, Lutz [Kassel Univ. (Germany). Environmental Meteorological Dept.; Nowak, Carsten [Senckenberg Gesellschaft fuer Naturforschung, Gelnhausen (Germany). Conservation Genetics Section; Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main (Germany)

    2012-10-15

    Regional climate models forecast that the incidence of extreme heat waves will increase in Central Europe, and the associated intensification of urban heat islands causes concerns about human health and biodiversity. We investigated species diversity of terrestrial gastropods across an urban gradient in a metropolitan area. We considered 34 sites of different degrees of urbanization and of different thermal stress classes (TSC) that were derived from a classification of urban heat load based on the physiological equivalent temperature (PET). A total of 31 species were recorded with 0-21 species per site (mean: 4.4 {+-} 5.2 species per site). Alpha diversity was best explained by TSC, bush cover and perennial vegetation cover, and it decreased with increasing thermal stress. Overall, thermal stress predicted snail and slug species richness better than urban cover (ANOVA(analysis of variance); TSC: F = 10.0, p < 0.001; urbanization: F = 3.9, p = 0.018), and the proportional loss in species richness was higher for native species than for introduced species. The results indicate that climatic stress contributes to the impoverishment of biodiversity in urban areas. We propose that TSC and/or PET are useful indicators for environmental stress levels in biodiversity studies in natural and anthropogenically transformed landscapes. (orig.)

  3. Experimental study on convective heat transfer of water flow in a heated tube under natural circulation

    International Nuclear Information System (INIS)

    Yang Ruichang; Liu Ruolei; Zhong Yong; Liu Tao

    2006-01-01

    This paper reports on an experimental study on transitional heat transfer of water flow in a heated vertical tube under natural circulation conditions. In the experiments the local and average heat transfer coefficients were obtained. The experimental data were compared with the predictions by a forced flow correlation available in the literature. The comparisons show that the Nusselt number value in the fully developed region is about 30% lower than the predictions by the forced flow correlation due to flow laminarization in the layer induced by co-current bulk natural circulation and free convection. By using the Rayleigh number Ra to represent the influence of free convection on heat transfer, the empirical correlations for the calculation of local and average heat transfer behavior in the tube at natural circulation have been developed. The empirical correlations are in good agreement with the experimental data. Based on the experimental results, the effect of the thermal entry-length behavior on heat transfer design in the tube under natural circulation was evaluated

  4. Heat transfer and carryover of low pressure water in a heated vertical tube

    International Nuclear Information System (INIS)

    Smith, T.A.

    1976-01-01

    Local heat transfer coefficients in the stable film boiling and dispersed flow regimes were studied for the upward flow of low pressure water in a heated vertical tube. Wall temperatures were maintained constant with time and along the tube so that both axial and time temperature gradients approached zero. Heat flux along the tube was not constant but was applied so as to maintain a steady state temperature profile. A preheater was used to bring the liquid to saturation before it entered the main portion of the test section and in some cases the equilibrium quality was greater than zero at the entrance to the main test section. The test section was made of stainless steel, and the lower portion, the preheater, was heated directly by dc current. Copper block heat spikes were clamped to the upper test section and were used to apply the heat flux to maintain the wall temperature constant with time. Several theories for the different possible types of flow (laminar or turbulent, tube or film) were compared with the experimental data. The carry-over point for low flooding rates (1 inch/sec or less) was inferred from these comparisons and gave good agreement with the Plummer critical mass criterion for liquid carry-over

  5. Cyclic heat load testing of improved CFC/Cu bonding for the W 7-X divertor targets

    International Nuclear Information System (INIS)

    Greuner, H.; Boeswirth, B.; Boscary, J.; Chaudhuri, P.; Schlosser, J.; Friedrich, T.; Plankensteiner, A.; Tivey, R.

    2009-01-01

    Extensive high heat flux cycling testing of pre-series targets was performed in the neutral beam facility GLADIS to establish the industrial process for the manufacturing of 890 targets, which will be needed for the installation of the WENDELSTEIN 7-X divertor. The targets are manufactured of flat tiles of CFC NB31 as plasma facing material bonded by an Active Metal Casting copper interlayer onto a water-cooled CuCrZr structure. Based on the results of the 3D thermo-mechanical FEM analysis of the CFC/Cu interface, an additional set of 17 full-scale pre-series elements including three design variations was manufactured by PLANSEE SE. The insertion of an additional plastically compliant copper interlayer between the cooling structure and the Active Metal Casting interlayer showed the best results. No critical tile detachment was observed during >5000 cycles at 10 MW/m 2 . These results demonstrated the sufficient life time of the component for the expected heat load in operation.

  6. Change in heat load profile for typical Danish multi-storey buildings when energy-renovated and supplied with low-temperature district heating

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2013-01-01

    ) supply. When end-use-savings are implemented in buildings concurrent with the application of low-temperature district heating (DH) (supply=55°C, return=25°C) the heat demand profiles for the individual buildings will change. The reduction in peak load is important since it is the dimensioning foundation...... for the future DH-systems and in order to avoid oversized RE-based capacity, a long-term perspective needs to be taken. The results show that it is possible to design the DH-plants based on an average value of the 5 days with highest daily average loads without compromising with indoor thermal comfort. Applying...

  7. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    International Nuclear Information System (INIS)

    Conklin, Jim; Forsberg, Charles W.

    2007-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR

  8. Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production

    International Nuclear Information System (INIS)

    Pei Gang; Fu Huide; Ji Jie; Chow Tintai; Zhang Tao

    2012-01-01

    Highlights: ► A novel heat pipe photovoltaic/thermal system with freeze protection was proposed. ► A detailed annual simulation model for the HP-PV/T system was presented. ► Annual performance of HP-PV/T was predicted and analyzed under different condition. - Abstract: Heat-pipe photovoltaic/thermal (HP-PV/T) systems can simultaneously provide electrical and thermal energy. Compared with traditional water-type photovoltaic/thermal systems, HP-PV/T systems can be used in cold regions without being frozen with the aid of a carefully selected heat-pipe working fluid. The current research presents a detailed simulation model of the HP-PV/T system. Using this model, the annual electrical and thermal behavior of the HP-PV/T system used in three typical climate areas of China, namely, Hong Kong, Lhasa, and Beijing, are predicted and analyzed. Two HP-PV/T systems, with and without auxiliary heating equipment, are studied annually under four different kinds of hot-water load per unit collecting area (64.5, 77.4, 90.3, and 103.2 kg/m 2 ).

  9. Performance of cable-in-conduit conductors in ITER [International Thermonuclear Experimental Reactor] toroidal field coils with varying heat loads

    International Nuclear Information System (INIS)

    Kerns, J.A.; Wong, R.L.

    1989-01-01

    The toroidal field (TF) coils in the International Thermonuclear Experimental Reactor (ITER) will operate with varying heat loads generated by ac losses and nuclear heating. The total heat load is estimated to be 2 kW per TF coil under normal operation and can be higher for different operating scenarios. Ac losses are caused by ramping the poloidal field (PF) for plasma initiation, burn, and shutdown; nuclear heating results from neutrons that penetrate into the coil past the shield. Present methods to reduce or eliminate these losses lead to larger and more expensive machines, which are unacceptable with today's budget constraints. A suitable solution is to design superconductors that operate with high heat loads. The cable-in-conduit conductor (CICC) can operate with high heat loads. One CICC design is analyzed for its thermal performance using two computer codes developed at LLNL. One code calculates the steady state flow conditions along the flow path, while the other calculates the transient conditions in the flow. We have used these codes to analyze the superconductor performance during the burn phase of the ITER plasma. The results of these analyses give insight to the choice of flow rate on superconductor performance. 4 refs., 5 figs

  10. Possibility of a pressurized water reactor concept with highly inherent heat removal following capability

    International Nuclear Information System (INIS)

    Araya, Fumimasa; Murao, Yoshio

    1995-01-01

    If the core power inherently follows change in heat removal rate from the primary coolant system within small thermal expansion of the coolant which can be absorbed in a practical size of pressurizer, reactor systems may have more safety and load following capability. In order to know possibility and necessary conditions of a concept on reactor core and primary coolant system of a pressurized water reactor (PWR) with such 'highly inherent heat removal following capability', transient analyses on an ordinary two-loop PWR have been performed for a transient due to 50% change in heat removal with the RETRAN-02 code. The possibility of a PWR concept with the highly inherent heat removal following capability has been demonstrated under the conditions of the absolute value of ratio of the coolant density reactivity coefficient to the Doppler reactivity coefficient more than 10x10 3 kg·cm 3 which is two to three times larger than that at beginning of cycle (BOC) in an ordinary PWR and realized by elimination of the chemical shim, the 12% lower average linear heat generation rate of 17.9 kW/m, and the 1.5 times larger pressurizer volume than those of the ordinary PWR. (author)

  11. Effect of heating and pore water salinity on the swelling characteristics of bentonite buffer

    International Nuclear Information System (INIS)

    Dhawan, Sarita; Rao, M. Sudhakar

    2010-01-01

    Document available in extended abstract form only. Changes in swell potential of bentonite-sand mixture as a function of temperature and pore water salinity were measured. Bentonite dried at 105 deg. C and sand was mixed in 50:50 ratio by weight for study. The bentonite sand mix was compacted to 1.83 Mg/m 3 dry density and 13.8% water content (mixed with distilled water) obtained from Modified proctor compaction test for all test conditions. For the first series, the mix was prepared using distilled water as molding fluid. The compacted samples were dried at temperatures 50 deg. C and 80 deg. C for time periods 2 to 45 days. Dried samples were assembled in oedometer cells and allowed to swell under load of 6.25 kPa. In second series, bentonite sand mixes were prepared with 1000 ppm Na, 1000 ppm K, 1000 ppm Ca and 1000 ppm Mg solutions using chloride salts to achieve water content of 13.8%. The mixes were then compacted and dried at 80 deg. C for 15 days and allowed to swell in oedometer assembly. In third series of experiments, bentonite sand mix were compacted with distilled water as molding fluid and heated at 80 deg. C for 15 days. The dried samples were then swollen inundating with solutions simulating less saline granitic ground water and a moderately saline groundwater. The swell behavior is compared with samples without heating treatment. For samples prepared with distilled water and heated, the swell potential reduced up to 10-28% on heating compared to sample without any heating. The swell reduction varied depending on temperature and time period. The volumetric shrinkage varied from 1.4 to 3.3% of original volume of compacted sample on heating. Addition of sand was found effective in controlling shrinkage caused by heating. For samples prepared with salt solutions with no heating and inundated with distilled water for swell, the swell potential reduced from 12-20% compared to sample mixed and inundated with distilled water. The reduction in swell

  12. Design of a pressurized water loop heated by electric resistances

    International Nuclear Information System (INIS)

    Ribeiro, S.V.G.

    1981-01-01

    A pressurized water loop design is presented. Its operating pressure is 420 psi and we seek to simulate qualitatively some thermo-hydraulic phenomena of PWR reactors. The primary circuit simulator consists basically of two elements: 1)the test section housing 16 electric resistences dissipating a total power of 100 Kw; 2)the loop built of SCH40S 304L steel piping, consisting of the pump, a heat exchanger and the pressurizer. (Author) [pt

  13. Solar Water Heating with Low-Cost Plastic Systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    Federal buildings consumed over 392,000 billion Btu of site delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. Earlier data indicate that about 10% of this is used to heat water.[2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514.

  14. Inactivation of fecal bacteria in drinking water by solar heating.

    Science.gov (United States)

    Joyce, T M; McGuigan, K G; Elmore-Meegan, M; Conroy, R M

    1996-02-01

    We report simulations of the thermal effect of strong equatorial sunshine on water samples contaminated with high populations of fecal coliforms. Water samples, heavily contaminated with a wild-type strain of Escherichia coli (starting population = 20 x 10(5) CFU/ml), are heated to those temperatures recorded for 2-liter samples stored in transparent plastic bottles and exposed to full Kenyan sunshine (maximum water temperature, 55 degrees C). The samples are completely disinfected within 7 h, and no viable E. coli organisms are detected at either the end of the experiment or a further 12 h later, showing that no bacterial recovery has occurred. The feasibility of employing solar disinfection for highly turbid, fecally contaminated water is discussed.

  15. Load factor trends in light water reactor units

    International Nuclear Information System (INIS)

    Lehtinen, E.A.

    1990-01-01

    The Technical Research Centre of Finland follows up and analyses nuclear power plant availability performances worldwide. The results of a trend study for the load factors of the LWR units have been updated to the end of 1987. The whole operating history, in the sense of the annual and cumulative load factors achieved by all the Western commercial LWR units until the end of 1987, has been taken into consideration. Some trends in the load factors have been identified by using an exponential regression model developed. The LWR units form quite an inhomogeneous population with respect to their age, technical characteristics, site country as well as cumulative load factors achieved. The cumulative load factors achieved by all the LWR units until the end of 1987 are presented individually in the scattergrams

  16. Solar water heating for aquaculture : optimizing design for sustainability

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Thwaites, J. [Taylor Munro Energy Systems Inc., Delta, BC (Canada)

    2003-08-01

    This paper presents the results of a solar water heating project at Redfish Ranch, the first Tilapia tropical fish farm in British Columbia. The fish are raised in land-based tanks, eliminating the risk of contamination of local ecosystems. As a tropical species, they requires warm water. Natural gas or propane boilers are typically used to maintain tank temperatures at 26 to 28 degrees C. Redfish Ranch uses solar energy to add heat to the fish tanks, thereby reducing fossil-fuel combustion and greenhouse gas emissions. This unique building-integrated solar system is improving the environmental status of of this progressive industrial operation by offsetting fossil-fuel consumption. The system was relatively low cost, although substantial changes had to be made to the roof of the main building. The building-integrated design of the solar water heating system has reduced operating costs, generated local employment, and shows promise of future activity. As such, it satisfies the main criteria for sustainability. 7 refs.

  17. Super heated water generator for baking of vacuum chambers of INDUS-2

    International Nuclear Information System (INIS)

    Bhatnagar, Prateek; Yadav, D.P.; Sindal, B.K.; Sharma, H.K.; Shukla, S.K.

    2005-01-01

    It is proposed to use superheated water bake out system for in-situ baking of aluminum alloy dipole and straight section chambers of INDUS-2. Heat load calculations have shown that power requirements for an in-situ bake out at 150 degC is 0.64 kW mt - 1 and 3.2 kWmt -l for straight section and dipole chamber respectively (for one baking segment 60 kW. Baking of vacuum chambers by Nichrome flexible heating tapes at 150 degC has lot of practical problems such as non uniform temperature, non accessibility of heaters to inside parts etc. This paper presents various design objectives, mechanical, electrical and instrumentation design parameters including the safety devices in the system in order to achieve a fail safe baking operation ranging almost for 72 hrs. (author)

  18. Economics of residential solar hot water heating systems in Malaysia

    International Nuclear Information System (INIS)

    Abdulmula, Ahmed Mohamed Omer; Sopian, Kamaruzzaman; Haj Othman, Mohd Yosof

    2006-01-01

    Malaysia has favorable climatic conditions for the development of solar energy due to the abundant sunshine and is considered good for harnessing energy from the sun. This is because solar hot water can represent the large energy consumer in Malaysian households but, because of the high initial cost of Solar Water Heating Systems (SWHSs) and easily to install and relatively inexpensive to purchase electric water heaters, many Malyaysian families are still using Electric Water Heaters to hot their water needs. This paper is presented the comparing of techno-economic feasibility of some models of SWHS from Malaysian's market with the Electric Water Heaters )EWH) by study the annual cost of operation for both systems. The result shows that the annual cost of the electrical water heater becomes greater than than the annual cost of the SWHS for all models in long-team run so it is advantageous for the family to use the solar water heater, at least after 4 years. In addition with installation SWHS the families can get long-term economical benefits, environment friendly and also can doing its part to reduce this country's dependence on foreign oil that is price increase day after day.(Author)

  19. Heat Pump Water Heaters and American Homes: A Good Fit?

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

    2010-05-14

    Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

  20. Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G. [Washington, State Univ., Pullman, WA (United States); Wegman, S. [South Dakota Utilities Commission (United States)

    1998-04-01

    The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for material and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.

  1. Preliminary Analysis on Heat Removal Capacity of Passive Air-Water Combined Cooling Heat Exchanger Using MARS

    International Nuclear Information System (INIS)

    Kim, Seung-Sin; Jeon, Seong-Su; Hong, Soon-Joon; Bae, Sung-Won; Kwon, Tae-Soon

    2015-01-01

    Current design requirement for working time of PAFS heat exchanger is about 8 hours. Thus, it is not satisfied with the required cooling capability for the long term SBO(Station Black-Out) situation that is required to over 72 hours cooling. Therefore PAFS is needed to change of design for 72 hours cooling. In order to acquirement of long terms cooling using PAFS, heat exchanger tube has to be submerged in water tank for long time. However, water in the tank is evaporated by transferred heat from heat exchanger tubes, so water level is gradually lowered as time goes on. The heat removal capacity of air cooling heat exchanger is core parameter that is used for decision of applicability on passive air-water combined cooling system using PAFS in long term cooling. In this study, the development of MARS input model and plant accident analysis are performed for the prediction of the heat removal capacity of air cooling heat exchanger. From analysis result, it is known that inflow air velocity is the decisive factor of the heat removal capacity and predicted air velocity is lower than required air velocity. But present heat transfer model and predicted air velocity have uncertainty. So, if changed design of PAFS that has over 4.6 kW heat removal capacity in each tube, this type heat exchanger can be applied to long term cooling of the nuclear power plant

  2. Energetical and ecological assessment of solar- and heat pump technologies for hot water preparation and space heating in Austria

    International Nuclear Information System (INIS)

    Faninger, G.

    1991-11-01

    Solar and heat pump systems have been proved in many applications on the market. To achieve an efficient energy output it is necessary to consider the special conditions of these technologies. The energetical and ecological criteria of solar and heat pump systems for hot water preparation and space heating are analysed on the basis of experimental data. (author)

  3. Tropic of Langdale. [River water as a heat source for leisure centre

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, K.

    1986-03-01

    A brief report is given of a unique example of energy management in a Lake District leisure centre. At the site of a former gunpowder mill, river water was directed over a mill race in which a heat exchanger was installed. Heat taken from the river is upgraded by heat pumps, thus providing the base heating and hot water for the leisure centre.

  4. Thermal models of buildings. Determination of temperatures, heating and cooling loads. Theories, models and computer programs

    Energy Technology Data Exchange (ETDEWEB)

    Kaellblad, K

    1998-05-01

    The need to estimate indoor temperatures, heating or cooling load and energy requirements for buildings arises in many stages of a buildings life cycle, e.g. at the early layout stage, during the design of a building and for energy retrofitting planning. Other purposes are to meet the authorities requirements given in building codes. All these situations require good calculation methods. The main purpose of this report is to present the authors work with problems related to thermal models and calculation methods for determination of temperatures and heating or cooling loads in buildings. Thus the major part of the report deals with treatment of solar radiation in glazing systems, shading of solar and sky radiation and the computer program JULOTTA used to simulate the thermal behavior of rooms and buildings. Other parts of thermal models of buildings are more briefly discussed and included in order to give an overview of existing problems and available solutions. A brief presentation of how thermal models can be built up is also given and it is a hope that the report can be useful as an introduction to this part of building physics as well as during development of calculation methods and computer programs. The report may also serve as a help for the users of energy related programs. Independent of which method or program a user choose to work with it is his or her own responsibility to understand the limits of the tool, else wrong conclusions may be drawn from the results 52 refs, 22 figs, 4 tabs

  5. Damage behavior of REE-doped W-based material exposed to high-flux transient heat loads

    International Nuclear Information System (INIS)

    Shi, Jing; Luo, Lai–Ma; Lin, Jin–shan; Zan, Xiang; Zhu, Xiao–yong; Xu, Qiu; Wu, Yu–Cheng

    2016-01-01

    Pure W and W-Lu alloys were prepared by mechanical alloying (MA) and spark plasma sintering (SPS) technology. The performance and relevant damage mechanism of W-(0%, 2%, 5%, 10%) Lu alloys under transient heat loads were investigated using a laser beam heat load test to simulate the transient events in future nuclear fusion reactors. Scanning electron microscopy was used to observe the morphologies of the damaged surfaces and energy dispersive X-ray spectroscopy was used to conduct composition analysis. Damages to the surface such as cracks, pits, melting layers, Lu-rich droplets, and thermal ablation were observed. A mass of dense fuzz-like nanoparticles formed on the outer region of the laser-exposed area. Recrystallization, grain growth, increased surface roughness, and material erosion were also observed. W-Lu samples with low Lu content demonstrated better thermal performance than pure W, and the degree of damage significantly deteriorated under repetitive transient heat loads.

  6. Seasonal variability of heat flux divergence in the coastal waters of Visakhapatnam

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, B.P.; Sadhuram, Y.

    Heat flux divergence (Qv) in the coastal waters of Visakhapatnam, Andhra, Pradesh, India during different seasons, was estimated for the period February 1980-January 1981. It is found that the water column (0-60 m) gains heat during winter...

  7. Application of solar radiation for heating and preparation of warm water in an individual house

    International Nuclear Information System (INIS)

    Kozak, Tadeeusz; Majchrzycka, Anna

    2009-01-01

    The paper is aimed at analysis of application of the solar collectors array for preparing of warm water and space heating in an individual house. Keywords: application of solar radiation, preparation of warm water, heating

  8. Performance of the JT-60SA cryogenic system under pulsed heat loads during acceptance tests

    Science.gov (United States)

    Hoa, C.; Bonne, F.; Roussel, P.; Lamaison, V.; Girard, S.; Fejoz, P.; Goncalves, R.; Vallet, J. C.; Legrand, J.; Fabre, Y.; Pudys, V.; Wanner, M.; Cardella, A.; Di Pietro, E.; Kamiya, K.; Natsume, K.; Ohtsu, K.; Oishi, M.; Honda, A.; Kashiwa, Y.; Kizu, K.

    2017-12-01

    The JT-60SA cryogenic system a superconducting tokamak currently under assembly at Naka, Japan. After one year of commissioning, the acceptance tests were successfully completed in October 2016 in close collaboration with Air Liquide Advanced Technologies (ALaT), the French atomic and alternative energies commission (CEA), Fusion for Energy (F4E) and the Quantum Radiological Science and Technology (QST). The cryogenic system has several cryogenic users at various temperatures: the superconducting magnets at 4.4 K, the current leads at 50 K, the thermal shields at 80 K and the divertor cryo-pumps at 3.7 K. The cryogenic system has an equivalent refrigeration power of about 9.5 kW at 4.5 K, with peak loads caused by the nuclear heating, the eddy currents in the structures and the AC losses in the magnets during cyclic plasma operation. The main results of the acceptance tests will be reported, with emphasis on the management of the challenging pulsed load operation using a liquid helium volume of 7 m3 as a thermal damper.

  9. Thermal Energy Storage for Building Load Management: Application to Electrically Heated Floor

    Directory of Open Access Journals (Sweden)

    Hélène Thieblemont

    2016-07-01

    Full Text Available In cold climates, electrical power demand for space conditioning becomes a critical issue for utility companies during certain periods of the day. Shifting a portion or all of it to off-peak periods can help reduce peak demand and reduce stress on the electrical grid. Sensible thermal energy storage (TES systems, and particularly electrically heated floors (EHF, can store thermal energy in buildings during the off-peak periods and release it during the peak periods while maintaining occupants’ thermal comfort. However, choosing the type of storage system and/or its configuration may be difficult. In this paper, the performance of an EHF for load management is studied. First, a methodology is developed to integrate EHF in TRNSYS program in order to investigate the impact of floor assembly on the EHF performance. Then, the thermal comfort (TC of the night-running EHF is studied. Finally, indicators are defined, allowing the comparison of different EHF. Results show that an EHF is able to shift 84% of building loads to the night while maintaining acceptable TC in cold climate. Moreover, this system is able to provide savings for the customer and supplier if there is a significant difference between off-peak and peak period electricity prices.

  10. Urban "accidental" wetlands mediate water quality and heat exposure for homeless populations in a desert city

    Science.gov (United States)

    Palta, M.

    2015-12-01

    In urban settings where humans interact in complex ways with ecosystems, there may be hidden or unanticipated benefits (services) or harm (disservices) conferred by the built environment. We examined interactions of a highly vulnerable population, the homeless, with urban waterways and wetlands in the desert city of Phoenix, Arizona, U.S.A. Climate change models project increases in heat, droughts, and extreme floods for the southwestern U.S. These projected changes pose a number of problems for sustainability and quality of future water supply, and the ability of human populations to mitigate heat stress and avoid fatalities. Urban wetlands that are created "accidentally" (by water pooling in abandoned areas of the landscape) have many structural (e.g., soils and hydrology) and functional (e.g., high denitrification) elements that mimic natural, unaltered aquatic systems. Accidental wetland systems in the dry bed of the Salt River, fed by storm and waste water from urban Phoenix, are located within economically depressed sections of the city, and show the potential for pollutant and heat mitigation. We used a mixed-method socio-ecological approach to examine wetland ecosystem functions and the ways in which homeless populations utilize Salt River wetlands for ecosystem services. Interviews and trash surveys indicated that homeless people are accessing and utilizing the wetlands as a source of running water, for sanitary and heat mitigation services, and for recreation and habitation. Environmental monitoring demonstrated that the wetlands can provide a reliable source of running water, nutrient and pathogen removal, heat mitigation, and privacy, but they may also pose a health risk to individuals coming in contact with the water through drinking or bathing. Whether wetlands provided a net benefit vs. harm varied according to site, season, and particular service, and several tradeoffs were identified. For example, heat is highest during the summer storm season

  11. Colloid volume loading does not mitigate decreases in central blood volume during simulated hemorrhage while heat stressed

    DEFF Research Database (Denmark)

    Crandall, Craig G; Wilson, Thad E; Marving, Jens

    2012-01-01

    attenuates the reduction in regional blood volumes during a simulated hemorrhagic challenge imposed via lower-body negative pressure (LBNP). Seven subjects underwent 30 mmHg LBNP while normothermic, during passive heat stress (increased internal temperature ~1°C), and while continuing to be heated after...... intravenous colloid volume loading (11 ml/kg). Relative changes in torso and regional blood volumes were determined by gamma camera imaging with technetium-99m labeled erythrocytes. Heat stress reduced blood volume in all regions (ranging from 7 to 16%), while subsequent volume loading returned those values...... to normothermic levels. While normothermic, LBNP reduced blood volume in all regions (torso: 22±8%; heart: 18±6%; spleen: 15±8%). During LBNP while heat stressed, the reductions in blood volume in each region were markedly greater when compared to LBNP while normothermic (torso: 73±2%; heart: 72±3%; spleen: 72...

  12. Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads

    Science.gov (United States)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.-N.; Xu, H. Y.; Fu, B. Q.; Li, M.; Liu, W.

    2013-02-01

    Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m2 were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/Tmax) was found and accordingly the activation energy for grain growth in temperature evolution up to Tmax in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads.

  13. Investigation af a solar heating system for space heating and domestic hot water supply with a high degree of coverage

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility.......A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility....

  14. Possibility of heat recovery from gray water in residential building

    Directory of Open Access Journals (Sweden)

    Mazur Aleksandra

    2017-12-01

    Full Text Available Recovery of waste heat from gray water can be an interesting alternative to other energy saving systems in a building, including alternative energy sources. Mainly, due to a number of advantages including independence from weather conditions, small investment outlay, lack of user support, or a slight interference with the installation system. The purpose of this article is to present the financial effectiveness of installations which provide hot, usable water to a detached house, using a Drain Water Heat Recovery (DWHR system depending on the number of system users and the various combinations of bathing time in the shower, which has an influence on the daily warm water demand in each of the considered options. The economic analysis of the adopted installation variants is based on the Life Cycle Cost (LCC method, which is characterized by the fact that it also includes the operating costs in addition to the capital expenditure during the entire analysis period. For each case, the necessary devices were selected and the cost of their installation was estimated.

  15. Possibility of heat recovery from gray water in residential building

    Science.gov (United States)

    Mazur, Aleksandra; Słyś, Daniel

    2017-12-01

    Recovery of waste heat from gray water can be an interesting alternative to other energy saving systems in a building, including alternative energy sources. Mainly, due to a number of advantages including independence from weather conditions, small investment outlay, lack of user support, or a slight interference with the installation system. The purpose of this article is to present the financial effectiveness of installations which provide hot, usable water to a detached house, using a Drain Water Heat Recovery (DWHR) system depending on the number of system users and the various combinations of bathing time in the shower, which has an influence on the daily warm water demand in each of the considered options. The economic analysis of the adopted installation variants is based on the Life Cycle Cost (LCC) method, which is characterized by the fact that it also includes the operating costs in addition to the capital expenditure during the entire analysis period. For each case, the necessary devices were selected and the cost of their installation was estimated.

  16. Theoretical investigation of the performance of a novel loop heat pipe solar water heating system for use in Beijing, China

    International Nuclear Information System (INIS)

    Zhao Xudong; Wang Zhangyuan; Tang Qi

    2010-01-01

    A novel loop heat pipe (LHP) solar water heating system for typical apartment buildings in Beijing was designed to enable effective collection of solar heat, distance transport, and efficient conversion of solar heat into hot water. Taking consideration of the heat balances occurring in various parts of the loop, such as the solar absorber, heat pipe loop, heat exchanger and storage tank, a computer model was developed to investigate the thermal performance of the system. With the specified system structure, the efficiency of the solar system was found to be a function of its operational characteristics - working temperature of the loop heat pipe, water flow rate across the heat exchanger, and external parameters, including ambient temperature, temperature of water across the exchanger and solar radiation. The relationship between the efficiency of the system and these parameters was established, analysed and discussed in detail. The study suggested that the loop heat pipe should be operated at around 72 deg. C and the water across the heat exchanger should be maintained at 5.1 l/min. Any variation in system structure, i.e., glazing cover and height difference between the absorber and heat exchanger, would lead to different system performance. The glazing covers could be made using either borosilicate or polycarbonate, but borosilicate is to be preferred as it performs better and achieves higher efficiency at higher temperature operation. The height difference between the absorber and heat exchanger in the design was 1.9 m which is an adequate distance causing no constraint to heat pipe heat transfer. These simulation results were validated with the primary testing results.

  17. Finite element based design optimization of WENDELSTEIN 7-X divertor components under high heat flux loading

    International Nuclear Information System (INIS)

    Plankensteiner, A.; Leuprecht, A.; Schedler, B.; Scheiber, K.-H.; Greuner, H.

    2007-01-01

    In the divertor of the nuclear fusion experiment WENDELSTEIN 7-X (W7-X) plasma facing high heat flux target elements have to withstand severe loading conditions. The thermally induced mechanical stressing turns out to be most critical with respect to lifetime predictions of the target elements. Therefore, different design variants of those CFC flat tile armoured high heat flux components have been analysed via the finite element package ABAQUS aiming at derivation of an optimized component design under high heat flux conditions. The investigated design variants comprise also promising alterations in the cooling channel design and castellation of the CFC flat tiles which, however, from a system integration and manufacturing standpoint of view, respectively, are evaluated to be critical. Therefore, the numerical study as presented here mainly comprises a reference variant that is comparatively studied with a variant incorporating a bi-layer-type AMC-Cu/OF-Cu interlayer at the CFC/Cu-interface. The thermo-mechanical material characteristics are accounted for in the finite element models with elastic-plastic properties being assigned to the metallic sections CuCrZr, AMC-Cu and OF-Cu, respectively, and orthotropic nonlinear-elastic properties being used for the CFC sections. The calculated temporal and spatial evolution of temperatures, stresses, and strains for the individual design variants are evaluated with special attention being paid to stress measures, plastic strains, and damage parameters indicating the risk of failure of CFC and the CFC/Cu-interface, respectively. This way the finite element analysis allows to numerically derive an optimized design variant within the framework of expected operating conditions in W7-X

  18. Electricity use and load management in electricity heated one-family houses from customer and utility perspective; Effekten av effekten - Elanvaendning och laststyrning i elvaermda smaahus ur kund- och foeretagsperspektiv

    Energy Technology Data Exchange (ETDEWEB)

    Sernhed, Kerstin

    2004-11-01

    Until recently, the increase in electricity demand and peak power demand has been met by expansion of the electricity production. Today, due to the deregulation of the electricity market, the production capacity is decreasing. Therefore, there is a national interest in finding solutions to peak problems also on the demand side. In the studies described here (Study 1 and 2) ten households in electrically heated houses were examined. In 1999 the utility equipped their customers with a remote metering system (CustCom) that has an in-built load control component. In Study 1, the load pattern of ten households was examined by using energy diaries combined with frequent meter readings (every five minutes) of the load demand for heating, hot water service and domestic electricity use. Household members kept energy diaries over a four-day period in January 2004, noting time, activities and the use of household appliances that run on electricity. The analysis showed that the use of heat-producing household appliances, e.g. sauna, washing machine and dryer, appliances used for cooking, dishwasher and extra electric heaters, contribute to the household's highest peaks. Turning on the sauna and at the same time using the shower equates to a peak load of 7-9 kW. This, in addition to the use of electricity for heating and lighting along alongside electricity use for refrigerators and freezers, results in some households reaching their main fuse level (roughly 13,8 kW for a main fuse of 20 A). This means that the domestic use of electricity makes up a considerable part of the highest peak loads in a household, but the highest peaks occur together with the use of electricity for heating and hot water. In the second study, Study 2, the households participated in a load control experiment, in which the utility was able to turn on and switch off the heating and hot water systems remotely, using the CustCom system. Heating and water heaters were switched off for periods of 1

  19. 40 CFR 463.10 - Applicability; description of the contact cooling and heating water subcategory.

    Science.gov (United States)

    2010-07-01

    ... contact cooling and heating water subcategory. 463.10 Section 463.10 Protection of Environment... SOURCE CATEGORY Contact Cooling and Heating Water Subcategory § 463.10 Applicability; description of the contact cooling and heating water subcategory. This subpart applies to discharges of pollutants from...

  20. Efficiency analysis of solar facilities for building heating and household water heating under conditions in the Czech Republic

    OpenAIRE

    Pivko, Michal; Jursová, Simona; Turjak, Juraj

    2012-01-01

    The paper studies the efficiency of solar facilities applied for the heating of buildings and household water heating in the Czech Republic. The Czech Republic is situated in the temperate zone characterized by changeable weather. It is respected in the assessment of a solar facility installation. The efficiency of solar facilities is evaluated according to energy and economic balances. It is analyzed for solar facilities heating both household water and buildings. The main problems relating ...