WorldWideScience

Sample records for lng storage facilities

  1. Demand management of city gas per season and study of estimating proper size of LNG storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y.H.; Kim, S.D. [Korea Energy Economics Institute, Euiwang (Korea, Republic of)

    1997-09-01

    LNG storage facilities are indispensable to satisfy demand throughout the year by saturating the time difference of supply and demand that appears due to seasonal factors. The necessity of storage facilities is more important in a country like Korea where LNG is not produced at all and imports are relied upon. The problem of deciding how much storage facilities to keep and in what pattern to import LNG is a question to solve in order to minimize the costs related to the construction of LNG storage facilities while not causing any problem in the supply and demand of LNG. This study analyzes how the import of LNG and the consumption pattern of LNG for power generation affect the decision on the size of storage facilities. How the shipping control, and how LNG demand for power generation affect the decision of requirement of storage facilities, and why the possibility of shipping control should be investigated in the aspect of costs is investigated. As a result of this study, I presented necessary basic data for drafting a policy by assessing the minimum requirements of storage facilities needed for balancing the supply and demand with the various shipping control and LNG consumption patterns through simulation up to the year 2010. 10 refs., 33 figs., 66 tabs.

  2. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Science.gov (United States)

    2010-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each LNG... 49 Transportation 3 2010-10-01 2010-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193...

  3. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Science.gov (United States)

    2010-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2181 Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a... 49 Transportation 3 2010-10-01 2010-10-01 false Impoundment capacity: LNG storage tanks. 193.2181...

  4. Liquefied natural gas (LNG) : production, storage and handling. 7. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, S; Jaron, K; Adragna, M; Coyle, S; Foley, C; Hawryn, S; Martin, A; McConnell, J [eds.

    2003-07-01

    This Canadian Standard on the production, storage and handling of liquefied natural gas (LNG) was prepared by the Technical Committee on Liquefied Natural Gas under the jurisdiction of the Steering Committee on Oil and Gas Industry Systems and Materials. It establishes the necessary requirements for the design, installation and safe operation of LNG facilities. The Standard applies to the design, location, construction, operation and maintenance of facilities at any location of the liquefaction of natural gas and for the storage, vaporization, transfer, handling and truck transport of LNG. The training of personnel involved is also included as well as containers for LNG storage, including insulated vacuum systems. It includes non-mandatory guidelines for small LNG facilities but does not apply to the transportation of refrigerants, LNG by rail, marine vessel or pipeline. This latest edition contains changes in working of seismic design requirements and minor editorial changes to several clauses to bring the Standard closer to the US National Fire Protection Association's Committee on Liquefied Natural Gas Standard while maintaining Canadian regulatory requirements. The document is divided into 12 sections including: general requirements; plant site provisions; process equipment; stationary LNG storage containers; vaporization facilities; piping system and components; instrumentation and electrical services; transfer of LNG and refrigerants; fire protection, safety and security; and, operating, maintenance and personnel training. This Standard, like all Canadian Standards, was subject to periodic review and was most recently reaffirmed in 2003. 6 tabs., 6 figs., 3 apps.

  5. LNG plants in the US and abroad

    International Nuclear Information System (INIS)

    Blazek, C.F.; Biederman, R.T.

    1992-01-01

    The Institute of Gas Technology recently conducted a comprehensive survey of LNG production and storage facilities in North America. This survey was performed as part of IGT's LNG Observer newsletter which covers both domestic and international LNG news, reports on LNG related economics and statistics, and routinely conducts interviews with key industry leaders. In addition to providing consulting services to the LNG industry, IGT has cosponsored the International Conference on Liquefied Natural Gas for the part 20 years. The objective of this paper is to present a summary of our recent survey results as well as provide an overview of world LNG trade. This information is important in assessing the potential near term availability of LNG for transportation applications. The IGT LNG Survey appraised the capacity and current market activity of LNG peak shaving, satellite storage, and import receiving facilities in the United States and Canada. Information was requested from facilities on three main topics: liquefaction, storage, and regasification. Additional questions were posed regarding the year of operation, designer/contractor for liquefaction cycle and storage, source of LNG (for storage-only facilities), plans for expansion, and level of interest in providing LNG as a vehicle fuel. The IGT LNG Survey has to date received information on 56 LNG peak shaving facilities, 28 satellite storage facilities, and 4 LNG import receiving terminals

  6. Optimal LNG (liquefied natural gas) regasification scheduling for import terminals with storage

    International Nuclear Information System (INIS)

    Trotter, Ian M.; Gomes, Marília Fernandes Maciel; Braga, Marcelo José; Brochmann, Bjørn; Lie, Ole Nikolai

    2016-01-01

    We describe a stochastic dynamic programming model for maximising the revenue generated by regasification of LNG (liquefied natural gas) from storage tanks at importation terminals in relation to a natural gas spot market. We present three numerical resolution strategies: a posterior optimal strategy, a rolling intrinsic strategy and a full option strategy based on a least-squares Monte Carlo algorithm. We then compare model simulation results to the observed behaviour of three LNG importation terminals in the UK for the period April 2011 to April 2012, and find that there was low correlation between the observed regasification decisions of the operators and those suggested by the three simulated strategies. However, the actions suggested by the model simulations would have generated significantly higher revenues, suggesting that the facilities might have been operated sub-optimally. A further numerical experiment shows that increasing the storage and regasification capacities of a facility can significantly increase the achievable revenue, even without altering the amount of LNG received, by allowing operators more flexibility to defer regasification. - Highlights: • We present a revenue maximisation model for LNG (liquefied natural gas) storage tanks at import terminals. • Three resolution strategies: posterior optimal, rolling intrinsic and full option. • The full option strategy is based on a least-squares Monte Carlo algorithm. • Model simulations show potential for higher revenue in three UK LNG terminals. • Numerical experiments show how storage and regasification capacities affect revenue.

  7. 77 FR 43589 - Freeport LNG Development, L.P., Freeport LNG Expansion, L.P., FLNG Liquefaction LLC; Supplemental...

    Science.gov (United States)

    2012-07-25

    ... addition, a second ship berthing area, third LNG storage tank, and additional LNG vaporization and natural... 7.3 7.3 Appurtenant Facilities beyond Terminal Site and Pretreatment 0.1 0.1 0.2 Facility site and... issues that we think deserve attention based on a preliminary review of the planned facilities and the...

  8. Gas storage facilities. Investigation of their social value

    International Nuclear Information System (INIS)

    1997-02-01

    The socio-economic factors resulting from location of gas storage facilities are evaluated. Various alternatives to the existing projects are estimated, for instance 11 new pipelines, in some cases combined with new production capacity, LNG facilities, differentiated tariffs, reconstruction of decentralized heat/power plants etc. Theoretical considerations and models, among others involving gas storage abroad, are presented. Seasonal storage, emergency storage, storage controlled by economic optimization (profitable purchases, sales at highest market) are described for various types of facilities, like aquifers, caverns and LNG-stores. Natural gas supplies in Europe, infrastructure and resources are compared to the Danish conditions. Sensitivity of the Danish heating market for natural gas consumption is investigated. Reduction in energy use for space heating by 2005 will change the needs of storage of 740 Mm 3 gas to 650 Mm 3 . Extra consumption by the decentralized power/heat plants is not accounted for in this estimation. Dynamic models of the future gas consumption are based on the EU 'European Energy 2020'. (EG)

  9. Gas storage facilities. Investigation of their social value. Supplement

    International Nuclear Information System (INIS)

    1997-02-01

    The socio-economic factors resulting from location of gas storage facilities are evaluated. Various alternatives to the existing projects are estimated, for instance 11 new pipelines, in some cases combined with new production capacity, LNG facilities, differentiated tariffs, reconstruction of decentralized heat/power plants etc. Theoretical considerations and models, among others involving gas storage abroad, are presented. Seasonal storage, emergency storage, storage controlled by economic optimization (profitable purchases, sales at highest market) are described for various types of facilities, like aquifers, caverns and LNG-stores. Natural gas supplies in Europe, infrastructure and resources are compared to the Danish conditions. Sensitivity of the Danish heating market for natural gas consumption is investigated. Reduction in energy use for space heating by 2005 will change the needs of storage of 740 Mm 3 gas to 650 Mm 3 . Extra consumption by the decentralized power/heat plants is not accounted for in this estimation. Dynamic models of the future gas consumption are based on the EU 'European Energy 2020'. (EG)

  10. Study on Calculation of Liquid Level And Storage of Tanks for LNG-fueled Vessels

    Science.gov (United States)

    Li, Kun; Wang, Guoqing; Liu, Chang

    2018-01-01

    As the ongoing development of the application of LNG as a clean energy in waterborne transport industry, the fleet scale of LNG-fueled vessels enlarged and the safety operation has attracted more attention in the industry. Especially the accurate detection of liquid level of LNG tanks is regarded as an important issue to ensure a safe and stable operation of LNG-fueled ships and a key parameter to keep the proper functioning of marine fuel storage system, supply system and safety control system. At present, detection of LNG tank liquid level mainly adopts differential pressure detection method. Liquid level condition could be found from the liquid level reference tables. However in practice, since LNG-fueled vessels are generally not in a stationary state, liquid state within the LNG tanks will constantly change, the detection of storage of tanks only by reference to the tables will cause deviation to some extent. By analyzing the temperature under different pressure, the effects of temperature change on density and volume integration calculation, a method of calculating the liquid level and storage of LNG tanks is put forward making the calculation of liquid level and actual storage of LNG tanks more accurately and providing a more reliable basis for the calculation of energy consumption level and operation economy for LNG-fueled vessels.

  11. LNG transport through pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, P; Philipps, A

    1975-01-01

    LNG pipelines could help solve some peakshaving problems if operated in conjunction with other facilities that could use the LNG cold recovered during regasification. In some areas at present, LNG is delivered by tanker and regasified near the terminal for transmission through conventional gas pipelines. In other places, utilities liquefy natural gas for easy storage for later peakshaving use. The only chance to avoid the second expensive liquefaction step would be to convey imported LNG through a suitable designed LNG pipeline. The technical problems involved in LNG pipeline construction have basically been solved in recent years, but those pipelines actually constructed have been only short ones. To be economically justified, long-distance LNG lines require additional credit, which could be obtained by selling the LNG cold recovered during regasification to industrial users located in or near the points of gas consumption. Technical details presented cover the pipe material, stress relief, steel composition, pressure enthalpy, bellows-type expansion joints, and mechanical and thermal insulation.

  12. Pre-commissioning, commissioning, start-up and operation of a major extension to an LNG manufacturing facility in Bintulu, Sarawak

    International Nuclear Information System (INIS)

    Wong, T.

    1997-01-01

    In 1989, a decision was taken by the Shareholders of Malaysia LNG Sdn Bhd (MLNG) to expand their existing LNG manufacturing facility of some 8.0 million tonnes per annum, and to minimise the capital investment by maximizing the use of available off-plot facilities and utilities, together with the introduction of proven technological enhancements. Accordingly a new Company (MLNG Dua) was set up to own and manage this project and joint venture between existing shareholders. This paper describes the organisation, planning, and execution of the precommissioning, commissioning, start-up, and operation of the off-plot facilities, integrated utilities, and the first new process module, such that on-grade LNG rundown into MLNG's existing storage capacity was achieved within 26 days of the process module being signed off as Ready for Start-up (RFSU). (au)

  13. Siting considerations for LNG import terminals

    Energy Technology Data Exchange (ETDEWEB)

    Meratla, Z. [CDS Research Ltd., Vancouver, BC (Canada)

    2005-07-01

    Site selection criteria for liquefied natural gas (LNG) facilities and terminals were reviewed in this PowerPoint presentation. Onshore and offshore sites were discussed. Typical public opposition issues were examined, including public concerns over safety and the environment. Low key consultation processes with local communities was advised to assess levels of interest and opposition during initial stages. It was suggested that desirable LNG sites should not be visible from local communities. Remoteness from built-up areas was advised, as well as ensuring that sites meet the requirements of future expansion and large LNG carriers. Issues concerning waterway drawbacks and exclusion zones were examined, as well as the relative merits of onshore and offshore terminals. It was noted that onshore terminals are accessible to personnel as well as outside emergency response resources, and are less susceptible to weather related downtime. In addition, onshore spills are generally impounded. Offshore LNG import terminals are visible from shorelines and susceptible to stray marine traffic and abnormal events. Siting considerations for offshore facilities include sensitive areas; shipping channels; foundation issues; shipping lane access; and offshore pipeline lengths. Issues concerning loading arms, remote flare systems, integral ballast and process equipment for offshore facilities were discussed. Membrane type storage systems and tank construction details were presented as well as details of self supporting storage systems. A comparison of gravity-based structures and floating facilities was presented. It was concluded that floating LNG facilities have well developed security procedures, passive protection and automatic intruder detection alarms. tabs., figs.

  14. A basic study on underground storage of LNG

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Kyu; Lee, Kyung-Han; Kang, Sun-Duck [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    In 1997, import of LNG was 11,378 thousand of about 2.3 billion US dollars. The demand of LNG(Liquefied Natural Gas) in Korea has been increased since 1987 with the rate of 20% annually. It is also estimated that this trend will be continued until 2010. Long-term estimation says that demand will increase with 9.1% and total demand of 2010 will be 23 million ton that is four times larger than that of 1994. Bases of unloading and store of LNG is necessary to complete the network of LNG distribution system to cover all of the country from import to final supply terminal at home. The construction plan of LNG bases with 49 tanks was published and is going on now at three bases, Pyungtaek, Incheon and Tongyoung. The total cost for this construction will be over 5,400 billion Won. All the LNG tanks are planned to build on the surface. The construction of LNG tanks on the surfaces is conventional but it damage the surface green area and is very vulnerable on safety, especially in Korea Peninsula with potentially unstable of military confrontation. And Korea is so small and limited in available land that it is not easy to find proper places for construction of more LNG tanks on surface. Underground LNG stores in rock will be a good alternative for tanks on surface in the view points of environmental and safety. It is also reported that it can be cheaper than that of on surfaces. It is well known that bed rocks in Korea is good to build underground structure like LNG stores. This report is basic research to seek for the possibility of LNG store construction in underground rocks. The important two questions on it is that whether it is possible technically and economically or not. The technical focus in this report is the stability of underground cavern for storage of LNG, energy conservation in operation, tightness against leakage of stored gas to surface and safety. Some statistic on LNG in Korea is given for this study with its future. (author). 25 refs., 36 tabs., 88 figs.

  15. Monitoring and analysis of liquid storage in LNG tank based on different support springs

    Science.gov (United States)

    He, Hua; Sun, Jianping; Li, Ke; Wu, Zheng; Chen, Qidong; Chen, Guodong; Cao, Can

    2018-04-01

    With the rapid development of social modernization, LNG vehicles are springing up in daily life. However, it is difficult to monitor and judge the liquid storage tanks accurately and quickly. Based on this, this paper presents a new method of liquid storage monitoring, LNG tank on-line vibration monitoring system. By collecting the vibration frequency of LNG tank and tank liquid and supporting spring system, the liquid storage quality in the tank can be calculated. In this experiment, various vibration modes of the tank spring system are fully taken into account. The vibration effects of different types of support springs on the LNG tank system were investigated. The results show that the spring model has a great influence on the test results. This study provides a technical reference for the selection of suitable support springs for liquid storage monitoring.

  16. A NOVEL PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LNG

    Energy Technology Data Exchange (ETDEWEB)

    Michael M. McCall; William M. Bishop; Marcus Krekel; James F. Davis; D. Braxton Scherz

    2005-05-31

    This cooperative research project validates use of man made salt caverns to receive and store the cargoes of LNG ships in lieu of large liquid LNG tanks. Salt caverns will not tolerate direct injection of LNG because it is a cryogenic liquid, too cold for contact with salt. This research confirmed the technical processes and the economic benefits of pressuring the LNG up to dense phase, warming it to salt compatible temperatures and then directly injecting the dense phase gas into salt caverns for storage. The use of salt caverns to store natural gas sourced from LNG imports, particularly when located offshore, provides a highly secure, large scale and lower cost import facility as an alternative to tank based LNG import terminals. This design can unload a ship in the same time as unloading at a tank based terminal. The Strategic Petroleum Reserve uses man made salt caverns to securely store large quantities of crude oil. Similarly, this project describes a novel application of salt cavern gas storage technologies used for the first time in conjunction with LNG receiving. The energy industry uses man made salt caverns to store an array of gases and liquids but has never used man made salt caverns directly in the importation of LNG. This project has adapted and expanded the field of salt cavern storage technology and combined it with novel equipment and processes to accommodate LNG importation. The salt cavern based LNG receiving terminal described in the project can be located onshore or offshore, but the focus of the design and cost estimates has been on an offshore location, away from congested channels and ports. The salt cavern based terminal can provide large volumes of gas storage, high deliverability from storage, and is simplified in operation compared to tank based LNG terminals. Phase I of this project included mathematical modeling that proved a salt cavern based receiving terminal could be built at lower capital cost, and would have significantly higher

  17. Kitimat LNG Inc

    International Nuclear Information System (INIS)

    Boulton, R.

    2006-01-01

    Kitimat LNG terminal is the first fully permitted liquefied natural gas (LNG) on the west coast of Canada and the United States. The terminal was designed to have a small environmental footprint, and has the full support of communities and First Nations groups in the area. Regulatory approvals are now in place, and site construction is planned to start in 2007. This presentation provided details of the facility's gas production and liquefaction processes, shipping, and LNG import and regasification terminals. The site was selected due to its deepwater, all-season port and the fact that the Pacific Trail Pipelines provide access to major transmission lines. The terminal will be comprised of an offshore LNG tanker berth and unloading jetty, a construction and tug berth, 2 LNG storage tanks, a separation unit, and send-out pipelines for natural gas and gas liquids. The terminal was designed for maximum LNG receiving flexibility as it can handle a wide variety of gas specifications and will be able to receive the largest possible LNG tankers. Market interest in the terminal has been considerable as investors are increasingly convinced that LNG can provide long-term supply alternatives to the North American gas market. Once operational the terminal will attract supply from the Pacific basin and the Middle East. Western Canadian gas demand is projected to grow at nearly 6 per cent through 2015. It was concluded that marine safety is crucial to the successful operation of the terminal. Details of safety plans formed after consultation with various organizations were presented. refs., tabs., figs

  18. Flexible LNG supply, storage and price formation in a global natural gas market

    Science.gov (United States)

    Hayes, Mark Hanley

    The body of work included in this dissertation explores the interaction of the growing, flexible liquefied natural gas (LNG) trade with the fundamentals of pipeline gas supply, gas storage, and gas consumption. By nature of its uses---largely for residential heating and electric power generation---the consumption of natural gas is highly variable both seasonally and on less predictable daily and weekly timescales. Flexible LNG trade will interconnect previously isolated regional gas markets, each with non-correlated variability in gas demand, differing gas storage costs, and heterogeneous institutional structures. The dissertation employs a series of analytical models to address key issues that will affect the expansion of the LNG trade and the implications for gas prices, investment and energy policy. First, I employ an optimization model to evaluate the fundamentals of seasonal LNG swing between markets with non-correlated gas demand (the U.S. and Europe). The model provides insights about the interaction of LNG trade with gas storage and price formation in interconnected regional markets. I then explore how random (stochastic) variability in gas demand will drive spot cargo movements and covariation in regional gas prices. Finally, I analyze the different institutional structures of the gas markets in the U.S. and Europe and consider how managed gas markets in Europe---without a competitive wholesale gas market---may effectively "export" supply and price volatility to countries with more competitive gas markets, such as the U.S.

  19. Project financing knits parts of costly LNG supply chain

    International Nuclear Information System (INIS)

    Minyard, R.J.; Strode, M.O.

    1997-01-01

    The supply and distribution infrastructure of an LNG project requires project sponsors and LNG buyers to make large, interdependent capital investments. For a grassroots project, substantial investments may be necessary for each link in the supply chain: field development; liquefaction plant and storage; ports and utilities; ships; receiving terminal and related facilities; and end-user facilities such as power stations or a gas distribution network. The huge sums required for these projects make their finance ability critical to implementation. Lenders have become increasingly comfortable with LNG as a business and now have achieved a better understanding of the risks associated with it. Raising debt financing for many future LNG projects, however, will present new and increasingly difficult challenges. The challenge of financing these projects will be formidable: political instability, economic uncertainty, and local currency volatility will have to be recognized and mitigated. Described here is the evolution of financing LNG projects, including the Rasgas LNG project financing which broke new ground in this area. The challenges that lie ahead for sponsors seeking to finance future projects selling LNG to emerging markets are also discussed. And the views of leading experts from the field of project finance, specifically solicited for this article, address major issues that must be resolved for successful financing of these projects

  20. Failure analysis of storage tank component in LNG regasification unit using fault tree analysis method (FTA)

    Science.gov (United States)

    Mulyana, Cukup; Muhammad, Fajar; Saad, Aswad H.; Mariah, Riveli, Nowo

    2017-03-01

    Storage tank component is the most critical component in LNG regasification terminal. It has the risk of failure and accident which impacts to human health and environment. Risk assessment is conducted to detect and reduce the risk of failure in storage tank. The aim of this research is determining and calculating the probability of failure in regasification unit of LNG. In this case, the failure is caused by Boiling Liquid Expanding Vapor Explosion (BLEVE) and jet fire in LNG storage tank component. The failure probability can be determined by using Fault Tree Analysis (FTA). Besides that, the impact of heat radiation which is generated is calculated. Fault tree for BLEVE and jet fire on storage tank component has been determined and obtained with the value of failure probability for BLEVE of 5.63 × 10-19 and for jet fire of 9.57 × 10-3. The value of failure probability for jet fire is high enough and need to be reduced by customizing PID scheme of regasification LNG unit in pipeline number 1312 and unit 1. The value of failure probability after customization has been obtained of 4.22 × 10-6.

  1. 76 FR 77814 - Cameron LNG, LLC; Notice of Intent To Prepare an Environmental Assessment for the Proposed BOG...

    Science.gov (United States)

    2011-12-14

    .... Summary of the Proposed Project Cameron LNG plans to construct and operate facilities necessary to liquefy boil-off gas (BOG) at its existing liquefied natural gas (LNG) terminal in Cameron Parish, Louisiana... sufficient LNG in each of the terminal's storage tanks. Currently, BOG is sent out via delivery into the...

  2. Small Scale LNG in Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-09-15

    The conference has 19 presentation that addresses topics within the economic and marketing aspects, distribution and transmission, size, operation and design of LNG production units, transportation aspects, technology assessment, storage of LNG and risk and safety aspects of the use and production of LNG. Some LNG application cases are also presented.

  3. Small Scale LNG in Europe

    International Nuclear Information System (INIS)

    2005-09-01

    The conference has 19 presentation that addresses topics within the economic and marketing aspects, distribution and transmission, size, operation and design of LNG production units, transportation aspects, technology assessment, storage of LNG and risk and safety aspects of the use and production of LNG. Some LNG application cases are also presented

  4. The LNG Industry in 2006

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    was close with 13.3%. Algeria's share decreased to 10.9%. The spot and short-term imports (based on importing contracts whose duration is equal to or less than 4 years) amounted to 56 10 6 m 3 in liquid form (438 cargoes) as against 40 10 6 m 3 (348 cargoes) in 2005, accounting for 16% of the world LNG trade. Tanker fleet: The world LNG tanker fleet consisted of 219 vessels at the end of 2006. Five of these, delivered in 2006, the Excelerate, the Seri Angkasa, the Seri Anggun, the LNG Lokoya and the Gaz de France Energy, did not unload any cargo during the year. Liquefaction plants: There were 18 sites of liquefaction plants in operation at the end of 2006 with the start-up of the Darwin LNG plant in Australia. Two new trains were commissioned in 2006: one at Bonny Island in Nigeria and one at Darwin in Australia. The total capacity of all liquefaction plants amounted to about 413 10 6 m 3 of LNG per year, or 188 10 6 t for 78 liquefaction trains. Considering a total production of 348.4 10 6 m 3 of LNG, the average utilization almost reached 85%. The total storage capacity amounted to approximately 6 10 6 m 3 of LNG for 66 storage tanks, representing almost six days of production. Re-gasification plants: There were 57 re-gasification plants in the world. Six terminals went on stream in 2006: Sagunto in Spain, Aliaga in Turkey (completed in 2002), Altamira in Mexico, Guangdong Dapeng in China and Mizushima and Sakai in Japan. The total send-out capacity of the facilities in operation amounted to 516 billion Nm 3 NG/year and their storage capacity to 25.8 10 6 m 3 of LNG with 283 storage tanks

  5. Pac-Rim LNG project : final project report specifications

    International Nuclear Information System (INIS)

    1996-01-01

    PAC-RIM LNG Inc. has submitted a proposal to the British Columbia Environmental Assessment Office, to develop a liquefied natural gas project which would purchase pipeline quality natural gas from sources in northeast British Columbia and Alberta and transport it via a dedicated pipeline system to a LNG processing plant on tidewater on the Pacific coast. The project would include storage and processing facilities and a marine loading terminal. This document sets out the final project report specifications prepared by the Project Committee on the basis of input received from the public, First Nations and federal, provincial and local governments

  6. Cold recovery during regasification of LNG part one: Cold utilization far from the regasification facility

    International Nuclear Information System (INIS)

    La Rocca, Vincenzo

    2010-01-01

    The paper deals with cold recovery during LNG regasification. The applications analyzed pertain to the use in deep freezing agro food industry and in space air conditioning facilities in commercial sector (Supermarkets and Hypermarkets) of cold recovered from the regasification process. A modular LNG regasification unit is proposed having the regasification capacity of 2 BCM/year of gas and it is based on use of a Power Cycle working with Ethane, this unit allows operation of cold energy transfer, contained in LNG to be regasified, in a range of temperatures suitable for multipurpose use of cold, reducing regasification process irreversibility. Some electric energy is produced by the Power Cycle, but the purpose of the modular unit is to deliver cold suitable for industrial and commercial use in the proper temperature range utilizing Carbon dioxide as secondary fluid to transfer cold from regasification site to far end users. The subject is divided in two papers: this paper deals with facilities delivering cold released during LNG regasification and related pipeline facilities to transfer cold at far end users while the other paper pertains to analysis of end users applications. Results of a detailed thermodynamic and economic analysis demonstrate the suitability of the proposal.

  7. Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system

    Science.gov (United States)

    Zhang, Ruifu; Weng, Dagen; Ren, Xiaosong

    2011-06-01

    The seismic response of an isolated vertical, cylindrical, extra-large liquefied natural gas (LNG) tank by a multiple friction pendulum system (MFPS) is analyzed. Most of the extra-large LNG tanks have a fundamental frequency which involves a range of resonance of most earthquake ground motions. It is an effective way to decrease the response of an isolation system used for extra-large LNG storage tanks under a strong earthquake. However, it is difficult to implement in practice with common isolation bearings due to issues such as low temperature, soft site and other severe environment factors. The extra-large LNG tank isolated by a MFPS is presented in this study to address these problems. A MFPS is appropriate for large displacements induced by earthquakes with long predominant periods. A simplified finite element model by Malhotra and Dunkerley is used to determine the usefulness of the isolation system. Data reported and statistically sorted include pile shear, wave height, impulsive acceleration, convective acceleration and outer tank acceleration. The results show that the isolation system has excellent adaptability for different liquid levels and is very effective in controlling the seismic response of extra-large LNG tanks.

  8. LNG's renaissance in the U.S. -- why now?

    International Nuclear Information System (INIS)

    Moore, J.

    2000-01-01

    The present state and future prospects for the U.S. liquefied natural gas industry are reviewed in light of expanding opportunities for LNG export worldwide. An update on new tanker ships to transport LNG by both exporters and importers and on developments at US LNG facilities at Everett, MA, Cove Point, MD, Elba Island, GA, and at Lake Charles, LA, is provided, along with an assessment of East Coast supply sources and demand forecast. The prediction is that worldwide supply/demand for LNG will tighten, that US prices will be strong enough to support LNG, that proposed expansion of LNG liquefaction facilities in the Atlantic Basin will fill US import facilities, and that East Coast demand growth will absorb growth in LNG imports

  9. LIQUIFIED NATURAL GAS (LNG CARRIERS

    Directory of Open Access Journals (Sweden)

    Daniel Posavec

    2010-12-01

    Full Text Available Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 LNG carriers currently in operation (the paper is published in Croatian.

  10. New developments in LNG trade

    International Nuclear Information System (INIS)

    Frisch, Morten

    2000-01-01

    This paper presents an overview of international trade in liquefied natural gas. Factors and forces causing changes in the international LNG market are explored covering Japan and South East Asian markets, the rapidly growing Spanish and Italian markets, competition faced by LNG imports by pipeline gas in France and Belgium, the reopening of mothballed LNG receiving facilities in the US east coast, and markets with large LNG potential in India, China and South America. Developments in the price of LNG in Japan, Europe, and the US east coast are considered, and shipping issues, and future trends in LNG purchase arrangements and LNG pricing are discussed

  11. LIQUIFIED NATURAL GAS (LNG) CARRIERS

    OpenAIRE

    Daniel Posavec; Katarina Simon; Matija Malnar

    2010-01-01

    Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 L...

  12. The sustainability of LNG evaporation

    NARCIS (Netherlands)

    Stougie, L.; Van der Kooi, H.J.

    2011-01-01

    Numerous LNG (Liquefied Natural Gas) import terminals are under construction to fulfil the growing demand for energy carriers. After storage in tanks, the LNG needs to be heated and evaporated, also called ‘regasified’, to the natural gas needed in households and industry. Several options exist for

  13. Developments in the safe design of LNG tanks

    Science.gov (United States)

    Fulford, N. J.; Slatter, M. D.

    The objective of this paper is to discuss how the gradual development of design concepts for liquefied natural gas (LNG) storage systems has helped to enhance storage safety and economy. The experience in the UK is compared with practice in other countries with similar LNG storage requirements. Emphasis is placed on the excellent record of safety and reliability exhibited by tanks with a primary metal container designed and constructed to approved standards. The work carried out to promote the development of new materials, fire protection, and monitoring systems for use in LNG storage is also summarized, and specific examples described from British Gas experience. Finally, the trends in storage tank design world-wide and options for future design concepts are discussed, bearing in mind planned legislation and design codes governing hazardous installations.

  14. The gas century: worldwide LNG developments may deal death blow to Alaskan pipeline dream

    International Nuclear Information System (INIS)

    Lorenz, A.

    2004-01-01

    The growing interest in liquefied natural gas (LNG), which casts doubt on the viability of the Alaska gas pipeline, and the potential impacts on Canadian gas exports to the United States are discussed. There is currently a proposal before Congress for an Alaskan LNG project, and consensus appears to be building among American energy experts and law-makers that building a multitude of LNG facilities would be more flexible and cheaper than building the proposed Alaska pipeline. As further proof of the growing popularity of LNG, U.S. industry lobbyists are said to be rapidly gaining congressional support for the idea of building eight to ten billion cubic feet per day of LNG capacity along the U. S. coast. Either development, -- LNG facilities or the Alaska pipeline -- have the potential to seriously impact Canadian natural gas exports. If the Alaska pipeline is built, the addition of five billion cubic feet per day of new gas on the market would cause gas prices to fall; if the U.S. decides to subsidize its gas industry, Canadian gas would be put at a serious disadvantage. Conversely, if the Alaskan LNG proposal were to succeed, the potential demise of the Alaska pipeline would mean the loss of about 12,000 jobs that would be created during the Canadian construction phase of the pipeline, as well as the loss of tariffs. Industry experts predict that by 2005 LNG terminals will dot the periphery of the U. S. coast line; to prepare for these eventualities, Canadian companies, such as Irving Oil, TransCanada Pipelines and EnCana are taking note, and are scrambling not to be left out of the game. As proof of the seriousness of their concern, Irving Oil is adding a Can$500 million LNG facility to its Canaport terminal on the Scotian shelf; TCPL is working to supply an LNG terminal offshore Massachusetts, and EnCana is refurbishing a Louisiana salt cavern to prepare for storage of gas delivered to the Gulf Coast

  15. Liquefied natural gas storage at Ambergate

    Energy Technology Data Exchange (ETDEWEB)

    Higton, C W; Mills, M J

    1970-08-19

    Ambergate works was planned in 1965-1966 and the decision was taken to install 4 ICI lean gas reformers using natural gas as feedstock, fuel, and enrichment. To cover the possible failure of natural gas supplies, petroleum distillate would be used as alternative feedstock and fuel. The choice for alternative enrichment lay between LPG or LNG. Since LNG would provide peak-on-peak storage facilities for either the East Midlands Board or the Gas Council when conversion was completed--and in the meantime would provide an additional source of LNG for local requirements when temporary LNG installations were used during conversion--agreement was reached with the Gas Council for it to build a 5,000-ton storage installation at Ambergate. The installation consists of 3 major sections: (1) the offloading bay and storage tank; (2) the reliquefaction system; and (3) the export system. The offloading bay and storage tank are for the reception and storage of liquefied Algerian natural gas, delivered to Ambergate by road tanker from the Canvey Is. Terminal. The reliquefaction system is to maintain the necessary storage tank conditions by reliquefying the boil-off natural gas. The export system delivers LNG from the storage tank at high pressure through a vaporization section in the national methane grid.

  16. Safety in Liquefied Natural Gas (LNG) Operations

    Energy Technology Data Exchange (ETDEWEB)

    Buhrow, C. [Technische Univ. Bergakademie, Freiberg (Germany). Lehrstuhl Bergbau/Tiefbau; Niemann-Delius, C.; Okafor, E. [Technische Hochschule Aachen (Germany). Lehrstuhl und Inst. fuer Bergbaukunde 3

    2005-07-01

    Germany needs an LNG receiving terminal to import LNG and supplement expected future gas supply shortages. Enormous economic benefits also abound if Germany is to install an LNG receiving terminal. Jobs will be created for several hundred people. New tax revenues will be generated for state and local governments and this will further enhance the economic competitiveness of Germany. Additionally, it will provide Germany with a reliable source of clean-burning energy. Any proposed LNG receiving terminal should incorporate safety right from the start. These safety requirements will: ensure that certain public land uses, people, and structures outside the LNG facility boundaries are protected in the event of LNG fire, prevent vapour clouds associated with an LNG spill from reaching a property line that can be built upon, prevent severe burns resulting from thermal radiation, specify requirements for design, construction and use of LNG facilities and other equipments, and promote safe, secure and reliable LNG operations. The German future LNG business will not be complete without the evolution of both local and international standards that can apply to LNG operations. Currently existing European standards also appear inadequate. With an OHSAS 18001 management system integrated with other existing standards we can better control our LNG occupational health and safety risks, and improve performance in the process. Additionally, an OHSAS 18001 System will help future German LNG contractors and operators safeguard their most important assets - their employees. (orig.)

  17. Achievement report for fiscal 1993. International clean energy system technology to utilize hydrogen - WE-NET (Sub-task 5. Development of hydrogen transportation and storage technology - Edition 3. Development of liquid hydrogen storage facility); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) (Sub tusk 5: Suiso yuso chozo gijutsu no kaihatsu - Dai 3 hen. Ekitai suiso chozo setsubi no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    With an intention to establish a technology required to build a hydrogen storage tank with a storage capacity of 50,000 m{sup 3} as the target shown in the basic plan for WE-NET, the current fiscal year has performed the technical literature surveys to identify the existing technologies. In the survey on the similar large storage system, a liquefied natural gas (LNG) was taken up, and the survey on the LNG bases in Japan was carried out. With regard to the existing liquefied hydrogen storage system, surveys were performed on the test site for developing the liquefied hydrogen/liquefied oxygen engines, the rocket launch sites, and liquefied hydrogen manufacturing plant. In relation with peripheral technologies for the underground storage tank being an excellent anti-seismic form, the LNG underground storage facilities were surveyed. Regarding the rock mass storage tank, surveys were carried out on the LPG rock mass storage having been used practically, and the LNG rock mass storage that is in the demonstration phase. In the research on storage facilities, surveys were executed on the forms and heat insulation structures of the similar large low-temperature storage tanks, the use record of the existing liquefied hydrogen storage tanks, heat insulating materials, and heat insulating structures. (NEDO)

  18. Improvement of plant reliability in PT. Badak LNG plant

    International Nuclear Information System (INIS)

    Achmad, S.; Somantri, A.

    1997-01-01

    PT. Badak's LNG sales commitment has been steadily increasing, therefore, there has been more emphasis to improve and maintain the LNG plant reliability. From plant operation historical records, Badak LNG plant experienced a high number of LNG process train trips and down time for 1977 through 1988. The highest annual number of LNG plant trips (50 times) occurred in 1983 and the longest LNG process train down time (1259 train-hours) occurred in 1988. Since 1989, PT. Badak has been able to reduce the number of LNG process train trips and down time significantly. In 1994 the number of LNG process train trips and was 18 times and the longest LNG process train down time was 377 train-hours. This plant reliability improvement was achieved by implementing plant reliability improvement programs beginning with the design of the new facilities and continuing with the maintenance and modification of the existing facilities. To improve reliability of the existing facilities, PT. Badak has been implementing comprehensive maintenance programs, to reduce the frequency and down time of the plant, such as Preventive and Predictive Maintenance as well as procurement material improvement since PT. Badak location is in a remote area. By implementing the comprehensive reliability maintenance, PT. Badak has been able to reduce the LNG process train trips to 18 and down time to 337 train hours in 1994 with the subsequent maintenance cost reduction. The average PT. Badak plant availability from 1985 to 1995 is 94.59%. New facilities were designed according to the established PT. Badak design philosophy, master plan and specification. Design of new facilities was modified to avoid certain problems from past experience. (au)

  19. Potential local use of natural gas or LNG from Hammerfest LNG plant

    International Nuclear Information System (INIS)

    Neeraas, Bengt Olav

    1999-01-01

    A base-load LNG plant is planned to be built in Norway, near by the northern most city in the world, Hammerfest. Natural gas from the Snoehvit-field will be transported by pipeline to Melkoeya, a few kilometres from Hammerfest, where the liquefaction plant is planned to be located. SINTEF Energy Research has performed a study in co-operation with the local authorities on potentials for the use of LNG and natural gas locally in the Hammerfest region. Combined power and heat production by lean-burn gas engine, low temperature freezing of high quality products by use of LNG cold and drying of fish products are some of the identified fields for the use of natural gas and LNG. The establishment of an industrial area, with fish processing industry and a central freezing storage near by Hammerfest has been suggested. The gas may be transported locally either as LNG, by tank lorry or container, or as gas in a small pipeline, depending on distance, amount and the actual use. (author)

  20. Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water.

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Gerald William; Melof, Brian Matthew; Luketa-Hanlin, Anay Josephine; Hightower, Marion Michael; Covan, John Morgan; Gritzo, Louis Alan; Irwin, Michael James; Kaneshige, Michael Jiro; Morrow, Charles W.

    2004-12-01

    While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention to these activities. The report reviews several existing studies of LNG spills with respect to their assumptions, inputs, models, and experimental data. Based on this review and further analysis, the report provides guidance on the appropriateness of models, assumptions, and risk management to address public safety and property relative to a potential LNG spill over water.

  1. Overview study of LNG release prevention and control systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelto, P.J.; Baker, E.G.; Holter, G.M.; Powers, T.B.

    1982-03-01

    The liquefied natural gas (LNG) industry employs a variety of release prevention and control techniques to reduce the likelihood and the consequences of accidental LNG releases. A study of the effectiveness of these release prevention and control systems is being performed. Reference descriptions for the basic types of LNG facilities were developed. Then an overview study was performed to identify areas that merit subsequent and more detailed analyses. The specific objectives were to characterize the LNG facilities of interest and their release prevention and control systems, identify possible weak links and research needs, and provide an analytical framework for subsequent detailed analyses. The LNG facilities analyzed include a reference export terminal, marine vessel, import terminal, peakshaving facility, truck tanker, and satellite facility. A reference description for these facilities, a preliminary hazards analysis (PHA), and a list of representative release scenarios are included. The reference facility descriptions outline basic process flows, plant layouts, and safety features. The PHA identifies the important release prevention operations. Representative release scenarios provide a format for discussing potential initiating events, effects of the release prevention and control systems, information needs, and potential design changes. These scenarios range from relatively frequent but low consequence releases to unlikely but large releases and are the principal basis for the next stage of analysis.

  2. LNG and LPG total involvement of Pullman Kellogg

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    A discussion of Pullman Kellogg activity covers a new LNG terminal in Belgium; construction of LNG 2 for Sonatrach in Algeria; an LPG recovery system in Kuwait; the Trunkline Gas Co. LNG project at Lake Charles, La.; and the Cove Point, Md., facility for Columbia Gas System Inc. and Consolidated Natural Gas Co., which will be capable of mooring two 750,000 bbl LNG tankers simultaneously.

  3. 33 CFR 127.313 - Bulk storage.

    Science.gov (United States)

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The operator...: (1) LNG. (2) LPG. (3) Vessel fuel. (4) Oily waste from vessels. (5) Solvents, lubricants, paints, and...

  4. The Asia Pacific LNG trade: Status and technology development

    International Nuclear Information System (INIS)

    Hovdestad, W.R.

    1995-01-01

    The Asia Pacific Region is experiencing a period of sustained economic expansion. Economic growth has led to an increasing demand for energy that has spurred a rapid expansion of baseload liquefied natural gas (LNG) facilities in this region. This is illustrated by the fact that seven of the ten baseload facilities in existence provide LNG for markets in the Asia Pacific region. With the three exceptions having been initially commissioned in 1972 and earlier, it is fair to observed that most advances in LNG technology have been developed and applied for this market. The paper presents the current status and identified future trends for the Asia Pacific LNG trade. Technology development in terms of application to onstream production, processing and transportation facilities, including LNG tankers, is presented. The potential of future advances to applied technology and operational practices to improve the cost-effectiveness of new and existing facilities is discussed. Current design data and methods as actually used are examined in terms of identifying where fundamental research and basic physical data are insufficient for optimization purposes. These findings are then summarized and presented in terms of the likely evolution of future and existing LNG projects in the Asia Pacific region

  5. Distribution of gas from Canaport LNG

    International Nuclear Information System (INIS)

    Thompson, W.

    2006-01-01

    Construction of the Canaport Liquefied Natural Gas (LNG) project will begin in 2006. Public consultations are currently being held for the 145 km pipeline from Canaport to Bailleyville, Maine. It is expected that both the facility and the pipeline will be operational by 2008. This presentation provided details of the New Brunswick (NB) Department of Energy's (DOE) regulatory oversight of the Canaport Liquefied Natural Gas (LNG) project. The DOE is responsible for ensuring diversity and security of supply; economic efficiency; economic development opportunities and protection of the environment. The Canaport LNG facility will provide an additional 500 to 600 temporary jobs over a 2 to 3 year period, as well as 20 full-time jobs once the plant is operational. Tax revenues, access roads and the construction of a pipeline to Bailleyville, Maine will also have positive impacts on the NB economy. The facility will provide a secure long term supply of natural gas for the region. In order to support its energy goals, the DOE has proposed amendments to provide for the distribution of gas from the plant to NB customers. A proposed LNG franchise to allow for direct distribution of gas from the LNG plant to customers was discussed. Issues concerning the Gas Distribution Act and the New Pipeline Act of 2006 were also examined. It was concluded that public consultations are currently being held for the 145 km pipeline, and that both the facility and the pipeline are expected to be operational by 2008. refs., tabs., figs

  6. Distribution of gas from Canaport LNG

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, W. [New Brunswick Dept. of Energy, Fredericton, NB (Canada)

    2006-07-01

    Construction of the Canaport Liquefied Natural Gas (LNG) project will begin in 2006. Public consultations are currently being held for the 145 km pipeline from Canaport to Bailleyville, Maine. It is expected that both the facility and the pipeline will be operational by 2008. This presentation provided details of the New Brunswick (NB) Department of Energy's (DOE) regulatory oversight of the Canaport Liquefied Natural Gas (LNG) project. The DOE is responsible for ensuring diversity and security of supply; economic efficiency; economic development opportunities and protection of the environment. The Canaport LNG facility will provide an additional 500 to 600 temporary jobs over a 2 to 3 year period, as well as 20 full-time jobs once the plant is operational. Tax revenues, access roads and the construction of a pipeline to Bailleyville, Maine will also have positive impacts on the NB economy. The facility will provide a secure long term supply of natural gas for the region. In order to support its energy goals, the DOE has proposed amendments to provide for the distribution of gas from the plant to NB customers. A proposed LNG franchise to allow for direct distribution of gas from the LNG plant to customers was discussed. Issues concerning the Gas Distribution Act and the New Pipeline Act of 2006 were also examined. It was concluded that public consultations are currently being held for the 145 km pipeline, and that both the facility and the pipeline are expected to be operational by 2008. refs., tabs., figs.

  7. 76 FR 53440 - Freeport LNG Development, LP; Freeport LNG Expansion, LP; FLNG Liquefaction LLC; Notice of Intent...

    Science.gov (United States)

    2011-08-26

    .... Summary of the Planned Project Freeport plans to add natural gas liquefaction and exportation capabilities to its existing liquefied natural gas (LNG) import terminal on Quintana Island in Brazoria County... tank, and additional LNG vaporization and natural gas send-out facilities that were previously...

  8. Reducing capital and operating costs in gas processing, liquefaction, and storage

    Energy Technology Data Exchange (ETDEWEB)

    Krusen, III, L C [Phillips Petroleum Co., Bartlesville, OK (United States). Research Div.

    1997-06-01

    The LNG industry is unanimous that capital costs must be reduced throughout the chain, and especially at the liquefaction facility including associated gas processing and LNG storage. The Ken ai LNG plant provides an example of how both reduced capital and operating costs were attained. This paper will cover cost production strategies that can be applied to liquefaction processes in general, and will than focus on their realization in the Phillips Optimized Cascade LNG process. The paper concludes that reduced LNG plant costs are attainable. (Author).

  9. Reducing capital and operating costs in gas processing, liquefaction, and storage

    International Nuclear Information System (INIS)

    Krusen, L.C. III

    1997-01-01

    The LNG industry is unanimous that capital costs must be reduced throughout the chain, and especially at the liquefaction facility including associated gas processing and LNG storage. The Ken ai LNG plant provides an example of how both reduced capital and operating costs were attained. This paper will cover cost production strategies that can be applied to liquefaction processes in general, and will than focus on their realization in the Phillips Optimized Cascade LNG process. The paper concludes that reduced LNG plant costs are attainable. (Author)

  10. LNG - Status in Denmark. Technology and potential. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    2012-05-15

    The interest for LNG both on a small and a large scale is increasing worldwide. The experiences and knowledge on LNG is limited in Denmark. The Danish gas companies' Technical Management Group (TCG) has asked for a status report including a technology description and an evaluation of the potential in Denmark. A survey of primarily small-scale LNG technology is done in the report. The focus is motivated by the new areas of gas utilisation that become possible with small-scale LNG. Small-scale LNG in this study is defined as LNG stored and used at the application or in an isolated gas grid. The small-scale use of LNG has today an almost negligible share of the total LNG trade but offers interesting new applications for gas utilisation. LNG on a small scale can be used primarily as: 1) Ship fuel. 2) Truck fuel (heavy duty long distance). 3) Individual users not connected to the natural gas grid. 4) Backup for upgraded biogas to individual users and vehicle fleets. 5) Security of supply or supply enhancement of heavily loaded parts of the gas grid. 6) Small-scale storage and/or peak shaving. All but the first topics are natural uses for the current Danish gas distributors. LNG as ship fuel may engage other specialized LNG companies. The report contains a technical description of the parts in primarily small-scale LNG handling and operation. Liquefaction, transport, storage, engine technologies, gas quality and safety aspects related to LNG are covered. There seem to be two more or less separate paths for LNG in Denmark, onshore and off-shore use. These are not, apparently, sharing their experiences and knowledge. Rules and regulations are also different which may create some problems in the interface, for example ship bunkering. Further studies are suggested in the area of gas quality and engine technologies and adaptation of foreign guidelines for small-scale installations to Danish conditions. These guidelines ought to be based on international standards and

  11. Panel discussion: LNG's future in Asia

    International Nuclear Information System (INIS)

    Ohashi, Tadahiko

    1992-01-01

    The panelists convened to: (1) identify and evaluate the role which LNG is likely to play in the changing energy scene; (2) to examine the future supply and demand structure of the LNG trade; (3) to discover the key obstacles to continued growth in LNG trade; and (4) to find solutions to these problems. The panelists identified and outlined growing opportunities for LNG utilization in Asia during the next two decades. They shared the opinion that the structure of the supply and demand balance for LNG in Asia will shift during the next decade, providing considerable room for new projects. The key obstacles to continued growth in LNG trade are the lack of: long-distance transmission networks and an efficient competitive market pricing mechanism for LNG in the Asian region. The major importers in the region are keen on developing a range of new long-term supply alternatives, not simply within the Asia-Pacific region, but also from a wider perspective. These alternatives include: financing the expansion of production from existing facilities, development of new fields, and construction of long-distance pipelines

  12. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Science.gov (United States)

    2010-04-01

    ... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC... and Approving Abandonment under Section 7 of the Natural Gas Act, as Amended, Concerning Any Operation...

  13. Arctic Islands LNG

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, W.

    1977-01-01

    Trans-Canada Pipe Lines Ltd. made a feasibility study of transporting LNG from the High Arctic Islands to a St. Lawrence River Terminal by means of a specially designed and built 125,000 cu m or 165,000 cu m icebreaking LNG tanker. Studies were made of the climatology and of ice conditions, using available statistical data as well as direct surveys in 1974, 1975, and 1976. For on-schedule and unimpeded (unescorted) passage of the LNG carriers at all times of the year, special navigation and communications systems can be made available. Available icebreaking experience, charting for the proposed tanker routes, and tide tables for the Canadian Arctic were surveyed. Preliminary design of a proposed Arctic LNG icebreaker tanker, including containment system, reliquefaction of boiloff, speed, power, number of trips for 345 day/yr operation, and liquefaction and regasification facilities are discussed. The use of a minimum of three Arctic Class 10 ships would enable delivery of volumes of natural gas averaging 11.3 million cu m/day over a period of a year to Canadian markets. The concept appears to be technically feasible with existing basic technology.

  14. The Japanese approach to financing LNG projects

    International Nuclear Information System (INIS)

    Aoki, Wataru

    1995-01-01

    The Japanese approach approach to financing LNG project has been what could be called a combined purchase and finance system which has been arranged mainly at the initiative of japan's Sogo Shosh (general trading companies) with the support of japanese governmental financial agencies and a purchase commitment from japanese utilities. In the QATARGAS project, despite it being the first greenfield LNG project in decade since North West Shelf Australia LNG project, financing for the LNG plant phase has been successfully arranged through Japanese financing. The structuring of the financial facilities for the QATARGAS project seems to have lessons for future development of the next generation of greenfield LNG projects. Discharge of the parties' liability, proper sharing of the risk burden and reconfirmation of the spirit of mutual understanding and trust among the parties concerned are key factors for the success of any new LNG project in the future. (Author)

  15. North America and Asia Pacific LNG markets

    International Nuclear Information System (INIS)

    Pirie, J.D.

    1997-01-01

    The liquefied natural gas (LNG) export opportunities in the Asia Pacific market were reviewed. Some of the differences that affect a North American LNG projects compared to more typical LNG projects were also outlined. The two main aspects of the LNG market in North America include the establishment of LNG import terminals on the east and southern coasts of the United States and the development of export oriented LNG projects. The Pac-Rim LNG project calls for initial delivery to South Korea of 4.0 MTPA by the end of 2000. A large LNG project has also been proposed for the year 2005 which would use Prudhoe Bay gas. Generally, in North America, there is little use for large scale LNG import projects because of the vast pipeline network that delivers gas reliably and at low cost anywhere in North America. However, LNG remains a good alternative for the Asia Pacific region because of the lack of a pipeline network. Also, Japan, Korea and Taiwan, the three main centers for LNG demand, have no domestic energy supplies and rely on imported energy sources. China is another major market opportunity for LNG. The Pac-Rim LNG project differs from others of its kind in that usually, an LNG project is based on the availability of large reservoirs of natural gas owned by state governments and involves production agreements with multi-national oil and gas companies. This scenario is simply not possible in Canada's deregulated environment. In contrast, the existence of upstream facilities, technical expertise, and low capital costs, hence reduced risks and time to develop an LNG project, gives Canada significant advantages. 3 tabs., 3 figs

  16. Research of design challenges and new technologies for floating LNG

    Directory of Open Access Journals (Sweden)

    Dong-Hyun Lee

    2014-06-01

    Full Text Available With the rate of worldwide LNG demand expected to grow faster than that of gas demand, most major oil companies are currently investing their resources to develop floating LNG-FLNG (i.e. LNG FSRU and LNG FPSO. The global Floating LNG (FLNG market trend will be reviewed based on demand and supply chain relationships. Typical technical issues associated with FLNG design are categorized in terms of global performance evaluation. Although many proven technologies developed through LNG carrier and oil FPSO projects are available for FLNG design, we are still faced with several technical challenges to clear for successful FLNG projects. In this study, some of the challenges encountered during development of the floating LNG facility (i.e. LNG FPSO and FSRU will be reviewed together with their investigated solution. At the same time, research of new LNG-related technologies such as combined containment system will be presented.

  17. LNG (liquefied natural gas): A necessary part in China's future energy infrastructure

    International Nuclear Information System (INIS)

    Lin, Wensheng; Gu, Anzhong; Zhang, Na

    2010-01-01

    This paper presents an overview of the LNG industry in China, covering LNG plants, receiving terminals, transportation, and applications. Small and medium scale LNG plants with different liquefaction processes have already been built or are being built. China's first two LNG receiving terminals have been put into operation in Guangdong and Fujian, another one is being built in Shanghai, and more are being planned. China is now able to manufacture LNG road tanks and containers. The construction of the first two LNG carriers has been completed. LNG satellite stations have been built, and LNG vehicles have been manufactured. LNG related regulations and standards are being established. The prospects of LNG in China are also discussed in this paper. Interesting topics such as small-scale liquefiers, LNG cold energy utilization, coal bed methane liquefaction, LNG plant on board (FPSO - floating production, storage, and off-loading), and LNG price are introduced and analyzed. To meet the increasing demand for natural gas, China needs to build about 10 large LNG receiving terminals, and to import LNG at the level of more than 20 bcm (billion cubic metre) per year by 2020. (author)

  18. Which way for Europe's gas storage market?

    International Nuclear Information System (INIS)

    Hureau, Geoffroy; Cornot-Gandolphe, Sylvie

    2013-06-01

    This slide show presents in a first part the 2013 Situation of the European gas storage market (Capacity, Gas Demand vs. Gas Storage, Spreads and Volatility, LNG effect, Storage Price, Utilization of Storage Facilities, Security of supply). The future of European Gas Demand and Supply are presented in a second part (Demand and Supply Factors, Market Liberalization, Estimates of European UGS Needs by 2030, Planned Working Gas Capacities in Europe)

  19. Analysis of temperature and pressure changes in liquefied natural gas (LNG) cryogenic tanks

    Science.gov (United States)

    Chen, Q.-S.; Wegrzyn, J.; Prasad, V.

    2004-10-01

    Liquefied natural gas (LNG) is being developed as a transportation fuel for heavy vehicles such as trucks and transit buses, to lessen the dependency on oil and to reduce greenhouse gas emissions. The LNG stations are properly designed to prevent the venting of natural gas (NG) from LNG tanks, which can cause evaporative greenhouse gas emissions and result in fluctuations of fuel flow and changes of fuel composition. Boil-off is caused by the heat added into the LNG fuel during the storage and fueling. Heat can leak into the LNG fuel through the shell of tank during the storage and through hoses and dispensers during the fueling. Gas from tanks onboard vehicles, when returned to LNG tanks, can add additional heat into the LNG fuel. A thermodynamic and heat transfer model has been developed to analyze different mechanisms of heat leak into the LNG fuel. The evolving of properties and compositions of LNG fuel inside LNG tanks is simulated. The effect of a number of buses fueled each day on the possible total fuel loss rate has been analyzed. It is found that by increasing the number of buses, fueled each day, the total fuel loss rate can be reduced significantly. It is proposed that an electric generator be used to consume the boil-off gas or a liquefier be used to re-liquefy the boil-off gas to reduce the tank pressure and eliminate fuel losses. These approaches can prevent boil-off of natural gas emissions, and reduce the costs of LNG as transportation fuel.

  20. Waste Management's LNG Truck Fleet: Final Results

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Laboratory (US); Clark, N. [West Virginia University (US)

    2001-01-25

    Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

  1. LNG

    International Nuclear Information System (INIS)

    Chabrelie, M.F.; Idir, N.; Hosanski, J.M.; Jonkman, H.; Pelloux-Prayer, D.; Wells, D.

    2007-01-01

    The LNG industry has entered a new step of its development, faster and more complex. The time parameter, the huge investments and the uncertainties relative to the demand growth are some of the factors that control its evolution. How the emergence of 'international price' signals will influence this activity? What supply-demand status can be foreseen from now to 2015? What role LNG would be able to play in terms of modulation management? What are the impacts of environmental constraints on LNG infrastructures? These are the different points discussed during this workshop by the five participants, specialists of the LNG questions. (J.S.)

  2. Qualitative Risk Assessment for an LNG Refueling Station and Review of Relevant Safety Issues

    Energy Technology Data Exchange (ETDEWEB)

    Siu, N.; Herring, J.S.; Cadwallader, L.; Reece, W.; Byers, J.

    1998-02-01

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural gas (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tank truck deliveries, and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects Analysis, and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of ``best practice`` information throughout the LNG community.

  3. LNG (liquefied natural gas): A necessary part in China's future energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wensheng; Gu, Anzhong [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Na [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100080 (China)

    2010-11-15

    This paper presents an overview of the LNG industry in China, covering LNG plants, receiving terminals, transportation, and applications. Small and medium scale LNG plants with different liquefaction processes have already been built or are being built. China's first two LNG receiving terminals have been put into operation in Guangdong and Fujian, another one is being built in Shanghai, and more are being planned. China is now able to manufacture LNG road tanks and containers. The construction of the first two LNG carriers has been completed. LNG satellite stations have been built, and LNG vehicles have been manufactured. LNG related regulations and standards are being established. The prospects of LNG in China are also discussed in this paper. Interesting topics such as small-scale liquefiers, LNG cold energy utilization, coal bed methane liquefaction, LNG plant on board (FPSO - floating production, storage, and off-loading), and LNG price are introduced and analyzed. To meet the increasing demand for natural gas, China needs to build about 10 large LNG receiving terminals, and to import LNG at the level of more than 20 bcm (billion cubic metre) per year by 2020. (author)

  4. Interim qualitative risk assessment for an LNG refueling station and review of relevant safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Siu, N.; Herring, S.; Cadwallader, L.; Reece, W.; Byers, J.

    1997-07-01

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tanker truck delivers and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects analysis and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of best practice information throughout the LNG community.

  5. Natural gas for ship propulsion in Denmark - Possibilities for using LNG and CNG on ferry and cargo routes

    Energy Technology Data Exchange (ETDEWEB)

    Stuer-Lauridsen, F.; Nielsen, Jesper B. (LITEHAUZ, Copenhagen (Denmark)); Odgaard, T.; Birkeland, M. (IncentivePartners, Birkeroed (Denmark)); Winter Graugaard, C.; Blikom, L.P. (DNV, Copenhagen (Denmark)); Muro-Sun, N.; Andersen, Morten; OEvlisen, F. (Ramboell Oil and Gas, Esbjerg (Denmark))

    2010-07-01

    The project's main task was to review logistical, technical and economic feasibility for using Liquefied Natural Gas (LNG) and Compressed Natural Gas (CNG) as fuel for ship propulsion and the supply of LNG or CNG to Danish ports from existing natural gas lines, trucks or by ship. The following key findings are related to the use of natural gas as fuel for ships in Denmark: Natural gas as propulsion fuel in ships: 1) Advantages: Provide solution to present air emission challenges 2) Barriers: Capital investments large 3) Synergies: Developments in Norway and Baltic Sea area 4) Economy: Positive case for operation for large consumers 5) Future: Develop bunkering options for short sea shipping LNG: 6) Propulsion technology in ships is mature and proven 7) Distribution network not yet developed for use in ships 8) Safety concerns are demanding but manageable 9) Can enter existing bunkering value chain CNG: 10) Well developed for land based transport, not yet for shipping 11) Distribution network for natural gas exists in Denmark 12) Safety concerns are demanding but manageable 13) No seaborne CNG value chains in operation An immediate focus on the ferry sector in Denmark will reap benefits on a relatively short time scale. For the short sea shipping sector away to promote the conversion to natural gas is to support the development of storage and bunkering facilities in main ports. Given the general expectations in the shipping community LNG will presumably be the de facto choice at least for the 5-10 years ahead and the demand for facilities and bunkers will be for LNG. (LN)

  6. World LNG outlook

    International Nuclear Information System (INIS)

    Maisonnier, G.

    1999-01-01

    CEDIGAZ proposes this new survey about LNG in view of the main changes which have occurred on this market during the past few years. Several projects under construction or planned three years ago are now commissioned (Qatargas) or on the verge of starting to export this year (Trinidad LNG, RasGas, Nigeria LNG) or next years (Oman LNG). The Asian crisis, which had major impacts on both short-term demand in Asia and LNG prices, has brought about new uncertainties to the long-term prospects. At the same time, it now seems more and more certain that firstly India and then China will import LNG in the next decade. It remains to be seen at what level and when this will occur. LNG growth in Europe has now become a reality, and new potential markets, for example in South America (Brazil), are also being considered as real opportunities in the near future. Considering these 'new' trends, an updated study about LNG appeared necessary. This survey 'World LNG Outlook - 99 Edition' is organised as the previous one: a historical record since 1964 (Chapter 1) followed by a description of the infrastructures existing in 1998 (Chapter 2). The analysis continues with world trade prospects by the year 2010 (Chapters 3 to 5). Chapter 6 describes the future LNG chain and the last Chapter (7) focuses on economic matters (LNG price trends, cost reductions). The study 'World LNG Outlook - 99 Edition' offers hence a comprehensive panorama of this sector from a short and long-term point of view. (author)

  7. Kitimat LNG terminal

    International Nuclear Information System (INIS)

    Schmaltz, I.; Boulton, R.

    2007-01-01

    Kitimat Liquefied Natural Gas (LNG) terminal is a terminal development company owned by Galveston LNG, a privately owned Canadian energy development company. This presentation provided information on Kitimat LNG with particular reference to its terminal located in Bish Cove on the Douglas Channel in British Columbia. This LNG terminal is reported to be the only fully permitted regasification terminal on the west coast of Canada and the United States. The presentation addressed market fundamentals including several graphs, such as world natural gas proved reserves in 2006; LNG supplements to Canadian gas supplies; global LNG demand for 2005-2020; average annual United States LNG imports; and global LNG liquefaction projects. Other market fundamentals were described, including that Kitimat is the only other approved terminal aside from the Costa Azul terminal in Mexico; Kitimat is the only west coast LNG import terminal that connects to midwest and eastern North American markets through existing gas pipelines; LNG producers are looking for destination diversification; and markets and marketers are looking for supply diversification. The authors noted that by 2010, western Canadian gas demand will exceed Californian demand. Other topics that were discussed in the presentation included Canadian natural gas field receipts; unadjusted bitumen production outlook; oil sands gas demand; forward basis fundamentals; and the commercial drivers of the Kitimat LNG terminal. The presentation also discussed the pacific trail pipelines, a partnership between Galveston LNG and Pacific Northern Gas to develop the natural gas transmission line from Kitimat to Summit. The presentation concluded with a discussion of the benefits of Kitimat LNG terminal such as providing access to the largest natural gas markets in the world via major gas transmission lines with spare capacity. figs

  8. Retail LNG handbook. Retail LNG and The Role of LNG Import Terminals. Report by the GIIGNL Technical Study Group on the possible role of LNG import terminals within the emerging Retail LNG Market

    International Nuclear Information System (INIS)

    2015-01-01

    The natural gas and liquefied natural gas (LNG) industries are changing. The influx of supply, low prices, and environmental benefits of natural gas are driving consumers to convert from other fossil fuels. Natural gas consumers on pipeline systems have the ability to benefit, but for those not connected, LNG may be the only opportunity to convert to natural gas. As this market evolves, a unique opportunity may emerge for some existing participants in the LNG market and could lead to a shift in business focus, potentially adding to or even transforming the traditional role of LNG Import Terminals. As surmised by the GIIGNL's Technical Study Group (TSG) at the outset of their endeavor, virtually every member company had historical experience with, was in the midst of expanding its services to include, or was actively engaged in the study of, Retail LNG. The market drivers, value propositions, trends and future prospects for Retail LNG that have widely been publicized were generally confirmed although in an overall more conservative outlook. As a representative body of experienced, long term LNG Import Terminal operators, GIIGNL was uniquely qualified to stress in its Handbook the importance of managing the inherent risk associated with LNG, the application of suitable codes and standards and the use of proper equipment. The study of the aspects of LNG supply and use including safety, security, staffing, equipment siting, and operations is hoped to provide an illustrative framework form which the industry can jointly move towards best practices. While Retail LNG is considered by many to be 'new' there is substantial historical experience with all aspects of the market. LNG Import Terminals, including the experience and competence of their staffing, can play a key role in not only the incubation and growth of the Retail market, but the molding and shaping of regulatory framework, applicable codes and standards and operational best practices. GIIGNL

  9. Thermodynamic and heat transfer analysis of LNG energy recovery for power production

    International Nuclear Information System (INIS)

    Franco, A; Casarosa, C

    2014-01-01

    An important option to transport the gas is to convert it into liquid natural gas (LNG) and convey it using insulated LNG tankers. At receiving terminals, the LNG is offloaded into storage tanks and then pumped at the required pressure and vaporized for final transmission to the pipeline. The LNG production process consumes a considerable amount of energy, while the cold availability, as also known as cold energy, has been stored in LNG. At a receiving terminal, LNG needs to be evaporated into gas at environmental temperature before fed into the gas distribution system. Seawater is commonly used for the regasification process of the LNG. In the present paper, after a general analysis of the perspectives of the various thermodynamic schemes proposed for power production from the regasification, a detailed analysis of enhanced direct expansion system is carried out in order to identify the upper level of the energy that can be recovered. The analysis outlines that power production typical of optimized ORC plant configurations (120 kJ/kg) can be obtained with direct expansion solutions

  10. Thermodynamic and heat transfer analysis of LNG energy recovery for power production

    Science.gov (United States)

    Franco, A.; Casarosa, C.

    2014-11-01

    An important option to transport the gas is to convert it into liquid natural gas (LNG) and convey it using insulated LNG tankers. At receiving terminals, the LNG is offloaded into storage tanks and then pumped at the required pressure and vaporized for final transmission to the pipeline. The LNG production process consumes a considerable amount of energy, while the cold availability, as also known as cold energy, has been stored in LNG. At a receiving terminal, LNG needs to be evaporated into gas at environmental temperature before fed into the gas distribution system. Seawater is commonly used for the regasification process of the LNG. In the present paper, after a general analysis of the perspectives of the various thermodynamic schemes proposed for power production from the regasification, a detailed analysis of enhanced direct expansion system is carried out in order to identify the upper level of the energy that can be recovered. The analysis outlines that power production typical of optimized ORC plant configurations (120 kJ/kg) can be obtained with direct expansion solutions.

  11. Guanabara Bay and Pecem LNG flexible metering systems

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Vinicus Roberto C.; Carvalho, Gustavo L.A.; Bruel, Edson L.; Santana, Jose P.C. de; Vidal, Lud C.C.N. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    This work presents to the community the metering systems installed in the Liquefied Natural (LNG) Gas Flexible Terminals of the Pecem Port and Guanabara Bay. A brief description of the Terminals facilities and its operation is firstly made to provide a background of the systems discussed. Then, the LNG custody transfer metering system, the operational control metering system, the energy balance of the LNG transferring system and the Natural Gas custody transfer metering system - that are our systems of interest - are described in detail. It is intended to use the philosophy adopted in the Guanabara Bay and Pecem Flexible Terminals design as a standard to future installations, integrated with improvements brought by the operation experience that will be obtained in those terminals. (author)

  12. LNG; GNL

    Energy Technology Data Exchange (ETDEWEB)

    Chabrelie, M.F. [Cedigaz, 1 - 4 Avenue de Bois-Preau, 92852 Rueil Malmaison (France); Idir, N. [Commission de regulation de l' energie - CRE, 2 rue du Quatre-Septembre, 75084 Paris Cedex 02 (France); Hosanski, J.M. [Total, Dir. Gaz et Electricite, 2 place de la Coupole, La Defense 6, 92400 Courbevoie (France); Jonkman, H. [CEO, 4Gas, Max Euwelaan 21, 3062 MA Rotterdam (Netherlands); Pelloux-Prayer, D. [Gaz de France, 75 - Paris (France); Wells, D. [Shell Global LNG (United States)

    2007-07-01

    The LNG industry has entered a new step of its development, faster and more complex. The time parameter, the huge investments and the uncertainties relative to the demand growth are some of the factors that control its evolution. How the emergence of 'international price' signals will influence this activity? What supply-demand status can be foreseen from now to 2015? What role LNG would be able to play in terms of modulation management? What are the impacts of environmental constraints on LNG infrastructures? These are the different points discussed during this workshop by the five participants, specialists of the LNG questions. (J.S.)

  13. Introduction to the marine transportation of bulk LNG and the design of LNG carriers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J J

    1974-03-01

    The marine transportation of bulk LNG is expected to expand considerably in the near future to help supply the continuous and growing demand for energy predicted for the U.S., Japan, and Western Europe. The number of new LNG tankers required to provide for these markets is estimated to be at least 50 new 4.4 million ft/sup 3/ tankers by 1980. The standard LNG tanker size is expected to increase to 7.06 million ft/sup 3/ within 5 yr. In selecting a particular tanker system, prospective ship-owners may have to consider such factors as national and international subsidies, shipyard limitations, and the trend to build certain specialized tanker components in areas other than in the shipyard. This work separation could help reduce tanker construction cost and time--especially important when several ships are to be constructed. Containment techniques available for construction of the cargo tanks include the self-supporting and the integrated designs, with the most economical provided by systems carrying LNG as a bulk cargo slightly subcooled below its boiling temperature at near-atmospheric pressure. All designs must fulfill the requirements for maintaining the approved temperature over the entire hull structure, preventing excess heat leaks into the cargo, providing tight liquid containment of the cargo, controlling the conditions inside and outside, and providing the proper facilities for safe loading and unloading. Materials of construction range from a combination of various grades of mild steel for the hull to the highest grades of aluminum alloys and nickel steels for the tank areas. Insulation includes polyurethane foam, silicon-coated perlite, and balsa wood used with fiberglass, polyurethane foam, or mineral wool. The insulation materials and arrangement must be waterproof, fire-resistant, and suitable to withstand the forces imposed on them. Finally, the tankers must include the proper equipment for LNG handling, pumping, and boiloff control.

  14. A dispersion safety factor for LNG vapor clouds

    Energy Technology Data Exchange (ETDEWEB)

    Vílchez, Juan A. [TIPs – Trámites, Informes y Proyectos, SL, Llenguadoc 10, 08030 Barcelona (Spain); Villafañe, Diana [Centre d’Estudis del Risc Tecnològic (CERTEC), Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Catalonia (Spain); Casal, Joaquim, E-mail: joaquim.casal@upc.edu [Centre d’Estudis del Risc Tecnològic (CERTEC), Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Catalonia (Spain)

    2013-02-15

    Highlights: ► We proposed a new parameter: the dispersion safety factor (DSF). ► DSF is the ratio between the distance reached by the LFL and that reached by the visible cloud. ► The results for the DSF agree well with the evidence from large scale experiments. ► Two expressions have been proposed to calculate DSF as a function of H{sub R}. ► The DSF may help in indicating the danger of ignition of a LNG vapor cloud. -- Abstract: The growing importance of liquefied natural gas (LNG) to global energy demand has increased interest in the possible hazards associated with its storage and transportation. Concerning the event of an LNG spill, a study was performed on the relationship between the distance at which the lower flammability limit (LFL) concentration occurs and that corresponding to the visible contour of LNG vapor clouds. A parameter called the dispersion safety factor (DSF) has been defined as the ratio between these two lengths, and two expressions are proposed to estimate it. During an emergency, the DSF can be a helpful parameter to indicate the danger of cloud ignition and flash fire.

  15. A dispersion safety factor for LNG vapor clouds

    International Nuclear Information System (INIS)

    Vílchez, Juan A.; Villafañe, Diana; Casal, Joaquim

    2013-01-01

    Highlights: ► We proposed a new parameter: the dispersion safety factor (DSF). ► DSF is the ratio between the distance reached by the LFL and that reached by the visible cloud. ► The results for the DSF agree well with the evidence from large scale experiments. ► Two expressions have been proposed to calculate DSF as a function of H R . ► The DSF may help in indicating the danger of ignition of a LNG vapor cloud. -- Abstract: The growing importance of liquefied natural gas (LNG) to global energy demand has increased interest in the possible hazards associated with its storage and transportation. Concerning the event of an LNG spill, a study was performed on the relationship between the distance at which the lower flammability limit (LFL) concentration occurs and that corresponding to the visible contour of LNG vapor clouds. A parameter called the dispersion safety factor (DSF) has been defined as the ratio between these two lengths, and two expressions are proposed to estimate it. During an emergency, the DSF can be a helpful parameter to indicate the danger of cloud ignition and flash fire

  16. Reduction of LNG FOB cost

    International Nuclear Information System (INIS)

    Aoki, Ichizo; Kikkawa, Yoshitsugi

    1997-01-01

    To achieve a competitive LNG price for the consumers against other energy sources, reduction of LNG FOB (Free on Board) cost i.e. LNG cost at LNG ship flange, will be the key item. It is necessary to perform a many optimization studies (or value engineering) for each stage of the LNG project. These stages are: Feasibility study; Conceptual design - FEED (Front End Engineering and Design); EPC (Engineering, Procurement and Construction); Operation and maintenance. Since the LNG plant forms one part of the LNG chain, starting from gas production to LNG receiving, and requires several billion US dollar of investment, the consequences of a plant shut down on the LNG chain are clear, it is, therefore, important to get high availability which will also contribute the reduction of LNG FOB cost. (au) 25 refs

  17. The tariffs of use of liquefied natural gas transportation networks and facilities

    International Nuclear Information System (INIS)

    2005-01-01

    The new tariff proposals for the use of natural gas transportation networks were transmitted to the French Ministry of economy, finances and industry on October 27, 2004 by the commission of energy regulation. These proposals have been adopted and are the object of three legislative texts: the decree no. 2005-607 from May 27 2005 relative to the tariffing rules, the by-law from May 27, 2005 relative to the definition of balancing areas, and the advice from May 27, 2005 relative to the tariffs of use of natural gas transportation networks. In application of article 7 of the law from January 3, 2003, the implementation of the first tariffs of use of natural gas transportation networks and of liquefied natural gas (LNG) facilities is defined in the decree no. 2004-994 from September 21, 2004. On the main transportation network, the tariffing is of 'input-output' type and does not depend on the distance, while at the regional network scale, the tariffing is linked with the distance. The tariff of use of LNG facilities is the sum of 4 terms: a fixed term applied to each batch unloaded at the methane terminal, a term proportional to the unloaded LNG quantities, a term depending on the duration of use of LNG storage facilities and a term covering the gas consumptions of LNG facilities. This document gathers these different legislative texts with their appendixes. (J.S.)

  18. Boil off gas (BOG) management in Spanish liquid natural gas (LNG) terminals

    Energy Technology Data Exchange (ETDEWEB)

    Querol, E.; Gonzalez-Regueral, B.; Garcia-Torrent, J.; Garcia-Martinez, M.J. [Departamento de Ingenieria Quimica y Combustibles, Escuela Tecnica Superior de Ingenieros de Minas, Universidad Politecnica de Madrid, c. Alenza 4, 28003 Madrid (Spain)

    2010-11-15

    Spain is a country with six LNG terminals in operation and three more scheduled for 2011. At the same time an increasing number of LNG tanks are under construction to compensate the Spanish lack of underground storage. A method for evaluating the daily boil off generated is presented in this paper. This method is applied to evaluate the increase of BOG to be handle by LNG terminals in 2016, studying the best commercially available solution to be installed. Finally, as a solution to tackle with the BOG a cogeneration plant is suggested. This option will reduce terminal's operational costs increasing its availability. (author)

  19. Short-term LNG-markets

    International Nuclear Information System (INIS)

    Eldegard, Tom; Lund, Arne-Christian; Miltersen, Kristian; Rud, Linda

    2005-01-01

    The global Liquefied Natural Gas (LNG) industry has experienced substantial growth in the past decades. In the traditional trade patterns of LNG the product has typically been handled within a dedicated chain of plants and vessels fully committed by long term contracts or common ownership, providing risk sharing of large investments in a non-liquid market. Increasing gas prices and substantial cost reductions in all parts of the LNG chain have made LNG projects viable even if only part of the capacity is secured by long-term contracts, opening for more flexible trade of the remainder. Increasing gas demand, especially in power generation, combined with cost reductions in the cost of LNG terminals, open new markets for LNG. For the LNG supplier, the flexibility of shifting volumes between regions represents an additional value. International trade in LNG has been increasing, now accounting for more than one fifth of the world's cross-border gas trade. Despite traditional vertical chain bonds, increased flexibility has contributed in fact to an increasing LNG spot trade, representing 8% of global trade in 2002. The focus of this paper is on the development of global short-term LNG markets, and their role with respect to efficiency and security of supply in European gas markets. Arbitrage opportunities arising from price differences between regional markets (such as North America versus Europe) are important impetuses for flexible short-term trade. However, the short-term LNG trade may suffer from problems related to market access, e.g. limited access to terminals and regulatory issues, as well as rigidities connected to vertical binding within the LNG chain. Important issues related to the role of short-term LNG-trade in the European gas market are: Competition, flexibility in meeting peak demand, security of supply and consequences of differences in pricing policies (oil-linked prices in Europe and spot market prices in North America). (Author)

  20. The LNG Industry - 2013

    International Nuclear Information System (INIS)

    Dispenza, Domenico

    2014-04-01

    In 2013 the LNG markets remained extremely tight due to the demand pull from nuclear closures in Japan and South Korea and the difficulties to ramp-up production of new facilities in Angola and Algeria, bringing LNG price levels in the Far East to record highs in the first quarter. In addition to Cheniere's Sabine Pass, three new liquefaction projects received full approvals in the U.S.A. last year, confirming the country's path to become the world's third largest LNG exporter by the end of the decade. Cameron joined their ranks in early 2014 so that at the time of this writing, a total 62.5 Mt/y of capacity have been approved to export to non-FTA countries by the Department of Energy, already impacting the LNG industry, if not in physical volume then in contracting strategy. 2013 could be considered a transition year. LNG traded volumes as a whole remained at the same level as in 2012, but new trade patterns seem to emerge. The past year may have seen a slowdown in the number of FIDs, counting only one greenfield (Yamal LNG) and two expansion projects, but not in capacity increase with a respectable 29 Mt/y committed in total. Demand remained strong in Asia, mainly in China and South Korea. In Japan, imports continued to increase, although more moderately in a response to high prices and the yen devaluation, shifting the energy mix towards other sources of energy. Demand also increased in South America, strongly related to weather factors. Europe remained the swing provider to the world's LNG market. In a context of depressed local demand and with the utilization rate of the re-gasification terminals in their region at a historical low, European players continued with innovative transactions in search for business (such as re-loadings, two-port loadings, ship-to-ship transfers) while developing new markets for LNG as a transportation fuel. Three new countries joined the ranks of LNG importers in 2013: Israel, Malaysia, and Singapore. Total

  1. LNG REGASIFICATION TERMINALS ACCESS CAPACITY ANALYSIS FOR SECURITY OF EUROPEAN NATURAL GAS SUPPLY

    Directory of Open Access Journals (Sweden)

    Matija Veselić

    2011-12-01

    Full Text Available Increasing natural gas consumption, declining North Sea gas reserves, increased production costs and the deregulation of European gas and electricity markets have all combined to create new opportunities for LNG in Europe. In these circumstances, LNG represents an opportunity for many European countries to diversify their natural gas supply, while decreasing their dependence on Russian natural gas import at the same time. The largest exporters of LNG to Europe are Qatar, Algeria, Nigeria, Trinidad & Tobago, Egypt and Oman. Spain, Great Britain and France are the largest European importers of LNG. Spain has six LNG regasification terminals, followed by four in Great Britain, three in France, two in Italy and Turkey and finally Greece and Portugal with one terminal each. New LNG regasification terminals are currently under construction in Italy, Spain, Sweden and Netherlands. In addition, more than 30 new LNG terminal projects have been proposed around Europe. Italy plans to construct as many as 10 new regasification terminals, due to the strong orientation of its national energy policy towards LNG. Many European countries are strongly considering participating in the LNG chain for the first time, namely Albania, Cyprus, Ireland, Lithuania, Germany, Poland, Romania, Ukraine and Croatia. This paper focuses on a specific aspect of the LNG supply chain: the import facility (the paper is published in Croatian.

  2. LNG Safety Assessment Evaluation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Muna, Alice Baca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Angela Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    Sandia National Laboratories evaluated published safety assessment methods across a variety of industries including Liquefied Natural Gas (LNG), hydrogen, land and marine transportation, as well as the US Department of Defense (DOD). All the methods were evaluated for their potential applicability for use in the LNG railroad application. After reviewing the documents included in this report, as well as others not included because of repetition, the Department of Energy (DOE) Hydrogen Safety Plan Checklist is most suitable to be adapted to the LNG railroad application. This report was developed to survey industries related to rail transportation for methodologies and tools that can be used by the FRA to review and evaluate safety assessments submitted by the railroad industry as a part of their implementation plans for liquefied or compressed natural gas storage ( on-board or tender) and engine fueling delivery systems. The main sections of this report provide an overview of various methods found during this survey. In most cases, the reference document is quoted directly. The final section provides discussion and a recommendation for the most appropriate methodology that will allow efficient and consistent evaluations to be made. The DOE Hydrogen Safety Plan Checklist was then revised to adapt it as a methodology for the Federal Railroad Administration’s use in evaluating safety plans submitted by the railroad industry.

  3. The Phoenix series large scale LNG pool fire experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  4. LNG TERMINAL SAFE OPERATION MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Andrzej ADAMKIEWICZ

    2012-07-01

    Full Text Available This article presents the significance of LNG terminal safety issues in natural gas sea transport. It shows particular requirements for LNG transmission installations resulting from the specific properties of LNG. Out of the multi‐layer critical safety areas comprising structural elements of the terminal safety system, possibilities to decrease the risk of emergency occurrence on LNG terminals have been selected. Tasks performed by the LNG terminal, together with its own personnel and the outside one, have been defined. General theses for LNG terminal safety have been formulated.

  5. LNG project - contractual aspects

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Bruno Almeida

    2008-07-01

    This paper intends to provide from the legal point of view an outline of the main challenges of a LNG project in the upstream, regulatory aspects, liquefaction, financing and midstream through a basic checklist; an overview of the contractual complexity of a LNG project; some basic discussion of particular LNG contract clauses; and a comparative analysis between the classic clauses of a Gas Transportation Agreement (GTA) through a gas pipeline and LNG logistic. (author)

  6. The LNG Industry - 2014

    International Nuclear Information System (INIS)

    Dispenza, Domenico

    2015-04-01

    In the main, the global LNG industry can look back on 2014 as another year of relative stagnation with LNG trade reaching 239.2 MMT, a 1% increase over 2013, but just below 2011 levels. Although one new liquefaction plant came on stream in May in Papua New Guinea and one expansion train started producing in Algeria, disappointments in Angola and Egypt and slowdown in Qatar limited the volume of additional LNG supply. Low demand in South Korea as well as slower than expected growth in China contributed to loosen the market tightness observed in recent years, foreboding the return of a buyers' market as the year progressed. Other highlights in the past year's review of LNG imports are the remarkable gain in India, ahead of the U.K and Japan's demand increase, and the arrival of Lithuania as the world's 30. importer with a floating storage and re-gasification unit (FSRU). On the supply side, Queensland Curtis was on the brink at year-end of joining the producers' rank and managed to load its first cargo in December. Nigeria showed the second largest addition of supply (after PNG) attributable to a much improved feed-gas supply. During the second half of the year a sharp decrease in crude oil prices combined with a looser supply situation in the Pacific drove down prices in Asia, where spot prices were halved between March and October of last year. On the supply side, this price drop in Asia will inevitably slow down or defer development of expensive new supply projects. On the demand side, it has begun to translate into the return of flexible LNG cargoes to Europe, where spot prices have been disconnected from oil prices for some time. In this context of demand and price uncertainty, traditional procurement models are changing, as new players with different business models emerge, new procurement alliances are being formed and new commercial offerings are being structured; all mainly in the pursuit of enhanced flexibility both in terms of

  7. Next generation storage facility

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1994-01-01

    With diminishing requirements for plutonium, a substantial quantity of this material requires special handling and ultimately, long-term storage. To meet this objective, we at Los Alamos, have been involved in the design of a storage facility with the goal of providing storage capabilities for this and other nuclear materials. This paper presents preliminary basic design data, not for the structure and physical plant, but for the container and arrays which might be configured within the facility, with strong emphasis on criticality safety features

  8. 30 CFR 56.6800 - Storage facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage facilities. 56.6800 Section 56.6800... § 56.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another facility, or moved at...

  9. Analysis of constraints to the introduction of LNG plants in the Brazilian electric sector; Analise dos condicionantes para a introducao de plantas a GNL no setor eletrico brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, Tatiane Moraes Pestana

    2010-03-15

    This work aims analyze the constraints to the introduction of LNG in the Brazilian energy matrix. Therefore, considers the current regulatory framework and the investments recently made by PETROBRAS to acquire LNG in the international market in order to supply power plants in the country. In order to assess the current status of the LNG plants in the electricity sector, factors are analyzed in terms of the natural gas industry and electric power industry, such as: storage, LNG contracts, operating dispatch, LNG plants pricing and operational flexibility. Despite the increase in LNG international trade and the prospect of using this product in Brazil, there are some challenges for the effective use of LNG plants by Brazilian electric sector. Some of the challenges are the need to review the methodology of calculating the cost benefit of LNG power plants. Another important challenge is to examine the use of underground storage and its influence in the operating dispatch of LNG plants. (author)

  10. LNG TERMINAL SAFE OPERATION MANAGEMENT

    OpenAIRE

    Andrzej ADAMKIEWICZ; Włodzimierz KAMIŃSKI

    2012-01-01

    This article presents the significance of LNG terminal safety issues in natural gas sea transport. It shows particular requirements for LNG transmission installations resulting from the specific properties of LNG. Out of the multi‐layer critical safety areas comprising structural elements of the terminal safety system, possibilities to decrease the risk of emergency occurrence on LNG terminals have been selected. Tasks performed by the LNG terminal, together with its own personnel and the out...

  11. The LNG Industry - 2008

    International Nuclear Information System (INIS)

    2009-04-01

    Estimates for the marketed production of natural gas in 2008 show a rise of about 3.4% over 2007. The share of LNG in the gas trade accounts for 27% of the total (excluding trade within the Former Soviet Union and United Arab Emirates). This annual report presents: 1 - LNG contracts and trade, 2 - Contracts concluded in 2008, 3 - LNG imports - Sources of imports - Quantities received in 2008, 4 - LNG tankers, 5 - Ships delivered, 6 - Tanker distribution, 7 - Liquefaction plants, 8 - re-gasification plants, 9 - Contracts in force in 2008, 10 - Spot and short term quantities received in 2008, 11 - Sea transportation routes, 12 - Liquefaction plants (table), 13 - re-gasification plants (table), 14 - Delivery date of the LNG tankers

  12. The LNG Industry - 2009

    International Nuclear Information System (INIS)

    2010-04-01

    Estimates for the marketed production of natural gas in 2009 show a decrease of about 3.9% over 2008. The share of LNG in the gas trade accounts for 30% of the total (excluding trade within the Former Soviet Union and United Arab Emirates). This annual report presents: 1 - LNG contracts and trade, 2 - Contracts concluded in 2009, 3 - LNG imports - Sources of imports - Quantities received in 2009, 4 - LNG tankers, 5 - Ships delivered, 6 - Tanker distribution, 7 - Liquefaction plants, 8 - re-gasification plants, 9 - Contracts in force in 2009, 10 - Spot and short term quantities received in 2009, 11 - Sea transportation routes, 12 - Liquefaction plants (table), 13 - re-gasification plants (table), 14 - Delivery date of the LNG tankers

  13. PIF4 Promotes Expression of LNG1 and LNG2 to Induce Thermomorphogenic Growth in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Geonhee Hwang

    2017-07-01

    Full Text Available Arabidopsis plants adapt to high ambient temperature by a suite of morphological changes including elongation of hypocotyls and petioles and leaf hyponastic growth. These morphological changes are collectively called thermomorphogenesis and are believed to increase leaf cooling capacity by enhancing transpiration efficiency, thereby increasing tolerance to heat stress. The bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4 has been identified as a major regulator of thermomorphogenic growth. Here, we show that PIF4 promotes the expression of two homologous genes LONGIFOLIA1 (LNG1 and LONGIFOLIA2 (LNG2 that have been reported to regulate leaf morphology. ChIP-Seq analyses and ChIP assays showed that PIF4 directly binds to the promoters of both LNG1 and LNG2. The expression of LNG1 and LNG2 is induced by high temperature in wild type plants. However, the high temperature activation of LNG1 and LNG2 is compromised in the pif4 mutant, indicating that PIF4 directly regulates LNG1 and LNG2 expression in response to high ambient temperatures. We further show that the activities of LNGs support thermomorphogenic growth. The expression of auxin biosynthetic and responsive genes is decreased in the lng quadruple mutant, implying that LNGs promote thermomorphogenic growth by activating the auxin pathway. Together, our results demonstrate that LNG1 and LNG2 are directly regulated by PIF4 and are new components for the regulation of thermomorphogenesis.

  14. Radioactive wastes. Safety of storage facilities

    International Nuclear Information System (INIS)

    Devillers, Ch.

    2001-01-01

    A radioactive waste storage facility is designed in a way that ensures the isolation of wastes with respect to the biosphere. This function comprises the damping of the gamma and neutron radiations from the wastes, and the confinement of the radionuclides content of the wastes. The safety approach is based on two time scales: the safety of the insulation system during the main phase of radioactive decay, and the assessment of the radiological risks following this phase. The safety of a surface storage facility is based on a three-barrier concept (container, storage structures, site). The confidence in the safety of the facility is based on the quality assurance of the barriers and on their surveillance and maintenance. The safety of a deep repository will be based on the site quality, on the design and construction of structures and on the quality of the safety demonstration. This article deals with the safety approach and principles of storage facilities: 1 - recall of the different types of storage facilities; 2 - different phases of the life of a storage facility and regulatory steps; 3 - safety and radiation protection goals (time scales, radiation protection goals); 4 - safety approach and principles of storage facilities: safety of the isolation system (confinement system, safety analysis, scenarios, radiological consequences, safety principles), assessment of the radiation risks after the main phase of decay; 5 - safety of surface storage facilities: safety analysis of the confinement system of the Aube plant (barriers, scenarios, modeling, efficiency), evaluation of radiological risks after the main phase of decay; experience feedback of the Manche plant; variants of surface storage facilities in France and abroad (very low activity wastes, mine wastes, short living wastes with low and average activity); 6 - safety of deep geological disposal facilities: legal framework of the French research; international context; safety analysis of the confinement system

  15. Federal cabinet minister from N.B joins opponents to LNG terminals

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.

    2005-08-25

    This article addressed the debate regarding the United States' proposal to construct liquefied natural gas (LNG) facilities on a pristine bay between New Brunswick and Maine. Two LNG projects are currently being promoted for Passamaquoddy Bay, and 2 more proposals are expected to be announced in the near future. However, the proponents have not yet submitted any formal applications to the Canadian government. A federal cabinet minister from New Brunswick has joined the growing opposition to the proposed project, claiming that the location on the Maine side of Passamaquoddy Bay, a large inlet off the Bay of Fundy, poses too many risks to the habitat of several endangered or at-risk species, including the North Atlantic Right Whale. The proposed sites in Maine are directly across a narrow bay where tourism and fishing are prime industries in New Brunswick. The cabinet minister claims that with over 2,000 miles of coastline on the eastern seaboard, another location can be found for the LNG facilities that would not present navigational difficulties. The Canadian federal government has the jurisdiction to stop the project by not allowing the supertankers to cross Canadian waters to enter the Bay. The waters are known for their treacherous navigation. The premier of New Brunswick has also stepped in to ensure that the governor of Maine is made aware of Canada's opposition to the project. Officials with Downeast LNG and Quoddy Bay LLC claim there would not be any safety or environmental risks associated with the LNG project.

  16. Operation modes research of liquefied natural gas storages as a part of the ground complexes equipment

    Directory of Open Access Journals (Sweden)

    N. S. Korolev

    2014-01-01

    Full Text Available The use of the Liquefied Natural Gas (LNG in the space-rocket equipment is motivated by some advantages. That is why a lot of tests and works are actively carried out now on rocket engines using liquefied natural gas.To provide the engine tests and subsequent rocket complex operation a creation of LNG storages is demanded as a part of ground processing equipment and support for their safe operation conditions.One of LNG danger factor is its low boiling temperature, and also changing the condition, density and LNG boiling temperature at storage due to evaporation of light component, namely methane. At refill of the storages having fuel remains with a new LNG portion these factors can lead to formation of the stratified macro-layers and cause a mode of the intensive mixing that is called "rollover", with almost instant evaporation of LNG big mass and sharp pressure boost, capable to result in the storage distraction with catastrophic effects.The work objectives are formulated such as a technique development for forecasting of the LNG parameters in operating storages including the rollover mode, a comparison of calculated results of the LNG parameters with the experimental data, and a definition of possible recommendations for safe operation of LNG storages as a part of the ground complexes equipment.The paper reviews 12 publications concerning the issues and proceeding processes at operation of LNG storages, including the rollover mode.To verify the reliability of process simulation results in the LNG, represented in models by the binary methane-ethane mixture the calculated values have been compared with the experimental data for a LNG storage mode in the reservoir of a ground test complex.The reliability of developed models of the heat-mass-exchange processes in stratified on density and temperature in LNG storage with emergence of conditions for the rollover mode has been verified by comparing the settlement characteristics to the published

  17. The LNG Industry - 2007

    International Nuclear Information System (INIS)

    2008-04-01

    Estimates for the marketed production of natural gas in 2007 show a rise of about 1.6% over 2006. The share of LNG in the gas trade accounts for almost 24% of the total. This annual report presents: 1 - LNG contracts and trade, 2 - Contracts concluded in 2007, 3 - LNG imports - Sources of imports - Quantities received in 2007, 4 - LNG tankers, 5 - 35 Ships delivered 10 2007, 6 - Tanker distribution, 7 - Liquefaction plants, 8 - re-gasification plants, 9 - Long-term and medium-term contracts in force in 2007, 10 - Spot and short term quantities received in 2007 by the importing countries from the exporting countries, 11 - Sea transportation routes, 12 - Liquefaction plants (table), 13 - re-gasification plants (table), 14 - Delivery date of the LNG tankers

  18. Concept for a LNG Gas Handling System for a Dual Fuel Engine

    Directory of Open Access Journals (Sweden)

    Michael Rachow

    2017-09-01

    Full Text Available Nowadays, ships are using LNG as main engine fuel because based on the facts that LNG has no sulphur content, and its combustion process, LNG produces low NOx content compared to heavy fuel oil and marine diesel oil. LNG is not only produces low gas emission, but may have economic advantages. In the engine laboratory of maritime studies department in Warnemunde, Germany, there is a diesel engine type MAN 6L23/30 A, where the mode operation of these engine would be changed to dual fuel engine mode operation. Therefore, in this thesis, the use dual fuel engine will be compared where it will utilize natural gas and marine diesel oil and select the required components for fuel gas supply system. By conducting the process calculation, engine MAN 6L23/30 A requires the capacity natural gas of 12.908  for 5 days at full load. A concept for LNG supply system would be arranged from storage tank until engine manifold. Germanischer Lloyd and Project Guide of dual fuel engine will be used as a guidelines to develop an optimal design and arrangement which comply with the regulation.

  19. 76 FR 4885 - Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC Application for Long-Term Authorization...

    Science.gov (United States)

    2011-01-27

    ... order dated September 26, 2006 \\1\\: (1) A second marine berthing dock; (2) A third LNG storage tank; and... world.\\7\\ FLEX states that many natural gas and LNG supply contracts in European and Asian markets are... public interest. First, FLEX contends that the project will cause direct and indirect job creation...

  20. Effects of lng Mutations on LngA Expression, Processing, and CS21 Assembly in Enterotoxigenic Escherichia coli E9034A

    Science.gov (United States)

    Saldaña-Ahuactzi, Zeus; Rodea, Gerardo E.; Cruz-Córdova, Ariadnna; Rodríguez-Ramírez, Viridiana; Espinosa-Mazariego, Karina; González-Montalvo, Martín A.; Ochoa, Sara A.; González-Pedrajo, Bertha; Eslava-Campos, Carlos A.; López-Villegas, Edgar O.; Hernández-Castro, Rigoberto; Arellano-Galindo, José; Patiño-López, Genaro; Xicohtencatl-Cortes, Juan

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of morbidity in children under 5 years of age in low- and middle-income countries and a leading cause of traveler's diarrhea worldwide. The ability of ETEC to colonize the intestinal epithelium is mediated by fimbrial adhesins, such as CS21 (Longus). This adhesin is a type IVb pilus involved in adherence to intestinal cells in vitro and bacterial self-aggregation. Fourteen open reading frames have been proposed to be involved in CS21 assembly, hitherto only the lngA and lngB genes, coding for the major (LngA) and minor (LngB) structural subunit, have been characterized. In this study, we investigated the role of the LngA, LngB, LngC, LngD, LngH, and LngP proteins in the assembly of CS21 in ETEC strain E9034A. The deletion of the lngA, lngB, lngC, lngD, lngH, or lngP genes, abolished CS21 assembly in ETEC strain E9034A and the adherence to HT-29 cells was reduced 90%, compared to wild-type strain. Subcellular localization prediction of CS21 proteins was similar to other well-known type IV pili homologs. We showed that LngP is the prepilin peptidase of LngA, and that ETEC strain E9034A has another peptidase capable of processing LngA, although with less efficiency. Additionally, we present immuno-electron microscopy images to show that the LngB protein could be localized at the tip of CS21. In conclusion, our results demonstrate that the LngA, LngB, LngC, LngD, LngH, and LngP proteins are essential for CS21 assembly, as well as for bacterial aggregation and adherence to HT-29 cells. PMID:27536289

  1. Design of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes the general safety requirements applicable to the design of both wet and dry spent fuel storage facilities; Section 3 deals with the design requirements specific to either wet or dry storage. Recommendations for the auxiliary systems of any storage facility are contained in Section 4; these are necessary to ensure the safety of the system and its safe operation. Section 5 provides recommendations for establishing the quality assurance system for a storage facility. Section 6 discusses the requirements for inspection and maintenance that must be considered during the design. Finally, Section 7 provides guidance on design features to be considered to facilitate eventual decommissioning. 18 refs

  2. The LNG Industry - 2005

    International Nuclear Information System (INIS)

    2006-04-01

    First estimates for the marketed production of natural gas in 2005 show a rise of about 1.5 % over 2004. The share of LNG in the gas trade accounts for almost 21 % of the total. This annual report presents: 1 - LNG contracts and trade, 2 - Contracts concluded in 2005, 3 - LNG imports - Sources of imports - Quantities received in 2005 by the importing countries from the exporting countries, 4 - LNG tankers, 5 - 18 Ships delivered in 2005, 6 - Tanker distribution, 7 - Liquefaction plants, 8 - re-gasification plants, 9 - Long-term and medium-term contracts in force in 2005, 10 - Spot and short term quantities received in 2005 by the importing countries from the exporting countries, 11 - Sea transportation routes, 12 - Liquefaction plants (table), 13 - re-gasification plants (table), 14 - Delivery date of the LNG tankers

  3. Storage fee analysis for a retrievable surface storage facility

    International Nuclear Information System (INIS)

    Field, B.B.; Rosnick, C.K.

    1973-12-01

    Conceptual design studies are in progress for a Water Basin Concept (WBC) and an alternative Sealed Storage Cask Concept (SSCC) of a Retrievable Surface Storage Facility (RSSF) intended as a Federal government facility for storing high-level radioactive wastes until a permanent disposal method is established. The RSSF will be a man-made facility with a design life of at least 100 y, and will have capacity to store all of the high-level waste from the reprocessing of nuclear power plant spent fuels generated by the industry through the year 2000. This report is a basic version of ARH-2746, ''Retrievable Surface Storage Facility, Water Basin Concept, User Charge Analysis.'' It is concerned with the issue of establishing a fee to cover the cost of storing nuclear wastes both in the RSSF and at the subsequent disposal facility. (U.S.)

  4. LNG -- Technology on the edge

    International Nuclear Information System (INIS)

    Alexander, C.B.

    1995-01-01

    With immense promise and many supporters, LNG as a vehicular fuel is still, a nascent industry. In about two years, an array of LNG engines should be commercially available, and infrastructure greatly expanded. These developments should reduce the present premium of LNG equipment, greatly improving industry economics. The most propitious sign for LNG-market developed lies in the natural gas industry's recently refined strategy for natural gas vehicles. The new strategy targets the right competitor--diesel, not gasoline. It also targets the right market for an emerging fuel--high-fuel-usage fleets made up of medium- and heavy-duty vehicles, often driven long distances. But problems persist in critical areas of development. These problems are related to the materials handling of LNG and the refueling of vehicles. The paper discusses the studies on LNG handling procedures, its performance benefits to high-fuel use vehicles, economic incentives for its use, tax disadvantages that are being fought, and LNG competition with ''clean'' diesel fuels

  5. Applications of human factors engineering to LNG release prevention and control

    Energy Technology Data Exchange (ETDEWEB)

    Shikiar, R.; Rankin, W.L.; Rideout, T.B.

    1982-06-01

    The results of an investigation of human factors engineering and human reliability applications to LNG release prevention and control are reported. The report includes a discussion of possible human error contributions to previous LNG accidents and incidents, and a discussion of generic HF considerations for peakshaving plants. More specific recommendations for improving HF practices at peakshaving plants are offered based on visits to six facilities. The HF aspects of the recently promulgated DOT regulations are reviewed, and recommendations are made concerning how these regulations can be implemented utilizing standard HF practices. Finally, the integration of HF considerations into overall system safety is illustrated by a presentation of human error probabilities applicable to LNG operations and by an expanded fault tree analysis which explicitly recognizes man-machine interfaces.

  6. 30 CFR 56.4430 - Storage facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage facilities. 56.4430 Section 56.4430 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for...

  7. The LNG Industry - 2004

    International Nuclear Information System (INIS)

    2005-04-01

    First estimates for the marketed production of natural gas in 2004 show a rise of about 2 % over 2003. The share of LNG in the gas trade accounts for 21.9 % of the total. This annual report presents: 1 - LNG contracts and trade, 2 - Contracts concluded in 2004, 3 - LNG imports - Sources of imports - Quantities received in 2005 by the importing countries from the exporting countries, 4 - LNG tankers, 5 - 21 Ships delivered in 2004, 6 - Tanker distribution (at the end of 2004), 7 - Liquefaction plants, 8 - re-gasification plants, 9 - Long-term and medium-term contracts in force in 2004, 10 - Spot and short term quantities received in 2004 by the importing countries from the exporting countries, 11 - Sea transportation routes, 12 - Liquefaction plants (table), 13 - re-gasification plants (table), 14 - Delivery date of the LNG tankers

  8. LNG - the challenge of growth

    International Nuclear Information System (INIS)

    Summers, G.G.

    1992-01-01

    LNG growth prospects - both in the Far East and Atlantic Basin - have never been better. Natural gas is responding strongly to the green momentum and to its clear competitive advantage in power generation. To meet growing demand, the major energy buyers are turning increasingly to large remote reserves of gas which often can only be delivered as LNG. But, the market will decide when and which LNG projects are developed - and the trigger will be price. LNG will compete head-on not only with low priced oil and coal but, in some markets, also with long-haul pipeline gas. This paper outlines regional demand and supply opportunities for LNG and then considers the challenges that the LNG industry must now tackle if it is to realistically expect a larger share of the world's energy market

  9. Bidding strategy for an energy storage facility

    DEFF Research Database (Denmark)

    Nasrolahpour, Ehsan; Zareipour, Hamidreza; Rosehart, William D.

    2016-01-01

    to maximize its profit, while the market operator aims at maximizing the social welfare. In this case, the storage facility adapts its strategic behavior to take advantage of market conditions. To model the imperfectly competitive market, a bi-level optimization model is implemented to present......This paper studies operation decisions of energy storage facilities in perfectly and imperfectly competitive markets. In a perfectly competitive market, the storage facility is operated to maximize the social welfare. However, in a imperfectly competitive market, the storage facility operates...

  10. Storage tank stratification/rollover alarm management. Liquefied natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Versluijs, Pieter [Waertsilae France SAS, Calais (France). Waertsilae Whessoe PCT

    2011-03-21

    Liquefied natural gas (LNG) terminals need to be able to store multiple grades of LNG, and to have sufficient storage capacity available for all of them. Managing storage to ensure availability and to optimise the use of storage capacity is, therefore, essential. This article discusses ways of achieving these aims.

  11. May compact storage facilities be licensed

    International Nuclear Information System (INIS)

    Gleim, A.; Winter, G.

    1980-01-01

    The authors examine as potential statements fo fact for licensing so-called compact storage facilities for spent fuel elements Sec. 6 to 9c of the German Atomic Energy Act and Sec. 4 of the German Radiation Protection Ordinance. They find that none of these provisions were applicable to compact stroage facilities. In particular, the storage of spent fuel elements was no storage of nuclear fuels licensable under Sec. 6 of the Atomic Energy Act, because Sec. 6 did not cover spent fuel elements. Also in the other wording of the Atomic Energy Act there was no provision, which could be used as a statement of fact for licensing compact storage facilities. Such facilities could not be licensed and, for that reason, were not permitted. (IVR) [de

  12. Key issues considered at LNG 13

    International Nuclear Information System (INIS)

    Kidd, S.

    2001-01-01

    In the past few years, deregulation of the gas markets throughout the world has changed the way LNG projects can be brought into realisation. Gone are the days when large consortia of buyers could aggregate demand into quantities that made an LNG project economic. Today's market is typified by buyers requesting greater flexibility in volumes, shorter contract terms and reduced exposure to take-or-pay clauses. This means that the onus is on the producer to aggregate volume to make a large project viable, and to find flexible supply options as demand increases. As a result, there is an increasing ability to source LNG from excess capacity around the world, as has been demonstrated with the extended shutdown of the Arun LNG plant in Indonesia. Although some flexibility exists for the supply of LNG, it is unlikely that a world market where LNG is freely traded will develop. LNG projects will still require long-term contracts to ensure project financing. Furthermore, the 'LNG world' will remain separated into two regions the Atlantic and Asia-Pacific basins with only small amounts of 'spot' trading occurring between them. This is primarily due to the increased shipping costs associated with the global movement of LNG, and thus the ability to compete with closer sources of LNG and pipeline gas. Australia's position and its challenges in the LNG market is analysed

  13. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Larson, H L

    2007-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  14. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Larson, H L

    2007-09-07

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage

  15. Exergy recovery during LNG regasification: Electric energy production - Part two

    International Nuclear Information System (INIS)

    Dispenza, Celidonio; Dispenza, Giorgio; Rocca, Vincenzo La; Panno, Giuseppe

    2009-01-01

    In liquefied natural gas (LNG) regasification facilities, for exergy recovery during regasification, an option could be the production of electric energy recovering the energy available as cold. In a previous paper, the authors propose an innovative process which uses a cryogenic stream of LNG during regasification as a cold source in an improved combined heat and power (CHP) plant. Considering the LNG regasification projects in progress all over the World, an appropriate design option could be based on a modular unit having a mean regasification capacity of 2 x 10 9 standard cubic meters/year. This paper deals with the results of feasibility studies, developed by the authors at DREAM in the context of a research program, on ventures based on thermodynamic and economic analysis of improved CHP cycles and related innovative technology which demonstrate the suitability of the proposal

  16. Operation of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide was prepared as part of the IAEA's programme on safety of spent fuel storage. This is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes key activities in the operation of spent fuel storage facilities. Section 3 lists the basic safety considerations for storage facility operation, the fundamental safety objectives being subcriticality, heat removal and radiation protection. Recommendations for organizing the management of a facility are contained in Section 4. Section 5 deals with aspects of training and qualification; Section 6 describes the phases of the commissioning of a spent fuel storage facility. Section 7 describes operational limits and conditions, while Section 8 deals with operating procedures and instructions. Section 9 deals with maintenance, testing, examination and inspection. Section 10 presents recommendations for radiation and environmental protection. Recommendations for the quality assurance (QA) system are presented in Section 11. Section 12 describes the aspects of safeguards and physical protection to be taken into account during operations; Section 13 gives guidance for decommissioning. 15 refs, 5 tabs

  17. 30 CFR 57.6800 - Storage facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...

  18. An analysis on LPG storage capability and rotation periods in Southern China; Analyse de la capacite de stockage des LPG et des frequences de rotation des navires dans le Sud de la Chine

    Energy Technology Data Exchange (ETDEWEB)

    Yuankai, L. [Shenzhen Gas Corporation Ltd (China)

    2000-07-01

    The rapidly improving infrastructure and fast growing economic strengths of cities along the Pearl River in southern China is key to the soaring LPG consumption, and also provided great potential for further development In both LPG and LNG businesses in view of a population of 70 million with a only a 40% gas coverage. The existing local pressurized storage tanks lag behind the demand, but planed and projected refrigerating storage facilities and pressurized storage tanks far exceed the future demands by the next decade. To avoid redundancy and excess density, measures has been proposed of West and East evacuation by way of rivers and reopening of railways to ship LPG from south to North regions. It is advisable to keep in mind the following points in making further investments in LPG facilities: rotation periods should be strictly observed, Full play should be brought to the local storage terminals, Economic sustainability and market saturation should be given full consideration, Complementability of LPG storage facilities and LNG receiving Terminals. (author)

  19. Technical Safety Requirements for the Waste Storage Facilities

    International Nuclear Information System (INIS)

    Laycak, D.T.

    2010-01-01

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting

  20. Technical Safety Requirements for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2008-06-16

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas

  1. The effects of LNG imports on the North American natural gas market and the economy of Atlantic Canada

    International Nuclear Information System (INIS)

    Howard, P.H.; Kralovic, P.; McColl, D.C.; Mutysheva, D.; Stogran, M.; Ryan, P.C.; Brown, M.; Gardner, M.; Hanrahan, M.

    2006-01-01

    Liquefied natural gas (LNG) is natural gas that has been cooled to a point that it condenses in a liquid state. As such, it is economical to transport over long distances in specially designed double-hulled tankers. With record high price, high demand and tight supply of natural gas, LNG has attracted considerable attention in recent years, and trade is expected to be 18 per cent of North American gas supply by 2020. Volatility in North American natural gas markets is felt strongly along the east coast, with demand dominated by gas-fired power generation. There are 5 facilities proposed to import LNG into the Maritimes and the province of Quebec. These include the Bear Head and Keltic facilities in Nova Scotia, Canaport in New Brunswick and the Rabaska and Cacouna facilities in the province of Quebec. There is a need for a comprehensive analysis of east coast gas development, given the degree of uncertainty regarding significant investment in gas supply, demand, pipelines and LNG projects. This report examined many possible changes in regional marketplace conditions with particular attention to the effects on the economic viability of natural gas developments in Atlantic Canada; the impacts of LNG imports on capacities and flows in natural gas pipeline corridors; and, the influence of increased natural gas supplies on local and regional prices. In order to examine the impact of LNG imports on the development of the natural gas industry, this report provided a 15-year natural gas flow and price simulation for Atlantic Canada, New England and the Mid-Atlantic region. It considered how LNG imports may influence the development of compressed natural gas and the impact that CNG may have on regional markets and infrastructure. It was concluded that the most direct impacts the LNG facilities will have on Atlantic Canada, other than the impacts of terminal construction, jobs and tax revenue, will be the security of supply to area residents and the availability of gas

  2. 303-K Storage Facility closure plan

    International Nuclear Information System (INIS)

    1993-01-01

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5

  3. Increased LNG into North America may threaten northern/Arctic gas development

    International Nuclear Information System (INIS)

    Howard, P.

    2006-01-01

    Since 2000, liquefied natural gas (LNG) has attracted considerable attention in response to record high price, high demand and tight supply of natural gas. LNG trade is expected to be 18 per cent of North American gas supply by 2020. The natural gas market is also affected by demand dominated by gas-fired power generation. The balance between supply and demand, combined with external factors of economic upsets and weather, has resulted in a volatile market place. LNG can currently be landed in North American at prices that compete with the average continental well head price. In January 2006, there were more than 60 competing LNG regasification projects proposed to access the North American gas market. This presentation listed the proposed facilities to import LNG and emphasized the need for a comprehensive analysis of gas development, given the degree of uncertainty regarding significant investment in gas supply, demand, pipelines and LNG projects. While only a few of the proposed projects will actually be constructed, they will more than double the existing output by 2010. The many possible changes in regional marketplace conditions were discussed with particular attention to the effects on the economic viability of natural gas developments; the impacts of LNG imports on capacities and flows in natural gas pipeline corridors; and, the influence of increased natural gas supplies on local and regional prices. It was noted that since conventional resources in Canada and the United States have reached a plateau, the next logical supply sources are Alaska, the Beaufort Sea, the Mackenzie Delta and the Arctic Islands. However, the development of northern and Arctic gas resources may be delayed if the level of LNG imports is sufficient to fill the deficiency in supply and demand. tabs., figs

  4. Spent fuel storage facility, Kalpakkam

    International Nuclear Information System (INIS)

    Shreekumar, B.; Anthony, S.

    2017-01-01

    Spent Fuel Storage Facility (SFSF), Kalpakkam is designed to store spent fuel arising from PHWRs. Spent fuel is transported in AERB qualified/authorized shipping cask by NPCIL to SFSF by road or rail route. The spent fuel storage facility at Kalpakkam was hot commissioned in December 2006. All systems, structures and components (SSCs) related to safety are designed to meet the operational requirements

  5. LNG projects - nationally and internationally

    International Nuclear Information System (INIS)

    Graff, Oscar Fr.

    2006-01-01

    The presentation discusses various aspects of LNG projects nationally and internationally. The emphasis is on the future development of the natural gas markets, the competitiveness and economic requirements of the LNG production and transportation systems and the demands LNG projects will have to competence, technology, products and management

  6. The LNG Industry - 2010

    International Nuclear Information System (INIS)

    2011-04-01

    In 2010, global energy demand has recovered. Estimates for World Natural Gas consumption show a 7.3% increase compared with 2009 thanks to the economic rally and the cold winter conditions in Western countries. Due to the decline of indigenous productions in mature markets and to the development of new gas markets, international gas flows continued to expand, and total international gas trade increased by 10.9% compared with 2009. In this context, LNG flows recorded the largest growth with a 21% increase in 2010, the operational start-up of new liquefaction capacity in Qatar being the primary reason. By comparison, pipeline trade increased by 7%. This annual report presents: 1 - LNG contracts and trade, 2 - Contracts concluded in 2010, 3 - LNG imports - Sources of imports - Quantities received in 2010, 4 - LNG tankers, 5 - Ships delivered, 6 - Tanker distribution, 7 - Liquefaction plants, 8 - re-gasification plants, 9 - Contracts in force in 2010, 10 - Spot and short term quantities received in 2010, 11 - Sea transportation routes, 12 - Liquefaction plants (table), 13 - re-gasification plants (table), 14 - Delivery date of the LNG tankers

  7. LNG - emergency control

    Energy Technology Data Exchange (ETDEWEB)

    Berardinelli, Ricardo Porto; Correa, Kleber Macedo; Moura Filho, Nelson Barboza de; Fernandez, Carlos Antonio [TRANSPETRO, Rio de Janeiro, RJ (Brazil); Matos, Jose Eduardo Nogueira de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The operation of liquefied natural gas (LNG) is pioneering within the PETROBRAS System. PETROBRAS Transporte - TRANSPETRO is going to operate two flexible LNG terminals, located in Ceara and Rio de Janeiro. In accordance with the Corporate Health, Safety and Environmental (HSE) Directive - Training, Education and Awareness, PETROBRAS Transporte S.A. - TRANSPETRO has prepared an action plan with the objective of ensuring the operational safety of the undertaking. Among other actions a training program for the emergency control of LNG will be inserted into the timetable. The above mentioned training program was held over a period of 20 hours, and was divided between theory and practice. In the theoretical part, the characteristics of the product, the history of accidents and the emergency response procedures were covered. In the practical part, 3000 gallons of LNG were utilized where the behavior of the product could be confirmed following a confined leak, thereby verifying the efficacy of the emergency control resources. The teaching process of the course was developed in the company through the preparation of specific procedures, emergency plans and the formation of internal instructors. (author)

  8. Power and LPG production with LNG import

    International Nuclear Information System (INIS)

    Mak, J.Y.

    2004-01-01

    When used in power cogeneration, Liquefied Natural Gas (LNG) is both energy efficient and can eliminate seawater or fuel gas consumption as well as the associated environmental impacts of conventional regasification processes. However, some liquefied natural gas (LNG) sources have heating values higher than current North American natural gas pipelines can allow for. LNG from these cannot be injected into gas pipelines without several heating control processing steps. This paper outlines two new technologies developed to address this issue. The first is a power cogeneration process using LNG as a heat sink. The second technology involves a fractionation process removing Liquid Propane Gas (LPG) components from imported LNG, thereby controlling heat value. Both technologies are applicable in grassroots installations as well as being suitable for retrofitting to existing LNG regasification for power generation and LPG production. It was concluded that power cogeneration with a mixed fluid power cycle recovered a significant portion of energy in LNG liquefaction plants. Additionally, it was also possible to fractionate high quality LPG from LNG at a low cost, with the residue being further re-condensed and re-utilized for power generation. It was also concluded that the LNG fractionation process would add flexibility to the LNG receiving terminals, allowing the import of lower quality LNG to North America, while also generating additional revenues from LPG production. 3 refs., 5 tabs., 6 figs

  9. Leveraging storage assets to meet winter power demand

    Energy Technology Data Exchange (ETDEWEB)

    Charleson, D. [Enbridge Gas Distribution, Toronto, ON (Canada)

    2004-07-01

    Toronto-based Enbridge Gas Distribution serves 1.7 million customers by distributing 420 billion cubic feet (BCF) of natural gas over more than 31,000 km of pipelines. A map of the franchise area was presented. The utility has one of the lowest operating and maintenance costs in North America. Daily gas requirements were outlined along with the historic role of storage in gas utilities. Storage is used by heat sensitive local distribution companies, marketers, large industrials, and power generators. Storage locations in North America were reviewed with reference to baseload electricity production versus peak load; depleted reservoirs; salt caverns; aquifers; and liquefied natural gas (LNG). Enbridge operates 98 BCF of storage facilities for a maximum deliverability of 1.7 BCF per day. tabs., figs.

  10. Leveraging storage assets to meet winter power demand

    International Nuclear Information System (INIS)

    Charleson, D.

    2004-01-01

    Toronto-based Enbridge Gas Distribution serves 1.7 million customers by distributing 420 billion cubic feet (BCF) of natural gas over more than 31,000 km of pipelines. A map of the franchise area was presented. The utility has one of the lowest operating and maintenance costs in North America. Daily gas requirements were outlined along with the historic role of storage in gas utilities. Storage is used by heat sensitive local distribution companies, marketers, large industrials, and power generators. Storage locations in North America were reviewed with reference to baseload electricity production versus peak load; depleted reservoirs; salt caverns; aquifers; and liquefied natural gas (LNG). Enbridge operates 98 BCF of storage facilities for a maximum deliverability of 1.7 BCF per day. tabs., figs

  11. Natural Gas Storage Facilities, US, 2010, Platts

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Platts Natural Gas Storage Facilities geospatial data layer contains points that represent locations of facilities used for natural gas storage in the United...

  12. LNG links remote supplies and markets

    International Nuclear Information System (INIS)

    Avidan, A.A.; Gardner, R.E.; Nelson, D.; Borrelli, E.N.; Rethore, T.J.

    1997-01-01

    Liquefied natural gas (LNG) has established a niche for itself by matching remote gas supplies to markets that both lacked indigenous gas reserves and felt threatened in the aftermath of the energy crises of the 1970s and 1980s. It has provided a cost-effective energy source for these markets, while also offering an environmentally friendly fuel long before that was fashionable. The introduction of natural-gas use via LNG in the early years (mostly into France and Japan) has also allowed LNG to play a major role in developing gas infrastructure. Today, natural gas, often supplied as LNG, is particularly well-suited for use in the combined cycle technology used in independent power generation projects (IPPs). Today, LNG players cannot simply focus on monetizing gas resources. Instead, they must adapt their projects to meet the needs of changing markets. The impact of these changes on the LNG industry has been felt throughout the value chain from finding and producing gas, gas treatment, liquefaction, transport as a liquid, receiving terminals and regasification, and finally, to consumption by power producers, industrial users, and households. These factors have influenced the evolution of the LNG industry and have implications for the future of LNG, particularly in the context of worldwide natural gas

  13. Global LNG - characteristics, clients and contracts

    International Nuclear Information System (INIS)

    Bauquis, P.R.

    1997-01-01

    Total's liquefied natural gas (LNG) holdings were described. Other topics discussed included an overview of gas consumption and internationally traded gas in 1995, a primer on the history of LNG, Japan's average import prices in 1996, Europe's border gas prices and consumption in 1995, Canada/US regional price differences in 1995 and 1996, and world gas markets and prices in 1996. The projected LNG supply and demand in Europe and Asia , especially in Japan, China and India, was also discussed. General concepts of LNG pricing, the general structure of a gas sales contract, and the different categories of LNG contracts were also reviewed. 24 figs

  14. Risk-based determination of design pressure of LNG fuel storage tanks based on dynamic process simulation combined with Monte Carlo method

    International Nuclear Information System (INIS)

    Noh, Yeelyong; Chang, Kwangpil; Seo, Yutaek; Chang, Daejun

    2014-01-01

    This study proposes a new methodology that combines dynamic process simulation (DPS) and Monte Carlo simulation (MCS) to determine the design pressure of fuel storage tanks on LNG-fueled ships. Because the pressure of such tanks varies with time, DPS is employed to predict the pressure profile. Though equipment failure and subsequent repair affect transient pressure development, it is difficult to implement these features directly in the process simulation due to the randomness of the failure. To predict the pressure behavior realistically, MCS is combined with DPS. In MCS, discrete events are generated to create a lifetime scenario for a system. The combination of MCS with long-term DPS reveals the frequency of the exceedance pressure. The exceedance curve of the pressure provides risk-based information for determining the design pressure based on risk acceptance criteria, which may vary with different points of view. - Highlights: • The realistic operation scenario of the LNG FGS system is estimated by MCS. • In repeated MCS trials, the availability of the FGS system is evaluated. • The realistic pressure profile is obtained by the proposed methodology. • The exceedance curve provides risk-based information for determining design pressure

  15. Calcined solids storage facility closure study

    International Nuclear Information System (INIS)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C.

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a open-quotes Settlement Agreementclose quotes (or open-quotes Batt Agreementclose quotes) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed

  16. Calcined solids storage facility closure study

    Energy Technology Data Exchange (ETDEWEB)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C. [and others

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

  17. The Malaysia LNG experience

    International Nuclear Information System (INIS)

    Muhammed, M.

    1991-01-01

    This paper summarizes the nature of the LNG trade, the essential components and characteristics of an LNG project, and relates the Malaysia LNG experience to project realization with some emphasis on the financial aspects of the project. Twelve offshore lending institutions were involved in the total project loop providing U.S. dollar equivalents of 4.0 billions with interest rates ranging from 5% to 8%. The total project was completed on schedule and within budget except for the ships which got caught in the political development of the Malaysian petroleum industry at that time

  18. 77 FR 73627 - 2012 LNG Export Study

    Science.gov (United States)

    2012-12-11

    ... DEPARTMENT OF ENERGY 2012 LNG Export Study AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of availability of 2012 LNG Export Study and request for comments. Freeport LNG Expansion, L.P. [FE Docket No. 10-161-LNG] and FLNG Liquefaction, LLC. Lake Charles Exports, LLC.... [FE Docket...

  19. Documented Safety Analysis for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  20. Implementation of the HNS Convention in the LNG Industry: Singularities, Stakes, Issues and GIIGNL Proposed Solutions

    International Nuclear Information System (INIS)

    2008-01-01

    The International Group of Liquefied Natural Gas Importers (GIIGNL) is a non-profit organization founded in December of 1971. It is composed of 56 member companies from 18 different countries across the world and involved in the importation of Liquefied Natural Gas. The main objective of the GIIGNL is to promote the development of activities related to LNG: purchasing, importing, processing, transportation, handling, re-gasification and various uses of LNG. For this purpose, the GIIGNL is particularly involved in promoting the state-of-the art technology in the LNG industry, in communicating about the economic fundamentals of the industry, in enhancing facility operations, in diversifying contractual techniques, and in developing industry positions to be taken in international agencies. As a member of the IOPC Fund since June 2007, the GIIGNL prepared this LNG overview in order to offer a better understanding to state delegations about this specific product and its market and to contribute to the debate on the implementation of the HNS Convention. the first chapter constitutes an introduction to the LNG Industry: presentation of an LNG Chain, overview of the global LNG trade and its growth rate, type of contracts, LNG tankers and technical transportation constraints, liquefaction and re-gasification plants around the world. The second chapter focuses on some singularities of the LNG industry that differentiate LNG from other Hazardous and Noxious Substances: LNG, a clean and unique product and activity, high standards and firm regulations concerning security and maritime safety, high level of investment required for an LNG chain, DES and FOB, the fundamental Incoterms of LNG sales and purchase. The third chapter presents the HNS Convention as potentially applicable to the LNG market: a two tier compensation regime - a new perspective for the LNG industry, a potential impact on LNG sales and purchase agreements, the importance of global HNS ratification within LNG

  1. Automation in a material processing/storage facility

    International Nuclear Information System (INIS)

    Peterson, K.; Gordon, J.

    1997-01-01

    The Savannah River Site (SRS) is currently developing a new facility, the Actinide Packaging and Storage Facility (APSF), to process and store legacy materials from the United States nuclear stockpile. A variety of materials, with a variety of properties, packaging and handling/storage requirements, will be processed and stored at the facility. Since these materials are hazardous and radioactive, automation will be used to minimize worker exposure. Other benefits derived from automation of the facility include increased throughput capacity and enhanced security. The diversity of materials and packaging geometries to be handled poses challenges to the automation of facility processes. In addition, the nature of the materials to be processed underscores the need for safety, reliability and serviceability. The application of automation in this facility must, therefore, be accomplished in a rational and disciplined manner to satisfy the strict operational requirements of the facility. Among the functions to be automated are the transport of containers between process and storage areas via an Automatic Guided Vehicle (AGV), and various processes in the Shipping Package Unpackaging (SPU) area, the Accountability Measurements (AM) area, the Special Isotope Storage (SIS) vault and the Special Nuclear Materials (SNM) vault. Other areas of the facility are also being automated, but are outside the scope of this paper

  2. 46 CFR 154.703 - Methane (LNG).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Methane (LNG). 154.703 Section 154.703 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... and Temperature Control § 154.703 Methane (LNG). Unless a cargo tank carrying methane (LNG) can...

  3. Interim Storage Facility decommissioning. Final report

    International Nuclear Information System (INIS)

    Johnson, R.P.; Speed, D.L.

    1985-01-01

    Decontamination and decommissioning of the Interim Storage Facility were completed. Activities included performing a detailed radiation survey of the facility, removing surface and imbedded contamination, excavating and removing the fuel storage cells, restoring the site to natural conditions, and shipping waste to Hanford, Washington, for burial. The project was accomplished on schedule and 30% under budget with no measurable exposure to decommissioning personnel

  4. White paper: Preliminary assessment of LNG vehicle technology, economics, and safety issues (Revision 1). Topical report, April-August 1991

    International Nuclear Information System (INIS)

    Powars, C.; Lucher, D.; Moyer, C.; Browning, L.

    1992-01-01

    The objective of the study is to evaluate the potential of LNG as a vehicle fuel, to determine market niches, and to identify needed technology improvements. The white paper is being issued when the work is approximately 30 percent complete to preview the study direction, draw preliminary conclusions, and make initial recommendations. Interim findings relative to LNG vehicle technology, economics, and safety are presented. It is important to decide if heavier hydrocarbons should be allowed in LNG vehicle fuel. Development of suitable refueling couplings and vehicle fuel supply pressure systems are recommended. Initial economics analyses considered transit buses and pickup and delivery trucks fueled via onsite liquefiers and imported LNG. Net user costs were more than (but in some cases close to) those for diesel fuel and gasoline. Lowering the cost of small-scale liquefiers would significantly improve the economics of LNG vehicles. New emissions regulations may introduce considerations beyond simple cost comparisons. LNG vehicle safety and available accident data are reviewed. Consistent codes for LNG vehicles and refueling facilities are needed

  5. Spacing Sensitivity Analysis of HLW Intermediate Storage Facility

    International Nuclear Information System (INIS)

    Youn, Bum Soo; Lee, Kwang Ho

    2010-01-01

    Currently, South Korea's spent fuels are stored in its temporary storage within the plant. But the temporary storage is expected to be reaching saturation soon. For the effective management of spent fuel wastes, the need for intermediate storage facility is a desperate position. However, the research for the intermediate storage facility for waste has not made active so far. In addition, in case of foreign countries it is mostly treated confidentially and the information isn't easy to collect. Therefore, the purpose of this study is creating the basic thermal analysis data for the waste storage facility that will be valuable in the future

  6. The industrial facility for Grouping, Storage and Disposal

    International Nuclear Information System (INIS)

    Torres, Patrice

    2013-07-01

    The industrial facility for grouping, storage and disposal (called Cires in French), in the Aube district, is run by Andra. The facility is licensed to dispose of very-low-level waste, to collect non-nuclear-power radioactive waste and to provide storage for some of the waste for which a final management solution has not yet been found. The Cires facility is located a few kilometers from the Aube disposal facility (CSA), another of Andra's waste disposal facilities, currently dealing with low- and intermediate-level, short-lived waste. Contents: Andra in the Aube district, an exemplary industrial operator - The industrial facility for grouping, storage and disposal (Cires); Disposal of very-low-level waste (VLLW); The journey taken by VLL waste; Grouping of non-nuclear-power waste; Storage of non-nuclear-power waste; The journey taken by non-nuclear-power waste; Protecting present and future generations

  7. Studi Pemilihan Sistem Supply Listrik Dengan Pendekatan Topsis Dan Desain Sistem Kelistrikan Pada Onshore Receiving Facility LNG Di Celukan Bawang, Buleleng, Bali.

    Directory of Open Access Journals (Sweden)

    Fadilla Indrayuni Prastyasari

    2014-09-01

    Full Text Available Liqueafied Natural Gas (LNG merupakan gas alam yang sudah dikonversi menjadi fase cair pada kisaran temperatur -161°C pada tekanan atmosfer. Konversi ini mereduksi volume 600 kali lebih kecil dari volume gas alam sehingga LNG lebih bernilai ekonomis untuk disimpan dan ditransportasikan. LNG dapat menjadi solusi alternatif bahan bakar bagi pembangkit listrik di Indonesia. Disamping kelebihan dari LNG, hanya sedikit gas yang dimanfaatkan langsung oleh Indonesia karena kurangnya sarana dan prasarana yang mendukung. Salah satu sarana yang dapat mendukung pendistribusian LNG adalah terminal penerima LNG dan sistem pendukungnya, kapal LNG dan dermaga, unit regasifikasi, dan yang lainnya. Studi ini bertujuan untuk memilih sistem supply listrik menggunakan metode TOPSIS dan selanjutnya mendesain sistem kelistrikan untuk ORF di Celukan Bawang – Buleleng. LNG didistribusikan menuju ke tiga pembangkit listrik yang ada di Bali: Pesanggaran, Gilimanuk, dan Pemaron. Beberapa peralatan utama dari ORF yang dipertimbangkan adalah tangki penyimpanan, kompresor BOG, recondenser, pompa kriogenik, loading arm dan lainnya, dengan total kebutuhan daya sebesar 214,6 kW. Peralatan tersebut membutuhkan sistem supply listrik yang dapat memenuhi kebutuhan listrik dari seluruh peralatan di ORF. Terdapat tiga alternatif dari sumber listrik, yaitu diesel engine generator, gas engine generator, dan supply listrik dari PLN (Perusahaan Listrik Negara. Alternatif terbaik kemudian akan dipilih menggunakan metode TOPSIS dengan dua metode pembobotan yang berbeda. Studi ini menunjukkan bahwa alternatif terbaik adalah supply listrik dari PLN. Dengan menggunakan hasil seleksi, akan dibuat desain sistem kelistrikan untuk ORF dan setiap terminal penerima LNG mini di setiap pembangkit listrik yang terdiri dari wiring diagram dan oneline diagram.

  8. Onsite storage facility for low level radwaste

    International Nuclear Information System (INIS)

    Maxwell, M.G.

    1984-01-01

    The Tennessee Valley Authority (TVA) has designed and constructed an onsite storage facility for low level radwaste (LLRW) at its Browns Ferry Nuclear Plant in northern Alabama. The paper addresses the function of this facility and provides a complete description of the reinforced concrete storage modules which are the principal structural elements of the facility. The loads and loading combinations for the design of the storage modules are defined to include the foundation design parameters. Other aspects of the modules that are addressed are; the structural roof elements that provide access to the modules, shielding requirements for the LLRW, and tornado missile considerations

  9. Status of spent fuel storage facilities in Switzerland

    International Nuclear Information System (INIS)

    Beyeler, P.C.; Lutz, H.R.; Heesen, W. von

    1999-01-01

    Planning of a dry spent fuel storage facility in Switzerland started already 15 years ago. The first site considered for a central interim storage facility was the cavern of the decommissioned pilot nuclear plant at Lucens in the French-speaking part of Switzerland. This project was terminated in the late eighties because of lack of public acceptance. The necessary acceptance was found in the small town of Wuerenlingen which has hosted for many years the Swiss Reactor Research Centre. The new project consists of centralised interim storage facilities for all types of radioactive waste plus a hot cell and a conditioning and incinerating facility. It represents a so-called integrated storage solution. In 1990, the new company 'ZWILAG Zwischenlager Wuerenlingen AG' (ZWILAG) was founded and the licensing procedures according to the Swiss Atomic law were initiated. On August 26, 1996 ZWILAG got the permit for construction of the whole facility including the operating permit for the storage facilities. End of construction and commissioning are scheduled for autumn 1999. The nuclear power station Beznau started planning a low level waste and spent fuel storage facility on its own, because in 1990 its management thought that by 1997 the first high active waste from the reprocessing facilities in France would have to be taken back. This facility at the Beznau site, called ZWIBEZ, was licensed according to a shorter procedure so its construction was finished by 1997. The two facilities for high level waste and spent fuel provide space for a total of 278 casks, which is sufficient for the waste and spent fuel of the four Swiss nuclear power stations including their life extension programme. (author)

  10. Thermo-aeraulics of high level waste storage facilities

    International Nuclear Information System (INIS)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume; Duret, Bernard

    2006-01-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete structures; - GALATEE

  11. Thermo-aeraulics of high level waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lagrave, Herve; Gaillard, Jean-Philippe; Laurent, Franck; Ranc, Guillaume [CEA/Valrho, B.P. 17171, F-30207 Bagnols-sur-Ceze (France); Duret, Bernard [CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2006-07-01

    This paper discusses the research undertaken in response to axis 3 of the 1991 radioactive waste management act, and possible solutions concerning the processes under consideration for conditioning and long-term interim storage of long-lived radioactive waste. The notion of 'long-term' is evaluated with respect to the usual operating lifetime of a basic nuclear installation, about 50 years. In this context, 'long-term' is defined on a secular time scale: the lifetime of the facility could be as long as 300 years. The waste package taken into account is characterized notably by its high thermal power release. Studies were carried out in dedicated facilities for vitrified waste and for spent UOX and MOX fuel. The latter are not considered as wastes, owing to the value of the reusable material they contain. Three primary objectives have guided the design of these long-term interim storage facilities: - ensure radionuclide containment at all times; - permit retrieval of the containers at any time; - minimize surveillance; - maintenance costs. The CEA has also investigated surface and subsurface facilities. It was decided to work on generic sites with a reasonable set of parameters values that should be applicable at most sites in France. All the studies and demonstrations to date lead to the conclusion that long-term interim storage is technically feasible. The paper addresses the following items: - Long-term interim storage concepts for high-level waste; - Design principles and options for the interim storage facilities; - General architecture; - Research topics, Storage facility ventilation, Dimensioning of the facility; - Thermo-aeraulics of a surface interim storage facility; - VALIDA surface loop, VALIDA single container test campaign, Continuation of the VALIDA program; - Thermo-aeraulics of a network of subsurface interim storage galleries; - SIGAL subsurface loop; - PROMETHEE subsurface loop; - Temperature behaviour of the concrete

  12. Financial structure of Korea Gas Corporation's LNG projects

    International Nuclear Information System (INIS)

    Jeongsoo Ko

    1991-01-01

    When an Indonesian LNG tanker arrived in Korea for the first time in October 1986, Korea became the seventh LNG-consuming nation in the world. The imported LNG has contributed greatly to solving pollution problems and ensuring a stable supply of energy to Korea through the diversification of energy sources. So far, the LNG supply has been confined to the Metropolitan area. The Korea Gas Corporation now plans to expand the LNG supply to cover the entire nation. This paper introduces the experience and future plan of Korea's LNG projects with a special reference to their financial structure

  13. Report of study group 3.1 ''technological and economical developments for cost reduction of LNG facilities''; Rapport du groupe d'etude 3.1 ''developpements economiques et technologiques pour la reduction des couts dans les installations de GNL''

    Energy Technology Data Exchange (ETDEWEB)

    Rapallini, R.

    2000-07-01

    The design, engineering and operation of LNG base load liquefaction and re-gasification facilities is now considered a mature technology. However, process efficiency at these plants is limited by fundamental thermodynamic principles and no radical technology breakthroughs are expected in the near future. Three important aspects affecting the cost of production are the molecular weight of the gas, the amount of nitrogen in the feed and the acid gas composition. Variations in composition will also affect the design of the facilities and production rate. Previous projects have optimised economies of scale, using processes based on large industrial gas turbines, to achieve the minimum unit cost for LNG production. LNG producers have continued to focus on larger train designs to further capitalize on economies of scale as well as continued expansion of existing facilities. The latest plant designs expect the optimum integration with existing facilities to be a major factor in optimising specific capital costs. Whilst design codes and standards have not been discussed in many papers on LNG cost reduction, it is generally accepted that project specifications can significantly impact the project cost. The cost of equipment can be significantly inflated by onerous specifications with non standard requirements that vendors have trouble meeting. The possibility of developing gas projects will mainly be determined by the requirements of power generation and/or the industrial sector. As far as power generation is concerned, expansion will rely greatly on combined cycle plants. The competitiveness of LNG as regards power generation can be further improved by adopting integrated solutions. As in all other industrial projects, one of the first concerns for the investor when he envisages building an LNG liquefaction or re-gasification terminal is the selection of the site where the terminal will be located. (author)

  14. LNG plant combined with power plant

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, I; Kikkawa, Y [Chiyoda Chemical Engineering and Construction Co. Ltd., Tokyo (Japan)

    1997-06-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs.

  15. LNG plant combined with power plant

    International Nuclear Information System (INIS)

    Aoki, I.; Kikkawa, Y.

    1997-01-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs

  16. 77 FR 788 - Southern LNG Company, L.L.C.; Notice of Application

    Science.gov (United States)

    2012-01-06

    ... a new 2,500 horsepower electric- driven compressor unit at its liquefied natural gas (LNG) terminal... referenced docket pursuant to section 3(a) of the Natural Gas Act (NGA) and Part 153 of the Federal Energy... to allow boil-off gas generated naturally within its storage tanks to be delivered to the downstream...

  17. The tariffs of use of liquefied natural gas transportation networks and facilities; Les tarifs d'utilisation des reseaux de transport et des installations de gaz naturel liquefie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The new tariff proposals for the use of natural gas transportation networks were transmitted to the French Ministry of economy, finances and industry on October 27, 2004 by the commission of energy regulation. These proposals have been adopted and are the object of three legislative texts: the decree no. 2005-607 from May 27 2005 relative to the tariffing rules, the by-law from May 27, 2005 relative to the definition of balancing areas, and the advice from May 27, 2005 relative to the tariffs of use of natural gas transportation networks. In application of article 7 of the law from January 3, 2003, the implementation of the first tariffs of use of natural gas transportation networks and of liquefied natural gas (LNG) facilities is defined in the decree no. 2004-994 from September 21, 2004. On the main transportation network, the tariffing is of 'input-output' type and does not depend on the distance, while at the regional network scale, the tariffing is linked with the distance. The tariff of use of LNG facilities is the sum of 4 terms: a fixed term applied to each batch unloaded at the methane terminal, a term proportional to the unloaded LNG quantities, a term depending on the duration of use of LNG storage facilities and a term covering the gas consumptions of LNG facilities. This document gathers these different legislative texts with their appendixes. (J.S.)

  18. LNG market: future clouded by uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Segal, J

    1979-12-01

    The emergence of a US national energy policy playing down the role of LNG, along with a growing trend toward unfavorable production and pricing policies by LNG-exporting nations, will limit international LNG trade to about 9-10.5 billion CF/day by 1985, instead of the 13.4-15 billion CF predicted previously. In the US, LNG now stands fifth in priority as a baseload supply source, following conventional Lower 48 supplies, Alaskan pipeline gas, imports from Canada and Mexico, and domestic synthetic gas. Despite this federal policy and the adjoined decision to apply incremental pricing to future LNG imports, two new projects will soon come on-stream in the US: one to receive 450 million CF/day of Algerian gas at Lake Charles, La., and another to receive 539 million CF/day from Indonesia and 431 million CF/day from Alaska at a terminal in California.

  19. 2727-S Nonradioactive Dangerous Waste Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    Wilczek, T.A.; Laws, J.R.; Izatt, R.D.

    1992-01-01

    This closure plan describes the activities for final closure of the 2727-S Nonradioactive Dangerous Waste Storage (NRDWS) Facility at the Hanford Site. The 2727-S NRDWS Facility provided container storage for nonradioactive dangerous and extremely hazardous wastes generated in the research and development laboratories, process operations, and maintenance and transportation functions throughout the Hanford Site. Storage operations began at the 2727-S NRDWS Facility March 14, 1983, and continued until December 30, 1986, when the last shipment of materials from the facility took place. These storage operations have been moved to the new 616 NRDWS Facility, which is an interim status unit located between the 200 East and 200 West Areas of the Hanford Site

  20. Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines.

    Science.gov (United States)

    Ulvestad, Marte; Overland, Indra

    2012-06-01

    THIS ARTICLE DEVELOPS A FORMAL MODEL FOR COMPARING THE COST STRUCTURE OF THE TWO MAIN TRANSPORT OPTIONS FOR NATURAL GAS: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO 2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG.

  1. Is LNG the way ahead for natural gas?

    International Nuclear Information System (INIS)

    Chabrelie, M.F.; Dhellemmes, J.; Hosanski, J.M.; Goy, A.

    2004-01-01

    The topic of the last 2004 meeting of the French gas association (AFG) was the liquefied natural gas (LNG) which takes a growing up share in the international gas trade. The number of liquefaction plants and re-gasification terminals have increased and liquefied natural gas tanker fleets grown to match the development of world trade. The three major French players in the LNG field are Total, which produces gas and LNG in several countries, Gaz de France (GdF) which buys in a significant quantity of LNG, and GTT which provides engineering services for shipping. To get a better inside view of the LNG question, four specialists were invited to the last AFG meeting. This paper summarizes their opinion about the following points: the world potential LNG offer and the growing up capacities (LNG development, markets, supply and demand, companies strategy), the shipping by tanker ships (membrane insulation technology, fleet uses and perspectives), convergence of LNG markets and the role of Middle-East (shipping, increase of Middle-East LNG share in the world market, major stakes for the international companies), and the constraints and opportunities of re-gasification (terminals optimization, competition for re-gasification, terminals setting up problems, technical solutions). A summary of the questions and answers with the public concludes the article. (J.S.)

  2. PENGAMBILAN KEPUTUSAN KRITERIA JAMAK (MCDM UNTUK PEMILIHAN LOKASI FLOATING STORAGE AND REGASIFICATION UNIT (FSRU: STUDI KASUS SUPLAI LNG DARI LADANG TANGGUH KE BALI

    Directory of Open Access Journals (Sweden)

    Ketut Buda Artana

    2008-01-01

    Full Text Available This paper presents a case study in selecting the best location for a Floating Storage and Regasification Unit (FSRU in Bali. FSRU is an alternative to replace a conventional shore LNG terminal. The selection involves several criteria/attributes that can be grouped into two general criteria, namely qualitative and quantitative criteria. Multiple Criteria Decision Making (MCDM approach is utilized to solve the selection problem, considering the capability of this method in solving multi-criteria problem with mutual conflict. Qualitative criteria are evaluated using AHP method to calculate weight of each criterion. Moreover, decision matrix algorithm is then utilized to convert preference of stakeholders into, consecutively, probability assignment, total probability assignment and preference degree eventually. Quantitative criteria are also converted into preference degree and entropy method is used to rank the alternatives. Selected location would be the alternative having the highest entropy. Four alternatives are under consideration. Those alternatives are Benoa, Celukan Bawang, Pemaron and Gilimanuk. This research found that Celukan Bawang is the best location for the FSRU. Abstract in Bahasa Indonesia: Paper ini menyajikan pemilihan lokasi Floating Storage and Regasification Unit (FSRU untuk proses distribusi LNG dari Ladang Tangguh ke Bali. FSRU merupakan alternatif pengganti LNG receiving terminal di darat. Pemilihan lokasi ini melibatkan kriteria kualitatif dan kuantitatif dan metode Multiple Criteria Decision Making (MCDM digunakan untuk melakukan pemilihan mengingat metode ini dapat memberi solusi tepat saat mutual conflict terjadi pada beberapa kriteria pemilihan. Penilaian terhadap beberapa alternatif didasarkan atas nilai masing-masing kriteria yang diperoleh dari kuisioner terhadap beberapa stakeholders. Untuk kriteria kualitatif dicari relative weight dengan menggunakan metode Analitik Hierarki Proses (AHP. Nilai relative weight ini

  3. 303-K Storage Facility closure plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-15

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

  4. Numerical Investigations of Mixed Convection of Incompressible Viscous Fluid in LNG Storage with a Various Locations of Input and Output Mass

    Directory of Open Access Journals (Sweden)

    Sklyarenko Kristina A.

    2015-01-01

    Full Text Available The article shows the results of mathematical simulation of mixed convection in the low-temperature storage of liquefied natural gas with a regenerative cooling. The regimes of mixed convection in a closed area with the different arrangement of the input and output sections of the masses are investigated. Two-dimensional nonstationary problem in the model of the Navier-Stokes in dimensionless variables “vorticity - stream function - temperature” was examined. Are obtained distributions of the hydrodynamic parameters and temperatures, characteristic basic laws governing the processes being investigated. Detailed circulating currents and carried out analysis of the mechanism of vortices formation and the temperature distribution in the solution for mixed convection mode with low Reynolds and Grashof numbers (Gr = 106, 100 LNG storage tanks.

  5. LNG Market: Developments in 2014 and 2015 Outlook. Enerdata Gas/LNG and Power Consulting - January 2015

    International Nuclear Information System (INIS)

    2015-01-01

    Enerdata power and gas expert held a webinar on the important developments happened in the LNG market in 2014 and provided insight on the LNG market outlook for 2015. 2015 is the year of uncertainty for the LNG industry. We will continue to experience low LNG prices driven by temporary liquefaction over capacity. The 2015 low prices environment will continue to support domestic gas price reforms in countries such as India, China, Malaysia and Indonesia. National economies of high LNG consumers such as Japan, Korea and Taiwan will benefit from low energy cost. Import terminal operators will see their utilization rates drop at concerning levels where the balance between operating cost and revenue starts to move on the red zone. Project developers will continue to delay their FID until they can see the light out of the tunnel. Those negotiating long term contracts have the big dilemma of shall it be oil-linked or not oil-linked. Never as before the importance to have a good insight of the future will differentiate losers from winners

  6. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    International Nuclear Information System (INIS)

    Shank, D.R.

    1995-01-01

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  7. 303-K Storage Facility: Report on FY98 closure activities

    International Nuclear Information System (INIS)

    Adler, J.G.

    1998-01-01

    This report summarizes and evaluates the decontamination activities, sampling activities, and sample analysis performed in support of the closure of the 303-K Storage Facility. The evaluation is based on the validated data included in the data validation package (98-EAP-346) for the 303-K Storage Facility. The results of this evaluation will be used for assessing contamination for the purpose of closing the 303-K Storage Facility as described in the 303-K Storage Facility Closure Plan, DOE/RL-90-04. The closure strategy for the 303-K Storage Facility is to decontaminate the interior of the north half of the 303-K Building to remove known or suspected dangerous waste contamination, to sample the interior concrete and exterior soils for the constituents of concern, and then to perform data analysis, with an evaluation to determine if the closure activities and data meet the closure criteria. The closure criteria for the 303-K Storage Facility is that the concentrations of constituents of concern are not present above the cleanup levels. Based on the evaluation of the decontamination activities, sampling activities, and sample data, determination has been made that the soils at the 303-K Storage Facility meet the cleanup performance standards (WMH 1997) and can be clean closed. The evaluation determined that the 303-K Building cannot be clean closed without additional closure activities. An additional evaluation will be needed to determine the specific activities required to clean close the 303-K Storage Facility. The radiological contamination at the 303-K Storage Facility is not addressed by the closure strategy

  8. Algeria's response to future LNG needs: The revamping of its LNG plants

    International Nuclear Information System (INIS)

    Bendani, A.; Rekkab, O.

    1992-01-01

    Since the beginning of the sixties, Algeria decided to participate in the international commerce of gas through its LNG. Four plants have thus been built and started in 1964, 1972, 1978 and 1981. Following the decrease in world LNG demand in the eighties, these plants built to supply 30 billion M 3 have not been operated at their full capacities. As a result, the plant equipment has suffered from this situation of partial operation (excessive shutdowns and startups). In order for SONATRACH to participate as it wishes in the expected increase in world LNG demand, two alternatives are possible to achieve this objective: Rehabilitate existing plants to enable them to operate safety and continuously to their full capacities or, build new plants. It is the first alternative that has been selected and the previous plant constructors have been selected for their renovation

  9. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 6 Book 1, contains information on design studies of a Monitored Retrievable Storage (MRS) facility. Topics include materials handling; processing; support systems; support utilities; spent fuel; high-level waste and alpha-bearing waste storage facilities; and field drywell storage

  10. The cascad spent fuel dry storage facility

    International Nuclear Information System (INIS)

    Guay, P.; Bonnet, C.

    1991-01-01

    France has a wide variety of experimental spent fuels different from LWR spent fuel discharged from commercial reactors. Reprocessing such fuels would thus require the development and construction of special facilities. The French Atomic Energy Commission (CEA) has consequently opted for long-term interim storage of these spent fuels over a period of 50 years. Comparative studies of different storage concepts have been conducted on the basis of safety (mainly containment barriers and cooling), economic, modular design and operating flexibility criteria. These studies have shown that dry storage in a concrete vault cooled by natural convection is the best solution. A research and development program including theoretical investigations and mock-up tests confirmed the feasibility of cooling by natural convection and the validity of design rules applied for fuel storage. A facility called CASCAD was built at the CEA's Cadarache Nuclear Research Center, where it has been operational since mid-1990. This paper describes the CASCAD facility and indicates how its concept can be applied to storage of LWR fuel assemblies

  11. Asia-Pacific focus of coming LNG trade boom

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that the Asia-Pacific region remains the centerpiece of a booming world trade in liquefied natural gas. Biggest growth in LNG demand is expected from some of the region's strongest economies such as Japan, South Korea, and Taiwan, Key LNG exporters such as Brunei, Malaysia, and Indonesia are scrambling to implement projects to meet that expected demand growth. Uncertainties cloud the outlook for Far East LNG trade, Australia, for one, is more cautious in pressing expansion of its LNG export capacity as more competing LNG expansions spring up around the world, notably in the Middle East and Africa

  12. TWRS HLW interim storage facility search and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Calmus, R.B., Westinghouse Hanford

    1996-05-16

    The purpose of this study was to identify and provide an evaluation of interim storage facilities and potential facility locations for the vitrified high-level waste (HLW) from the Phase I demonstration plant and Phase II production plant. In addition, interim storage facilities for solidified separated radionuclides (Cesium and Technetium) generated during pretreatment of Phase I Low-Level Waste Vitrification Plant feed was evaluated.

  13. Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bin; Liu, Yi [Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University System, College Station, TX 77843-3122 (United States); Olewski, Tomasz; Vechot, Luc [Mary Kay O’Connor Process Safety Center - Qatar, Texas A and M University at Qatar, PO Box 23874, Doha (Qatar); Mannan, M. Sam, E-mail: mannan@tamu.edu [Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University System, College Station, TX 77843-3122 (United States)

    2014-09-15

    Highlights: • Reveal the existence of blocking effect of high expansion foam on an LNG pool. • Study the blanketing effect of high expansion foam quantitatively. • Correlate heat flux for vaporization with foam breaking rate. • Propose the physical mechanism of blanketing effect. - Abstract: With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect.

  14. Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool

    International Nuclear Information System (INIS)

    Zhang, Bin; Liu, Yi; Olewski, Tomasz; Vechot, Luc; Mannan, M. Sam

    2014-01-01

    Highlights: • Reveal the existence of blocking effect of high expansion foam on an LNG pool. • Study the blanketing effect of high expansion foam quantitatively. • Correlate heat flux for vaporization with foam breaking rate. • Propose the physical mechanism of blanketing effect. - Abstract: With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect

  15. Coordination of ministerial actions regarding the use of liquefied natural gas (LNG) as fuel. LNG, a European component of the energy transition in road freight transport

    International Nuclear Information System (INIS)

    Maler, Philippe; Erhardt, Jean-Bernard; Ourliac, Jean-Paul

    2015-09-01

    This report is the third of a series dealing with the coordination of ministerial actions in favor of the use of liquefied natural gas (LNG) as fuel in transports. LNG is an important potential substitute to diesel fuel in road transport and would allow significant abatement of nitrogen oxides emissions. Bio-LNG is ten times less polluting than fossil fuel LNG and thus important efforts are to be made in bio-LNG R and D. An important work has been carried out for adapting EU regulations and standards to LNG vehicles and LNG supply developments. This report presents, first, a summary of the report's recommendations and the aim of this coordination study, and, then, treats more thoroughly of the different coordination aspects: 1 - European framework of energy transition in the road freight transport (differences with maritime transport, CO 2 emissions abatement, trucks pollution and fuel quality standards, trucks technical specifications and equipment, fuel taxes in EU countries); 2 - European policy and national actions in favour of LNG development for road transport (LNG as alternate fuel, the Paris agreement, the French national energy plan); 3 - Environmental benefits of LNG in road transport (public health impacts, nitrogen oxides abatement, divergent views and expertise, LNG and CO 2 abatement measures, bio-LNG environmental evaluation; 4 - LNG development actors in road transport and the administrative coordination (professional organizations, public stakeholders, LNG topics information dissemination at the Ministry); 5 - LNG development in road transport at the worldwide, European and national scales; 6 - European regulations and standards allowing trucks LNG fueling and circulation (standard needs, users information, regulation works); 7 - Common rules to define and implement for personnel training; 8 - reflexion on LNG taxation; 9 - support policy for a road transport LNG supply chain (infrastructures, European financing, lessons learnt from maritime

  16. Radiation scanning aids tower diagnosis at Arun LNG plant

    International Nuclear Information System (INIS)

    Naklie, M.M.; Pless, L.; Gurning, T.P.; Hyasak, M.

    1990-01-01

    Radiation scanning has been used effectively to troubleshoot the treating towers of the Arun LNG plant in Sumatra, Indonesia. The plant is one of the world's largest such facilities. The analysis was part of an investigation aimed at increasing the capacity of the treater section of the plant. Radiation scanning is a tool which, in addition to tower differential pressure and product purity, can aid in diagnosing tower performance

  17. Ontario hydro waste storage concepts and facilities

    International Nuclear Information System (INIS)

    Carter, T.J.; Mentes, G.A.

    1976-01-01

    Ontario Hydro presently operates 2,200 MWe of CANDU heavy water reactors with a further 11,000 MWe under design or construction. The annual quantities of low and medium level solid wastes expected to be produced at these stations are tabulated. In order to manage these wastes, Ontario Hydro established a Radioactive Waste Operations Site within the Bruce Nuclear Power Development located on Lake Huron about 250 km northwest of Toronto. The Waste Operations Site includes a 19-acre Storage Site plus a Radioactive Waste Volume Reduction Facility consisting of an incinerator and waste compactor. Ontario has in use or under construction both in-ground and above-ground storage facilities. In-ground facilities have been used for a number of years while the above-ground facilities are a more recent approach. Water, either in the form of precipitation, surface or subsurface water, presents the greatest concern with respect to confinement integrity and safe waste handling and storage operations

  18. Conceptual design and cost estimation of dry cask storage facility for spent fuel

    International Nuclear Information System (INIS)

    Maki, Yasuro; Hironaga, Michihiko; Kitano, Koichi; Shidahara, Isao; Shiomi, Satoshi; Ohnuma, Hiroshi; Saegusa, Toshiari

    1985-01-01

    In order to propose an optimum storage method of spent fuel, studies on the technical and economical evaluation of various storage methods have been carried out. This report is one of the results of the study and deals with storage facility of dry cask storage. The basic condition of this work conforms to ''Basic Condition for Spent Fuel Storage'' prepared by Project Group of Spent Fuel Dry Storage at July 1984. Concerning the structural system of cask storage facilities, trench structure system and concrete silo system are selected for storage at reactor (AR), and a reinforced concrete structure of simple design and a structure with membrance roof are selected for away from reactor (AFR) storage. The basic thinking of this selection are (1) cask is put charge of safety against to radioactivity and (2) storage facility is simplified. Conceptual designs are made for the selected storage facilities according to the basic condition. Attached facilities of storage yard structure (these are cask handling facility, cask supervising facility, cask maintenance facility, radioactivity control facility, damaged fuel inspection and repack facility, waste management facility) are also designed. Cost estimation of cask storage facility are made on the basis of the conceptual design. (author)

  19. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    International Nuclear Information System (INIS)

    Shank, D.R.

    1994-01-01

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  20. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R.

    1994-12-29

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  1. Documented Safety Analysis for the Waste Storage Facilities March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  2. Technical Safety Requirements for the Waste Storage Facilities May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  3. Technical Safety Requirements for the Waste Storage Facilities May 2014

    International Nuclear Information System (INIS)

    Laycak, D. T.

    2014-01-01

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  4. 303-K Radioactive Mixed-Waste Storage Facility closure plan

    International Nuclear Information System (INIS)

    1991-11-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors chemical-separation systems, and related facilities used for the production o special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 303-K Radioactive Mixed-Waste Storage Facility (303-K Facility) has been used since 1943 to store various radioactive,and dangerous process materials and wastes generated by the fuel manufacturing processes in the 300 Area. The mixed wastes are stored in US Department of Transportation (DOT)-specification containers (DOT 1988). The north end of the building was used for storage of containers of liquid waste and the outside storage areas were used for containers of solid waste. Because only the north end of the building was used, this plan does not include the southern end of the building. This closure plan presents a description of the facility, the history of materials and wastes managed, and a description of the procedures that will be followed to chose the 303-K Facility as a greater than 90-day storage facility. The strategy for closure of the 303-K Facility is presented in Chapter 6.0

  5. Cold recovery during regasification of LNG part two: Applications in an Agro Food Industry and a Hypermarket

    International Nuclear Information System (INIS)

    La Rocca, Vincenzo

    2011-01-01

    The paper deals with the cold energy available during LNG regasification, which can be recovered and utilized both inside the LNG regasification area and at a distance, such as in deep freezing agro food industry facilities and for space conditioning in the commercial and residential sector (e.g. Supermarkets and Hypermarkets). The feasibility study of this kind of application has been carried out at DREAM, Palermo University, within the framework of a research program. The results of a feasibility study of the kind of venture proposed, starting from its conceptual design and with a thorough thermodynamic and economic analysis, demonstrated the suitability and the profitability of the applications proposed. They seem very attractive due to expected wide future exploitation of LNG regasification in the World. -- Highlights: → Proposal pertaining cold recovery during LNG regasification. → Cold utilization far from the regasification site. → Transfer of liquid/gaseous carbon dioxide pipeline. → Exergetic and economic analysis of venture pertaining applications proposed. → Results of venture economic analysis.

  6. Daily storage management of hydroelectric facilities

    NARCIS (Netherlands)

    Chappin, E.J.L.; Ferrero, M.; Lazzeroni, P.; Lukszo, Z.; Olivero, M.; Repetto, M.

    2012-01-01

    This work presents a management procedure for hydroelectric facilities with daily storage. The water storage gives an additional degree of freedom allowing to shift in time power production when it is more convenient and to work at the maximum efficiency of hydraulic turbine. The management is

  7. The globalization and environmental sustainability of LNG: Is LNG a fuel for the 21st century?

    Energy Technology Data Exchange (ETDEWEB)

    Sakmar, Susan

    2010-09-15

    As the world enters the 21st Century, policy makers around the world are grappling with issues related to energy security, energy poverty, global climate change, and the need to reduce greenhouse gas emissions while meeting an expected increase in demand for all energy sources. As a clean burning fuel, many policy leaders have suggested that LNG can play an important role as the world struggles to develop a more environmental sustainable energy future. Others claim that the safety and environmental impact of LNG, including life-cycle emissions, may nullify any clean burning benefit LNG might otherwise provide.

  8. World economic growth pushing LNG use

    International Nuclear Information System (INIS)

    Brown, R.L.; Clary, R.

    1997-01-01

    Natural gas, especially liquefied (LNG), is in position to participate in the energy growth now being triggered by strong worldwide economic growth, increasingly open markets, and expanding international trade. Natural gas is abundant, burns cleanly, and is highly efficient in combined-cycle, gas-turbine power plants. Moreover, the comparative remoteness of much of the resource base to established and emerging markets can make LNG a compelling processing and transportation alternative. Discussed here are the resource distribution and emerging market opportunities that can make LNG attractive for monetizing natural-gas reserves

  9. The economic value of LNG in the Korean manufacturing industry

    International Nuclear Information System (INIS)

    Park, Sun-Young; Yoo, Seung-Hoon

    2013-01-01

    Although LNG is an important input to industrial production for manufacturing firms, its economic value has been rarely investigated in the literature. This paper attempts to estimate the economic value of LNG in Korea's manufacturing sector by employing the concept of the value of marginal product (VMP). For this, we used data on 328 firms using LNG as an input. Two types of production functions (the Cobb–Douglas and trans-log functions) are applied. The result of the specification test indicates that the trans-log function is more appropriate for estimating the data. The output elasticity and VMP of industrial LNG are estimated to be 0.1346 and KRW 6844 (USD 6.22) per m 3 , respectively. The results have important implications for various areas of industrial LNG management. For example, any cost–benefit analysis of new projects providing industrial LNG requires information on the economic value of industrial LNG. In addition, such information is useful for the Korean government's future policies on LNG pricing. - Highlights: • We estimate the economic value of LNG in the Korean manufacturing industry. • We employ the concept of the value of marginal product (VMP). • The VMP of industrial LNG is estimated to be KRW 6844 (USD 6.22) per m 3 . • It significantly outweighs the price of industrial LNG (KRW 629.4 per m 3 )

  10. Russian LNG: The Long Road to Export

    International Nuclear Information System (INIS)

    Mitrova, Tatiana

    2013-12-01

    On December 1, 2013 a law on liquefied natural gas (LNG) export liberalization came into legal force in Russia. The law grants two categories of companies other than Russia's state gas giant Gazprom and its subsidiary companies the right to export LNG: (1) users of mineral resources that have a license to construct an LNG plant or to send their gas production for liquefaction, and (2) companies that are more than 50% owned by the Russian government, for gas produced from Russian offshore fields or under production-sharing agreements. This is-without exaggeration-a historic decision for the Russian gas industry, the path to which was certainly not easy. Recent years have seen a radical change in the global economic climate, which has changed the dynamics of the European gas market (gas demand decline and Russian gas import reduction, changing pricing mechanism for a much higher share of spot indexing, European Commission anti-trust investigations against Gazprom, etc) and is increasingly pushing Russia to diversify its gas exports. However, diversifying exports through the development of LNG has proven to be not so simple. Over the past 20 years, with the exception of the Sakhalin-2 project, structured under a project-sharing agreement (PSA) rather than in the framework of national legislation, all other projects failed to come close to completion. The Kharasavey and Baltic LNG projects were abandoned in the early stages of project evaluation, while the Shtokman project progressed to the point of the operating company being created, but in the end was postponed indefinitely. The first stage of LNG development in Russia ended in failure. However, the Russian government considers the development of LNG exports to be a priority, which can be evidenced in all official policy papers. It is believed that LNG will help in achieving a set of objectives, namely: increasing the absolute volume of exports, allowing the country to enter into previously inaccessible markets

  11. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    The Basis for Design established the functional requirements and design criteria for an Integral Monitored Retrievable Storage (MRS) facility. The MRS Facility design, described in this report, is based on those requirements and includes all infrastructure, facilities, and equipment required to routinely receive, unload, prepare for storage, and store spent fuel (SF), high-level waste (HLW), and transuranic waste (TRU), and to decontaminate and return shipping casks received by both rail and truck. The facility is complete with all supporting facilities to make the MRS Facility a self-sufficient installation

  12. Inventory extension at the Nuclear Materials Storage Facility

    International Nuclear Information System (INIS)

    Stanbro, W.D.; Longmire, V.; Olinger, C.T.; Argo, P.E.

    1996-09-01

    The planned renovation of the Nuclear Material Storage Facility (NMSF) at Los Alamos National Laboratory will be a significant addition to the plutonium storage capacity of the nuclear weapons complex. However, the utility of the facility may be impaired by an overly conservative approach to performing inventories of material in storage. This report examines options for taking advantage of provisions in Department of Energy orders to extend the time between inventories. These extensions are based on a combination of modern surveillance technology, facility design features, and revised operational procedures. The report also addresses the possibility that NMSF could be the site of some form of international inspection as part of the US arms control and nonproliferation policy

  13. CNAEM waste processing and storage facility

    International Nuclear Information System (INIS)

    Osmanlioglu, A.E.; Kahraman, A.; Altunkaya, M.

    1998-01-01

    Radioactive waste in Turkey is generated from various applications. Radioactive waste management activities are carried out in a facility at Cekmece Nuclear Research and Training Center (CNAEM). This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes and their activities are up to 10 -3 Ci/m 3 (except spent sealed sources). Chemical treatment and cementation of liquid radwaste, segregation and compaction of solid wastes and conditioning of spent sources are the main processing activities of this facility. A.so, analyses, registration, quality control and interim storage of conditioned low-level wastes are the other related activities of this facility. Conditioned wastes are stored in an interim storage building. All waste management activities, which have been carried out in CNAEM, are generally described in this paper. (author)

  14. LNG terminalil on idaraha keeld / Raimo Poom

    Index Scriptorium Estoniae

    Poom, Raimo

    2011-01-01

    Euroopa Komisjon kiirustab Balti riike LNG (vedeldatud maagaasi) terminali asukohas kokku leppima. Kolmest tingimusest, millele peab LNG terminali projekt vastama, et tekiks võimalus kandideerida EL-i toetusele

  15. French Gas Association roundtable - May 27, 2013. Evolutions of the LNG market

    International Nuclear Information System (INIS)

    Robin, Jean-Yves; Brunero, Francois; Cotin, Pierre; Daubonne, Jean-Francois; Deybach, Frederic; Seilhan, Bruno

    2013-01-01

    The LNG industry is currently facing contrasting trends, with overall decreasing consumption in 2012 compared to the previous year, large uncertainties on gas prices - energy being regarded by European and Asian customers as costly - and however very encouraging prospects, in particular regarding LNG as a fuel. This document reports on the minutes of the French Gas Association roundtable on the subject 'Evolutions of the LNG market'. Contents: 1) LNG Market Outlook, 2) LNG in Europe, 3) LNG terminals and the evolving LNG market, 4) The road-transported LNG market, 5) LNG market trends, 6) Questions and Answers

  16. Design and construction of a lNG storage tank in Huelva, Spain

    OpenAIRE

    Editorial, Equipo

    1989-01-01

    This issue contains a number of articles; contents of which are summarized below, giving an overall idea of this outstanding engineering accomplishment. The National Gas Scheme intends to duplicate the consumption of natural gas during the period 1985-1992 to reach 6 % participation in the provision of primary energy by 1992. It is essential a great effort to meet the requirements of this scheme. Among the activities included in the Scheme, we shall mention the construction of a LNG Termin...

  17. Demand for seasonal gas storage in northwest Europe until 2030. Simulation results with a dynamic model

    International Nuclear Information System (INIS)

    De Joode, J.; Oezdemir, Oe.

    2010-01-01

    The fact that depletion of indigenous gas production increases gas import dependency is widely known and accepted. However, there is considerable less attention for the implications of indigenous resource depletion for the provision of seasonal flexibility. The traditionally largest source of seasonal flexibility in Europe is indigenous gas production, mainly based in the Netherlands and the United Kingdom. With the depletion of indigenous sources the market increasingly needs to rely on other sources for seasonal flexibility, such as gas storage facilities. We investigate the future need for gas storage as a source for seasonal flexibility provision using a dynamic gas market model (GASTALE) in which different potential sources for seasonal flexibility - gas production, imports via pipeline, LNG imports and storage facilities - compete with each other in a market-based environment. The inclusion of seasonal flexibility properties in a gas market model allows a more complex analysis of seasonal flexibility issues than previously documented in literature. This is demonstrated in an analysis of the future demand for gas storage in northwestern Europe until 2030. Our results indicate that there is substantial need for additional gas storage facilities and thus supports current project proposals for new investment in gas storage facilities. (author)

  18. Comparison between reverse Brayton and Kapitza based LNG boil-off gas reliquefaction system using exergy analysis

    Science.gov (United States)

    Kochunni, Sarun Kumar; Chowdhury, Kanchan

    2017-02-01

    LNG boil-off gas (BOG) reliquefaction systems in LNG carrier ships uses refrigeration devices which are based on reverse Brayton, Claude, Kapitza (modified Claude) or Cascade cycles. Some of these refrigeration devices use nitrogen as the refrigerants and hence nitrogen storage vessels or nitrogen generators needs to be installed in LNG carrier ships which consume space and add weight to the carrier. In the present work, a new configuration based on Kapitza liquefaction cycle which uses BOG itself as working fluid is proposed and has been compared with Reverse Brayton Cycle (RBC) on sizes of heat exchangers and compressor operating parameters. Exergy analysis is done after simulating at steady state with Aspen Hysys 8.6® and the comparison between RBC and Kapitza may help designers to choose reliquefaction system with appropriate process parameters and sizes of equipment. With comparable exergetic efficiency as that of an RBC, a Kaptiza system needs only BOG compressor without any need of nitrogen gas.

  19. LNG imports make strong recovery in 1996; exports increase also

    International Nuclear Information System (INIS)

    Swain, E.J.

    1998-01-01

    LNG imports to the US jumped in 1996 as Algerian base-load plants resumed operations following major revamps. Exports from Alaska to Japan grew by nearly 4% over 1995. Total LNG imports to the US in 1996 were 40.27 bcf compared to 17.92 bcf in 1995, an increase of 124.8%. Algeria supplied 35.32 bcf; Abu Dhabi, 4.95 bcf. About 82.3% of the imported LNG was received at Distrigas Corp.'s terminal north of Boston. The remaining LNG was received at the Pan National terminal in Lake Charles, LA. LNG imports during 1995 fell to such a low level not because of depressed US demand but because of limited supply. The paper discusses LNG-receiving terminals, base-load producers, LNG pricing, and exports

  20. Comparison of concepts for independent spent fuel storage facilities

    International Nuclear Information System (INIS)

    Held, Ch.; Hintermayer, H.P.

    1978-01-01

    The design and the construction costs of independent spent fuel storage facilities show significant differences, reflecting the fuel receiving rate (during the lifetime of the power plant or within a very short period), the individual national policies and the design requirements in those countries. Major incremental construction expenditures for storage facilities originate from the capacity and the type of the facilities (casks or buildings), the method of fuel cooling (water or air), from the different design of buildings, the redundancy of equipment, an elaborate quality assurance program, and a single or multipurpose design (i.e. interim or long-term storage of spent fuel, interim storage of high level waste after fuel storage). The specific costs of different designs vary by a factor of 30 to 60 which might in the high case increase the nuclear generating costs remarkably. The paper also discusses the effect of spent fuel storage on fuel cycle alternatives with reprocessing or disposal of spent fuel. (author)

  1. 33 CFR 127.105 - Layout and spacing of marine transfer area for LNG.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Layout and spacing of marine transfer area for LNG. 127.105 Section 127.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas § 127.105 Layout and...

  2. Design criteria tank farm storage and staging facility. Revision 1

    International Nuclear Information System (INIS)

    Lott, D.T.

    1994-01-01

    Tank Farms Operations must store/stage material and equipment until work packages are ready to work. Consumable materials are also required to be stored for routine and emergency work. Connex boxes and open storage is currently used for much of the storage because of the limited space at 272AW and 272WA. Safety issues based on poor housekeeping and material deteriorating due to weather damage has resulted from this inadequate storage space. It has been determined that a storage building in close proximity to the Tank Farm work force would be cost effective. Project W-402 and W-413 will provide a storage/staging area in 200 East and West Areas by the construction of two new storage facilities. The new facilities will be used by Operations, Maintenance and Materials groups to adequately store material and equipment. These projects will also furnish electrical services to the facilities for lighting and HVAC. Fire Protection shall be extended to the 200 East facility from 272AW if necessary

  3. Regional spent fuel storage facility (RSFSF)

    International Nuclear Information System (INIS)

    Dyck, H.P.

    1999-01-01

    The paper gives an overview of the meetings held on the technology and safety aspects of regional spent fuel storage facilities. The questions of technique, economy and key public and political issues will be covered as well as the aspects to be considered for implementation of a regional facility. (author)

  4. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an underground...

  5. Research on energy efficiency design index for sea-going LNG carriers

    Science.gov (United States)

    Lin, Yan; Yu, Yanyun; Guan, Guan

    2014-12-01

    This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters—fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.

  6. LNG As an Alternative Energy Supply in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Jens [Lund Univ., Dept. of Chemical Engineering, Lund (Sweden)

    2008-11-15

    As well as summarising the possible alternatives, environmental aspects and uses of LNG, this study aims to investigate the cost involved in the import of LNG to Sweden, from well to user. In Sweden, Natural Gas is used to cover 2 % of the total energy input. The pipeline network stretches from Malmoe to Stenungsund and Gnosjoe, which means some of the most densely populated areas are covered, but there is still 1200 km of the country left, including larger cities such as Stockholm, Uppsala and Linkoeping as well as areas that host some of the most energy demanding industries, e.g. Sundsvall, Umeaa, Luleaa and Kiruna. The absence of Natural Gas typically causes these regions to rely on fuel oil, coke or coal. If these sources of energy could be replaced by Natural Gas, great environmental benefits could be achieved. Research shows that the use of Natural Gas adds 20 % less CO{sub 2} to the atmosphere than oil and also mean lower emissions of NO{sub x}, SO{sub 2} and particles, making it the better alternative from both local and global perspectives. LNG is potentially a fire and an explosion hazard, but in the last 45 years of usage, no major accidents have occurred. Major exporters of LNG are Indonesia, Quatar, Australia and Algeria. Some of the largest importers are Japan, USA, France and Spain. Japan imports nearly 100 % of their Natural Gas as LNG. The available LNG liquefaction capacity increased by 60 % between 2002 and 2007. The total import cost for LNG includes the purchase cost from the producer, the transport cost, be it sea, railroad or road transport, and the cost for the terminal which receives and stores LNG. The study of different routes, volumes and means of transport creates a picture of how the total cost varies in proportion to these parameters. In the calculation of these costs, sources from the industry or estimations of purchase prices, transport costs and terminal costs are used. The uncertainties in this study are especially high when it

  7. LNG As an Alternative Energy Supply in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Jens (Lund Univ., Dept. of Chemical Engineering, Lund (Sweden))

    2008-11-15

    As well as summarising the possible alternatives, environmental aspects and uses of LNG, this study aims to investigate the cost involved in the import of LNG to Sweden, from well to user. In Sweden, Natural Gas is used to cover 2 % of the total energy input. The pipeline network stretches from Malmoe to Stenungsund and Gnosjoe, which means some of the most densely populated areas are covered, but there is still 1200 km of the country left, including larger cities such as Stockholm, Uppsala and Linkoeping as well as areas that host some of the most energy demanding industries, e.g. Sundsvall, Umeaa, Luleaa and Kiruna. The absence of Natural Gas typically causes these regions to rely on fuel oil, coke or coal. If these sources of energy could be replaced by Natural Gas, great environmental benefits could be achieved. Research shows that the use of Natural Gas adds 20 % less CO{sub 2} to the atmosphere than oil and also mean lower emissions of NO{sub x}, SO{sub 2} and particles, making it the better alternative from both local and global perspectives. LNG is potentially a fire and an explosion hazard, but in the last 45 years of usage, no major accidents have occurred. Major exporters of LNG are Indonesia, Quatar, Australia and Algeria. Some of the largest importers are Japan, USA, France and Spain. Japan imports nearly 100 % of their Natural Gas as LNG. The available LNG liquefaction capacity increased by 60 % between 2002 and 2007. The total import cost for LNG includes the purchase cost from the producer, the transport cost, be it sea, railroad or road transport, and the cost for the terminal which receives and stores LNG. The study of different routes, volumes and means of transport creates a picture of how the total cost varies in proportion to these parameters. In the calculation of these costs, sources from the industry or estimations of purchase prices, transport costs and terminal costs are used. The uncertainties in this study are especially high when it

  8. The conception of the LNG implementation in Poland

    International Nuclear Information System (INIS)

    Skwarczynski, S.; Zola, P.

    2006-01-01

    The main issues concerning world LNG market, technical applications and the potential growth of the market have been described in the article. The conception of introducing LNG on Polish gas market assumes that a LNG terminal will be built on the Baltic Sea shore along with the infrastructure necessary to store and transmit gas to the national gas pipeline grid. (authors)

  9. LNG in transportation

    International Nuclear Information System (INIS)

    Madden, Mike; White, Nick; Le Fevre, Chris

    2014-01-01

    This document summarizes the content of a 402 p. study published by CEDIGAZ, the International Center for Natural Gas Information. According to this study, LNG as a fuel will capture a significant market share in the transport sector by 2035. The greatest potential is seen in road transport, were annual demand is projected to reach 96 million tons per year (mtpa) in CEDIGAZ' base scenario while demand in the marine sector could grow to an estimated 77 mtpa. The rail sector could add another 6 mtpa to global demand. However, the development of LNG as a transport fuel faces a number of challenges, and will have to go hand in hand with the development of fueling infrastructure

  10. Safety and environmental aspects in LNG carrier design

    International Nuclear Information System (INIS)

    Takashi Yoneyama

    1997-01-01

    'Safety and Reliability' has been and will continue to be a key phr ase in marine transportation of LNG. Mitsui Engineering and Shipbuilding Co.,Ltd. has utilized its all expertise and state of art technologies to realize this objective, resulting in exceptionally successful operations of LNG carrier built by the Co. In line with growing global concern about environmental issues, we need to pay more attention to the environmental aspects of the design and construction of LNG carriers. Accordingly, in this paper, we present some topics related safety and environmental concerns which need to be taken into consideration in LNG carriers design and construction. (Author). 7 figs

  11. Safety and environmental aspects in LNG carrier design

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Takashi [Mitsui Shipbuilding and Engineering Co. Ltd., Tokyo (Japan)

    1997-06-01

    `Safety and Reliability` has been and will continue to be a key phr ase in marine transportation of LNG. Mitsui Engineering and Shipbuilding Co.,Ltd. has utilized its all expertise and state of art technologies to realize this objective, resulting in exceptionally successful operations of LNG carrier built by the Co. In line with growing global concern about environmental issues, we need to pay more attention to the environmental aspects of the design and construction of LNG carriers. Accordingly, in this paper, we present some topics related safety and environmental concerns which need to be taken into consideration in LNG carriers design and construction. (Author). 7 figs.

  12. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

  13. Mobile storage tank-facility made of Polyethylene for evaporator concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Koischwitz, Ingmar [Gesellschaft fuer Nuklear-Service mbH, 45127 Essen (Germany); Dinter, Andreas [E.ON Kernkraft GmbH, Kernkraftwerk Stade, 21657 Stade (Germany)

    2008-07-01

    In Nuclear Power Plants (NPP) there is the need to store any kind of liquid waste such as contaminated evaporator concentrates. NPPs which are in the decommissioning phase had to dismantle their installed storage tanks sometimes at an earlier step than the waste treatment facilities (evaporator). For that reason, GNS has developed a new mobile storage tank-facility (MOTA) for buffer storage of evaporator concentrates by using a capacity of 10 m{sup 3} in total, equally distributed into four storage tanks with a capacity of max 3 m{sup 3} for each. With this modular design it is even easier to install storage tanks in any location in any NPP in Germany. The design of the mobile storage tank-facility will be described under chemical engineering aspects as well as the results from the first experiences during the cold test at the end of the construction phase. GNS applied for a license to use and install the mobile storage tank-facility in nuclear installations and NPPs in Germany in accordance with chap. 7 of the Radioprotection Provision (Strahlenschutzverordnung) in Germany. GNS gets this license in February 2008 and will put the mobile storage tank system into operation in the first quarter of 2008 in Stade NPP. (authors)

  14. Mobile storage tank-facility made of Polyethylene for evaporator concentrates

    International Nuclear Information System (INIS)

    Koischwitz, Ingmar; Dinter, Andreas

    2008-01-01

    In Nuclear Power Plants (NPP) there is the need to store any kind of liquid waste such as contaminated evaporator concentrates. NPPs which are in the decommissioning phase had to dismantle their installed storage tanks sometimes at an earlier step than the waste treatment facilities (evaporator). For that reason, GNS has developed a new mobile storage tank-facility (MOTA) for buffer storage of evaporator concentrates by using a capacity of 10 m 3 in total, equally distributed into four storage tanks with a capacity of max 3 m 3 for each. With this modular design it is even easier to install storage tanks in any location in any NPP in Germany. The design of the mobile storage tank-facility will be described under chemical engineering aspects as well as the results from the first experiences during the cold test at the end of the construction phase. GNS applied for a license to use and install the mobile storage tank-facility in nuclear installations and NPPs in Germany in accordance with chap. 7 of the Radioprotection Provision (Strahlenschutzverordnung) in Germany. GNS gets this license in February 2008 and will put the mobile storage tank system into operation in the first quarter of 2008 in Stade NPP. (authors)

  15. 76 FR 4417 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Science.gov (United States)

    2011-01-25

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration [USCG-2010-0993] Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application AGENCY: Maritime Administration... application describes an offshore natural gas deepwater port facility that would be located approximately 16.2...

  16. Final safety analysis report for the irradiated fuels storage facility

    International Nuclear Information System (INIS)

    Bingham, G.E.; Evans, T.K.

    1976-01-01

    A fuel storage facility has been constructed at the Idaho Chemical Processing Plant to provide safe storage for spent fuel from two commercial HTGR's, Fort St. Vrain and Peach Bottom, and from the Rover nuclear rocket program. The new facility was built as an addition to the existing fuel storage basin building to make maximum use of existing facilities and equipment. The completed facility provides dry storage for one core of Peach Bottom fuel (804 elements), 1 1 / 2 cores of Fort St. Vrain fuel (2200 elements), and the irradiated fuel from the 20 reactors in the Rover program. The facility is designed to permit future expansion at a minimum cost should additional storage space for graphite-type fuels be required. A thorough study of the potential hazards associated with the Irradiated Fuels Storage Facility has been completed, indicating that the facility is capable of withstanding all credible combinations of internal accidents and pertinent natural forces, including design basis natural phenomena of a 10,000 year flood, a 175-mph tornado, or an earthquake having a bedrock acceleration of 0.33 g and an amplification factor of 1.3, without a loss of integrity or a significant release of radioactive materials. The design basis accident (DBA) postulated for the facility is a complete loss of cooling air, even though the occurrence of this situation is extremely remote, considering the availability of backup and spare fans and emergency power. The occurrence of the DBA presents neither a radiation nor an activity release hazard. A loss of coolant has no effect upon the fuel or the facility other than resulting in a gradual and constant temperature increase of the stored fuel. The temperature increase is gradual enough that ample time (28 hours minimum) is available for corrective action before an arbitrarily imposed maximum fuel centerline temperature of 1100 0 F is reached

  17. Study for the selection of a supplementary spent fuel storage facility for KANUPP

    International Nuclear Information System (INIS)

    Ahmed, W.; Iqbal, M.J.; Arshad, M.

    1999-01-01

    Steps taken for construction of the spent fuel facility of Karachi Nuclear Power Plant (KANUPP) are the following: choice of conceptual design and site selection; preliminary design and preparation of Preliminary Safety Analysis Report (PSAR); Construction of the facility and preparation of PSAR; testing/commissioning and loading of the storage facility. Characterisation of the spent fuel is essential for design of the storage facility. After comparison of various storage types, it seems that construction of dry storage facility based on concrete canisters at KANUPP site is a suitable option to enhance the storage capacity

  18. LNG in eastern Canada and New England : market update

    International Nuclear Information System (INIS)

    Schlesinger, B.

    2005-01-01

    This presentation provided an overview of the gas markets in North America and discussed the rationale for developing the liquefied natural gas (LNG) market with reference to competitive issues, challenges and global dimensions. LNG is expected to play a greater role in North American gas supplies and markets due to the decrease in conventional natural gas production in North America and the increase in demand for energy. It is expected that the overall share of the LNG gas market will increase in 2002. The construction of at least 15 new LNG receiving terminals has been proposed for location in the U.S., Canada, and Mexico, with most being located along the Gulf Coast. A novel offshore LNG receiving concept involving offshore gas pipelines and on-board-ship regasification was also discussed. As trading of LNG increases in the Atlantic, markets in eastern United States and Canada will benefit from improved gas supplies. Pricing patterns are also expected to change. It was noted that the increased energy demand will enable Arctic gas supplies to enter markets. As such, Arctic gas pipelines will enter service in the next decade and Alberta's importance as a hub will grow. It was also noted that Arctic gas will not have a significant influence on reducing LNG import volumes. figs

  19. LNG : its potential impact on North American markets

    International Nuclear Information System (INIS)

    Schlesinger, B.

    2003-01-01

    Liquefied natural gas (LNG) is expected to play a greater role in North American gas supplies and markets due to the decrease in conventional natural gas production in North America accompanied by an increase in demand for energy. It is expected that the overall share of the LNG gas market will rise from about 1.4 per cent in 2002 to more than 5 per cent by 2020, and potentially up to 15 per cent by that year. The construction of at least 15 new LNG receiving terminals has been proposed for location in the U.S., Canada, and Mexico. In addition, El Paso has proposed a novel offshore LNG receiving concept involving offshore gas pipelines and on-board-ship regasification. As trading of LNG increases in the Atlantic, markets in eastern United States and Canada will benefit from improved gas supplies, but pricing patterns are expected to change. Basis differentials along the Atlantic coastline will probably diminish, potentially reducing the value of Sable Island gas and the pipeline system that runs north to south along the eastern coast of North America. It was noted that Middle Eastern suppliers of LNG will play an important potential role in North American markets. 19 figs

  20. Capabilities for processing shipping casks at spent fuel storage facilities

    International Nuclear Information System (INIS)

    Baker, W.H.; Arnett, L.M.

    1978-01-01

    Spent fuel is received at a storage facility in heavily shielded casks transported either by rail or truck. The casks are inspected, cooled, emptied, decontaminated, and reshipped. The spent fuel is transferred to storage. The number of locations or space inside the building provided to perform each function in cask processing will determine the rate at which the facility can process shipping casks and transfer spent fuel to storage. Because of the high cost of construction of licensed spent fuel handling and storage facilities and the difficulty in retrofitting, it is desirable to correctly specify the space required. In this paper, the size of the cask handling facilities is specified as a function of rate at which spent fuel is received for storage. The minimum number of handling locations to achieve a given throughput of shipping casks has been determined by computer simulation of the process. The simulation program uses a Monte Carlo technique in which a large number of casks are received at a facility with a fixed number of handling locations in each process area. As a cask enters a handling location, the time to process the cask at that location is selected at random from the distribution of process time. Shipping cask handling times are based on experience at the General Electric Storage Facility, Morris, Illinois. Shipping cask capacity is based on the most recent survey available of the expected capability of reactors to handle existing rail or truck casks

  1. Dry Well Storage Facility conceptual design study

    International Nuclear Information System (INIS)

    1979-02-01

    The Dry Well Storage Facility described is assumed to be located adjacent to or near a Spent Fuel Receiving and Packaging Facility and/or a Packaged Fuel Transfer Facility. Performance requirements, quality levels and codes and standards, schedule and methods of performance, special requirements, quality assurance program, and cost estimate are discussed. Appendices on major mechanical equipment and electric power requirements are included

  2. Dry Well Storage Facility conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    The Dry Well Storage Facility described is assumed to be located adjacent to or near a Spent Fuel Receiving and Packaging Facility and/or a Packaged Fuel Transfer Facility. Performance requirements, quality levels and codes and standards, schedule and methods of performance, special requirements, quality assurance program, and cost estimate are discussed. Appendices on major mechanical equipment and electric power requirements are included.

  3. Dry storage of spent fuel elements: interim facility

    International Nuclear Information System (INIS)

    Quihillalt, O.J.

    1993-01-01

    Apart from the existing facilities to storage nuclear fuel elements at Argentina's nuclear power stations, a new interim storage facility has been planned and projected by the Argentinean Atomic Energy Commission (CNEA) that will be constructed by private group. This article presents the developments and describes the activities undertaken until the national policy approach to the final decision for the most suitable alternative to be adopted. (B.C.A.). 09 refs, 01 fig, 09 tabs

  4. Nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Isaka, Shinji.

    1987-01-01

    Purpose: To increase the spent fuel storage capacity and reduce the installation cost in a nuclear fuel storage facility. Constitution: Fuels handled in the nuclear fuel storage device of the present invention include the following four types: (1) fresh fuels, (2) 100 % reactor core charged fuels, (3) spent fuels just after taking out and (4) fuels after a certain period (for example one half-year) from taking out of the reactor. Reactivity is high for the fuels (1), and some of fuels (2), while low in the fuels (3) (4), Source intensity is strong for the fuels (3) and some of the fuels (2), while it is low for the fuels (1) and (4). Taking notice of the fact that the reactivity, radioactive source intensity and generated after heat are different in the respective fuels, the size of the pool and the storage capacity are increased by the divided storage control. While on the other hand, since the division is made in one identical pool, the control method becomes important, and the working range is restricted by means of a template, interlock, etc., the operation mode of the handling machine is divided into four, etc. for preventing errors. (Kamimura, M.)

  5. LNG trumped : the burst of enthusiasm for shale gas could put LNG on the sidelines of global gas trade

    International Nuclear Information System (INIS)

    McKenzie-Brown, P.

    2010-01-01

    The growing interest in shale gas is largely due to rapid innovation in down-hole technologies such as horizontal drilling, better bit design, coil tubing, down-hole motors, geosteering, microseismic, measurement while drilling tools and more powerful fracing systems. Despite these advances in shale gas technology, price will be the deciding factor in the competition between liquefied natural gas (LNG) and shale gas. This article discussed the 3 sources of gas that are of interest to North American producers. The first is the great success of shale gas production in the United States and Canada. The second is the evolution of a global market for LNG. This development has eliminated the need for pipelines to tie stranded gas into the world's industrial markets. For example, Qatar is developing liquefaction facilities for an offshore reservoir with more than a quadrillion cubic feet of proved reserves. The gas industry's third area of interest lies in the huge conventional gas reserves in Alaska and the Northwest Territories. However, there is doubt that any proposed pipelines to deliver the resources to southern markets will be built, particularly since shale gas formations like the Montney and Horn River have great potential and are located right next to existing infrastructure. 2 figs.

  6. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment ampersand storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage ampersand treatment facilities

    International Nuclear Information System (INIS)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory's storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations

  7. The LNG industry - 2008

    International Nuclear Information System (INIS)

    2008-01-01

    The average annual growth of the world primary energy consumption has been 2.2% over the last ten years, with the highest growth rate observed for 2004 (+4.7%). In 2007, world primary energy consumption registered a 2.4% increase, still exceeding the 10-year average but less than for the four previous years. As for the previous years, the Asia Pacific region shows the most important increase in volume for 2007, rising by 5% and accounting for two-third of the global growth (China alone accounts in 2007 for more than half of this global growth, as was already the case in 2005 and 2006). Over the last ten years, the world energy consumption rose from 8920 10 6 toe in 1998 to 11099 10 6 toe in 2007, a 24.4% overall increase. For the seventh year running, coal has increased its share of the overall energy market, up to 28.6%. It should be noted that nuclear power decreased by 2%, Germany and Japan accounting for more than 90% of this decline. The growth of natural gas consumption in 2007 (+3.1%) was higher than in 2006 (+2.4%). The US accounted for nearly half of the global increase. Strong growth was also observed in China (+19.9%), representing the second largest increment to world gas consumption. Inversely, the EU consumption decreased (-1.6%) for the second year in a row. The market share for natural gas remained stable in 2007 (23.8%) compared to 2006 (23.6%)(1). Estimates for the marketed production of natural gas in 2008(2) show a rise of about 3.4% over 2007. The share of LNG in the gas trade accounts for 27% of the total (excluding trade within the Former Soviet Union and United Arab Emirates). Details are given about: LNG contracts and trade, Contracts concluded in 2008, LNG imports - Sources of imports, Quantities received in 2008, LNG tankers, Ships delivered, Tanker distribution, Liquefaction plants, Re-gasification plants, Contracts in force in 2008, Spot and short term quantities received in 2008, Sea transportation routes, Liquefaction plants, Re

  8. Storage facilities of spent nuclear fuel in dry for Mexican nuclear facilities

    International Nuclear Information System (INIS)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.; Mendoza F, J. E.; Sanchez J, J.

    2013-10-01

    In this article the relevant aspects of the spent fuel storage and the questions that should be taken in consideration for the possible future facilities of this type in the country are approached. A brief description is proposed about the characteristics of the storage systems in dry, the incorporate regulations to the present Nuclear Regulator Standard, the planning process of an installation, besides the approaches considered once resolved the use of these systems; as the modifications to the system, the authorization periods for the storage, the type of materials to store and the consequent environmental impact to their installation. At the present time the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) considers the possible generation of two authorization types for these facilities: Specific, directed to establish a new nuclear installation with the authorization of receiving, to transfer and to possess spent fuel and other materials for their storage; and General, focused to those holders that have an operation license of a reactor that allows them the storage of the nuclear fuel and other materials that they possess. Both authorizations should be valued according to the necessities that are presented. In general, this installation type represents a viable solution for the administration of the spent fuel and other materials that require of a temporary solution previous to its final disposal. Its use in the nuclear industry has been increased in the last years demonstrating to be appropriate and feasible without having a significant impact to the health, public safety and the environment. Mexico has two main nuclear facilities, the nuclear power plant of Laguna Verde of the Comision Federal de Electricidad (CFE) and the facilities of the TRIGA Reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) that will require in a future to use this type of disposition installation of the spent fuel and generated wastes. (Author)

  9. Going global: LNG could open up gas market

    International Nuclear Information System (INIS)

    Jaremko, D.

    2004-01-01

    The probability of liquefied natural gas becoming a major source of energy in North America is discussed. Although the safety of the technology of transporting LNG was proven more than 40 years ago, there are considerable hurdles to be overcome when it comes to establishing LNG terminals. Industry insiders contend that the obstacles to finding suitable sites are primarily NIMBY (not-in-my-backyard) or BANANA (build-absolutely-nothing-anywhere-near-anyone) issues that will be overcome in time with better public information as to what the real hazards are, but the time is not yet ripe for any serious LNG development. Proposed LNG projects in Malaysia, Nigeria, Angola are reviewed, in addition to four projects in the United States, one in the Gulf of Mexico, and three along the American east coast. A Canadian project at Bear Head near Point Tupper, Nova Scotia, which has support from the business community, government and industry, and would provide the shortest distance to eastern North American markets for Atlantic basin shippers is also reviewed. LNG technological and transportation issues apart, there is also direct competition from the long-proposed Alaska pipeline which, if and when built, will provide long-term steady supply of gas for the U. S. market. Alaskan natural gas is clearly the preferred alternative to LNG at the present time

  10. First LNG deliveries from Qatar to Japan

    International Nuclear Information System (INIS)

    Legros, E.J.

    1997-01-01

    Twenty five years after the discovery of the giant North Field natural gas deposit, the Qatargas company has delivered its first LNG freight to Japan in December 1996. This paper recalls the history of the company from the discovery of the offshore North Field, its valorization and development, the LNG project with the building of the Ras Laffan harbour and its condensates processing factory and the 3 offshore production platforms. Ten methane-tanker ships will be in operation in the year 2000. Qatar's LNG exports should reach 20 to 25 Mt/year in the next ten years, when all its liquefaction factory projects will be completed. (J.S.)

  11. Inventory extension considerations for long-term storage at the nuclear materials storage facility

    International Nuclear Information System (INIS)

    Olinger, C.T.; Stanbro, W.D.; Longmire, V.; Argo, P.E.; Nielson, S.M.

    1996-01-01

    Los Alamos National Laboratory is in the process of modifying its nuclear materials storage facility to a long-term storage configuration. In support of this effort, we examined technical and administrative means to extend periods between physical inventories. Both the frequency and sample size during a physical inventory could significantly impact required sizing of the non-destructive assay (NDA) laboratory as well as material handling capabilities. Several options are being considered, including (1) treating each storage location as a separate vault, (2) minimizing the number of items returned for quantitative analysis by optimizing the use of in situ confirmatory measurements, and (3) utilizing advanced monitoring technologies. Careful consideration of these parameters should allow us to achieve and demonstrate safe and secure storage while minimizing the impact on facility operations and without having to increase the size of the NDA laboratory beyond that required for anticipated shipping and receiving activities

  12. Design Optimization of a Low Pressure LNG Fuel Supply System

    OpenAIRE

    Nguyen, Kim

    2015-01-01

    In 2014 there were 50 liquefied natural gas (LNG) fuelled ships in operation and around 70 on order worldwide. LNG proves to emit less pollution and considering the present and future emission regulations and optimistic gas fuel prices, LNG would be a preferable option as a marine fuel. The number of LNG fuelled ships is therefore likely to increase significantly the next five to ten years. There are many ways to configure the fuel supply system. The fuel supply system consists of a tank,...

  13. Heat removal tests on dry storage facilities for nuclear spent fuels

    International Nuclear Information System (INIS)

    Wataru, M.; Saegusa, T.; Koga, T.; Sakamoto, K.; Hattori, Y.

    1999-01-01

    In Japan, spent fuel generated in NPP is controlled and stored in dry storage facility away-from reactor. Natural convection cooling system of the storage facility is considered advantageous from both safety and economic point of view. In order to realize this type of facility it is necessary to develop an evaluation method for natural convection characteristics and to make a rational design taking account safety and economic factors. Heat removal tests with the reduces scale models of storage facilities (cask, vault and silo) identified the the flow pattern in the test modules. The temperature and velocity distributions were obtained and the heat transfer characteristics were evaluated

  14. The Pacific Basin LNG trade: a return to fundamentals

    International Nuclear Information System (INIS)

    Baharuddin, H.

    1991-01-01

    The LNG business in the Pacific Region is unique because there is no other source of energy in which seller and buyer sign contracts for 20-year periods. This long-term relationship is based on mutual buyer/seller cooperation, and mutual buyer/seller recognition of the financial and commercial challenges faced by all links in the LNG Supply Chain. However, there are now concerns that those involved in the LNG business were ignoring the fundamentals of the trade. The buyer expected the seller to absorb higher transportation costs, easing take or pay terms, more flexibility, evergreen options on uncommitted capacity, etc. On the other side, sellers expected larger baseload quantities, equitable sharing of LNG chain risks with consumers. (author)

  15. Criteria for designing an interim waste storage facility

    International Nuclear Information System (INIS)

    Vicente, Roberto

    2011-01-01

    The long-lived radioactive wastes with activity above clearance levels generated by radioisotope users in Brazil are collected into centralized waste storage facilities under overview of the National Commission on Nuclear Energy (CNEN). One of these centers is the Radioactive Waste Management Department (GRR) at the Nuclear and Energy Research Institute (IPEN), in Sao Paulo, which since 1978 also manages the wastes generated by IPEN itself. Present inventory of stored wastes includes about 160 tons of treated wastes, distributed in 1290 steel, 200-liters drums, and 52 steel, 1.6 m 3 -boxes, with an estimated total activity of 0.8 TBq. Radionuclides present in these wastes are fission and activation products, transuranium elements, and isotopes from the uranium and thorium decay series. The capacity and quality of the storage rooms at GRR evolved along the last decades to meet the requirements set forth by the Brazilian regulatory authorities.From a mere outdoor concrete platform over which drums were simply stacked and covered with canvas to the present day building, a great progress was made in the storage method. In this paper we present the results of a study in the criteria that were meant to guide the design of the storage building, many of which were eventually adopted in the final concept, and are now built-in features of the facility. We also present some landmarks in the GRR's activities related to waste management in general and waste storage in particular, until the treated wastes of IPEN found their way into the recently licensed new storage facility. (author)

  16. Features and safety aspects of spent fuel storage facility, Tarapur

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    Spent Fuel Storage Facility (SFSF), Tarapur is designed to store spent fuel arising from PHWRs in different parts of the country. Spent fuel is transported in AERB qualified/authorized shipping cask by NPCIL to SFSF by road or rail route. The spent fuel storage facility at Tarapur was hot commissioned after regulatory clearances

  17. Development of a state radioactive materials storage facility

    International Nuclear Information System (INIS)

    Schmidt, P.S.

    1995-01-01

    The paper outlines the site selection and facility development processes of the state of Wisconsin for a radioactive materials facility. The facility was developed for the temporary storage of wastes from abandoned sites. Due to negative public reaction, the military site selected for the facility was removed from consideration. The primary lesson learned during the 3-year campaign was that any project involving radioactive materials is a potential political issue

  18. Novel design of LNG (liquefied natural gas) reliquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    Baek, S., E-mail: s.baek@kaist.ac.kr [Cryogenic Engineering Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Hwang, G.; Lee, C. [Cryogenic Engineering Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Jeong, S., E-mail: skjeong@kaist.ac.kr [Cryogenic Engineering Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Choi, D. [Cryogenic Engineering Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Ship/Plant System R and D Team, Daewoo Shipbuilding and Marine Engineering Co., Ltd., 1, Ajoo, Koje, Kyungnam 656-714 (Korea, Republic of)

    2011-08-15

    Highlights: {yields} We performed experiments with LN2 to mock up the new LNG reliquefaction process. {yields} Subcooled liquid goes to heat exchanger, heater, and phase separator. {yields} Reliquefaction occurs when vapor enters heat exchanger and verified by experiments. {yields} Reliquefaction ratio increases when subcooling degree or system pressure increases. - Abstract: This paper presents an investigation of novel LNG reliquefaction process where the cold exergy of subcooled LNG is utilized to recondense the vaporized light component of LNG after it is separated from the heavier component in a phase separator. The regeneration of cold exergy is especially effective as well as important in thermodynamic sense when a cryogenic process is involved. To verify the proposed idea, we performed an experimental study by facilitating liquid nitrogen apparatus to mock up the LNG reliquefaction process. Subcooled liquid nitrogen is produced for a commercial transportation container with a house-made atmospheric liquid nitrogen heat exchanger and then, having subooled degree of up to 19 K, it simulates the behavior of subcooled LNG in the lab-scale reliquefaction experiment. Recondensation of the vaporized gas is possible by using the cold exergy of subcooled liquid in a properly fabricated heat exchanger. Effect of heat exchanger performance factor and degree of subcooling on recondensation portion has been discussed in this paper. It is concluded that utilizing pressurized subcooled liquid that is obtained by liquid pump can surely reduce the pumping power of the vaporized natural gas and save the overall energy expenditure in LNG reliquefaction process.

  19. Novel design of LNG (liquefied natural gas) reliquefaction process

    International Nuclear Information System (INIS)

    Baek, S.; Hwang, G.; Lee, C.; Jeong, S.; Choi, D.

    2011-01-01

    Highlights: → We performed experiments with LN2 to mock up the new LNG reliquefaction process. → Subcooled liquid goes to heat exchanger, heater, and phase separator. → Reliquefaction occurs when vapor enters heat exchanger and verified by experiments. → Reliquefaction ratio increases when subcooling degree or system pressure increases. - Abstract: This paper presents an investigation of novel LNG reliquefaction process where the cold exergy of subcooled LNG is utilized to recondense the vaporized light component of LNG after it is separated from the heavier component in a phase separator. The regeneration of cold exergy is especially effective as well as important in thermodynamic sense when a cryogenic process is involved. To verify the proposed idea, we performed an experimental study by facilitating liquid nitrogen apparatus to mock up the LNG reliquefaction process. Subcooled liquid nitrogen is produced for a commercial transportation container with a house-made atmospheric liquid nitrogen heat exchanger and then, having subooled degree of up to 19 K, it simulates the behavior of subcooled LNG in the lab-scale reliquefaction experiment. Recondensation of the vaporized gas is possible by using the cold exergy of subcooled liquid in a properly fabricated heat exchanger. Effect of heat exchanger performance factor and degree of subcooling on recondensation portion has been discussed in this paper. It is concluded that utilizing pressurized subcooled liquid that is obtained by liquid pump can surely reduce the pumping power of the vaporized natural gas and save the overall energy expenditure in LNG reliquefaction process.

  20. Interim Storage of Plutonium in Existing Facilities

    International Nuclear Information System (INIS)

    Woodsmall, T.D.

    1999-01-01

    'In this era of nuclear weapons disarmament and nonproliferation treaties, among many problems being faced by the Department of Energy is the safe disposal of plutonium. There is a large stockpile of plutonium at the Rocky Flats Environmental Technology Center and it remains politically and environmentally strategic to relocate the inventory closer to a processing facility. Savannah River Site has been chosen as the final storage location, and the Actinide Packaging and Storage Facility (APSF) is currently under construction for this purpose. With the ability of APSF to receive Rocky Flats material an estimated ten years away, DOE has decided to use the existing reactor building in K-Area of SRS as temporary storage to accelerate the removal of plutonium from Rocky Flats. There are enormous cost savings to the government that serve as incentive to start this removal as soon as possible, and the KAMS project is scheduled to receive the first shipment of plutonium in January 2000. The reactor building in K-Area was chosen for its hardened structure and upgraded seismic qualification, both resulting from an effort to restart the reactor in 1991. The KAMS project has faced unique challenges from Authorization Basis and Safety Analysis perspectives. Although modifying a reactor building from a production facility to a storage shelter is not technically difficult, the nature of plutonium has caused design and safety analysis engineers to make certain that the design of systems, structures and components included will protect the public, SRS workers, and the environment. A basic overview of the KAMS project follows. Plutonium will be measured and loaded into DOT Type-B shipping packages at Rocky Flats. The packages are 35-gallon stainless steel drums with multiple internal containment boundaries. DOE transportation vehicles will be used to ship the drums to the KAMS facility at SRS. They will then be unloaded, stacked and stored in specific locations throughout the

  1. Thermodynamic Processes Involving Liquefied Natural Gas at the LNG Receiving Terminals / Procesy termodynamiczne z wykorzystaniem skroplonego gazu ziemnego w terminalach odbiorczych LNG

    Science.gov (United States)

    Łaciak, Mariusz

    2013-06-01

    The increase in demand for natural gas in the world, cause that the production of liquefied natural gas (LNG) and in consequences its regasification becoming more common process related to its transportation. Liquefied gas is transported in the tanks at a temperature of about 111K at atmospheric pressure. The process required to convert LNG from a liquid to a gas phase for further pipeline transport, allows the use of exergy of LNG to various applications, including for electricity generation. Exergy analysis is a well known technique for analyzing irreversible losses in a separate process. It allows to specify the distribution, the source and size of the irreversible losses in energy systems, and thus provide guidelines for energy efficiency. Because both the LNG regasification and liquefaction of natural gas are energy intensive, exergy analysis process is essential for designing highly efficient cryogenic installations. Wzrost zapotrzebowania na gaz ziemny na świecie powoduje, że produkcja skroplonego gazu ziemnego (LNG), a w konsekwencji jego regazyfikacja, staje się coraz bardziej powszechnym procesem związanym z jego transportem. Skroplony gaz transportowany jest w zbiornikach w temperaturze około 111K pod ciśnieniem atmosferycznym. Przebieg procesu regazyfikacji niezbędny do zamiany LNG z fazy ciekłej w gazową dla dalszego transportu w sieci, umożliwia wykorzystanie egzergii LNG do różnych zastosowań, między innymi do produkcji energii elektrycznej. Analiza egzergii jest znaną techniką analizowania nieodwracalnych strat w wydzielonym procesie. Pozwala na określenie dystrybucji, źródła i wielkości nieodwracalnych strat w systemach energetycznych, a więc ustalić wytyczne dotyczące efektywnego zużycia energii. Ponieważ zarówno regazyfikacja LNG jak i skraplanie gazu ziemnego są energochłonne, proces analizy egzergii jest niezbędny do projektowania wysoce wydajnych instalacji kriogenicznych.

  2. LNG systems for natural gas propelled ships

    Science.gov (United States)

    Chorowski, M.; Duda, P.; Polinski, J.; Skrzypacz, J.

    2015-12-01

    In order to reduce the atmospheric pollution generated by ships, the International Marine Organization has established Emission Controlled Areas. In these areas, nitrogen oxides, sulphur oxides and particulates emission is strongly controlled. From the beginning of 2015, the ECA covers waters 200 nautical miles from the coast of the US and Canada, the US Caribbean Sea area, the Baltic Sea, the North Sea and the English Channel. From the beginning of 2020, strong emission restrictions will also be in force outside the ECA. This requires newly constructed ships to be either equipped with exhaust gas cleaning devices or propelled with emission free fuels. In comparison to low sulphur Marine Diesel and Marine Gas Oil, LNG is a competitive fuel, both from a technical and economical point of view. LNG can be stored in vacuum insulated tanks fulfilling the difficult requirements of marine regulations. LNG must be vaporized and pressurized to the pressure which is compatible with the engine requirements (usually a few bar). The boil-off must be controlled to avoid the occasional gas release to the atmosphere. This paper presents an LNG system designed and commissioned for a Baltic Sea ferry. The specific technical features and exploitation parameters of the system will be presented. The impact of strict marine regulations on the system's thermo-mechanical construction and its performance will be discussed. The review of possible flow-schemes of LNG marine systems will be presented with respect to the system's cost, maintenance, and reliability.

  3. Preliminary site requirements and considerations for a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    1991-08-01

    This report presents preliminary requirements and considerations for siting monitored retrievable storage (MRS) facility. It purpose is to provide guidance for assessing the technical suitability of potential sites for the facility. It has been reviewed by the NRC staff, which stated that this document is suitable for ''guidance in making preliminary determinations concerning MRS site suitability.'' The MRS facility will be licensed by the US Nuclear Regulatory Commission. It will receive spent fuel from commercial nuclear power plants and provide a limited amount of storage for this spent fuel. When a geologic repository starts operations, the MRS facility will also stage spent-fuel shipments to the repository. By law, storage at the MRS facility is to be temporary, with permanent disposal provided in a geologic repository to be developed by the DOE

  4. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 5 Book 7, contains cost estimate information for a monitored retrievable storage (MRS) facility. Cost estimates are for onsite improvements, waste storage, and offsite improvements for the Clinch River Site

  5. The importance of LNG for natural gas consumption in the EU

    Directory of Open Access Journals (Sweden)

    Metelska Klaudia

    2016-01-01

    Full Text Available The World market of liquefied natural gas (LNG is growing rapidly. In 2015 LNG production exceeded 333 bcm with its predicted increase up to 450 bcm in 2019. The analysis of LNG role in natural gas import to the EU in recent years shows variability: LNG share in overall import reached 25% in 2011 and it went down to 15% in 2014. The smaller demand for natural gas including LNG in the EU can be due to, among others, a slower economic growth and a dynamic development of the use of renewable energy sources. The article shows the role of natural gas in the structure of consumption of primary energy as well as the changes in demand for natural gas in the years 2007–2014 for the main groups of end users: industry, energy production and individual households. The biggest fall in demand for natural gas has been observed in energy production sector in recent years. This publication continues to analyse the structure of natural gas supplies to the EU, with special emphasis on the directions of LNG import to the countries such as: The UK, Spain, France, Greece, Belgium, Portugal, Italy, Lithuania and The Netherlands. The significance of LNG in the balance of consumption of natural gas in these countries has been presented as well as the infrastructure connected with LNG and plans of development of regasification terminals. In the summary the most important conclusions have been drawn and a chance of the increase in significance of the role of LNG in the balance of natural gas supplies has been pointed out, which is due to the steep fall of LNG prices which has taken place in recent years.

  6. Introducing Systematic Aging Management for Interim Storage Facilities in Germany

    International Nuclear Information System (INIS)

    Spieth-Achtnich, Angelika; Schmidt, Gerhard

    2014-01-01

    In Germany twelve at-reactor and three central (away from reactor) dry storage facilities are in operation, where the fuel is stored in combined transport-and-storage casks. The safety of the storage casks and facilities has been approved and is licensed for up to 40 years operating time. If the availability of a final disposal facility for the stored wastes (spent fuel and high-level wastes from reprocessing) will be further delayed the renewal of the licenses can become necessary in future. Since 2001 Germany had a regulatory guideline for at-reactor dry interim storage of spent fuel. In this guideline some elements of ageing were implemented, but no systematic approach was made for a state-of-the-art ageing management. Currently the guideline is updated to include all kind of storage facilities (central storages as well) and all kinds of high level waste (also waste from reprocessing). Draft versions of the update are under discussion. In these drafts a systematic ageing management is seen as an instrument to upgrade the available technical knowledge base for possible later regulatory decisions, should it be necessary to prolong storage periods to beyond the currently approved limits. It is further recognized as an instrument to prevent from possible and currently unrecognized ageing mechanisms. The generation of information on ageing can be an important basis for the necessary safety-relevant verifications for long term storage. For the first time, the demands for a systematic monitoring of ageing processes for all safety-related components of the storage system are described. In addition, for inaccessible container components such as the seal system, the neutron shielding, the baskets and the waste inventory, the development of a monitoring program is recommended. The working draft to the revised guideline also contains recommendations on non-technical ageing issues such as the long-term preservation of knowledge, long term personnel planning and long term

  7. LNG trade preparations are a decade too soon

    Energy Technology Data Exchange (ETDEWEB)

    Timm, S [Mar. Week; Faridany, E; Mitchell, P

    1979-03-01

    A discussion of papers delivered at the 6th International LNG/LPG, Gastech 78, Conference (Monte Carlo 11/7-10/78) covers an estimate by E. Faridany (Ocean Phoenix Transp. Inc.) that in 1981-85, world trade in LNG would increase by 1775 million cu ft/day (Mcfd) over the current 2720 Mcfd, but of this increment only the 460 Mcfd Panhandle project using Lake Charles, La., as a regasification terminal will be into the U.S. while all other trade will be to Europe. Of the present LNG trade, 48Vertical Bar3< goes to Japan from the Brunei (535 Mcfd, the world's largest) and Abu Dhabi projects, and only 20Vertical Bar3< goes to the U.S. Faridany's estimates of U.S. LNG imports in 1990 vary from the 8215 Mcfd ''high'' to the ''median'' forecast of 2930 Mcfd; he predicted that the proportion of incremental sources of gas supply taken up by LNG in 1990 is only 20-40Vertical Bar3< for the U.S., compared with 25Vertical Bar3< for Europe and 90Vertical Bar3< for Japan. According to P. Mitchell (Poten and Partners), world demand for LPG could rise from 9 million to 38 million tons in 1979-85.

  8. Modeling Turkey’s future LNG supply security strategy

    International Nuclear Information System (INIS)

    Efe Biresselioglu, Mehmet; Hakan Demir, Muhittin; Kandemir, Cansu

    2012-01-01

    Turkey was among those countries which decided to increase its natural gas consumption in the 1990s, due to its relative low cost and lack of impact on the environment. However, a heavy dependence on imports, from Algeria, Qatar and Nigeria, respectively, creates a threat to energy security, both in terms of source and supply diversity. Accordingly, we follow an analytical approach to identify the accuracy of our assumption, considering the current economic, political and security risk. To this end, we formulate and solve a mixed integer programming model that determines the optimal sourcing strategy for Turkey’s increasing LNG demand. This model demonstrates a number of alternative policy options for LNG supply. Furthermore, we consider that increasing the proportion of LNG in the overall gas supply will contribute to the aim of improving Turkey’s level of energy security. - Highlights: ► Turkey’s best policy option is to increase the share of LNG. ► Turkey’s main suppliers of LNG will be Algeria, Egypt, Nigeria, and Trinidad and Tobago. ► Norway, Libya, and Oman contribute to the supply with rather smaller shares. ► With high risk scenario Algeria, Egypt, Nigeria and Libya will not be suppliers. ► Oman and Qatar will cover; even though they are high-cost suppliers.

  9. Waste Encapsulation and Storage Facility (WESF) Waste Analysis Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Waste Encapsulation and Storage Facility (WESF) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (3), (4), (5), and (6). WESF is an interim status other storage-miscellaneous storage unit. WESF stores mixed waste consisting of radioactive cesium and strontium salts. WESF is located in the 200 East Area on the Hanford Facility. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  10. Staging and storage facility feasibility study. Final report

    International Nuclear Information System (INIS)

    Swenson, C.E.

    1995-02-01

    This study was performed to investigate the feasibility of adapting the design of the HWVP Canister Storage Building (CSB) to meet the needs of the WHC Spent Nuclear Fuel Project for Staging and Storage Facility (SSF), and to develop Rough Order of Magnitude (ROM) cost and schedule estimates

  11. Selection of away-from-reactor facilities for spent fuel storage. A guidebook

    International Nuclear Information System (INIS)

    2007-09-01

    This publication aims to provide information on the approaches and criteria that would have to be considered for the selection of away-from-reactor (AFR) type spent fuel storage facilities, needs for which have been growing in an increasing number of Member States producing nuclear power. The AFR facilities can be defined as a storage system functionally independent of the reactor operation providing the role of storage until a further destination such as a disposal) becomes available. Initially developed to provide additional storage space for spent fuel, some AFR storage options are now providing additional spaces for extended storage of spent fuel with a prospect for long term storage, which is becoming a progressive reality in an increasing number of Member States due to the continuing debate on issues associated with the endpoints for spent fuel management and consequent delays in the implementation of final steps, such as disposal. The importance of AFR facilities for storage of spent fuel has been recognized for several decades and addressed in various IAEA publications in the area of spent fuel management. The Guidebook on Spent Fuel Storage (Technical Reports Series No. 240 published in 1984 and revised in 1991) discusses factors to be considered in the evaluation of spent fuel storage options. A technical committee meeting (TCM) on Selection of Dry Spent Fuel Storage Technologies held in Tokyo in 1995 also deliberated on this issue. However, there has not been any stand-alone publication focusing on the topic of selection of AFR storage facilities. The selection of AFR storage facilities is in fact a critical step for the successful implementation of spent fuel management programmes, due to the long operational periods required for storage and fuel handling involved with the additional implication of subsequent penalties in reversing decisions or changing the option mid-stream especially after the construction of the facility. In such a context, the long

  12. Towards a world development of LNG market

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    The world development of the LNG trade was the theme of the second workshop of the 7. summit of natural gas industry leaders. With the increasing development of the LNG industry, a world scale natural gas market is becoming possible and should replace the present day regional markets. This article analyzes the expected economic impacts of such a market. (J.S.)

  13. LNG, the way ahead

    International Nuclear Information System (INIS)

    Chabrelie, M.F.

    2007-01-01

    Despite the many obstacles producers must overcome, particularly to satisfy demand at the right time, LNG remains the pre-eminent option for ensuring the expansion of the world's gas industry. (author)

  14. 224-T Transuranic Waste Storage and Assay Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-01-01

    Westinghouse Hanford Company is a major contractor to the US Department of Energy Richland Field Office and serves as cooperator of the 224-T Transuranic Waste Storage and Assay Facility, the storage unit addressed in this permit application. At the time of submission of this portion of the Hanford Facility. Dangerous Waste Permit Application covering the 224-T Transuranic Waste Storage and Assay Facility, many issues identified in comments to the draft Hanford Facility Dangerous Waste Permit remain unresolved. This permit application reflects the positions taken by the US Department of Energy, Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application (Revision 0) consists of both a Part A and Part B permit application. An explanation of the Part A revisions associated with this unit, including the Part A revision currently in effect, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application contains information current as of March 1, 1992

  15. Loads imposed on dual purpose casks in German on-site-storage facilities for long term intermediate storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, N.; Rabe, O. [TUeV NORD EnSys Hannover GmbH und Co. KG, Hanover (Germany)

    2004-07-01

    In accordance with recent changes of the atomic energy act and in order to secure reliable removal of spent fuel from the nuclear power plants' fuel storage ponds the German utilities filed license applications for a total of 12 onsite- storage facilities for spent fuel assemblies. By the end of 2003 the last of these storage facilities were licensed and are currently under construction. The first on-site-storage facility of that line became operational in late 2002. There are several design lines of storage facilities with different handling procedures or possible accident conditions. Short term interim storage facilities for a few casks are characterized by individual concrete hoods shielding the casks in horizontal position whereas long term intermediate storage facilities currently erected for large numbers of casks typically feature a condensed pattern of casks stored in upright position and massive structures of reinforced concrete. TUeV Hannover/Sachsen-Anhalt e. V. (now TUeV NORD EnSys Hannover GmbH and Co. KG) has been contracted as a body of independent experts for the assessment of all related safety requirements on behalf of the national licensing authority, the federal office for radiation protection (BfS).

  16. Loads imposed on dual purpose casks in German on-site-storage facilities for long term intermediate storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Wetzel, N.; Rabe, O.

    2004-01-01

    In accordance with recent changes of the atomic energy act and in order to secure reliable removal of spent fuel from the nuclear power plants' fuel storage ponds the German utilities filed license applications for a total of 12 onsite- storage facilities for spent fuel assemblies. By the end of 2003 the last of these storage facilities were licensed and are currently under construction. The first on-site-storage facility of that line became operational in late 2002. There are several design lines of storage facilities with different handling procedures or possible accident conditions. Short term interim storage facilities for a few casks are characterized by individual concrete hoods shielding the casks in horizontal position whereas long term intermediate storage facilities currently erected for large numbers of casks typically feature a condensed pattern of casks stored in upright position and massive structures of reinforced concrete. TUeV Hannover/Sachsen-Anhalt e. V. (now TUeV NORD EnSys Hannover GmbH and Co. KG) has been contracted as a body of independent experts for the assessment of all related safety requirements on behalf of the national licensing authority, the federal office for radiation protection (BfS)

  17. The Safety Design Research of a LNG Carrier Vehicle

    OpenAIRE

    Liang, Yi; Zhou, Xiang

    2015-01-01

    LNG is the abbreviation for liquefied natural gas, which is recognized as one of the world’s clean energies. LNG is one product at natural gas that through purification and ultra-low temperature is liquefied. The liquefied natural gas is very suitable for LNG transportation by a truck. China is a big country rich in natural resources. The use of natural gas is in favor of Chinese energy structure adjustment. It has important strategic significance to improve the ecological environment and the...

  18. Near-surface storage facilities for vitrified high-level wastes

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kulichenko, V.V.; Kryukov, I.I.; Krylova, N.V.; Paramoshkin, V.I.; Strakhov, M.V.

    1980-01-01

    Concurrently with the development of methods for solidifying liquid radioactive wastes, reliable and safe methods for the storage and disposal of solidified wastes are being devised in the USSR and other countries. One of the main factors affecting the choice of storage conditions for solidified wastes originating from the vitrification of high-level liquid wastes from fuel reprocessing plants is the problem of removing the heat produced by radioactive decay. In order to prevent the temperature of solidified wastes from exceeding the maximum permissible level for the material concerned, it is necessary to limit either the capacity of waste containers or the specific heat release of the wastes themselves. In order that disposal of high-level wastes in geological formations should be reliable and economic, solidified wastes undergo interim storage in near-surface storage facilities with engineered cooling systems. The paper demonstrates the relative influences of specific heat release, of the maximum permissible storage temperature for vitrified wastes and of the methods chosen for cooling wastes in order for the dimensions of waste containers to be reduced to the extent required. The effect of concentrating wastes to a given level in the vitrification process on the cost of storage in different types of storage facility is also examined. Calculations were performed for the amount of vitrified wastes produced by a reprocessing plant with a capacity of five tonnes of uranium per 24 hours. Fuel elements from reactors of the water-cooled, water-moderated type are sent for reprocessing after having been held for about two years. The dimensions of the storage facility are calculated on the assumption that it will take five years to fill

  19. LNG: a commodity in the making

    International Nuclear Information System (INIS)

    Chabrelie, M.F.

    2006-01-01

    Although still far from being a commodity, LNG is undoubtedly emerging as an essential vector for world gas expansion. The flexibility it procures in terms of supply is of prime importance for future market equilibrium. Despite a number of uncertainties and constraints liable to thwart the realisation of the most optimistic growth prospects, the LNG trade remains wedded to rapid growth of about 7%/year by 2020, boosting its share of world gas trade to some 38% by that horizon. (author)

  20. LNG: a commodity in the making

    Energy Technology Data Exchange (ETDEWEB)

    Chabrelie, M.F

    2006-07-01

    Although still far from being a commodity, LNG is undoubtedly emerging as an essential vector for world gas expansion. The flexibility it procures in terms of supply is of prime importance for future market equilibrium. Despite a number of uncertainties and constraints liable to thwart the realisation of the most optimistic growth prospects, the LNG trade remains wedded to rapid growth of about 7%/year by 2020, boosting its share of world gas trade to some 38% by that horizon. (author)

  1. LNG: a commodity in the making

    International Nuclear Information System (INIS)

    Chabrelie, M.F.

    2006-01-01

    Although still far being a commodity, LNG is undoubtedly emerging as an essential vector for world gas expansion. The flexibility it procures in terms of supply is of prime importance for future market equilibrium. Despite a number of uncertainties and constraints liable to thwart the realization of the most optimistic growth prospects, the LNG trade remains wedded to rapid growth of about 7% year by 2020, boosting its share of world gas trade to some 38% by that horizon. (author)

  2. Monitoring of the storage facility Asse II

    International Nuclear Information System (INIS)

    Regenauer, Urban; Wittwer, Christiane

    2012-01-01

    The storage facility Asse II is former salt mine near Wolfenbuettel in Niedersachsen. From 1967 to 1978 totally 125787 barrels with low-and medium-level radioactive wastes were disposed in the salt cavern. Since 1988 ingress of saturated brines from the adjoining rocks were observed in the mine. An extensive monitoring concept was installed for the surveillance of possible radionuclides released with the mine air into the surrounding. The report is aimed to n describe the actual situation in the salt mine Asse II with special emphasis to the monitoring concept. The discussion is based on the history of the storage facility that was primarily a research mine. Furthermore a regional accompanying process is described that was created in 2007.

  3. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 5. Development of hydrogen transport/storage technology (development of storage facility for liquid hydrogen); Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 5. Suiso yuso chozo gijutsu no kaihatsu (ekitai suiso chozo setsubi no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As a part of the WE-NET project, the storage facility for a large amount of liquid hydrogen (LH) was studied. Gasification loss caused by heat input of LH delivery pumps was studied for liquefaction and power generation bases assuming an pump efficiency of 70%, and the total heat and mass balance such as interface conditions for calculating the amount of boil-off gas was reviewed. The target storage capacity of 50,000m{sup 3} was reasonable, however, the performance of loading arms should be examined. The capacity around 5,000m{sup 3} of coastal localized bases was reasonable for control delivery loss caused by coastal tanker or LH container system to 2.6%. The capacity of 500m{sup 3} was suitable for inland bases, resulting in the loss of 1.2%. The concept design of the storage tank of 50,000m{sup 3} extracted confirmation of low-temperature characteristics of adiabatic materials and structures, and development of leakage inspection technology and vacuum holding technology as issues. The concept design of the underground storage tank showed that the material specifications for LNG ones are applicable to it by using proper adiabatic structures. 4 refs., 72 figs., 27 tabs.

  4. Refloating stranded gas. Floating LNG-factory to become the largest ship on the world seas; Gestrand gas vlot trekken. Drijvende LNG-fabriek wordt grootste schip op wereldzeeen

    Energy Technology Data Exchange (ETDEWEB)

    De Wit, P.

    2010-09-15

    Great effort is currently put in the upcoming construction of a gigantic floating LNG plant that will be deployed by Shell. The enormous vessel will be used for the production of gas fields that are so far away from the coast that it is uneconomical to bring the gas to land by means of gas pipes, where it is converted into liquid natural gas (LNG). According to recent plans the first floating LNG plant will be used at the Prelude gas field northwest of Australia. [Dutch] Momenteel wordt hard gewerkt aan de aanstaande bouw van een gigantisch drijvende LNG-fabriek die door Shell ingezet gaat worden. Het enorme vaartuig wordt gebruikt voor de productie van gasvelden die zo ver uit de kust liggen dat het oneconomisch is om het gas met pijpleidingen aan land te brengen om het daar om te zetten in vloeibaar aardgas, LNG. Volgens de huidige plannen wordt de eerste drijvende LNG-fabriek gebruikt voor het Prelude gasveld ten noord-westen van Australie.

  5. LNG demand, shipping will expand through 2010

    International Nuclear Information System (INIS)

    True, W.R.

    1998-01-01

    The 1990s, especially the middle years, have witnessed a dramatic turnaround in the growth of liquefied-natural-gas demand which has tracked equally strong natural-gas demand growth. This trend was underscored late last year by several annual studies of world LNG demand and shipping. As 1998 began, however, economic turmoil in Asian financial markets has clouded near-term prospects for LNG in particular and all energy in general. But the extent of damage to energy markets is so far unclear. A study by US-based Institute of Gas Technology, Des Plaines, IL, reveals that LNG imports worldwide have climbed nearly 8%/year since 1980 and account for 25% of all natural gas traded internationally. In the mid-1970s, the share was only 5%. In 1996, the most recent year for which complete data are available, world LNG trade rose 7.7% to a record 92 billion cu m, outpacing the overall consumption for natural gas which increased 4.7% in 1996. By 2015, says the IGT study, natural-gas use would surpass coal as the world''s second most widely used fuel, after petroleum. Much of this growth will occur in the developing countries of Asia where gas use, before the current economic crisis began, was projected to grow 8%/year through 2015. Similar trends are reflected in another study of LNG trade released at year end 1997, this from Ocean Shipping Consultants Ltd., Surrey, U.K. The study was done too early, however, to consider the effects of the financial problems roiling Asia

  6. A new framework to assess risk for a spent fuel dry storage facility

    International Nuclear Information System (INIS)

    Ryu, J. H.; Jae, M. S.; Jung, C. W.

    2004-01-01

    A spent fuel dry storage facility is a dry cooling storage facility for storing irradiated nuclear fuel and associated radioactive materials. It has very small possibilities to release radiation materials. It means a safety analysis for a spent fuel dry storage facility is required before construction. In this study, a new framework for assessing risk associated with a spent fuel dry storage facility is represented. A safety assessment framework includes 3 modules such as assessment of basket/cylinder failure rates, that of overall storage system, and site modeling. A reliability physics model for failure rates, event tree analysis(ETA)/fault tree analysis for system analysis, Bayesian analysis for initial events data, and MACCS code for consequence analysis have been used in this study

  7. Design, construction and monitoring of temporary storage facilities for removed contaminants

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Funaki, Hironori; Kurikami, Hiroshi; Sakamoto, Yoshiaki; Tokizawa, Takayuki

    2013-01-01

    Since the Fukushima Daiichi nuclear power plant accident caused by the Tohoku Region Pacific Coast Earthquake on March 11, 2011, decontamination work has been conducted in the surrounding environment within the Fukushima prefecture. Removed contaminants including soil, grass and trees are to be stored safely at temporary storage facilities for up to three years, after which they will be transferred to a planned interim storage facility. The decontamination pilot project was carried out in both the restricted and planned evacuation areas in order to assess decontamination methods and demonstrate measures for radiation protection of workers. Fourteen temporary storage facilities of different technical specifications were designed and constructed under various topographic conditions and land use. In order to support the design, construction and monitoring of temporary storage facilities for removed contaminants during the full-scale decontamination within the prefecture of Fukushima, technical know-how obtained during the decontamination pilot project has been identified and summarized in this paper. (author)

  8. Large mass storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Arnold M.

    1978-08-01

    This is the final report of a study group organized to investigate questions surrounding the acquisition of a large mass storage facility. The programatic justification for such a system at Brookhaven is reviewed. Several candidate commercial products are identified and discussed. A draft of a procurement specification is developed. Some thoughts on possible new directions for computing at Brookhaven are also offered, although this topic was addressed outside of the context of the group's deliberations. 2 figures, 3 tables.

  9. Commercial experience with facility deactivation to safe storage

    Energy Technology Data Exchange (ETDEWEB)

    Sype, T.T. [Sandia National Labs., Albuquerque, NM (United States); Fischer, S.R. [Los Alamos National Lab., NM (United States); Lee, J.H. Jr.; Sanchez, L.C.; Ottinger, C.A.; Pirtle, G.J. [Sandia National Labs., Albuquerque, NM (United States)

    1995-09-01

    The Department of Energy (DOE) has shutdown many production reactors; the Department has begun a major effort to also shutdown a wide variety of other nuclear facilities. Because so many facilities are being closed, it is necessary to place many of them into a safe- storage status, i.e., deactivation, before conducting decommissioning- for perhaps as long as 20 years. The challenge is to achieve this safe-storage condition in a cost-effective manner while remaining in compliance with applicable regulations. The DOE Office of Environmental Management, Office of Transition and Management, commissioned a lessons-learned study of commercial experience with safe storage and decommissioning. Although the majority of the commercial experience has been with reactors, many of the lessons learned presented in this document can provide insight into transitioning challenges that Will be faced by the DOE weapons complex.

  10. Commercial experience with facility deactivation to safe storage

    International Nuclear Information System (INIS)

    Sype, T.T.; Fischer, S.R.; Lee, J.H. Jr.; Sanchez, L.C.; Ottinger, C.A.; Pirtle, G.J.

    1995-09-01

    The Department of Energy (DOE) has shutdown many production reactors; the Department has begun a major effort to also shutdown a wide variety of other nuclear facilities. Because so many facilities are being closed, it is necessary to place many of them into a safe- storage status, i.e., deactivation, before conducting decommissioning- for perhaps as long as 20 years. The challenge is to achieve this safe-storage condition in a cost-effective manner while remaining in compliance with applicable regulations. The DOE Office of Environmental Management, Office of Transition and Management, commissioned a lessons-learned study of commercial experience with safe storage and decommissioning. Although the majority of the commercial experience has been with reactors, many of the lessons learned presented in this document can provide insight into transitioning challenges that Will be faced by the DOE weapons complex

  11. Safety of Long-term Interim Storage Facilities - Workshop Proceedings

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this workshop was to discuss and review current national activities, plans and regulatory approaches for the safety of long term interim storage facilities dedicated to spent nuclear fuel (SF), high level waste (HLW) and other radioactive materials with prolonged storage regimes. It was also intended to discuss results of experiments and to identify necessary R and D to confirm safety of fuel and cask during the long-term storage. Safety authorities and their Technical Support Organisation (TSO), Fuel Cycle Facilities (FCF) operating organisations and international organisations were invited to share information on their approaches, practices and current developments. The workshop was organised in an opening session, three technical sessions, and a conclusion session. The technical sessions were focused on: - National approaches for long term interim storage facilities; - Safety requirements, regulatory framework and implementation issues; - Technical issues and operational experience, needs for R and D. Each session consisted of a number of presentations followed by a panel discussion moderated by the session Chairs. A summary of each session and subsequent discussion that ensued are provided as well as a summary of the results of the workshop with the text of the papers given and presentations made

  12. Economic analysis of a centralized LLRW storage facility in New York State

    International Nuclear Information System (INIS)

    Spath, J.P.; Voelk, H.; Brodie, H.

    1994-01-01

    In response to the possibility of no longer having access to out-of-State disposal facilities, the New York State Energy Research and Development Authority (Energy Authority) was directed by the New York State Legislature (1990-91 State Operation Budget Appropriations) to conduct a low-level radioactive waste (LLRW) storage study. One of the objectives of this study was to investigate the economic viability of establishing a separate Centralized Storage Facility for Class A LLRW from medical and academic institutions. This resulted in the conceptual design of a nominal Centralized Storage Facility capable of storing 100,000 cubic feet of dry-solid and liquid wastes and freezer storage capacity of 20,000 cubic feet for biological wastes. The facility itself includes office and laboratory space as well as receipt, inspection, and health physics monitoring stations. The Conceptual Design was initially developed to define the scope and detail of the cost parameters to be evaluated. It established a basis for conducting comparisons of the cost of four alternative project approaches and the sensitivity of unit storage costs to siting-related costs. In estimating costs of a Centralized Storage Facility, four cases were used varying assumptions with respect to parameters such as volume projections and freezer capacity; siting costs; and site acquisition costs

  13. Long-term storage of radioactive solid waste within disposal facilities

    International Nuclear Information System (INIS)

    Wakerley, M.W.; Edmunds, J.

    1986-05-01

    A study of the feasibility and implications of operating potential disposal facilities for low and intermediate level solid radioactive waste in a retrievable storage mode for extended periods of up to 200 years has been carried out. The arisings of conditioned UK radioactive waste up to the year 2030 have been examined. Assignments of these wastes to different types of underground disposal facilities have been made on the basis of their present activity and that which they will have in 200 years time. Five illustrative disposal concepts proposed both in the UK and overseas have been examined with a view to their suitability for adaption for storage/disposal duty. Two concepts have been judged unsuitable because either the waste form or the repository structure were considered unlikely to last the storage phase. Three of the concepts would be feasible from a construction and operational viewpoint. This suggests that with appropriate allowance for geological aspects and good repository and waste form design that storage/disposal within the same facility is achievable. The overall cost of the storage/disposal concepts is in general less than that for separate surface storage followed by land disposal, but more than that for direct disposal. (author)

  14. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 5 Book 1, contains cost estimate summaries for a monitored retrievable storage (MRS) facility. The cost estimate is based on the engineering performed during the conceptual design phase of the MRS Facility project

  15. The LNG Industry - 2012

    International Nuclear Information System (INIS)

    2013-04-01

    The 2011 catastrophic tsunami in Japan continued its grip on LNG flows throughout 2012, causing massive shifts eastwards of Atlantic Basin and Middle East-sourced cargoes to satisfy the strong demand of Japan's power industry. Its commercial effects are likely to continue beyond the current year as well as beyond a mere diversion of product flows. On the production side, capacity additions have been below expectations and insufficient to make up for the higher loss of capacity due to planned shutdowns and unscheduled production interruptions, mainly resulting from a shortfall of feed-gas. As a result, in 2012, LNG trade has seen the first decline (minus 1.9%) in the past thirty years. The strong growth in spot and short term trade seen in recent years (up by 110% from 2009 to 2011) is no longer there, primarily, but not solely, in line with the lack of new supplies. Undoubtedly, the conversion of non-committed production and flexible supplies and of so-called wedge cargoes -especially from Qatar and Peru- into term volumes has reduced the overall short term liquidity. Until substantial new volumes become available, this phenomenon is likely to continue for the next couple of years as Asian importers have a growing appetite for (more) secure supplies. Two events in 2012, albeit of a different nature, stand out among the highlights of the year: a significant rise in reloads, and the first final investment decision (FID) of exports from North America. Reloading of cargoes in receiving terminals is generally presented as a demonstration of commercial innovation though sometimes simply allowing to overcome destination restrictions or difficult negotiations on profit sharing from cargo deviations. Considering operational cost efficiency and the environmental impact, it is doubtful that reloads will continue to be a growing feature in LNG trading, despite a total count in 2012 of 70 re-exported cargoes actually discharged in 2012 (up 60% from last year). It is

  16. A Combined Liquefied Natural Gas Routing and Deteriorating Inventory Management Problem

    NARCIS (Netherlands)

    Ghiami, Y.; Van Woensel, Tom; Christiansen, Marielle; Laporte, Gilbert

    2015-01-01

    Liquefied Natural Gas (LNG) is becoming a more crucial source of energy due to its increased price competitiveness and environmental friendliness. We consider an inventory routing problem for inland distribution of LNG from storage facilities to filling stations. Here, an actor is responsible for

  17. A combined liquefied natural gas routing and deteriorating inventory management problem

    NARCIS (Netherlands)

    Ghiami, Y.; van Woensel, T.; Christiansen, Marielle; Laporte, G.; Corman, Fr.; Voss, St.; Negenborn, R.R.

    2015-01-01

    Liquefied Natural Gas (LNG) is becoming a more crucial source of energy due to its increased price competitiveness and environmental friendliness. We consider an inventory routing problem for inland distribution of LNG from storage facilities to filling stations. Here, an actor is responsible for

  18. Challenges of LNG (Liquefied Natural Gas Carriers in 21" Century

    Directory of Open Access Journals (Sweden)

    Marina Zanne

    2009-01-01

    Full Text Available Natural gas is relatively cheap, environmentally friendlyand energetically efficient fossil fuel that is gaining in attractivenessdaily as it can be used in many sectors. As not all consumerscan be reached by pipelines the technique of transp01tingnatural gas in the liquefied form has been developed at the beginningof 20th century but it was only in 1959 that the firstoverseas transport of liquefied natural gas ( LN G occurred. Inthe fifty years of operation LNG shipping has shown immaculatesafety records. LNG tankers can be described only in superlatives;they are without any doubt the most sophisticated and·expensive ships that sail around the globe, they demand specialattention when navigating to or out of harbours and need to bemanned with the most educated and experienced crew. LNGmarket is expanding and changing; demand is surpassing theproductivity, new importing and exporting countries appear,LNG fleet is growing in capacity and number at high pace, exploitationcontracts for the ships are being modified giving theopportunity for new companies to enter( . .. . The paper givesan overview on liquefied natural gas market and the historic developmentof LNG shipping. It focuses on the recent boom inLNG shipping and emphasises questions concerning the safety,crewing and exploitation of the LNG tankers in the future.

  19. Preliminary safety evaluation (PSE) for Sodium Storage Facility at the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Bowman, B.R.

    1994-01-01

    This evaluation was performed for the Sodium Storage Facility (SSF) which will be constructed at the Fast Flux Test Facility (FFTF) in the area adjacent to the South and West Dump Heat Exchanger (DHX) pits. The purpose of the facility is to allow unloading the sodium from the FFTF plant tanks and piping. The significant conclusion of this Preliminary Safety Evaluation (PSE) is that the only Safety Class 2 components are the four sodium storage tanks and their foundations. The building, because of its imminent risk to the tanks under an earthquake or high winds, will be Safety Class 3/2, which means the building has a Safety Class 3 function with the Safety Class 2 loads of seismic and wind factored into the design

  20. The target vacuum storage facility at iThemba LABS

    Science.gov (United States)

    Neveling, R.; Kheswa, N. Y.; Papka, P.

    2018-05-01

    A number of nuclear physics experiments at iThemba LABS require target foils that consist of specific isotopes of elements which are reactive in air. Not only is it important to prepare these targets in a suitable environment to prevent oxidation, but consideration should also be given to the long term storage and handling facilities of such targets. The target vacuum storage facility at iThemba LABS, as well as additional hardware necessary to transport and install the target foils in the experimental chamber, will be discussed.

  1. Optimization control of LNG regasification plant using Model Predictive Control

    Science.gov (United States)

    Wahid, A.; Adicandra, F. F.

    2018-03-01

    Optimization of liquified natural gas (LNG) regasification plant is important to minimize costs, especially operational costs. Therefore, it is important to choose optimum LNG regasification plant design and maintaining the optimum operating conditions through the implementation of model predictive control (MPC). Optimal tuning parameter for MPC such as P (prediction horizon), M (control of the horizon) and T (sampling time) are achieved by using fine-tuning method. The optimal criterion for design is the minimum amount of energy used and for control is integral of square error (ISE). As a result, the optimum design is scheme 2 which is developed by Devold with an energy savings of 40%. To maintain the optimum conditions, required MPC with P, M and T as follows: tank storage pressure: 90, 2, 1; product pressure: 95, 2, 1; temperature vaporizer: 65, 2, 2; and temperature heater: 35, 6, 5, with ISE value at set point tracking respectively 0.99, 1792.78, 34.89 and 7.54, or improvement of control performance respectively 4.6%, 63.5%, 3.1% and 58.2% compared to PI controller performance. The energy savings that MPC controllers can make when there is a disturbance in temperature rise 1°C of sea water is 0.02 MW.

  2. Maritime prerequisites for development of infrastructure for liquefied natural gas (LNG / LBG); Maritima foerutsaettningar foer utbyggnad av infrastruktur foer flytande gas (LNG/LBG)

    Energy Technology Data Exchange (ETDEWEB)

    Gahnstroem, Johan; Molitor, Edvard; Raggl, Karl-Johan; Sandkvist, Jim [SSPA Sweden AB, Goeteborg (Sweden)

    2011-06-15

    This study has provided an initial picture of where the most interesting ports and areas available for future expansion of a maritime infrastructure for LNG. On the basis of supplying vessels with LNG as fuel, from a long term perspective, we recommend locating LNG terminals in or near major ports and around the big ship routes. Given the current age distribution of ships operating waters of the Baltic Sea, almost 20% of the vessels are 30-40 years old and likely to be replaced by 2015 - 2020. Thus, there is a potential for newly built ships will be equipped with LNG operation. Selected criteria s; Size of the LNG terminal and hence the need for the size of the fairway and the area of land. Proximity to traffic routes with much ship traffic. Proximity to the major port. Proximity to consumers on the land side. On the basis of selected criteria and analyzed for possible location of the terminal it can be noted that a number of Swedish ports are found suitable. For example, ports of Sundsvall, Gothenburg and Helsingborg has been identified as suitable, but with different starting point and different types and sizes of terminals possible.

  3. Insight conference reports : liquid natural gas : maximizing opportunities for development and growth

    International Nuclear Information System (INIS)

    2005-01-01

    This conference focused on recent developments in the liquefied natural gas (LNG) industry. Strategic considerations in the development of successful international LNG projects were presented, as well as issues concerning the legal regulatory framework of LNG projects in Canada. The impact of LNG projects on North American markets was discussed, as well as challenges for future growth in the LNG industry. Proposed LNG storage facilities in Vancouver were evaluated, and issues concerning siting considerations were reviewed. Investment security was discussed with reference to government petroleum contracts. Returns to North American markets were reviewed, and issues concerning the financing LNG projects in Canada were examined. The importance of providing gas supplies to western Canada was emphasized. Risk management in the LNG industry was considered, as well as the impacts on existing infrastructure. Various LNG opportunities were considered, including the development of LNG facilities on the west coast of Canada. Issues concerning shipping were also reviewed. One of the 16 presentations featured at this conference has been catalogued separately for inclusion in this database. tabs., figs

  4. The LNG Industry in 2011

    International Nuclear Information System (INIS)

    Robin, Jean-Yves; Demoury, Vincent; Vermeire, Jean

    2012-01-01

    The most significant event to mark the LNG trade in 2011 has been the catastrophe that hit Japan in March, in view of both its short-term effect on shifting flows and its long-term demand prospects of LNG as a source for gas-fired power generation. The role of LNG as a flexible and secure energy source as well as the prompt response to provide back-up through additional supplies and cargo diversions to compensate for the sudden loss of nuclear capacity in Japan - with sellers exercising due price restraint in view of the human tragedy - has been a credit to the industry. The increase in production capacity in 2009 and 2010, in particular from Qatar, had permitted the necessary buffer to cope much better with the demand surge than during past disruptions (such as the aftermath of the Chuetsu earthquake in late 2007). Undoubtedly, the marked shift over the last decade in the industry's prevailing business model towards global trade, destination flexibility and portfolio play has also facilitated the rapid response. As the total volume of LNG trade is very much determined by the availability of supply, 2011 has seen a growth of 9.4% over 2010, mainly as a result of the full availability of the six Qatar mega-trains over the past year. On the demand side the two traditional basins have shown a very contrasting trend: 15% higher LNG off-take in Asia (the five major markets all increasing between 37.4% and 8.9%), versus a 1.7% decrease in the Atlantic Basin. Cargo diversions and an increasing number of reloads have boosted the exports from the Atlantic Basin to Asia in 2011 to more than 14 million tons (equivalent to more than 200 large size cargoes). Remarkable is also the fast growth in new markets in Latin America and in the Middle East - albeit from a small base - with counter-seasonal but varying demand, offering attractive arbitrage opportunities to portfolio play. Not surprising then that 2011 has seen another hike in spot and short-term trade, not just in

  5. LNG pool fire spectral data and calculation of emissive power

    International Nuclear Information System (INIS)

    Raj, Phani K.

    2007-01-01

    Spectral description of thermal emission from fires provides a fundamental basis on which the fire thermal radiation hazard assessment models can be developed. Several field experiments were conducted during the 1970s and 1980s to measure the thermal radiation field surrounding LNG fires. Most of these tests involved the measurement of fire thermal radiation to objects outside the fire envelope using either narrow-angle or wide-angle radiometers. Extrapolating the wide-angle radiometer data without understanding the nature of fire emission is prone to errors. Spectral emissions from LNG fires have been recorded in four test series conducted with LNG fires on different substrates and of different diameters. These include the AGA test series of LNG fires on land of diameters 1.8 and 6 m, 35 m diameter fire on an insulated concrete dike in the Montoir tests conducted by Gaz de France, a 1976 test with 13 m diameter and the 1980 tests with 10 m diameter LNG fire on water carried out at China Lake, CA. The spectral data from the Montoir test series have not been published in technical journals; only recently has some data from this series have become available. This paper presents the details of the LNG fire spectral data from, primarily, the China Lake test series, their analysis and results. Available data from other test series are also discussed. China Lake data indicate that the thermal radiation emission from 13 m diameter LNG fire is made up of band emissions of about 50% of energy by water vapor (band emission), about 25% by carbon dioxide and the remainder constituting the continuum emission by luminous soot. The emissions from the H 2 O and CO 2 bands are completely absorbed by the intervening atmosphere in less than about 200 m from the fire, even in the relatively dry desert air. The effective soot radiation constitutes only about 23% during the burning period of methane and increases slightly when other higher hydrocarbon species (ethane, propane, etc.) are

  6. 77 FR 76013 - Sempra LNG Marketing, LLC; Application for Blanket Authorization To Export Previously Imported...

    Science.gov (United States)

    2012-12-26

    ... marketing supplies of LNG. Sempra is a customer of the Cameron Terminal. On June 22, 2012, FE issued DOE/FE... DEPARTMENT OF ENERGY [FE Docket No. 12-155-LNG] Sempra LNG Marketing, LLC; Application for Blanket..., by Sempra LNG Marketing, LLC (Sempra LNG Marketing), requesting blanket authorization to export...

  7. Project quality assurance plant: Sodium storage facility, project F-031

    International Nuclear Information System (INIS)

    Shultz, J.W.; Shank, D.R.

    1994-11-01

    The Sodium Storage Facility Project Quality Assurance Plan delineates the quality assurance requirements for construction of a new facility, modifications to the sodium storage tanks, and tie-ins to the FFTF Plant. This plan provides direction for the types of verifications necessary to satisfy the functional requirements within the project scope and applicable regulatory requirements determined in the Project Functional Design Criteria (FDC), WHC-SD-FF-FDC-009

  8. Development of Accident Scenario for Interim Spent Fuel Storage Facility Based on Fukushima Accident

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongjin; Choi, Kwangsoon; Yoon, Hyungjoon; Park, Jungsu [KEPCO-E and C, Yongin (Korea, Republic of)

    2014-05-15

    700 MTU of spent nuclear fuel is discharged from nuclear fleet every year and spent fuel storage is currently 70.9% full. The on-site wet type spent fuel storage pool of each NPP(nuclear power plants) in Korea will shortly exceed its storage limit. Backdrop, the Korean government has rolled out a plan to construct an interim spent fuel storage facility by 2024. However, the type of interim spent fuel storage facility has not been decided yet in detail. The Fukushima accident has resulted in more stringent requirements for nuclear facilities in case of beyond design basis accidents. Therefore, there has been growing demand for developing scenario on interim storage facility to prepare for beyond design basis accidents and conducting dose assessment based on the scenario to verify the safety of each type of storage.

  9. Dry spent fuel storage facility at Kozloduy Nuclear Power Plant

    International Nuclear Information System (INIS)

    Goehring, R.; Stoev, M.; Davis, N.; Thomas, E.

    2004-01-01

    The Dry Spent Fuel Storage Facility (DSF) is financed by the Kozloduy International Decommissioning Support Fund (KIDSF) which is managed by European Bank for Reconstruction and Development (EBRD). On behalf of the Employer, the Kozloduy Nuclear Power Plant, a Project Management Unit (KPMU) under lead of British Nuclear Group is managing the contract with a Joint Venture Consortium under lead of RWE NUKEM mbH. The scope of the contract includes design, manufacturing and construction, testing and commissioning of the new storage facility for 2800 VVER-440 spent fuel assemblies at the KNPP site (turn-key contract). The storage technology will be cask storage of CONSTOR type, a steel-concrete-steel container. The licensing process complies with the national Bulgarian regulations and international rules. (authors)

  10. Durability of spent nuclear fuels and facility components in wet storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Wet storage continues to be the dominant option for the management of irradiated fuel elements and assemblies (fuel units). Fuel types addressed in this study include those used in: power reactors, research and test reactors, and defence reactors. Important decisions must be made regarding acceptable storage modes for a broad variety of fuel types, involving numerous combinations of fuel and cladding materials. A broadly based materials database has the following important functions: to facilitate solutions to immediate and pressing materials problems; to facilitate decisions on the most effective long term interim storage methods for numerous fuel types; to maintain and update a basis on which to extend the licenses of storage facilities as regulatory periods expire; to facilitate cost-effective transfer of numerous fuel types to final disposal. Because examinations of radioactive materials are expensive, access to materials data and experience that provide an informed basis to analyse and extrapolate materials behaviour in wet storage environments can facilitate identification of cost-effective approaches to develop and maintain a valuable materials database. Fuel storage options include: leaving the fuel in wet storage, placing the fuel in canisters with cover gases, stored underwater, or transferring the fuel to one of several dry storage modes, involving a range of conditioning options. It is also important to anticipate the condition of the various materials as periods of wet storage are extended or as decisions to transfer to dry storage are implemented. A sound basis for extrapolation is needed to assess fuel and facility component integrity over the expected period of wet storage. A materials database also facilitates assessment of the current condition of specific fuel and facility materials, with minimal investments in direct examinations. This report provides quantitative and semi-quantitative data on materials behaviour or references sources of data to

  11. Durability of spent nuclear fuels and facility components in wet storage

    International Nuclear Information System (INIS)

    1998-04-01

    Wet storage continues to be the dominant option for the management of irradiated fuel elements and assemblies (fuel units). Fuel types addressed in this study include those used in: power reactors, research and test reactors, and defence reactors. Important decisions must be made regarding acceptable storage modes for a broad variety of fuel types, involving numerous combinations of fuel and cladding materials. A broadly based materials database has the following important functions: to facilitate solutions to immediate and pressing materials problems; to facilitate decisions on the most effective long term interim storage methods for numerous fuel types; to maintain and update a basis on which to extend the licenses of storage facilities as regulatory periods expire; to facilitate cost-effective transfer of numerous fuel types to final disposal. Because examinations of radioactive materials are expensive, access to materials data and experience that provide an informed basis to analyse and extrapolate materials behaviour in wet storage environments can facilitate identification of cost-effective approaches to develop and maintain a valuable materials database. Fuel storage options include: leaving the fuel in wet storage, placing the fuel in canisters with cover gases, stored underwater, or transferring the fuel to one of several dry storage modes, involving a range of conditioning options. It is also important to anticipate the condition of the various materials as periods of wet storage are extended or as decisions to transfer to dry storage are implemented. A sound basis for extrapolation is needed to assess fuel and facility component integrity over the expected period of wet storage. A materials database also facilitates assessment of the current condition of specific fuel and facility materials, with minimal investments in direct examinations. This report provides quantitative and semi-quantitative data on materials behaviour or references sources of data to

  12. Dust exposure in workers from grain storage facilities in Costa Rica.

    Science.gov (United States)

    Rodríguez-Zamora, María G; Medina-Escobar, Lourdes; Mora, Glend; Zock, Jan-Paul; van Wendel de Joode, Berna; Mora, Ana M

    2017-08-01

    About 12 million workers are involved in the production of basic grains in Central America. However, few studies in the region have examined the occupational factors associated with inhalable dust exposure. (i) To assess the exposure to inhalable dust in workers from rice, maize, and wheat storage facilities in Costa Rica; (ii) to examine the occupational factors associated with this exposure; and (iii) to measure concentrations of respirable and thoracic particles in different areas of the storage facilities. We measured inhalable (dust concentrations in 176 personal samples collected from 136 workers of eight grain storage facilities in Costa Rica. We also measured respirable (dust particles in several areas of the storage facilities. Geometric mean (GM) and geometric standard deviation (GSD) inhalable dust concentrations were 2.0mg/m 3 and 7.8 (range=dust concentrations were associated with job category [GM for category/GM for administrative staff and other workers (95% CI)=4.4 (2.6, 7.2) for packing; 20.4 (12.3, 34.7) for dehulling; 109.6 (50.1, 234.4) for unloading in flat bed sheds; 24.0 (14.5, 39.8) for unloading in pits; and 31.6 (18.6, 52.5) for drying], and cleaning task [15.8 (95% CI: 10.0, 26.3) in workers who cleaned in addition to their regular tasks]. Higher area concentrations of thoracic dust particles were found in wheat (GM and GSD=4.3mg/m 3 and 4.5) and maize (3.0mg/m 3 and 3.9) storage facilities, and in grain drying (2.3mg/m 3 and 3.1) and unloading (1.5mg/m 3 and 4.8) areas. Operators of grain storage facilities showed elevated inhalable dust concentrations, mostly above international exposure limits. Better engineering and administrative controls are needed. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Logistics and supply chain effectiveness measure areas in lng companies

    Directory of Open Access Journals (Sweden)

    2010-09-01

    Full Text Available The article describes the issues of logistics and supply chain measures in companies. It considers different management systems in the area of production, which evolved from isolated production activities to business connected systems. There are performed three case studies - three examples of systems proposed and implemented in the LNG industry: I-MAC, ICIMS and PMS. Data gained from these systems are the basis to create effectiveness measures for LNG companies and LNG supply chains.

  14. Conceptual design study of a concrete canister spent-fuel storage facility

    International Nuclear Information System (INIS)

    Lidfors, E.D.; Tabe, T.; Johnson, H.M.

    1979-01-01

    This report presents a conceptual design study for the interim storage of CANDU spent fuel in concrete canisters. The canisters will be concrete flasks, which contain fuel prepackaged in double steel containment, and will be cooled by natural air convection. This is one of the methods proposed as a potential alternative to water pool storage. A preliminary study of this concept was done by CAFS (Committee Assessing Fuel Storage), and WNRE (Whiteshell Nuclear Research Establishment) is currently conducting a development and demonstration program. This study of a central facility for the storage of all Canadian spent fuel arisings to the year 2000 was completed in 1975. A brief description of the facilities required and the operations involved, a summary of costs, a survey of the monitoring requirements and a prediction of the personnel exposures associated with this method of storing spent fuel are reported here. The estimated total cost of interim storage in cylindrical canisters at a central site is $6.02/kg U (1975 dollars). Approximately half of this cost is incurred in the shipment of fuel from the reactors to the storage facility. (author)

  15. Risk analysis and risk acceptance criteria in the planning processes of hazardous facilities-A case of an LNG plant in an urban area

    International Nuclear Information System (INIS)

    Vinnem, Jan Erik

    2010-01-01

    Planning of hazardous facilities is usually carried out on the basis of a risk-informed decision-making and planning process making use of risk analysis. This practice is well established in Norway under petroleum legislation but less so for onshore facilities under non-petroleum legislation. The present paper focuses on the use of risk analysis studies for risk evaluation against risk acceptance criteria, risk communication and derivation of technical and operational requirements in these circumstances. This is demonstrated through reference to a case study involving an LNG plant currently under construction in an urban area in Norway. The main finding is that risk-informed legislation is a fragile legislative system which is dependent on conscientious and open-minded use by the industrial developer. In the opposite case, the authorities may well be unable to correct the situation and the legislation may fail to protect the neighbourhood from unreasonable exposure to risk. Reference is also made to the international perspective where authorities define what is deemed tolerable risk, which would appear to be a more robust and defensible approach.

  16. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2A

    International Nuclear Information System (INIS)

    Bowman, R.C.

    1994-04-01

    This permit application for the 616 Nonradioactive Dangerous Waste Storage Facility consists for 15 chapters. Topics of discussion include the following: facility description and general provisions; waste characteristics; process information; personnel training; reporting and record keeping; and certification

  17. Assessing integrity and realiability of multicomposite LNG transfer hoses

    NARCIS (Netherlands)

    Weijde, G.D. van der; Putten, S. van der

    2012-01-01

    Reliable transfer systems are a key element in developing floating LNG and the small scale LNG market. Multi-composite hoses may prove to be a reliable and cost effective solution for offshore, near- and on-shore applications. TNO, the Dutch contract research organization, has executed an extensive

  18. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed

  19. Continuous inventory in SNM storage facilities

    International Nuclear Information System (INIS)

    Chambers, W.H.

    1975-01-01

    Instrumentation and data processing techniques that provide inexpensive verification of material in storage were investigated. Transfers of special nuclear materials (SNM) into the storage area are accompanied by an automated verification of the container identity, weight, and the radiation signature of the contents. This information is computer-processed and stored for comparison at subsequent transfers and also provides the data base for record purposes. Physical movement of containers across the boundary of the storage area is presently accomplished by operating personnel in order to minimize expensive modifications to existing storage facilities. Personnel entering and leaving the storage area are uniquely identified and also through portal monitors capable of detecting small quantities of SNM. Once material is placed on the storage shelves, simple, low-cost container tagging and radiation sensors are activated. A portion of the prescribed gamma signature, obtained by duplicate shelf monitors during the transfer verification, is thus continuously checked against the stored identification data. Radiation detector design is severely constrained by the need to discriminate individual signatures in a high background area and the need for low unit costs. In operation any unauthorized change in signal is analyzed along with auxiliary data from surveillance sensors to activate the appropriate alarms. (auth))

  20. The role of Liquefied Natural Gas (LNG) in the European gas market

    International Nuclear Information System (INIS)

    Mahan, A.

    2003-06-01

    The purpose of this paper is to discuss the role that Liquefied Natural Gas (LNG) might play in the future EU gas market. LNG imports are not likely to have a place in the Netherlands soon, but they could make an important contribution to the volume and diversity of Europe's gas supplies. An important characteristic of LNG is its inherently high costs, throughout the whole chain, from the wellhead to the market. These costs are considerably higher than the costs of bringing oil to the market. Cost considerations, in combination with the rigidity of the gas market, have led to the use of long-term contracts as a basis for the business, as is the case for the long haul pipeline gas business. Costs have come down considerably and further cost reductions are 'in the pipeline'. While this does not alter the fundamentals of the business it has nonetheless helped to extend the reach of LNG. LNG from the Middle East to Europe has now become economically feasible. The high gas prices of recent years have further fuelled the expansion of the LNG business. Supported by a rapidly growing global economy at the turn of this century, many prospects are under development. The positive economic outlook has seen more speculative positioning in every segment of the LNG chain, while more vertical integration has been industry's response to market liberalisation. The more recent slowdown of the market economies has created a surplus of LNG, which is finding its way onto the markets through short-term and spot transactions. The short-term business will grow over the next few years as more LNG and shipping capacity comes on-stream. However, given underlying high costs and limited flexibility, it should be expected that new projects, currently under consideration, will only be developed on the basis of long-term contracts, thus returning to a balance between supply and demand. For these same reasons, LNG will not likely develop the same the liquidity as that of the oil market. The global

  1. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    King, J.W.

    1993-01-01

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction

  2. LNG cascading damage study. Volume I, fracture testing report.

    Energy Technology Data Exchange (ETDEWEB)

    Petti, Jason P.; Kalan, Robert J.

    2011-12-01

    As part of the liquefied natural gas (LNG) Cascading Damage Study, a series of structural tests were conducted to investigate the thermal induced fracture of steel plate structures. The thermal stresses were achieved by applying liquid nitrogen (LN{sub 2}) onto sections of each steel plate. In addition to inducing large thermal stresses, the lowering of the steel temperature simultaneously reduced the fracture toughness. Liquid nitrogen was used as a surrogate for LNG due to safety concerns and since the temperature of LN{sub 2} is similar (-190 C) to LNG (-161 C). The use of LN{sub 2} ensured that the tests could achieve cryogenic temperatures in the range an actual vessel would encounter during a LNG spill. There were four phases to this test series. Phase I was the initial exploratory stage, which was used to develop the testing process. In the Phase II series of tests, larger plates were used and tested until fracture. The plate sizes ranged from 4 ft square pieces to 6 ft square sections with thicknesses from 1/4 inches to 3/4 inches. This phase investigated the cooling rates on larger plates and the effect of different notch geometries (stress concentrations used to initiate brittle fracture). Phase II was divided into two sections, Phase II-A and Phase II-B. Phase II-A used standard A36 steel, while Phase II-B used marine grade steels. In Phase III, the test structures were significantly larger, in the range of 12 ft by 12 ft by 3 ft high. These structures were designed with more complex geometries to include features similar to those on LNG vessels. The final test phase, Phase IV, investigated differences in the heat transfer (cooling rates) between LNG and LN{sub 2}. All of the tests conducted in this study are used in subsequent parts of the LNG Cascading Damage Study, specifically the computational analyses.

  3. Spot sale of uncommitted LNG from Middle East: Japan or the UK?

    International Nuclear Information System (INIS)

    Nikhalat-Jahromi, Hamed; Bell, Michael G.H.; Fontes, Dalila B.M.M.; Cochrane, Robert A.; Angeloudis, Panagiotis

    2016-01-01

    The importance of liquefied natural gas (LNG) is rising as demand for it grows rapidly and steadily due to growth in energy demand, the transition to a low carbon economy and the longer distances over which natural gas is now traded. Given its importance, this work proposes an optimization model that assists to decide on when and where LNG should be delivered by coordinating tanker type, assignment and routing, inventory management, contract obligations, arbitrage and uncommitted LNG. The model maximizes the profit mainly by taking advantage of price differences between different markets. The contributions of this work are twofold. First, following the analysis of expenses and revenues, a new mixed integer programming model for LNG liquefaction and shipping is proposed from a corporate finance perspective. Furthermore, a solution approach for it is implemented and tested. Second, the model is used to derive a short term trade policy for the Middle Eastern LNG producers regarding the spot sale of their uncommitted product to Japan or to the UK, namely to: dispatch to whichever market has the higher current spot price, regardless of the variability of the transport expenses. - Highlights: •The cash-flow of an LNG producer in operational planning is examined. •An LNG inventory routing problem for EBITDA maximization is formulated. •A project in Middle East for studying the spot sale of uncommitted LNG is created. •In sale to Japan and the UK the market with the higher price should be picked.

  4. Current status of the first interim spent fuel storage facility in Japan

    International Nuclear Information System (INIS)

    Shinbo, Hitoshi; Kondo, Mitsuru

    2008-01-01

    In Japan, storage of spent fuels outside nuclear power plants was enabled as a result of partial amendments to the Nuclear Reactor Regulation Law in June 2000. Five months later, Mutsu City in Aomori Prefecture asked the Tokyo Electric Power Company (TEPCO) to conduct technical surveys on siting of the interim spent fuel storage facility (we call it 'Recyclable-Fuel Storage Center'). In April 2003, TEPCO submitted the report on siting feasibility examination, concluded that no improper engineering data for siting, construction of the facility will be possible from engineering viewpoint. Siting Activities for publicity and public acceptance have been continued since then. After these activities, Aomori Prefecture and Mutsu City approved siting of the Recyclable Fuel Storage Center in October 2005. Aomori Prefecture, Mutsu City, TEPCO and Japan Atomic Power Company (JAPC) signed an agreement on the interim spent fuel storage Facility. A month later, TEPCO and JAPC established Recyclable-Fuel Storage Company (RFS) in Mutsu City through joint capital investment, specialized in the first interim spent fuel storage Facility in Japan. In May 2007, we made an application for establishment permit, following safety review by regulatory authorities. In March 2008, we started the preparatory construction. RFS will safely store of spent fuels of TEPCO and JAPC until they will be reprocessed. Final storage capacity will be 5,000 ton-U. First we will construct the storage building of 3,000 ton-U to be followed by second building. We aim to start operation by 2010. (author)

  5. Integral Monitored Retrievable Storage (MRS) Facility conceptual basis for design

    International Nuclear Information System (INIS)

    1985-10-01

    The purpose of the Conceptual Basis for Design is to provide a control document that establishes the basis for executing the conceptual design of the Integral Monitored Retrievable Storage (MRS) Facility. This conceptual design shall provide the basis for preparation of a proposal to Congress by the Department of Energy (DOE) for construction of one or more MRS Facilities for storage of spent nuclear fuel, high-level radioactive waste, and transuranic (TRU) waste. 4 figs., 25 tabs

  6. Exergetic Analysis, Optimization and Comparison of LNG Cold Exergy Recovery Systems for Transportation

    Directory of Open Access Journals (Sweden)

    Paweł Dorosz

    2018-01-01

    Full Text Available LNG (Liquefied Natural Gas shares in the global energy market is steadily increasing. One possible application of LNG is as a fuel for transportation. Stricter air pollution regulations and emission controls have made the natural gas a promising alternative to liquid petroleum fuels, especially in the case of heavy transport. However, in most LNG-fueled vehicles, the physical exergy of LNG is destroyed in the regasification process. This paper investigates possible LNG exergy recovery systems for transportation. The analyses focus on “cold energy” recovery systems as the enthalpy of LNG, which may be used as cooling power in air conditioning or refrigeration. Moreover, four exergy recovery systems that use LNG as a low temperature heat sink to produce electric power are analyzed. This includes single-stage and two-stage direct expansion systems, an ORC (Organic Rankine Cycle system, and a combined system (ORC + direct expansion. The optimization of the above-mentioned LNG power cycles and exergy analyses are also discussed, with the identification of exergy loss in all components. The analyzed systems achieved exergetic efficiencies in the range of 20 % to 36 % , which corresponds to a net work in the range of 214 to 380 kJ/kg L N G .

  7. 75 FR 51989 - Southern LNG Company, L.L.C.; Notice of Application

    Science.gov (United States)

    2010-08-24

    ... Company, L.L.C.; Notice of Application August 16, 2010. Take notice that on August 4, 2010, Southern LNG Company, L.L.C. (Southern LNG), Post Office Box 2563, Birmingham, Alabama 35202-2563, filed in the above.... Sheffield, Director--Rates and Regulatory, Southern LNG Company, L.L.C., 569 Brookwood Village, Suite 501...

  8. Secondary containment systems for bulk oil storage facilities

    International Nuclear Information System (INIS)

    Carr, B.A.

    1996-01-01

    The United States Environmental Protection Agency has conducted site inspections at several onshore bulk oil above ground storage facilities, to ensure that owners follow the spill prevention, control and countermeasure regulations. The four violations which were most frequently cited at these facilities were: (1) lack of a spill prevention plan, (2) lack of appropriate containment equipment to prevent discharged oil from reaching a navigable water course, (3) inadequate secondary containment structures, and (4) lack of an adequate quick drainage system in the facility tank loading/unloading area. Suggestions for feasible designs which would improve the impermeability of secondary containment for above ground storage tanks (AST) included the addition of a liner, retrofitting the bottom of an AST with a second steel plate, using a geosynthetic liner on top of the original bottom, installing a leak detection system in the interstitial space between the steel plates, or installing an under-tank liner with a leak detection system during construction of a new AST. 2 refs

  9. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    International Nuclear Information System (INIS)

    COVEY, L.I.

    2000-01-01

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  10. Raley's LNG Truck Site Final Data Report

    Energy Technology Data Exchange (ETDEWEB)

    Battelle

    1999-07-01

    Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

  11. LNG ventures raise economic, technical, partnership issues

    International Nuclear Information System (INIS)

    Acord, H.K.

    1995-01-01

    The author feels that natural gas will remain a competitive energy alternative and the preferred fuel for many residential and industrial customers around the globe. The article attempts to explain where liquefied natural gas will fit into the global picture. The paper discusses the growth in the Asia-Pacific region; the complex interactions in a LNG project involving buyers, sellers, governments, financial institutions, and shipping companies; the cost of development of such projects; and the elements of a LNG venture

  12. Safety analysis report for the Mixed Waste Storage Facility and portable storage units at the Idaho National Engineering Laboratory. Revision 4

    International Nuclear Information System (INIS)

    Peatross, R.

    1997-01-01

    This revision contains Section 2 only which gives a description of the Mixed Waste Storage Facility (MWSF) and its operations. Described are the facility location, services and utilities, process description and operation, and safety support systems. The MWSF serves as a storage and repackaging facility for low-level mixed waste

  13. Safety analysis report for the Waste Storage Facility. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  14. Interim nuclear spent fuel storage facility - From complete refusal to public acceptance

    International Nuclear Information System (INIS)

    Kacena, Michal

    1998-01-01

    Full text: As usual in P.R., there was a complicated, politically sensitive situation we had to face at the beginning and it wasn't easy to create the right P.R. programme with the right targets: CEZ needed a new storage facility for the nuclear spent fuel from its two NPPs - Dukovany and Temelin. Firstly, CEZ preferred to build an on-site facility for the Dukovany NPP to last until the year 2004; secondly, a facility for the Temelin NPP several years later. But the Czech Government decided to limit Dukovany's storage capacity during a public discussion in 1992. Therefore, at the end of 1993, CEZ started the site selection process for a central storage facility targeted at ten regions in the country. In P.R. we decided on two main goals: 1. To gain public acceptance of a central storage facility at least at one site, and hopefully at more. 2. To change public opinion (especially around the Dukovany NPP) in order to create the proper atmosphere for changing the government's decision to limit storage capacity. We wanted to prove that we could choose the fight technical and economical solution without political limits. This obviously presented a challenge as it would be problematic for CEZ to be very visible in the campaign: We wanted people to know that the government had made a bad decision, but we also had to make it clear that our objections were based not on questions of momentary corporate advantage but instead on solid technical grounds. Most would only see self interest. We wanted to show them the facts. Of course, some times it wasn't easy to hit both targets at the same time. There was a lot of hard work in the middle. We gained new experience and we learned a lot trying to get public confidence in nuclear safety, in our company's reliability and in some local profits for a storage site: Firstly none of those regions was excited by the idea o a storage facility in its backyard. Most of them were very strongly and actively against it and did not want to

  15. Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe

    International Nuclear Information System (INIS)

    Arteconi, A.; Brandoni, C.; Evangelista, D.; Polonara, F.

    2010-01-01

    The aim of the present study was to compare the life cycle, in terms of greenhouse gas (GHG) emissions, of diesel and liquefied natural gas (LNG) used as fuels for heavy-duty vehicles in the European market (EU-15). A literature review revealed that the numerous studies conducted have reported different results when the authors departed from different baseline assumptions and reference scenarios. For our study, we concentrated on the European scenario and on heavy-duty road transport vehicles, given their important incidence on the global emissions of GHG. Two possible LNG procurement strategies were considered i.e. purchasing it directly from the regasification terminal (LNG-TER) or producing LNG locally (at the service station) with small-scale plants (LNG-SSL). We ascertained that the use of LNG-TER enables a 10% reduction in GHG emissions by comparison with diesel, while the emissions resulting from the LNG-SSL solution are comparable with those of diesel.

  16. Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Arteconi, A.; Brandoni, C.; Evangelista, D.; Polonara, F. [Universita Politecnica delle Marche, Dipartimento di Energetica, Via Brecce Bianche, 1-60131 Ancona (Italy)

    2010-06-15

    The aim of the present study was to compare the life cycle, in terms of greenhouse gas (GHG) emissions, of diesel and liquefied natural gas (LNG) used as fuels for heavy-duty vehicles in the European market (EU-15). A literature review revealed that the numerous studies conducted have reported different results when the authors departed from different baseline assumptions and reference scenarios. For our study, we concentrated on the European scenario and on heavy-duty road transport vehicles, given their important incidence on the global emissions of GHG. Two possible LNG procurement strategies were considered i.e. purchasing it directly from the regasification terminal (LNG-TER) or producing LNG locally (at the service station) with small-scale plants (LNG-SSL). We ascertained that the use of LNG-TER enables a 10% reduction in GHG emissions by comparison with diesel, while the emissions resulting from the LNG-SSL solution are comparable with those of diesel. (author)

  17. Future of gas. LNG between feast and famine

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, A.

    2009-05-15

    Between now and 2012, a new wave of LNG (liquid natural gas) supply will wash over markets, with Qatar accounting for half the growth as six new 'mega-trains' come on stream. It will arrive just as gas demand is being hit by the economic crisis. Beyond 2012, the situation will reverse, with growth constrained by lack of new supply. The LNG industry is facing a turbulent decade.

  18. Energetic recovery from LNG gasification plant : cold energy utilization in agro-alimentary industry

    International Nuclear Information System (INIS)

    Messineo, A.; Panno, D.

    2009-01-01

    It is known how the complete gasification of liquefied natural gas (LNG) can return about 230 kWh/t of energy. Nevertheless out of 51 gasification plants in the world, only 31 of them are equipped with systems for the partial recovery of the available energy. At the moment most of these plants mainly produce electric energy; however the employment of the cold energy results very interesting, in fact, it can be recovered for agrofood transformation and conservation as well as for some loops in the cold chain. Cold energy at low temperatures requires high amounts of mechanical energy and it unavoidably increases as the required temperature diminishes. Cold energy recovery from LNG gasification would allow considerable energy and economic savings to these applications, as well as environmental benefits due to the reduction of climate-changing gas emissions. The task of this work is to assess the possibility to create around a gasification plant an industrial site for firms working on the transformation and conservation of agrofood products locally grown. The cold recovered from gasification would be distributed to those firms through an opportune liquid Co 2 network distribution capable of supplying the cold to the different facilities. A LNG gasification plant in a highly agricultural zone in Sicily would increase the worth of the agrofood production, lower transformation and conservation costs when compared to the traditional systems and bring economic and environmental benefits to the interested areas. [it

  19. Studies and research concerning BNFP: converting reprocessing plant's fuel receiving and storage area to an away-from-reactor (AFR) storage facility. Final report

    International Nuclear Information System (INIS)

    Cottrell, J.E.; Shallo, F.A.; Musselwhite, E.L.; Wiedemann, G.F.; Young, M.

    1979-09-01

    Converting a reprocessing plant's fuel receiving and storage station into an Away-From-Reactor storage facility is evaluated in this report. An engineering analysis is developed which includes (1) equipment modifications to the facility including the physical protection system, (2) planning schedules for licensing-related activities, and (3) cost estimates for implementing such a facility conversion. Storage capacities are evaluated using the presently available pools of the existing Barnwell Nuclear Fuel Plant-Fuel Receiving and Storage Station (BNFP-FRSS) as a model

  20. Evolving framework of the LNG industry: Expected growth and continuing importance of safety

    International Nuclear Information System (INIS)

    Kagiyama, Ichiro

    1992-01-01

    A major increase in LNG trade, expected from the 1990s onwards, is quite significant in that a new framework will be developed. These changes and developments may well prove to be some of the most notable that have ever occurred in the 30-year history of the LNG industry. All over the world, new buyers and sellers are entering the scene, while in Japan, small and medium-size businesses are switching to LNG. Transporters and LNG carriers are also expecting an increase in their numbers. We are about to see a wide-ranging diversification in terms of the geography and the size of the companies that deal with LNG. Safety continues to be the main issue in promoting the development of the LNG market. The wider the spread of LNG, the greater the need will be for further development of the systems and organizations for transferring safety technology and skills. In addition to enhancing safety, it will be necessary to seek harmony with the social environment. This paper discusses measures for the future based on the author's many years of experience, particularly in the field of receiving terminals

  1. Hawaii energy strategy project 2: Fossil energy review. Task 3 -- Greenfield options: Prospects for LNG use

    Energy Technology Data Exchange (ETDEWEB)

    Breazeale, K. [ed.; Fesharaki, F.; Fridley, D.; Pezeshki, S.; Wu, K.

    1993-12-01

    This paper begins with an overview of the Asia-Pacific LNG market, its major players, and the likely availability of LNG supplies in the region. The discussion then examines the possibilities for the economic supply of LNG to Hawaii, the potential Hawaiian market, and the viability of an LNG project on Oahu. This survey is far from a complete technical assessment or an actual engineering/feasibility study. The economics alone cannot justify LNG`s introduction. The debate may continue as to whether fuel diversification and environmental reasons can outweigh the higher costs. Several points are made. LNG is not a spot commodity. Switching to LNG in Hawaii would require a massive, long-term commitment and substantial investments. LNG supplies are growing very tight in the Asia-Pacific region. Some of the environmental benefits of LNG are not entirely relevant in Hawaii because Hawaii`s air quality is generally excellent. Any air quality benefits may be more than counterbalanced by the environmental hazards connected with large-scale coastal zone construction, and by the safety hazards of LNG carriers, pipelines, etc. Lastly, LNG is not suitable for all energy uses, and is likely to be entirely unsuitable for neighbor island energy needs.

  2. the effects of unavailability of technical storage facilities

    African Journals Online (AJOL)

    unavailability of the technical storage facilities to the marketing of fruits and vegetables for economic ... vegetables are important profitable small-scale juice enterprises (Thomson,. 1990). ..... Knott's handbook for vegetables growers. 2nd ed.

  3. Investigation of propulsion system for large LNG ships

    International Nuclear Information System (INIS)

    Sinha, R P; Wan Nik, Wan Mohd Norsani

    2012-01-01

    Requirements to move away from coal for power generation has made LNG as the most sought after fuel source, raising steep demands on its supply and production. Added to this scenario is the gradual depletion of the offshore oil and gas fields which is pushing future explorations and production activities far away into the hostile environment of deep sea. Production of gas in such environment has great technical and commercial impacts on gas business. For instance, laying gas pipes from deep sea to distant receiving terminals will be technically and economically challenging. Alternative to laying gas pipes will require installing re-liquefaction unit on board FPSOs to convert gas into liquid for transportation by sea. But, then because of increased distance between gas source and receiving terminals the current medium size LNG ships will no longer remain economical to operate. Recognizing this business scenario shipowners are making huge investments in the acquisition of large LNG ships. As power need of large LNG ships is very different from the current small ones, a variety of propulsion derivatives such as UST, DFDE, 2-Stroke DRL and Combined cycle GT have been proposed by leading engine manufacturers. Since, propulsion system constitutes major element of the ship's capital and life cycle cost, which of these options is most suited for large LNG ships is currently a major concern of the shipping industry and must be thoroughly assessed. In this paper the authors investigate relative merits of these propulsion options against the benchmark performance criteria of BOG disposal, fuel consumption, gas emissions, plant availability and overall life cycle cost.

  4. Investigation of propulsion system for large LNG ships

    Science.gov (United States)

    Sinha, R. P.; Nik, Wan Mohd Norsani Wan

    2012-09-01

    Requirements to move away from coal for power generation has made LNG as the most sought after fuel source, raising steep demands on its supply and production. Added to this scenario is the gradual depletion of the offshore oil and gas fields which is pushing future explorations and production activities far away into the hostile environment of deep sea. Production of gas in such environment has great technical and commercial impacts on gas business. For instance, laying gas pipes from deep sea to distant receiving terminals will be technically and economically challenging. Alternative to laying gas pipes will require installing re-liquefaction unit on board FPSOs to convert gas into liquid for transportation by sea. But, then because of increased distance between gas source and receiving terminals the current medium size LNG ships will no longer remain economical to operate. Recognizing this business scenario shipowners are making huge investments in the acquisition of large LNG ships. As power need of large LNG ships is very different from the current small ones, a variety of propulsion derivatives such as UST, DFDE, 2-Stroke DRL and Combined cycle GT have been proposed by leading engine manufacturers. Since, propulsion system constitutes major element of the ship's capital and life cycle cost, which of these options is most suited for large LNG ships is currently a major concern of the shipping industry and must be thoroughly assessed. In this paper the authors investigate relative merits of these propulsion options against the benchmark performance criteria of BOG disposal, fuel consumption, gas emissions, plant availability and overall life cycle cost.

  5. LNG development across Europe: Infrastructural and regulatory analysis

    International Nuclear Information System (INIS)

    Dorigoni, Susanna; Portatadino, Sergio

    2008-01-01

    In this paper, a cross-section infrastructural and regulatory analysis of the European LNG sector is presented. The LNG chain is maintained as being a good tool to enlarge the number of natural gas exporters to Europe, adding in this way to competition and to the achievement of the targets of the liberalisation process, which is a decrease in price for final customers and security of supply. The main reason for this is to be identified in the minor specificity of the regasification-plant-related investment compared with pipeline transportation. As a matter of fact, as the infrastructural analysis will show, the construction of new LNG receiving terminals is likely to bring about an increase in the number of importers fostering competition among them and shrinking their margins among the value chain. In this context, regulation is meant to play a key role in promoting investments without hindering competition. Nevertheless it is questionable whether LNG will be able to introduce competition beyond the European border (that is among producers) according to the forecasted supply and demand balance that is leading to a seller's market in the upstream sector. In this case, a huger part of the rent would go to the exporters leaving minor scope for competition down the European border. (author)

  6. Waste and Encapsulation Storage Facility (WESF) Essential and Support Drawing List

    International Nuclear Information System (INIS)

    SHANNON, W.R.

    1999-01-01

    Provides listing of Essential and Support Drawings for the Waste and Encapsulation Storage Facility. The drawings identified in this document will comprise the Waste Encapsulation and Storage Facility essential and support drawing list. This list will replace drawings identified as the ''WESF Essential and support drawing list''. Additionally, this document will follow the applicable requirements of HNF-PRO-242 Engineering Drawing Requirements'' and FSP-WESF-001, Section EN-1 ''Documenting Engineering Changes''. An essential drawing is defined as an engineering drawing identified by the facility staff as necessary to directly support the safe operation or maintenance of the facility. A support drawing is defined as a drawing identified by the facility staff that further describes the design details of structures, systems, or components shown on essential drawings or is frequently used by the support staff

  7. Total's LNG activities from Algeria to Yemen

    International Nuclear Information System (INIS)

    Vedrenne, J.P.

    1997-01-01

    In March 1995, further to an international tender, Total was awarded the leadership of the first LNG project in Yemen. On January 1997 Total announced the extension of the share-holding of the Yemen LNG Co. to include the companies with interests in the Marib area (Hunt-Exxon-Yukong). The Marib area will supply the gas to the future liquefaction plant. The ratification of these agreements confirms the role of Total as lead shareholder with 36% in the share-holding structure and guarantees gas supply from the Marib licence, operated by Hunt-Exxon. (author)

  8. Radiation analysis for a generic centralized interim storage facility

    International Nuclear Information System (INIS)

    Gillespie, S.G.; Lopez, P.; Eble, R.G.

    1997-01-01

    This paper documents the radiation analysis performed for the storage area of a generic Centralized Interim Storage Facility (CISF) for commercial spent nuclear fuel (SNF). The purpose of the analysis is to establish the CISF Protected Area and Restricted Area boundaries by modeling a representative SNF storage array, calculating the radiation dose at selected locations outside the storage area, and comparing the results with regulatory radiation dose limits. The particular challenge for this analysis is to adequately model a large (6000 cask) storage array with a reasonable amount of analysis time and effort. Previous analyses of SNF storage systems for Independent Spent Fuel Storage Installations at nuclear plant sites (for example in References 5.1 and 5.2) had only considered small arrays of storage casks. For such analyses, the dose contribution from each storage cask can be modeled individually. Since the large number of casks in the CISF storage array make such an approach unrealistic, a simplified model is required

  9. Industry brief letter; Oman LNG, Indo no hatsuden mukeni kyokyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    Oman LNG (OLNG), invested by Mitui Bussan, Mitsubishi Trading and Itochu Trading, concluded a supply contract of liquefied natural gas with a private power supply enterprise of India. Contract period is 20 years, and supplies 1.6 million ton LNG per year from the fourth quarter of 2001. This is the third contract case following to Korea Gas of Korea and Osaka Gas of Japan. OLNG will establish annual production 6.6 million system by the end of 1999. With this contract, almost all LNG production will be ensured to be sold by long term contracts. (translated by NEDO)

  10. 75 FR 53688 - Southern LNG Company, L.L.C.; Notice of Technical Conference

    Science.gov (United States)

    2010-09-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RP10-829-000] Southern LNG Company, L.L.C.; Notice of Technical Conference August 25, 2010. Take notice that Commission Staff will... Street, NE., Washington, DC 20426. On June 7, 2010, Southern LNG Company, L.L.C. (Southern LNG) filed a...

  11. Waiting for the Next Train? An Assessment of the Emerging Canadian LNG Industry

    International Nuclear Information System (INIS)

    Hureau, Geoffroy; Jordan, Louis

    2015-03-01

    In February 2015, Canada counted 22 LNG liquefaction plant projects - of which 17 are located in British Columbia - representing a total design capacity of 325 mmtpa. Canada has the potential to become a major LNG exporter but no project has received Final Investment Decision (FID) so far. Competition with US brown field projects with innovative business models have limited the commercial appeal of many Canadian projects relying on oil indexing. More recently, plummeting oil prices have put into question their profitability and lead to several postponements of FID reviews. This paper discusses the potential for Canada to export LNG, looking at the initial enthusiasm and wide support by public authorities and local communities but also at the economic challenges and commercial issues that are slowing the progress of these projects. In 2013, Canada owned 2,028 Bcm of proved natural gas reserves and in 2012, remaining marketable gas resources were estimated to exceed 30,000 Bcm, located mainly in the Western Canada Sedimentary Basin. In 2013, natural gas consumption grew due to higher demand from the tar sands industry and reached 90 Bcm, while marketed production rebounded slightly to 145 Bcm after 10 years of continuous decline. Net exports to the United States, the only export market for Canadian gas, kept decreasing to 55 Bcm. In the future, consumption is expected to grow at a slower rate than production and net exports to the United States to keep declining. As a consequence, LNG appears to be an ideal solution to monetize gas and to unlock these large resources. However, CEDIGAZ does not expect material LNG exports to start before 2021, but they could reach 34 mmtpa by 2035. Since the very beginning of the wave of LNG project proposals, Canadian federal and provincial authorities have appeared very supportive. At the provincial level, the government of British Columbia has multiplied initiatives to favor the emergence of a LNG industry, including by lowering

  12. LNG (Liquefied Natural Gas): emerging control; GNL (Gas Natural Liquefeito): controle de emergencia

    Energy Technology Data Exchange (ETDEWEB)

    Berardinelli, Ricardo Porto; Correa, Kleber Macedo; Moura Filho, Nelson Barboza de; Matos, Jose Eduardo Nogueira de; Fernandez, Carlos Antonio [TRANSPETRO, Rio de Janeiro, RJ (Brazil). Gerencia de Seguranca, Meio Ambiente e Saude

    2008-07-01

    The operation to Liquefied Natural Gas (LNG) is innovative for the PETROBRAS System. PETROBRAS Transporte - TRANSPETRO will operate two LNG flexible terminals. In accordance with the health, safety and environmental policy - training, education and awareness action plans were formulated by TRANSPETRO to assure the operational safety for the activity. Part of this action plan includes the training of LNG spill control and fire suppression. The training was carried out in 20 hours and divided into two parts: theoretical and practice. In the practice part, 3.000 gallons of LNG were unloaded and the students could verify the behaviour of the LNG and the effectiveness of the resources available for the emergency control. The knowledge was introduced in the company to create specific procedures, local emergency plans and develop internal instructors. (author)

  13. Waste and Encapsulation Storage Facility (WESF) Essential and Support Drawing List

    International Nuclear Information System (INIS)

    SHANNON, W.R.

    1999-01-01

    This supporting document provides a detailed list of the Essential and Support drawing for the Waste and Storage Encapsulation Facility. The drawings identified in this document will comprise the Waste Encapsulation and Storage Facility essential and support drawing list. This list will replace drawings identified as the ''WESF Essential and support drawing list''. Additionally, this document will follow the applicable requirements of HNF-PRO-242 Engineering Drawing Requirements'' and FSP-WESF-001, Section EN-1 ''Documenting Engineering Changes''. An essential drawing is defined as an engineering drawing identified by the facility staff as necessary to directly support the safe operation or maintenance of the facility. A support drawing is defined as a drawing identified by the facility staff that further describes the design details of structures, systems, or components shown on essential drawings or is frequently used by the support staff

  14. LNG peakshaving plant on the Maasvlakte, The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Bijl, P

    1975-06-01

    N.V. Nederlandse Gasunie presents the situation which led to its decision to construct a LNG peakshaving plant on the Maasvlakte. The discussion includes peaks in gas transport, the effect of peakshaving upon transportation costs, the selection of the peakshaving method, and the LNG peakshaving plant ultimately chosen. The liquefaction cycle uses 2 loops, the first an open loop obtainin g refrigeration from expansion of natural gas through a turboexpander, the second a closed loop using nitrogen as refrigerant.

  15. Proceedings of the Topical Meeting on the safety of nuclear fuel cycle intermediate storage facilities

    International Nuclear Information System (INIS)

    1998-01-01

    The CSNI Working Group on Fuel Cycle Safety held an International Topical Meeting on safety aspects of Intermediate Storage Facilities in Newby Bridge, England, from 28 to 30 October 1997. The main purpose of the meeting was to provide a forum for the exchange of information on the technical issues on the safety of nuclear fuel cycle facilities (intermediate storage). Titles of the papers are: An international view on the safety challenges to interim storage of spent fuel. Interim storage of intermediate and high-level waste in Belgium: a description and safety aspects. Encapsulated intermediate level waste product stores at Sellafield. Safety of interim storage facilities of spent fuel: the international dimension and the IAEA's activities. Reprocessing of irradiated fuel and radwaste conditioning at Belgoprocess site: an overview. Retrieval of wastes from interim storage silos at Sellafield. Outline of the fire and explosion of the bituminization facility and the activities of the investigation committee (STAIJAERI). The fire and explosion incident of the bituminization facility and the lessons learned from the incident. Study on the scenario of the fire incident and related analysis. Study on the scenario of the explosion incident and related analysis. Accident investigation board report on the May 14, 1997 chemical explosion at the plutonium reclamation facility, Hanford site, Richland, Washington. Dry interim storage of spent nuclear fuel elements in Germany. Safe and effective system for the bulk receipt and storage of light water reactor fuel prior to reprocessing. Receiving and storage of glass canisters at vitrified waste storage center of Japan Nuclear Fuel Ltd. Design and operational experience of dry cask storage systems. Sellafield MOX plant; Plant safety design (BNFL). The assessment of fault studies for intermediate term waste storage facilities within the UK nuclear regulatory regime. Non-active and active commissioning of the thermal oxide

  16. Cost comparisons of wet and dry interim storage facilities for PWR spent nuclear fuel in Korea

    International Nuclear Information System (INIS)

    Cho, Chun-Hyung; Kim, Tae-Man; Seong, Ki-Yeoul; Kim, Hyung-Jin; Yoon, Jeong-Hyoun

    2011-01-01

    Research highlights: → We compare the costs of wet and dry interim storage facilities for PWR spent fuel. → We use the parametric method and quotations to deduce unknown cost items. → Net present values and levelized unit prices are calculated for cost comparisons. → A system price is the most decisive factor in cost comparisons. - Abstract: As a part of an effort to determine the ideal storage solution for pressurized water reactor (PWR) spent nuclear fuel, a cost assessment was performed to better quantify the competitiveness of several storage types. Several storage solutions were chosen for comparison, including three dry storage concepts and a wet storage concept. The net present value (NPV) and the levelized unit cost (LUC) of each solution were calculated, taking into consideration established scenarios and facility size. Wet storage was calculated to be the most expensive solution for a 1700 MTU facility, and metal cask storage marked the highest cost for a 5000 MTU facility. Sensitivity analyses on discount rate, metal cask price, operation and maintenance cost, and facility size revealed that the system price is the most decisive factor affecting competitiveness among the storage types.

  17. Cost comparisons of wet and dry interim storage facilities for PWR spent nuclear fuel in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chun-Hyung, E-mail: skycho@krmc.or.kr [Korea Radioactive Waste Management Corporation, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Kim, Tae-Man; Seong, Ki-Yeoul; Kim, Hyung-Jin; Yoon, Jeong-Hyoun [Korea Radioactive Waste Management Corporation, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of)

    2011-05-15

    Research highlights: > We compare the costs of wet and dry interim storage facilities for PWR spent fuel. > We use the parametric method and quotations to deduce unknown cost items. > Net present values and levelized unit prices are calculated for cost comparisons. > A system price is the most decisive factor in cost comparisons. - Abstract: As a part of an effort to determine the ideal storage solution for pressurized water reactor (PWR) spent nuclear fuel, a cost assessment was performed to better quantify the competitiveness of several storage types. Several storage solutions were chosen for comparison, including three dry storage concepts and a wet storage concept. The net present value (NPV) and the levelized unit cost (LUC) of each solution were calculated, taking into consideration established scenarios and facility size. Wet storage was calculated to be the most expensive solution for a 1700 MTU facility, and metal cask storage marked the highest cost for a 5000 MTU facility. Sensitivity analyses on discount rate, metal cask price, operation and maintenance cost, and facility size revealed that the system price is the most decisive factor affecting competitiveness among the storage types.

  18. Spatial interpolation of gamma dose in radioactive waste storage facility

    Science.gov (United States)

    Harun, Nazran; Fathi Sujan, Muhammad; Zaidi Ibrahim, Mohd

    2018-01-01

    External radiation measurement for a radioactive waste storage facility in Malaysian Nuclear Agency is a part of Class G License requirement under Atomic Licensing Energy Board (AELB). The objectives of this paper are to obtain the distribution of radiation dose, create dose database and generate dose map in the storage facility. The radiation dose measurement is important to fulfil the radiation protection requirement to ensure the safety of the workers. There are 118 sampling points that had been recorded in the storage facility. The highest and lowest reading for external radiation recorded is 651 microSv/hr and 0.648 microSv/hour respectively. The calculated annual dose shows the highest and lowest reading is 1302 mSv/year and 1.3 mSv/year while the highest and lowest effective dose reading is 260.4 mSv/year and 0.26 mSv/year. The result shows that the ALARA concept along time, distance and shield principles shall be adopted to ensure the dose for the workers is kept below the dose limit regulated by AELB which is 20 mSv/year for radiation workers. This study is important for the improvement of planning and the development of shielding design for the facility.

  19. Safety report for Central Interim Storage facility for radioactive waste from small producers

    International Nuclear Information System (INIS)

    Zeleznik, N.; Mele, I.

    2004-01-01

    In 1999 the Agency for Radwaste Management took over the management of the Central Interim Storage (CIS) in Brinje, intended only for radioactive waste from industrial, medical and research applications. With the transfer of the responsibilities for the storage operation, ARAO, the new operator of the facility, received also the request from the Slovenian Nuclear Safety Administration for refurbishment and reconstruction of the storage and for preparation of the safety report for the storage with the operational conditions and limitations. In order to fulfill these requirements ARAO first thoroughly reviewed the existing documentation on the facility, the facility itself and the stored inventory. Based on the findings of this review ARAO prepared several basic documents for improvement of the current conditions in the storage facility. In October 2000 the Plan for refurbishment and modernization of the CIS was prepared, providing an integral approach towards remediation and refurbishment of the facility, optimization of the inventory arrangement and modernization of the storage and storing utilization. In October 2001 project documentation for renewal of electric installations, water supply and sewage system, ventilation system, the improvements of the fire protection and remediation of minor defects discovered in building were completed according to the Act on Construction. In July 2003 the safety report was prepared, based on the facility status after the completion of the reconstruction works. It takes into account all improvements and changes introduced by the refurbishment and reconstruction of the facility according to project documentation. Besides the basic characteristics of the location and its surrounding, it also gives the technical description of the facility together with proposed solutions for the renewal of electric installations, renovation of water supply and sewage system, refurbishment of the ventilation system, the improvement of fire

  20. 190-C Facility <90 Day Storage Pad training plan

    International Nuclear Information System (INIS)

    Little, N.C.

    1996-12-01

    This is the Environmental Restoration Contractor (ERC) team training plan for the 190-C Facility <90 Day Storage Pad of Hazardous Waste. It is intended to meet the requirements of Washington Administrative Code (WAC) 173-303-330 and the Hanford Dangerous Waste Permit. Training unrelated to compliance with WAC 173-303-330 is not addressed in this training plan. WAC 173-303-330(1)(d)(ii, v, vi) requires that personnel be familiarized, where applicable, with waste feed cut-off systems, response to ground-water contamination incidents, and shutdown of operations. These are not applicable to 190-C Facility <90 Day Storage Pad, and are therefore not covered in this training plan

  1. 75 FR 13755 - Freeport LNG Development, L.P.; Application To Amend Blanket Authorization To Export Liquefied...

    Science.gov (United States)

    2010-03-23

    ... Delaware limited partnership with one general partner, Freeport LNG-GP, Inc., a Delaware corporation, which...). Freeport LNG's limited partners are: (1) Freeport LNG Investments, LLLP, a Delaware limited liability limited partnership, which owns a 45% limited partnership interest in Freeport LNG; (2) Cheniere FLNG, L.P...

  2. An analytical model for computation of reliability of waste management facilities with intermediate storages

    International Nuclear Information System (INIS)

    Kallweit, A.; Schumacher, F.

    1977-01-01

    A high reliability is called for waste management facilities within the fuel cycle of nuclear power stations which can be fulfilled by providing intermediate storage facilities and reserve capacities. In this report a model based on the theory of Markov processes is described which allows computation of reliability characteristics of waste management facilities containing intermediate storage facilities. The application of the model is demonstrated by an example. (orig.) [de

  3. Consensual decision-making model based on game theory for LNG processes

    International Nuclear Information System (INIS)

    Castillo, Luis; Dorao, Carlos A.

    2012-01-01

    Highlights: ► A Decision Making (DM) approach for LNG projects based on game theory is presented. ► DM framework was tested with two different cases, using analytical models and a simple LNG process. ► The problems were solved by using a Genetic Algorithm (GA) binary coding and Nash-GA. ► Integrated models from the design and optimization of the process could result in more realistic outcome. ► The major challenge in such a framework is related to the uncertainties in the market models. - Abstract: Decision-Making (DM) in LNG projects is a quite complex process due to the number of actors, approval phases, large investments and capital return in the long time. Furthermore, due to the very high investment of a LNG project, a detailed and efficient DM process is required in order to minimize risks. In this work a Decision-Making (DM) approach for LNG projects is presented. The approach is based on a consensus algorithm to address the consensus output over a common value using cost functions within a framework based on game theory. The DM framework was tested with two different cases. The first case was used for evaluating the performance of the framework with analytical models, while the second case corresponds to a simple LNG process. The problems were solved by using a Genetic Algorithm (GA) binary coding and Nash-GA. The results of the DM framework in the LNG project indicate that considering an integrated DM model and including the markets role from the design and optimization of the process more realistic outcome could be obtained. However, the major challenge in such a framework is related to the uncertainties in the market models.

  4. Techno-economic Analysis of Acid Gas Removal and Liquefaction for Pressurized LNG

    Science.gov (United States)

    Lee, S. H.; Seo, Y. K.; Chang, D. J.

    2018-05-01

    This study estimated the life cycle cost (LCC) of an acid gas removal and a liquefaction processes for Pressurized LNG (PLNG) production and compared the results with the cost of normal LNG production. PLNG is pressurized LNG that is liquefied at a higher pressure and temperature than normal LNG. Due to the high temperature, the energy for liquefaction is reduced. The allowable CO2 concentration in PLNG is increased up to 3 mol% when the product pressure 25 bar. An amine process with 35 wt% of diethanolamine (DEA) aqueous solution and a nitrogen expansion cycle were selected for the acid gas removal and the liquefaction processes, respectively. Two types of CO2 concentration in the feed gas were investigated to analyze their impacts on the acid gas removal unit. When the CO2 concentration was 5 mol%, the acid gas removal unit was required for both LNG and PLNG production. However, the acid gas removal unit was not necessary in PLNG when the concentration was 0.5 mol% and the pressure was higher than 15 bar. The results showed that the LCC of PLNG was reduced by almost 35% relative to that of LNG when the PLNG pressure was higher than 15 bar.

  5. LNG [liquefied natural gas]: Fueling energy demand in the Far East

    International Nuclear Information System (INIS)

    Brown, R.L.

    1993-01-01

    An overview is presented of the supply and demand outlook for liquefied natural gas (LNG) in the far east, and the basic elements of an LNG supply project in Japan. Power generation is the primary market for LNG in the far east, due to a preference for energy supply diversity, large undeveloped gas resources, drastic improvements in power generation technology, and environmental advantages of natural gas. India and mainland China represent huge potential markets, and projects are under discussion to bring gas by pipeline from Iran or Qatar to both Pakistan or India. The economics of LNG plant development in Japan, including large ($4 billion for field and plant development) capital costs, long-term contracts, government involvement, and gas prices are discussed. Falling yen/dollar exchange rates have substantially bettered the Japanese economy in terms of gas prices. 11 figs., 2 tabs

  6. Waste encapsulation and storage facility function analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-09-01

    The document contains the functions, function definitions, function interfaces, function interface definitions, Input Computer Automated Manufacturing Definition (IDEFO) diagrams, and a function hierarchy chart that describe what needs to be performed to deactivate Waste Encapsulation and Storage Facility (WESF)

  7. Long term integrity of spent fuel and construction materials for dry storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, T [CRIEPI (Japan)

    2012-07-01

    In Japan, two dry storage facilities at reactor sites have already been operating since 1995 and 2002, respectively. Additionally, a large scale dry storage facility away from reactor sites is under safety examination for license near the coast and desired to start its operation in 2010. Its final storage capacity is 5,000tU. It is therefore necessary to obtain and evaluate the related data on integrity of spent fuels loaded into and construction materials of casks during long term dry storage. The objectives are: - Spent fuel rod: To evaluate hydrogen migration along axial fuel direction on irradiated claddings stored for twenty years in air; To evaluate pellet oxidation behaviour for high burn-up UO{sub 2} fuels; - Construction materials for dry storage facilities: To evaluate long term reliability of welded stainless steel canister under stress corrosion cracking (SCC) environment; To evaluate long term integrity of concrete cask under carbonation and salt attack environment; To evaluate integrity of sealability of metal gasket under long term storage and short term accidental impact force.

  8. Modeling the release, spreading, and burning of LNG, LPG, and gasoline on water

    International Nuclear Information System (INIS)

    Johnson, David W.; Cornwell, John B.

    2007-01-01

    Current interest in the shipment of liquefied natural gas (LNG) has renewed the debate about the safety of shipping large volumes of flammable fuels. The size of a spreading pool following a release of LNG from an LNG tank ship has been the subject of numerous papers and studies dating back to the mid-1970s. Several papers have presented idealized views of how the LNG would be released and spread across a quiescent water surface. There is a considerable amount of publicly available material describing these idealized releases, but little discussion of how other flammable fuels would behave if released from similar sized ships. The purpose of this paper is to determine whether the models currently available from the United States Federal Energy Regulatory Commission (FERC) can be used to simulate the release, spreading, vaporization, and pool fire impacts for materials other than LNG, and if so, identify which material-specific parameters are required. The review of the basic equations and principles in FERC's LNG release, spreading, and burning models did not reveal a critical fault that would prevent their use in evaluating the consequences of other flammable fluid releases. With the correct physical data, the models can be used with the same level of confidence for materials such as LPG and gasoline as they are for LNG

  9. The dynamic storage and restart facilities in MABEL-2

    International Nuclear Information System (INIS)

    Nye, M.T.S.

    1983-12-01

    MABEL-2 is a FORTRAN program for calculating clad ballooning in a PWR during a LOCA. Originally written with fixed array storage, the use of the code has been extended by including dynamic storage. The lengths of the arrays in the program are set at execution time, varying from run to run. This allows much greater freedom in the choice of mesh and the size of case run. The use of computer memory is also more efficient. In addition a restart facility has been included which allows the user to break off and restart execution of the program (once or many times) during a transient. By using this facility much longer calculations can be run. Should an error in either input data or program become apparent late in a transient, the case need only be re-run from the last dump because some input data can be altered at restart. The use of these new facilities and the coding changes are described. (author)

  10. Decree no. 2004-251 from March 19, 2004 relative to public utility obligations in the gas sector

    International Nuclear Information System (INIS)

    2004-03-01

    This decree defines the public utility obligations that gas suppliers and gas facility operators (transportation and distribution networks, underground storage facilities, LNG facilities) have to fulfill in order to ensure without interruption the continuity of gas supplies to their clients. (J.S.)

  11. The Evolving Role of LNG in the Gas Market

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, D.; Van der Linde, C.; Smeenk, T.

    2010-09-15

    The global energy scene is changing rapidly. Producing countries are tightening their grip on the development of their resources, emerging (and other) economies are taking a direct political interest in securing supplies, politics and business are increasingly integrated in international energy deals, and energy is on the political agenda of every government. Compounding this, prices of energy skyrocketed over the four years leading up to August 2008. As a result more gas resources became economical to develop, creating more supply potential than before. However, the severe crisis in international financial markets and national banking systems is now changing this outlook. Prices have come down, and this, combined with the current decline in economic activity, is likely to affect the timing of investment decisions on new pipeline and liquefied natural gas (LNG) projects. The impact on national economies on energy demand, and on the relative position of gas in the energy market could be considerable. At the same time, some consuming countries are also reviewing the environmental effect of their energy policies and the security of their energy supply. Any change in these policies could affect the place of gas in the energy mix. These developments are still unfolding; it is difficult to say at this stage in what ways and to what extent the position of natural gas will change. Nevertheless, some expect further globalization of the gas business, with different market structures, more fragmented value chains, more flexibility in supplies to markets, and shorter term contracts. In this respect, LNG is regarded as the major potential game changer. Indeed the LNG business model has been changing over recent years into one of greater flexibility, promising producers higher rewards, albeit in return for higher risks. More recently the perspective of high rewards in a market hungry for supplies has changed radically, at least for the next few years. A global crisis, lower oil

  12. The Evolving Role of LNG in the Gas Market

    International Nuclear Information System (INIS)

    De Jong, D.; Van der Linde, C.; Smeenk, T.

    2010-01-01

    The global energy scene is changing rapidly. Producing countries are tightening their grip on the development of their resources, emerging (and other) economies are taking a direct political interest in securing supplies, politics and business are increasingly integrated in international energy deals, and energy is on the political agenda of every government. Compounding this, prices of energy skyrocketed over the four years leading up to August 2008. As a result more gas resources became economical to develop, creating more supply potential than before. However, the severe crisis in international financial markets and national banking systems is now changing this outlook. Prices have come down, and this, combined with the current decline in economic activity, is likely to affect the timing of investment decisions on new pipeline and liquefied natural gas (LNG) projects. The impact on national economies on energy demand, and on the relative position of gas in the energy market could be considerable. At the same time, some consuming countries are also reviewing the environmental effect of their energy policies and the security of their energy supply. Any change in these policies could affect the place of gas in the energy mix. These developments are still unfolding; it is difficult to say at this stage in what ways and to what extent the position of natural gas will change. Nevertheless, some expect further globalization of the gas business, with different market structures, more fragmented value chains, more flexibility in supplies to markets, and shorter term contracts. In this respect, LNG is regarded as the major potential game changer. Indeed the LNG business model has been changing over recent years into one of greater flexibility, promising producers higher rewards, albeit in return for higher risks. More recently the perspective of high rewards in a market hungry for supplies has changed radically, at least for the next few years. A global crisis, lower oil

  13. Understanding and Managing Aging of Spent Nuclear Fuel and Facility Components in Wet Storage

    International Nuclear Information System (INIS)

    Johnson, A. B.

    2007-01-01

    Storage of nuclear fuel after it has been discharged from reactors has become the leading spent fuel management option. Many storage facilities are being required to operate longer than originally anticipated. Aging is a term that has emerged to focus attention on the consequences of extended operation on systems, structures, and components that comprise the storage facilities. The key to mitigation of age-related degradation in storage facilities is to implement effective strategies to understand and manage aging of the facility materials. A systematic approach to preclude serious effects of age-related degradation is addressed in this paper, directed principally to smaller facilities (test and research reactors). The first need is to assess the materials that comprise the facility and the environments that they are subject to. Access to historical data on facility design, fabrication, and operation can facilitate assessment of expected materials performance. Methods to assess the current condition of facility materials are summarized in the paper. Each facility needs an aging management plan to define the scope of the management program, involving identification of the materials that need specific actions to manage age-related degradation. For each material identified, one or more aging management programs are developed and become part of the plan Several national and international organizations have invested in development of comprehensive and systematic approaches to aging management. A method developed by the US Nuclear Regulatory Commission is recommended as a concise template to organize measures to effectively manage age-related degradation of storage facility materials, including the scope of inspection, surveillance, and maintenance that is needed to assure successful operation of the facility over its required life. Important to effective aging management is a staff that is alert for evidence of materials degradation and committed to carry out the aging

  14. Clean sailing. LNG terminals. Maritime infrastructure for liquefied natural gas; Sauber auf See. LNG-Terminals. Maritime Infrastruktur fuer fluessiges Erdgas

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2013-09-01

    Ports act as essential hubs in the global economy. But the rise in maritime traffic is taking a toll on the quality of air in ports and out at sea. From 2015 onwards, threshold governing harmful emissions are being tightened in a bid to clear the air. All of which is driving interest in more environmentally sound fuels. Liquefied natural gas (LNG) is the perfect fit, more than complying with the upcoming regulations. To enable its widespread adoption, Linde is working full steam ahead to create a network of LNG terminals in Europe. (orig.)

  15. Application tests of a new-type LNG rapid gasification unit

    Directory of Open Access Journals (Sweden)

    Ping Yan

    2017-01-01

    Full Text Available Liquefied natural gas (LNG is stored under low temperature and high pressure. It has to be gasified before it is used. Therefore, LNG gasification unit is essential and it is vital to the high-efficiency utilization of LNG. In this paper, a new-type LNG rapid gasification unit was developed. Adopted in this unit are some innovative technologies authorized with the national patent of invention, such as the umbrella-shape gas flow circle unit, the flue gas circulation system and the water feeding system, which help to guarantee its operation safety and increase its operation efficiency. After it was justified in lab test, the unit for industrial application was designed and manufactured and then tested to verify its design rationality. The results show that the new-type LNG rapid gasification unit meets the design requirements in the aspect of efficiency, exhaust gas loss, radiation loss and fuel gas consumption rate; at a load of 1800–2200 m3/h, its efficiency is over 95%; at a load of 1976.0 m3/h which is close to the design value of 2000 m3/h, its efficiency is 96.34% or even up to 2800 m3/h. This new-type LNG rapid gasification unit is adaptable to a large range of loads and can adapt to the rapid increase of external load. Its fuel gas consumption rate is only 1.5%, which is in the range of energy conservation. It presents the advantages of high heating efficiency, rapid startup, high gasification rate, compact structure, small land occupation and invulnerability to the environment, therefore, it is applicable to the middle and small independent regions which cannot be connected to the natural gas supply pipeline networks due to various reasons.

  16. Numerical investigation of supercritical LNG convective heat transfer in a horizontal serpentine tube

    Science.gov (United States)

    Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu

    2016-09-01

    The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.

  17. Centralized interim storage facility for radioactive wastes at Wuerenlingen (ZWILAG)

    International Nuclear Information System (INIS)

    Lutz, H.R.; Schnetzler, U.

    1994-01-01

    Radioactive waste management in Switzerland is the responsibility of the waste producers; in this respect, the law requires permanent, safe management of the wastes by means of final disposal. Nagra is responsible for the research and development work associated with final disposal. Processing of the wastes into a form suitable for disposal, as well as interim storage, remain the responsibility of the waste producers. In order to supplement the existing conditioning and storage facilities at the nuclear power plants and to replace the outdated waste treatment plant at the Paul Scherrer Institute (PSI) at Wuerenlingen, the operators of the Swiss nuclear power plants are planning a joint treatment and storage facility at the PSI-East site. The organisation ''Zwischenlager Wuerenlingen AG'', which was set up at the beginning of 1990, has been entrusted with this task. (author) 4 figs

  18. Ventilation and air conditioning system in waste treatment and storage facilities

    International Nuclear Information System (INIS)

    Kinoshita, Hirotsugu; Sugawara, Kazushige.

    1987-01-01

    So far, the measures concerning the facilities for treating and storing radioactive wastes in nuclear fuel cycle in Japan were in the state which cannot be said to be sufficient. In order to cope with this situation, electric power companies constructed and operated radioactive waste concentration and volume reduction facilities, solid waste storing facilities for drums, high level solid waste storing facilities, spent fuel cask preserving facilities and so on successively in the premises of nuclear power stations, and for the wastes expected in future, the research and the construction plan of the facilities for treating and storing low, medium and high level wastes have been advanced. The ventilation and air conditioning system for these facilities is the important auxiliary system which has the mission of maintaining safe and pleasant environment in the facilities and lowering as far as possible the release of radioactive substances to outside. The outline of waste treatment and storage facilities is explained. The design condition, ventilation and air conditioning method, the features of respective waste treatment and storage facilities, and the problems for the future are described. Hereafter, mechanical ventilation system continues to be the main system, and filters become waste, while the exchange of filters is accompanied by the radiation exposure of workers. (Kako, I.)

  19. Structural response of cargo containment systems in LNG carriers under ice loads

    International Nuclear Information System (INIS)

    Wang, B.; Yu, H.; Basu, R.; Lee, H.; Kwon, J.C.; Jeon, B.Y.; Kim, J.H.; Daley, C.; Kendrick, A.

    2008-01-01

    Gas exploration has been extended into the Arctic region such as in the Russian Arctic area, because of the increasing demand for energy resources. As a result, shipping in ice-covered seas is also increasing. Many technical issues are involved in ensuring the safety of liquefied natural gas (LNG) ships during the transportation. This paper discussed an investigation of ship-ice interaction scenarios for possible operation routes in Arctic areas. Six scenarios were selected to study the structural response of cargo containment systems (CCS) in both membrane and spherical types of LNG ships. For selected ship-ice interaction scenarios, ice loads and loading areas in the hull structure were determined based on the energy theory. The configurations of LNG carriers were discussed and illustrated. The paper also outlined the assessment criteria and structure analysis procedures. It was concluded that the strength of the CCS of membrane-type LNG carrier and the strength of the skirt structure of spherical-type LNG carrier were strong enough under the design ice loads. 13 refs., 9 tabs., 18 figs

  20. LNG containment release: Comparison of NFPA-59A and 49-CFR-193

    International Nuclear Information System (INIS)

    West, H.H.; Pfenning, D.B.

    1994-01-01

    Due to the potential wide area impact of an unplanned LNG (Liquefied Natural Gas) release, the National Fire Protection Association (NFPA) and later the US Department of Transportation issued standards and regulations which included specific methodologies for analyzing the consequence of an accidental LNG release. The concept of a ''design spill'' was defined in order to evaluate the consequences of an accidental LNG release, with particular attention to the influence of safety protective measures. In addition to specifying the magnitude of the unplanned release, the design spill also specified some of the parameters for estimation of the downwind LNG vapor dispersion and the extent of the radiant heat from an LNG pool fire. Since the NFPA-59A and 49-CFR-193 standards were the first in-depth regulation to address consequence analysis estimation for petroleum components, it is particularly important to consider their details in light of the recently proposed EPA 40-CFR-68 regulations [Risk Management for Chemical Accidental Release Prevention] which specifically address consequence analysis as a part of process safety management

  1. Fuel Assemblies Thermal Analysis in the New Spent Fuel Storage Facility at Inshass Site

    International Nuclear Information System (INIS)

    Khattab, M.; Mariy, Ahmed

    1999-01-01

    New Wet Storage Facility (NSF) is constructed at Inshass site to solve the problem of spent fuel storage capacity of ETRR-1 reactor . The Engineering Safety Heat Transfer Features t hat characterize the new facility are presented. Thermal analysis including different scenarios of pool heat load and safety limits are discussed . Cladding temperature limit during handling and storage process are specified for safe transfer of fuel

  2. Alternative natural gas contract and pricing structures and incentives for the LNG industry

    International Nuclear Information System (INIS)

    Attanasi, E.D.

    1991-01-01

    Gas conversion to liquefied gas (LNG) and transport by LNG tankers is one option for meeting expanding gas consumption and for gas traded internationally. This paper examines the impact of the traditional gas contract provisions of indefinite pricing, market out price ceilings, and take-or-pay requirements on the profitability of LNG projects in the context of markets characterized by price and quantity uncertainty. Simulation of experiments are used to examine and calibrate the effects of those provisions. The results provide guidance to operators, host countries and purchasers in structuring such contracts. The paper also assesses prospects of future expansion of world LNG capacity. (author). 11 refs, 3 figs, 4 tabs

  3. Modification of an existing radwaste facility to provide onsite low level waste storage

    International Nuclear Information System (INIS)

    Ault, G.M.; Reiss, J.F.; Commonwealth Edison Co., Chicago, IL)

    1985-01-01

    The decision of whether or not to install onsite storage capacity for low-level radioactive waste is dictated by individual utility circumstances. Commonwealth Edison has decided to construct facilities to store low-level radwaste onsite at each of their four operating nuclear stations, and they plan to have those facilities in operation by January, 1986. At Dresden, that onsite storage capacity is being provided by modifying an existing radwaste building which already has installed a remotely-operated precision-placement type crane. The purposes of this paper are to describe: (1) how Commonwealth Edison arrived at the decision to construct onsite storage facilities as a hedge against possible disruption of burial site availability in January, 1986; (2) why the desire to minimize the capital investment for this protection led to selection of an uncomplicated design for their ''standard'' facility and to the decision to modify an existing building at Dresden rather than construct a new one; and (3) what is being done to adapt the Dresden 1 Decontamination/Radwaste Building for extended onsite storage

  4. Performance of cryogenic thermoelectric generators in LNG cold energy utilization

    International Nuclear Information System (INIS)

    Sun Wei; Hu Peng; Chen Zeshao; Jia Lei

    2005-01-01

    The cold energy of liquefied natural gas (LNG) is generally wasted when the LNG is extracted for utilization. This paper proposes cryogenic thermoelectric generators to recover this cold energy. The theoretical performance of the generator has been analyzed. An analytical method and numerical method of calculation of the optimum parameters of the generator have been demonstrated

  5. Administrative Court Stade, decision of March 22, 1985 (interim storage facility at Gorleben)

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This decision deals with the planned interim storage facility of Gorleben (F.R.G.). The provisions introduced by the 4th ammendment to sec. 5 para. 6 and 9a to 9c of the German Atomic Energy Act might contain a definite regulation of the 'Entsorgung' of nuclear power stations. Sec. 6 of the Atomic Energy Act is not applicable to interim storage facilities because irradiated nuclear fuel has a double nature: It is spent fuel and nuclear waste as well. Considering current licensing procedures of construction and operation of nuclear installations in the field of 'Entsorgung', special legal regulations for the construction and operation of an interim storage facility have to be required. (CW)

  6. Technical, economic and institutional aspects of regional spent fuel storage facilities

    International Nuclear Information System (INIS)

    2005-11-01

    A particular challenge facing countries with small nuclear programmes is the preparation for extended interim storage and then disposal of their spent nuclear fuel. The costs and complications of providing for away-from-reactor storage facilities and/or geological repositories for relatively small amounts of spent fuel may be prohibitively high, motivating interest in regional solutions. This publication addresses the technical, economic and institutional aspects of regional spent fuel storage facilities (RSFSF) and is based on the results of a series of meetings on this topic with participants from IAEA Member States. Topics discussed include safety criteria and standards, safeguards and physical protection, fuel acceptance criteria, long term stability of systems and stored fuel, selection of site, infrastructure aspects, storage technology, licensing, operations, transport, decommissioning, as well as research and development. Furthermore the publication comprises economic, financial and institutional considerations including organizations and legal aspects followed by political and public acceptance and ethical considerations. Approaches and processes for implementation are discussed, as well as the overall benefits and risks of implementing a regional facility. It is illustrated that implementing a RSFSF facility would involve simultaneously addressing a wide range of diverse challenges. The appendix to this report tabulates the numerous issues that have been touched upon in the study. It appears, however, from the discussions that the challenges can in principle be met; the RSFSF concept is technically feasible and potentially economically viable. The technical committees producing this report did not identify any obvious institutional deficiencies that would prevent completion of such a project. Storing spent fuel in a few safe, reliable, secure facilities could enhance safeguards, physical protection and non-proliferation benefits. The committee also

  7. Training simulator for operations at LNG terminals

    International Nuclear Information System (INIS)

    Tsuta, T.; Yamamoto, K.; Tetsuka, S.; Koyama, K.

    1997-01-01

    The Tokyo Gas LNG terminals are among the major energy centers of the Tokyo area, supplying 8 million customers with city gas, and also supplying fuel for thermal power generation at the neighboring thermal power plant operated by the Tokyo Electric Power Company. For this reason, in the event of an emergency at the terminal operators have to be able to respond quickly and accurately to restore operations and prevent secondary damage. Modern LNG terminals are highly reliable and are equipped with backup systems, and occurrences of major trouble are now almost nil. Operators therefore have to be trained to respond to emergencies using simulators, in order to heighten their emergency response capabilities. Tokyo Gas Co., Ltd. has long been aware of the need for simulators and has used them in training, but a new large-scale, real-time simulator has now developed in response to new training needs, applying previously accumulated expertise to create a model of an entire LNG terminal incorporating new features. The development of this new simulator has made possible training for emergencies affecting an entire terminal, and this has been very effective in raising the standards of operators. (au)

  8. LNG terminal location still a tossup

    Index Scriptorium Estoniae

    2011-01-01

    Lätti rajatava LNG terminali asukoht pole veel teada. 16. märtsil kohtus Poola president Bronislaw Komorowki Läti riigipea Valdis Zatlersiga ja kiitis selle projekti heaks. Venemaast energiasõltumatuse olulisusest

  9. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    Energy Technology Data Exchange (ETDEWEB)

    Lamolla, Meritxell Martell [MERIENCE Strategic Thinking, 08734 Olerdola, Barcelona (Spain)

    2012-07-01

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. This paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)

  10. Meeting the energy needs of the northeast : the role for LNG

    International Nuclear Information System (INIS)

    Van der Put, J.

    2004-01-01

    This presentation outlined the role of liquefied natural gas (LNG) in meeting the energy requirements of the northeastern regions of the United States and Canada, as seen from the perspective of TransCanada. The need for LNG to meet projected growth in natural gas demand was presented in the context of a business model for TransCanada's entry into the LNG market. A plan for the successful siting and construction of import terminals in various strategic locations in the Northeast was presented. Issues surrounding supply and demand for LNG in North America, with specific reference to the Northeastern regions, were examined. Tables of existing import terminals were presented. Forecasts of demand growth were provided as well as details of natural gas transmission and power assets. A detailed description of the Fairwinds Project included existing and proposed pipelines, site descriptions and an outline of a stakeholder engagement campaign with examples of support and opposition as well as community impacts of the project. A behavioral guideline suggested that specific commitments should be made rather than generalized promises. A list of lessons learned from the Fairwinds project was also included. The potential to land LNG in Quebec was examined, with details of the rationale behind the proposed projects, shipping distance advantages and ice management. 16 figs

  11. Conceptual design report: Nuclear materials storage facility renovation. Part 6, Alternatives study

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for material and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment 111-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VI - Alternatives Study, presents a study of the different storage/containment options considered for NMSF

  12. File list: DNS.Lng.20.AllAg.Lung_adenocarcinoma [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.20.AllAg.Lung_adenocarcinoma mm9 DNase-seq Lung Lung adenocarcinoma http://...dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Lng.20.AllAg.Lung_adenocarcinoma.bed ...

  13. Trading in LNG and natural gas

    International Nuclear Information System (INIS)

    1992-01-01

    We have examined the market for natural gas from a number of viewpoints, starting with the role of natural gas in the global energy market where its 20% share of primary energy demand has been captured in the space of almost as many years. In discussion regional energy markets we cover the disparities between supply and demand which give rise to trade by pipeline, and by sea in the form of liquefied natural gas (LNG). Both have in fact increased steadily in recent years, yet even in 1991, only 12-15% of total gas production was traded across international boundaries, whereas for oil it was closer to 40%. For the moment pipeline trade remains heavily concentrated in Europe and North America, and it is in the LNG sector where the spread of projects, both existing and planned, is more global in nature. We examine the development of LNG trades and the implications for shipping. Finally, we look at transportation costs, which are likely to be an important component in the viability of many of the natural gas export schemes now under review. There is good reason to be ''bullish'' about parts of the natural gas industry but this Report suggests that there are areas of concern which could impinge on the development of the market in the 1990s. (author)

  14. 49 CFR 193.2509 - Emergency procedures.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES... emergency, including catastrophic failure of an LNG storage tank. (4) Cooperating with appropriate local...

  15. European gas markets and Russian LNG. Prospects for the development of European gas markets and model simulations of possible new LNG supplies from year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Eldegard, Tom [Foundation for Research in Economics and Business Administration, Bergen (Norway)

    1996-07-01

    The study aims at clarifying the framework for possible LNG exports from Northern Russia and focuses on the European natural gas markets. The first stage provides general background information on the market structure and related topics. In the second stage this information is used to develop a formal market model and subject it to simulations with various assumptions of the future gas supply. The model is described and results from simulations are given. In the first stage facts from the history of the European natural gas market are outlined. Underlying conditions for the development of natural gas markets in Europe are addressed. The EU has been promoting trade liberalisation in the energy sector but most counties resist freer gas trade across the boarders. New infrastructure development for natural gas are either underway or planned. Some important projects are mentioned. Gas in a global perspective is discussed. The cost structure of the LNG chain is mentioned and an overview of existing LNG export capacities world-wide and major reception terminals in Europe and the USA is given. The second stage employs a scenario analysis to evaluate the economic effects of hypothetical LNG deliveries from Northern Russia. The model is developed for the analysis of West European natural gas markets and designed to allow users to create a structural system of interconnected producers and market regions. Basic assumptions for the evolution of natural gas markets till 2005 is developed and base case scenarios calculated for the years 2000 and 2005 and used as a point of reference for the alternative scenarios considered. According to the analysis the introduction of a new LNG supplier in the European gas market will inflict a substantial loss upon all the existing producers. The primary keys to this result are the assumptions made for gas demand and supply capacity. The LNG alternative will hardly be approved for purely economic reasons as long as the Russians maintain

  16. European gas markets and Russian LNG. Prospects for the development of European gas markets and model simulations of possible new LNG supplies from year 2000

    International Nuclear Information System (INIS)

    Eldegard, Tom

    1996-01-01

    The study aims at clarifying the framework for possible LNG exports from Northern Russia and focuses on the European natural gas markets. The first stage provides general background information on the market structure and related topics. In the second stage this information is used to develop a formal market model and subject it to simulations with various assumptions of the future gas supply. The model is described and results from simulations are given. In the first stage facts from the history of the European natural gas market are outlined. Underlying conditions for the development of natural gas markets in Europe are addressed. The EU has been promoting trade liberalisation in the energy sector but most counties resist freer gas trade across the boarders. New infrastructure development for natural gas are either underway or planned. Some important projects are mentioned. Gas in a global perspective is discussed. The cost structure of the LNG chain is mentioned and an overview of existing LNG export capacities world-wide and major reception terminals in Europe and the USA is given. The second stage employs a scenario analysis to evaluate the economic effects of hypothetical LNG deliveries from Northern Russia. The model is developed for the analysis of West European natural gas markets and designed to allow users to create a structural system of interconnected producers and market regions. Basic assumptions for the evolution of natural gas markets till 2005 is developed and base case scenarios calculated for the years 2000 and 2005 and used as a point of reference for the alternative scenarios considered. According to the analysis the introduction of a new LNG supplier in the European gas market will inflict a substantial loss upon all the existing producers. The primary keys to this result are the assumptions made for gas demand and supply capacity. The LNG alternative will hardly be approved for purely economic reasons as long as the Russians maintain

  17. Czech interim spent fuel storage facility: operation experience, inspections and future plans

    International Nuclear Information System (INIS)

    Fajman, V.; Bartak, L.; Coufal, J.; Brzobohaty, K.; Kuba, S.

    1999-01-01

    The paper describes the situation in the spent fuel management in the Czech Republic. The interim Spent Fuel Storage Facility (ISFSF) at Dukovany, which was commissioned in January 1997 and is using dual transport and storage CASTOR - 440/84 casks, is briefly described. The authors deal with their experience in operating and inspecting the ISFSF Dukovany. The structure of the basic safety document 'Limits and Conditions of Normal Operation' is also mentioned, including the experience of the performance. The inspection activities focused on permanent checking of the leak tightness of the CASTOR 440/84 casks, the maximum cask temperature and inspections monitoring both the neutron and gamma dose rate as well as the surface contamination. The results of the inspections are mentioned in the presentation as well. The operator's experience with re-opening partly loaded and already dried CASTOR-440/84 cask, after its transport from NPP Jaslovske Bohunice to the NPP Dukovany is also described. The paper introduces briefly the concept of future spent fuel storage both from the NPP Dukovany and the NPP Temelin, as prepared by the CEZ. The preparatory work for the Central Interim Spent Nuclear Fuel Storage Facility (CISFSF) in the Czech Republic and the information concerning the planned storage technology for this facility is discussed in the paper as well. The authors describe the site selection process and the preparatory steps concerning new spent fuel facility construction including the Environmental Impact Assessment studies. (author)

  18. Licensing of spent fuel storage facility including its physical protection in the Czech Republic

    International Nuclear Information System (INIS)

    Fajman, V.; Sedlacek, J.

    1992-01-01

    The current spent fuel management policies as practised in the Czech Republic are described, and the conception of the fuel cycle back end is outlined. The general principles and the legislative framework are explained of the licensing process concerning spent fuel interim storage facilities, including the environmental impact assessment component. The history is outlined of the licensing process for the spent fuel storage facility at the Dukovany NPP site, including the licensing of the transport and storage cask. The basic requirements placed on the physical safeguarding of the facility and on the licensing process are given. (J.B.). 13 refs

  19. Studies and research concerning BNFP: converting reprocessing plant's fuel receiving and storage area to an away-from-reactor (AFR) storage facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, Jim E.; Shallo, Frank A.; Musselwhite, E Larry; Wiedemann, George F.; Young, Moylen

    1979-09-01

    Converting a reprocessing plant's fuel receiving and storage station into an Away-From-Reactor storage facility is evaluated in this report. An engineering analysis is developed which includes (1) equipment modifications to the facility including the physical protection system, (2) planning schedules for licensing-related activities, and (3) cost estimates for implementing such a facility conversion. Storage capacities are evaluated using the presently available pools of the existing Barnwell Nuclear Fuel Plant-Fuel Receiving and Storage Station (BNFP-FRSS) as a model.

  20. File list: Pol.Lng.10.AllAg.Lung_adenocarcinoma [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.10.AllAg.Lung_adenocarcinoma mm9 RNA polymerase Lung Lung adenocarcinoma ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Lng.10.AllAg.Lung_adenocarcinoma.bed ...

  1. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    King, J.W.

    1993-08-01

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.

  2. LNG. Practice and policy. Meeting report NeVER, November 20, 2006

    International Nuclear Information System (INIS)

    Holzhauer, R.W.

    2007-01-01

    Report is given of a meeting of the Netherlands Association for Energy Legislation (NeVER), which was held November 16, 2006, in Amsterdam, on the subject of LNG. More in particular third party access to LNG-terminals and related exemption regulations in Europe and the Netherlands [nl

  3. Return of isotope capsules to the Waste Encapsulation and Storage Facility

    International Nuclear Information System (INIS)

    1994-05-01

    Cesium-137 and strontium-90 isotopes were removed from Hanford Site high-level tank wastes, and were encapsulated at the Hanford Site's Waste Encapsulation and Storage Facility (WESF), beginning in 1974. Over the past several years, radioactive isotope capsules have been sent to other U.S. Department of Energy (DOE)-controlled sites to be used for research and development applications, as well as leased to a number of commercial facilities for commercial applications (e.g., sterilization of medical supplies). Due to uncertainty regarding the cause of the release of a small quantity of cesium-137 to an isolated water basin from a WESF cesium-137 capsule in a commercial facility in Decatur, Georgia, the DOE has determined that it needs to return leased capsules from IOTECH, Incorporated (IOTECH), Northglenn, Colorado; Pacific Northwest Laboratory (PNL), Richland, Washington; and the Applied Radiant Energy Corporation (ARECO), Lynchburg, Virginia; to the WESF Facility on the Hanford Site, to ensure safe management and storage, pending final disposition. All of these capsules located at the commercial facilities were successfully tested during Calendar Year 1993, and none showed any indication of off-normal specifications. Storage at the WESF will continue under the actions selected in the Record of Decision for the Final Environmental Impact Statement: Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland, Washington

  4. Safety analysis report for the mixed waste storage facility and portable storage units at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Peatross, R.

    1997-01-01

    The Mixed Waste Storage Facility (MWSF) including the Portable Storage Units (PSUs) is a government-owned contractor-operated facility located at the Idaho National Engineering Laboratory (INEL). Lockheed Martin Idaho Technologies Company (LMITCO) is the current operating contractor and facility Architect/Engineer as of September 1996. The operating contractor is referred to as open-quotes the Companyclose quotes or open-quotes Companyclose quotes throughout this document. Oversight of MWSF is provided by the Department of Energy Idaho Operations Office (DOE-ID). The MWSF is located in the Power Burst Facility (PBF) Waste Reduction Operations Complex (WROC) Area, approximately 10.6 km (6.6 mi) from the southern INEL boundary and 4 km (2.5 mi) from U.S. Highway 20

  5. Conceptual design report: Nuclear materials storage facility renovation. Part 3, Supplemental information

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. It is organized into seven parts. Part I - Design Concept describes the selected solution. Part III - Supplemental Information contains calculations for the various disciplines as well as other supporting information and analyses

  6. Effects of the South Hyogo earthquake on LNG facilities and damage prevention measures; Effets du tremblement de terre de Hyogo-Sud sur les installations GNL et mesures pour la prevention des degats

    Energy Technology Data Exchange (ETDEWEB)

    Yoichi, Fuchimoto [Osaka Gas Co., Ltd., Dept. Production (Japan); Yukiyoshi, Hasegawa [Osaka Gas Co., Ltd., Senboku LNG Terminail (Japan); Ysuhiro, Ueno; Junji, Doi [Osaka Gas Co., Ltd., Engineering Dept. (Japan)

    2000-07-01

    The South Hyogo Earthquake that took place in the morning of January 17, 1995, at about 5:46 A.M. registered a magnitude of 7.2 on the Richter scale with earthquake motion of 800 gal (horizontal) on the ground surface. It was the largest vertical-motion earthquake to hit a major urban area in modern days, and it struck the service area of Osaka Gas. The ground motion values monitored were 240 gal at the Senboku LNG Terminal and 189 gal at the Himeji LNG Terminal, but these terminals did not receive sufficient damage to affect their gas processing or supply functions. There were also seven gas holders operating in the worst hit area, where ground motion of 616 to 833 gal was recorded. However, these gas holders were also not damaged by the earthquake. These gas processing plants and supply facilities were constructed in compliance with the current seismic design standards, and they incorporate elastic design (capable of withstanding ground motion of 300 gal max.) in which due consideration is given to factors such as their importance and the ground characteristics. Although the South Hyogo Earthquake generated ground motion that far exceeded the design level of the gas holders, the facilities maintained their integrity without shape deformation, thus demonstrating their high level of earthquake resistance. For other gas processing facilities, Osaka Gas conducted evaluations of their resistance to an extremely large earthquake using the ultimate strength design method, and confirmed similar levels of earthquake resistance performance. According to the above examination results, it was found that design based on the current seismic design standards is capable of withstanding an earthquake of high magnitude. However, the current seismic design standards do not take into consideration earthquakes of an extremely high magnitude or specify the use of the ultimate strength design method. Therefore, The Japan Gas Association is currently examining standards that take those

  7. Temporary storage facility for spent nuclear fuels at the Atucha I nuclear power station (CNA)

    International Nuclear Information System (INIS)

    Wasinger, K.

    1983-01-01

    According to plans of the Argentine Atomic Energy Commission (CNEA), the spent nuclear fuel elements of the Atucha I Nuclear Power Station are to be stored temporarily pending a decision about the ultimate disposal concept. The holding capacity of the first fuel storage facility built by the German KWU together with the whole power plant had been expanded in 1978 to a level good until mid-1982. In 1977, KWU drafted the concept of another fuel storage facility. Like the first one, it was designed as a wet storage system attached to the power plant installations and had a holding capacity of 6944 fuel elements, which corresponds to some 1100 te of uranium. This extends the storage capacity up until 1996. In 1978, KWU was commissioned by CNEA to plan the whole facility and deliver the mechanical and electrical equipment. CNEA themselves assumed responsibility for the construction work. The second fuel storage facility was commissioned three years after the start of construction. (orig.) [de

  8. LNG, Competition and Security of Supply: the Role of Shipping

    International Nuclear Information System (INIS)

    Dorigoni, S.; Mazzei, L.; Pontoni, F.; Sileo, A.

    2009-01-01

    In the last few years, one of the main concerns of European Union in the energetic field has been that of facilitating the safeguard of raw materials' security of supply, especially that of natural gas. Import through LNG chain, that is, through the employment of LNG tankers for gas transportation, has been identified by the European Council as one of the instruments to achieve these goals. In fact, import via LNG does not require, for the importer, such investments as to determine an indissoluble physical tie between producer and buyer, as happens for transport via pipeline (Chernyavska et al., 2002). In other words, investments in pipelines are very specific. Moreover, as they are made in order to support specific transactions, contracts usually take the form of long-term agreements with minimum off take requirements (take or pay clauses): such contracts definitely contribute to the cartelization of the market, hindering competition. Unlike investments in pipelines, those in the LNG chain present a much lower degree of specificity: in fact, even though the construction of a re gasification plant is generally tied to the stipulation of a long-term agreement (with take or pay clause), LNG chain costs have significantly decreased over time (until a few years ago) and, moreover, it is getting increasingly common that part of plant capacity is made available for spot transactions. What's more, once the contract is expired and the investment is sunk, the importer may satisfy his gas supply needs on the basis of his relative gains. As far as LNG import contractual practices are concerned, significant changes have started to take places in the last few years, both in terms of agreements' length average duration has significantly decreased and in terms of price indexation in the most developed markets LNG price is tied to gas spot price (IEA, 2006). One of the many possible advantages of transport via LNG is that liquefied gas enables European importers to widen their gas

  9. SECON - A tool for estimation of storage costs and storage project revenue

    International Nuclear Information System (INIS)

    Hall, O.

    1997-01-01

    The SECON model Storage ECONomics is useful for gas suppliers, storage operators, gas distributors and consumers when investigating new storage possibilities. SECON has been used within the Sydkraft group to compare cost for different types of storage and to identify the market niche for lined rock cavern (LRC) storage. In the model cost for the different storage types, salt caverns, LNG, and LRC can be compared. By using input according to market needs each storage type can be validated for a specific service e.g. peak shaving, seasonal storage or balancing. The project revenue can also be calculated. SECON includes three models for income calculation; US storage service, Trading and Avoided Supply Contract Costs. The income models calculates annual turnover, pay of time, net present value, internal rate of return and max. liquidity shortfall for the project. The SECON will facilitate sensitivity analysis both regarding cost for different services and different storage types and on the income side by using different scenarios. At the poster session SECON will be presented live and the delegates will have the opportunity to test the model. (au)

  10. Recommendations on the proposed Monitored Retrievable Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    Following the Department of Energy's announcement in April 1985 that three Tennessee sites were to be considered for the Monitored Retrievable Storage facility, Governor Lamar Alexander initiated a review of the proposal to be coordinated by his Safe Growth Team. Roane County and the City of Oak Ridge, the local governments sharing jurisdiction over DOE's primary and secondary sites, were invited to participate in the state's review of the MRS proposal. Many issues related to the proposed MRS are being considered by the Governor's Safe Growth Team. The primary objective of the Clinch River MRS Task Force has been to determine whether the proposed Monitored Retrievable Storage facility should be accepted by the local governments, and if so, under what conditions. The Clinch River MRS Task Force is organized into an Executive Committee cochaired by the Roane County Executive and Mayor of Oak Ridge and three Study Groups focusing on environmental (including health and safety), socioeconomic, and transportation issues.

  11. Recommendations on the proposed Monitored Retrievable Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    Following the Department of Energy`s announcement in April 1985 that three Tennessee sites were to be considered for the Monitored Retrievable Storage facility, Governor Lamar Alexander initiated a review of the proposal to be coordinated by his Safe Growth Team. Roane County and the City of Oak Ridge, the local governments sharing jurisdiction over DOE`s primary and secondary sites, were invited to participate in the state`s review of the MRS proposal. Many issues related to the proposed MRS are being considered by the Governor`s Safe Growth Team. The primary objective of the Clinch River MRS Task Force has been to determine whether the proposed Monitored Retrievable Storage facility should be accepted by the local governments, and if so, under what conditions. The Clinch River MRS Task Force is organized into an Executive Committee cochaired by the Roane County Executive and Mayor of Oak Ridge and three Study Groups focusing on environmental (including health and safety), socioeconomic, and transportation issues.

  12. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  13. File list: ALL.Lng.05.AllAg.Lung_adenocarcinoma [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lng.05.AllAg.Lung_adenocarcinoma mm9 All antigens Lung Lung adenocarcinoma SRX2...RX213848 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Lng.05.AllAg.Lung_adenocarcinoma.bed ...

  14. Robotic inspection of nuclear waste storage facilities

    International Nuclear Information System (INIS)

    Fulbright, R.; Stephens, L.M.

    1995-01-01

    The University of South Carolina and the Westinghouse Savannah River Company have developed a prototype mobile robot designed to perform autonomous inspection of nuclear waste storage facilities. The Stored Waste Autonomous Mobile Inspector (SWAMI) navigates and inspects rows of nuclear waste storage drums, in isles as narrow as 34 inches with drums stacked three high on each side. SWAMI reads drum barcodes, captures drum images, and monitors floor-level radiation levels. The topics covered in this article reporting on SWAMI include the following: overall system design; typical mission scenario; barcode reader subsystem; video subsystem; radiation monitoring subsystem; position determination subsystem; onboard control system hardware; software development environment; GENISAS, a C++ library; MOSAS, an automatic code generating tool. 10 figs

  15. Development and industrial tests of the first LNG hydraulic turbine system in China

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2016-10-01

    Full Text Available The cryogenic hydraulic turbine can be used to replace the conventional J–T valve for LNG or mixed refrigerant throttling and depressurization in a natural gas liquefaction plant. This advanced technology is not only to enhance the efficiency of the liquefaction plant, but to usher a new trend in the development of global liquefaction technologies. China has over 136 liquefaction plants, but the cryogenic hydraulic turbines have not been deployed in industrial utilization. In addition, these turbines cannot be manufactured domestically. In this circumstance, through working on the key technologies for LNG hydraulic turbine process & control system development, hydraulic model optimization design, structure design and manufacturing, the first domestic cryogenic hydraulic turbine with a flow rate of 40 m3/h was developed to recover the pressure energy from the LNG of cold box. The turbine was installed in the CNOOC Zhuhai Natural Gas Liquefaction Plant for industrial tests under multiple working conditions, including start-stop, variable flow rates and variable rotation speeds. Test results show that the domestic LNG cryogenic hydraulic turbine has satisfactory mechanical and operational performances at low temperatures as specified in design. In addition, the process & control system and frequency-conversion power-generation system of the turbine system are designed properly to automatically and smoothly replace the existing LNG J–T valve. As a result, the domestic LNG cryogenic hydraulic turbine system can improve LNG production by an average of 2% and generate power of 8.3 kW.

  16. 33 CFR 127.103 - Piers and wharves.

    Science.gov (United States)

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas § 127.103 Piers and wharves. (a) If the waterfront... not less than two hours. (c) LNG or LPG storage tanks must have the minimum volume necessary for— (1...

  17. Hanford facility dangerous waste permit application, PUREX storage tunnels

    International Nuclear Information System (INIS)

    Price, S.M.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the PUREX Storage Tunnels permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the PUREX Storage Tunnels permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this PUREX Storage Tunnels permit application documentation is current as of April 1997

  18. Application of dose evaluation of the MCNP code for interim spent fuel cask storage facility

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Iimoto, Takeshi; Ishikawa, Satoshi; Tsuboi, Takafumi; Teramura, Masahiro; Okamura, Tomomi; Narumiya, Yoshiyuki

    2007-01-01

    The interim storage facility for spent fuel metallic cask is designed as a concrete building structure with air inlet and outlet for circulating the natural cooling. The feature of the interim storage facility is big capacity of spent fuel at several thousands MTU and restricted site usage. It is important to evaluate realistic dose rate in shielding design of the interim storage facility, therefore the three-dimensional continuous-energy Monte Carlo radiation transport code MCNP that exactly treating the complicated geometry was applied. The validation of dose evaluation for interim storage facility by MCNP code were performed by three kinds of neutron shielding benchmark experiments; cask shadow shielding experiment, duct streaming experiment and concrete deep penetration experiment. Dose rate distributions at each benchmark were measured and compared with the calculated results. The comparison showed a good consistency between calculation and experiment results. (author)

  19. Study of Volatility of New Ship Building Prices in LNG Shipping

    Directory of Open Access Journals (Sweden)

    T. Bangar Raju

    2016-12-01

    Full Text Available The natural gas market has been expanding in size and has attracted particular attention across the global energy market. Although most natural gas transportation is carried out through pipelines, almost one third of it is done with the help of merchant vessels, capable of carrying liquefied natural gas. These LNG carriers have a special design and thus can be treated as a separate class of global fleet. New vessels are huge capital investments by vessel owning companies and just like other vessel classes; the new shipbuilding prices for the LNG segment continue to be a key aspect in the decision making of business players. Additionally these prices can be volatile as new ship building prices fluctuate with time. This paper attempts to analyse the volatility of new ship building prices of LNG carriers. For the study, the average ship building prices for all the LNG carriers having volume carrying capacity is between 160,000 – 173,000 cbm to be delivered between 2016 – 2019 were taken into account. For the analysis, GARCH and EGARCH methods were applied on the data set. The analysis concluded that there is a great deal of volatility in the new ship building prices of LNG vessels. It was also identified that negative shocks were more persistent the positive shocks.

  20. Radon exposure at a radioactive waste storage facility.

    Science.gov (United States)

    Manocchi, F H; Campos, M P; Dellamano, J C; Silva, G M

    2014-06-01

    The Waste Management Department of Nuclear and Energy Research Institute (IPEN) is responsible for the safety management of the waste generated at all internal research centers and that of other waste producers such as industry, medical facilities, and universities in Brazil. These waste materials, after treatment, are placed in an interim storage facility. Among them are (226)Ra needles used in radiotherapy, siliceous cake arising from conversion processes, and several other classes of waste from the nuclear fuel cycle, which contain Ra-226 producing (222)Rn gas daughter.In order to estimate the effective dose for workers due to radon inhalation, the radon concentration at the storage facility has been assessed within this study. Radon measurements have been carried out through the passive method with solid-state nuclear track detectors (CR-39) over a period of nine months, changing detectors every month in order to determine the long-term average levels of indoor radon concentrations. The radon concentration results, covering the period from June 2012 to March 2013, varied from 0.55 ± 0.05 to 5.19 ± 0.45 kBq m(-3). The effective dose due to (222)Rn inhalation was further assessed following ICRP Publication 65.

  1. Preconditions for the development of land-based infrastructure for liquefied natural gas (LNG / LBG); Foerutsaettningar foer utbyggnad av landbaserad infrastruktur foer flytande gas (LNG/LBG)

    Energy Technology Data Exchange (ETDEWEB)

    Stenkvist, Maria; Paradis, Hanna; Haraldsson, Kristina; Beijer, Ronja; Stensson, Peter (AaF Industry AB(Sweden))

    2011-06-15

    The conversion potential to replace oil in the energy intensive industries and diesel in heavy transport is estimated in the study to 6.8 TWh and 10 TWh per year, respectively. Several alternative fuels compete for this conversion potential. What fuels will take market share depends on several factors such as price, availability of fuel, availability of process technology and vehicles, technology development and possible future technological advances. For liquid methane to compete a new infrastructure is required that in a cost effective manner makes it possible to distribute the liquid methane to the regions where the need is the greatest. With today's distribution system, including truck delivery from import terminals in Nynaeshamn and Fredrikstad, virtually the entire southern Sweden is within reach of LNG deliveries. The study points out three nodes, Gaevle, Sundsvall and Luleaa, which is suitable for distribution of liquid methane to the central and northern Sweden. The three hubs are suitable for freight transfer to trucks as well as rail and shipping. A strategic nationwide network of refueling stations is also proposed, with a total of 18 new stations, in addition to the filling stations in southern and central Sweden that are already planned or in operation. Both the availability and use of liquid methane in Sweden today is limited. Liquid natural gas, LNG (liquefied natural gas), is primarily used as a backup to biogas plants, in a few industries and as supply for a few filling stations for compressed gas. The availability of LNG and also liquid biogas (LBG liquefied biogas), will increase in coming years. In 2011, two new LNG import terminals are put into operation in Nynaeshamn and Fredrikstad in Norway and two additional import terminals are planned in Gothenburg and Lysekil. Furthermore, two production plants for liquid biogas production have started, and four additional plants are planned, which together will produce around 0.5 TWh LBG annually

  2. 49 CFR 193.2189-193.2233 - [Reserved

    Science.gov (United States)

    2010-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Lng Storage Tanks §§ 193.2189-193.2233 [Reserved] ...

  3. 49 CFR 193.2187 - Nonmetallic membrane liner.

    Science.gov (United States)

    2010-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Lng Storage Tanks § 193.2187 Nonmetallic membrane liner. A flammable nonmetallic membrane liner may not be used as an inner container in a storage tank...

  4. Dry storage facility for spent fuel or high-level wastes

    International Nuclear Information System (INIS)

    Geoffroy, J.; Dobremelle, M.; Fabre, J.C.; Bonnet, C.

    1989-01-01

    The French Atomic Energy Commission (CEA) has specific irradiated fuels which, due to their properties, cannot be reprocessed directly in existing industrial facilities. Accordingly, for the spent fuels from the EL4 and OSIRIS power plants, the CEA has been faced with the problem of selecting a process that will allow the storage of these materials under satisfactory technical and economic conditions. The authors discuss how three conditions must be satisfied to store irradiated fuels releasing heat: containment of radioactive materials, biological shielding, and thermal cooling to guarantee an acceptable temperature- level throughout. In view of the need for an interim storage facility using a simple cooling process requiring only minimal maintenance and monitoring, dry storage in a concrete vault cooled by natural convection was selected. This choice was made within the framework of a research and development program in which theoretical heat transfer investigations and mock-up tests confirmed the feasibility of cooling by natural convection

  5. LNG shipping at 50, SIGTTO at 35 and GIIGNL at 43. A commemorative SIGTTO/GIIGNL publication 2014

    International Nuclear Information System (INIS)

    Corkhill, Mike; Harris, Syd; Clifton, Andrew; Wayne, Bill; Robin, Jean-Yves

    2014-01-01

    Jointly sponsored by SIGTTO and GIIGNL, LNG Shipping at 50 is a celebration of the first half century of commercial LNG carrier and terminal operations. The publication also marks the 35. and 43. anniversaries of the Society of International Gas Tanker and Terminal Operators (SIGTTO) and the International Group of LNG Importers (GIIGNL), respectively. The two organisations and their memberships have done a sterling job of developing guidance on safe operations; promulgating industry best practice; and providing forums for the airing of concerns and discussion of topical issues. The exemplary safety record built up by the LNG shipping and terminal industry over the past five decades owes much to the central roles played by SIGTTO and GIIGNL. The LNG industry has an exceptional story to tell and LNG Shipping at 50 contributes to the telling of that story. The publication starts with a review of the early days to show how the industry developed the innovative solutions needed to ensure the safe transport of LNG by sea. The articles in this section then describe how these solutions were then continuously improved upon as more countries turned to seaborne natural gas imports to meet their energy needs. Pioneering people, ships, shipyards, containment systems, class societies and equipment suppliers are reviewed to highlight the key role they played in facilitating the safe and smooth operation of the LNG supply chain, including at the critical ship/shore interface. Safety is the No 1 priority in the LNG industry and the safety regime section of the magazine examines the cornerstones that underpin an unparalleled safety record. Quite aside from the IGC Code and the work of SIGTTO and GIIGNL, there are the contributions of class, training establishments, vetting programmes and escort tug services. LNG Shipping at 50's survey of progress to date is followed by a look at the many innovations introduced by the industry in more recent years, not least floating LNG

  6. Conceptual design report: Nuclear materials storage facility renovation. Part 7, Estimate data

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment III-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VII - Estimate Data, contains the project cost estimate information

  7. Conceptual design report: Nuclear materials storage facility renovation. Part 7, Estimate data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment III-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VII - Estimate Data, contains the project cost estimate information.

  8. Conceptual design report: Nuclear materials storage facility renovation. Part 3, Supplemental information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. It is organized into seven parts. Part I - Design Concept describes the selected solution. Part III - Supplemental Information contains calculations for the various disciplines as well as other supporting information and analyses.

  9. Problems and experience of ensuring nuclear safety in NPP spent fuel storage facilities in Russia

    International Nuclear Information System (INIS)

    Vnukov, Victor S.; Ryazanov, Boris G.

    2003-01-01

    The amount of Nuclear Power Plant (NPP) spent fuel in special storage facilities of Russia runs to more than 15000 tons and the annual growth is equal to about 850 tons. The storage facilities for spent nuclear fuel from the main nuclear reactors of Russia (RBMK-1000, VVER-1000, BN-600, EGP-6) were designed in the 60s - 70s. In the last years when the concept of closed fuel cycle and safety requirements had changed, the need was generated to have the nuclear storage facilities more crowded. First of all it is due to the necessity to increase the storage capacity because the RBMK-1000, VVER-1000, EGP-6 fuel is not reprocessed. So there comes the need for the facilities of a bigger capacity which meet the current safety requirements. The paper presents the results of studies of the most important nuclear safety issues, in particular: development of regulatory requirements; analysis of design-basis and beyond-the design-basis accidents (DBA and BDBA); computation code development and verification; justification of nuclear safety when water density goes down; the use of burn-up fraction values; the necessity and possibility to experimentally study the storage facility subcriticality; development of storage norms and rules for new types of fuel assemblies with mixed fuel and burnable poison. (author)

  10. 49 CFR 193.2067 - Wind forces.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES... confining, structure; and (3) In the case of impounding systems for LNG storage tanks, impact forces and...

  11. Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft{sup 2} waste storage facility for RCRA waste, one 42,000 ft{sup 2} waste storage facility for toxic waste (TSCA), and one 200,000 ft{sup 2} mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  12. Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    International Nuclear Information System (INIS)

    1994-06-01

    DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft 2 waste storage facility for RCRA waste, one 42,000 ft 2 waste storage facility for toxic waste (TSCA), and one 200,000 ft 2 mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required

  13. LNG Regasification Terminals: The Role of Geography and Meteorology on Technology Choices

    Directory of Open Access Journals (Sweden)

    Randeep Agarwal

    2017-12-01

    Full Text Available Liquefied natural gas (LNG projects are regulated by host countries, but policy and regulation should depend on geography and meteorology. Without considering the role of geography and meteorology, sub-optimal design choices can result, leading to energy conversion efficiency and capital investment decisions that are less than ideal. A key step in LNG is regasification, which transforms LNG back from liquid to the gaseous state and requires substantial heat input. This study investigated different LNG regasification technologies used around the world and benchmarked location and meteorology-related factors, such as seawater temperatures, ambient air temperatures, wind speeds and relative humidity. Seawater vaporizers are used for more than 95% of locations subject to water quality. Ambient air conditions are relatively better for South America, India, Spain and other Asian countries (Singapore, Taiwan, Indonesia, and Thailand and provide a much cleaner regasification technology option for natural and forced draft systems and air-based intermediate fluid vaporizers. On a global basis, cold energy utilization currently represents <1% of the total potential, but this approach could deliver nearly 12 Gigawatt (GW per annum. Overall, climate change is expected to have a positive financial impact on the LNG regasification industry, but the improvement could be unevenly distributed.

  14. New facility for processing and storage of radioactive and toxic chemical waste

    International Nuclear Information System (INIS)

    Gallagher, F.E. III

    1976-01-01

    A new facility for the processing and storage of radioactive and toxic chemical waste is described. The facility is located in the science and engineering complex of the Santa Barbara campus of the University of California, near the Pacific Ocean. It is designed to provide a safe and secure processing and storage area for hazardous wastes, while meeting the high aesthetic standards and ecological requirements of campus and community regulatory boards. The ventilation system and fire prevention features will be described in detail. During the design phase, a small laboratory was added to provide an area for the radiation protection and industrial hygiene programs. Operational experience with this new facility is discussed

  15. Building arrangement and site layout design guides for on site low level radioactive waste storage facilities

    International Nuclear Information System (INIS)

    McMullen, J.W.; Feehan, M.J.

    1986-01-01

    Many papers have been written by AE's and utilities describing their onsite storage facilities, why they are needed, NRC regulations, and disposal site requirements. This paper discusses a typical storage facility and address the design considerations and operational aspects that are generally overlooked when designing and siting a low level radioactive waste storage facility. Some topics to be addressed are: 1. Container flexibility; 2. Modular expansion capabilities; 3. DOT regulations; 4. Meterological requirements; 5. OSHA; 6. Fire protection; 7. Floods; 8. ALARA

  16. Occupational dose estimates for a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    Harty, R.; Stoetzel, G.A.

    1986-06-01

    Occupational doses were estimated for radiation workers at the monitored retrievable storage (MRS) facility. This study provides an estimate of the occupational dose based on the current MRS facility design, examines the extent that various design parameters and assumptions affect the dose estimates, and identifies the areas and activities where exposures can be reduced most effectively. Occupational doses were estimated for both the primary storage concept and the alternate storage concept. The dose estimates indicate the annual dose to all radiation workers will be below the 5 rem/yr federal dose equivalent limit. However, the estimated dose to most of the receiving and storage crew (the workers responsible for the receipt, storage, and surveillance of the spent fuel and its subsequent retrieval), to the crane maintenance technicians, and to the cold and remote maintenance technicians is above the design objective of 1 rem/yr. The highest annual dose is received by the riggers (4.7 rem) in the receiving and storage crew. An indication of the extent to which various design parameters and assumptions affect the dose estimates was obtained by changing various design-based assumptions such as work procedures, background dose rates in radiation zones, and the amount of fuel received and stored annually. The study indicated that a combination of remote operations, increased shielding, and additional personnel (for specific jobs) or changes in operating procedures will be necessary to reduce worker doses below 1.0 rem/yr. Operations that could be made at least partially remote include the removal and replacement of the tiedowns, impact limiters, and personnel barriers from the shipping casks and the removal or installation of the inner closure bolts. Reductions of the background dose rates in the receiving/shipping and the transfer/discharge areas may be accomplished with additional shielding

  17. Criticality safety considerations. Integral Monitored Retrievable Storage (MRS) Facility

    International Nuclear Information System (INIS)

    1986-09-01

    This report summarizes the criticality analysis performed to address criticality safety concerns and to support facility design during the conceptual design phase of the Monitored Retrievable Storage (MRS) Facility. The report addresses the criticality safety concerns, the design features of the facility relative to criticality, and the results of the analysis of both normal operating and hypothetical off-normal conditions. Key references are provided (Appendix C) if additional information is desired by the reader. The MRS Facility design was developed and the related analysis was performed in accordance with the MRS Facility Functional Design Criteria and the Basis for Design. The detailed description and calculations are documented in the Integral MRS Facility Conceptual Design Report. In addition to the summary portion of this report, explanatary notes for various terms, calculation methodology, and design parameters are presented in Appendix A. Appendix B provides a brief glossary of technical terms

  18. File list: Unc.Lng.20.AllAg.Carcinoma,_Lewis_Lung [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Lng.20.AllAg.Carcinoma,_Lewis_Lung mm9 Unclassified Lung Carcinoma, Lewis Lung ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Lng.20.AllAg.Carcinoma,_Lewis_Lung.bed ...

  19. Waste Encapsulation and Storage Facility (WESF) Interim Status Closure Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    This document describes the planned activities and performance standards for closing the Waste Encapsulation and Storage Facility (WESF). WESF is located within the 225B Facility in the 200 East Area on the Hanford Facility. Although this document is prepared based on Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the storage unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the intention is to clean close WESF, postclosure activities are not applicable to this interim status closure plan. To clean close the storage unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or environmentally is impracticable, the interim status closure plan will be modified to address required postclosure activities. WESF stores cesium and strontium encapsulated salts. The encapsulated salts are stored in the pool cells or process cells located within 225B Facility. The dangerous waste is contained within a double containment system to preclude spills to the environment. In the unlikely event that a waste spill does occur outside the capsules, operating methods and administrative controls require that waste spills be cleaned up promptly and completely, and a notation made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  20. Conceptual design report for the away from reactor spent fuel storage facility, Savannah River Plant

    International Nuclear Information System (INIS)

    1978-12-01

    The Department of Energy (DOE) requested that Du Pont prepare a conceptual design and appraisal of cost for Federal budget planning for an away from reactor spent fuel storage facility that could be ready to store fuel by December 1982. This report describes the basis of the appraisal of cost in the amount of $270,000,000 for all facilities. The proposed action is to provide a facility at the Savannah River Plant. The facility will have an initial storage capacity of 5000 metric tons of spent fuel and will be capable of receiving 1000 metric tons per year. The spent fuel will be stored in water-filled concrete basins that are lined with stainless steel. The modular construction of the facility will allow future expansion of the storage basins and auxiliary services in a cost-effective manner. The facility will be designed to receive, handle, decontaminate and reship spent fuel casks; to remove irradiated fuel from casks; to place the fuel in a storage basin; and to cool and control the quality of the water. The facility will also be designed to remove spent fuel from storage basins, load the spent fuel into shipping casks, decontaminated loaded casks and ship spent fuel. The facility requires a license by the Nuclear Regulatory Commission (NRC). Features of the design, construction and operations that may affect the health and safety of the workforce and the public will conform with NRC requirements. The facility would be ready to store fuel by January 1983, based on normal Du Pont design and construction practices for DOE. The schedule does not include the effect of licensing by the NRC. To maintain this option, preparation of the documents and investigation of a site at the Savannah River Plant, as required for licensing, were started in FY '78

  1. Norcal Prototype LNG Truck Fleet: Final Results

    Energy Technology Data Exchange (ETDEWEB)

    2004-07-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

  2. Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion

    International Nuclear Information System (INIS)

    Burel, Fabio; Taccani, Rodolfo; Zuliani, Nicola

    2013-01-01

    Today, most merchant vessels use Heavy Fuel Oils (HFOs) for ship propulsion. These fuels are cost effective but they produce significant amounts of noxious emissions. In order to comply with International Maritime Organization (IMO) rules, Liquefied Natural Gas (LNG) is becoming an interesting option for merchant ships. The aim of the research presented in this paper is to analyse the economic upturn that can result from the use of LNG as fuel for merchant ships and to assess the effects of its utilization in terms of environmental impact. In the first part of the study, a statistical analysis of maritime traffic is carried out in order to identify which merchant ship types could most benefit from using LNG as fuel for ship propulsion. Traffic data of world ships related to the months of May 2008, 2009 and 2010 are analysed. Roll-on/Roll-off vessels (RoRo) and tanker ships spend most of their sailing time in Emission Control Areas (ECA) consequently appear to be the best candidates for LNG use. In particular, the use of LNG is most profitable for tanker ships in the range of 10,000–60,000 DWT (deadweight). In the second part of the study, operational costs and pollutant emission reduction, following LNG implementation, are calculated for a 33,000 DWT tanker ship. Results show that LNG leads to a reduction of 35% of operational costs and 25% of CO 2 emissions. The possibility of improving energy efficiency on board is analysed considering that combustion gases, produced by LNG, are cleaner, thus simplifying the introduction of exhaust gas heat recovery. Two options are considered: simple heat recovery and heat recovery to drive a turbine (ORC). The results show that it is possible to achieve a reduction in fuel consumption of up to 15%. - Highlights: • Ship propulsion accounts for a large amount of noxious emissions in costal/harbour areas. • Today price differential between fuel oil and natural gas is increasing. • The use of Liquefied Natural Gas as fuel

  3. The INFN-CNAF Tier-1 GEMSS Mass Storage System and database facility activity

    Science.gov (United States)

    Ricci, Pier Paolo; Cavalli, Alessandro; Dell'Agnello, Luca; Favaro, Matteo; Gregori, Daniele; Prosperini, Andrea; Pezzi, Michele; Sapunenko, Vladimir; Zizzi, Giovanni; Vagnoni, Vincenzo

    2015-05-01

    The consolidation of Mass Storage services at the INFN-CNAF Tier1 Storage department that has occurred during the last 5 years, resulted in a reliable, high performance and moderately easy-to-manage facility that provides data access, archive, backup and database services to several different use cases. At present, the GEMSS Mass Storage System, developed and installed at CNAF and based upon an integration between the IBM GPFS parallel filesystem and the Tivoli Storage Manager (TSM) tape management software, is one of the largest hierarchical storage sites in Europe. It provides storage resources for about 12% of LHC data, as well as for data of other non-LHC experiments. Files are accessed using standard SRM Grid services provided by the Storage Resource Manager (StoRM), also developed at CNAF. Data access is also provided by XRootD and HTTP/WebDaV endpoints. Besides these services, an Oracle database facility is in production characterized by an effective level of parallelism, redundancy and availability. This facility is running databases for storing and accessing relational data objects and for providing database services to the currently active use cases. It takes advantage of several Oracle technologies, like Real Application Cluster (RAC), Automatic Storage Manager (ASM) and Enterprise Manager centralized management tools, together with other technologies for performance optimization, ease of management and downtime reduction. The aim of the present paper is to illustrate the state-of-the-art of the INFN-CNAF Tier1 Storage department infrastructures and software services, and to give a brief outlook to forthcoming projects. A description of the administrative, monitoring and problem-tracking tools that play a primary role in managing the whole storage framework is also given.

  4. Report of study group 3.3 ''LNG and LPG peak shaving and satellite plants''; Rapport du groupe d'etude 3.3 ''usines d'ecretement de pointes et stations satellites GNL et GPL''

    Energy Technology Data Exchange (ETDEWEB)

    Klein Nagelvoort, R.

    2000-07-01

    This report presents a world-wide overview of LNG and LPG Peak Shaving and Satellite Plants, compiled by the study group 3.3 of the International Gas Union. The scope of the work of the study group includes: - LPG peak shavers (LPG + air, N{sub 2}) in gas distribution networks; - LPG peak shavers for start-up and back-up fuel for LNG terminals and power stations; - LNG peak shavers for gas distribution networks; - Small-scale liquefaction plants for distribution to satellites and dedicated consumers (e.g. power generators, chemical plants, trucking companies etc.); - LNG peak shavers as back-up for large consumers; - Alternative liquefaction technologies for LNG and LPG (e.g. refrigeration cycles, supersonic expansion, thermo-acoustic designs); - Alternative storage tank designs for LNG and LPG. The report presents an overview of current installations world-wide and considers the prospects of technological developments with respect to equipment, remote operations and safety constraints. It also includes where possible a review of capital and operating costs, regulations, and an identification of opportunities and trends. The report collates the information available to the study group at the time of the writing, which may explain some heterogeneity in the document. (author)

  5. File list: DNS.Lng.10.AllAg.Carcinoma,_Lewis_Lung [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.10.AllAg.Carcinoma,_Lewis_Lung mm9 DNase-seq Lung Carcinoma, Lewis Lung htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Lng.10.AllAg.Carcinoma,_Lewis_Lung.bed ...

  6. File list: DNS.Lng.50.AllAg.Carcinoma,_Lewis_Lung [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.50.AllAg.Carcinoma,_Lewis_Lung mm9 DNase-seq Lung Carcinoma, Lewis Lung htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Lng.50.AllAg.Carcinoma,_Lewis_Lung.bed ...

  7. File list: Pol.Lng.50.AllAg.Carcinoma,_Lewis_Lung [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.50.AllAg.Carcinoma,_Lewis_Lung mm9 RNA polymerase Lung Carcinoma, Lewis Lun...g http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Lng.50.AllAg.Carcinoma,_Lewis_Lung.bed ...

  8. File list: Pol.Lng.05.AllAg.Carcinoma,_Lewis_Lung [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.05.AllAg.Carcinoma,_Lewis_Lung mm9 RNA polymerase Lung Carcinoma, Lewis Lun...g http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Lng.05.AllAg.Carcinoma,_Lewis_Lung.bed ...

  9. File list: Pol.Lng.10.AllAg.Carcinoma,_Lewis_Lung [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.10.AllAg.Carcinoma,_Lewis_Lung mm9 RNA polymerase Lung Carcinoma, Lewis Lun...g http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Lng.10.AllAg.Carcinoma,_Lewis_Lung.bed ...

  10. File list: DNS.Lng.20.AllAg.Carcinoma,_Lewis_Lung [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.20.AllAg.Carcinoma,_Lewis_Lung mm9 DNase-seq Lung Carcinoma, Lewis Lung htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Lng.20.AllAg.Carcinoma,_Lewis_Lung.bed ...

  11. File list: Pol.Lng.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.10.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Lung SRX... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.10.RNA_polymerase_II.AllCell.bed ...

  12. File list: Pol.Lng.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.05.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Lung SRX... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.05.RNA_polymerase_II.AllCell.bed ...

  13. File list: Pol.Lng.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.50.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Lung SRX... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.50.RNA_polymerase_II.AllCell.bed ...

  14. Northwest Asia - gas market outlook: LNG vs. pipeline gas

    International Nuclear Information System (INIS)

    Keun Wook Paik

    1996-01-01

    The share of natural gas in Northeast Asia's energy mix is quite low despite that the region currently dominates the world LNG trade. In the long term, the region's rapid expansion of gas demand in the coming decades looks very likely, but the LNG dominance in the region's gas market will collapse in parallel with the introduction of a long distance pipeline gas. The most likely timing of pipeline gas introduction in Northeast Asian gas market seems to be during the second half of the next decade. (Author)

  15. Survey and assessment of radioactive waste management facilities in the United States. Section 2.5. Air-cooled vault storage facilities

    International Nuclear Information System (INIS)

    1986-01-01

    There are two basic types of air-cooled vaults for the storage of spent nuclear fuel or vitrified HLRW. The two types, differentiated by the method of air cooling used, are the open-vault concept and the closed-vault concept. The following aspects of these air-cooled vault storage facility concepts are discussed: description and operation of facilities; strucutral design considerations and analysis; nuclear design considerations and analyses; vault environmental design considerations; unique design features; and accident analysis

  16. File list: Oth.Lng.05.AllAg.Carcinoma,_Lewis_Lung [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lng.05.AllAg.Carcinoma,_Lewis_Lung mm9 TFs and others Lung Carcinoma, Lewis Lun...g http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Lng.05.AllAg.Carcinoma,_Lewis_Lung.bed ...

  17. Panorama 2016 - LNG in transportation: what is its potential for the sector?

    International Nuclear Information System (INIS)

    Jordan, Louis

    2015-12-01

    With low emissions and competitive pricing, liquefied natural gas (LNG) appears to have significant advantages to emerge as an alternative or supplement to traditional fossil fuels. Although LNG has significant potential for growth over the long term, it will have to eliminate some uncertainties, especially those related to supply infrastructure. (author)

  18. Safety assessment for spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Practice has been prepared as part of the IAEA's programme on the safety assessment of interim spent fuel storage facilities which are not an integral part of an operating nuclear power plant. This report provides general guidance on the safety assessment process, discussing both deterministic and probabilistic assessment methods. It describes the safety assessment process for normal operation and anticipated operational occurrences and also related to accident conditions. 10 refs, 2 tabs

  19. Panorama 2014 - The importance of underground storage in the security of European gas supplies

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2013-12-01

    While European capacity for underground gas storage has increased by 16% over the last three years, levels of stock at the beginning of the 2013/2014 winter, in relation to capacity, are the lowest that have been seen since 2010; they represent only 84% of storage capacity. The suppliers of gas have no incentive to reserve storage capacity, for which the cost is considered too high in relation to the spread, currently very low, between the price of gas in winter and in summer. They also rely on sufficient gas supply thanks to other sources of flexibility available on the market: flexibility of production or imports, spot LNG purchases, purchases in the spot market... or even use of the storage capacities of neighbouring countries via European network interconnections. Yet, the 2013/2014 winter is beginning in a gas supply context in Europe that is more difficult: imports of LNG, which had already dropped sharply in 2012, have continued to contract, faced with increased competition from Asian buyers on the international LNG market. Gas imports from Norway are also declining following production limits in that country. Only Russia has strongly increased its exports to Europe in 2013. However, the dispute between Ukraine and Russia about the price of Russian gas delivered to Ukraine still raises the spectre of a threat to the European supply of Russian gas, nearly 60% of which transits via Ukraine. Under these circumstances, as demonstrated by the gas crises of 2006 and 2009 and the cold conditions of February 2012 and March/April 2013, storage is the most efficient means of securing the supply of gas providing, of course, that the storage sites are filled at the beginning of winter. (author)

  20. Maniobrability analysis with FSRU / LNG prototype ships in a virtual stage of “El Cayao” maritime terminal and surroundings of Cartagena Bay

    Directory of Open Access Journals (Sweden)

    Gonzalo Rojas Reyes

    2018-05-01

    Full Text Available The research project was developed in association with the HÖEGH LNG company, to obtain a solution that would allow the standardization of its procedures, providing safe operations on the entrance and departure of FSRU / LNG ships to the maritime terminal “El Cayao”, within the Bay of Cartagena; the terminal was in the construction stage, so the maneuvers to be executed with this type of craft would be made for the first time in the country. The development of this research allowed the modeling of the virtual scenario, which incorporated relevant information from the area to be studied, the analysis of the behavior of ship prototypes integrated to the full mission bridge simulator and the training directed to national and international master pilots in the simulation of maneuvers, contributing significantly to the integral maritime security, for the entrance of the type FSRU / LNG (Floating Storage and Regasification Unit for Liquefied Natural Gas ship, HÖEGH Grace, which made its entrance to the Bay of Cartagena on November 1, 2016, reaching the required standards to offer a safe, reliable and successful maneuver. This is how ENAP, through CIDIAM, contributes to the strengthening of maritime power in Colombia.

  1. Concept for an ultimate storage facility for heat-generating radioactive waste in clay stone in Germany

    International Nuclear Information System (INIS)

    Bollingerfehr, Wilhelm; Poehler, Matthias

    2010-01-01

    According to the German reference ultimate storage concept heat-generating radioactive waste from the operation of nuclear power stations should be stored permanently maintenance-free and in a non-recoverable manner in a salt formation. Within the framework of investigations into the utilisation of alternative host rocks a concept for an ultimate storage facility in clay stone was developed in an R and D project. For this purpose all important aspects of the design, development, operation and shutdown were taken into account for a model region in northern Germany. It was established that storage in 50 m deep vertical boreholes in a mine at a depth of about 350 m appears to be the most practical solution for an ultimate storage facility in clay stone. Compared to the reference concept in salt an ultimate storage facility in clay stone requires solid support of all mine openings with steel arches or shotcrete. Because of the lower maximum permissible temperature in the backfilling material (bentonite) the area required for the ultimate storage facility is about five times larger. A period of more than 100 years is estimated from survey to shutdown. (orig.)

  2. The LNG industry in 2011. Press revue

    International Nuclear Information System (INIS)

    2012-05-01

    The outlook of the LNG industry in 2011 is presented as a revue of press articles: The role of LNG as a flexible and secure energy source as well as the prompt response to provide back-up through additional supplies and cargo diversions to compensate for the sudden loss of nuclear capacity in Japan - with sellers exercising due price restraint in view of the human tragedy - has been a credit to the industry. The increase in production capacity in 2009 and 2010, in particular from Qatar, had permitted the necessary buffer to cope much better with the demand surge than during past disruptions (such as the aftermath of the Chuetsu earthquake in late 2007). Undoubtedly, the marked shift over the last decade in the industry's prevailing business model towards global trade, destination flexibility and portfolio play has also facilitated the rapid response. As the total volume of LNG trade is very much determined by the availability of supply, 2011 has seen a growth of 9.4% over 2010, mainly as a result of the full availability of the six Qatar mega-trains over the past year. On the demand side the two traditional basins have shown very contrasting trends: 15% higher LNG off-take in Asia (the five major markets all increasing between 37.4% and 8.9%), versus a 1.7% decrease in the Atlantic Basin. Cargo diversions and an increasing number of reloads have boosted the exports from the Atlantic Basin to Asia in 2011 to more than 14 million tons (equivalent to more than 200 large size cargoes). Remarkable is also the fast growth in new markets in Latin America and in the Middle East - albeit from a small base - with counter-seasonal but varying demand, offering attractive arbitrage opportunities to portfolio play. Not surprising then that 2011 has seen another hike in spot and short-term trade, not just in absolute terms but also as a percentage of total trade (50% over 2010, 25.4% of total trade). The outlook for LNG is strong and its global demand prospects further

  3. Treatment and storage of radioactive gases from nuclear facilities

    International Nuclear Information System (INIS)

    Johannsen, K.H.; Schwarzbach, R.

    1980-01-01

    Treatment of exhaust air from nuclear facilities aimed at retaining or separating the radionuclides of iodine, xenon, and krypton as well as of tritium and carbon-14 and their storage are of special interest in connection with increasing utilization of nuclear power in order to reduce releases of radioactive materials to the atmosphere. The state of the art and applicability of potential processes of separating volatile fission and activation products from nuclear power stations and reprocessing plants are reviewed. Possibilities of ultimate storage are presented. An evaluation of the current stage of development shows that processes for effective separation of radioactive gases are available. Recent works are focused on economy and safety optimization. Long-term storage, in particular of extremely long-lived radionuclides, needs further investigation. (author)

  4. 49 CFR 193.2183-193.2185 - [Reserved

    Science.gov (United States)

    2010-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity §§ 193.2183-193.2185 [Reserved] LNG Storage Tanks ...

  5. Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Bryant, J.W.; Nenni, J.A.

    2003-01-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, ''Radioactive Waste Management Manual.'' Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities

  6. Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Jeffrey Bryant

    2008-01-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities

  7. Performance assessment of the proposed Monitored Retrievable Storage Facility

    International Nuclear Information System (INIS)

    Chockie, A.D.; Hostick, C.J.; Winter, C.

    1986-02-01

    Pacific Northwest laboratory (PNL) has completed a performance evaluation of the proposed monitored retrievable storage (MRS) facility. This study was undertaken as part of the Department of Energy MRS Program at PNL. The objective of the performance evaluation was to determine whether the conceptual MRS facility would be able to process spent fuel at the specified design rate of 3600 metric tons of uranium (MTU) per year. The performance of the proposed facility was assessed using the computer model COMPACT (Computer Optimization of Processing and Cask Transport) to simulate facility operations. The COMPACT model consisted of three application models each of which addressed a different aspect of the facility's operation: MRS/waste transportation interface; cask handling capability; and disassembly/consolidation (hot cell) operations. Our conclusions, based on the assessment of design criteria for the proposed facility, are as follows: Facilities and equipment throughout the facility have capability beyond the 3600 MTU/y design requirement. This added capability provides a reserve to compensate for unexpected perturbations in shipping or handling of the spent fuel. Calculations indicate that the facility's maximum maintainable processing capability is approximately 4800 MTU/y

  8. File list: Pol.Lng.10.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.10.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Lung SRX1...43816,SRX062976,SRX020252 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Lng.10.RNA_Polymerase_II.AllCell.bed ...

  9. File list: Pol.Lng.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.05.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Lung S...RX016555,SRX150101,SRX150102 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.05.RNA_polymerase_III.AllCell.bed ...

  10. File list: Pol.Lng.05.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.05.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Lung SRX0...62976,SRX143816,SRX020252 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Lng.05.RNA_Polymerase_II.AllCell.bed ...

  11. File list: Pol.Lng.20.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.20.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Lung SRX0...62976,SRX143816,SRX020252 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Lng.20.RNA_Polymerase_II.AllCell.bed ...

  12. File list: Pol.Lng.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.20.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Lung S...RX016555,SRX150101,SRX150102 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.20.RNA_polymerase_III.AllCell.bed ...

  13. File list: Pol.Lng.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.50.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Lung S...RX016555,SRX150101,SRX150102 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.50.RNA_polymerase_III.AllCell.bed ...

  14. File list: InP.Lng.05.Input_control.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Lng.05.Input_control.AllCell mm9 Input control Input control Lung SRX062977,SRX...SRX213837,SRX213846,SRX213842 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Lng.05.Input_control.AllCell.bed ...

  15. File list: InP.Lng.10.Input_control.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Lng.10.Input_control.AllCell mm9 Input control Input control Lung SRX213845,SRX...RX213842,SRX213846,SRX1528654 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Lng.10.Input_control.AllCell.bed ...

  16. Structural and seismic analyses of waste facility reinforced concrete storage vaults

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1995-01-01

    Facility 317 of Argonne National Laboratory consists of several reinforced concrete waste storage vaults designed and constructed in the late 1940's through the early 1960's. In this paper, structural analyses of these concrete vaults subjected to various natural hazards are described, emphasizing the northwest shallow vault. The natural phenomenon hazards considered include both earthquakes and tornados. Because these vaults are deeply embedded in the soil, the SASSI (System Analysis of Soil-Structure Interaction) code was utilized for the seismic calculations. The ultimate strength method was used to analyze the reinforced concrete structures. In all studies, moment and shear strengths at critical locations of the storage vaults were evaluated. Results of the structural analyses show that almost all the waste storage vaults meet the code requirements according to ACI 349--85. These vaults also satisfy the performance goal such that confinement of hazardous materials is maintained and functioning of the facility is not interrupted

  17. Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: A review

    International Nuclear Information System (INIS)

    Sun, Yongjun; Wang, Shengwei; Xiao, Fu; Gao, Diance

    2013-01-01

    Highlights: • Little study reviews the load shifting control using different facilities. • This study reviews load shifting control using building thermal mass. • This study reviews load shifting control using thermal energy storage systems. • This study reviews load shifting control using phase change material. • Efforts for developing more applicable load shifting control are addressed. - Abstract: For decades, load shifting control, one of most effective peak demand management methods, has attracted increasing attentions from both researchers and engineers. Different load shifting control strategies have been developed when diverse cold thermal energy storage facilities are used in commercial buildings. The facilities include building thermal mass (BTM), thermal energy storage system (TES) and phase change material (PCM). Little study has systematically reviewed these load shifting control strategies and therefore this study presents a comprehensive review of peak load shifting control strategies using these thermal energy storage facilities in commercial buildings. The research and applications of the load shifting control strategies are presented and discussed. The further efforts needed for developing more applicable load shifting control strategies using the facilities are also addressed

  18. Periodic inspections of lightning protection systems in intermediate storage facilities of nuclear technological plants

    International Nuclear Information System (INIS)

    Witzel, Andre; Schulz, Olav

    2013-01-01

    Especially for nuclear technological plants, periodic inspections of lightning protection systems are of great importance. This article shows the sequence of maintenance programs using the examples of the intermediate storage facilities of the nuclear technological plants Grohnde and Unterweser as well as the central intermediate storage facility in Gorleben and gives a description of the extensive measures of inspecting the external and internal lightning protection and the global earth termination system.

  19. Spent unreprocessed fuel (SURF) facility evaluation plan of the alternative storage concepts

    International Nuclear Information System (INIS)

    Berry, S.M.

    1978-01-01

    Concepts were evaluated for the storage of unreprocessed spent fuel in a retrievable surface storage facility. This document provides a systematic format for making a concept selection from the seven alternative concepts presented in RHO-LD-2. Results of the evaluation was that the Drywell concept was rated highest with the Water Basin Concept and the Sealed Storage Cask concept with multiple canisters of SURF coming in a close second and third

  20. Electrochemical Hydrogen Storage in Facile Synthesized Co@N-Doped Carbon Nanoparticle Composites.

    Science.gov (United States)

    Zhou, Lina; Qu, Xiaosheng; Zheng, Dong; Tang, Haolin; Liu, Dan; Qu, Deyang; Xie, ZhiZhong; Li, Junsheng; Qu, Deyu

    2017-11-29

    A Co@nitrogen-doped carbon nanoparticle composite was synthesized via a facile molecular self-assembling procedure. The material was used as the host for the electrochemical storage of hydrogen. The hydrogen storage capacity of the material was over 300 mAh g -1 at a rate of 100 mAg -1 . It also exhibited superior stability for storage of hydrogen, high rate capability, and good cyclic life. Hybridizing metallic cobalt nanoparticle with nitrogen-doped mesoporous carbon is found to be a good approach for the electrochemical storage of hydrogen.

  1. Storage facility for solid medium level waste at Eurochemic

    International Nuclear Information System (INIS)

    Balseyro-Castro, M.

    1976-01-01

    An engineered surface storage facility is described; it will serve for the interim storage of solid and solidified medium-level waste resulting from the reprocessing of irradiated fuels. Up till now, two storage bunkers have been constructed. Each of them is 64 m long, 12 m wide and 8 m high and can take up to about 5,000 drums of 220 1 volume. The drums are stored in a vertical position and in four layers. The waste product drums are transported by a wagon to the entrance of the bunkers from where they are transferred in to the bunker by an overhead crane which is remotely controlled by high-frequency modulated laser beams. A closed-circuit camera is used to watch the handling operations. The waste stored is fully retrievable, either by means of an overhead crane of a lift-truck and can then be transported to an ultimate storage site

  2. Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilized

    International Nuclear Information System (INIS)

    Gao Ting; Lin Wensheng; Gu Anzhong

    2011-01-01

    Research highlights: → We propose two new light hydrocarbon separation processes utilizing LNG cold energy. → Both processes produce liquefied ethane and LPG with high ethane recovery rate. → CH 4 -riched gas from the high pressure process is compressed to final pressure. → Re-liquefied CH 4 -riched gas from the low pressure one is pumped to final pressure. → Both processes have good performance; the low pressure one is economically better. -- Abstract: Liquefied natural gas (LNG) often consists of some kinds of light hydrocarbons other than methane, such as ethane, propane and butane, which are of high additional value. By efficiently utilization of LNG cryogenic energy, these light hydrocarbons (C 2 + ) can be separated from LNG with low power consumption and LNG is gasified meanwhile. Two novel light hydrocarbon separation processes are proposed in this paper. The first process uses a demethanizer working at higher pressure (about 4.5 MPa). The methane-riched natural gas from the demethanizer can be compressed to pipeline pressure with low power consumption. The other one uses a demethanizer working at lower pressure (about 2.4 MPa). By cascade utilization of LNG cryogenic energy, the methane-riched natural gas from the demethanizer is entirely re-liquefied. Then the liquid product is pressurized to pipeline pressure by pumps instead of compressors, reducing the power consumption greatly. By both of the two processes, liquefied ethane and LPG (liquefied petroleum gas, i.e. C 3 + ) at atmosphere pressure can be obtained directly, and high ethane recovery rate can be gained. On the basis of one typical feed gas composition, the effects of the ethane content and the ethane price to the economics of the light hydrocarbon separation plants are studied, and the economics are compared for these two processes. The results show that recovering light hydrocarbons from LNG can gain great profits by both of the two processes, and from the view of economics, the

  3. In-situ strain monitoring in liquid containers of LNG transporting carriers

    Science.gov (United States)

    Oh, Min-Cheol; Seo, Jun-Kyu; Kim, Kyung-Jo; Lee, Sang-Min; Kim, Myung-Hyun

    2008-08-01

    Liquefied natural gas (LNG) transport carriers are exposed to a risk by the repeated bump in the LNG container during the vessel traveling over the wave in ocean. The liquid inside the container, especially when it was not fully contained, make a strong bump onto the insulation panel of the tank wall. The insulation panel consists of several layers of thick polyurethane foam (PUF) to maintain the LNG below the cryogenic temperature, -162°C. Due to the repeated shock on the PUF, a crack could be developed on the tank wall causing a tremendous disaster for LNG carriers. To prevent the accidental crack on the tank, a continuous monitoring of the strain imposed on the PUF is recommended. In this work, a fiber-optic Bragg grating was imbedded inside the PUF for monitoring the strain parallel to the impact direction. The optical fiber sensor with a small diameter of 125 μm was suitable to be inserted in the PUF through a small hole drilled after the PUF was cured. In-situ monitoring of the strain producing the change of Bragg reflection wavelength, a high speed wavelength interrogation method was employed by using an arrayed waveguide grating. By dropping a heavy mass on the PUF, we measured the strain imposed on the insulation panel.

  4. 616 Nonradioactive Dangerous Waste Storage Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The 616 Nonradioactive Dangerous Waste Storage Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this storage unit, including the Part A included with this document, is provided at the beginning of the Part A Section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings. The 616 Nonradioactive Dangerous Waste Storage Facility Dangerous Waste Permit Application (Revision 0) was submitted to the Washington State Department of Ecology and the US Environmental Protection Agency on July 31, 1989. Revision 1, addressing Washington State Department of Ecology review comments made on Revision 0 dated November 21, 1989, and March 23, 1990, was submitted on June 22, 1990. This submittal, Revision 2, addresses Washington State Department of Ecology review comments made on Revision 1, dated June 22, 1990, August 30, 1990, December 18, 1990, and July 8, 1991

  5. A structural and stochastic optimal model for projections of LNG imports and exports in Asia-Pacific

    Directory of Open Access Journals (Sweden)

    Tom Kompas

    2016-06-01

    Full Text Available The Asia-Pacific region, the largest and fastest growing liquefied natural gas (LNG market in the world, has been undergoing radical changes over the past few years. These changes include considerable additional supplies from North America and Australia, and a recent LNG price slump resulting from an oil-linked pricing mechanism and demand uncertainties. This paper develops an Asia-Pacific Gas Model (APGM, based on a structural, stochastic and optimising framework, providing a valuable tool for the projection of LNG trade in the Asia-Pacific region. With existing social-economic conditions, the model projects that Asia-Pacific LNG imports are expected to increase by 49.1 percent in 2020 and 95.7 percent in 2030, compared to 2013. Total LNG trade value is estimated to increase to US$127.2 billion in 2020 and US$199.0 billion in 2030. Future LNG trade expansion is mainly driven by emerging and large importers (i.e., China and India, and serviced, most importantly, by new supplies from Australia and the USA. The model's projected results are sensitive to changes in expected oil prices, pricing mechanisms, economic growth and energy policies, as well as unexpected geopolitical-economic events.

  6. Reorganizing Nigeria's Vaccine Supply Chain Reduces Need For Additional Storage Facilities, But More Storage Is Required.

    Science.gov (United States)

    Shittu, Ekundayo; Harnly, Melissa; Whitaker, Shanta; Miller, Roger

    2016-02-01

    One of the major problems facing Nigeria's vaccine supply chain is the lack of adequate vaccine storage facilities. Despite the introduction of solar-powered refrigerators and the use of new tools to monitor supply levels, this problem persists. Using data on vaccine supply for 2011-14 from Nigeria's National Primary Health Care Development Agency, we created a simulation model to explore the effects of variance in supply and demand on storage capacity requirements. We focused on the segment of the supply chain that moves vaccines inside Nigeria. Our findings suggest that 55 percent more vaccine storage capacity is needed than is currently available. We found that reorganizing the supply chain as proposed by the National Primary Health Care Development Agency could reduce that need to 30 percent more storage. Storage requirements varied by region of the country and vaccine type. The Nigerian government may want to consider the differences in storage requirements by region and vaccine type in its proposed reorganization efforts. Project HOPE—The People-to-People Health Foundation, Inc.

  7. File list: InP.Lng.50.AllAg.Carcinoma,_Lewis_Lung [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Lng.50.AllAg.Carcinoma,_Lewis_Lung mm9 Input control Lung Carcinoma, Lewis Lung... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Lng.50.AllAg.Carcinoma,_Lewis_Lung.bed ...

  8. Dossier LNG. Liquid market move

    International Nuclear Information System (INIS)

    Matla, P.

    2012-01-01

    The worldwide market for liquid natural gas is booming like never before and the end is not in sight yet. Shell is market leader among international energy companies. But where does LNG come from? And how will the fuel be used in the coming years? What role does Shell want to play in this market? These questions are addressed in a series of three articles. [nl

  9. 33 CFR 165.1709 - Security Zones: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG...

    Science.gov (United States)

    2010-07-01

    ... Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. 165.1709 Section...: Liquefied Natural Gas Tanker Transits and Operations at Phillips Petroleum LNG Pier, Cook Inlet, AK. (a... and outbound transits through Cook Inlet, Alaska between the Phillips Petroleum LNG Pier, 60°40′43″ N...

  10. 75 FR 53371 - Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas Dispersion Models

    Science.gov (United States)

    2010-08-31

    .... PHMSA-2010-0226] Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas... safety standards for siting liquefied natural gas (LNG) facilities. Those standards require that an..., and Handling of Liquefied Natural Gas. That consensus [[Page 53372

  11. Design, construction and commissioning of the new solid waste management and storage facilities of Ignalina NPP, Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Goehring, R.; Wenninger, K. [RWE NUKEM GmbH, Alzenau (Germany)

    2006-04-15

    The contract for the design, construction and commissioning (turn-key) of the New Solid Waste Management and Storage Facilities (SWMSF) has been awarded to RWE NUKEM GmbH. The contract was signed on the 30.11.2005. The New Solid Waste Management and Storage Facilities (SWMSF) are financed by the Ignalina Decommissioning Support Fund which is managed by European Bank for Reconstruction and Development (EBRD). The new facilities are required on the Ignalina Nuclear Power Plant (INPP) in order to support ongoing decomissioning work, including removal of waste from existing waste storage buildings. (orig.)

  12. File list: NoD.Lng.05.AllAg.Carcinoma,_Lewis_Lung [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Lng.05.AllAg.Carcinoma,_Lewis_Lung mm9 No description Lung Carcinoma, Lewis Lun...g http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Lng.05.AllAg.Carcinoma,_Lewis_Lung.bed ...

  13. File list: NoD.Lng.10.AllAg.Carcinoma,_Lewis_Lung [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Lng.10.AllAg.Carcinoma,_Lewis_Lung mm9 No description Lung Carcinoma, Lewis Lun...g http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Lng.10.AllAg.Carcinoma,_Lewis_Lung.bed ...

  14. File list: InP.Lng.20.Input_control.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Lng.20.Input_control.AllCell hg19 Input control Input control Lung SRX502813,SR...1772,SRX734236,SRX188957,SRX1004561,SRX497257,SRX497258 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Lng.20.Input_control.AllCell.bed ...

  15. File list: InP.Lng.10.Input_control.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Lng.10.Input_control.AllCell hg19 Input control Input control Lung SRX502813,SR...74812,SRX016558,SRX734236,SRX038682,SRX497257,SRX497258 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Lng.10.Input_control.AllCell.bed ...

  16. File list: InP.Lng.05.Input_control.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Lng.05.Input_control.AllCell hg19 Input control Input control Lung SRX502813,SR...88957,SRX093320,SRX038682,SRX502807,SRX497258,SRX497257 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Lng.05.Input_control.AllCell.bed ...

  17. File list: InP.Lng.50.Input_control.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Lng.50.Input_control.AllCell hg19 Input control Input control Lung SRX502813,SR...89952,SRX080360,SRX734236,SRX038683,SRX093320,SRX038682 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Lng.50.Input_control.AllCell.bed ...

  18. Preconceptual design for a Monitored Retrievable Storage (MRS) transfer facility

    International Nuclear Information System (INIS)

    Woods, W.D.; Jowdy, A.K.; Smith, R.I.

    1990-09-01

    The contract between the DOE and the utilities specifies that the DOE will receive spent fuel from the nuclear utilities in 1998. This study investigates the feasibility of employing a simple Transfer Facility which can be constructed quickly, and operate while the full-scale MRS facilities are being constructed. The Transfer Facility is a hot cell designed only for the purpose of transferring spent fuel assemblies from the Office of Civilian Radioactive Waste Management (OCRWM) transport casks (shipped from the utility sites) into onsite concrete storage casks. No operational functions other than spent fuel assembly transfers and the associated cask handling, opening, and closing would be performed in this facility. Radioactive waste collected in the Transfer Facility during operations would be stored until the treatment facilities in the full-scale MRS facility became operational, approximately 2 years after the Transfer Facility started operation. An alternate wherein the Transfer Facility was the only waste handling building on the MRS site was also examined and evaluated. 6 figs., 26 tabs

  19. On possibilities of using global monitoring in effective prevention of tailings storage facilities failures.

    Science.gov (United States)

    Stefaniak, Katarzyna; Wróżyńska, Magdalena

    2018-02-01

    Protection of common natural goods is one of the greatest challenges man faces every day. Extracting and processing natural resources such as mineral deposits contributes to the transformation of the natural environment. The number of activities designed to keep balance are undertaken in accordance with the concept of integrated order. One of them is the use of comprehensive systems of tailings storage facility monitoring. Despite the monitoring, system failures still occur. The quantitative aspect of the failures illustrates both the scale of the problem and the quantitative aspect of the consequences of tailings storage facility failures. The paper presents vast possibilities provided by the global monitoring in the effective prevention of these failures. Particular attention is drawn to the potential of using multidirectional monitoring, including technical and environmental monitoring by the example of one of the world's biggest hydrotechnical constructions-Żelazny Most Tailings Storage Facility (TSF), Poland. Analysis of monitoring data allows to take preventive action against construction failures of facility dams, which can have devastating effects on human life and the natural environment.

  20. Future forecast for life-cycle greenhouse gas emissions of LNG and city gas 13A

    International Nuclear Information System (INIS)

    Okamura, Tomohito; Furukawa, Michinobu; Ishitani, Hisashi

    2007-01-01

    The objective of this paper is to analyze the most up-to-date data available on total greenhouse-gas emissions of a LNG fuel supply chain and life-cycle of city gas 13A based on surveys of the LNG projects delivering to Japan, which should provide useful basic-data for conducting life-cycle analyses of other product systems as well as future alternative energy systems, because of highly reliable data qualified in terms of its source and representativeness. In addition, the life-cycle greenhouse-gas emissions of LNG and city-gas 13A in 2010 were also predicted, taking into account not only the improvement of technologies, but also the change of composition of LNG projects. As a result of this analysis, the total amount of greenhouse-gas emissions of the whole city-gas 13A chain at present was calculated to be 61.91 g-CO 2 /MJ, and the life-cycle greenhouse-gas emissions of LNG and city-gas 13A in 2010 could be expected to decrease by about 1.1% of the current emissions

  1. US North Slope gas and Asian LNG markets

    Science.gov (United States)

    Attanasi, E.D.

    1994-01-01

    Prospects for export of liquified natural gas (LNG) from Alaska's North Slope are assessed. Projected market conditions to 2010 show that new LNG capacity beyond announced expansions will be needed to meet regional demand and that supplies will probably come from outside the region. The estimated delivered costs of likely suppliers show that Alaska North Slope gas will not be competitive. The alternative North Slope gas development strategies of transport and sale to the lower 48 states and use on the North Slope for either enhanced oil recovery or conversion to liquids are examined. The alternative options require delaying development until US gas prices increase, exhaustion of certain North Slope oil fields, or advances occur in gas to liquid fuels conversion technology. ?? 1995.

  2. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  3. Current status and future projections of LNG demand and supplies: A global prospective

    International Nuclear Information System (INIS)

    Kumar, Satish; Kwon, Hyouk-Tae; Choi, Kwang-Ho; Hyun Cho, Jae; Lim, Wonsub; Moon, Il

    2011-01-01

    An unceasing growth of gas consumption in domestic households, industry, and power plants has gradually turned natural gas into a major source of energy. Main drivers in this development are the technical and economic advantages of natural gas. It is a clean, versatile, and easily controllable fuel. On this basis, natural gas is often considered the form of energy that will be the 'bridging fuel' to a sustainable energy system, sometime after 2050. Unlike other main sources of energy, such as oil and coal, gas is not traded on an actual world market. This paper provides an overview on demand and supplies of natural gas (LNG) in the past as a function of gas prices, gas technology (gas sweetening, liquefaction, shipping and re-gasification), and gas market and how they have changed recently. It also discusses the likely developments in global LNG demand for the period to the year 2030. - Highlights: → This study provides an overview on demand and supplies of LNG in the past and future. → Outlook for LNG demand in Asia pacific region is very robust. → In past decade the shale gas production in USA has increased fivefold. → The future of European gas supply depends largely on the geopolitical environments. → Within the gas sector LNG is playing an ever increasing role in gas transportation.

  4. Engineering economics applied to supply and demand strategy in the gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, G H

    1978-10-01

    A discussion covers some general aspects of long-term strategy in the gas industry, including the requirement of at least six years to develop storage facilities and gas plant; planning to meet all demands except those in the most severe winter occurring once in 50 yr; forecasting six years ahead (the 50 yr winter, the severe one-day demand, regional demands); development of a plant investment program to meet demands; the Cost Polygon method of determining the best plant mix; the mathematical model approach with which to examine every possible combination of plants available in any one year; the example of construction restraints for LNG storage; orientation of this model toward correct balance in peak shaving for say LNG, SNG, and salt cavities; a second, more powerful model for evaluating a least-cost investment program among the longer term plant options including LNG, SNG from oil or coal, and storage in salt cavities, disused coal mines, aquifers, or spent gas fields.

  5. Overview of the LNG world market; Panorama mundial do mercado de GNL

    Energy Technology Data Exchange (ETDEWEB)

    Veloso, Luciano de Gusmao; Costa, Julia Rotstein Smith da Silva; Moreira, Tathiany Rodrigues [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The commercialization of Liquefied Natural Gas (LNG) has been gaining great prominence worldwide and in Brazil, in recent days, due to the ever-increasing need for diversification of energy sources and for flexibilization of gas offer, in order to ensure the importing countries' supply. In this scenario, LNG has been positioning itself, around the world, as an important alternative, especially in cases where there is uncertainty concerning the fulfillment of delivery contracts, the transportation network is still incipient or inexistent, the gas pipelines operate at full capacity and the country's gas demand is met by more than one exporting source, sometimes by different transport modals. In the case of Brazil, the recent restrictions to the gas offer bring to the agenda the search for better solutions in energy policy in order to appropriately meet the totality of national demand. This article presents the current situation of the LNG market and identifies the main agents involved in its commerce, drawing attention to, in light of the originality of LNG projects in Brazil, the need for perfecting the regulation in order to boost the development of the national gas industry. (author)

  6. Interim Storage Facility for LLW of Decommissioning Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Amato, S.; Ugolini, D.; Basile, F. [European Commission, Joint Research Centre, Nuclear Decommissioning and Facility Management Unit, TP 800, Via E. Fermi 2749, 21027 Ispra - VA (Italy)

    2009-06-15

    JRC-Ispra has initiated a Decommissioning and Waste Management (D and WM) Programme of all its nuclear facilities. In the frame of this programme, it has been decided to build an interim storage facility to host conditioned low level waste (LLW) that had been produced during the operation of JRC-Ispra nuclear research reactors and laboratories and that will be produced from their decommissioning. This paper presents the main characteristics of the facility. The storage ISFISF has a rectangular shape with uniform height and it is about 128 m long, 41 m wide and 9 m high. The entire surface affected by the facility, including screening area and access roads, is about 27.000 m{sup 2}. It is divided in three sectors, a central one, about 16 m long, for loading/unloading operations and operational services and two lateral sectors, each about 55 m long, for the conditioned LLW storage. Each storage sector is divided by a concrete wall in two transversal compartments. The ISFISF, whose operational lifetime is 50 years, is designed to host the conditioned LLW boxed in UNI CP-5.2 packages, 2,5 m long, 1.65 m wide, and 1,25 m high. The expected nominal inventory of waste is about 2100 packages, while the maximum storage is 2540 packages, thus a considerably large reserve capacity is available. The packages will be piled in stacks of maximum number of five. The LLW is going to be conditioned with a cement matrix. The maximum weight allowed for each package has been fixed at 16.000 kg. The total radioactivity inventory of waste to be hosted in the facility is about 30 TBq (mainly {beta}/{gamma} emitters). In order to satisfy the structural, seismic, and, most of all, radiological requirements, the external walls of the ISFISF are made of pre-fabricated panels, 32 cm thick, consisting of, from inside to outside, 20 cm of reinforced concrete, 7 cm of insulating material, and again 5 cm of reinforced concrete. For the same reason the roof is made with pre-fabricated panels in

  7. Supply chain management and economic valuation of real options in the natural gas and liquefied natural gas industry

    Science.gov (United States)

    Wang, Mulan Xiaofeng

    in the LNG industry, Chapter 3 studies the operations of LNG supply chains facing both supply and price risk. To model the supply uncertainty, we employ a closed-queuing-network (CQN) model to represent upstream LNG production and shipping, via special oceans-going tankers, to a downstream re-gasification facility in the U.S, which sells natural gas into the wholesale spot market. The CQN shipping model analytically generates the unloaded amount probability distribution. Price uncertainty is captured by the spot price, which experiences both volatility and significant seasonality, i.e., higher prices in winter. We use a trinomial lattice to model the price uncertainty, and calibrate to the extended forward curves. Taking the outputs from the CQN model and the spot price model as stochastic inputs, we formulate a real option inventory-release model to study the benefit of optimally managing a downstream LNG storage facility. This allows characterization of the structure of the optimal inventory management policy. An interesting finding is that when it is optimal to sell, it is not necessarily optimal to sell the entire available inventory. The model can be used by LNG players to value and manage the real option to store LNG at a re-gasification facility, and is easy to be implemented. For example, this model is particularly useful to value leasing contracts for portions of the facility capacity. Real data is used to assess the value of the real option to store LNG at the downstream re-gasification facility, and, contrary to what has been claimed by some practitioners, we find that it has significant value (several million dollars). Chapter 4 studies the importance of modeling the shipping variability when valuing and managing a downstream LNG storage facility. The shipping model presented in Chapter 3 uses a "rolling forward" method to generate the independent and identically distributed (i.i.d.) unloaded amount in each decision period. We study the merit of the i

  8. More LNG ship orders for GD (General Dynamics Corp. )

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    General Dynamics Corp. has been awarded a contract for two LNG tankers to transport LNG from Algeria to Lake Charles, La., with the U.S. Maritime Administration funding 25.5% of the $155 million cost of each vessel. The two ships are being built for Lachmar Inc., of Delaware, a partnership composed of Morgas Inc., Pantheon Inc., and Pelmar Inc., subsidiaries respectively of Moore-McCormack Bulk Transport Inc., General Dynamics Corp., and Panhandle Eastern Pipe Line Co. Upon completion in Dec. 1979 and Mar. 1980, the ships will be operated by Gastrans Inc. of Delaware, which is also a subsidiary of Moore-McCormack.

  9. China's energy and environmental quandary: is LNG the answer?

    International Nuclear Information System (INIS)

    Williams, M.F.; King, B.S.

    1996-01-01

    Economic growth in China has inevitably lead to an increased energy demand to fuel industrial production, infrastructural and domestic needs. To date much of China's generating capacity has been coal-based, without flue gas desulphurisation. The serious environmental effects of such a policy are being reexamined in the light of rapid growth in demand. This paper argues that power generation by combined cycle gas turbines and fuelled by natural gas, supplied as LNG could provide a solution. Imported LNG to fuel such turbines could, it is argued, be used to generate electricity at prices competitive with imported coal and other sources of domestic gas. (UK)

  10. File list: His.Lng.05.AllAg.Carcinoma,_Lewis_Lung [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.05.AllAg.Carcinoma,_Lewis_Lung mm9 Histone Lung Carcinoma, Lewis Lung SRX10...91778,SRX1091782,SRX1091783,SRX1091781,SRX1091784,SRX1091779,SRX1091785,SRX1091780 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Lng.05.AllAg.Carcinoma,_Lewis_Lung.bed ...

  11. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This report presents a summary design description of the Conceptual Design for an Integral Monitored Retrievable Storage (MRS) Facility, as prepared by The Ralph M. Parsons Company under an A-E services contract with the Richland Operations Office of the Department of Energy. More detailed design requirements and design data are set forth in the Basis for Design and Design Report, bound under separate cover and available for reference by those desiring such information. The design data provided in this Design Report Executive Summary, the Basis for Design, and the Design Report include contributions by the Waste Technology Services Division of Westinghouse Electric Corporation (WEC), which was responsible for the development of the waste receiving, packaging, and storage systems, and Golder Associates Incorporated (GAI), which supported the design development with program studies. The MRS Facility design requirements, which formed the basis for the design effort, were prepared by Pacific Northwest Laboratory for the US Department of Energy, Richland Operations Office, in the form of a Functional Design Criteria (FDC) document, Rev. 4, August 1985. 9 figs., 6 tabs

  12. New low-level radioactive waste disposal/storage facilities for the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    Within the next few years the Savannah River Plant will require new facilities for the disposal and/or storage of solid low-level radioactive waste. Six options have been developed which would meet the regulatory and site-specific requirements for such facilities

  13. Material handling for the Los Alamos National Laboratory Nuclear Storage Facility

    International Nuclear Information System (INIS)

    Pittman, P.; Roybal, J.; Durrer, R.; Gordon, D.

    1999-01-01

    This paper will present the design and application of material handling and automation systems currently being developed for the Los Alamos National Laboratory (LANL) Nuclear Material Storage Facility (NMSF) renovation project. The NMSF is a long-term storage facility for nuclear material in various forms. The material is stored within tubes in a rack called a basket. The material handling equipment range from simple lift assist devices to more sophisticated fully automated robots, and are split into three basic systems: a Vault Automation System, an NDA automation System, and a Drum handling System. The Vault Automation system provides a mechanism to handle a basket of material cans and to load/unload storage tubes within the material vault. In addition, another robot is provided to load/unload material cans within the baskets. The NDA Automation System provides a mechanism to move material within the small canister NDA laboratory and to load/unload the NDA instruments. The Drum Handling System consists of a series of off the shelf components used to assist in lifting heavy objects such as pallets of material or drums and barrels

  14. A multi-tank storage facility to effect power control in the PBMR power cycle

    International Nuclear Information System (INIS)

    Matimba, T.A.D.; Krueger, D.L.W.; Mathews, E.H.

    2007-01-01

    This article presents the concept of a storage facility used to effect power control in South Africa's PBMR power cycle. The concept features a multiple number of storage vessels whose purpose is to contain the working medium, helium, as it is withdrawn from the PBMR's closed loop power cycle, at low energy demand. This helium is appropriately replenished to the power cycle as the energy demand increases. Helium mass transfer between the power cycle and the storage facility, henceforth known as the inventory control system (ICS), is carried out by way of the pressure differential that exists between these two systems. In presenting the ICS concept, emphasis is placed on storage effectiveness; hence the discussion in this paper is centred on those features which accentuate storage effectiveness, namely:- Storage vessel multiplicity; - Unique initial pressures for each vessel arranged in a cascaded manner; and - A heat sink placed in each vessel to provide thermal inertia. Having presented the concept, the objective is to qualitatively justify the presence of each of the above-mentioned features using thermodynamics as a basis

  15. Hazard categorization and baseline documentation for the Sodium Storage Facility. Revision 1

    International Nuclear Information System (INIS)

    Bowman, B.R.

    1995-01-01

    Hazard Categorization evaluation has been performed in accordance with DOE-STD-1027 for the Sodium Storage Facility at FFTF and a determination of less than Category 3 or non-nuclear has been made. Hazard Baseline Documentation has been performed in accordance with DOE-EM-STD-5502 and a determination of ''Radiological Facility'' has been made

  16. Radioactive waste storage facilities, involvement of AVN in inspection and safety assessment

    International Nuclear Information System (INIS)

    Simenon, R.; Smidts, O.

    2006-01-01

    The legislative and regulatory framework in Belgium for the licensing and the operation of radioactive waste storage buildings are defined by the Royal Decree of 20 July 2001 (hereby providing the general regulations regarding to the protection of the population, the workers and the environment against the dangers of ionising radiation). This RD introduces in the Belgian law the radiological protection and ALARA-policy concepts. The licence of each nuclear facility takes the form of a Royal Decree of Authorization. It stipulates that the plant has to be in conformity with its Safety Analysis Report. This report is however not a public document but is legally binding. Up to now, the safety assessment for radioactive waste storage facilities, which is implemented in this Safety Analysis Report, has been judged on a case-by-case basis. AVN is an authorized inspection organisation to carry out the surveillance of the Belgian nuclear installations and performs hereby nuclear safety assessments. AVN has a role in the nuclear safety and radiation protection during all the phases of a nuclear facility: issuance of licenses, during design and construction phase, operation (including reviewing and formal approval of modifications) and finally the decommissioning. Permanent inspections are performed on a regular basis by AVN, this by a dedicated site inspector, who is responsible for a site of an operator with nuclear facilities. Besides the day-to-day inspections during operation there are also the periodic safety reviews. AVN assesses the methodological approaches for the analyses, reviews and approves the final studies and results. The conditioned waste in Belgium is stored on the Belgoprocess' sites (region Mol-Dessel) for an intermediate period (about 80 years). In the meantime, a well-defined inspection programme is being implemented to ensure that the conditioned waste continues to be stored safely during this temporary storage period. This programme was draw up by

  17. Release of radionuclides following severe accident in interim storage facility. Source term determination

    International Nuclear Information System (INIS)

    Morandi, S.; Mariani, M.; Giacobbo, F.; Covini, R.

    2006-01-01

    Among the severe accidents that can cause the release of radionuclides from an interim storage facility, with a consequent relevant radiological impact on the population, there is the impact of an aircraft on the facility. In this work, a safety assessment analysis for the case of an aircraft crash into an interim storage facility is tackled. To this aim a methodology, based upon DOE, IAEA and NUREG standard procedures and upon conservative yet realistic hypothesis, has been developed in order to evaluate the total radioactivity, source term, released to the biosphere in consequence of the impact, without recurring to the use of complicated numerical codes. The procedure consists in the identification of the accidental scenarios, in the evaluation of the consequent damage to the building structures and to the waste packages and in the determination of the total release of radionuclides through the building-atmosphere interface. The methodology here developed has been applied to the case of an aircraft crash into an interim storage facility currently under design. Results show that in case of perforation followed by a fire incident the total released activity would be greater of some orders of magnitude with respect to the case of mere perforation. (author)

  18. Technical study of a thermally dense long term interim storage facility

    International Nuclear Information System (INIS)

    Le Duigou, A.; Badie, M.; Duret, B.; Bricard, A.

    2001-01-01

    The COFRE concept is aimed at the surface and thermal densification of the interim storage facility for irradiated fuels. The facility provides the biological shielding. A conditioning cell is used to load and retrieve the fuel assemblies. The facility container is the second containment barrier. The high power levels are managed by an auxiliary cooling system whose original feature is the passive use of a water evaporation-condensation cycle in a sealed circuit. The removable evaporator abuts the container. The air cooled condenser is placed outside the facility. Contact resistance and heat pipe mode were successfully modelled and are undergoing experimental validation on the THERESE and REBECA loops. (author)

  19. Establishing a central waste processing and storage facility in Ghana

    International Nuclear Information System (INIS)

    Glover, E.T.; Fletcher, J.J.; Darko, E.O.

    2001-01-01

    Radioactive waste and spent sealed sources in Ghana are generated from various nuclear applications - diagnostic and therapeutic procedures in medicine, measurement and processing techniques in industry, irradiation techniques for food preservation and sterilization of medical products and a research reactor for research and teaching. Statistics available indicate that over 15 institutions in Ghana are authorized to handle radiation sources. At present radioactive waste and spent sealed sources are collected and stored in the interim facility without conditioning. With the increasing use of radioactive sources in the industry, medicine for diagnostic and therapeutic purpose and research and teaching, the volume of waste is expected to increase. The radioactive waste expected include spent ion exchange resins from the nuclear reactor water purification system, incompactible solid waste from mechanical filter, liquid and organic waste and spent sealed sources. It is estimated that four 200L drums will be needed annually to condition the waste to be generated. The National Radioactive Waste Management Centre (NRWMC) was therefore established to carry radioactive waste safety operations in Ghana and research to ensure that each waste type is managed in the most appropriate manner. Its main task includes development and establishment of the radioactive waste management infrastructure with a capacity considering the future nuclear technology development in Ghana. The first phase covers the establishment of administrative structure, development of basic regulations and construction of the radioactive waste processing and storage facility. The Ghana Radioactive Waste Management regulation has been presented to the Parliament of Ghana for consideration. The initial draft was reviewed by the RPB. A 3-day national seminar on the Understanding and Implementation of the Regulation on Radioactive Waste Management in Ghana was held to discuss and educate the general public on the

  20. A monitored retrievable storage facility: Technical background information

    International Nuclear Information System (INIS)

    1991-07-01

    The US government is seeking a site for a monitored retrievable storage facility (MRS). Employing proven technologies used in this country and abroad, the MRS will be an integral part of the federal system for safe and permanent disposal of the nation's high-level radioactive wastes. The MRS will accept shipments of spent fuel from commercial nuclear power plants, temporarily store the spent fuel above ground, and stage shipments of it to a geologic repository for permanent disposal. The law authorizing the MRS provides an opportunity for a state or an Indian tribe to volunteer to host the MRS. The law establishes the Office of the Nuclear Waste Negotiator, who is to seek a state or an Indian tribe willing to host an MRS at a technically-qualified site on reasonable terms, and is to negotiate a proposed agreement specifying the terms and conditions under which the MRS would be developed and operated at that site. This agreement can ensure that the MRS is acceptable to -- and benefits -- the host community. The proposed agreement must be submitted to Congress and enacted into law to become effective. This technical background information presents an overview of various aspects of a monitored retrievable storage facility, including the process by which it will be developed