WorldWideScience

Sample records for lmw hydrophilic biomacromolecules

  1. Methods for Monte Carlo simulations of biomacromolecules.

    Science.gov (United States)

    Vitalis, Andreas; Pappu, Rohit V

    2009-01-01

    The state-of-the-art for Monte Carlo (MC) simulations of biomacromolecules is reviewed. Available methodologies for sampling conformational equilibria and associations of biomacromolecules in the canonical ensemble, given a continuum description of the solvent environment, are reviewed. Detailed sections are provided dealing with the choice of degrees of freedom, the efficiencies of MC algorithms and algorithmic peculiarities, as well as the optimization of simple movesets. The issue of introducing correlations into elementary MC moves, and the applicability of such methods to simulations of biomacromolecules is discussed. A brief discussion of multicanonical methods and an overview of recent simulation work highlighting the potential of MC methods are also provided. It is argued that MC simulations, while underutilized biomacromolecular simulation community, hold promise for simulations of complex systems and phenomena that span multiple length scales, especially when used in conjunction with implicit solvation models or other coarse graining strategies.

  2. Biomacromolecules as carriers in drug delivery and tissue engineering.

    Science.gov (United States)

    Zhang, Yujie; Sun, Tao; Jiang, Chen

    2018-01-01

    Natural biomacromolecules have attracted increased attention as carriers in biomedicine in recent years because of their inherent biochemical and biophysical properties including renewability, nontoxicity, biocompatibility, biodegradability, long blood circulation time and targeting ability. Recent advances in our understanding of the biological functions of natural-origin biomacromolecules and the progress in the study of biological drug carriers indicate that such carriers may have advantages over synthetic material-based carriers in terms of half-life, stability, safety and ease of manufacture. In this review, we give a brief introduction to the biochemical properties of the widely used biomacromolecule-based carriers such as albumin, lipoproteins and polysaccharides. Then examples from the clinic and in recent laboratory development are summarized. Finally the current challenges and future prospects of present biological carriers are discussed.

  3. Parent heparin and daughter LMW heparin correlation analysis using LC-MS and NMR

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinyue, E-mail: liux22@rpi.edu [National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, 250100 (China); Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Department of Biology, Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180 (United States); St Ange, Kalib, E-mail: stangk2@rpi.edu [Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Department of Biology, Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180 (United States); Wang, Xiaohua, E-mail: wangx35@rpi.edu [Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Department of Biology, Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180 (United States); School of Computer and Information, Hefei University of Technology, Hefei (China); Lin, Lei, E-mail: Linl5@rpi.edu [Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Department of Biology, Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180 (United States); Zhang, Fuming, E-mail: zhangf2@rpi.edu [Department of Chemistry and Chemical Biology, Department of Chemical and Biological Engineering, Department of Biology, Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180 (United States); and others

    2017-04-08

    Heparin is a structurally complex, polysaccharide anticoagulant derived from livestock, primarily porcine intestinal tissues. Low molecular weight (LMW) heparins are derived through the controlled partial depolymerization of heparin. Increased manufacturing and regulatory concerns have provided the motivation for the development of more sophisticated analytical methods for determining both their structure and pedigree. A strategy, for the comprehensive comparison of parent heparins and their LMW heparin daughters, is described that relies on the analysis of monosaccharide composition, disaccharide composition, and oligosaccharide composition. Liquid chromatography-mass spectrometry is rapid, robust, and amenable to automated processing and interpretation of both top-down and bottom-up analyses. Nuclear magnetic resonance spectroscopy provides complementary top-down information on the chirality of the uronic acid residues and glucosamine substitution. Principal component analysis (PCA) was applied to the normalized abundance of oligosaccharides, calculated in the bottom-up analysis, to show parent and daughter correlation in oligosaccharide composition. Using these approaches, six pairs of parent heparins and their daughter generic enoxaparins from two different manufacturers were comprehensively analyzed. Enoxaparin is the most widely used LMW heparin and is prepared through controlled chemical β-eliminative cleavage of porcine intestinal heparin. Lovenox{sup ®}, the innovator version of enoxaparin marketed in the US, was analyzed as a reference for the daughter LMW heparins. The results, show similarities between LMW heparins from two different manufacturers with Lovenox{sup ®}, excellent lot-to-lot consistency of products from each manufacturer, and detects a correlation between each parent heparin and daughter LMW heparin. - Highlights: • Low molecular weight heparins prepared from different heparin parents were analyzed. • An integrated analytical

  4. Parent heparin and daughter LMW heparin correlation analysis using LC-MS and NMR

    International Nuclear Information System (INIS)

    Liu, Xinyue; St Ange, Kalib; Wang, Xiaohua; Lin, Lei; Zhang, Fuming

    2017-01-01

    Heparin is a structurally complex, polysaccharide anticoagulant derived from livestock, primarily porcine intestinal tissues. Low molecular weight (LMW) heparins are derived through the controlled partial depolymerization of heparin. Increased manufacturing and regulatory concerns have provided the motivation for the development of more sophisticated analytical methods for determining both their structure and pedigree. A strategy, for the comprehensive comparison of parent heparins and their LMW heparin daughters, is described that relies on the analysis of monosaccharide composition, disaccharide composition, and oligosaccharide composition. Liquid chromatography-mass spectrometry is rapid, robust, and amenable to automated processing and interpretation of both top-down and bottom-up analyses. Nuclear magnetic resonance spectroscopy provides complementary top-down information on the chirality of the uronic acid residues and glucosamine substitution. Principal component analysis (PCA) was applied to the normalized abundance of oligosaccharides, calculated in the bottom-up analysis, to show parent and daughter correlation in oligosaccharide composition. Using these approaches, six pairs of parent heparins and their daughter generic enoxaparins from two different manufacturers were comprehensively analyzed. Enoxaparin is the most widely used LMW heparin and is prepared through controlled chemical β-eliminative cleavage of porcine intestinal heparin. Lovenox"®, the innovator version of enoxaparin marketed in the US, was analyzed as a reference for the daughter LMW heparins. The results, show similarities between LMW heparins from two different manufacturers with Lovenox"®, excellent lot-to-lot consistency of products from each manufacturer, and detects a correlation between each parent heparin and daughter LMW heparin. - Highlights: • Low molecular weight heparins prepared from different heparin parents were analyzed. • An integrated analytical approach relied

  5. Characterization of product-related low molecular weight impurities in therapeutic monoclonal antibodies using hydrophilic interaction chromatography coupled with mass spectrometry.

    Science.gov (United States)

    Wang, Shunhai; Liu, Anita P; Yan, Yuetian; Daly, Thomas J; Li, Ning

    2018-05-30

    Traditional SDS-PAGE method and its modern equivalent CE-SDS method are both widely applied to assess the purity of therapeutic monoclonal antibody (mAb) drug products. However, structural identification of low molecular weight (LMW) impurities using those methods has been challenging and largely based on empirical knowledges. In this paper, we present that hydrophilic interaction chromatography (HILIC) coupled with mass spectrometry analysis is a novel and orthogonal method to characterize such LMW impurities present within a purified mAb drug product sample. We show here that after removal of N-linked glycans, the HILIC method separates mAb-related LMW impurities with a size-based elution order. The subsequent mass measurement from a high-resolution accurate mass spectrometer provides direct and unambiguous identification of a variety of low-abundance LMW impurities within a single LC-MS analysis. Free light chain, half antibody, H2L species (antibody possessing a single light chain) and protein backbone-truncated species can all be confidently identified and elucidated in great detail, including the truncation sites and associated post-translational modifications. It is worth noting that this study provides the first example where the H2L species can be directly detected in a mAb drug product sample by intact mass analysis without prior enrichment. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. [Dynamics of biomacromolecules in coherent electromagnetic radiation field].

    Science.gov (United States)

    Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I

    2014-01-01

    It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.

  7. Protonic and Electronic Charge Carriers in Solvated Biomacromolecules

    Science.gov (United States)

    1989-01-01

    was less than 1% of that expected from Couloub’s law]. When dryer samples (less than 5% water ), were electrolysed , the amount of oxygen could only be...2. The methodology involved the adsorption of water and other organic liquids on biomacromolecules and subsequent solid-state electrolysis. 3. The...in contrast, was not found in an electrolysis product even when water was the adsorbate., 6. -The conclusion is that protonic conductance in

  8. LMW-E/CDK2 Deregulates Acinar Morphogenesis, Induces Tumorigenesis, and Associates with the Activated b-Raf-ERK1/2-mTOR Pathway in Breast Cancer Patients

    Science.gov (United States)

    Duong, MyLinh T.; Akli, Said; Wei, Caimiao; Wingate, Hannah F.; Liu, Wenbin; Lu, Yiling; Yi, Min; Mills, Gordon B.; Hunt, Kelly K.; Keyomarsi, Khandan

    2012-01-01

    Elastase-mediated cleavage of cyclin E generates low molecular weight cyclin E (LMW-E) isoforms exhibiting enhanced CDK2–associated kinase activity and resistance to inhibition by CDK inhibitors p21 and p27. Approximately 27% of breast cancers express high LMW-E protein levels, which significantly correlates with poor survival. The objective of this study was to identify the signaling pathway(s) deregulated by LMW-E expression in breast cancer patients and to identify pharmaceutical agents to effectively target this pathway. Ectopic LMW-E expression in nontumorigenic human mammary epithelial cells (hMECs) was sufficient to generate xenografts with greater tumorigenic potential than full-length cyclin E, and the tumorigenicity was augmented by in vivo passaging. However, cyclin E mutants unable to interact with CDK2 protected hMECs from tumor development. When hMECs were cultured on Matrigel, LMW-E mediated aberrant acinar morphogenesis, including enlargement of acinar structures and formation of multi-acinar complexes, as denoted by reduced BIM and elevated Ki67 expression. Similarly, inducible expression of LMW-E in transgenic mice generated hyper-proliferative terminal end buds resulting in enhanced mammary tumor development. Reverse-phase protein array assay of 276 breast tumor patient samples and cells cultured on monolayer and in three-dimensional Matrigel demonstrated that, in terms of protein expression profile, hMECs cultured in Matrigel more closely resembled patient tissues than did cells cultured on monolayer. Additionally, the b-Raf-ERK1/2-mTOR pathway was activated in LMW-E–expressing patient samples, and activation of this pathway was associated with poor disease-specific survival. Combination treatment using roscovitine (CDK inhibitor) plus either rapamycin (mTOR inhibitor) or sorafenib (a pan kinase inhibitor targeting b-Raf) effectively prevented aberrant acinar formation in LMW-E–expressing cells by inducing G1/S cell cycle arrest. LMW

  9. A novel redox-based switch: LMW-PTP oxidation enhances Grb2 binding and leads to ERK activation

    International Nuclear Information System (INIS)

    Giannoni, Elisa; Raugei, Giovanni; Chiarugi, Paola; Ramponi, Giampietro

    2006-01-01

    Low molecular weight-PTP has been reported as a redox-sensitive protein during both platelet-derived growth factor and integrin signalling. In response to oxidation the phosphatase undergoes a reversible inactivation, which in turn leads to the increase in tyrosine phosphorylation of its substrates and the properly executed anchorage-dependent proliferation program. Here, we report that an exogenous oxidative stress enhances LMW-PTP tyrosine phosphorylation, through oxidation/inactivation of the enzyme, thus preventing its auto-dephosphorylation activity. In particular, we observed a selective hyper-phosphorylation of Tyr132, that acts as a docking site for the adaptor protein Grb2. The redox-dependent enhancement of Grb2 recruitment to LMW-PTP ultimately leads to an improvement of ERK activation, likely triggering a prosurvival signal against the oxidant environment

  10. Steady-State Linear and Non-linear Optical Spectroscopy of Organic Chromophores and Bio-macromolecules.

    Science.gov (United States)

    Marazzi, Marco; Gattuso, Hugo; Monari, Antonio; Assfeld, Xavier

    2018-01-01

    Bio-macromolecules as DNA, lipid membranes and (poly)peptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes-often drugs or pollutants-that can (photo)sensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photo)sensitizers. Namely, absorption, emission and electronic circular dichroism (CD) spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i) to enhance absorption in the red and infra-red windows and (ii) to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/molecular mechanics (QM/MM) methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.

  11. Steady-State Linear and Non-linear Optical Spectroscopy of Organic Chromophores and Bio-macromolecules

    Directory of Open Access Journals (Sweden)

    Marco Marazzi

    2018-04-01

    Full Text Available Bio-macromolecules as DNA, lipid membranes and (polypeptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes—often drugs or pollutants—that can (photosensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photosensitizers. Namely, absorption, emission and electronic circular dichroism (CD spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i to enhance absorption in the red and infra-red windows and (ii to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/molecular mechanics (QM/MM methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.

  12. Steady-State Linear and Non-linear Optical Spectroscopy of Organic Chromophores and Bio-macromolecules

    Science.gov (United States)

    Marazzi, Marco; Gattuso, Hugo; Monari, Antonio; Assfeld, Xavier

    2018-04-01

    Bio-macromolecules as DNA, lipid membranes and (poly)peptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes – often drugs or pollutants – that can (photo)sensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photo)sensitizers. Namely, absorption, emission and electronic circular dichroism (CD) spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i) to enhance absorption in the red and infra-red windows and (ii) to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/ molecular mechanics (QM/MM) methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.

  13. State-of-the-art and problems of X-ray diffraction analysis of biomacromolecules

    International Nuclear Information System (INIS)

    Andreeva, N. S.

    2006-01-01

    The state-of-the-art of X-ray diffraction studies of biomacromolecules is briefly characterized, and the challenge imposed by science is discussed. These studies are characterized by a wide scope and extensive use. This field of science is of great interest and is developed in many countries. The main purpose is to solve practical problems in medicine consisting in the design of drugs against various diseases. X-ray diffraction analysis of enzymes brought the pharmaceutical industry to a new level, thus allowing the rational design of drugs against formerly untreatable diseases. Modern X-ray diffraction studies of biomacromolecules laid the basis for a new science called structural biology. This method allows one to solve fundamental problems of physical chemistry for a new state of matter existing in living systems. Here, science poses numerous problems in analysis of X-ray diffraction data on biological macromolecules. Many of theses problems are in their infancy

  14. Squishy nanotraps: hybrid cellulose nanocrystal-zirconium metallogels for controlled trapping of biomacromolecules.

    Science.gov (United States)

    Sheikhi, A; van de Ven, T G M

    2017-08-11

    A brick-and-mortar-like ultrasoft nanocomposite metallogel is formed by crosslinking cellulose nanocrystals (CNC) with ammonium zirconium carbonate (AZC) to trap and reconfigure dextran, a model biomacromolecule. The bricks (CNC) reinforce the metallogel, compete with dextran in reacting with AZC, and decouple long-time dextran dynamics from network formation, while the mortar (AZC) imparts bimodality to the dextran diffusion.

  15. Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces.

    Science.gov (United States)

    Mahouche-Chergui, Samia; Gam-Derouich, Sarra; Mangeney, Claire; Chehimi, Mohamed M

    2011-07-01

    This critical review summarizes existing knowledge on the use of diazonium salts as a new generation of surface modifiers and coupling agents for binding synthetic polymers, biomacromolecules, and nanoparticles to surfaces. Polymer grafts can be directly grown at surfaces through the so-called grafting from approaches based on several polymerization methods but can also be pre-formed in solution and then grafted to surfaces through grafting onto strategies including "click" reactions. Several routes are also described for binding biomacromolecules through aryl layers in view of developing biosensors and protein arrays, while the use of aryl diazonium coupling agents is extended to the attachment of nanoparticles. Patents and industrial applications of the surface chemistry of diazonium compounds are covered. This review stresses the paramount role of aryl diazonium coupling agents in adhesion, surface and materials sciences (114 references).

  16. Exact Calculation of the Thermodynamics of Biomacromolecules on Cubic Recursive Lattice.

    Science.gov (United States)

    Huang, Ran

    The thermodynamics of biomacromolecules featured as foldable polymer with inner-linkage of hydrogen bonds, e. g. protein, RNA and DNA, play an impressive role in either physical, biological, and polymer sciences. By treating the foldable chains to be the two-tolerate self-avoiding trails (2T polymer), abstract lattice modeling of these complex polymer systems to approach their thermodynamics and subsequent bio-functional properties have been developed for decades. Among these works, the calculations modeled on Bethe and Husimi lattice have shown the excellence of being exactly solvable. Our project extended this effort into the 3D situation, i.e. the cubic recursive lattice. The preliminary exploration basically confirmed others' previous findings on the planar structure, that we have three phases in the grand-canonical phase diagram, with a 1st order transition between non-polymerized and polymer phases, and a 2nd order transition between two distinguishable polymer phases. However the hydrogen bond energy J, stacking energy ɛ, and chain rigidity energy H play more vigorous effects on the thermal behaviors, and this is hypothesized to be due to the larger number of possible configurations provided by the complicated 3D model. By the so far progress, the calculation of biomacromolecules may be applied onto more complex recursive lattices, such as the inhomogeneous lattice to describe the cross-dimensional situations, and beside the thermal properties of the 2T polymers, we may infer some interesting insights of the mysterious folding problem itself. National Natural Science Foundation of China.

  17. Variation in ultrafiltered and LMW organic matter fluorescence properties under simulated estuarine mixing transects: 1. Mixing alone

    Science.gov (United States)

    Boyd, Thomas J.; Barham, Bethany P.; Hall, Gregory J.; Osburn, Christopher L.

    2010-09-01

    Ultrafiltered and low molecular weight dissolved organic matter (UDOM and LMW-DOM, respectively) fluorescence was studied under simulated estuarine mixing using samples collected from Delaware, Chesapeake, and San Francisco Bays (USA) transects. UDOM was concentrated by tangential flow ultrafiltration (TFF) from the marine (>33 PSU), mid-estuarine (˜16 PSU), and freshwater (ocean members. LMW fluorescence components fit a decreasing linear mixing model from mid salinities to the ocean end-member, but were more highly fluorescent than mixing alone would predict in lower salinities (shifts were also seen in UDOM peak emission wavelengths with blue-shifting toward the ocean end-member. Humic-type components in UDOM generally showed lower fluorescent intensities at low salinities, higher at mid-salinities, and lower again toward the ocean end-member. T (believed to be proteinaceous) and N (labile organic matter) peaks behaved similarly to each other, but not to B peak fluorescence, which showed virtually no variation in permeate or UDOM mixes with salinity. PCA and PARAFAC models showed similar results suggesting trends could be modeled for DOM end- and mid-member sources. Changes in fluorescence properties due to estuarine mixing may be important when using CDOM as a proxy for DOM cycling in coastal systems.

  18. An approximate approach to quantum mechanical study of biomacromolecules

    Science.gov (United States)

    Chen, Xihua

    This thesis summarizes the author's major work in Prof. John Z.H. Zhang's Threoretical Chemistry research group. In Chapter 1, we present a general description of MFCC (molecular fractionation with conjugated caps) method that has been developed in this group to treat biomacromolecules in a divide-and-conquer fashion. Then we give in detail a computational study of MFCC application to peptide/protein that contains disulfide bonds. Continued on the basis of previous MFCC tests, this study provides another numerical support for the accuracy of the MFCC approach to full quantum mechanical calculation of protein/peptide-small molecule interaction. In Chapter 2, we further develop the MFCC scheme for quantum mechanical computation of DNA-ligand interaction energy. We study three oligonuclear acid interaction systems: dinucleotide dCG/water, trinucleotide dCGT/water and a Watson-Crick paired DNA segment dCGT/dGCA. The MFCC interaction energies are found to be in excellent agreement with the corresponding results obtained from the full system ab initio calculations. This study is an exemplification of the application of the general MFCC approach to biomacromolecules. In Chapter 3, firstly, a MFCC-downhill simplex method is proposed to study binding structures of ligands (atoms, ions, or small molecules) in large molecular complex systems. This method employs the MFCC approach to compute the interaction energy-structure relation of the system and implements the downhill simplex algorithm for structural optimization. Secondly, this method is numerically tested on a system of [KCp(18-crown-6)], as a simplest monatomic case study, to optimize the binding position of the potassium cation in a fixed coordination Cp and 18-crown-6 coordinating sphere. The result of the MFCC-downhill simplex optimization shows good agreement with both the crystal structure and with the full-system downhill simplex optimized structure. The effects of the initial structure of the simplex and of the

  19. Useful oriented immobilization of antibodies on chimeric magnetic particles: direct correlation of biomacromolecule orientation with biological activity by AFM studies.

    Science.gov (United States)

    Marciello, Marzia; Filice, Marco; Olea, David; Velez, Marisela; Guisan, José M; Mateo, Cesar

    2014-12-16

    The preparation and performance of a suitable chimeric biosensor based on antibodies (Abs) immobilized on lipase-coated magnetic particles by means of a standing orienting strategy are presented. This novel system is based on hydrophobic magnetic particles coated with modified lipase molecules able to orient and further immobilize different Abs in a covalent way without any previous site-selective chemical modification of biomacromolecules. Different key parameters attending the process were studied and optimized. The optimal preparation was performed using a controlled loading (1 nmol Ab g(-1) chimeric support) at pH 9 and a short reaction time to recover a biological activity of about 80%. AFM microscopy was used to study and confirm the Abs-oriented immobilization on lipase-coated magnetic particles and the final achievement of a highly active and recyclable chimeric immune sensor. This direct technique was demonstrated to be a powerful alternative to the indirect immunoactivity assay methods for the study of biomacromolecule-oriented immobilizations.

  20. Novel Xylene-Linked Maltoside Amphiphiles (XMAs) for Membrane Protein Stabilisation

    DEFF Research Database (Denmark)

    Cho, Kyung Ho; Du, Yang; Scull, Nicola J

    2015-01-01

    Membrane proteins are key functional players in biological systems. These biomacromolecules contain both hydrophilic and hydrophobic regions and thus amphipathic molecules are necessary to extract membrane proteins from their native lipid environments and stabilise them in aqueous solutions...

  1. Hydrophilic-Core Microcapsules and Their Formation

    Science.gov (United States)

    Calle, Luz M. (Inventor); Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor)

    2016-01-01

    Hydrophilic-core microcapsules and methods of their formation are provided. A hydrophilic-core microcapsule may include a shell that encapsulates water with the core substance dissolved or dispersed therein. The hydrophilic-core microcapsules may be formed from an emulsion having hydrophilic-phase droplets dispersed in a hydrophobic phase, with shell-forming compound contained in the hydrophilic phase or the hydrophobic phase and the core substance contained in the hydrophilic phase. The shells of the microcapsules may be capable of being broken down in response to being contacted by an alkali, e.g., produced during corrosion, contacting the shell.

  2. Surfactant-Modified Ultrafine Gold Nanoparticles with Magnetic Responsiveness for Reversible Convergence and Release of Biomacromolecules.

    Science.gov (United States)

    Xu, Lu; Dong, Shuli; Hao, Jingcheng; Cui, Jiwei; Hoffmann, Heinz

    2017-03-28

    It is difficult to synthesize magnetic gold nanoparticles (AuNPs) with ultrafine sizes (coating AuNPs using magnetic particles, compounds, or ions. Here, magnetic cationic surfactants C 16 H 33 N + (CH 3 ) 3 [CeCl 3 Br] - (CTACe) and C 16 H 33 N + (CH 3 ) 3 [GdCl 3 Br] - (CTAGd) are prepared by a one-step coordination reaction, i.e., C 16 H 33 N + (CH 3 ) 3 Br - (CTABr) + CeCl 3 or GdCl 3 → CTACe or CTAGd. A simple strategy for fabricate ultrafine (gold nanoparticles (AuNPs) via surface modification with weak oxidizing paramagnetic cationic surfactants, CTACe or CTAGd, is developed. The resulting AuNPs can highly concentrate the charges of cationic surfactants on their surfaces, thereby presenting strong electrostatic interaction with negatively charged biomacromolecules, DNA, and proteins. As a consequence, they can converge DNA and proteins over 90% at a lower dosage than magnetic surfactants or existing magnetic AuNPs. The surface modification with these cationic surfactants endows AuNPs with strong magnetism, which allows them to magnetize and migrate the attached biomacromolecules with a much higher efficiency. The native conformation of DNA and proteins can be protected during the migration. Besides, the captured DNA and proteins could be released after adding sufficient inorganic salts such as at c NaBr = 50 mmol·L -1 . Our results could offer new guidance for a diverse range of systems including gene delivery, DNA transfection, and protein delivery and separation.

  3. Role of microorganism growth phase in the accumulation and characteristics of biomacromolecules (BMM) in a membrane bioreactor

    DEFF Research Database (Denmark)

    Zhou, Zhongbo; Meng, Fangang; Liang, Shuang

    2012-01-01

    The objective of this study was to highlight the significance of microorganism growth on the production of biomacromolecules (BMM) in a membrane bioreactor (MBR). During the MBR operation, both polysaccharides and proteins in the sludge supernatant were found to increase steadily in exponential...... growth phase (EGP) due to higher organic loading rates and microbial primary metabolism. Subsequently, both increased continuously and then decreased sharply in the following deceleration growth phase (DGP). Finally, the BMM maintained a low and steady level as the sludge reached stationary growth phase...

  4. Hydrophilic Carotenoids: Recent Progress

    Directory of Open Access Journals (Sweden)

    Attila Agócs

    2012-04-01

    Full Text Available Carotenoids are substantially hydrophobic antioxidants. Hydrophobicity is this context is rather a disadvantage, because their utilization in medicine as antioxidants or in food chemistry as colorants would require some water dispersibility for their effective uptake or use in many other ways. In the past 15 years several attempts were made to synthetize partially hydrophilic carotenoids. This review compiles the recently synthetized hydrophilic carotenoid derivatives.

  5. Hydrophilic structures for condensation management in appliances

    Science.gov (United States)

    Kuehl, Steven John; Vonderhaar, John J.; Wu, Guolian; Wu, Mianxue

    2016-02-02

    An appliance that includes a cabinet having an exterior surface; a refrigeration compartment located within the cabinet; and a hydrophilic structure disposed on the exterior surface. The hydrophilic structure is configured to spread condensation. The appliance further includes a wicking structure located in proximity to the hydrophilic structure, and the wicking structure is configured to receive the condensation.

  6. Hydrophilic nanoporous materials

    DEFF Research Database (Denmark)

    2010-01-01

    The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.05, the ......The present application discloses a method for preparing and rendering hydrophilic a nanoporous material of a polymer matrix which has a porosity of 0.1-90 percent (v/v), such that the ratio between the final water absorption (percent (w/w)) and the porosity (percent (v/v)) is at least 0.......05, the method comprising the steps of: (a) preparing a precursor material comprising at least one polymeric component and having a first phase and a second phase; (b) removal of at least a part of the first phase of the precursor material prepared in step (a) so as to leave behind a nanoporous material...... of the polymer matrix; (c) irradiating at least a part of said nanoporous material with light of a wave length of in the range of 250-400 nm (or 200-700 nm) in the presence of oxygen and/or ozone. Corresponding hydrophilic nanoporous materials are also disclosed. L...

  7. Rhizobia from Lanzarote, the Canary Islands, that nodulate Phaseolus vulgaris have characteristics in common with LMW RNA group II Sinorhizobium meliloti of Medicago, Melilotus and Trigonella from soils of mainland Spain

    Science.gov (United States)

    Several isolates from nodules of Phaseolus vulgaris grown in soil of Lanzarote, an island of the Canaries, had electrophoretic LMW RNA patterns identical with a less common pattern within S. meliloti (assigned as group II) obtained from nodules of alfalfa and alfalfa-related legumes grown in northe...

  8. Hydration Effects on Skin Microstructure as Probed by High-Resolution Cryo-Scanning Electron Microscopy and Mechanistic Implications to Enhanced Transcutaneous Delivery of Biomacromolecules

    Science.gov (United States)

    Tan, Grace; Xu, Peng; Lawson, Louise B.; He, Jibao; Freytag, Lucia C.; Clements, John D.; John, Vijay T.

    2010-01-01

    Although hydration is long known to improve the permeability of skin, penetration of macromolecules such as proteins is limited and the understanding of enhanced transport is based on empirical observations. This study uses high-resolution cryo-scanning electron microscopy to visualize microstructural changes in the stratum corneum (SC) and enable a mechanistic interpretation of biomacromolecule penetration through highly hydrated porcine skin. Swollen corneocytes, separation of lipid bilayers in the SC intercellular space to form cisternae, and networks of spherical particulates are observed in porcine skin tissue hydrated for a period of 4–10 h. This is explained through compaction of skin lipids when hydrated, a reversal in the conformational transition from unilamellar liposomes in lamellar granules to lamellae between keratinocytes when the SC skin barrier is initially established. Confocal microscopy studies show distinct enhancement in penetration of fluorescein isothiocyanate-bovine serum albumin (FITC-BSA) through skin hydrated for 4–10 h, and limited penetration of FITC-BSA once skin is restored to its natively hydrated structure when exposed to the environment for 2–3 h. These results demonstrate the effectiveness of a 4–10 h hydration period to enhance transcutaneous penetration of large biomacromolecules without permanently damaging the skin. PMID:19582754

  9. 21 CFR 872.3300 - Hydrophilic resin coating for dentures.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hydrophilic resin coating for dentures. 872.3300... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3300 Hydrophilic resin coating for dentures. (a) Identification. A hydrophilic resin coating for dentures is a device that consists of a water...

  10. Effect of membrane hydrophilization on ultrafiltration performance for biomolecules separation

    International Nuclear Information System (INIS)

    Susanto, H.; Roihatin, A.; Aryanti, N.; Anggoro, D.D.; Ulbricht, M.

    2012-01-01

    This paper compares the performance of different hydrophilization methods to prepare low fouling ultrafiltration (UF) membranes. The methods include post-modification with hydrophilic polymer and blending of hydrophilic agent during either conventional or reactive phase separation (PS). The post-modification was done by photograft copolymerization of water-soluble monomer, poly(ethylene glycol) methacrylate (PEGMA), onto a commercial polyethersulfone (PES) UF membrane. Hydrophilization via blend polymer membrane with hydrophilic additive was performed using non-solvent induced phase separation (NIPS). In reactive PS method, the cast membrane was UV-irradiated before coagulation. The resulting membrane characteristic, the performance and hydrophilization stability were systematically compared. The investigated membrane characteristics include surface hydrophilicity (by contact angle /CA/), surface chemistry (by FTIR spectroscopy), and surface morphology (by scanning electron microscopy). The membrane performance was examined by investigation of adsorptive fouling and ultrafiltration using solution of protein or polysaccharide or humic acid. The results suggest that all methods could increase the hydrophilicity of the membrane yielding less fouling. Post-modification decreased CA from 44.8 ± 4.2 o to 37.8 ± 4.2 o to 42.5 ± 4.3 o depending on the degree of grafting (DG). The hydrophilization via polymer blend decreased CA from from 65 deg. to 54 deg. for PEG concentration of 5%. Nevertheless, decreasing hydraulic permeability was observed after post-modification as well as during polymer blend modification. Stability examination showed that there was leaching out of modifier agent from the membrane matrix prepared via conventional PS after 10 days soaking in both water and NaOH. Reactive PS could increase the stability of the modifier agent in membrane matrix. Highlights: ► We compared different methods to prepare low fouling ultrafiltration (UF) membranes.

  11. Carbon nanotube-based coatings to induce flow enhancement in hydrophilic nanopores

    DEFF Research Database (Denmark)

    Wagemann, Enrique; Walther, Jens Honore; Zambrano, Harvey

    2016-01-01

    With the emergence of the field of nanofluidics, the transport of water in hydrophilic nanopores has attracted intensive research due to its many promising applications. Experiments and simulations have found that flow resistance in hydrophilic nanochannels is much higher than those in macrochann......With the emergence of the field of nanofluidics, the transport of water in hydrophilic nanopores has attracted intensive research due to its many promising applications. Experiments and simulations have found that flow resistance in hydrophilic nanochannels is much higher than those...

  12. Surface hydrophilicity of PLGA fibers governs in vitro mineralization and osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Minnah; Arora, Aditya; Katti, Dhirendra S., E-mail: dsk@iitk.ac.in

    2014-12-01

    Interfacial properties of biomaterials play an important role in governing their interaction with biological microenvironments. This work investigates the role of surface hydrophilicity of electrospun poly(lactide-co-glycolide) (PLGA) fibers in determining their biological response. For this, PLGA is blended with varying amounts of Pluronic®F-108 and electrospun to fabricate microfibers with varying surface hydrophilicity. The results of mineralization study in simulated body fluid (SBF) demonstrate a significant enhancement in mineralization with an increase in surface hydrophilicity. While presence of serum proteins in SBF reduces absolute mineral content, mineralization continues to be higher on samples with higher surface hydrophilicity. The results from in vitro cell culture studies demonstrate a marked improvement in mesenchymal stem cell —adhesion, elongation, proliferation, infiltration, osteogenic differentiation and matrix mineralization on hydrophilized fibers. Therefore, hydrophilized PLGA fibers are advantageous both in terms of mineralization and elicitation of favorable cell response. Since most of the polymeric materials being used in orthopedics are hydrophobic in nature, the results from this study have strong implications in the future design of interfaces of such hydrophobic materials. In addition, the work proposes a facile method for the modification of electrospun fibers of hydrophobic polymers by blending with a poloxamer for improved bone tissue regeneration. - Highlights: • Surface hydrophilicity of PLGA modulated by blending with Pluronic F-108. • Hydrophilized fibers support better in vitro mineralization. • Mineralization trends retained in the presence of adsorbed serum proteins. • Hydrophilized fibers promote better cell adhesion and proliferation. • Hydrophilized fibers also enable better osteogenic differentiation.

  13. Neutral hydrophilic cathode catalyst binders for microbial fuel cells

    KAUST Repository

    Saito, Tomonori; Roberts, Timothy H.; Long, Timothy E.; Logan, Bruce E.; Hickner, Michael A.

    2011-01-01

    and due to the high cost of PS-b-PEO, the performance of an inexpensive hydrophilic neutral polymer, poly(bisphenol A-co-epichlorohydrin) (BAEH), was examined in MFCs and compared to a hydrophilic sulfonated binder (Nafion). MFCs with BAEH-based cathodes

  14. Effect of membrane hydrophilization on ultrafiltration performance for biomolecules separation

    Energy Technology Data Exchange (ETDEWEB)

    Susanto, H., E-mail: heru.susanto@undip.ac.id [Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto-Tembalang, Semarang (Indonesia); Roihatin, A.; Aryanti, N.; Anggoro, D.D. [Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto-Tembalang, Semarang (Indonesia); Ulbricht, M. [Lehrstuhl fuer Technische Chemie, Universitaet Duisburg-Essen, Germany, Universitaetstr. 5, Essen (Germany)

    2012-10-01

    This paper compares the performance of different hydrophilization methods to prepare low fouling ultrafiltration (UF) membranes. The methods include post-modification with hydrophilic polymer and blending of hydrophilic agent during either conventional or reactive phase separation (PS). The post-modification was done by photograft copolymerization of water-soluble monomer, poly(ethylene glycol) methacrylate (PEGMA), onto a commercial polyethersulfone (PES) UF membrane. Hydrophilization via blend polymer membrane with hydrophilic additive was performed using non-solvent induced phase separation (NIPS). In reactive PS method, the cast membrane was UV-irradiated before coagulation. The resulting membrane characteristic, the performance and hydrophilization stability were systematically compared. The investigated membrane characteristics include surface hydrophilicity (by contact angle /CA/), surface chemistry (by FTIR spectroscopy), and surface morphology (by scanning electron microscopy). The membrane performance was examined by investigation of adsorptive fouling and ultrafiltration using solution of protein or polysaccharide or humic acid. The results suggest that all methods could increase the hydrophilicity of the membrane yielding less fouling. Post-modification decreased CA from 44.8 {+-} 4.2{sup o} to 37.8 {+-} 4.2{sup o} to 42.5 {+-} 4.3{sup o} depending on the degree of grafting (DG). The hydrophilization via polymer blend decreased CA from from 65 deg. to 54 deg. for PEG concentration of 5%. Nevertheless, decreasing hydraulic permeability was observed after post-modification as well as during polymer blend modification. Stability examination showed that there was leaching out of modifier agent from the membrane matrix prepared via conventional PS after 10 days soaking in both water and NaOH. Reactive PS could increase the stability of the modifier agent in membrane matrix. Highlights: Black-Right-Pointing-Pointer We compared different methods to prepare low

  15. Molecular Dynamics Simulations of Hydrophilic Pores in Lipid Bilayers

    NARCIS (Netherlands)

    Leontiadou, Hari; Mark, Alan E.; Marrink, Siewert J.

    Hydrophilic pores are formed in peptide free lipid bilayers under mechanical stress. It has been proposed that the transport of ionic species across such membranes is largely determined by the existence of such meta-stable hydrophilic pores. To study the properties of these structures and understand

  16. Neutral hydrophilic cathode catalyst binders for microbial fuel cells

    KAUST Repository

    Saito, Tomonori

    2011-01-01

    Improving oxygen reduction in microbial fuel cell (MFC) cathodes requires a better understanding of the effects of the catalyst binder chemistry and properties on performance. A series of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) polymers with systematically varying hydrophilicity were designed to determine the effect of the hydrophilic character of the binder on cathode performance. Increasing the hydrophilicity of the PS-b-PEO binders enhanced the electrochemical response of the cathode and MFC power density by ∼15%, compared to the hydrophobic PS-OH binder. Increased cathode performance was likely a result of greater water uptake by the hydrophilic binder, which would increase the accessible surface area for oxygen reduction. Based on these results and due to the high cost of PS-b-PEO, the performance of an inexpensive hydrophilic neutral polymer, poly(bisphenol A-co-epichlorohydrin) (BAEH), was examined in MFCs and compared to a hydrophilic sulfonated binder (Nafion). MFCs with BAEH-based cathodes with two different Pt loadings initially (after 2 cycles) had lower MFC performance (1360 and 630 mW m-2 for 0.5 and 0.05 mg Pt cm-2) than Nafion cathodes (1980 and 1080 mW m -2 for 0.5 and 0.05 mg Pt cm-2). However, after long-term operation (22 cycles, 40 days), power production of each cell was similar (∼1200 and 700-800 mW m-2 for 0.5 and 0.05 mg Pt cm-2) likely due to cathode biofouling that could not be completely reversed through physical cleaning. While binder chemistry could improve initial electrochemical cathode performance, binder materials had less impact on overall long-term MFC performance. This observation suggests that long-term operation of MFCs will require better methods to avoid cathode biofouling. © 2011 The Royal Society of Chemistry.

  17. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells☆

    Science.gov (United States)

    Nalluri, Sandeep M.; Krishnan, G. Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A.; Yang, Shuying; Sarkar, Debanjan

    2016-01-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell–matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell–cell and cell–matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell–matrix interaction, and cell–cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. PMID:26046282

  18. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Nalluri, Sandeep M; Krishnan, G Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A; Yang, Shuying; Sarkar, Debanjan

    2015-09-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell-matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell-cell and cell-matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell-matrix interaction, and cell-cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Electric treatment for hydrophilic ink deinking.

    Science.gov (United States)

    Du, Xiaotang; Hsieh, Jeffery S

    2017-09-01

    Hydrophilic inks have been widely used due to higher printing speed, competitive cost and being healthy non-organic solvents. However, they cause problems in both product quality and process runnability due to their hydrophilic surface wettability, strong negative surface charge and sub-micron size. Electric treatment was shown to be able to increase the ink sizes from 60 nm to 700 nm through electrocoagulation and electrophoresis. In addition, electric treatment assisted flotation could reduce effective residual ink concentration (ERIC) by 90 ppm, compared with only 20 ppm by traditional flotation. Furthermore, the effect of electric treatment alone on ink separation was investigated by two anode materials, graphite and stainless steel. Both of them could remove hydrophilic inks with less than 1% yield loss via electroflotation and electrophoresis. But graphite is a better material as the anode because graphite reduced ERIC by an additional 100 ppm. The yield loss of flotation following electric treatment was also lower by 17% if graphite was the anode material. The difference between the two electrode materials resulted from electrocoagulation and ink redeposition during electric treatment. An electric pretreatment-flotation-hyperwashing process was conducted to understand the deinking performance in conditions similar to a paper mill, and the ERIC was reduced from 950 ppm to less than 400 ppm.

  20. A theoretical study of colloidal forces near an amphiphilic polymer brush

    Science.gov (United States)

    Wu, Jianzhong

    2011-03-01

    Polymer-based ``non-stick'' coatings are promising as the next generation of effective, environmentally-friendly marine antifouling systems that minimize nonspecific adsorption of extracellular polymeric substances (EPS). However, design and development of such systems are impeded by the poor knowledge of polymer-mediated interactions of biomacromolecules with the protected substrate. In this work, a polymer density functional theory (DFT) is used to predict the potential of mean force between spherical biomacromolecules and amphiphilic copolymer brushes within a coarse-grained model that captures essential nonspecific interactions such as the molecular excluded volume effects and the hydrophobic energies. The relevance of theoretical results for practical control of the EPS adsorption is discussed in terms of the efficiency of different brush configurations to prevent biofouling. It is shown that the most effective antifouling surface may be accomplished by using amphiphilic brushes with a long hydrophilic backbone and a hydrophobic end at moderate grafting density.

  1. Design and investigation of photo-induced super-hydrophilic materials for car mirrors

    International Nuclear Information System (INIS)

    Eiamchai, Pitak; Chindaudom, Pongpan; Horprathum, Mati; Patthanasettakul, Viyapol; Limsuwan, Pichet

    2009-01-01

    During the past decades, interests in various properties in titanium dioxide thin films have been growing rapidly. There have been several reports for TiO 2 thin films prepared on various media with photocatalytic and hydrophilic properties, in order to function as self-cleaning and/or anti-fogging materials. An obvious application is usually found in side-view car mirrors in the automobile industries. In this study, a number of photocatalytic TiO 2 films are prepared on soda-lime glasses for car mirrors by an electron-beam evaporation. The designs and development of the photocatalytic TiO 2 films, based on crystallinity, deposition rate, film thickness, film structure, and surface roughness are discussed. In comparison to the commercialized products, a systematic investigation procedure for the super-hydrophilic properties of the light-induced TiO 2 films for car mirrors has been developed, based on super-hydrophilicity, sustainability, self-cleaning property, and degradation of the samples. In addition, physical characterization by X-ray diffraction and surface roughness are also discussed. It has been found that most commercial products attain super-hydrophilicity only after exposed to ultraviolet and solar irradiation in less than 1 h. They can also maintain hydrophilicity after rigorous cleaning process. On the other hand, our prepared TiO 2 thin films demonstrate super-hydrophilic and photocatalytic properties after exposed to ultraviolet light for more than 2 h. According to the study, their anatase crystallinity, small grain size, and surface conditions all contributes to the excellent results. However, the prepared samples do not attain sufficient retention property to maintain their hydrophilicity. Conclusively, the designs of the TiO 2 films on car mirrors prove adequate to produce super-hydrophilic materials, which still degrade over normal usage. Nevertheless, our proposed investigation methods prove useful in quality evaluation in order to

  2. Research on the Hydrophilic Modified of LDPE for the New Biological Suspended Filler

    Directory of Open Access Journals (Sweden)

    Kang Weijia

    2016-01-01

    Full Text Available Urban sewage is one of the main pollution sources of the city, which pollute soil, deteriorate the water quality and increase the water shortages and urban load. LDPE is low cost and widely used as the basic material of wastewater treatment, but LDPE’s hydrophilic is not good enough to meet the need of suspended filler in wastewater treatment. In this paper the hydrophilic modified of LDPE for the new biological suspended filler was studied and the preparation and processing technique based on LDPE was researched. The hydrophilic and mechanic performance of the hydrophilic modified materials was tested. Results shown that the new type of hydrophilic modified materials has good hydrophilic and meets the demand of urban sewage treatment. The research on the new suspended filler materials has great meaning in solving the problem of urban sewage and recycling.

  3. Nanometer-scale structure of alkali-soluble bio-macromolecules of maize plant residues explains their recalcitrance in soil.

    Science.gov (United States)

    Adani, Fabrizio; Salati, Silvia; Spagnol, Manuela; Tambone, Fulvia; Genevini, Pierluigi; Pilu, Roberto; Nierop, Klaas G J

    2009-07-01

    The quantity and quality of plant litter in the soil play an important role in the soil organic matter balance. Besides other pedo-climatic aspects, the content of recalcitrant molecules of plant residues and their chemical composition play a major role in the preservation of plant residues. In this study, we report that intrinsically resistant alkali-soluble bio-macromolecules extracted from maize plant (plant-humic acid) (plant-HA) contribute directly to the soil organic matter (OM) by its addition and conservation in the soil. Furthermore, we also observed that a high syringyl/guaiacyl (S/G) ratio in the lignin residues comprising the plant tissue, which modifies the microscopic structure of the alkali-soluble plant biopolymers, enhances their recalcitrance because of lower accessibility of molecules to degrading enzymes. These results are in agreement with a recent study, which showed that the humic substance of soil consists of a mixture of identifiable biopolymers obtained directly from plant tissues that are added annually by maize plant residues.

  4. Hydrophobic ampersand hydrophilic: Theoretical models of solvation for molecular biophysics

    International Nuclear Information System (INIS)

    Pratt, L.R.; Tawa, G.J.; Hummer, G.; Garcia, A.E.; Corcelli, S.A.

    1996-01-01

    Molecular statistical thermodynamic models of hydration for chemistry and biophysics have advanced abruptly in recent years. With liquid water as solvent, salvation phenomena are classified as either hydrophobic or hydrophilic effects. Recent progress in treatment of hydrophilic effects have been motivated by continuum dielectric models interpreted as a modelistic implementation of second order perturbation theory. New results testing that perturbation theory of hydrophilic effects are presented and discussed. Recent progress in treatment of hydrophobic effects has been achieved by applying information theory to discover models of packing effects in dense liquids. The simplest models to which those ideas lead are presented and discussed

  5. Lathe-cut hydrophilic contact lenses: report of 100 clinical cases.

    Science.gov (United States)

    Espy, J W

    1978-10-01

    In a review of the literature, it became apparent that there were very few articles describing the advantages, as well as the fitting techniques, of lathe-cut hydrophilic contact lenses. Few practitioners, including those who fit other types of hydrophilic lenses and hard lenses, have had any experience with this lens, and considerable interest has been generated by fragmentary reports of good results. This paper describes in detail the geometry of the first lathe-cut hydrophilic lens approved by the Federal Drug Administration, the fitting methods utilizing trial lenses, and the results of 100 patients successfully fitted.

  6. Copolymers for soft hydrophilic contact lenses: development and investigations

    International Nuclear Information System (INIS)

    Schwach, G.W.

    1978-05-01

    Low esters of methacrylic acid which may be polymerized by different methods are used predominantly for producing soft hydrophilic contact lenses. Compounds of the vinyl-type often are added to improve the optical and mechanical qualities. Composition as well as possibilities of polymerization by irradiation were tested so long until copolymers were found which finally allowed the production of soft hydrophilic contact lenses. Swelling characteristics and permeability of the different elastomeres are to be investigated in order to guarantee sufficient compatibility of contact lenses. Contamination of the lens materials by microorganisms is also a point of special interest. The effects on the hydrophilic contact lens-copolymers by different substances used for cleaning and storage solutions have been investigated as well. (author)

  7. Hydrophilic-impermeable modified polyethylene terephthalate for selective endothelialization

    Science.gov (United States)

    Chetouane, D.; Fafet, J. F.; Barbet, R.; Dieval, F.

    2017-10-01

    The aim of this study was to create a modified polyethylene terephthalate (PET) responding to vascular implants’ requirements, mainly with a surface promoting selective endothelialization. The surface alteration was carried out by hydrophilic functionalization in an alkaline solution with the presence of specific surfactant (TA). The carboxylic groups resulting from this reaction were quantified by colorimetric titration using bleu toluidine O dye (TBO). A single-sided coating process was then optimized to cover the PET surface by micro spherical structures’ polymeric layer. This coating provided to the PET surface high impermeability to the water under a pressure of 120 mmHg and enhanced its hydrophilic property. This spherical topography reduced the adhesion of Mesenchymal Stem Cells (MSC) by 37% and inhibited their proliferation after 3 days by 50%. The hydrophilic functionalized PET (PET-TA) surface decreased the MSC adhesion by 50% and promoted HUVEC attachment with a number twice more important than the number of HUVEC adhered onto non treated-PET.

  8. Intelligent hydrophilic nanoparticles fabricated via alkaline hydrolysis of crosslinked polyacrylonitrile nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Y.; Wu, Q.; Zhang, H.; Zhao, J.

    2013-01-01

    Crosslinked polyacrylonitrile (PAN) nanolatex, with an average hydrodynamic diameter of 84 nm and a polydispersity index of 0.06, was successfully synthesized at a high monomer concentration and low surfactant content via a modified emulsion polymerization. Three measurements were adopted to control the nucleation and growth processes. Taking advantage of the chemical activity of nitrile groups, intelligent hydrophilic polymeric nanoparticles were fabricated via simple alkaline hydrolysis treatment of the crosslinked PAN nanolatex. Dynamic light scattering, electrophoretic light scattering, FT-IR spectroscopy, elemental analysis, and TEM observations were used to monitor the changes in the composition, structure, and morphology of the nanoparticles during the hydrolysis process. The sizes, chemical composition, morphology, and pH-responsive behavior of the intelligent hydrophilic nanoparticles could be adjusted by simply changing the hydrolysis time. As the hydrolysis was prolonged, the following nanoparticles could be obtained, crosslinked PAN nanoparticles with hydrophilic surfaces, amphiphilic nanoparticles with a hydrophobic PAN core and a hydrophilic polymeric shell composed of acrylamide and acrylic acid units, or carboxylic polyacrylamide nanoparticles. These modified nanoparticles all display good hydrophilicity, good biocompatibility, pH-sensitivity, as well as carboxyl functional groups, and thus are ideal candidates for various biomedical applications

  9. Intelligent hydrophilic nanoparticles fabricated via alkaline hydrolysis of crosslinked polyacrylonitrile nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: zhyw@dhu.edu.cn; Wu, Q.; Zhang, H.; Zhao, J. [Donghua University, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Chemical Fibers Research Institute (China)

    2013-07-15

    Crosslinked polyacrylonitrile (PAN) nanolatex, with an average hydrodynamic diameter of 84 nm and a polydispersity index of 0.06, was successfully synthesized at a high monomer concentration and low surfactant content via a modified emulsion polymerization. Three measurements were adopted to control the nucleation and growth processes. Taking advantage of the chemical activity of nitrile groups, intelligent hydrophilic polymeric nanoparticles were fabricated via simple alkaline hydrolysis treatment of the crosslinked PAN nanolatex. Dynamic light scattering, electrophoretic light scattering, FT-IR spectroscopy, elemental analysis, and TEM observations were used to monitor the changes in the composition, structure, and morphology of the nanoparticles during the hydrolysis process. The sizes, chemical composition, morphology, and pH-responsive behavior of the intelligent hydrophilic nanoparticles could be adjusted by simply changing the hydrolysis time. As the hydrolysis was prolonged, the following nanoparticles could be obtained, crosslinked PAN nanoparticles with hydrophilic surfaces, amphiphilic nanoparticles with a hydrophobic PAN core and a hydrophilic polymeric shell composed of acrylamide and acrylic acid units, or carboxylic polyacrylamide nanoparticles. These modified nanoparticles all display good hydrophilicity, good biocompatibility, pH-sensitivity, as well as carboxyl functional groups, and thus are ideal candidates for various biomedical applications.

  10. Micellar Structures of Hydrophilic/Lipophilic and Hydrophilic/Fluorophilic Poly(2-oxazoline) Diblock Copolymers in Water

    DEFF Research Database (Denmark)

    Ivanova, Ruzha; Komenda, Thomas; Bonné, Tune B.

    2008-01-01

    Amphiphilic poly(2-alkyl-2-oxazoline) diblock copolymers of 2-methyl-2-oxazoline (MOx) building the hydrophilic block and either 2-nonyl-2-oxazoline (NOx) for the hydrophobic or 2-(1H,1H',2H,2H'-perfluorohexyl)-2-oxazoline (FOx) for the fluorophilic block were synthesized by sequential living...

  11. Study on hydrophilicity of polymer surfaces improved by plasma treatment

    International Nuclear Information System (INIS)

    Lai Jiangnan; Sunderland, Bob; Xue Jianming; Yan, Sha; Zhao Weijiang; Folkard, Melvyn; Michael, Barry D.; Wang Yugang

    2006-01-01

    Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that C=O bond is Key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity

  12. Highly hydrophilic and nonionic poly(2-vinyloxazoline)-grafted silica: a novel organic phase for high-selectivity hydrophilic interaction chromatography.

    Science.gov (United States)

    Mallik, Abul K; Cheah, Wee Keat; Shingo, Kaori; Ejzaki, Aika; Takafuji, Makoto; Ihara, Hirotaka

    2014-07-01

    A new hydrophilic and nonionic poly(2-vinyloxazoline)-grafted silica (Sil-VOX(n)) phase was synthesized and applied for the separation of nucleosides and nucleobases in hydrophilic interaction chromatography (HILIC). Polymerization and immobilization onto silica were confirmed by using characterization techniques including (1)H NMR spectroscopy, elemental analysis, and diffuse reflectance infrared Fourier transform spectroscopy. The hydrophilicity or wettability of Sil-VOX(n) was observed by measuring the contact angle (59.9°). The chromatographic results were compared with those obtained with a conventional HILIC silica column. The Sil-VOX(n) phase showed much better separation of polar test analytes than the silica column, and the elution order was different. Differences in selectivity between these two columns indicate that the stationary phase cannot function merely as an inert support for a water layer into which the solutes are partitioned from the bulk mobile phase. To elucidate the interaction mechanism, the separation of dihydroxybenzene isomers was performed on both columns in normal-phase liquid chromatography. Sil-VOX(n) was very sensitive to the dipole moments of the positional isomers of polycyclic aromatic compounds in normal-phase liquid chromatography. The interaction mechanism for Sil-VOX(n) in HILIC separation is also described.

  13. Stellate macroporous silica nanospheres in bio-macromolecules encapsulation and delivery

    Science.gov (United States)

    Chi, Hao-Hsin

    and develop it into a dual-enzyme platform with the scope of demonstrating a multi-reaction bio nanocatalyst. In regard to the further applications, the stellate MSN can be used as drug delivery or become a package of the biomacromolecule delivery system kit.

  14. Hydrophilization of graphite using plasma above/in a solution

    Science.gov (United States)

    Hoshino, Shuhei; Kawahara, Kazuma; Takeuchi, Nozomi

    2018-01-01

    A hydrophilization method for graphite is required for applications such as conductive ink. In typical chemical oxidation methods for graphite have the problems of producing many defects in graphite and a large environmental impact. In recent years, the plasma treatment has attracted attention because of the high quality of the treated samples and the low environmental impact. In this study, we proposed an above-solution plasma treatment with a high contact probability of graphite and plasma since graphite accumulates on the solution surface due to its hydrophobicity, which we compared with a so-called solution plasma treatment. Graphite was hydrophilized via reactions with OH radicals generated by the plasma. It was confirmed that hydroxyl and carboxyl groups were modified to the graphite and the dispersibility was improved. The above-solution plasma achieved more energy-efficient hydrophilization than the solution plasma and it was possible to enhance the dispersibility by increasing the plasma-solution contact area.

  15. Applications of hydrophilic interaction chromatography to amino acids, peptides, and proteins.

    Science.gov (United States)

    Periat, Aurélie; Krull, Ira S; Guillarme, Davy

    2015-02-01

    This review summarizes the recent advances in the analysis of amino acids, peptides, and proteins using hydrophilic interaction chromatography. Various reports demonstrate the successful analysis of amino acids under such conditions. However, a baseline resolution of the 20 natural amino acids has not yet been published and for this reason, there is often a need to use mass spectrometry for detection to further improve selectivity. Hydrophilic interaction chromatography is also recognized as a powerful technique for peptide analysis, and there are a lot of papers showing its applicability for proteomic applications (peptide mapping). It is expected that its use for peptide mapping will continue to grow in the future, particularly because this analytical strategy can be combined with reversed-phase liquid chromatography, in a two-dimensional setup, to reach very high resolving power. Finally, the interest in hydrophilic interaction chromatography for intact proteins analysis is less evident due to possible solubility issues and a lack of suitable hydrophilic interaction chromatography stationary phases. To date, it has been successfully employed only for the characterization of membrane proteins, histones, and the separation of glycosylated isoforms of an intact glycoprotein. From our point of view, the number of hydrophilic interaction chromatography columns compatible with intact proteins (higher upper temperature limit, large pore size, etc.) is still too limited. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Non-immunogenic, hydrophilic/cationic block copolymers and uses thereof

    Science.gov (United States)

    Scales, Charles W.; Huang, Faqing; McCormick, Charles L.

    2010-05-18

    The present invention provides novel non-immunogenic, hydrophilic/cationic block copolymers comprising a neutral-hydrophilic polymer and a cationic polymer, wherein both polymers have well-defined chain-end functionality. A representative example of such a block copolymer comprises poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and poly(N-[3-(dimethylamino)propyl]methacrylamide) (PDMAPMA). Also provided is a synthesis method thereof in aqueous media via reversible addition fragmentation chain transfer (RAFT) polymerization. Further provided are uses of these block copolymers as drug delivery vehicles and protection agents.

  17. Patterned hydrophobic and hydrophilic surfaces of ultra-smooth nanocrystalline diamond layers

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, M., E-mail: michael.mertens@uni-ulm.de [Institute of Micro and Nanomaterials, Ulm University, 89081 Ulm (Germany); Mohr, M.; Brühne, K.; Fecht, H.J. [Institute of Micro and Nanomaterials, Ulm University, 89081 Ulm (Germany); Łojkowski, M.; Święszkowski, W. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Łojkowski, W. [Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw (Poland)

    2016-12-30

    Highlights: • Hydrophobic and hydrophilic properties on fluorine-, hydrogen- and oxygen- terminated ultra-nanocrystalline diamond films. • Micropatterned - multi-terminated layers with both hydrophobic and hydrophilic areas on one sample. • Visualization of multi-terminated surfaces by e.g. SEM and LFM. • Roughness and friction investigations on different terminated surfaces. • Smooth and biocompatible surfaces with same roughness regardless of hydrophobicity for microbiological investigations. - Abstract: In this work, we show that ultra nanocrystalline diamond (UNCD) surfaces have been modified to add them hydrophobic and hydrophilic properties. The nanocrystalline diamond films were deposited using the hot filament chemical vapor deposition (HFCVD) technique. This allows growing diamond on different substrates which can be even 3D or structured. Silicon and, for optical applications, transparent quartz glass are the preferred substrates for UNCD layers growth. Fluorine termination leads to strong hydrophobic properties as indicated by a high contact angle for water of more than 100°. Hydrogen termination shows lesser hydrophobic behavior. Hydrophilic characteristics has been realised with oxygen termination. X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) measurements confirm the oxygen and fluorine- termination on the nanocrystalline diamond surface. Further, by micropatterning using photolithography, multi-terminated layers have been created with both hydrophobic and hydrophilic areas. In addition, we have shown that retermination is achieved, and the properties of the surface have been changed from hydrophobic to hydrophilic and vice versa. Micro- roughness and stress in the grown film influences slightly the wetting angle as well. The opportunity to realize local differences in hydrophobicity on nanocrystalline diamond layers, in any size or geometry, offers interesting applications for example in

  18. Modification of polyethersulfone films by grafting hydrophilic monomers with 60Co γ-rays

    International Nuclear Information System (INIS)

    Hou Zhengchi; Deng Bo; Li Jing

    2006-01-01

    Polyethersulfone (PES), with its high strength, high temperature resistance, corrosion- resistance, oxidation resistance and applicability under wide pH range, is used extensively as ultrafiltration and nanofiltration membrane. However, PES membranes foul easily in such an application because of hydrophobic nature of PES raw materials. Improving the hydrophilicity of PES by grafting hydrophilic monomers onto it is of potential to solve the problem. At present, common approaches to improve hydrophilicity of PES membranes are UV grafting modification, plasma modification, and chemical modification, whereas grafting and modifying PES films by 60 Co γ-rays has rarely been reported. Studies have been carried out in our laboratory to graft hydrophilic monomers onto PES membranes directly or PES powders via simultaneous radiation grafting with the rays. Acrylic acid, methyl acrylic acid or acrylamide was used to study effects of the monomer concentration, irradiation dose and dose rate, solvent, inhibitor and pH of the grafting solution on the degree of grafting. The results showed that hydrophilicity of all the PES membranes could be improved, with the extent of improvement being dependent on the grafting conditions. (authors)

  19. Rheological and sensory properties of hydrophilic skin protection gels based on polyacrylates.

    Science.gov (United States)

    Kulawik-Pióro, Agnieszka; Kurpiewska, Joanna; Kułaszka, Agnieszka

    2018-03-01

    With the current increases in occupational skin diseases, literature data attesting the decreasing efficiency of barrier creams with respect to the manufacturer's declarations and legal regulations granting skin protection gels for employees, research is required to analyse and evaluate the recipes used for hydrophilic skin protection gels based on polyacrylates. This study investigated the rheological properties, pH and sensory perception of hydrophilic barrier gels based on polyacrylates. The acrylic acid derivatives used were good thickeners, and helped to form transparent gels of adequate durability. They could be used to create hydrophilic films on the surface of the skin to protect it against hydrophobic substances. A correlation was shown between the results of the rheological properties and the barrier properties of the gels. This confirms the possibility of monitoring the quality of the gels at the stage of recipe development. Polyacrylates are viable for use in industry to produce hydrophilic barrier creams suitable for skin protection.

  20. Hydrophilic nanoporous polystyrenes and 1,2-polybutadienes

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Vigild, Martin Etchells

    2008-01-01

    Nanoporous polymers from ordered block copolymers having hydrophilic cavity surfaces were successfully prepared by two methodologies: ' 1. Nanoporous polystyrenes fromPtBA-b-PS diblock or PDMS-b-PtBA-b-PS triblock copolymer precursors by atom transfer radical polymerization (ATRP), or combination...... of living anionic polymerization~ and ATRP r~spectively. The one, PtBA block, can be modified to the hydrophilic PAA, where the dther, polydimethysiloxane (PDMS) block, can be fully degraded. Deprotection of the tert-butyl groups in PtBA and the selective etching of PDMS· chains were accomplished...... by applying HF or TFA in one step. Thus both the di- and triblock copolymers after such a treatment resulted. in nanoporous polystyrenes with hexagonal cavities of different nanosizes (6-11 nm, Figure 1). 2. Nanoporous I,2-polybutadienes (I,2-PB) by grafting various acrylic monomers onto the pore. surfaces...

  1. Polyethylene/hydrophilic polymer blends for biomedical applications.

    Science.gov (United States)

    Brynda, E; Houska, M; Novikova, S P; Dobrova, N B

    1987-01-01

    Polyethylene blends with poly(2-hydroxyethyl methacrylate) [poly(HEMA)] or poly(2,3-dihydroxypropyl methacrylate) [poly(DHPMA)] were prepared by swelling polyethylene with HEMA or 2,3-epoxypropyl methacrylate (EPMA) and by polymerization of the respective monomers. Poly(EPMA) in blends was hydrolysed to poly(DHPMA) with acetic acid. The blends had similar surface and bulk compositions. Swelling with water and surface wettability were proportional to the content of the hydrophilic component; at the same content the polyethylene/poly(DHPMA) blends appeared more hydrophilic than those of polyethylene/poly(HEMA). Thrombus formation in contact with blood examined ex vivo and in vivo was considerably slower on the blends than on unmodified polyethylene. The tests indicated optima in composition; the best biological response was achieved with the blends containing about 14% poly(HEMA) or 16% poly(DHPMA).

  2. [Subluxation of hydrophilic acrylate intraocular lenses due to massive capsular fibrosis].

    Science.gov (United States)

    Kramer, S; Schröder, A C; Brückner, K; Jonescu-Cuypers, C; Seitz, B

    2010-05-01

    Compared with other biomaterials, hydrophilic acrylate provides better uveal biocompatibility, lower adhesion rates of bacteria and silicone oil, and less glare. Because of reduced capsular biocompatibility, increased fibrosis may initiate dislocation of the intraocular lens (IOL). In six eyes of four patients, enhanced fibroses led to IOL dislocation, leading to an IOL exchange an average of 40 weeks after implantation of the same hydrophilic acrylate lens type. Predisposing factors were found in 90% of all reported cases of IOL dislocation in the literature, but not in the cases described here. The lens type that was implanted was unable to adapt to the massive fibrosis induced by its hydrophilic biomaterial. The pattern of lens opacification should receive attention when one is choosing an IOL type. Eyes showing pseudoexfoliation syndrome as well as post-uveitis eyes might require a hydrophilic IOL for less cellular reaction, whereas a posterior subcapsular cataract might need a hydrophobic IOL to prevent a massive capsular fibrosis. In the case of increased capsular contraction, unreflected YAG laser capsulotomy may result in IOL subluxation when the lens design cannot handle capsule shrinkage, as demonstrated here.

  3. Development of breathable hydrophobic/hydrophilic functional textiles

    NARCIS (Netherlands)

    Agrawal, P. (Pramod); Brink, G.J. (Ger)

    2013-01-01

    The proposed bi-functional protective structure intended to have hydrophilic interior towards the skin surface and hydrophobic exterior for protection, ensuring fast transfer of moisture between body and external environment. The sandwich structure is prepared using 100% wool jersey and varieties of

  4. Enhancement of Water Evaporation on Solid Surfaces with Nanoscale Hydrophobic-Hydrophilic Patterns.

    Science.gov (United States)

    Wan, Rongzheng; Wang, Chunlei; Lei, Xiaoling; Zhou, Guoquan; Fang, Haiping

    2015-11-06

    Using molecular dynamics simulations, we show that the evaporation of nanoscale water on hydrophobic-hydrophilic patterned surfaces is unexpectedly faster than that on any surfaces with uniform wettability. The key to this phenomenon is that, on the patterned surface, the evaporation rate from the hydrophilic region only slightly decreases due to the correspondingly increased water thickness; meanwhile, a considerable number of water molecules evaporate from the hydrophobic region despite the lack of water film. Most of the evaporated water from the hydrophobic region originates from the hydrophilic region by diffusing across the contact lines. Further analysis shows that the evaporation rate from the hydrophobic region is approximately proportional to the total length of the contact lines.

  5. Preparation and characterization of dopamine-decorated hydrophilic carbon black

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Lijun; Lu Yonglai [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Yiqing [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China); Zhang Liqun [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Wencai, E-mail: wangw@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China)

    2012-05-01

    Inspired by the bio-adhesive proteins secreted by mussels for attachment to almost all wet substrates, a facile method involving oxidative polymerization of dopamine was proposed to prepare highly hydrophilic carbon black (CB) particles. A self-assembled polydopamine (PDA) ad-layer was formed via the oxidative polymerization of dopamine on the surface of CB simply by dipping the CB into an alkaline dopamine solution and mildly stirring at room temperature. The process is simple, controllable, and environment-friendly. The surface composition and structure of the CB were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The surface morphology of the CB was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the PDA ad-layer was successfully deposited on the CB surfaces. The PDA-functionalized CB (CB-PDA) gave a stable colloidal dispersion in water. Contact angle measurement results indicated that the hydrophilicity of CB was significantly improved after dopamine modification. TGA results confirmed that the modified CB maintained good heat resistance. The method provided a facile route to prepare hydrophilic CB having terminal hydroxyl groups.

  6. Desolvation of polymers by ultrafast heating: Influence of hydrophilicity

    Science.gov (United States)

    Sun, Si Neng; Urbassek, Herbert M.

    2010-10-01

    Using molecular-dynamics simulation, we investigate the consequences of ultrafast laser-induced heating of a small water droplet containing a solvated polymer. Two polymers are studied: polyethylene as an example of a hydrophobic, and polyketone as an example of a hydrophilic polymer. In both cases, when the droplet is heated below the critical temperature of water, strong water evaporation is started, but the polymer remains in contact with a central water cluster. However, upon heating beyond the critical temperature, the hydrophilic polyethylene becomes completely desolvated, while polyketone still remains solvated. We analyze this behavior in terms of the intermolecular interactions and of the expansion dynamics of the heated droplet.

  7. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Huaqiang Chu

    2013-09-01

    Full Text Available The application of low pressure membranes (microfiltration/ultrafiltration has undergone accelerated development for drinking water production. However, the major obstacle encountered in its popularization is membrane fouling caused by natural organic matter (NOM. This paper firstly summarizes the two factors causing the organic membrane fouling, including molecular weight (MW and hydrophilicity/hydrophobicity of NOM, and then presents a brief introduction of the methods which can prevent membrane fouling such as pretreatment of the feed water (e.g., coagulation, adsorption, and pre-oxidation and membrane hydrophilic modification (e.g., plasma modification, irradiation grafting modification, surface coating modification, blend modification, etc.. Perspectives of further research are also discussed.

  8. Improvement of antifouling performances for modified PVDF ultrafiltration membrane with hydrophilic cellulose nanocrystal

    Science.gov (United States)

    Lv, Jinling; Zhang, Guoquan; Zhang, Hanmin; Zhao, Chuanqi; Yang, Fenglin

    2018-05-01

    Hydrophilic cellulose nanocrystal (CNC) was incorporated into hydrophobic poly(vinylidene fluoride) (PVDF) membrane via phase inversion process to improve membrane antifouling property. The effects of CNC on membrane morphology, hydrophilicity, permeability and antifouling property were investigated in-detail. Results indicated that the introduction of CNC into PVDF membrane enhanced the permeability by optimizing membrane microstructure and improving membrane hydrophilicity. A higher pure water flux of 206.9 L m-2 h-1 was achieved for CNC/PVDF membrane at 100 kPa, which was 20 times that of PVDF membrane (9.8 L m-2 h-1). In bovine serum albumin filtration measurements, the permeation flux and flux recovery ratio of CNC/PVDF membrane were increased remarkably, while the irreversible fouling-resistance of CNC/PVDF membrane decreased by 48.8%. These results indicated that the CNC/PVDF membrane possessed superior antifouling property due to the hydrophilicity of CNC that formed a hydration layer on the membrane surface to effectively reduce contaminants adsorption/deposition.

  9. Embedding of Hollow Polymer Microspheres with Hydrophilic Shell in Nafion Matrix as Proton and Water Micro-Reservoir

    Directory of Open Access Journals (Sweden)

    Zhaolin Liu

    2012-08-01

    Full Text Available Assimilating hydrophilic hollow polymer spheres (HPS into Nafion matrix by a loading of 0.5 wt % led to a restructured hydrophilic channel, composed of the pendant sulfonic acid groups (–SO3H and the imbedded hydrophilic hollow spheres. The tiny hydrophilic hollow chamber was critical to retaining moisture and facilitating proton transfer in the composite membranes. To obtain such a tiny cavity structure, the synthesis included selective generation of a hydrophilic polymer shell on silica microsphere template and the subsequent removal of the template by etching. The hydrophilic HPS (100–200 nm possessed two different spherical shells, the styrenic network with pendant sulfonic acid groups and with methacrylic acid groups, respectively. By behaving as microreservoirs of water, the hydrophilic HPS promoted the Grotthus mechanism and, hence, enhanced proton transport efficiency through the inter-sphere path. In addition, the HPS with the –SO3H borne shell played a more effective role than those with the –CO2H borne shell in augmenting proton transport, in particular under low humidity or at medium temperatures. Single H2-PEMFC test at 70 °C using dry H2/O2 further verified the impactful role of hydrophilic HPS in sustaining higher proton flux as compared to pristine Nafion membrane.

  10. Method for the production of a hydrophilic polymer product

    International Nuclear Information System (INIS)

    Cordrey, P.W.; Frankland, J.D.; Highgate, D.J.

    1976-01-01

    It has been found that by subjecting mixtures containing hydrophilic monomer materials to radiation it is possible to obtain polymers capable of absorbing up to five times or more their weight of water. These polymers are very suitable for use in contact with living tissue since they contain none of the harmful contaminants derived from initiators used in conventional polymerisation. A method for the production of these polymers comprises subjecting to irradiation polymerisation a mixture containing (1) at least one hydrophilic monomer selected from N-vinyl pyrrolidones and hydroxyalkyl methacrylates and at least one hydrophobic monomer selected from alkyl acrylates, alkyl methacrylates and styrene, or (2) at least one hydrophilic monomer such as N-vinyl-2-pyrrolidone or hydroxyethyl methacrylate and at least one hydrophobic polymer selected from nylons, polyamides and terephthalic acid, with one or more alkyl substituted hexamethylene diamines, polyalkyl acrylates, polyalkyl methacrylates, polystyrenes, polyvinyl chloride and bisphenol polycarbonate. The irradiation may be gamma-ray, and the dosage 2 to 5 MR over one to 48 hours. The polymerisation may be carried out in the presence of a cross-linking agent such as alkyl methacrylate, divinylbenzene, or ethylene glycol dimethacrylate and in an oxygen-free or inert atmosphere, or in vacuo. Examples of application of the method are given. (U.K.)

  11. Radius ratio rule for surface hydrophilization of polydimethyl siloxane and silica nanoparticle composite

    Energy Technology Data Exchange (ETDEWEB)

    Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org [Quantum Phenomena and Applications Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Jain, Puneet; Sharma, Rina [Quantum Phenomena and Applications Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Bathula, Sivaiah; Dhar, Ajay [Material Physics and Engineering Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India)

    2015-09-15

    Graphical abstract: - Highlights: • Binary hard sphere silica nanoparticle system based PDMS composite. • Enhanced hydrophilization and retainability of the composite. • Restriction of uncured PDMS from diffusion. • Increased Debye length of electrostatic double layer, measured by F-D Spectroscopy. - Abstract: Polydimethyl siloxane (PDMS) and Silica (SiO{sub 2}) nanoparticle composite blocks of three different batches (CB1–CB3) made by varying the size of SiO{sub 2} nanoparticles (NP), are studied for the degree of hydrophilization and retainability after oxidation by contact angle measurements (CA) and force distance spectroscopy (FDS) using Atomic Force Microscope (AFM). While CA measurements have shown high hydrophilization and retainability for CB3, F-D spectroscopy has reiterated the observation and has shown long range interactive forces and high Debye length of the electrostatic double layer formed. These results are in agreement with the radius ratio rule of binary sphere system for high density packing in the composite and thereby for strong hydrophilization and retainability due to reinforcement and restricted diffusion of uncured polymer.

  12. The hydrophilic/hydrophobic ratio vs. dissolved organics removal by coagulation – A review

    Directory of Open Access Journals (Sweden)

    Djamel Ghernaout

    2014-07-01

    Full Text Available This review discusses the hydrophilic/hydrophobic ratio as a function of the hydrophilic and hydrophobic contents removal by coagulation process. It is well established that coagulation process could bring a reduction in dissolved organic carbon of around 30–60% by increasing the coagulant dose and optimising reaction pH, in which large organic molecules with hydrophobic property was removed preferentially. Furthermore, the literature affirmed that the greater removal of UV-absorbing substances indicates that alum coagulation preferentially removed the hydrophobic fraction of the total organic carbon. For the hydrophobic fraction, it needs to be removed entirely without its transformation into hydrophilic fractions by coagulation process avoiding pre-chlorination/pre-oxidation due to the risk of organic molecules fragmentation. Determining the exact numerical values of the hydrophilic/hydrophobic ratio for raw water and treated water at different stages of the treatment processes in a water treatment plant, as for the DCO/DBO5 ratio in the case of wastewater treatment, would help on more focusing on OM control and removal.

  13. Controlling hydrophilicity of polymer film by altering gas flow rate in atmospheric-pressure homogeneous plasma

    International Nuclear Information System (INIS)

    Kang, Woo Seok; Hur, Min; Lee, Jae-Ok; Song, Young-Hoon

    2014-01-01

    Graphical abstract: - Highlights: • Controlling hydrophilicity of polymer film by varying gas flow rate is proposed in atmospheric-pressure homogeneous plasma treatment. • Without employing additional reactive gas, requiring more plasma power and longer treatment time, hydrophilicity of polyimide films was improved after the low-gas-flow plasma treatment. • The gas flow rate affects the hydrophilic properties of polymer surface by changing the discharge atmosphere in the particular geometry of the reactor developed. • Low-gas-flow induced wettability control suggests effective and economical plasma treatment. - Abstract: This paper reports on controlling the hydrophilicity of polyimide films using atmospheric-pressure homogeneous plasmas by changing only the gas flow rate. The gas flow changed the discharge atmosphere by mixing the feed gas with ambient air because of the particular geometry of the reactor developed for the study, and a low gas flow rate was found to be favorable because it generated abundant nitrogen or oxygen species that served as sources of hydrophilic functional groups over the polymer surface. After low-gas-flow plasma treatment, the polymer surface exhibited hydrophilic characteristics with increased surface roughness and enhanced chemical properties owing to the surface addition of functional groups. Without adding any reactive gases or requiring high plasma power and longer treatment time, the developed reactor with low-gas-flow operation offered effective and economical wettability control of polyimide films

  14. Microbial transformation of biomacromolecules in a membrane bioreactor: implications for membrane fouling investigation.

    Directory of Open Access Journals (Sweden)

    Zhongbo Zhou

    Full Text Available BACKGROUND: The complex characteristics and unclear biological fate of biomacromolecules (BMM, including colloidal and soluble microbial products (SMP, extracellular polymeric substances (EPS and membrane surface foulants (MSF, are crucial factors that limit our understanding of membrane fouling in membrane bioreactors (MBRs. FINDINGS: In this study, the microbial transformation of BMM was investigated in a lab-scale MBR by well-controlled bioassay tests. The results of experimental measurements and mathematical modeling show that SMP, EPS, and MSF had different biodegradation behaviors and kinetic models. Based on the multi-exponential G models, SMP were mainly composed of slowly biodegradable polysaccharides (PS, proteins (PN, and non-biodegradable humic substances (HS. In contrast, EPS contained a large number of readily biodegradable PN, slowly biodegradable PS and HS. MSF were dominated by slowly biodegradable PS, which had a degradation rate constant similar to that of SMP-PS, while degradation behaviors of MSF-PN and MSF-HS were much more similar to those of EPS-PN and EPS-HS, respectively. In addition, the large-molecular weight (MW compounds (>100 kDa in BMM were found to have a faster microbial transformation rate compared to the small-MW compounds (<5 kDa. The parallel factor (PARAFAC modeling of three-dimensional fluorescence excitation-emission matrix (EEM spectra showed that the tryptophan-like PN were one of the major fractions in the BMM and they were more readily biodegradable than the HS. Besides microbial mineralization, humification and hydrolysis could be viewed as two important biotransformation mechanisms of large-MW compounds during the biodegradation process. SIGNIFICANCE: The results of this work can aid in tracking the origin of membrane foulants from the perspective of the biotransformation behaviors of SMP, EPS, and MSF.

  15. RF plasma based selective modification of hydrophilic regions on super hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaehyun; Hwang, Sangyeon; Cho, Dae-Hyun [Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Hong, Jungwoo [Department of Mechanical Engineering, Graduate of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141 (Korea, Republic of); Shin, Jennifer H., E-mail: j_shin@kaist.ac.kr [Department of Mechanical Engineering, Graduate of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141 (Korea, Republic of); Byun, Doyoung, E-mail: dybyun@skku.edu [Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of)

    2017-02-01

    Highlights: • Simple and amenable reforming method for a substrate with disparate patterns of hydrophilic dots on super-hydrophobic surfaces is proposed. • Wettability characteristics and modification mechanism for the surfaces are conducted and revealed through SEM, AFM, WSI, and SIMS. • Several representative materials for various applications are successfully deposited. - Abstract: Selective modification and regional alterations of the surface property have gained a great deal of attention to many engineers. In this paper, we present a simple, a cost-effective, and amendable reforming method for disparate patterns of hydrophilic regions on super-hydrophobic surfaces. Uniform super-hydrophobic layer (Contact angle; CA > 150°, root mean square (RMS) roughness ∼0.28 nm) can be formed using the atmospheric radio frequency (RF) plasma on top of the selective hydrophilic (CA ∼ 70°, RMS roughness ∼0.34 nm) patterns imprinted by electrohydrodynamic (EHD) jet printing technology with polar alcohols (butyl carbitol or ethanol). The wettability of the modified surface was investigated qualitatively utilizing scanning electron microscopy (SEM), atomic force microscopy (AFM), and wavelength scanning interferometer (WSI). Secondary ion mass spectroscopy (SIMS) analysis showed that the alcohol addiction reaction changed the types of radicals on the super-hydrophobic surface. The wettability was found to depend sensitively on chemical radicals on the surface, not on surface morphology (particle size and surface roughness). Furthermore, three different kinds of representative hydrophilic samples (polystyrene nano-particle aqueous solution, Salmonella bacteria medium, and poly(3,4-ethylenediocythiophene) ink) were tested for uniform deposition onto the desired hydrophilic regions. This simple strategy would have broad applications in various research fields that require selective deposition of target materials.

  16. RF plasma based selective modification of hydrophilic regions on super hydrophobic surface

    International Nuclear Information System (INIS)

    Lee, Jaehyun; Hwang, Sangyeon; Cho, Dae-Hyun; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung

    2017-01-01

    Highlights: • Simple and amenable reforming method for a substrate with disparate patterns of hydrophilic dots on super-hydrophobic surfaces is proposed. • Wettability characteristics and modification mechanism for the surfaces are conducted and revealed through SEM, AFM, WSI, and SIMS. • Several representative materials for various applications are successfully deposited. - Abstract: Selective modification and regional alterations of the surface property have gained a great deal of attention to many engineers. In this paper, we present a simple, a cost-effective, and amendable reforming method for disparate patterns of hydrophilic regions on super-hydrophobic surfaces. Uniform super-hydrophobic layer (Contact angle; CA > 150°, root mean square (RMS) roughness ∼0.28 nm) can be formed using the atmospheric radio frequency (RF) plasma on top of the selective hydrophilic (CA ∼ 70°, RMS roughness ∼0.34 nm) patterns imprinted by electrohydrodynamic (EHD) jet printing technology with polar alcohols (butyl carbitol or ethanol). The wettability of the modified surface was investigated qualitatively utilizing scanning electron microscopy (SEM), atomic force microscopy (AFM), and wavelength scanning interferometer (WSI). Secondary ion mass spectroscopy (SIMS) analysis showed that the alcohol addiction reaction changed the types of radicals on the super-hydrophobic surface. The wettability was found to depend sensitively on chemical radicals on the surface, not on surface morphology (particle size and surface roughness). Furthermore, three different kinds of representative hydrophilic samples (polystyrene nano-particle aqueous solution, Salmonella bacteria medium, and poly(3,4-ethylenediocythiophene) ink) were tested for uniform deposition onto the desired hydrophilic regions. This simple strategy would have broad applications in various research fields that require selective deposition of target materials.

  17. Adduction of acrylamide with biomacromolecules at environmental dose level measured by accelerator mass spectrometry (AMS)

    International Nuclear Information System (INIS)

    Xie, Q.Y.; Sun, H.F.; Liu, Y.F.; Ding, X.F.; Fu, D.P.; Liu, K.X.

    2005-01-01

    Acrylamide (AA) is a well-known neurotoxin, which also has developmental, reproductive as well as genetic toxicity. AA has been classified as a probable human carcinogen by IARC in 1994 since its carcinogenic effects in animals were reported after repetitive high level dosing. Over the last 10 years, there have been a large number of studies investigating the effects of AA on rodent reproductive performance. In 2002, the Swedish Food Administration reported the presence of AA in the heat-treated food products. which again elicited great concern on the toxicity of AA. However most of these studies were investigated at a dose level of mg/kg b.w and above, which is much higher than the actual human relevant dose. In this study we investigate the adduction of environmental level AA with biomacromolecules by the ultra-sensitive AMS technique. This may provide some information on the reproductive toxicity of AA under extremely low level exposure. A series doses of [2, 3- 14 C] AA (0, 0.1, 1, 10, 100, 250, 1000 μg/kg bw) were administrated with a single intraperitoneal injection (i.p.) to ICR adult male mice. The blood and spermatozoon were collected 24 h post dosing. Hemoglobin (Hb), serum albumin (SA), protamine, spermatozoon DNA, spermatozoon head and tail were isolated respectively, and then transformed into graphite following our previous procedure, The adduct levels were determined by a 0.6 MV compact AMS facility at the Institute of Heavy Ion Physics of Peking University. The results indicate that: (1) AA adduct number increases with the doses within 0.1-1000 μg/kg b.w. range in a log/log linear mode, except for DNA within 10-1000 μg/kg b.w. range. (2) Comparing protamine, Hb, and SA adducts with that of spermatozoon DNA (see Fig. 1), AA mainly adducts to proteins. For instance, at 1000 μg/kg b.w. dose level, spermatozoon DNA adducts only account for about 0.71%, 1.36% and 0.82% of protamine, Hb and SA adducts, respectively. (3) AA-protamine adducts, AA

  18. Digging Deeper: Development and evaluation of an untargeted metabolomics approach to identify biogeochemical hotspots with depth and by vegetation type in Arctic tundra soils

    Science.gov (United States)

    Ladd, M.; Wullschleger, S.; Hettich, R.

    2017-12-01

    Elucidating the chemical composition of low molecular weight (LMW) dissolved organic matter (DOM), and monitoring how this bioavailable pool varies over space and time, is critical to understanding the controlling mechanisms that underlie carbon release and storage in Arctic systems. Due to analytical challenges however, relatively little is known about how this complex mixture of small molecules varies with soil depth or how it may be influenced by vegetation. In this study, we evaluated an untargeted metabolomics approach for the characterization of LMW DOM in water extracts, and applied this approach in soil cores (10-cm diam., 30-cm depth), obtained near Barrow, Alaska (71° 16' N) from the organic-rich active layer where the aboveground vegetation was primarily either Carex aquatilis or Eriophorum angustifolium, two species commonly found in tundra systems. We hypothesized that by using a discovery-based approach, spatial patterns of chemical diversity could be identified, enabling the detection of biogeochemical hotspots across scales. LMW DOM profiles from triplicate water extracts were characterized using dual-separation, nano-liquid chromatography (LC) coupled to an electrospray Orbitrap mass spectrometer in positive and negative ion modes. Both LC separations—reversed-phase and hydrophilic interaction chromatography—were achieved with gradient elutions in 15 minutes. Using a precursor and fragment mass measurement accuracy of nutrients) impact carbon fluxes in the Arctic at the landscape-scale.

  19. Circumvention of the tumor membrane barrier to WR-2721 absorption by reduction of drug hydrophilicity

    International Nuclear Information System (INIS)

    Yuhas, J.M.; Davis, M.E.; Glover, D.; Brown, D.Q.; Ritter, M.

    1982-01-01

    In attempting to account for the ability of most solid tumors to restrict the absorption of WR-2721, aminopropyl-aminoethylphosphorothioate, we examined a number of drug characteristics which might allow for this restriction, and observed that drug hypdrophilicity was a major contributing factor. When the highly hydrophilic WR-2721 was dephosphorylated, the drug became less hydrophilic and could readily cross tumor cell membranes. In addition, conventional radioprotectants, such as cysteine and mercaptoethylamine, were shown to be less hydrophilic than WR-2721 and also to cross tumor membranes readily. Therefore, drug hydrophilicity would appear to be the factor underlying the ability of WR-2721 to selectively protect normal tissues while most other protectors alter the radiation resistance of normal and tumor tissue alike. A red blood cell model for studying this problem in greater detail is described

  20. The mechanism of hydrophilic and hydrophobic colloidal silicon dioxide types as glidants

    OpenAIRE

    Jonat, Stéphane

    2005-01-01

    AEROSIL® 200 is a hydrophilic highly disperse colloidal silicon dioxide (CSD) that is commonly used to improve flowability. This conventional CSD has low bulk and tapped densities and can produce dust if handled improperly. In order to improve its handling, special mechanical processes were developed for the homogeneous compaction of CSD. As a result, two new products have been recently introduced: AEROSIL® 200 VV and AEROSIL® R 972 V. AEROSIL® 200 VV is hydrophilic and chemically identical t...

  1. A rapid hydrophilic interaction liquid chromatographic determination of glimepiride in pharmaceutical formulations

    Directory of Open Access Journals (Sweden)

    Si Zhou

    2017-09-01

    Full Text Available Glimepiride is one of the most widely prescribed antidiabetic drugs and contains both hydrophobic and hydrophilic functional groups in its molecules, and thus could be analyzed by either reversed-phase high performance liquid chromatography (HPLC or hydrophilic interaction liquid chromatography (HILIC. In the literature, however, only reversed-phase HPLC has been reported. In this study, a simple, rapid and accurate hydrophilic interaction liquid chromatographic method was developed for the determination of glimepiride in pharmaceutical formulations. The analytical method comprised a fast ultrasound-assisted extraction with acetonitrile as a solvent followed by HILIC separation and quantification using a Waters Spherisorb S5NH2 hydrophilic column with a mobile phase consisting of acetonitrile and aqueous acetate buffer (5.0 mM. The retention time of glimepiride increased slightly with decrease of mobile phase pH value from 6.8 to 5.8 and of acetonitrile content from 60% to 40%, indicating that both hydrophilic, ionic, and hydrophobic interactions were involved in the HILIC retention and elution mechanisms. Quantitation was carried out with a mobile phase of 40% acetonitrile and 60% aqueous acetate buffer (5.0 mM at pH 6.3, by relating the peak area of glimepiride to that of the internal standard, with a detection limit of 15.0 μg/L. UV light absorption responses at 228 nm were linear over a wide concentration range from 50.0 μg/L to 6.00 mg/L. The recoveries of the standard added to pharmaceutical tablet samples were 99.4–103.0% for glimepiride, and the relative standard deviation for the analyte was less than 1.0%. This method has been successfully applied to determine the glimepiride contents in pharmaceutical formulations.

  2. Healthcare resource consumption for intermittent urinary catheterisation: cost-effectiveness of hydrophilic catheters and budget impact analyses.

    Science.gov (United States)

    Rognoni, Carla; Tarricone, Rosanna

    2017-01-17

    This study presents a cost-effectiveness analysis comparing hydrophilic coated to uncoated catheters for patients performing urinary intermittent catheterisation. A national budget impact analysis is also included to evaluate the impact of intermittent catheterisation for management of bladder dysfunctions over a period of 5 years. A Markov model (lifetime horizon, 1 year cycle length) was developed to project health outcomes (life years and quality-adjusted life years) and economic consequences related to patients using hydrophilic coated or uncoated catheters. The model was populated with catheter-related clinical efficacy data retrieved from randomised controlled trials and quality-of-life data (utility weights) from the literature. Cost data (EUR, 2015) were estimated on the basis of healthcare resource consumption derived from an e-survey addressed to key opinion leaders in the field. Italian Healthcare Service perspective. Patients with spinal cord injury performing intermittent urinary catheterisation in the home setting. Incremental cost-effectiveness and cost-utility ratios (ICER and ICUR) of hydrophilic coated versus uncoated catheters and associated healthcare budget impact. The base-case ICER and ICUR associated with hydrophilic coated catheters were €20 761 and €24 405, respectively. This implies that hydrophilic coated catheters are likely to be cost-effective in comparison to uncoated ones, as proposed Italian threshold values range between €25 000 and €66 400. Considering a market share at year 5 of 89% hydrophilic catheters and 11% uncoated catheters, the additional cost for Italy is approximately €12 million in the next 5 years (current market share scenario for year 0: 80% hydrophilic catheters and 20% uncoated catheters). Considered over a lifetime, hydrophilic coated catheters are potentially a cost-effective choice in comparison to uncoated ones. These findings can assist policymakers in evaluating intermittent

  3. Preparation of keratin-based microcapsules for encapsulation of hydrophilic molecules.

    Science.gov (United States)

    Rajabinejad, Hossein; Patrucco, Alessia; Caringella, Rosalinda; Montarsolo, Alessio; Zoccola, Marina; Pozzo, Pier Davide

    2018-01-01

    The interest towards microcapsules based on non-toxic, biodegradable and biocompatible polymers, such as proteins, is increasing considerably. In this work, microcapsules were prepared using water soluble keratin, known as keratoses, with the aim of encapsulating hydrophilic molecules. Keratoses were obtained via oxidizing extraction of pristine wool, previously degreased by Soxhlet. In order to better understand the shell part of microcapsules, pristine wool and obtained keratoses were investigated by FT-IR, gel-electrophoresis and HPLC. Production of the microcapsules was carried out by a sonication method. Thermal properties of microcapsules were investigated by DSC. Microencapsulation and dye encapsulation yields were obtained by UV-spectroscopy. Morphological structure of microcapsules was studied by light microscopy, SEM, and AFM. The molecular weights of proteins analyzed using gel-electrophoresis resulted in the range of 38-62kDa. The results confirmed that the hydrophilic dye (Telon Blue) was introduced inside the keratoses shells by sonication and the final microcapsules diameter ranged from 0.5 to 4µm. Light microscope investigation evidenced the presence of the dye inside the keratoses vesicles, confirming their capability of encapsulating hydrophilic molecules. The microcapsule yield and dye encapsulation yield were found to be 28.87±3% and 83.62±5% respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The effect of charged groups on hydrophilic monolithic stationary phases on their chromatographic properties.

    Science.gov (United States)

    Li, Haibin; Liu, Chusheng; Wang, Qiqin; Zhou, Haibo; Jiang, Zhengjin

    2016-10-21

    In order to investigate the effect of charged groups present in hydrophilic monolithic stationary phases on their chromatographic properties, three charged hydrophilic monomers, i.e. N,N-dimethyl-N-acryloyloxyethyl-N-(3-sulfopropyl)ammonium betaine (SPDA), [2-(acryloyloxy)ethyl]trimethylammonium chloride (AETA), and 3-sulfopropyl acrylate potassium salt (SPA) were co-polymerized with the crosslinker N,N'-methylenebisacrylamide (MBA), respectively. The physicochemical properties of the three resulting charged hydrophilic monolithic columns were evaluated using scanning electron microscopy, ζ-potential analysis and micro-HPLC. High column efficiency was obtained on the three monolithic columns at a linear velocity of 1mm/s using thiourea as test compound. Comparative characterization of the three charged HILIC phases was then carried out using a set of model compounds, including nucleobases, nucleosides, benzoic acid derivatives, phenols, β-blockers and small peptides. Depending on the combination of stationary phase/mobile phase/solute, both hydrophilic interaction and other potential secondary interactions, including electrostatic interaction, hydrogen-bonding interaction, molecular shape selectivity, could contribute to the over-all retention of the analytes. Because of the strong electrostatic interaction provided by the quaternary ammonium groups in the poly (AETA-co-MBA) monolith, this cationic HILIC monolith exhibited the strongest retention for benzoic acid derivatives and small peptides with distorted peak shapes and the weakest retention for basic β-blockers. The sulfonyl groups on the poly (SPA-co-MBA) hydrophilic monolith could provide strong electrostatic attraction and hydrogen bonding for positively charged analytes and hydrogen-donor/acceptor containing analytes, respectively. Therefore, basic drugs, nucleobases and nucleotides exhibited the strongest retention on this anionic monolith. Because of the weak but distinct cation exchange properties of

  5. Ultralow Friction with Hydrophilic Polymer Brushes in Water as Segregated from Silicone Matrix

    DEFF Research Database (Denmark)

    Røn, Troels; Javakhishvili, Irakli; Hvilsted, Søren

    2015-01-01

    Lubrication is essential to minimize damage to underlying material and ensure low energy dissipation in biological and man-made mechanical sys- tems. Surface grafting of hydrophilic polymer brushes is a powerful means to render materials that are slippery in aqueous environments. However, presently......, as the hydrophilic polymer brushes are generated from an internal source of the material, excellent grafting stability and restoring capabilities are revealed even under harsh tribostress. The film can easily be applied to elastomers, metals, and ceramic substrates by spin- or drip-coating. Obtained sliding fric......- tion coefficients ( μ ) are 0.001–0.05 for soft contacts depending on substrate, load, counter surface, pH, and salinity. Between the two types of hydrophilic polymer chains, PAA shows far superior lubricity compared to PEG, which is rationalized by the larger reduction of total free energy...

  6. Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nikooe, Naeme, E-mail: naeme.nikooe@stu.um.ac.ir; Saljoughi, Ehsan, E-mail: saljoughi@um.ac.ir

    2017-08-15

    Highlights: • Preparation of novel PVDF nanofiltration membranes with noticeable hydrophilicity. • Simultaneous achievement of hydrophilicity and dye removal via addition of Brij-58. • In situ modification and stability of hydrophilic property via addition of Brij-58. - Abstract: In the present research, for the first time PVDF/Brij-58 blend nanofiltration membranes with remarkable performance in filtration of dye aqueous solution were prepared via immersion precipitation. A noticeable improvement in water permeation and fouling resistance of the PVDF membranes was achieved by using Brij-58 surfactant as a hydrophilic additive. Scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR) and water contact angle were applied for the investigation of membrane morphology, detection of the surface chemical composition and relative hydrophilicity/hydrophobicity, respectively. The membrane performance was studied and compared by determination of pure water flux (PWF) and filtration of synthetic reactive dye aqueous solutions as well as bovine serum albumin (BSA) as foulant model. It was found out that addition of 4 wt.% Brij-58 to the casting solution results in formation of membrane with remarkable hydrophilicity and fouling resistance (contact angle of 46° and flux recovery ratio (FRR) = 90%), higher porosity and consequently noticeable PWF (31.2 L/m{sup 2} h) and recognized dye rejection value (90%) in comparison with the pristine PVDF nanofiltration membrane. Addition of Brij-58 surfactant to the casting solution resulted in formation of NF membrane with higher hydrophilicity and permeability as well as higher dye rejection value in comparison with the addition of PEG 400 additive.

  7. Development of hydrophilic dental wax without surfactant using a non-thermal air atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Lee, Jung-Hwan; Kim, Kwang-Mahn; Kim, Kyoung-Nam; Kim, Yong-Hee; Choi, Eun-Ha

    2014-01-01

    Dental wax (DW), a low-melting and high-molecular-weight organic mixture, is widely used in dentistry for forming moulds of teeth. Hydrophilicity is an important property for DW, as a wet dental investment is used to surround the wax before wax burnout is performed. However, recent attempts to improve the hydrophilicity of DW using a surfactant have resulted in the reduced mechanical properties of the dental investment, leading to the failure of the dental restoration. This study applied a non-thermal air atmospheric pressure plasma jet (AAPPJ) for DW surface treatment and investigated its effect on both DW hydrophilicity and the dental investment's mechanical properties. The results showed that the application of the AAPPJ significantly improved the hydrophilicity of the DW, and that the results were similar to that of cleaner-treated DW using commercially available products with surfactant. A surface chemical analysis indicated that the improvement of hydrophilicity was related to an increase in the number of oxygen-related bonds on the DW surface following the removal of carbon hydrate in both AAPPJ and cleaner-treated DW. However, cleaner treatment compromised the mechanical property of the dental investment when the dental investment was in contact with the treated DW, while the AAPPJ treatment did not. Therefore, the use of AAPPJ to treat DW is a promising method for accurate dental restoration, as it induces an improvement in hydrophilicity without harming the dental investment. (paper)

  8. 21 CFR 886.5925 - Soft (hydrophilic) contact lens.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Soft (hydrophilic) contact lens. 886.5925 Section 886.5925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... against the cornea and adjacent limbal and scleral areas of the eye to correct vision conditions or act as...

  9. Microscopic analysis of an opacified OFT CRYL® hydrophilic acrylic intraocular lens

    Directory of Open Access Journals (Sweden)

    Bruna Vieira Ventura

    Full Text Available ABSTRACT A 51-year-old patient underwent posterior vitrectomy with perfluoropropane gas injection, phacoemulsification, and implantation of an Oft Cryl® hydrophilic acrylic intraocular lens (IOL because of traumatic retinal detachment and cataract in the right eye. On the first postoperative day, gas was filling the anterior chamber because of patient's non-compliance in terms of head positioning, and was reabsorbed within one week. Eight months later, the patient returned complaining of a significant decrease in vision. IOL opacification was noticed by slit-lamp examination. The lens was explanted to undergo gross and light microscopic analysis. The lens was also stained with the alizarin red method for calcium identification. Light microscopic analysis confirmed the presence of granular deposits, densely distributed in an overall circular pattern in the central part of the lens optic. The granules stained positive for calcium. This is the first case of the opacification of this type of hydrophilic lens. Surgeons should be aware of this potential postoperative complication, and the use of hydrophilic IOLs should be avoided in procedures involving intracameral gas because of the risk of IOL opacification.

  10. Effects of particle size and pH value on the hydrophilicity of graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xuebing [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049 (China); Yu, Yun, E-mail: yunyush@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); Hou, Weimin [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049 (China); Zhou, Jianer [Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); Song, Lixin, E-mail: lxsong@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China)

    2013-05-15

    Graphene-based material has attracted extensive attention from both experimental and theoretical scientific communities due to its extraordinary properties. As a derivative of graphene, graphene oxide has also become an attractive material and been investigated widely in many areas since the ease of synthesizing graphene oxide and its solution processability. In this paper, we prepared graphene oxide by the modified Hummers method. The hydrophilicity of graphene oxide with different particle sizes and pH values was characterized with water contact angle. And we find the water contact angle of the different graphene oxides decreases from 61.8° to 11.6°, which indicates graphene oxide has the excellent hydrophilicity. The X-ray photoelectron spectroscopy, zeta potential and dynamic light scattering measurements were taken to study the chemical state of elements and the performances of graphene oxide in this experiment. The results show the hydrophilicity of graphene oxide is sensitive to particle size and pH value, which result in the variations of the ionizable groups of graphene oxide. Our work provides a simple ways to control the hydrophilicity of graphene oxide by adjusting particle size and pH value.

  11. Nanospikes functionalization as a universal strategy to disperse hydrophilic particles in non-polar media

    Science.gov (United States)

    Hang, Tian; Chen, Hui-Jiuan; Wang, Ji; Lin, Di-an; Wu, Jiangming; Liu, Di; Cao, Yuhong; Yang, Chengduan; Liu, Chenglin; Xiao, Shuai; Gu, Meilin; Pan, Shuolin; Wu, Mei X.; Xie, Xi

    2018-05-01

    Dispersion of hydrophilic particles in non-polar media has many important applications yet remains difficult. Surfactant or amphiphilic functionalization was conventionally applied to disperse particles but is highly dependent on the particle/solvent system and may induce unfavorable effects and impact particle hydrophilic nature. Recently 2 μm size polystyrene microbeads coated with ZnO nanospikes have been reported to display anomalous dispersity in phobic media without using surfactant or amphiphilic functionalization. However, due to the lack of understanding whether this phenomenon was applicable to a wider range of conditions, little application has been derived from it. Here the anomalous dispersity phenomenons of hydrophilic microparticles covered with nanospikes were systematically assessed at various conditions including different particle sizes, material compositions, particle morphologies, solvent hydrophobicities, and surface polar groups. Microparticles were functionalized with nanospikes through hydrothermal route, followed by dispersity test in hydrophobic media. The results suggest nanospikes consistently prevent particle aggregation in various particle or solvent conditions, indicating the universal applicability of the anomalous dispersion phenomenons. This work provides insight on the anomalous dispersity of hydrophilic particles in various systems and offers potential application to use this method for surfactant-free dispersions.

  12. Dimensional Accuracy of Hydrophilic and Hydrophobic VPS Impression Materials Using Different Impression Techniques - An Invitro Study

    Science.gov (United States)

    Pilla, Ajai; Pathipaka, Suman

    2016-01-01

    Introduction The dimensional stability of the impression material could have an influence on the accuracy of the final restoration. Vinyl Polysiloxane Impression materials (VPS) are most frequently used as the impression material in fixed prosthodontics. As VPS is hydrophobic when it is poured with gypsum products, manufacturers added intrinsic surfactants and marketed as hydrophilic VPS. These hydrophilic VPS have shown increased wettability with gypsum slurries. VPS are available in different viscosities ranging from very low to very high for usage under different impression techniques. Aim To compare the dimensional accuracy of hydrophilic VPS and hydrophobic VPS using monophase, one step and two step putty wash impression techniques. Materials and Methods To test the dimensional accuracy of the impression materials a stainless steel die was fabricated as prescribed by ADA specification no. 19 for elastomeric impression materials. A total of 60 impressions were made. The materials were divided into two groups, Group1 hydrophilic VPS (Aquasil) and Group 2 hydrophobic VPS (Variotime). These were further divided into three subgroups A, B, C for monophase, one-step and two-step putty wash technique with 10 samples in each subgroup. The dimensional accuracy of the impressions was evaluated after 24 hours using vertical profile projector with lens magnification range of 20X-125X illumination. The study was analyzed through one-way ANOVA, post-hoc Tukey HSD test and unpaired t-test for mean comparison between groups. Results Results showed that the three different impression techniques (monophase, 1-step, 2-step putty wash techniques) did cause significant change in dimensional accuracy between hydrophilic VPS and hydrophobic VPS impression materials. One-way ANOVA disclosed, mean dimensional change and SD for hydrophilic VPS varied between 0.56% and 0.16%, which were low, suggesting hydrophilic VPS was satisfactory with all three impression techniques. However, mean

  13. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application.

    Science.gov (United States)

    Aditya, N P; Espinosa, Yadira Gonzalez; Norton, Ian T

    2017-07-01

    Increased health risk associated with the sedentary life style is forcing the food manufacturers to look for food products with specific or general health benefits e.g. beverages enriched with nutraceuticals like catechin, curcumin rutin. Compounds like polyphenols, flavonoids, vitamins are the good choice of bioactive compounds that can be used to fortify the food products to enhance their functionality. However due to low stability and bioavailability of these bioactives (both hydrophobic and hydrophilic) within the heterogeneous food microstructure and in the Gastro Intestinal Tract (GIT), it becomes extremely difficult to pass on the real health benefits to the consumers. Recent developments in the application of nano-delivery systems for food product development is proving to be a game changer which has raised the expectations of the researchers, food manufacturers and consumers regarding possibility of enhancing the functionality of bioactives within the fortified food products. In this direction, nano/micro delivery systems using lipids, surfactants and other materials (carbohydrates, polymers, complexes, protein) have been fabricated to stabilize and enhance the biological activity of the bioactive compounds. In the present review, current status of the various delivery systems that are used for the delivery of hydrophilic bioactives and future prospects for using other delivery systems that have been not completely explored for the delivery of hydrophilic bioactives e.g. niosomes; bilosomes, cubosomes are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Silver coated aluminium microrods as highly colloidal stable SERS platforms.

    Science.gov (United States)

    Pazos-Perez, Nicolas; Borke, Tina; Andreeva, Daria V; Alvarez-Puebla, Ramon A

    2011-08-01

    We report on the fabrication of a novel material with the ability to remain in solution even under the very demanding conditions required for structural and dynamic characterization of biomacromolecule assays. This stability is provided by the increase in surface area of a low density material (aluminium) natively coated with a very hydrophilic surface composed of aluminium oxide (Al(2)O(3)) and metallic silver nanoparticles. Additionally, due to the dense collection of active hot spots on their surface, this material offers higher levels of SERS intensity as compared with the same free and aggregated silver nanoparticles. This journal is © The Royal Society of Chemistry 2011

  15. Antimicrobial efficacy assessment of multi-use solution to disinfect hydrophilic contact lens, in vitro

    OpenAIRE

    Lui,Aline Cristina Fioravanti; Netto,Adamo Lui; Silva,Cely Barreto da; Hida,Richard; Mendes,Thais Sousa; Lui,Giovana Arlene Fioravanti; Gemperli,Daniela Barbosa; Vital,Enderson Dantas

    2009-01-01

    PURPOSE: To evaluate the efficacy of disinfecting solutions in hydrophilic contact lenses (CL). METHODS: Two multi-use solutions denominated solution A (0.001% polyquaternium-1 and 0.0005% myristamidopropyl dimethylamine) and solution B (0.0001% polyaminopropyl biguanide) were used. The solutions were tested in hydrophilic contact lenses infected with Pseudomonas aeruginosa (ATCC27583), Staphylococcus epidermidis (ATCC1226), Klebsiella pneumoniae (ATCC13883), Staphylococcus aureus (ATCC25923)...

  16. Enhanced Hydrophilicity and Biocompatibility of Dental Zirconia Ceramics by Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Ching-Chou Wu

    2015-02-01

    Full Text Available Surface properties play a critical role in influencing cell responses to a biomaterial. The objectives of this study were (1 to characterize changes in surface properties of zirconia (ZrO2 ceramic after oxygen plasma treatment; and (2 to determine the effect of such changes on biological responses of human osteoblast-like cells (MG63. The results indicated that the surface morphology was not changed by oxygen plasma treatment. In contrast, oxygen plasma treatment to ZrO2 not only resulted in an increase in hydrophilicity, but also it retained surface hydrophilicity after 5-min treatment time. More importantly, surface properties of ZrO2 modified by oxygen plasma treatment were beneficial for cell growth, whereas the surface roughness of the materials did not have a significant efficacy. It is concluded that oxygen plasma treatment was certified to be effective in modifying the surface state of ZrO2 and has the potential in the creation and maintenance of hydrophilic surfaces and the enhancement of cell proliferation and differentiation.

  17. Enhanced Hydrophilicity and Protein Adsorption of Titanium Surface by Sodium Bicarbonate Solution

    Directory of Open Access Journals (Sweden)

    Shengnan Jia

    2015-01-01

    Full Text Available The aim of this study was to investigate a novel and convenient method of chemical treatment to modify the hydrophilicity of titanium surfaces. Sand-blasted and acid-etched (SLA titanium surfaces and machined titanium surfaces were treated with sodium bicarbonate (NaHCO3 solution. The wetting behavior of both kinds of surfaces was measured by water contact angle (WCA test. The surface microstructure was assessed with scanning electron microscopy (SEM and three-dimensional (3D optical microscopy. The elemental compositions of the surfaces were analyzed by X-ray photoelectron spectroscopy (XPS. The protein adsorption analysis was performed with fibronectin. Results showed that, after 1 M NaHCO3 treatment, the hydrophilicity of both SLA and machined surfaces was enhanced. No significant microstructural change presented on titanium surfaces after NaHCO3 treatment. The deprotonation and ion exchange activities might cause the enhanced hydrophilicity of titanium surfaces. The increased protein adsorption of NaHCO3-treated SLA surfaces might indicate their improved tissue-integration in clinical use.

  18. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces

    DEFF Research Database (Denmark)

    Hansson, Petra M; Claesson, Per M.; Swerin, Agne

    2013-01-01

    Friction forces have long been associated with the famous Amontons' rule that states that the friction force is linearly dependent on the applied normal load, with the proportionality constant being known as the friction coefficient. Amontons' rule is however purely phenomenological and does...... not in itself provide any information on why the friction coefficient is different for different material combinations. In this study, friction forces between a colloidal probe and nanostructured particle coated surfaces in an aqueous environment exhibiting different roughness length scales were measured...... by utilizing the atomic force microscope (AFM). The chemistry of the surfaces and the probe was varied between hydrophilic silica and hydrophobized silica. For hydrophilic silica surfaces, the friction coefficient was significantly higher for the particle coated surfaces than on the flat reference surface. All...

  19. Hydrophilicity, Viscoelastic, and Physicochemical Properties Variations in Dental Bone Grafting Substitutes.

    Science.gov (United States)

    Trajkovski, Branko; Jaunich, Matthias; Müller, Wolf-Dieter; Beuer, Florian; Zafiropoulos, Gregory-George; Houshmand, Alireza

    2018-01-30

    The indication-oriented Dental Bone Graft Substitutes (DBGS) selection, the correct bone defects classification, and appropriate treatment planning are very crucial for obtaining successful clinical results. However, hydrophilic, viscoelastic, and physicochemical properties' influence on the DBGS regenerative potential has poorly been studied. For that reason, we investigated the dimensional changes and molecular mobility by Dynamic Mechanical Analysis (DMA) of xenograft (cerabone ® ), synthetic (maxresorb ® ), and allograft (maxgraft ® , Puros ® ) blocks in a wet and dry state. While no significant differences could be seen in dry state, cerabone ® and maxresorb ® blocks showed a slight height decrease in wet state, whereas both maxgraft ® and Puros ® had an almost identical height increase. In addition, cerabone ® and maxresorb ® blocks remained highly rigid and their damping behaviour was not influenced by the water. On the other hand, both maxgraft ® and Puros ® had a strong increase in their molecular mobility with different damping behaviour profiles during the wet state. A high-speed microscopical imaging system was used to analyze the hydrophilicity in several naturally derived (cerabone ® , Bio-Oss ® , NuOss ® , SIC ® nature graft) and synthetic DBGS granules (maxresorb ® , BoneCeramic ® , NanoBone ® , Ceros ® ). The highest level of hydrophilicity was detected in cerabone ® and maxresorb ® , while Bio-Oss ® and BoneCeramic ® had the lowest level of hydrophilicity among both naturally derived and synthetic DBGS groups. Deviations among the DBGS were also addressed via physicochemical differences recorded by Micro Computed Tomography, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray powder Diffractometry, and Thermogravimetric Analysis. Such DBGS variations could influence the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration. Therefore, this

  20. Effect of Graphene Oxide (GO) on the Surface Morphology & Hydrophilicity of Polyethersulfone (PES)

    Science.gov (United States)

    Junaidi, N. F. D.; Khalil, N. A.; Jahari, A. F.; Shaari, N. Z. K.; Shahruddin, M. Z.; Alias, N. H.; Othman, N. H.

    2018-05-01

    Membrane has been widely used in water and wastewater treatment. One of the major issues related membrane separation is concentration polarization or fouling, which can lead to a decline of flux and premature failure of membrane. However, fouling can be controlled by modification of membrane properties such as morphology and hydrophilicity. In this work, a modification of polymeric membrane, polyethersulfone (PES) was carried out using graphene oxide in order to attain high antifouling characteristics. Graphene oxide (GO) was added at different compositions ranging from (0.1 wt%-1.0 wt%). GO was synthesized using modified Hummers’ method and characterized using XRD and FTIR prior to using it as additive for the PES membrane. The prepared PES-GO composite membranes were characterized using FTIR and SEM, Contact angle measurement and pure water flux test were then conducted to investigate the hydrophilicity of the PES-GO membranes. It was found that the additions of GO has significantly improved the hydrophilicity of the membranes.

  1. Multivalent-Counterion-Induced Surfactant Multilayer Formation at Hydrophobic and Hydrophilic Solid-Solution Interfaces.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Xu, Hui; Tucker, Ian M; Petkov, Jordan T; Sivia, Devinderjit S

    2015-06-23

    Surface multilayer formation from the anionic-nonionic surfactant mixture of sodium dodecyl dioxyethylene sulfate, SLES, and monododecyl dodecaethylene glycol, C12E12, by the addition of multivalent Al(3+) counterions at the solid-solution interface is observed and characterized by neutron reflectivity, NR. The ability to form surface multilayer structures on hydrophobic and hydrophilic silica and cellulose surfaces is demonstrated. The surface multilayer formation is more pronounced and more well developed on the hydrophilic and hydrophobic silica surfaces than on the hydrophilic and hydrophobic cellulose surfaces. The less well developed multilayer formation on the cellulose surfaces is attributed to the greater surface inhomogeneities of the cellulose surface which partially inhibit lateral coherence and growth of the multilayer domains at the surface. The surface multilayer formation is associated with extreme wetting properties and offers the potential for the manipulation of the solid surfaces for enhanced adsorption and control of the wetting behavior.

  2. A novel chemo-enzymatic synthesis of hydrophilic phytosterol derivatives.

    Science.gov (United States)

    He, Wen-Sen; Hu, Di; Wang, Yu; Chen, Xue-Yan; Jia, Cheng-Sheng; Ma, Hai-Le; Feng, Biao

    2016-02-01

    In this study, a novel method was developed for chemo-enzymatic synthesis of hydrophilic phytosterol derivatives, phytosteryl polyethylene glycol succinate (PPGS), through an intermediate phytosteryl hemisuccinate (PSHS), which was first chemically prepared and subsequently coupled with polyethylene glycol (PEG) through lipase-catalyzed esterification. The chemical structure of intermediate and goal product were finally confirmed to be PSHS and PPGS by FT-IR, MS and NMR, suggesting that hydrophilic phytosterol derivatives were successfully synthesized. The effects of various parameters on the conversion of PSHS to PPGS were investigated and the highest conversion (>78%) was obtained under the selected conditions: 75 mmol/L PSHS, 1:2M ratio of PSHS to PEG, 50 g/L Novozym 435, 120 g/L 3 Å molecular sieves in tert-butanol, 55 °C, 96 h and 200 rpm. The solubility of phytosterols in water was significantly improved by coupling with PEG, facilitating the incorporation into a variety of foods containing water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Opacification of hydrophilic intraocular lenses after Descemet stripping automated endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Morgan-Warren PJ

    2015-02-01

    Full Text Available Peter J Morgan-Warren, Walter Andreatta, Amit K Patel Department of Ophthalmology, Solihull Hospital, Heart of England NHS Foundation Trust, Birmingham, UK Purpose: Opacification of hydrophilic acrylic intraocular lenses (IOLs is an emerging complication following Descemet stripping automated endothelial keratoplasty (DSAEK. We report six cases and review the current literature.Methods: In this retrospective, noncomparative, observational case series, patients with IOL opacification after previous DSAEK surgery were identified from corneal clinic records. Case notes were reviewed for demographic details, indication for DSAEK, IOL model, incidence of rebubbling, and postoperative course.Results: Six patients developed IOL opacification after DSAEK. All patients had Fuchs’ endothelial dystrophy and had previously received hydrophilic acrylic IOL models. Central anterior IOL opacification was noted in all six cases. Five cases (83% had required rebubbling due to dislocated graft tissue, and one had an early postoperative intraocular pressure (IOP rise. Five cases (83% were managed conservatively, and one case with a failed graft underwent redo DSAEK and IOL exchange.Conclusion: Repeated exposure to intracameral air, raised IOP, and other patient influences may be major etiological factors for IOL opacification after DSAEK. We advise avoiding hydrophilic acrylic IOL models in patients who may require future endothelial keratoplasty. Keywords: IOL, DSAEK, lamellar keratoplasty, endothelial corneal transplantation

  4. Effects of membrane composition on release of model hydrophilic compound from osmotic delivery systems.

    Science.gov (United States)

    Ozdemir, N; Ozalp, Y; Ozkan, Y

    2000-01-01

    In this study, the effects of surface-active agents in different types and concentrations, added into the coating solution, on release of model hydrophilic compound have been examined. For this purpose, the tablets, prepared with the use of methylene blue as a model substance, were coated by spray coating technique with cellulose acetate solution containing polyethylene glycol 400 as a plasticizer. In addition, cetylpyridinium chloride as cationic surface-active agent and sodium lauryl sulphate as anionic surface-active agent were added into coating solution in different concentrations. After creating a delivery orifice by a microdrill on the tablets, release of model hydrophilic compound was tested by the USP paddle method. The data obtained were evaluated according to the different kinetics and the mechanism of release from the preparations was examined. The surface properties of the coating material were investigated by scanning electron microscope taken before and after the contact with medium fluid, as well as the mechanical properties by tensile tests. In conclusion, it has been found that the cationic surface active agent, cetylpyridinium chloride reduced the lag time, observed during the release of model hydrophilic compound, as a result of its enhancing effect on wettability of tablets by reducing the contact angle between the medium fluid and the coating material. On the other hand, the anionic surface active agent, sodium lauryl sulphate has been inactivated possibly due to the interaction with model hydrophilic compound that has cationic properties and/or substances contained in membrane composition; thus, the lag time has not decreased and furthermore, a significant decrease in the delivery rate of model hydrophilic compound has been observed.

  5. Reverse micelle-loaded lipid nano-emulsions: new technology for nano-encapsulation of hydrophilic materials.

    Science.gov (United States)

    Anton, Nicolas; Mojzisova, Halina; Porcher, Emilien; Benoit, Jean-Pierre; Saulnier, Patrick

    2010-10-15

    This study presents novel, recently patented technology for encapsulating hydrophilic species in lipid nano-emulsions. The method is based on the phase-inversion temperature method (the so-called PIT method), which follows a low-energy and solvent-free process. The nano-emulsions formed are stable for months, and exhibit droplet sizes ranging from 10 to 200 nm. Hydrophilic model molecules of fluorescein sodium salt are encapsulated in the oily core of these nano-emulsion droplets through their solubilisation in the reverse micellar system. As a result, original, multi-scaled nano-objects are generated with a 'hydrophilic molecule in a reverse-micelles-in-oil-in-water' structure. Once fluorescein has been encapsulated it remains stable, for thermodynamic reasons, and the encapsulation yields can reach 90%. The reason why such complex objects can be formed is due to the soft method used (PIT method) which allows the conservation of the structure of the reverse micelles throughout the formulation process, up to their entrapment in the nano-emulsion droplets. In this study, we focus the investigation on the process itself, revealing its potential and limits. Since the formulation of nanocarriers for the encapsulation of hydrophilic substances still remains a challenge, this study may constitute a significant advance in this field. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Breakup Behavior of a Capillary Bridge on a Hydrophobic Stripe Separating Two Hydrophilic Stripes

    Science.gov (United States)

    Hartmann, Maximilian; Hardt, Steffen

    2017-11-01

    The breakup dynamics of a capillary bridge on a hydrophobic area between two liquid filaments occupying two parallel hydrophilic stripes is studied experimentally. In addition calculations with the finite-element software Surface Evolver are performed to obtain the corresponding stable minimal surfaces. Droplets of de-ionized water are placed on substrates with alternating hydrophilic and hydrophobic stripes of different width. Their volume decreases by evaporation. This results in a droplet shaped as the letter ``H'' covering two hydrophilic stripes separated by one hydrophobic stripe. The width of the capillary bridge d(t) on the hydrophobic stripe during the breakup process is observed using a high-speed camera mounted on a bright-field microscope. The results of the experiments and the numerical studies show that the critical width dcrit, indicating the point where the capillary bridge becomes unstable, mainly depends on the width ratio of the hydrophilic and hydrophobic stripes. It is found that the time derivative of d(t) first decreases after dcrit has been reached. The final breakup dynamics then follows a t 2 / 3 scaling. We kindly acknowledge the financial support by the German Research Foundation (DFG) within the Collaborative Research Centre 1194 ``Interaction of Transport and Wetting Processes'', Project A02a.

  7. Interactions between nano-TiO2 and the oral cavity: Impact of nanomaterial surface hydrophilicity/hydrophobicity

    International Nuclear Information System (INIS)

    Teubl, Birgit J.; Schimpel, Christa; Leitinger, Gerd; Bauer, Bettina; Fröhlich, Eleonore; Zimmer, Andreas; Roblegg, Eva

    2015-01-01

    Highlights: • Hydrophilic as well as hydrophobic TiO 2 NPs agglomerated under oral physiological conditions. • Particles penetrated the upper and lower buccal epithelium, independent on the degree of hydrophilicity. • Most of the hydrophobic particles were found in vesicular structures, while hydrophilic particles were freely distributed in the cytoplasm. • Hydrophilic particles had a higher potential to trigger toxic effects (e.g., ROS) than hydrophobic particles. - Abstract: Titanium dioxide (TiO 2 ) nanoparticles are available in a variety of oral applications, such as food additives and cosmetic products. Thus, questions about their potential impact on the oro-gastrointestinal route rise. The oral cavity represents the first portal of entry and is known to rapidly interact with nanoparticles. Surface charge and size contribute actively to the particle–cell interactions, but the influence of surface hydrophilicity/hydrophobicity has never been shown before. This study addresses the biological impact of hydrophilic (NM 103, rutile, 20 nm) and hydrophobic (NM 104, rutile, 20 nm) TiO 2 particles within the buccal mucosa. Particle characterization was addressed with dynamic light scattering and laser diffraction. Despite a high agglomeration tendency, 10% of the particles/agglomerates were present in the nanosized range and penetrated into the mucosa, independent of the surface properties. However, significant differences were observed in intracellular particle localization. NM 104 particles were found freely distributed in the cytoplasm, whereas their hydrophobic counterparts were engulfed in vesicular structures. Although cell viability/membrane integrity was not affected negatively, screening assays demonstrated that NM 104 particles showed a higher potential to decrease the physiological mitochondrial membrane potential than NM 103, resulting in a pronounced generation of reactive oxygen species

  8. Comparative TEM study of bonded silicon/silicon interfaces fabricated by hydrophilic, hydrophobic and UHV wafer bonding

    International Nuclear Information System (INIS)

    Reznicek, A.; Scholz, R.; Senz, S.; Goesele, U.

    2003-01-01

    Wafers of Czochralski-grown silicon were bonded hydrophilically, hydrophobically and in ultrahigh vacuum (UHV) at room temperature. Wafers bonded hydrophilically adhere together by hydrogen bonds, those bonded hydrophobically by van der Waals forces and UHV-bonded ones by covalent bonds. Annealing the pre-bonded hydrophilic and hydrophobic wafer pairs in argon for 2 h at different temperatures increases the initially low bonding energy. UHV-bonded wafer pairs were also annealed to compare the results. Transmission electron microscopy (TEM) investigations show nano-voids at the interface. The void density depends on the initial bonding strength. During annealing the shape, coverage and density of the voids change significantly

  9. Superior H2 production by hydrophilic ultrafine Ta2O5 engineered covalently on graphene

    International Nuclear Information System (INIS)

    Mao, Lin; Zhu, Shenmin; Shi, Dian; Chen, Yixin; Yin, Chao; Li, Yao; Zhang, Di; Ma, Jun; Chen, Zhixin

    2014-01-01

    A H 2 O 2 -mediated hydrothermal method was developed for the fabrication of hydrophilic Ta 2 O 5 /graphene composite. The composite shows a superior H 2 productivity, up to 30 mmol g −1 h −1 when used as a photocatalyst for water splitting, corresponding to an apparent quantum efficiency of 33.8% at 254 nm. This superior performance is due to the hydrophilic nature of the composite and more importantly due to the ultrafine Ta 2 O 5 nanoparticles (about 4.0 ± 1.5 nm) which are covalently bonded with the conductive graphene. The hydrophilic property of the composite is attributed to the use of H 2 O 2 in the hydrothermal process. The ultrafine size of the Ta 2 O 5 particles which are covalently bonded with the graphene sheets is attributed to the use of sonication in the synthesis process. Furthermore, the hydrophilic Ta 2 O 5 /Gr composite is durable, which is beneficial to long term photocatalysis. The strategy reported here provides a new approach to designing photocatalysts with superior performance for H 2 production. (papers)

  10. Free surface entropic lattice Boltzmann simulations of film condensation on vertical hydrophilic plates

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Karlin, Iliya; Popok, Vladimir

    2015-01-01

    A model for vapor condensation on vertical hydrophilic surfaces is developed using the entropic lattice Boltzmann method extended with a free surface formulation of the evaporation–condensation problem. The model is validated with the steady liquid film formation on a flat vertical wall. It is sh......A model for vapor condensation on vertical hydrophilic surfaces is developed using the entropic lattice Boltzmann method extended with a free surface formulation of the evaporation–condensation problem. The model is validated with the steady liquid film formation on a flat vertical wall...

  11. Calcification of Hydrophilic Acrylic Intraocular Lenses With a Hydrophobic Surface: Laboratory Analysis of 6 Cases.

    Science.gov (United States)

    Gartaganis, Sotirios P; Prahs, Philipp; Lazari, Eftichia D; Gartaganis, Panos S; Helbig, Horst; Koutsoukos, Petros G

    2016-08-01

    To investigate the nature and characteristic features of deposits causing opacification of intraocular lenses (IOLs) based on the examination of clinical findings using scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX) analysis. Retrospective, observational case series. This is a multicenter study of 6 hydrophilic acrylic IOLs (Lentis LS-502-1; Oculentis GmbH, Berlin, Germany) with a hydrophobic surface that were explanted from 5 patients because of opacification. Three patients had an uncomplicated phacoemulsification. One patient underwent combined phacoemulsification and pars plana vitrectomy for retinal detachment and later silicone oil endotamponade owing to redetachment. The last patient had a pars plana vitrectomy and silicone oil instillation combined with phacoemulsification for tractive retinal detachment and diabetic retinopathy. The explanted lenses were submitted to our laboratory and were examined by SEM and EDX in order to identify the morphologic features and the composition of the deposits. SEM and EDX analyses confirmed the presence of calcific deposits in the interior of the opacified hydrophilic IOLs, with a pattern showing the formation of lumps on the surface. The lumps were due to subsurface formation of calcium phosphate crystalline deposits. The crystallite clusters seemed to diffuse from the IOL interior to the surface. We demonstrated the calcification pattern of the hydrophilic IOL (Lentis LS-502-1) with a hydrophobic surface. Although hydrophilic acrylic lenses have a hydrophobic surface, the development of calcification is a possible threat initiating from the hydrophilic subsurface of the IOLs. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Microencapsulation of a hydrophilic model molecule through vibration nozzle and emulsion phase inversion technologies.

    Science.gov (United States)

    Dorati, Rossella; Genta, Ida; Modena, Tiziana; Conti, Bice

    2013-01-01

    The goal of the present work was to evaluate and discuss vibration nozzle microencapsulation (VNM) technology combined to lyophilization, for the microencapsulation of a hydrophilic model molecule into a hydrophilic polymer. Fluorescein-loaded alginate microparticles prepared by VNM and emulsion phase inversion microencapsulation (EPIM) were lyophilized. Morphology, particle size distribution, lyophilized microspheres stability upon rehydration, drug loading and in vitro release were evaluated. Well-formed microspheres were obtained by the VNM technique, with higher yields of production (93.3-100%) and smaller particle size (d50138.10-158.00) than the EPIM microspheres. Rehydration upon lyophilization occurred in 30 min maintaining microsphere physical integrity. Fluorescein release was always faster from the microspheres obtained by VNM (364 h) than from those obtained by EPIM (504 h). The results suggest that VNM is a simple, easy to be scaled-up process suitable for the microencapsulation hydrophilic drugs.

  13. Simultaneous and long-lasting hydrophilization of inner and outer wall surfaces of polytetrafluoroethylene tubes by transferring atmospheric pressure plasmas

    International Nuclear Information System (INIS)

    Chen, Faze; Song, Jinlong; Huang, Shuai; Xu, Wenji; Sun, Jing; Liu, Xin; Xu, Sihao; Xia, Guangqing; Yang, Dezheng

    2016-01-01

    Plasma hydrophilization is a general method to increase the surface free energy of materials. However, only a few works about plasma modification focus on the hydrophilization of tube inner and outer walls. In this paper, we realize simultaneous and long-lasting plasma hydrophilization on the inner and outer walls of polytetrafluoroethylene (PTFE) tubes by atmospheric pressure plasmas (APPs). Specifically, an Ar atmospheric pressure plasma jet (APPJ) is used to modify the PTFE tube’s outer wall and meanwhile to induce transferred He APP inside the PTFE tube to modify its inner wall surface. The optical emission spectrum (OES) shows that the plasmas contain many chemically active species, which are known as enablers for various applications. Water contact angle (WCA) measurements, x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) are used to characterize the plasma hydrophilization. Results demonstrate that the wettability of the tube walls are well improved due to the replacement of the surface fluorine by oxygen and the change of surface roughness. The obtained hydrophilicity decreases slowly during more than 180 d aging, indicating a long-lasting hydrophilization. The results presented here clearly demonstrate the great potential of transferring APPs for surface modification of the tube’s inner and outer walls simultaneously. (paper)

  14. Analysis of moniliformin in maize plants using hydrophilic interaction chromatography

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Nielsen, Kristian Fog; Thrane, Ulf

    2007-01-01

    A novel HPLC method was developed for detection of the Fusarium mycotoxin, moniliformin in whole maize plants. The method is based on hydrophilic interaction chromatography (HILIC) on a ZIC zwitterion column combined with diode array detection and negative electrospray mass spectrometry (ESI...

  15. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Boks, N.P.; Norde, W.; Meil, H.C.; Busscher, H.J.

    2008-01-01

    Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F-prev) and to detach adhering bacteria (F-det) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the

  16. Hydrophilicity, Viscoelastic, and Physicochemical Properties Variations in Dental Bone Grafting Substitutes

    Directory of Open Access Journals (Sweden)

    Branko Trajkovski

    2018-01-01

    Full Text Available The indication-oriented Dental Bone Graft Substitutes (DBGS selection, the correct bone defects classification, and appropriate treatment planning are very crucial for obtaining successful clinical results. However, hydrophilic, viscoelastic, and physicochemical properties’ influence on the DBGS regenerative potential has poorly been studied. For that reason, we investigated the dimensional changes and molecular mobility by Dynamic Mechanical Analysis (DMA of xenograft (cerabone®, synthetic (maxresorb®, and allograft (maxgraft®, Puros® blocks in a wet and dry state. While no significant differences could be seen in dry state, cerabone® and maxresorb® blocks showed a slight height decrease in wet state, whereas both maxgraft® and Puros® had an almost identical height increase. In addition, cerabone® and maxresorb® blocks remained highly rigid and their damping behaviour was not influenced by the water. On the other hand, both maxgraft® and Puros® had a strong increase in their molecular mobility with different damping behaviour profiles during the wet state. A high-speed microscopical imaging system was used to analyze the hydrophilicity in several naturally derived (cerabone®, Bio-Oss®, NuOss®, SIC® nature graft and synthetic DBGS granules (maxresorb®, BoneCeramic®, NanoBone®, Ceros®. The highest level of hydrophilicity was detected in cerabone® and maxresorb®, while Bio-Oss® and BoneCeramic® had the lowest level of hydrophilicity among both naturally derived and synthetic DBGS groups. Deviations among the DBGS were also addressed via physicochemical differences recorded by Micro Computed Tomography, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray powder Diffractometry, and Thermogravimetric Analysis. Such DBGS variations could influence the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration. Therefore, this study initiates a new

  17. Hydrophilic cobalt sulfide nanosheets as a bifunctional catalyst for oxygen and hydrogen evolution in electrolysis of alkaline aqueous solution.

    Science.gov (United States)

    Zhu, Mingchao; Zhang, Zhongyi; Zhang, Hu; Zhang, Hui; Zhang, Xiaodong; Zhang, Lixue; Wang, Shicai

    2018-01-01

    Hydrophilic medium and precursors were used to synthesize a hydrophilic electro-catalyst for overall water splitting. The cobalt sulfide (Co 3 S 4 ) catalyst exhibits a layered nanosheet structure with a hydrophilic surface, which can facilitate the diffusion of aqueous substrates into the electrode pores and towards the active sites. The Co 3 S 4 catalyst shows excellent bifunctional catalytic activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline solution. The assembled water electrolyzer based on Co 3 S 4 exhibits better performance and stability than that of Pt/C-RuO 2 catalyst. Thereforce the hydrophilic Co 3 S 4 is a highly promising bifunctional catalyst for the overall water splitting reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Interactions between nano-TiO{sub 2} and the oral cavity: Impact of nanomaterial surface hydrophilicity/hydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Teubl, Birgit J.; Schimpel, Christa [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); Leitinger, Gerd [Institute of Cell Biology, Histology and Embryology, Research Unit Electron Microscopic Techniques, Medical University of Graz, 8010 (Austria); Center for Medical Research, Medical University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria); Bauer, Bettina [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); Fröhlich, Eleonore [Center for Medical Research, Medical University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria); Zimmer, Andreas [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria); Roblegg, Eva, E-mail: eva.roblegg@uni-graz.at [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria)

    2015-04-09

    Highlights: • Hydrophilic as well as hydrophobic TiO{sub 2} NPs agglomerated under oral physiological conditions. • Particles penetrated the upper and lower buccal epithelium, independent on the degree of hydrophilicity. • Most of the hydrophobic particles were found in vesicular structures, while hydrophilic particles were freely distributed in the cytoplasm. • Hydrophilic particles had a higher potential to trigger toxic effects (e.g., ROS) than hydrophobic particles. - Abstract: Titanium dioxide (TiO{sub 2}) nanoparticles are available in a variety of oral applications, such as food additives and cosmetic products. Thus, questions about their potential impact on the oro-gastrointestinal route rise. The oral cavity represents the first portal of entry and is known to rapidly interact with nanoparticles. Surface charge and size contribute actively to the particle–cell interactions, but the influence of surface hydrophilicity/hydrophobicity has never been shown before. This study addresses the biological impact of hydrophilic (NM 103, rutile, 20 nm) and hydrophobic (NM 104, rutile, 20 nm) TiO{sub 2} particles within the buccal mucosa. Particle characterization was addressed with dynamic light scattering and laser diffraction. Despite a high agglomeration tendency, 10% of the particles/agglomerates were present in the nanosized range and penetrated into the mucosa, independent of the surface properties. However, significant differences were observed in intracellular particle localization. NM 104 particles were found freely distributed in the cytoplasm, whereas their hydrophobic counterparts were engulfed in vesicular structures. Although cell viability/membrane integrity was not affected negatively, screening assays demonstrated that NM 104 particles showed a higher potential to decrease the physiological mitochondrial membrane potential than NM 103, resulting in a pronounced generation of reactive oxygen species.

  19. Materials comprising polydienes and hydrophilic polymers and related methods

    Science.gov (United States)

    Mays, Jimmy W [Knoxville, TN; Deng, Suxiang [Knoxville, TN; Mauritz, Kenneth A [Hattiesburg, MS; Hassan, Mohammad K [Hattiesburg, MS; Gido, Samuel P [Hadley, MA

    2011-11-22

    Materials prepared from polydienes, such as poly(cyclohexadiene), and hydrophilic polymers, such as poly(alkylene oxide), are described. Methods of making the materials and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization are also provided. The materials can be crosslinked and sulfonated, and can include copolymers and polymer blends.

  20. Hydrothermal preparation of hydrophobic and hydrophilic nanoparticles of iron oxide and a modification with CM-dextran

    Energy Technology Data Exchange (ETDEWEB)

    Repko, Anton, E-mail: repko@natur.cuni.cz; Niznansky, Daniel; Matulkova, Irena [Charles University in Prague, Department of Inorganic Chemistry, Faculty of Science (Czech Republic); Kalbac, Martin [J. Heyrovsky Institute of Physical Chemistry of the AS CR, v.v.i. (Czech Republic); Vejpravova, Jana [Institute of Physics AS CR, v.v.i., Department of Magnetic Nanosystems (Czech Republic)

    2013-07-15

    Hydrophobic and hydrophilic particles of iron oxide (magnetite/maghemite) with diameter of 6-10 nm were prepared by hydrothermal hydrolysis of iron oleate in water/pentanol/oleic acid system at 180 Degree-Sign C. The hydrophobic/hydrophilic nature of resulting particles was controlled by the presence of sodium oleate and by manipulating the ionic strength (with NaCl). The final particle size was controlled by additional organic solvent (octanol or toluene) and by seed growth. Hydrophilic particles (6 nm) were further modified by carboxymethyl-dextran in water to obtain stable and well-dispersed superparamagnetic nanoparticles suitable for biomedical application. The prepared particles were characterized by transmission electron microscopy, thermogravimetry, Fourier-transform infrared spectroscopy, magnetic measurements, Moessbauer spectroscopy, dynamic light scattering, and zeta-potential measurement.

  1. Myocardial capillary permeability for small hydrophilic indicators during normal physiological conditions and after ischemia and reperfusion

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup

    1991-01-01

    Myocardial capillary permeability for small hydrophilic solutes (51Cr-EDTA or 99mTc-DTPA) has been measured using intracoronary indicator bolus injection and external radioactivity registration (the single injection, residue detection method). The method is based on kinetic separation of the inje......Myocardial capillary permeability for small hydrophilic solutes (51Cr-EDTA or 99mTc-DTPA) has been measured using intracoronary indicator bolus injection and external radioactivity registration (the single injection, residue detection method). The method is based on kinetic separation...... including microvascular alterations. In open chest dogs transitory increases in capillary extraction fraction and PdS for small hydrophilic solutes were seen following 20 minutes of regional myocardial ischemia and reperfusion. This response could be inhibited by treatment directed against superoxide...

  2. Highly hydrophilic ultra-high molecular weight polyethylene powder and film prepared by radiation grafting of acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Honglong [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Lu; Li, Rong [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Pang, Lijuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Jiangtao; Wang, Mouhua [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Wu, Guozhong, E-mail: wuguozhong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-09-30

    Highlights: • Hydrophilic UHMWPE powder and film were obtained by γ-ray pre-irradiation grafting of AA. • A low concentration of AA solution was used for surface modification of UHMWPE. • A small grafting yield of AA sufficiently improved hydrophilicity of UHMWPE powder and film. - Abstract: The surface properties of ultra-high molecular weight polyethylene (UHMWPE) are very important for its use in engineering or composites. In this work, hydrophilic UHMWPE powder and film were prepared by γ-ray pre-irradiation grafting of acrylic acid (AA) and further neutralization with sodium hydroxide solution. Variations in the chemical structure, grafting yield and hydrophilicity were investigated and compared. FT-IR and XPS analysis results showed that AA was successfully grafted onto UHMWPE powder and film; the powder was more suitable for the grafting reaction in 1 wt% AA solution than the film. Given a dose of 300 kGy, the grafting yield of AA was ∼5.7% for the powder but ∼0.8% for the film under identical conditions. Radiation grafting of a small amount of AA significantly improved the hydrophilicity of UHMWPE. The water contact angle of the UHMWPE-g-PAA powder with a grafting yield of AA at ∼5.7% decreased from 110.2° to 68.2°. Moreover, the grafting powder (UHMWPE-g-PAA) exhibited good dispersion ability in water.

  3. Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces

    International Nuclear Information System (INIS)

    Bhushan, Bharat; Jung, Yong Chae

    2006-01-01

    Superhydrophobic surfaces as well as low adhesion and friction are desirable for various industrial applications. Certain plant leaves are known to be hydrophobic in nature due to their roughness and the presence of a thin wax film on the surface of the leaf. The purpose of this study is to fully characterize the leaf surfaces on the micro- and nanoscale while separating out the effects of the micro- and the nanobumps of hydrophobic leaves on the hydrophobicity. Hydrophilic leaves were also studied to better understand the role of wax and roughness. Furthermore, the adhesion and friction properties of hydrophobic and hydrophilic leaves were studied. Using an optical profiler and an atomic/friction force microscope (AFM/FFM), measurements were made to fully characterize the leaf surfaces. It is shown that the nanobumps play a more important role than the microbumps in the hydrophobic nature as well as friction of the leaf. This study will be useful in developing superhydrophobic surfaces

  4. Luminescence stability of porous Si terminated by hydrophilic organic molecules

    Science.gov (United States)

    Matsumoto, Kimihisa; Kamiguchi, Masao; Kamiya, Kazuhide; Nomura, Takashi; Suzuki, Shinya

    2016-02-01

    The effects of the surface termination of a porous Si surface by propionic acid and by undecylenic acid on their hydrophilicity and luminescence stability were studied. In the measurements of the contact angle of water droplets on porous Si films, the hydrophilicity of porous Si is improved by the surface termination each types of organic molecule. The PL intensity of as-prepared porous Si decreased with increasing aging time in ambient air. As PL quenching involves PL blue shift and increasing Si-O bonds density, nonradiative recombination centers are formed in the surface oxide. After the hydrosilylation process of propionic acid and undecylenic acid, PL intensity decreased and became 30% that of as-prepared porous Si film. However, the PL intensity was stable and exceeded that of the as-prepared film after 1000 min of aging in the ambient air. The PL stabilities are contributed to the termination by organic molecules that inhibits surface oxidation.

  5. [Semisynthetic cellulose derivatives as the base of hydrophilic gel systems].

    Science.gov (United States)

    Bajerová, M; Gajdziok, J; Dvorácková, K; Masteiková, R; Kollár, P

    2008-04-01

    The field of drug technology widely ulilizes gel systems of high-molecular substances, which have a number of advantages, such as low toxicity, availability, unique physical properties, biocompatibility, mucoadhesivity, and others. Gel systems are used in the field of local as well as general therapy, in both shape-specific and shape-non-specific dosage forms, in medicaments of the first, second, and third generations. An important group of gels employed in pharmacy are hydrophilic gels or hydrogels, most frequently composed of hydrophilic polymers of natural, semisynthetic and synthetic origin. Though cellulose derivatives as the representatives of polymers of semisynthetic origin are used in pharmaceutical technology for a long time, their research continues and their other possible uses are being searched for. Their advantages include especially safety, easy availability, and a relatively low price. The review paper describes selected cellulose derivatives, their properties and uses in pharmaceutical technology with regard to their use in the field of production of gel systems.

  6. A NOVEL HYDROPHILIC POLYMER MEMBRANE FOR THE DEHYDRATION OF ORGANIC SOLVENTS

    Science.gov (United States)

    Novel hydrophilic polymer membranes based on polyallylamine ydrochloride- polyvinylalcohol are developed. The high selectivity and flux characteristics of these membranes for the dehydration of organic solvents are evaluated using pervaporation technology and are found to be ver...

  7. Wetting properties of hybrid structure with hydrophilic ridges and hydrophobic channels

    Science.gov (United States)

    Lee, Dong-Ki; Choi, Su Young; Park, Min Soo; Cho, Young Hak

    2018-02-01

    In the present study, we fabricated a hybrid structure where the upper surface of the ridge is hydrophilic and the inner surface of the channel is hydrophobic. Laser-induced backside wet etching (LIBWE) process was performed to machine the hybrid structure on a Pyrex glass substrate. Wetting properties were evaluated from static contact angles (CAs) measurement in parallel and orthogonal directions. The water droplet on the hybrid structure was in the Cassie-Baxter state and showed anisotropic wetting property along groove lines. Moisture condensation studies under humid condition indicated that water droplets grew and coalesced on the ridge with hydrophilicity. Furthermore, water-oil separation was tested using a microfluidic chip with the developed hybrid structure. In case of hybrid microfluidic chip, the water could not flow into channel but the hexadecane could flow due to the capillary pressure difference.

  8. Highly Sensitive and Selective Gas Sensor Using Hydrophilic and Hydrophobic Graphenes

    Science.gov (United States)

    Some, Surajit; Xu, Yang; Kim, Youngmin; Yoon, Yeoheung; Qin, Hongyi; Kulkarni, Atul; Kim, Taesung; Lee, Hyoyoung

    2013-01-01

    New hydrophilic 2D graphene oxide (GO) nanosheets with various oxygen functional groups were employed to maintain high sensitivity in highly unfavorable environments (extremely high humidity, strong acidic or basic). Novel one-headed polymer optical fiber sensor arrays using hydrophilic GO and hydrophobic reduced graphene oxide (rGO) were carefully designed, leading to the selective sensing of volatile organic gases for the first time. The two physically different surfaces of GO and rGO could provide the sensing ability to distinguish between tetrahydrofuran (THF) and dichloromethane (MC), respectively, which is the most challenging issue in the area of gas sensors. The eco-friendly physical properties of GO allowed for faster sensing and higher sensitivity when compared to previous results for rGO even under extreme environments of over 90% humidity, making it the best choice for an environmentally friendly gas sensor. PMID:23736838

  9. [Powder modification technology used for the preparation of the hydrophilic decoction pieces of indigo naturalis and the modification principle].

    Science.gov (United States)

    Zhang, Ding-Kun; Lin, Jun-Zhi; Liu, Jian-Yun; Qin, Chun-Feng; Guo, Zhi-Ping; Han, Li; Yang, Ming

    2013-07-01

    The hydrophilicity of the normal decoction pieces (NDP) of Indigo Naturalis is not good, therefore, it is not suit for decoctions. In this paper, powder modification technology is used and some NDP and alcohol are ground together in the vibromill to prepare the hydrophilic decoction pieces (HDP) of Indigo Naturalis. Initially, the properties of NDP, ultrafine decoction pieces (UDP) and HDP are compared, the hydrophilicity of UDP was promoted slightly, that of HDP is promoted dramatically. Then, three batches of Indigo Naturalis are prepared to HDP separately, but there is no obvious difference in the contact angle. Furthermore, the size distribution, surface area and micro-shape of HDP are bigger than that of UDP and smaller than NDP. The contents of indigo and indirubin in three decoction pieces are the same, as well as the species of inorganic substance, although there is a little difference in the proportion of five inorganic substances. The fact suggests the change of physical state and the qualitative and quantitative change of organism and inorganic substances are not the main factors to influence the hydrophilicity. In addition, hydroxyl, methylene and methyl can be identified at the wavenumber of 3 356 cm(-1) and 1 461 cm(-1) in infrared spectrum; the content of alcohol in HDP is 0.67% measured by gas chromatogram. The stability of HDP in the heating condition is studied, the fact suggests the hydrophilic effect of HDP at 40 degrees C is relatively stable. All above research suggests that the alcohol is the main factor to influence the hydrophilicity and maybe the intermolecular force which fixed alcohol molecule on the surface of Indigo Naturalis is the basic principle to produce the hydrophilicity.

  10. Formation of brominated disinfection byproducts from natural organic matter isolates and model compounds in a sulfate radical-based oxidation process

    KAUST Repository

    Wang, Yuru; Le Roux, Julien; Zhang, Tao; Croue, Jean-Philippe

    2014-01-01

    A sulfate radical-based advanced oxidation process (SR-AOP) has received increasing application interest for the removal of water/wastewater contaminants. However, limited knowledge is available on its side effects. This study investigated the side effects in terms of the production of total organic bromine (TOBr) and brominated disinfection byproducts (Br-DBPs) in the presence of bromide ion and organic matter in water. Sulfate radical was generated by heterogeneous catalytic activation of peroxymonosulfate. Isolated natural organic matter (NOM) fractions as well as low molecular weight (LMW) compounds were used as model organic matter. Considerable amounts of TOBr were produced by SR-AOP, where bromoform (TBM) and dibromoacetic acid (DBAA) were identified as dominant Br-DBPs. In general, SR-AOP favored the formation of DBAA, which is quite distinct from bromination with HOBr/OBr- (more TBM production). SR-AOP experimental results indicate that bromine incorporation is distributed among both hydrophobic and hydrophilic NOM fractions. Studies on model precursors reveal that LMW acids are reactive TBM precursors (citric acid > succinic acid > pyruvic acid > maleic acid). High DBAA formation from citric acid, aspartic acid, and asparagine was observed; meanwhile aspartic acid and asparagine were the major precursors of dibromoacetonitrile and dibromoacetamide, respectively.

  11. Formation of brominated disinfection byproducts from natural organic matter isolates and model compounds in a sulfate radical-based oxidation process

    KAUST Repository

    Wang, Yuru

    2014-12-16

    A sulfate radical-based advanced oxidation process (SR-AOP) has received increasing application interest for the removal of water/wastewater contaminants. However, limited knowledge is available on its side effects. This study investigated the side effects in terms of the production of total organic bromine (TOBr) and brominated disinfection byproducts (Br-DBPs) in the presence of bromide ion and organic matter in water. Sulfate radical was generated by heterogeneous catalytic activation of peroxymonosulfate. Isolated natural organic matter (NOM) fractions as well as low molecular weight (LMW) compounds were used as model organic matter. Considerable amounts of TOBr were produced by SR-AOP, where bromoform (TBM) and dibromoacetic acid (DBAA) were identified as dominant Br-DBPs. In general, SR-AOP favored the formation of DBAA, which is quite distinct from bromination with HOBr/OBr- (more TBM production). SR-AOP experimental results indicate that bromine incorporation is distributed among both hydrophobic and hydrophilic NOM fractions. Studies on model precursors reveal that LMW acids are reactive TBM precursors (citric acid > succinic acid > pyruvic acid > maleic acid). High DBAA formation from citric acid, aspartic acid, and asparagine was observed; meanwhile aspartic acid and asparagine were the major precursors of dibromoacetonitrile and dibromoacetamide, respectively.

  12. Quantitation of Metformin in Human Plasma and Urine by Hydrophilic Interaction Liquid Chromatography and Application to a Pharmacokinetic Study

    DEFF Research Database (Denmark)

    Nielsen, Flemming; Hougaard Christensen, Mette Marie; Brøsen, Kim

    2014-01-01

    : We describe an analytical method for the quantification of the widely used antihyperglycemic agent, metformin, in human plasma and urine. The separation was performed using isocratic hydrophilic interaction liquid chromatography on a Luna hydrophilic interaction liquid chromatography column (125...

  13. Impact of cathepsin B-sensitive triggers and hydrophilic linkers on in vitro efficacy of novel site-specific antibody-drug conjugates.

    Science.gov (United States)

    Bryden, Francesca; Martin, Camille; Letast, Stéphanie; Lles, Eva; Viéitez-Villemin, Inmaculada; Rousseau, Anaïs; Colas, Cyril; Brachet-Botineau, Marie; Allard-Vannier, Emilie; Larbouret, Christel; Viaud-Massuard, Marie-Claude; Joubert, Nicolas

    2018-03-14

    Herein we describe the synthesis and evaluation of four novel HER2-targeting, cathepsin B-sensitive antibody-drug conjugates bearing a monomethylauristatin E (MMAE) cytotoxic payload, constructed via the conjugation of cleavable linkers to trastuzumab using a site-specific bioconjugation methodology. These linkers vary by both cleavable trigger motif and hydrophilicity, containing one of two cathepsin B sensitive dipeptides (Val-Cit and Val-Ala), and engendered with either hydrophilic or hydrophobic character via application of a PEG 12 spacer. Through evaluation of physical properties, in vitro cytotoxicity, and receptor affinity of the resulting antibody-drug conjugates (ADCs), we have demonstrated that while both dipeptide triggers are effective, the increased hydrophobicity of the Val-Ala pair limits its utility within this type of linker. In addition, while PEGylation augments linker hydrophilicity, this change does not translate to more favourable ADC hydrophilicity or potency. While all described structures demonstrated excellent and similar in vitro cytotoxicity, the ADC with the ValCitPABMMAE linker shows the most promising combination of in vitro potency, structural homogeneity, and hydrophilicity, warranting further evaluation into its therapeutic potential.

  14. CHEMISORPtION OF SULFUR (IV OXIDeBY PoLYETHYLENEPOLYAMINE IMPREGNATED FIBROUS MATERIALS. 1. HYDROPHILIC POLYETHYLENEPOLYAMINE IMPREGNATED FIBROUS MATERIALS

    Directory of Open Access Journals (Sweden)

    A. A. Ennan

    2015-03-01

    Full Text Available The hydrophilicity of artificial and synthetic fibers and polyethylenepolyamine (PEPA impregnated fibrous materials based on them was investigated under static conditions using a vacuum sorption installation. Water vapor sorption isotherms were analyzed and monolayer capacitance values  and a water molecules adsorption in the first layer heats were determined in the framework of polymolecular adsorption Brunauer – Emmett – Teller. It has been found that the hydrophilicity of the fibers studied to change in the following sequence: viscose > VION AN-3 > VION KN-1 > nylon-polyester > nitrone > polyester > polypropylene; PEPA modified hydrophilic fibrous material does not depend essentially on the chemical nature of the carrier.

  15. Microphase Separation in Oil-Water Mixtures Containing Hydrophilic and Hydrophobic Ions

    NARCIS (Netherlands)

    Tasios, Nikos; Samin, Sela; van Roij, Rene; Dijkstra, Marjolein

    2017-01-01

    We develop a lattice-based Monte Carlo simulation method for charged mixtures capable of treating dielectric heterogeneities. Using this method, we study oil-water mixtures containing an antagonistic salt, with hydrophilic cations and hydrophobic anions. Our simulations reveal several phases with a

  16. Underivatized amylose and cellulose as new stationary phases for hydrophilic interaction chromatography

    Czech Academy of Sciences Publication Activity Database

    Lehnert, P.; Douša, M.; Lemr, Karel

    2013-01-01

    Roč. 36, č. 20 (2013), s. 3345-3350 ISSN 1615-9306 Institutional support: RVO:61388971 Keywords : Amylose * Cellulose * Hydrophilic interaction chromatography Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.594, year: 2013

  17. Comparison of the microbiological milieu of patients randomized to either hydrophilic or conventional PVC catheters for clean intermittent catheterization.

    Science.gov (United States)

    Lucas, Elizabeth J; Baxter, Cheryl; Singh, Chandra; Mohamed, Ahmad Z; Li, Birong; Zhang, Jingwen; Jayanthi, Venkata R; Koff, Stephen A; VanderBrink, Brian; Justice, Sheryl S

    2016-06-01

    Control of bacteriuria is problematic in patients who perform clean intermittent catheterization for management of neurogenic bladder. This population is often burdened with multiple urinary tract infections (UTIs), placing them at increased risk of end-stage renal disease. Hydrophilic catheters are a potential way to improve smooth and clean insertion, reduce disruption of the urothelium, and reduce bacterial colonization. The goal of the study was to compare the type and virulence of microorganisms recovered from the urine of patients that use either a hydrophilic or conventional polyvinyl chloride (PVC) catheter. Fifty patients with an underlying diagnosis of myelomeningocele were recruited for a 12-month prospective, randomized, investigator-blinded study. Twenty-five patients were allocated to the hydrophilic catheter intervention, and 25 continued use of a PVC catheter. Cultures were performed on urine obtained by catheterization at enrollment, and 3, 6, and 12 months. Bacterial species were assigned a designation as either potentially pathogenic or non-pathogenic. Escherichia coli isolates were the most predominant and were serotyped to further stratify the pathogenicity of the strains. Lastly, patients were surveyed at enrollment, and at the two later time points evaluating their current catheter for satisfaction. A total of 232 different bacterial isolates were obtained from the 182 collected urine cultures. In addition, seven species were recovered from the two UTI reported during the study period. Bacterial growth was not detected in 29 of the samples (16%). Although not statistically significant, collectively there was a 40% decrease in the average number of potentially pathogenic species recovered from those patients using hydrophilic catheters (0.81 per urine sample) compared with PVC catheter use (1.24 per urine sample). Since E. coli species can be either pathogenic or non-pathogenic, we examined 14 of the most commonly implicated serotypes

  18. How to decrease the hydrophilicity of wood flour to process efficient composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Pouzet, M.; Gautier, D.; Charlet, K. [Institut Pascal, UMR 6602 UBP/CNRS/IFMA, BP 265, Aubière 63175 (France); Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, Clermont-Ferrand 63000 (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, Aubière 63177 (France); Dubois, M., E-mail: Marc.DUBOIS@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, Clermont-Ferrand 63000 (France); CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, Aubière 63177 (France); Béakou, A. [Institut Pascal, UMR 6602 UBP/CNRS/IFMA, BP 265, Aubière 63175 (France)

    2015-10-30

    Graphical abstract: Evolution of the contact angle of a water drop on sample (θ{sub c}) according to the fluorinated material. - Highlights: • Fluorination was applied to wood flour. • Covalent attachment of fluorine atoms onto wood surface decreases its hydrophilicity. • Fluorinated wood flour was added into composites with polyester. • Fluorination enhances the interface between wood flour and polymer matrix. - Abstract: Dynamic fluorination and static fluorination were applied to wood flour to decrease its hydrophilic character, aiming at processing wood-polymer composites with good properties. Fourier-Transform infrared spectra and {sup 19}F solid state NMR (Nuclear Magnetic Resonance) results proved the successful covalent bonding of fluorine atoms onto the wood's chemical structure. It revealed that static fluorination brings about a less damaged and less hydrophilic fluorinated wood than with dynamic fluorination. Composites manufactured from this fluorinated wood presented a hydrophobic character directly related to the hydrophicity of these wood reinforcements. A composite made with fluorinated wood and polyester exhibited a higher hydrophobicity than the neat polyester and than the composite made with non-treated wood. Moreover, the further fluorination of a composite made of fluorinated wood led to a contact angle comparable to that of some metals (steel, gold) due to the etching of the composite surface during fluorination.

  19. Hydrophobic and hydrophilic nanosheet catalysts with high catalytic activity and recycling stability through control of the outermost ligand

    Science.gov (United States)

    Ko, Younji; Kim, Donghee; Kwon, Cheong Hoon; Cho, Jinhan

    2018-04-01

    In this study, we introduce hydrophobic and hydrophilic graphene oxide nanosheet (GON) catalysts prepared by consecutive ligand replacement of hydrophobically stabilized magnetic and catalytic nanoparticles (NPs); it exhibits high catalytic activity, fast magnetic response, and good dispersion in both nonpolar and aqueous media, allowing high loading amount of magnetic and catalytic NPs onto GON sheets. More specifically, these GON catalysts showed a high product yield of 66-99% and notable recyclability (93% of the initial product yield after 10 reaction cycles) in a Suzuki-Miyaura reaction in nonpolar media, outperforming the performance of the conventional hydrophilic GON catalysts. Additional coating of a hydrophilic layer onto GON catalysts also showed the notable performance (product yield ∼99%) in catalytic reactions performed in aqueous media. Given that ligand-controlled catalytic NPs adsorbed onto 2D nanosheets can be used as hydrophobic and hydrophilic stabilizers as well as catalysts, our approach can provide a tool for developing and designing 2D-nanosheet catalysts with high performance in nonpolar and polar media.

  20. Hydrophilic Cucurbit[7]uril-Pseudorotaxane-Anchored-Monolayer-Protected Gold Nanorods

    Science.gov (United States)

    2013-03-20

    FULL PAPER DOI:10.1002/ejic.201300010 Hydrophilic Cucurbit[7]uril-Pseudorotaxane-Anchored- Monolayer-Protected Gold Nanorods Xiang Ma,[a] Yuhua Xue... Cao , Q. Wang, H. Tian, Chem. Commun. 2011, 47, 3559–3561. [8] a) I. Hwang, K. Baek, M. Jung, Y. Kim, K. M. Park, D. W. Lee, N. Selvapalam, K. Kim, J. Am

  1. Enhancing the biofuel upgrade performance for Pd nanoparticles via increasing the support hydrophilicity of metal-organic frameworks.

    Science.gov (United States)

    Sun, Qi; Chen, Meng; Aguila, Briana; Nguyen, Nicholas; Ma, Shengqian

    2017-09-08

    In this work, the influence of the hydrophilic/hydrophobic nature of metal-organic framework (MOF) materials on the catalytic performance of supported Pd nanoparticles for biofuel upgrade was studied. We show that the introduction of hydrophilic groups on a MOF can greatly enhance the performance of the resultant catalyst. Specifically, Pd nanoparticles supported on MIL-101-SO 3 Na with superhydrophilicity (Pd/MIL-101-SO 3 Na) far outperforms pristine MIL-101 and the benchmark catalyst Pd/C in the hydrodeoxygenation reaction of vanillin, a model component of pyrolysis oil derived from the lignin fraction. This is attributed to a favorable mode of adsorption of the highly water soluble reactants on the more hydrophilic support in the vicinity of the catalytically active Pd nanoparticles, thereby promoting their transformation.

  2. Increased Efficiency of Solar Cells Protected by Hydrophobic and Hydrophilic Anti-Reflecting Nanostructured Glasses.

    Science.gov (United States)

    Baquedano, Estela; Torné, Lorena; Caño, Pablo; Postigo, Pablo A

    2017-12-14

    We investigated the fabrication of large-area (cm²) nanostructured glasses for solar cell modules with hydrophobic and hydrophilic properties using soft lithography and colloidal lithography. Both of these techniques entail low-cost and ease of nanofabrication. We explored the use of simple 1D and 2D nanopatterns (nanowires and nanocones) and the effect of introducing disorder in the nanostructures. We observed an increase in the transmitted light for ordered nanostructures with a maximum value of 99% for wavelengths >600 nm when ordered nanocones are fabricated on the two sides of the solar glass. They produced an increment in the efficiency of the packaged solar cell with respect to the glass without nanostructures. On the one hand, the wettability properties showed that the ordering of the nanostructures improved the hydrophobicity of the solar glasses and increased their self-cleaning capacity. On the other hand, the disordered nanostructures improved the hydrophilic properties of solar glasses, increasing their anti-fogging capacity. The results show that by selecting the appropriate nanopattern, the wettability properties (hydrophobic or hydrophilic) can be easily improved without decreasing the efficiency of the solar cell underneath.

  3. Sulcus depth reproduction with polyvinyl siloxane impression material: effects of hydrophilicity and impression temperature.

    Science.gov (United States)

    Takahashi, Hidekazu; Finger, Werner J; Kurokawa, Rie; Furukawa, Masae; Komatsu, Masashi

    2010-03-01

    To determine the sulcus penetration ability of hydrophilic and hydrophobic polyvinyl siloxane (PVS) impression materials by impression technique, temperature, and sulcus width. Hydrophilic Flexitime (FLE; Heraeus Kulzer) and its hydrophobic counterpart (EXP) without surfactant were investigated, using light (L), monophase (M), and heavy (H) consistencies. A truncated steel cone surrounded by a 2-mm-deep and 50-, 100-, or 200-microm-wide sulcus, simulating the gingival tissue with agar, served as the test model. Impressions were made with single-mix (L or M) and double-mix (LM or LH) techniques at 23 degrees C and 37 degrees C, respectively. The reproduced sulcus heights were measured with a 3D laser scanner. Data were analyzed by ANOVA and Tukey HSD (P 1.9 mm); FLE-M, -LM, and-LH reproductions were shorter with narrow sulci. Reproductions of 50- and 100-microm sulci with EXP-L were shallower than with FLE-L. The shortest reproduction was, however, greater than 1.6 mm. In spite of some significant differences found in sulcus-reproducing ability with hydrophilic and hydrophobic impression materials applied at different impression-making temperatures and with different techniques, the practical relevance is limited.

  4. Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Tiago Hilário; Soares, Daniel Crístian Ferreira; Moreira, Luciana Mara Costa; Ornelas da Silva, Paulo Roberto [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil); Gouvêa dos Santos, Raquel [Laboratório de Radiobiologia, Centro de Desenvolvimento da Tecnologia Nuclear CNEN/CDTN, Av. Presidente Antônio Carlos 6.627, Campus da UFMG, Pampulha, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Barros de Sousa, Edésia Martins, E-mail: sousaem@cdtn.br [Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Avenida Presidente Antônio Carlos, 6.627, Campus da UFMG, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2013-12-01

    In the present study, Boron Nitride Nanotubes (BNNTs) were synthesized and functionalized with organic hydrophilic agents constituted by glucosamine (GA), polyethylene glycol (PEG){sub 1000}, and chitosan (CH) forming new singular systems. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy, while their surface charge was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by Transmission Electron Microscopy. The functionalization was evaluated by Thermogravimetry analysis and Fourier Transformer Infrared Spectroscopy. The results showed that BNNTs were successfully obtained and functionalized, reaching a mean size and dispersity deemed adequate for in vitro studies. The in vitro stability tests also revealed a good adhesion of functionalized agents on BNNT surfaces. Finally, the in vitro cytocompatibility of functionalized BNNTs against MCR-5 cells was evaluated, and the results revealed that none of the different functionalization agents disturbed the propagation of normal cells up to the concentration of 50 μg/mL. Furthermore, in this concentration, no significantly chromosomal or morphologic alterations or increase in ROS (Reactive Oxygen Species) could be observed. Thus, findings from the present study reveal an important stability and cytocompatibility of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. - Highlights: • BNNTs were synthesized and functionalized with organic hydrophilic agents. • Hydrophilic molecules do not alter the biocompatibility profile of BNNTs. • No significantly chromosomal or morphologic alterations in ROS could be observed.

  5. Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies

    International Nuclear Information System (INIS)

    Ferreira, Tiago Hilário; Soares, Daniel Crístian Ferreira; Moreira, Luciana Mara Costa; Ornelas da Silva, Paulo Roberto; Gouvêa dos Santos, Raquel; Barros de Sousa, Edésia Martins

    2013-01-01

    In the present study, Boron Nitride Nanotubes (BNNTs) were synthesized and functionalized with organic hydrophilic agents constituted by glucosamine (GA), polyethylene glycol (PEG) 1000 , and chitosan (CH) forming new singular systems. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy, while their surface charge was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by Transmission Electron Microscopy. The functionalization was evaluated by Thermogravimetry analysis and Fourier Transformer Infrared Spectroscopy. The results showed that BNNTs were successfully obtained and functionalized, reaching a mean size and dispersity deemed adequate for in vitro studies. The in vitro stability tests also revealed a good adhesion of functionalized agents on BNNT surfaces. Finally, the in vitro cytocompatibility of functionalized BNNTs against MCR-5 cells was evaluated, and the results revealed that none of the different functionalization agents disturbed the propagation of normal cells up to the concentration of 50 μg/mL. Furthermore, in this concentration, no significantly chromosomal or morphologic alterations or increase in ROS (Reactive Oxygen Species) could be observed. Thus, findings from the present study reveal an important stability and cytocompatibility of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures. - Highlights: • BNNTs were synthesized and functionalized with organic hydrophilic agents. • Hydrophilic molecules do not alter the biocompatibility profile of BNNTs. • No significantly chromosomal or morphologic alterations in ROS could be observed

  6. Fabrication of zero contact angle ultra-super hydrophilic surfaces.

    Science.gov (United States)

    Jothi Prakash, C G; Clement Raj, C; Prasanth, R

    2017-06-15

    Zero contact angle surfaces have been created with the combined effect of nanostructure and UV illumination. The contact angle of titanium surface has been optimized to 3.25°±1°. with nanotubular structures through electrochemical surface modification. The porosity and surface energy of tubular TiO 2 layer play critical role over the surface wettability and the hydrophilicity of the surface. The surface free energy has been enhanced from 23.72mJ/m 2 (bare titanium surface) to 87.11mJ/m 2 (nanotubular surface). Similar surface with TiO 2 nanoparticles coating shows superhydrophilicity with contact angle up to 5.63°±0.95°. This implies liquid imbibition and surface curvature play a crucial role in surface hydrophilicity. The contact angle has been further reduced to 0°±0.86° by illuminating the surface with UV radiation. Results shows that by tuning the nanotube morphology, highly porous surfaces can be fabricated to reduce contact angle and enhance wettability. This study provides an insight into the inter-relationship between surface structural factors and ultra-superhydrophilic surfaces which can help to optimize thermal hydraulic and self cleaning surfaces. Copyright © 2017. Published by Elsevier Inc.

  7. EUS-guided biliary rendezvous using a short hydrophilic guidewire.

    Science.gov (United States)

    Dhir, Vinay; Kwek, Boon Eu Andrew; Bhandari, Suryaprakash; Bapat, Mukta; Maydeo, Amit

    2011-10-01

    BACKGROUND AND STUDY AIMS: EUS-guided rendezvous technique for biliary access requires expert manipulation of the guidewire across the downstream stricture or papilla. Published literature reports usage of the long-wire system to prevent loss of wire during scope exchange. We studied the efficacy of using a short hydrophilic guidewire in EUS-guided rendezvous. PATIENTS AND METHODS: This is a retrospective study conducted in a tertiary care referral centre. 15 patients underwent EUS-guided biliary rendezvous with short wire. EUS-guided transduodenal/transgastric puncture of the biliary system was performed, followed by anterograde placement of a hydrophilic short-wire (260 cm) across the downstream stricture and/or papilla. Retrograde access was then achieved by retrieving the trans-papillary wire, followed by standard ERCP intervention. Main outcome measurements were rates of procedural success and complications. RESULTS: EUS-guided biliary rendezvous was successful in 14 patients (93.3%). Failure was seen in one patient due to a tight malignant biliary stricture. One patient had peri-choledochal bile tracking which did not require any specific treatment. CONCLUSIONS: Short-wire system in EUS-guided biliary rendezvous is highly effective and safe. It is a useful salvage procedure for biliary cannulation in patients with accessible papilla.

  8. Peramivir analogues bearing hydrophilic side chains exhibit higher activities against H275Y mutant than wild-type influenza virus.

    Science.gov (United States)

    Chiu, Din-Chi; Lin, Tzu-Chen; Huang, Wen-I; Cheng, Ting-Jen; Tsai, Keng-Chang; Fang, Jim-Min

    2017-11-29

    Peramivir is an effective anti-influenza drug in the clinical treatment of influenza, but its efficacy toward the H275Y mutant is reduced. The previously reported cocrystal structures of inhibitors in the mutant neuraminidase (NA) suggest that the hydrophobic side chain should be at the origin of reduced binding affinity. In contrast, zanamivir having a hydrophilic glycerol side chain still possesses high affinity toward the H275Y NA. We thus designed five peramivir analogues (5-9) carrying hydrophilic glycol or glycerol side chains, and evaluated their roles in anti-influenza activity, especially for the H275Y mutant. The synthetic sequence involves a key step of (3 + 2) cycloaddition reactions between alkenes and nitrile oxides to construct the scaffold of peramivir carrying the desired hydrophilic side chains and other appropriate functional groups. The molecular docking experiments reveal that the hydrophilic side chain can provide extra hydrogen bonding with the translocated Glu-276 residue in the H275Y NA active site. Thus, the H275Y mutant may be even more sensitive than wild-type virus toward the peramivir analogues bearing hydrophilic side chains. Notably, the peramivir analogue bearing a glycerol side chain inhibits the H275Y mutant with an IC 50 value of 35 nM, which is better than the WSN virus by 9 fold.

  9. Thiomers for oral delivery of hydrophilic macromolecular drugs.

    Science.gov (United States)

    Bernkop-Schnürch, Andreas; Hoffer, Martin H; Kafedjiiski, Krum

    2004-11-01

    In recent years thiolated polymers (thiomers) have appeared as a promising new tool in oral drug delivery. Thiomers are obtained by the immobilisation of thio-bearing ligands to mucoadhesive polymeric excipients. By the formation of disulfide bonds with mucus glycoproteins, the mucoadhesive properties of thiomers are up to 130-fold improved compared with the corresponding unmodified polymers. Owing to the formation of inter- and intramolecular disulfide bonds within the thiomer itself, matrix tablets and particulate delivery systems show strong cohesive properties, resulting in comparatively higher stability, prolonged disintegration times and a more controlled drug release. The permeation of hydrophilic macromolecular drugs through the gastrointestinal (GI) mucosa can be improved by the use of thiomers. Furthermore, some thiomers exhibit improved inhibitory properties towards GI peptidases. The efficacy of thiomers in oral drug delivery has been demonstrated by various in vivo studies. A pharmacological efficacy of 1%, for example, was achieved in rats by oral administration of calcitonin tablets comprising a thiomer. Furthermore, tablets comprising a thiomer and pegylated insulin resulted in a pharmacological efficacy of 7% after oral application to diabetic mice. Low-molecular-weight heparin embedded in thiolated polycarbophil led to an absolute bioavailability of > or = 20% after oral administration to rats. In these studies, formulations comprising the corresponding unmodified polymer had only a marginal or no effect. These results indicate drug carrier systems based on thiomers appear to be a promising tool for oral delivery of hydrophilic macromolecular drugs.

  10. Synthesis and antiproliferative properties of new hydrophilic esters of triterpenic acids

    Czech Academy of Sciences Publication Activity Database

    Eignerová, Barbara; Tichý, Michal; Krasulová, Jana; Kvasnica, Miroslav; Rárová, L.; Christová, R.; Urban, M.; Bednarczyk-Cwynar, B.; Hajdúch, M.; Šarek, J.

    2017-01-01

    Roč. 140, Nov 10 (2017), s. 403-420 ISSN 0223-5234 R&D Projects: GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 ; RVO:61389030 Keywords : cytotoxicity * triterpenic acids * betulinic acid * hydrophilic ester * prodrug Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 4.519, year: 2016

  11. Photoluminescence of hydrophilic silicon nanocrystals in aqueous solutions

    International Nuclear Information System (INIS)

    Prtljaga, Nikola; D'Amato, Elvira; Pitanti, Alessandro; Guider, Romain; Froner, Elena; Larcheri, Silvia; Scarpa, Marina; Pavesi, Lorenzo

    2011-01-01

    Stable aqueous solutions of undecylenic-acid-grafted silicon nanocrystals (Si-nc) were prepared. The time evolution of the photoluminescence properties of these hydrophilic silicon nanocrystals has been followed on different timescales (hours and days). On a short timescale (hours), Si-nc tend to agglomerate while the PL lineshape and intensity are stable. Agglomeration can be reduced by using suitable surfactants. On a long timescale (days), oxidation of Si-nc occurs even in the presence of surfactants. These two observations render Si-nc very useful as a labeling agent for biosensing.

  12. Photoluminescence of hydrophilic silicon nanocrystals in aqueous solutions

    Science.gov (United States)

    Prtljaga, Nikola; D'Amato, Elvira; Pitanti, Alessandro; Guider, Romain; Froner, Elena; Larcheri, Silvia; Scarpa, Marina; Pavesi, Lorenzo

    2011-05-01

    Stable aqueous solutions of undecylenic-acid-grafted silicon nanocrystals (Si-nc) were prepared. The time evolution of the photoluminescence properties of these hydrophilic silicon nanocrystals has been followed on different timescales (hours and days). On a short timescale (hours), Si-nc tend to agglomerate while the PL lineshape and intensity are stable. Agglomeration can be reduced by using suitable surfactants. On a long timescale (days), oxidation of Si-nc occurs even in the presence of surfactants. These two observations render Si-nc very useful as a labeling agent for biosensing.

  13. Photoluminescence of hydrophilic silicon nanocrystals in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Prtljaga, Nikola; D' Amato, Elvira; Pitanti, Alessandro; Guider, Romain; Froner, Elena; Larcheri, Silvia; Scarpa, Marina; Pavesi, Lorenzo, E-mail: nikolap@science.unitn.it [Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento (Italy)

    2011-05-27

    Stable aqueous solutions of undecylenic-acid-grafted silicon nanocrystals (Si-nc) were prepared. The time evolution of the photoluminescence properties of these hydrophilic silicon nanocrystals has been followed on different timescales (hours and days). On a short timescale (hours), Si-nc tend to agglomerate while the PL lineshape and intensity are stable. Agglomeration can be reduced by using suitable surfactants. On a long timescale (days), oxidation of Si-nc occurs even in the presence of surfactants. These two observations render Si-nc very useful as a labeling agent for biosensing.

  14. Inhibition of pulmonary surfactant adsorption by serum and the mechanisms of reversal by hydrophilic polymers: theory

    DEFF Research Database (Denmark)

    Zasadzinski, Joseph A; Alig, T F; Alonso, Coralie

    2005-01-01

    . The depletion force increases with polymer concentration as well as with polymer molecular weight. Increasing the surfactant concentration has a much smaller effect than adding polymer, as is observed. Natural hydrophilic polymers, like the SP-A present in native surfactant, or hyaluronan, normally present...... with the observations reported in the companion article (pages 1769-1779). Adding nonadsorbing, hydrophilic polymers to the subphase provides a depletion attraction between the surfactant aggregates and the interface, which can overcome the steric and electrostatic resistance to adsorption induced by serum...

  15. Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method

    International Nuclear Information System (INIS)

    Liu, Zhixiao; Mi, Zhiming; Chen, Chunhai; Zhou, Hongwei; Zhao, Xiaogang; Wang, Daming

    2017-01-01

    Graphical abstract: The mechanisms fouling and cleaning process of PSF-COOH membranes (A) the content of carboxyl less than 80%. (B) the content of carboxyl at 80%, 100%. - Highlights: • Phenolphthalin (PPL) containing carboxyl was successfully introduced into the molecule backbone of polysulfone (PSF). • A series of PSF-COOH copolymers with different carboxylation degree was synthesized and prepared as ultrafiltration membranes. • The introduction of PPL significantly improved the hydrophilicity, permeation flux and antifouling property of membranes. • This method is valuable for large-scale industrial production of hydrophilic membrane material. - Abstract: In this task, carboxylated polysulfone (PSF-COOH) was achieved by introducing the monomer of phenolphthalin (PPL) containing carboxyl to the molecule backbone of polysulfone (PSF). And a series of PSF-COOH copolymers with different carboxylation degree was synthesized by adjusting the molar (%) of bisphenol A (BPA) and PPL in direct copolymerization method and was prepared as PSF-COOH ultrafiltration membranes via phase separation method. The effect of PPL molar (%) in copolymers on the morphology, hydrophilicity, permeation flux, antifouling and mechanical properties of membranes was investigated by scanning electron microscope (SEM), atomic force microscope (AFM), water contact angle, ultrafiltration experiments and universal testing machine, respectively. The results showed that with the increased carboxyl content in membranes, the hydrophilicity, permeation fluxes and antifouling properties of membranes gradually increased. When the molar (%) of PPL to BPA was 100:0, the membrane exhibited the highest pure water flux (329.6 L/m"2 h) and the maximum flux recovery rate (92.5%). When the content of carboxyl in the membrane was 80% or more, after three cycles of BSA solution (1 g/L) filtration, the flux recovery rate was basically constant or showed a slightly increase. Thus, it can achieve the goal of

  16. Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhixiao; Mi, Zhiming; Chen, Chunhai; Zhou, Hongwei; Zhao, Xiaogang; Wang, Daming, E-mail: wangdaming@jlu.edu.cn

    2017-04-15

    Graphical abstract: The mechanisms fouling and cleaning process of PSF-COOH membranes (A) the content of carboxyl less than 80%. (B) the content of carboxyl at 80%, 100%. - Highlights: • Phenolphthalin (PPL) containing carboxyl was successfully introduced into the molecule backbone of polysulfone (PSF). • A series of PSF-COOH copolymers with different carboxylation degree was synthesized and prepared as ultrafiltration membranes. • The introduction of PPL significantly improved the hydrophilicity, permeation flux and antifouling property of membranes. • This method is valuable for large-scale industrial production of hydrophilic membrane material. - Abstract: In this task, carboxylated polysulfone (PSF-COOH) was achieved by introducing the monomer of phenolphthalin (PPL) containing carboxyl to the molecule backbone of polysulfone (PSF). And a series of PSF-COOH copolymers with different carboxylation degree was synthesized by adjusting the molar (%) of bisphenol A (BPA) and PPL in direct copolymerization method and was prepared as PSF-COOH ultrafiltration membranes via phase separation method. The effect of PPL molar (%) in copolymers on the morphology, hydrophilicity, permeation flux, antifouling and mechanical properties of membranes was investigated by scanning electron microscope (SEM), atomic force microscope (AFM), water contact angle, ultrafiltration experiments and universal testing machine, respectively. The results showed that with the increased carboxyl content in membranes, the hydrophilicity, permeation fluxes and antifouling properties of membranes gradually increased. When the molar (%) of PPL to BPA was 100:0, the membrane exhibited the highest pure water flux (329.6 L/m{sup 2} h) and the maximum flux recovery rate (92.5%). When the content of carboxyl in the membrane was 80% or more, after three cycles of BSA solution (1 g/L) filtration, the flux recovery rate was basically constant or showed a slightly increase. Thus, it can achieve the

  17. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.

    Science.gov (United States)

    Mondal, Bikash; Mac Giolla Eain, Marc; Xu, QianFeng; Egan, Vanessa M; Punch, Jeff; Lyons, Alan M

    2015-10-28

    Condensation of water vapor is an essential process in power generation, water collection, and thermal management. Dropwise condensation, where condensed droplets are removed from the surface before coalescing into a film, has been shown to increase the heat transfer efficiency and water collection ability of many surfaces. Numerous efforts have been made to create surfaces which can promote dropwise condensation, including superhydrophobic surfaces on which water droplets are highly mobile. However, the challenge with using such surfaces in condensing environments is that hydrophobic coatings can degrade and/or water droplets on superhydrophobic surfaces transition from the mobile Cassie to the wetted Wenzel state over time and condensation shifts to a less-effective filmwise mechanism. To meet the need for a heat-transfer surface that can maintain stable dropwise condensation, we designed and fabricated a hybrid superhydrophobic-hydrophilic surface. An array of hydrophilic needles, thermally connected to a heat sink, was forced through a robust superhydrophobic polymer film. Condensation occurs preferentially on the needle surface due to differences in wettability and temperature. As the droplet grows, the liquid drop on the needle remains in the Cassie state and does not wet the underlying superhydrophobic surface. The water collection rate on this surface was studied using different surface tilt angles, needle array pitch values, and needle heights. Water condensation rates on the hybrid surface were shown to be 4 times greater than for a planar copper surface and twice as large for silanized silicon or superhydrophobic surfaces without hydrophilic features. A convection-conduction heat transfer model was developed; predicted water condensation rates were in good agreement with experimental observations. This type of hybrid superhydrophobic-hydrophilic surface with a larger array of needles is low-cost, robust, and scalable and so could be used for heat

  18. Hydrophilicity, pore structure and mechanical performance of CNT/PVDF materials affected by carboxyl contents in multi-walled carbon nanotubes

    Science.gov (United States)

    Zhang, Yanxia; Jiang, Ce; Tian, Run; Li, Guangfen

    2018-01-01

    Poly (vinylidene fluoride) (PVDF) membranes have been prepared by loading different type of MWCNTs-COOH as the dispersed phase via phase inversion method. The chemically functionalized MWCNTs with increasing carboxyl content were chosen for achieving a better dispersion in PVDF and altering the membrane hydrophilicity. The effect of the carboxyl content in MWCNTs on crystal structure, thermal behavior, membrane morphology, hydrophilicity, and water flux of blended membranes were investigated. Due to the addition of carbon nanotubes, various performances of the hybrid membrane had obvious changes. The most prominent was that thermal stability could be enhanced and the pore morphology was more preferable, also that the hydrophilicity were improved, further that water flux could be increased to some extent.

  19. Research on Hydrophilic Nature of Polyvinylpyrrolidone on Polysulfone Membrane Filtration

    Science.gov (United States)

    Tiron, L. G.; Vlad, M.; Baltă, Ş.

    2018-06-01

    The membranes used in wastewater filtration are obtained from polymers, this technique is widely applied because of the small installations and low costs as against conventional systems. The polymeric membranes have high mechanical strength and flexibility, but is a challenge to improve in the same time the permeability and retention capacity of the membranes. A process that can improve the membrane properties is the addition of additives to the polymer solution, resulting in noticeable changes in the resulting membrane structure. Polyvinylpyrrolidone (PVP) is a highly hydrophilic polymer, used as a food additive that acts as stabilizer and thickening agent, which brings improvements in membrane properties. This study analyses the effect of polyvinylpyrrolidone (PVP) on the casting solution of the prepared membranes. The polymer solution was prepared from polysulfone (PSf) and N-methyl-2-pyrrolidone (NMP) at different concentrations. The membranes were obtained by phase inversion method. The PSf/PVP/NMP membranes with different concentrations were characterized by contact angle measurements, surface roughness, morphological structure and permeation tests. The results show that the hydrophilic nature of PVP improve the pure water flux, the contact angle and exhibit a higher anti-fouling property.

  20. A Robust Oil-in-Oil Emulsion for the Nonaqueous Encapsulation of Hydrophilic Payloads.

    Science.gov (United States)

    Lu, Xiaocun; Katz, Joshua S; Schmitt, Adam K; Moore, Jeffrey S

    2018-03-14

    Compartmentalized structures widely exist in cellular systems (organelles) and perform essential functions in smart composite materials (microcapsules, vasculatures, and micelles) to provide localized functionality and enhance materials' compatibility. An entirely water-free compartmentalization system is of significant value to the materials community as nonaqueous conditions are critical to packaging microcapsules with water-free hydrophilic payloads while avoiding energy-intensive drying steps. Few nonaqueous encapsulation techniques are known, especially when considering just the scalable processes that operate in batch mode. Herein, we report a robust oil-in-oil Pickering emulsion system that is compatible with nonaqueous interfacial reactions as required for encapsulation of hydrophilic payloads. A major conceptual advance of this work is the notion of the partitioning inhibitor-a chemical agent that greatly reduces the payload's distribution between the emulsion's two phases, thus providing appropriate conditions for emulsion-templated interfacial polymerization. As a specific example, an immiscible hydrocarbon-amine pair of liquids is emulsified by the incorporation of guanidinium chloride (GuHCl) as a partitioning inhibitor into the dispersed phase. Polyisobutylene (PIB) is added into the continuous phase as a viscosity modifier for suitable modification of interfacial polymerization kinetics. The combination of GuHCl and PIB is necessary to yield a robust emulsion with stable morphology for 3 weeks. Shell wall formation was accomplished by interfacial polymerization of isocyanates delivered through the continuous phase and polyamines from the droplet core. Diethylenetriamine (DETA)-loaded microcapsules were isolated in good yield, exhibiting high thermal and chemical stabilities with extended shelf-lives even when dispersed into a reactive epoxy resin. The polyamine phase is compatible with a variety of basic and hydrophilic actives, suggesting that this

  1. Development of high performance nano-porous polyethersulfone ultrafiltration membranes with hydrophilic surface and superior antifouling properties

    International Nuclear Information System (INIS)

    Rahimpour, Ahmad; Madaeni, Sayed Siavash; Jahanshahi, Mohsen; Mansourpanah, Yaghoub; Mortazavian, Narmin

    2009-01-01

    Hydrophilic nano-porous polyethersulfone ultrafiltration membranes were developed for milk concentration. The membranes were prepared from new dope solution containing polyethersulfone (PES)/polyvinylpirrolidone (PVP)/polyethyleneglycole (PEG)/cellulose acetate phthalate (CAP)/acrylic acid/Triton X-100 using phase inversion induced by immersion precipitation technique. This casting solution leads to formation of new hydrophilic membranes. The morphological studies were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, the hydrophilicity and performance of membranes were examined by contact angel measurements and cross-flow filtration (pure water flux, milk water permeation, protein rejection and antifouling measurements). The contact angle measurements indicate that a surface with superior hydrophilicity was obtained for PES membranes. Two concentrations of PES (16 and 14.4 wt.%) and two different non-solvents (pure water and mixtures of water and IPA) were used for preparation of membranes. The morphological studies showed that the higher concentration of PES and the presence of IPA in the gelation media results in formation of a membrane with a dense top and sub-layer with small pores on the surface. The pure water flux of membranes was decreased when higher polymer concentration and mixtures of water and IPA were employed for membrane formation. On the other hand, the milk water permeation and protein rejection were increased using mixtures of water and IPA as non-solvent. Furthermore, the fouling analysis of the membranes demonstrated that the membrane surface with fewer tendencies for fouling was obtained.

  2. Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings.

    Science.gov (United States)

    Jin, Sung Giu; Yousaf, Abid Mehmood; Kim, Kyeong Soo; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jin Ki; Yong, Chul Soon; Youn, Yu Seok; Kim, Jong Oh; Choi, Han-Gon

    2016-03-30

    The purpose of this study was to investigate the influence of different hydrophilic polymers on the swelling, bioadhesion and mechanical strength of hydrocolloid wound dressings (HCDs) in order to provide an appropriate composition for a hydrocolloid wound dressing system. In this study, the HCDs were prepared with styrene-isoprene-styrene copolymer (SIS) and polyisobutylene (PIB) as the base using a hot melting method. Additionally, numerous SIS/PIB-based HCDs were prepared with six hydrophilic polymers, and their wound dressing properties were assessed. Finally, the wound healing efficacy of the selected formulations was compared to a commercial wound dressing. The swelling ratio, bioadhesive force and mechanical strengths of HCDs were increased in the order of sodium alginate>sodium CMC=poloxamer=HPMC>PVA=PVP, sodium alginate>sodium CMC=poloxamer>PVA>HPMC=PVP and sodium alginate≥PVA>PVP=HPMC=sodium CMC>poloxamer, respectively. Among the hydrophilic polymers tested, sodium alginate most enhanced the swelling capacity, bioadhesive force and mechanical strengths. Thus, the hydrophilic polymers played great role in the swelling, bioadhesion and mechanical strength of SIS/PIB-based HCDs. The HCD formulation composed of PIB, SIS, liquid paraffin and sodium alginate at the weight ratio of 20/25/12/43 gave better wound dressing properties and more excellent wound healing efficacy than the commercial wound dressing. Therefore, the novel HCD formulation could be a promising hydrocolloid system for wound dressings. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Patterned Hydrophilization of Nanoporous 1,2‐PB by Thiol‐ene Photochemistry

    DEFF Research Database (Denmark)

    Berthold, Anton; Sagar, Kaushal Shashikant; Ndoni, Sokol

    2011-01-01

    is monitored by FT‐IR, UV–Vis, contact angle, and gravimetry. Overall quantum yields are calculated for the two thiol‐ene “click” reactions in nano‐confinement, neatly revealing their chain‐like nature. Top–down photolithographic patterning is demonstrated, realizing hydrophilic nanoporous “corridors...

  4. Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution

    Science.gov (United States)

    Nikooe, Naeme; Saljoughi, Ehsan

    2017-08-01

    In the present research, for the first time PVDF/Brij-58 blend nanofiltration membranes with remarkable performance in filtration of dye aqueous solution were prepared via immersion precipitation. A noticeable improvement in water permeation and fouling resistance of the PVDF membranes was achieved by using Brij-58 surfactant as a hydrophilic additive. Scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR) and water contact angle were applied for the investigation of membrane morphology, detection of the surface chemical composition and relative hydrophilicity/hydrophobicity, respectively. The membrane performance was studied and compared by determination of pure water flux (PWF) and filtration of synthetic reactive dye aqueous solutions as well as bovine serum albumin (BSA) as foulant model. It was found out that addition of 4 wt.% Brij-58 to the casting solution results in formation of membrane with remarkable hydrophilicity and fouling resistance (contact angle of 46° and flux recovery ratio (FRR) = 90%), higher porosity and consequently noticeable PWF (31.2 L/m2 h) and recognized dye rejection value (90%) in comparison with the pristine PVDF nanofiltration membrane. Addition of Brij-58 surfactant to the casting solution resulted in formation of NF membrane with higher hydrophilicity and permeability as well as higher dye rejection value in comparison with the addition of PEG 400 additive.

  5. Switchable Super-Hydrophilic/Hydrophobic Indium Tin Oxide (ITO) Film Surfaces on Reactive Ion Etching (RIE) Textured Si Wafer.

    Science.gov (United States)

    Kim, Hwa-Min; Litao, Yao; Kim, Bonghwan

    2015-11-01

    We have developed a surface texturing process for pyramidal surface features along with an indium tin oxide (ITO) coating process to fabricate super-hydrophilic conductive surfaces. The contact angle of a water droplet was less than 5 degrees, which means that an extremely high wettability is achievable on super-hydrophilic surfaces. We have also fabricated a super-hydrophobic conductive surface using an additional coating of polytetrafluoroethylene (PTFE) on the ITO layer coated on the textured Si surface; the ITO and PTFE films were deposited by using a conventional sputtering method. We found that a super-hydrophilic conductive surface is produced by ITO coated on the pyramidal Si surface (ITO/Si), with contact angles of approximately 0 degrees and a resistivity of 3 x 10(-4) Ω x cm. These values are highly dependent on the substrate temperature during the sputtering process. We also found that the super-hydrophobic conductive surface produced by the additional coating of PTFE on the pyramidal Si surface with an ITO layer (PTFE/ITO/Si) has a contact angle of almost 160 degrees and a resistivity of 3 x 10(-4) Ω x cm, with a reflectance lower than 9%. Therefore, these processes can be used to fabricate multifunctional features of ITO films for switchable super-hydrophilic and super-hydrophobic surfaces.

  6. Super-hydrophilicity of hydroxy modified poly(m-phenylenediamine) aerogel for separation of oil/water and biocompatibility

    Science.gov (United States)

    Wang, Gang; Liu, Zhiduo; Zhang, Nan; Li, Jiurong; Xu, Anli; Xiang, Pengcheng; Hu, Xurui; Guo, Qinglei; Chen, Da

    2018-04-01

    We demonstrate the ultra-light weight and super-hydrophilic hydroxyl modified poly (m-phenylenediamine) (Hy-PmPD) aerogel by utilizing simple oxygen plasma treatment. The average pore size and specific surface area are obtained as 5.21 nm and 671 m2 g‑1, respectively. Due to the large amount of oxygen-containing groups (e.g., C–OH and N–OH), the contact angle of Hy-PmPD for water is about 7.2°, which indicates the super-hydrophilic ability of Hy-PmPD. The large surface area and super-hydrophilic nature of ultra- light weight Hy-PmPD aerogel conclusively certify that high absorption capacities and ultrafast absorption rate for water. As a result, the Hy-PmPD aerogel enables to separate crude oil and water. Additionally, the Hy-PmPD aerogel indicates good biocompatibility that can be implanted as the bio-platform for monitoring the cell culture behavior. This work may provide a facile and effective strategy for the applications in the absorption or removal of organics, particularly in environmental protection, pollution control, as well as noninvasive to the microflora.

  7. Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination

    Science.gov (United States)

    Guo, Zhenzhen; Ming, Xin; Wang, Gang; Hou, Baofei; Liu, Xinghang; Mei, Tao; Li, Jinhua; Wang, Jianying; Wang, Xianbao

    2018-02-01

    Solar steam technology is one of the simplest, most direct and effective ways to harness solar energy through water evaporation. Here, we report the development using super-hydrophilic copper sulfide (CuS) films with double-layer structures as light absorbers for solar steam generation. In the double-layer structure system, a porous mixed cellulose ester (MCE) membrane is used as a supporting layer, which enables water to get into the CuS light absorbers through a capillary action to provide continuous water during solar steam generation. The super-hydrophilic property of the double-layer system (CuS/MCE) leads to a thinner water film close to the air-water interface where the surface temperature is sufficiently high, leading to more efficient evaporation (˜80 ± 2.5%) under one sun illumination. Furthermore, the evaporation efficiencies still keep a steady value after 15 cycles of testing. The super-hydrophilic CuS film is promising for practical application in water purification and evaporation as a light absorption material.

  8. Leucocyte depletion attenuates the early increase in myocardial capillary permeability to small hydrophilic solutes following ischaemia and reperfusion

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Hansen, P R; Ali, S

    1993-01-01

    The aim was to assess the significance of polymorphonuclear leucocytes on the myocardial capillary permeability to a small hydrophilic indicator, on the vascular tone of the resistance vessels, and on contractile function following ischaemia and reperfusion.......The aim was to assess the significance of polymorphonuclear leucocytes on the myocardial capillary permeability to a small hydrophilic indicator, on the vascular tone of the resistance vessels, and on contractile function following ischaemia and reperfusion....

  9. Development of ultra-hydrophilic and non-cytotoxic dental vinyl polysiloxane impression materials using a non-thermal atmospheric-pressure plasma jet

    Science.gov (United States)

    Kwon, Jae-Sung; Kim, Yong Hee; Choi, Eun Ha; Kim, Kyoung-Nam

    2013-05-01

    Dental vinyl polysiloxane (VPS) impression materials are widely used for the replication of intraoral tissue where hydrophilicity is important as the oral tissues are surrounded by wet saliva. Recent attempts to improve the wettability of VPS using a ‘surfactant’, however, have resulted in a high level of cytotoxicity. Hence, in this study, application of a non-thermal atmospheric-pressure plasma jet (NTAPPJ) on VPS and its effects in terms of both hydrophilicity and cytotoxicity were investigated. The results showed that the application of the plasma jet resulted in significant improvement of hydrophilicity of VPS that had no surfactant, whereby the results were similar to commercially available products with the surfactant. The surface chemical analysis results indicated that this was due to the oxidation and decreased amount of hydrocarbon on the surface following NTAPPJ exposure. Meanwhile, an NTAPPJ-treated sample was shown to be non-cytotoxic. Therefore, the use of dental VPS impression materials without any surfactant, in conjunction with an NTAPPJ treatment, is a promising method for ultra-hydrophilic but yet non-cytotoxic materials.

  10. Development of ultra-hydrophilic and non-cytotoxic dental vinyl polysiloxane impression materials using a non-thermal atmospheric-pressure plasma jet

    International Nuclear Information System (INIS)

    Kwon, Jae-Sung; Kim, Kyoung-Nam; Kim, Yong Hee; Choi, Eun Ha

    2013-01-01

    Dental vinyl polysiloxane (VPS) impression materials are widely used for the replication of intraoral tissue where hydrophilicity is important as the oral tissues are surrounded by wet saliva. Recent attempts to improve the wettability of VPS using a ‘surfactant’, however, have resulted in a high level of cytotoxicity. Hence, in this study, application of a non-thermal atmospheric-pressure plasma jet (NTAPPJ) on VPS and its effects in terms of both hydrophilicity and cytotoxicity were investigated. The results showed that the application of the plasma jet resulted in significant improvement of hydrophilicity of VPS that had no surfactant, whereby the results were similar to commercially available products with the surfactant. The surface chemical analysis results indicated that this was due to the oxidation and decreased amount of hydrocarbon on the surface following NTAPPJ exposure. Meanwhile, an NTAPPJ-treated sample was shown to be non-cytotoxic. Therefore, the use of dental VPS impression materials without any surfactant, in conjunction with an NTAPPJ treatment, is a promising method for ultra-hydrophilic but yet non-cytotoxic materials. (paper)

  11. Hydrophilic and mesoporous SiO{sub 2}-TiO{sub 2}-SO{sub 3}H system for fuel cell membrane applications

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Lan-Young [Department of Fine Chemical Engineering and Chemistry, Chungnam National University, 220 Kung-dong, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Oh, Song-Yul [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Matsuda, Atsunori, E-mail: matsuda@ee.tut.ac.j [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Lee, Chang-Soo [Department of Chemical Engineering, Chungnam National University, 220 Kung-dong, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Kim, Dong-Pyo, E-mail: dpkim@cnu.ac.k [Department of Fine Chemical Engineering and Chemistry, Chungnam National University, 220 Kung-dong, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Graduate School of Analytical Science and Technology, Chungnam National University, 220 Kung-dong, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2011-03-30

    Graphical abstract: The composite films containing SiO{sub 2}-TiO{sub 2}-SO{sub 3}H resin additives, with strong water retention capabilities, showed superior proton conductivity, even at 120 {sup o}C and 25% RH, as well as a slightly improved current density at 30% RH and 70 {sup o}C, when compared to costly Nafion film. Display Omitted Research highlights: The hydrophilic and mesoporous SiO{sub 2}-TiO{sub 2}-SO{sub 3}H resins have a potential to be used as alternative membrane source materials in PEFCs. The sulfonation for hydrophilicity is conducted via simple chelating chemistry between catecholic groups and surface Ti ions. The proton conductivity of SiO{sub 2}-TiO{sub 2}-SO{sub 3}H composite films is superior to the commercial Nafion film. - Abstract: Hydrophilic and mesoporous sulfonated SiO{sub 2}-TiO{sub 2}-SO{sub 3}H systems as new additives for fuel cell electrolyte membranes are directly synthesized by the binary sol-gel reaction of TEOS-TiCl{sub 4} and consecutive sulfonation with a hydrophilic generator, dihydroxy-m-benzenedisulfonic acid disodium salt. The sulfonation approach makes use of the simple chelating chemistry between the catecholic groups (dihydroxy benzene) and surface Ti ions of the inorganic ordered mesoporous SBA-15 structure. The system is successfully employed in fuel cell membrane applications with a composite Nafion membrane mixed with a mesoporous hydrophilic resin additive, and reveals an obvious enhancement of the proton conductivity at low humidity and elevated temperatures. This improvement was attributed to the excellent water retention capability of the hydrophilic mesoporous resin.

  12. A control on hydrophobic and hydrophilic interactions between HEWL and metal Schiff-base complexes comprising of different metal ions and ligands

    Energy Technology Data Exchange (ETDEWEB)

    Koley Seth, Banabithi; Ray, Aurkie; Basu, Samita, E-mail: samita.basu@saha.ac.in

    2015-05-15

    The structural effects of different copper(II) and nickel(II) Schiff base complexes on hen egg white lysozyme (HEWL) have been investigated through steady state and time resolved absorption and fluorescence, and circular dichroism spectroscopy. The Schiff base ligands with N{sub 4} donor atoms show both hydrophobic and hydrophilic interactions, however hydrophilic interaction prevails with ligands having N{sub 2}O{sub 2} donor atoms. Variation of metal ions from Cu{sup 2+} to Ni{sup 2+} with each type of Schiff base ligand increases the probability of hydrophilic over hydrophobic interactions, which supports their significance in regulating the binding affinity between HEWL and metal complexes. On photo-excitation the complexes comprising of Cu{sup 2+} ion instead of Ni{sup 2+} ion and ligands with N{sub 4} donor system rather than N{sub 2}O{sub 2} donor system, increases the probability of intersystem crossing to populate the corresponding triplet state as observed from laser flash photolysis study. The better binding affinity of nickel complexes with different selectivities compared to copper complexes towards HEWL emphasizes the potentiality of less explored nickel complexes in drug–protein interactions. - Highlights: • Ni{sup II} and Cu{sup II} -Schiff base complexes bind hen egg white lysozyme spontaneously. • Both hydrophobic and hydrophilic interactions are effective for N{sub 4} ligands. • For N{sub 2}O{sub 2} ligands the hydrophilic is predominant over hydrophobic interaction. • Binding affinity and selectivity of Ni{sup II}-complexes are better than Cu{sup II}-complexes. • Replacement of Cu{sup 2+} by Ni{sup 2+} in a ligand enhances chance of hydrophilic interaction.

  13. Comparison of hydrophobic and hydrophilic intraocular lens in preventing posterior capsule opacification after cataract surgery

    Science.gov (United States)

    Zhao, Yang; Yang, Ke; Li, Jiaxin; Huang, Yang; Zhu, Siquan

    2017-01-01

    Abstract Background: Posterior capsular opacification (PCO) is a common long-term complication of cataract surgery. Intraocular lens design and material have been implicated in influencing the development of PCO. This study evaluated the association of hydrophobic and hydrophilic intraocular lenses on preventing PCO. Methods: Medline, Cochrane, EMBASE, and Google Scholar databases were searched until August 3, 2016, using the following search terms: cataract, posterior capsule opacification, and intraocular lens. Eligible studies included randomized controlled trials (RCTs), retrospective, and cohort studies. Results: Eleven studies were included in the study with a total of 889 eyes/patients. The overall analysis revealed that hydrophobic intraocular lenses were associated with lower Nd:YAG laser capsulotomy rates than hydrophilic lenses [odds ratio (OR) = 0.38, 95% confidence interval (95% CI) = 0.16–0.91, P = .029]. Hydrophobic intraocular lenses were also associated with lower subjective PCO score (diff. in means: −1.32, 95% CI = −2.39 to −0.25, P = .015) and estimated PCO score (diff. in means: −2.23; 95% CI, −3.80 to −0.68, P = .005) as compared with hydrophilic lenses. Objective PCO score was similar between lens types. (diff. in means: −0.075; 95% CI, −0.18 to 0.035; P = .182). Pooled analysis found that visual acuity was similar between hydrophobic and hydrophilic intraocular lenses (diff. in means: −0.016; 95% CI, −0.041 to 0.009, P = .208). Conclusion: In general, PCO scores and the rate of Nd:YAG laser capsulotomy were influenced by intraocular lens biomaterial. Lens made of hydrophobic biomaterial were overall superior in lowering the PCO score and the Nd:YAG laser capsulotomy rate, but not visual acuity. PMID:29095259

  14. Extraction efficiency of hydrophilic and lipophilic antioxidants from lyophilized foods using pressurized liquid extraction and manual extraction.

    Science.gov (United States)

    Watanabe, Jun; Oki, Tomoyuki; Takebayashi, Jun; Takano-Ishikawa, Yuko

    2014-09-01

    The efficient extraction of antioxidants from food samples is necessary in order to accurately measure their antioxidant capacities. α-Tocopherol and gallic acid were spiked into samples of 5 lyophilized and pulverized vegetables and fruits (onion, cabbage, Satsuma mandarin orange, pumpkin, and spinach). The lipophilic and hydrophilic antioxidants in the samples were sequentially extracted with a mixed solvent of n-hexane and dichloromethane, and then with acetic acid-acidified aqueous methanol. Duplicate samples were extracted: one set was extracted using an automated pressurized liquid extraction apparatus, and the other set was extracted manually. Spiked α-tocopherol and gallic acid were recovered almost quantitatively in the extracted lipophilic and hydrophilic fractions, respectively, especially when pressurized liquid extraction was used. The expected increase in lipophilic oxygen radical absorbance capacity (L-ORAC) due to spiking with α-tocopherol, and the expected increase in 2,2-diphenyl-1-picrylhydrazyl radical scavenging activities and total polyphenol content due to spiking with gallic acid, were all recovered in high yield. Relatively low recoveries, as reflected in the hydrophilic ORAC (H-ORAC) value, were obtained following spiking with gallic acid, suggesting an interaction between gallic acid and endogenous antioxidants. The H-ORAC values of gallic acid-spiked samples were almost the same as those of postadded (spiked) samples. These results clearly indicate that lipophilic and hydrophilic antioxidants are effectively extracted from lyophilized food, especially when pressurized liquid extraction is used. © 2014 Institute of Food Technologists®

  15. EXTRACTION OF MONOAZO DYES BY HYDROPHILIC EXTRACTANTS FROM AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Y. I. Korenman

    2012-01-01

    Full Text Available The extraction of mono azo dyes E102, E122, E110, E124, E129 from aqueous solutions with hydrophilic solvents (alcohols, esters, ketones and polymers (poly-N-vinylamides, polyethylene glycol was studied. The main regularities of extraction are established. The distribution coefficients and degree of extraction of dyes was estimate. The influence of the nature of solvents and polymers on the extraction of dyes from aqueous solutions are established.

  16. One-step routes from di- and triblock copolymer precursors to hydrophilic nanoporous poly(acrylic acid)-b-polystyrene

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Schulte, Lars

    2008-01-01

    Nanoporous polystyrene with hydrophilic pores was prepared from di- and triblock copolymer precursors. The precursor material was either a poly(tert-butyl acryl ate)-b-polystyrene (PtBA-b-PS) diblock copolymer synthesized by atom transfer radical polymerization (ATRP) or a polydimethylsiloxane......-b-poly(tertbutyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer synthesized by a combination of living anionic polymerization and ATRP. In the latter copolymer, PS was the matrix and mechanically stable component, PtBA was converted by acidic deprotection to hydrophilic poly(acrylic acid) (PAA) providing...

  17. Estimation hydrophilic-lipophilic balance number of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Pawignya, Harsa, E-mail: harsa-paw@yahoo.co.id [Chemical Engineering Department Diponegoro University (Indonesia); Chemical Engineering Departement University of Pembangunan Nasional Yogyakarta (Indonesia); Prasetyaningrum, Aji, E-mail: ajiprasetyaningrum@gmail.com; Kusworo, Tutuk D.; Pramudono, Bambang, E-mail: Pramudono2004@yahoo.com [Chemical Engineering Department Diponegoro University (Indonesia); Dyartanti, Endah R. [Chemical Engineering Department Diponegoro University (Indonesia); Chemical Enginering Departement Sebelas Maret University (Indonesia)

    2016-02-08

    Any type of surfactant has a hydrophilic-lipophilic balance number (HLB number) of different. There are several methods for determining the HLB number, with ohysical properties of surfactant (solubility cloud point and interfacial tension), CMC methods and by thermodynamics properties (Free energy Gibbs). This paper proposes to determined HLB numbers from interfelation methods. The result of study indicated that the CMC method described by Hair and Moulik espesially for nonionic surfactant. The application of exess Gibbs free energy and by implication activity coefficient provides the ability to predict the behavior of surfactants in multi component mixtures of different concentration. Determination of HLB number by solubility and cloud point parameter is spesific for anionic and nonionic surfactant but this methods not available for cationic surfactants.

  18. Comparison of the Fouling Release Properties of Hydrophobic Fluorinated and Hydrophilic PEGylated Block Copolymer Surfaces

    International Nuclear Information System (INIS)

    Krishnan, S.; Wang, N.; Ober, C.; Finlay, J.; Callow, M.; Callow, J.; Hexemer, A.; Sohn, K.; Kramer, E.; Fischer, D.

    2006-01-01

    To understand the role of surface wettability in adhesion of cells, the attachment of two different marine algae was studied on hydrophobic and hydrophilic polymer surfaces. Adhesion of cells of the diatom Navicula and sporelings (young plants) of the green macroalga Ulva to an underwater surface is mainly by interactions between the surface and the adhesive exopolymers, which the cells secrete upon settlement and during subsequent colonization and growth. Two types of block copolymers, one with poly(ethylene glycol) side-chains and the other with liquid crystalline, fluorinated side-chains, were used to prepare the hydrophilic and hydrophobic surfaces, respectively. The formation of a liquid crystalline smectic phase in the latter inhibited molecular reorganization at the surface, which is generally an issue when a highly hydrophobic surface is in contact with water. The adhesion strength was assessed by the fraction of settled cells (Navicula) or biomass (Ulva) that detached from the surface in a water flow channel with a wall shear stress of 53 Pa. The two species exhibited opposite adhesion behavior on the same sets of surfaces. While Navicula cells released more easily from hydrophilic surfaces, Ulva sporelings showed higher removal from hydrophobic surfaces. This highlights the importance of differences in cell-surface interactions in determining the strength of adhesion of cells to substrates

  19. Love Wave Sensor for Prostate-Specific Membrane Antigen Detection Based on Hydrophilic Molecularly-Imprinted Polymer

    Directory of Open Access Journals (Sweden)

    Pingping Tang

    2018-05-01

    Full Text Available Prostate-specific membrane antigen (PSMA is a biomarker for prostate cancer (PCa, and a specific and reliable detection technique of PSMA is urgently required for PCa early diagnosis. A Love wave sensor has been widely studied for real-time sensing and highly sensitive applications, but the sensing unit needs special handling for selective detection purpose. In this study, we prepared a versatile Love wave sensor functionalized with molecularly-imprinted polymers (MIP, PSMA as the template molecule. To enhance the specific template bindings of MIP in pure aqueous solutions, facile reversible addition/fragmentation chain transfer (RAFT precipitation polymerization (RAFTPP was used to produce surface hydrophilic polymer brushes on MIP. The presence of hydrophilic polymer brushes on MIP improved its surface hydrophilicity and significantly reduced their hydrophobic interactions with template molecules in pure aqueous media. In detection process, the acoustic delay-line is confederative to a microfluidic chip and inserted in an oscillation loop. The real-time resonance frequency of the MIP-based Love wave sensor to different concentrations of PSMA was investigated. The limit of detection (LOD for this Love SAW sensor was 0.013 ng mL−1, which demonstrates that this sensor has outstanding performance in terms of the level of detection.

  20. Standard practice for fluorescent liquid penetrant testing using the hydrophilic Post-Emulsification process

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for fluorescent penetrant examination utilizing the hydrophilic post-emulsification process. It is a nondestructive testing method for detecting discontinuities that are open to the surface such as cracks, seams, laps, cold shuts, laminations, isolated porosity, through leaks, or lack of fusion and is applicable to in-process, final, and maintenance examination. It can be effectively used in the examination of nonporous, metallic materials, both ferrous and nonferrous, and of nonmetallic materials such as glazed or fully densified ceramics and certain nonporous plastics and glass. 1.2 This practice also provides a reference: 1.2.1 By which a fluorescent penetrant examination hydrophilic post-emulsification process recommended or required by individual organizations can be reviewed to ascertain their applicability and completeness. 1.2.2 For use in the preparation of process specifications dealing with the fluorescent penetrant examination of materials and parts using the hy...

  1. Poly(ethylene glycol)-grafted cyclic acetals based polymer networks with non-water-swellable, biodegradable and surface hydrophilic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ruixue, E-mail: qdruinyan@hotmail.com [Complex and Intelligent Research Center, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai (China); Zhang, Nan; Wu, Wentao [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Wang, Kemin, E-mail: kemin-wang@hotmail.com [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China)

    2016-05-01

    Cyclic acetals based biomaterial without acidic products during hydrolytic degradation is a promising candidate for tissue engineering applications; however, low hydrophilicity is still one limitation for its biomedical application. In this work, we aim to achieve non-water-swellable cyclic acetal networks with improved hydrophilicity and surface wettability by copolymerization of cyclic acetal units based monomer, 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1, 3-dioxane-2-ethanol diacrylate (EHD) and methoxy poly(ethylene glycol) monoacrylate (mPEGA) under UV irradiation, to avoid swelling of conventional hydrogels which could limit their applicability in particular of the mechanical properties and geometry integrity. Various EHD/mPEGA networks were fabricated with different concentrations of mPEGA from 0 to 30%, and the results showed photopolymerization behavior, mechanical property and thermal stability could not be significantly affected by addition of mPEGA, while the surface hydrophilicity was dramatically improved with the increase of mPEGA and could achieve a water contact angle of 37° with 30% mPEGA concentration. The obtained EHD/mPEGA network had comparative degradation rate to the PECA hydrogels reported previously, and MTT assay indicated it was biocompatible to L929 cells. - Highlights: • Cyclic acetals contained EHD/mPEGA networks were fabricated by photopolymerization. • It can be degraded under simulated physiological condition without acidic products. • Surface hydrophilicity was increased without swelling in water.

  2. Water in ionic liquids: correlation between anion hydrophilicity and near-infrared fingerprints

    Czech Academy of Sciences Publication Activity Database

    Tomšík, Elena; Gospodinova, Natalia

    2016-01-01

    Roč. 17, č. 11 (2016), s. 1586-1590 ISSN 1439-4235 R&D Projects: GA ČR(CZ) GA15-14791S; GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : anions * hydrophilicity * ionic liquids Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.075, year: 2016

  3. Predicting the oral uptake efficiency of chemicals in mammals: Combining the hydrophilic and lipophilic range

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Isabel A., E-mail: i.oconnor@science.ru.nl [Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Huijbregts, Mark A.J., E-mail: m.huijbregts@science.ru.nl [Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Ragas, Ad M.J., E-mail: a.ragas@science.ru.nl [Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Open University, School of Science, P.O. Box 2960,6401 DL Heerlen (Netherlands); Hendriks, A. Jan, E-mail: a.j.hendriks@science.ru.nl [Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands)

    2013-01-01

    Environmental risk assessment requires models for estimating the bioaccumulation of untested compounds. So far, bioaccumulation models have focused on lipophilic compounds, and only a few have included hydrophilic compounds. Our aim was to extend an existing bioaccumulation model to estimate the oral uptake efficiency of pollutants in mammals for compounds over a wide K{sub ow} range with an emphasis on hydrophilic compounds, i.e. compounds in the lower K{sub ow} range. Usually, most models use octanol as a single surrogate for the membrane and thus neglect the bilayer structure of the membrane. However, compounds with polar groups can have different affinities for the different membrane regions. Therefore, an existing bioaccumulation model was extended by dividing the diffusion resistance through the membrane into an outer and inner membrane resistance, where the solvents octanol and heptane were used as surrogates for these membrane regions, respectively. The model was calibrated with uptake efficiencies of environmental pollutants measured in different mammals during feeding studies combined with human oral uptake efficiencies of pharmaceuticals. The new model estimated the uptake efficiency of neutral (RMSE = 14.6) and dissociating (RMSE = 19.5) compounds with logK{sub ow} ranging from − 10 to + 8. The inclusion of the K{sub hw} improved uptake estimation for 33% of the hydrophilic compounds (logK{sub ow} < 0) (r{sup 2} = 0.51, RMSE = 22.8) compared with the model based on K{sub ow} only (r{sup 2} = 0.05, RMSE = 34.9), while hydrophobic compounds (logK{sub ow} > 0) were estimated equally by both model versions with RMSE = 15.2 (K{sub ow} and K{sub hw}) and RMSE = 15.7 (K{sub ow} only). The model can be used to estimate the oral uptake efficiency for both hydrophilic and hydrophobic compounds. -- Highlights: ► A mechanistic model was developed to estimate oral uptake efficiency. ► Model covers wide logK{sub ow} range (- 10 to + 8) and several mammalian

  4. Hydrophilic Solvation Dominates the Terahertz Fingerprint of Amino Acids in Water.

    Science.gov (United States)

    Esser, Alexander; Forbert, Harald; Sebastiani, Federico; Schwaab, Gerhard; Havenith, Martina; Marx, Dominik

    2018-02-01

    Spectroscopy in the terahertz frequency regime is a sensitive tool to probe solvation-induced effects in aqueous solutions. Yet, a systematic understanding of spectral lineshapes as a result of distinct solvation contributions remains terra incognita. We demonstrate that modularization of amino acids in terms of functional groups allows us to compute their distinct contributions to the total terahertz response. Introducing the molecular cross-correlation analysis method provides unique access to these site-specific contributions. Equivalent groups in different amino acids lead to look-alike spectral contributions, whereas side chains cause characteristic but additive complexities. Specifically, hydrophilic solvation of the zwitterionic groups in valine and glycine leads to similar terahertz responses which are fully decoupled from the side chain. The terahertz response due to H-bonding within the large hydrophobic solvation shell of valine turns out to be nearly indistinguishable from that in bulk water in direct comparison to the changes imposed by the charged functional groups that form strong H-bonds with their hydration shells. Thus, the hydrophilic groups and their solvation shells dominate the terahertz absorption difference, while on the same intensity scale, the influence of hydrophobic water can be neglected.

  5. Anisotropic wetting characteristics versus roughness on machined surfaces of hydrophilic and hydrophobic materials

    International Nuclear Information System (INIS)

    Liang, Yande; Shu, Liming; Natsu, Wataru; He, Fuben

    2015-01-01

    Graphical abstract: - Highlights: • The aim is to investigate the influence of roughness on anisotropic wetting on machined surfaces. • The relationship between roughness and anisotropic wetting is modeled by thermodynamical analysis. • The effect of roughness on anisotropic wetting on hydrophilic materials is stronger than that on hydrophobic materials. • The energy barrier existing in the direction perpendicular to the lay is one of the main reasons for the anisotropic wetting. • The contact angle in the parallel direction is larger than that in the perpendicular direction. - Abstract: Anisotropic wetting of machined surfaces is widely applied in industries which can be greatly affected by roughness and solid's chemical properties. However, there has not been much work on it. A free-energy thermodynamic model is presented by analyzing geometry morphology of machined surfaces (2-D model surfaces), which demonstrates the influence of roughness on anisotropic wetting. It can be concluded that the energy barrier is one of the main reasons for the anisotropic wetting existing in the direction perpendicular to the lay. In addition, experiments in investigating anisotropic wetting, which was characterized by the static contact angle and droplet's distortion, were performed on machined surfaces with different roughness on hydrophilic and hydrophobic materials. The droplet's anisotropy found on machined surfaces increased with mean slope of roughness profile Kr. It indicates that roughness on anisotropic wetting on hydrophilic materials has a stronger effect than that on hydrophobic materials. Furthermore, the contact angles predicted by the model are basically consistent with the experimentally ones

  6. Facile preparation of super-hydrophilic poly(ethylene terephthalate) fabric using dilute sulfuric acid under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fang [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China); Zhang, Guangxian, E-mail: zgx656472@sina.com.cn [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China); Zhang, Fengxiu [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang, Yuansong [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China)

    2015-09-15

    Highlights: • A durable super-hydrophilic PET fabric was prepared using dilute H{sub 2}SO{sub 4} under microwave irradiation. • Dilute sulfuric acid was gradually concentrated enough to sulfonate PET fabric. • Microwave irradiation made PET fabric modification highly efficient. • The mechanical properties of modified PET fibers were kept well. • The method was novel, rapid, and eco-friendly. - Abstract: The hydrophilicity of a poly(ethylene terephthalate) (PET) fabric was greatly modified by using dilute sulfuric acid, which gradually became concentrated enough to sulfonate the fabric when microwave irradiation (MW) was applied. The modified PET fabric was super-hydrophilic. Modifying the fabric caused the water contact angle to decrease from 132.46 (for the unmodified fabric) to 0°, the water absorption rate to increase from 36.45 to 119.78%, and the capillary rise height to increase from 0.4 to 14.4 cm. The hydrophilicity of the modified PET fabric was not affected by washing it many times. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed that there were sulfonic acid groups on the modified fibers. Almost no difference between the surfaces of the unmodified and modified PET fibers was found using scanning electron microscopy. Analysis by differential scanning calorimetry showed that the unmodified and modified fabrics had similar thermostabilities. X-ray diffraction analysis of the crystalline structures of the unmodified and modified fibers showed that they were almost the same. The strength, elasticity, and rigidity of the unmodified fabric were retained by the modified fabric. The modified fabric had better dyeing properties than the unmodified fabric.

  7. Antioxidant activity and possible bioactive components in hydrophilic and lipophilic fractions from the seaweed Halimeda incrassata

    Directory of Open Access Journals (Sweden)

    Alexis Vidal Novoa

    2011-02-01

    Full Text Available Hydrophilic and lipophilic fractions, obtained from the marine algae Halimeda incrassata (J.Ellis J.V.Lamouroux, Halimedaceae, were studied by using the ²-carotene-linoleate assay system. In case of hydrophilic fractions, the total phenolic compounds were quantified and two of their components were identified as salicylic and ferulic acids. From the lipophilic fraction, fatty acid composition was studied. The highest antioxidant activities values were found on the polar fractions containing phenolic acids. The total phenolics content on the hydrophilic fractions was 255 μg of gallic acid equivalents/g of fresh seaweed. To further characterize H. incrassata chemical composition, the total lipid content was quantified (7.4 mg per gram of dried algae as well as the saturated and unsaturated fatty acids ratio (1:1.46. In summary, this paper adds more convincing evidences in support of the antioxidant abilities of the lyophilized aqueous extract of Halimeda incrassata and it also relates this bioactivity, for the first time, with particular phenolic components of the extract. Altogether, these results represent another step towards the use of this natural product as drug candidates.

  8. Molecular dynamics simulations of the hydrophobin SC3 at a hydrophobic/hydrophilic interface

    NARCIS (Netherlands)

    Fan, Hao; Wang, Xiaoqin; Zhu, Jiang; Robillard, George T.; Mark, Alan E.

    2006-01-01

    Hydrophobins are small (similar to 100 aa) proteins that have an important role in the growth and development of mycelial fungi. They are surface active and, after secretion by the fungi, self-assemble into amphipathic membranes at hydrophobic/hydrophilic interfaces, reversing the hydrophobicity of

  9. Gas Permeation Related to the Moisture Sorption in Films of Glassy Hydrophilic Polymers

    NARCIS (Netherlands)

    Laksmana, F. L.; Kok, P. J. A. Hartman; Frijlink, H. W.; Vromans, H.; Maarschalk, K. Van Der Voort

    2010-01-01

    The purpose of this article is to elucidate the effect of integral sorption of moisture on gas permeation in glassy hydrophilic polymers. The oxygen and the simultaneous moisture sorption into various hydroxypropyl methylcellulose (HPMC) films were measured under a wide range of relative humidities

  10. In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses.

    Science.gov (United States)

    Vinas, Maria; Dorronsoro, Carlos; Garzón, Nuria; Poyales, Francisco; Marcos, Susana

    2015-10-01

    To measure the longitudinal chromatic aberration in vivo using psychophysical and wavefront-sensing methods in patients with bilateral implantation of monofocal intraocular lenses (IOLs) of similar aspheric design but different materials (hydrophobic Podeye and hydrophilic Poday). Instituto de Optica, Consejo Superior de Investigaciones Cientificas, Madrid, Spain. Prospective observational study. Measurements were performed with the use of psychophysical (480 to 700 nm) and wavefront-sensing (480 to 950 nm) methods using a custom-developed adaptive optics system. Chromatic difference-of-focus curves were obtained from best-focus data at each wavelength, and the longitudinal chromatic aberration was obtained from the slope of linear regressions to those curves. The longitudinal chromatic aberration from psychophysical measurements was 1.37 diopters (D) ± 0.08 (SD) (hydrophobic) and 1.21 ± 0.08 D (hydrophilic). From wavefront-sensing, the longitudinal chromatic aberration was 0.88 ± 0.07 D and 0.73 ± 0.09 D, respectively. At 480 to 950 nm, the longitudinal chromatic aberration was 1.27 ± 0.09 D (hydrophobic) and 1.02 ± 0.13 D (hydrophilic). The longitudinal chromatic aberration was consistently higher in eyes with the hydrophobic IOL than in eyes with the hydrophilic IOL (a difference of 0.16 D and 0.15 D, respectively). Similar to findings in young phakic eyes, the longitudinal chromatic aberration from the psychophysical method was consistently higher than from wavefront-sensing, by 0.48 D (35.41%) for the hydrophobic IOL and 0.48 D (39.43%) for the hydrophilic IOL. Longitudinal chromatic aberrations were smaller with hydrophilic IOLs than with hydrophobic IOLs of the same design. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  11. Use of Hydrophilic Insoluble Polymers in the Restoration of Metal-Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Guiwei Qu

    2009-01-01

    Full Text Available To develop cost-effective techniques that contribute to phytostabilization of severely metal-contaminated soils is a necessary task in environmental research. Hydrophilic insoluble polymers have been used for some time in diapers and other hygienic products and to increase the water-holding capacity of coarse-textured soils. These polymers contain groups, such as carboxyl groups, that are capable of forming bonds with metallic cations, thereby decreasing their bioavailability in soils. The use of polyacrylate polymers as soil amendments to restore metal-contaminated soils has been investigated in the Technical University of Lisbon since the late nineties. Plant growth and plant nutrients concentrations, extractable levels of metals in soil, and soil enzyme activities were used to monitor the improvement in soil quality following the application of these polymers. In contaminated soils, hydrophilic insoluble polymers can create microcosms that are rich in water and nutrients (counterions but only contain small concentrations of toxic elements; the conditions of these microenvironments are favorable to roots and microorganisms. In this paper we described the most relevant information available about this topic.

  12. Use of Hydrophilic Insoluble Polymers in the Restoration of Metal-Contaminated Soils

    International Nuclear Information System (INIS)

    Qu, G.; De Varennes, A.; Qu, G.

    2010-01-01

    To develop cost-effective techniques that contribute to phyto stabilization of severely metal-contaminated soils is a necessary task in environmental research. Hydrophilic insoluble polymers have been used for some time in diapers and other hygienic products and to increase the water-holding capacity of coarse-textured soils. These polymers contain groups, such as carboxyl groups, that are capable of forming bonds with metallic cations, thereby decreasing their bioavailability in soils. The use of polyacrylate polymers as soil amendments to restore metal-contaminated soils has been investigated in the Technical University of Lisbon since the late nineties. Plant growth and plant nutrients concentrations, extractable levels of metals in soil, and soil enzyme activities were used to monitor the improvement in soil quality following the application of these polymers. In contaminated soils, hydrophilic insoluble polymers can create microcosms that are rich in water and nutrients (counterions) but only contain small concentrations of toxic elements; the conditions of these micro environments are favorable to roots and microorganisms. In this paper we described the most relevant information available about this topic.

  13. Hydrophilic modification of polyethersulfone porous membranes via a thermal-induced surface crosslinking approach

    Energy Technology Data Exchange (ETDEWEB)

    Mu Lijun, E-mail: l.j.mu@hotmail.com [School of Material Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Zhao Wenzhen [School of Material Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2009-05-30

    A thermal-induced surface crosslinking process was employed to perform a hydrophilic surface modification of PES porous membranes. Difunctional poly(ethylene glycol) diacrylate (PEGDA) was used as the main crosslinking modifier. The addition of trifunctional trimethylolpropane trimethylacrylate (TMPTMA) into the reaction solutions accelerated the crosslinking progress of PEGDA on PES membranes. The membrane surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and FTIR-ATR spectroscopy. The mass gains (MG) of the modified membranes could be conveniently modulated by varying the PEGDA concentration and crosslinking time. The measurements of water contact angle showed that the hydrophilicity of PES membranes was remarkably enhanced by the coating of crosslinked PEGDA layer. When a moderate mass gain of about 150 {mu}g/cm{sup 2} was reached, both the permeability and anti-fouling ability of PES membranes could be significantly improved. Excessive mass gain not only contributed little to the anti-fouling ability, but also brought a deteriorated permeability to PES membranes.

  14. Hydrophilic modification of polyethersulfone porous membranes via a thermal-induced surface crosslinking approach

    International Nuclear Information System (INIS)

    Mu Lijun; Zhao Wenzhen

    2009-01-01

    A thermal-induced surface crosslinking process was employed to perform a hydrophilic surface modification of PES porous membranes. Difunctional poly(ethylene glycol) diacrylate (PEGDA) was used as the main crosslinking modifier. The addition of trifunctional trimethylolpropane trimethylacrylate (TMPTMA) into the reaction solutions accelerated the crosslinking progress of PEGDA on PES membranes. The membrane surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and FTIR-ATR spectroscopy. The mass gains (MG) of the modified membranes could be conveniently modulated by varying the PEGDA concentration and crosslinking time. The measurements of water contact angle showed that the hydrophilicity of PES membranes was remarkably enhanced by the coating of crosslinked PEGDA layer. When a moderate mass gain of about 150 μg/cm 2 was reached, both the permeability and anti-fouling ability of PES membranes could be significantly improved. Excessive mass gain not only contributed little to the anti-fouling ability, but also brought a deteriorated permeability to PES membranes.

  15. [Opacification of an intraocular lens: calcification of hydrophilic intraocular lenses after gas tamponade of the anterior chamber].

    Science.gov (United States)

    Schmidinger, G; Pemp, B; Werner, L

    2013-11-01

    A patient with endothelial dystrophy was treated with Descemet stripping automated endothelial keratoplasty (DSAEK) combined with cataract extraction and implantation of a hydrophilic intraocular lens (IOL, Lentis-L312, Oculentis) but visual acuity dropped from 0.15 logMAR to 0.52 logMAR 18 months later due to calcification of the IOL. With new methods of lamellar corneal transplantation being used more frequently the number of necessary anterior chamber tamponades with air/gas are increasing. In cataract cases in which a gas tamponade and transplantation might be necessary later on (cornea guttata), hydrophilic IOLs should be avoided.

  16. A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting

    KAUST Repository

    Wang, Yuchao

    2015-08-10

    Fog water collection represents a meaningful effort in the places where regular water sources, including surface water and ground water, are scarce. Inspired by the amazing fog water collection capability of Stenocara beetles in the Namib Desert and based on the recent work in biomimetic water collection, this work reported a facile, easy-to-operate, and low-cost method for the fabrication of hydrophilic-superhydrophobic patterned hybrid surface toward highly efficient fog water collection. The essence of the method is incorporating a (super)hydrophobically modified metal-based gauze onto the surface of a hydrophilic polystyrene (PS) flat sheet by a simple lab oven-based thermal pressing procedure. The produced hybrid patterned surfaces consisted of PS patches sitting within the holes of the metal gauzes. The method allows for an easy control over the pattern dimension (e.g., patch size) by varying gauze mesh size and thermal pressing temperature, which is then translated to an easy optimization of the ultimate fog water collection efficiency. Given the low-cost and wide availability of both PS and metal gauze, this method has a great potential for scaling-up. The results showed that the hydrophilic-superhydrophobic patterned hybrid surfaces with a similar pattern size to Stenocara beetles’s back pattern produced significantly higher fog collection efficiency than the uniformly (super)hydrophilic or (super)hydrophobic surfaces. This work contributes to general effort in fabricating wettability patterned surfaces and to atmospheric water collection for direct portal use.

  17. Comprehensive analysis of pharmaceutical products using simultaneous mixed-mode (ion-exchange/reversed-phase) and hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Kazarian, Artaches A; Nesterenko, Pavel N; Soisungnoen, Phimpha; Burakham, Rodjana; Srijaranai, Supalax; Paull, Brett

    2014-08-01

    Liquid chromatographic assays were developed using a mixed-mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve-mediated column switching and was based upon a single high-performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion-exchange, (ii) mixed-mode interactions under an applied dual gradient (reversed-phase/ion-exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed-mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well-resolved unknown peaks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changcan; Yuan, Wenjie; Khan, Musammir; Li, Qian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300072 (China); Yao, Fanglian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Zhang, Wencheng, E-mail: wenchengzhang@yahoo.com [Department of Physiology and Pathophysiology, Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China)

    2015-05-01

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds. - Graphical abstract: PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatin onto the surface of aminated PCU scaffolds (method a). To increase the immobilization amount of gelatin, PEGMAs were grafted onto the scaffold surface by SI-ATRP. PCU-g-PEGMA-g-gelatin scaffolds were prepared by method b. The gelatin modified scaffolds exhibited high hydrophilicity, low platelet adhesion, perfect anti-hemolytic activity, and excellent cell adhesion and proliferation capacity. They might have potential applications as tissue engineering scaffolds for artificial blood vessels. - Highlights: • Hydrophilic scaffolds were prepared by grafting PEGMA and immobilization of gelatins. • Grafting PEGMA enhanced the immobilization amount of gelatin

  19. Different assembly of type IV collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction

    Directory of Open Access Journals (Sweden)

    NM Coelho

    2010-06-01

    Full Text Available Considering the structural role of type IV collagen (Col IV in the assembly of the basement membrane (BM and the perspective of mimicking its organization for vascular tissue engineering purposes, we studied the adsorption pattern of this protein on model hydrophilic (clean glass and hydrophobic trichloro(octadecylsilane (ODS surfaces known to strongly affect the behavior of other matrix proteins. The amount of fluorescently labeled Col IV was quantified showing saturation of the surface for concentration of the adsorbing solution of about 50μg/ml, but with approximately twice more adsorbed protein on ODS. AFM studies revealed a fine – nearly single molecular size – network arrangement of Col IV on hydrophilic glass, which turns into a prominent and growing polygonal network consisting of molecular aggregates on hydrophobic ODS. The protein layer forms within minutes in a concentration-dependent manner. We further found that human umbilical vein endothelial cells (HUVEC attach less efficiently to the aggregated Col IV (on ODS, as judged by the significantly altered cell spreading, focal adhesions formation and the development of actin cytoskeleton. Conversely, the immunofluorescence studies for integrins revealed that the fine Col IV network formed on hydrophilic substrata is better recognized by the cells via both α1 and α2 heterodimers which support cellular interaction, apart from these on hydrophobic ODS where almost no clustering of integrins was observed.

  20. Bond-Strengthening in Staphylococcal Adhesion to Hydrophilic and Hydrophobic Surfaces Using Atomic Force Microscopy

    NARCIS (Netherlands)

    Boks, N.P.; Busscher, H.J.; Mei, van der H.C.; Norde, W.

    2008-01-01

    Time-dependent bacterial adhesion forces of four strains of Staphylococcus epidermidis to hydrophobic and hydrophilic surfaces were investigated. Initial adhesion forces differed significantly between the two surfaces and hovered around -0.4 nN. No unambiguous effect of substratum surface

  1. Six-Year Survival and Early Failure Rate of 2918 Implants with Hydrophobic and Hydrophilic Enossal Surfaces

    Directory of Open Access Journals (Sweden)

    Olivier Le Gac

    2015-02-01

    Full Text Available The aim of this chart review was to obtain an objective, quantitative assessment of the clinical performance of an implant line used in an implantological office setting. Implants with hydrophilic (INICELL and hydrophobic (TST; both: Thommen Medical AG, Grenchen, Switzerland enossal surfaces were compared and the cumulative implant survival rate was calculated. The data of 1063 patients that received 2918 implants (1337 INICELL, 1581 TST was included. The average follow up time was 2.1 (1.1–5.4 years for INICELL and 4.5 (1.3–5.9 years for TST implants (Thommen Medical AG, Switzerland. In the reported period 7 implants with INICELL (0.5% and 23 TST implants (1.5% failed. This difference was statistically significant. The analysis of cases treated and followed up in a single implantological office for 6 years confirmed the very good clinical outcome that was achieved with both used implant lines. Within the limitations of this retrospective analysis, the overall early failure rate of the hydrophilic implants was significantly lower than that of hydrophobic implants. The use of hydrophilic implants allows the clinician to obtain less early failures, hence the interest of an up-to-date surface for the daily work of an implant practice.

  2. Negatively charged polysulfone membranes with hydrophilicity and antifouling properties based on in situ cross-linked polymerization.

    Science.gov (United States)

    Zhu, Lijing; Song, Haiming; Zhang, Dawei; Wang, Gang; Zeng, Zhixiang; Xue, Qunji

    2017-07-15

    Polysulfone (PSf) membrane has been widely used in water separation and purification, although, membrane fouling is still a serious problem limiting its potential. We aim to improve the antifouling of PSf membranes via a very simple and efficient method. In this work, antifouling PSf membranes were fabricated via in situ cross-linked polymerization coupled with non-solvent induced phase separation. In brief, acrylic acid (AA) and vinyltriethoxysilane (VTEOS) were copolymerized in PSf solution, then directly casted into membranes without purification. With the increase of monomers concentration, the morphology of the as-cast membranes changed from a finger-like morphology to a fully sponge-like structure due to the increased viscosity and decreased precipitation rate of the polymer solutions. Meanwhile, the hydrophilicity and electronegativity of modified membranes were highly improved leading to inhibited protein adsorption and improved antifouling property. Furthermore, in order to further find out the different roles player by AA and VTESO, the modified membrane without VTEOS was prepared and characterized. The results indicated that AA is more effective in the membrane hydrophilicity improvement, VTEOS is more crucial to improve membrane stability. This work provides valuable guidance for fabricating PSf membranes with hydrophilicity and antifouling property via in situ cross-linked polymerization. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Six-Year Survival and Early Failure Rate of 2918 Implants with Hydrophobic and Hydrophilic Enossal Surfaces.

    Science.gov (United States)

    Gac, Olivier Le; Grunder, Ueli

    2015-02-05

    The aim of this chart review was to obtain an objective, quantitative assessment of the clinical performance of an implant line used in an implantological office setting. Implants with hydrophilic (INICELL) and hydrophobic (TST; both: Thommen Medical AG, Grenchen, Switzerland) enossal surfaces were compared and the cumulative implant survival rate was calculated. The data of 1063 patients that received 2918 implants (1337 INICELL, 1581 TST) was included. The average follow up time was 2.1 (1.1-5.4) years for INICELL and 4.5 (1.3-5.9) years for TST implants (Thommen Medical AG, Switzerland). In the reported period 7 implants with INICELL (0.5%) and 23 TST implants (1.5%) failed. This difference was statistically significant. The analysis of cases treated and followed up in a single implantological office for 6 years confirmed the very good clinical outcome that was achieved with both used implant lines. Within the limitations of this retrospective analysis, the overall early failure rate of the hydrophilic implants was significantly lower than that of hydrophobic implants. The use of hydrophilic implants allows the clinician to obtain less early failures, hence the interest of an up-to-date surface for the daily work of an implant practice.

  4. Lipophilic versus hydrophilic statin therapy for heart failure: a protocol for an adjusted indirect comparison meta-analysis

    Science.gov (United States)

    2013-01-01

    Background Statins are known to reduce cardiovascular morbidity and mortality in primary and secondary prevention studies. Subsequently, a number of nonrandomised studies have shown statins improve clinical outcomes in patients with heart failure (HF). Small randomised controlled trials (RCT) also show improved cardiac function, reduced inflammation and mortality with statins in HF. However, the findings of two large RCTs do not support the evidence provided by previous studies and suggest statins lack beneficial effects in HF. Two meta-analyses have shown statins do not improve survival, whereas two others showed improved cardiac function and reduced inflammation in HF. It appears lipophilic statins produce better survival and other outcome benefits compared to hydrophilic statins. But the two types have not been compared in direct comparison trials in HF. Methods/design We will conduct a systematic review and meta-analysis of lipophilic and hydrophilic statin therapy in patients with HF. Our objectives are: 1. To determine the effects of lipophilic statins on (1) mortality, (2) hospitalisation for worsening HF, (3) cardiac function and (4) inflammation. 2. To determine the effects of hydrophilic statins on (1) mortality, (2) hospitalisation for worsening HF, (3) cardiac function and (4) inflammation. 3. To compare the efficacy of lipophilic and hydrophilic statins on HF outcomes with an adjusted indirect comparison meta-analysis. We will conduct an electronic search of databases for RCTs that evaluate statins in patients with HF. The reference lists of all identified studies will be reviewed. Two independent reviewers will conduct the search. The inclusion criteria include: 1. RCTs comparing statins with placebo or no statin in patients with symptomatic HF. 2. RCTs that employed the intention-to-treat (ITT) principle in data analysis. 3. Symptomatic HF patients of all aetiologies and on standard treatment. 4. Statin of any dose as intervention. 5. Placebo or no

  5. The hydrophobic effect: Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Mouritsen, Ole G.; Peters, Günther H.J.

    2004-01-01

    Structural and dynamic properties of water confined between two parallel, extended, either hydrophobic or hydrophilic crystalline surfaces of n-alkane C36H74 or n-alcohol C35H71OH, are studied by molecular dynamics simulations. Electron density profiles, directly compared with corresponding......-correlation functions reveal that water molecules have characteristic diffusive behavior and orientational ordering due to the lack of hydrogen bonding interactions with the surface. These observations suggest that the altered dynamical properties of water in contact with extended hydrophobic surfaces together...... at both surfaces. The ordering is characteristically different between the surfaces and of longer range at the hydrophilic surface. Furthermore, the dynamic properties of water are different at the two surfaces and different from the bulk behavior. In particular, at the hydrophobic surface, time...

  6. CdS-containing nano-assemblies of double hydrophilic block copolymers in water

    Czech Academy of Sciences Publication Activity Database

    Uchman, M.; Procházka, K.; Gatsouli, K.; Pispas, S.; Špírková, Milena

    2011-01-01

    Roč. 289, č. 9 (2011), s. 1045-1053 ISSN 0303-402X R&D Projects: GA ČR GCP205/11/J043; GA ČR GAP208/10/0353 Institutional research plan: CEZ:AV0Z40500505 Keywords : double hydrophilic block copolymers * polymer self-assembly * light scattering Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.331, year: 2011

  7. Hydrophilic Surface Modification of PDMS Microchannel for O/W and W/O/W Emulsions

    Directory of Open Access Journals (Sweden)

    Shazia Bashir

    2015-09-01

    Full Text Available A surface modification method for bonded polydimethylsiloxane (PDMS microchannels is presented herein. Polymerization of acrylic acid was performed on the surface of a microchannel using an inline atmospheric pressure dielectric barrier microplasma technique. The surface treatment changes the wettability of the microchannel from hydrophobic to hydrophilic. This is a challenging task due to the fast hydrophobic recovery of the PDMS surface after modification. This modification allows the formation of highly monodisperse oil-in-water (O/W droplets. The generation of water-in-oil-in-water (W/O/W double emulsions was successfully achieved by connecting in series a hydrophobic microchip with a modified hydrophilic microchip. An original channel blocking technique to pattern the surface wettability of a specific section of a microchip using a viscous liquid comprising a mixture of honey and glycerol, is also presented for generating W/O/W emulsions on a single chip.

  8. Multi-modal TiO2-LaFeO3 composite films with high photocatalytic activity and hydrophilicity

    International Nuclear Information System (INIS)

    Gao Kun; Li Shudan

    2012-01-01

    In this paper, a series of multi-modal TiO 2 -LaFeO 3 composite films have been successfully synthesized through a two-step method. The resultant films were characterized in detail by several testing techniques, such as X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectrum (UV-vis DRS), photoluminescence spectrum (PL), surface photovoltage spectroscopy (SPS) and water contact angle measurements. The photocatalytic activity of different films was evaluated for degrading Methylene Blue (MB) aqueous solution. Hydrophilicity of the obtained TiO 2 -LaFeO 3 composite films was also investigated. The results show that TL film and LT film exhibited superior photocatalytic activity and hydrophilicity.

  9. STUDY CONCERNING THE INFLUENCE OF CERTAIN HYDROPHILIC AUXILIARIES ON THE PROPERTIES OF THE PLASTICIZED POLYVINYL CHLORIDE POROUS FILMS Part II-HYGIENIC PROPERTIES

    Directory of Open Access Journals (Sweden)

    BĂLĂU MÎNDRU Tudorel

    2015-05-01

    Full Text Available The purpose of this paper was to obtain certain PVC films with improved hygienic properties, with applications both in the artificial leather industry and in other domains. This was done by introducing certain hydrophilic auxiliaries with free chemical functions into the chemical structure of the PVC films, such as: collagen hydrolysates (CH, hydroxyl-terminated polydimethylsiloxane (HTPDMS and nonylphenol ethoxylate (NPE. The use of these hydrophilic auxiliaries combined with the action of the high frequency electric fields (H.F.E.F. allows the attainment of cellular structures where the walls of the cells obtained from the expanding process display an enhanced humidity absorption. The collagen hydrolysates used to obtain the plasticized PVC porous films was obtained by electrolytic hydrolysis starting from Chamois leather powder waste resulting from buffing operation, according to a methodology described in a previous paper. The first part of this study was concerned with the influence of the addition of hydrophilic agents upon the moisture sorption of the plasticized PVC porous films. In this paper, there was investigated the water vapour and air permeability as well as the water vapour absorption of the porous films expanded in the H.F.E.F. in correlation with the nature and the recipe variant of the hydrophilic auxiliaries. The results highlighted the fact that the use of certain combinations of hydrophilic agents led to obtaining materials with adequate hygienic properties.

  10. Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics

    DEFF Research Database (Denmark)

    Mysling, Simon; Palmisano, Giuseppe; Højrup, Peter

    2010-01-01

    Glycopeptide enrichment is a prerequisite to enable structural characterization of protein glycosylation in glycoproteomics. Here we present an improved method for glycopeptide enrichment based on zwitter-ionic hydrophilic interaction chromatography solid phase extraction (ZIC-HILIC SPE...

  11. Dual hydrophilic and salt responsive schizophrenic block copolymers – synthesis and study of self-assembly

    NARCIS (Netherlands)

    Vasantha, Vivek Arjunan; Jana, Satyasankar; Lee, Serina Siew Chen; Lim, Chin-Sing; Teo, Serena Lay Ming; Parthiban, Anbanandam; Vancso, Gyula J.

    2015-01-01

    A new class of dual hydrophilic diblock copolymers (BCPs) possessing poly(ethylene glycol) (PEG) and zwitterionic polysulfabetaine (PSB) was synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. These BCPs formed schizophrenic micelles undergoing core–shell

  12. Surfactant-assisted water exposed electrospinning of novel super hydrophilic polycaprolactone based fibers.

    Science.gov (United States)

    Zargarian, S Sh; Haddadi-Asl, V

    2017-08-01

    Hybrid scaffolds prepared by blend electrospinning of Polycaprolactone and Pluronic solution benefit from enhanced fiber hydrophilicity and may offer satisfactory cell attachment and proliferation. To improve hybrid scaffold wettability and water swelling ratio, adequate amount of hydrophilic polymer is required; though this amount is limited by fiber surface enrichment of Pluronic and cannot be exceeded without affecting the scaffold mechanical properties. To overcome this problem, a routine blend electrospinning setup was modified by exposing the blend solution to water in order to attract Pluronic chains toward the surface of the charged jet. Morphology of scaffolds produced by the routine blend electrospinning and modified method was studied. A 50 nm thick Pluronic layer with linty appearance on the surface of the fibers fabricated by the modified method was detected. Drug-loaded fibers from modified method showed a moderate initial burst and then a prolonged release period while an abnormal two-stage phased release profile was observed for the routine blend method. The latter was associated to Pluronic/drug accumulations within the fibers fabricated by the routine method which resulted in fiber disintegration and a subsequent second burst release.

  13. PCR-based isolation and identification of full-length low-molecular-weight glutenin subunit genes in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhang, Xiaofei; Liu, Dongcheng; Jiang, Wei; Guo, Xiaoli; Yang, Wenlong; Sun, Jiazhu; Ling, Hongqing; Zhang, Aimin

    2011-12-01

    Low-molecular-weight glutenin subunits (LMW-GSs) are encoded by a multi-gene family and are essential for determining the quality of wheat flour products, such as bread and noodles. However, the exact role or contribution of individual LMW-GS genes to wheat quality remains unclear. This is, at least in part, due to the difficulty in characterizing complete sequences of all LMW-GS gene family members in bread wheat. To identify full-length LMW-GS genes, a polymerase chain reaction (PCR)-based method was established, consisting of newly designed conserved primers and the previously developed LMW-GS gene molecular marker system. Using the PCR-based method, 17 LMW-GS genes were identified and characterized in Xiaoyan 54, of which 12 contained full-length sequences. Sequence alignments showed that 13 LMW-GS genes were identical to those found in Xiaoyan 54 using the genomic DNA library screening, and the other four full-length LMW-GS genes were first isolated from Xiaoyan 54. In Chinese Spring, 16 unique LMW-GS genes were isolated, and 13 of them contained full-length coding sequences. Additionally, 16 and 17 LMW-GS genes in Dongnong 101 and Lvhan 328 (chosen from the micro-core collections of Chinese germplasm), respectively, were also identified. Sequence alignments revealed that at least 15 LMW-GS genes were common in the four wheat varieties, and allelic variants of each gene shared high sequence identities (>95%) but exhibited length polymorphism in repetitive regions. This study provides a PCR-based method for efficiently identifying LMW-GS genes in bread wheat, which will improve the characterization of complex members of the LMW-GS gene family and facilitate the understanding of their contributions to wheat quality.

  14. Simple introduction of sulfonic acid group onto polyethylene by radiation-induced cografting of sodium styrenesulfonate with hydrophilic monomers

    International Nuclear Information System (INIS)

    Tsuneda, Satoshi; Saito, Kyoichi; Furusaki, Shintaro; Sugo, Takanobu; Makuuchi, Keizo

    1993-01-01

    The sulfonic acid (SO 3 H) group was readily introduced into a polyethylene (PE) membrane by radiation-induced cografting of sodium styrenesulfonate (SSS) with hydrophilic monomers such as acrylic acid (AAc) and hydroxyethyl methacrylate (HEMA). The density of SSS grafted onto the PE membrane was determined as a function of molar ratio of hydrophilic monomer to SSS in the monomer mixture. Immersion of the electron-beam-irradiated PE membrane into the mixture of SSS and HEMA for 5 h at 323 K provided to the SO 3 H density of 2.5 mol/kg of the H-type product

  15. Multi-functional TiO{sub 2}/Si/Ag(Cr)/TiN{sub x} coatings for low-emissivity and hydrophilic applications

    Energy Technology Data Exchange (ETDEWEB)

    Loka, Chadrasekhar; Park, Kyoung Ryeol; Lee, Kee-Sun, E-mail: kslee@kongju.ac.kr

    2016-02-15

    Graphical abstract: - Highlights: • Multi-functional thin films were deposited by RF and DC magnetron sputtering. • High visible transmittance (∼85.5% at 550 nm) was achieved with low-e value 0.067. • Different bandgap concept was used to improve the hydrophilic properties. • Transparent, superhydropbilic films with water contact angle ∼5° were achieved. - Abstract: Multi-functional (coatings with some additional functional properties such as high transparency, antireflection, hydrophilicity and antifogging) coatings are indispensable for the modern energy saving systems. In this regard, we deposited TiO{sub 2}/Si/Ag(Cr)/TiN{sub x} multilayer thin films on soda-lime glass by using RF and DC magnetron sputtering to achieve a multi-functional thin film stack with the combination low-emissivity (low-e) and hydrophilicity properties in addition to the high transparency. Primary deposition of Ag(Cr)/TiN{sub x} was tried for the low-e effect and successfully obtained a very low emissivity value of 0.067, and then Si and TiO{sub 2} films with different bandgap were subsequently deposited to provide the hydrophilic properties. X-ray diffraction results revealed the anatase phase formation of TiO{sub 2} after annealing the films at 673 K by using the rapid thermal annealing system. Rutherford Backscattering Spectrometry (RBS) was carried out to determine the chemical composition and elemental depth distribution. The multilayer stack exhibited superhydrophilicity with a water contact angle of about 5° after irradiation by UV light. A Heterojunction film with wide and narrow bandgap semiconductor materials was effective to improve the hydrophilicity. The films exhibited a high visible transmittance (∼85.5%, at 550 nm) and low infrared transmittance (7%, at 2000 nm) including low-e and superhydrophilicity.

  16. Controlled surface morphology and hydrophilicity of polycaprolactone toward human retinal pigment epithelium cells

    International Nuclear Information System (INIS)

    Shahmoradi, Saleheh; Yazdian, Fatemeh; Tabandeh, Fatemeh; Soheili, Zahra-Soheila; Hatamian Zarami, Ashraf Sadat; Navaei-Nigjeh, Mona

    2017-01-01

    Applying scaffolds as a bed to enhance cell proliferation and even differentiation is one of the treatment of retina diseases such as age-related macular degeneration (AMD) which deteriorating photoreceptors and finally happening blindness. In this study, aligned polycaprolactone (PCL) nanofibers were electrospun and at different conditions and their characteristics were measured by scanning electron microscope (SEM) and contact angle. Response surface methodology (RSM) was used to optimize the diameter of fabricated nanofibers. Two factors as solution concentration and voltage value were considered as independent variables and their effects on nanofibers' diameters were evaluated by central composite design and the optimum conditions were obtained as 0.12 g/mL and 20 kV, respectively. In order to decrease the hydrophobicity of PCL, the surface of the fabricated scaffolds was modified by alkaline hydrolysis method. Contact time of the scaffolds and alkaline solution and concentration of alkaline solution were optimized using Box Behnken design and (120 min and 5 M were the optimal, respectively). Contact angle measurement showed the high hydrophilicity of treated scaffolds (with contact angle 7.48°). Plasma surface treatment was applied to compare the effect of using two kinds of surface modification methods simultaneously on hydrolyzed scaffolds. The RPE cells grown on scaffolds were examined by immunocytochemistry (ICC), MTT and continuous inspection of cellular morphology. Interestingly, Human RPE cells revealed their characteristic morphology on hydrolyzed scaffold well. As a result, we introduced a culture substrate with low diameter (185.8 nm), high porosity (82%) and suitable hydrophilicity (with contact angle 7.48 degree) which can be promising for hRPE cell transplantation. - Highlights: • Dimethylformamide (DMF) has significant effect on reduction of fibers' diameter. • Having high hydrophilicity by alkaline hydrolysis • Suitable

  17. Controlled surface morphology and hydrophilicity of polycaprolactone toward human retinal pigment epithelium cells

    Energy Technology Data Exchange (ETDEWEB)

    Shahmoradi, Saleheh; Yazdian, Fatemeh [Department of Life Science Engineering, Faculty of New sciences and Technologies, University of Tehran, Tehran (Iran, Islamic Republic of); Tabandeh, Fatemeh, E-mail: taban_f@nigeb.ac.ir [Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran (Iran, Islamic Republic of); Soheili, Zahra-Soheila [Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran (Iran, Islamic Republic of); Hatamian Zarami, Ashraf Sadat [Department of Life Science Engineering, Faculty of New sciences and Technologies, University of Tehran, Tehran (Iran, Islamic Republic of); Navaei-Nigjeh, Mona [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2017-04-01

    Applying scaffolds as a bed to enhance cell proliferation and even differentiation is one of the treatment of retina diseases such as age-related macular degeneration (AMD) which deteriorating photoreceptors and finally happening blindness. In this study, aligned polycaprolactone (PCL) nanofibers were electrospun and at different conditions and their characteristics were measured by scanning electron microscope (SEM) and contact angle. Response surface methodology (RSM) was used to optimize the diameter of fabricated nanofibers. Two factors as solution concentration and voltage value were considered as independent variables and their effects on nanofibers' diameters were evaluated by central composite design and the optimum conditions were obtained as 0.12 g/mL and 20 kV, respectively. In order to decrease the hydrophobicity of PCL, the surface of the fabricated scaffolds was modified by alkaline hydrolysis method. Contact time of the scaffolds and alkaline solution and concentration of alkaline solution were optimized using Box Behnken design and (120 min and 5 M were the optimal, respectively). Contact angle measurement showed the high hydrophilicity of treated scaffolds (with contact angle 7.48°). Plasma surface treatment was applied to compare the effect of using two kinds of surface modification methods simultaneously on hydrolyzed scaffolds. The RPE cells grown on scaffolds were examined by immunocytochemistry (ICC), MTT and continuous inspection of cellular morphology. Interestingly, Human RPE cells revealed their characteristic morphology on hydrolyzed scaffold well. As a result, we introduced a culture substrate with low diameter (185.8 nm), high porosity (82%) and suitable hydrophilicity (with contact angle 7.48 degree) which can be promising for hRPE cell transplantation. - Highlights: • Dimethylformamide (DMF) has significant effect on reduction of fibers' diameter. • Having high hydrophilicity by alkaline hydrolysis • Suitable

  18. Development of a new marker system for identifying the complex members of the low-molecular-weight glutenin subunit gene family in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhang, Xiaofei; Liu, Dongcheng; Yang, Wenlong; Liu, Kunfan; Sun, Jiazhu; Guo, Xiaoli; Li, Yiwen; Wang, Daowen; Ling, Hongqing; Zhang, Aimin

    2011-05-01

    Low-molecular-weight glutenin subunits (LMW-GSs) play an important role in determining the bread-making quality of bread wheat. However, LMW-GSs display high polymorphic protein complexes encoded by multiple genes, and elucidating the complex LMW-GS gene family in bread wheat remains challenging. In the present study, using conventional polymerase chain reaction (PCR) with conserved primers and high-resolution capillary electrophoresis, we developed a new molecular marker system for identifying LMW-GS gene family members. Based on sequence alignment of 13 LMW-GS genes previously identified in the Chinese bread wheat variety Xiaoyan 54 and other genes available in GenBank, PCR primers were developed and assigned to conserved sequences spanning the length polymorphism regions of LMW-GS genes. After PCR amplification, 17 DNA fragments in Xiaoyan 54 were detected using capillary electrophoresis. In total, 13 fragments were identical to previously identified LMW-GS genes, and the other 4 were derived from unique LMW-GS genes by sequencing. This marker system was also used to identify LMW-GS genes in Chinese Spring and its group 1 nulli-tetrasomic lines. Among the 17 detected DNA fragments, 4 were located on chromosome 1A, 5 on 1B, and 8 on 1D. The results suggest that this marker system is useful for large-scale identification of LMW-GS genes in bread wheat varieties, and for the selection of desirable LMW-GS genes to improve the bread-making quality in wheat molecular breeding programmes.

  19. Comparative Phenolic Fingerprint and LC-ESI+QTOF-MS Composition of Oregano and Rosemary Hydrophilic Extracts in Relation to their Antibacterial Effect

    OpenAIRE

    Florina Bunghez; Mihaela Ancuţa Morar; Raluca Maria Pop; Florina Romanciuc; Florina Csernatoni; Florinela Fetea; Zoriţa Diaconeasa; Carmen Socaciu

    2015-01-01

    Rosemary (Rosmarinus officinalis) and oregano (Origanum vulgare) are known aromatic plants used as spice, with good flavoring, preservative, antioxidant and antibacterial activity. Beside their known terpenoid content responsible for the antibacterial activity, the water-soluble compounds (phenolic derivatives) are of high interest not only for their antioxidant activity but as a good alternative or as a hydrophilic new antibacterial solution. Two hydrophilic extracts from each plant were obt...

  20. Surface modification of imprinted polymer microspheres with ultrathin hydrophilic shells to improve selective recognition of glutathione in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Song, Renyuan, E-mail: songrenyuan0726@163.com; Hu, Xiaoling; Guan, Ping; Li, Ji; Du, Chunbao; Qian, Liwei; Wang, Chaoli

    2016-03-01

    A universal, effective approach addressing the classical limitations of hydrophobic molecularly imprinted polymer (MIP) microspheres was described. Two water-compatible MIP microspheres with ultrathin hydrophilic shells were synthesized by controllable surface-graft polymerization using a charged monomer (methacrylic acid) and uncharged monomer (N-isopropylacrylamide) as the hydrophilic functional monomers for the recognition of glutathione in the aqueous medium. The morphological and chemical characteristics of the as-prepared water-compatible MIP microspheres were investigated by scanning electron microscopy, Fourier transform infrared spectroscopy and contact angle measurements. Their selective recognition properties were investigated by static binding tests and compared with those of the ungrafted MIP microspheres. The results of this study showed that the both as-prepared water-compatible MIP microspheres effectively decreased non-specific binding and enhanced the imprinting factor significantly, and the water-compatible MIP microspheres prepared using N-isopropylacrylamide as monomer exhibited a more remarkable recognition property. In addition, the thickness of surface-grafted hydrophilic layer was well controlled by adjusting the irradiation time to obtain the excellent recognition property. Finally, the applicability of the as-prepared water-compatible MIP microspheres as solid-phase extraction materials was investigated by competitive binding tests using a mixture of glutathione and its analogs. - Highlights: • Ultrathin hydrophilic shell was synthesized by controllable SIP approach. • Low nonspecific binding, high imprinting factor and selectivity were achieved. • Value of imprinting factor was controlled by adjusting irradiation time. • Selective solid-phase extraction of glutathione from a mixed solution of peptides.

  1. [Preparation of cysteine-click maltose modified silica as a hydrophilic interaction liquid chromatography material for the enrichment of glycopeptides].

    Science.gov (United States)

    Sun, Xudong; Zhang, Lingyi; Zhang, Weibing

    2017-07-08

    Because of the low abundance of glycoprotein and glycopeptide in complex biological samples, it is urgent to develop an efficient method for glycopeptide enrichment in comprehensive and in-depth glycoproteomes research. Herein, a novel hydrophilic silica was developed through surface modification with cysteine-click maltose (Cys-Mal@SiO 2 ). The developed hydrophilic silica was packed into a solid phase extraction (SPE) column, and applied to the highly selective enrichment and identification of N -linked glycopeptides. The Cys-Mal@SiO 2 demonstrated better identification capability over Cys@SiO 2 , Mal@SiO 2 and commercial hydrophilic interaction liquid chromatography (HILIC) in glycopeptide enrichment due to the synergistic effect of the two kinds of hydrophilic molecules. In the selective enrichment of tryptic digest from human immunoglobulin G, glycopeptides with higher signal-to-noises were detected by Cys-Mal@SiO 2 . In addition, 1551 unique glycopeptides with 906 N -glycosylation sites from 466 different N -linked glycoproteins were identified from the proteins extracted from mouse liver after the enrichment with Cys-Mal@SiO 2 . In contrast, the numbers of identified glycopeptides, glycoproteins and N -glycosylation sites identified by Cys@SiO 2 were 211, 67, 127 respectively less than by Cys-Mal@SiO 2 , and the corresponding numbers were 289, 76, 193 by Mal@SiO 2 . These results showed that the developed Cys-Mal@SiO 2 is a promising affinity material for N -glycoproteomics research of real complex biological samples.

  2. Antibiotic-eluting hydrophilized PMMA bone cement with prolonged bactericidal effect for the treatment of osteomyelitis.

    Science.gov (United States)

    Oh, Eun Jo; Oh, Se Heang; Lee, In Soo; Kwon, Oh Soo; Lee, Jin Ho

    2016-05-01

    Osteomyelitis is still considered to be one of the major challenges for orthopedic surgeons despite advanced antiseptic surgical procedures and pharmaceutical therapeutics. In this study, hydrophilized poly(methyl methacrylate) (PMMA) bone cements containing Pluronic F68 (EG79PG28EG79) as a hydrophilic additive and vancomycin (F68-VAcements) were prepared to allow the sustained release of the antibiotic for adequate periods of time without any significant loss of mechanical properties. The compressive strengths of the bone cements with Pluronic F68 compositions less than 7 wt% were not significantly different compared with the control vancomycin-loaded bone cement (VAcement). TheF68 (7 wt%)-VAcement showed sustained release of the antibiotic for up to 11 weeks and almost 100% release from the bone cement. It also prohibited the growth ofS. aureus(zone of inhibition) over six weeks (the required period to treat osteomyelitis), and it did not show any notable cytotoxicity. From an animal study using a femoral osteomyelitis rat model, it was observed that theF68 (7 wt%)-VAcement was effective for the treatment of osteomyelitis, probably as a result of the prolonged release of antibiotic from the PMMA bone cement. On the basis of these findings, it can be suggested that the use of Pluronic F68 as a hydrophilic additive for antibiotic-eluting PMMA bone cement can be a promising strategy for the treatment of osteomyelitis. © The Author(s) 2016.

  3. Hydrophilic nano-silica coating agents with platinum and diamond nanoparticles for denture base materials.

    Science.gov (United States)

    Yoshizaki, Taro; Akiba, Norihisa; Inokoshi, Masanao; Shimada, Masayuki; Minakuchi, Shunsuke

    2017-05-31

    Preventing microorganisms from adhering to the denture surface is important for ensuring the systemic health of elderly denture wearers. Silica coating agents provide high hydrophilicity but lack durability. This study investigated solutions to improve the durability of the coating layer, determine an appropriate solid content concentration of SiO 2 in the silica coating agent, and evaluate the effect of adding platinum (Pt) and diamond nanoparticles (ND) to the agent. Five coating agents were prepared with different SiO 2 concentrations with/without Pt and ND additives. The contact angle was measured, and the brush-wear test was performed. Scanning electron microscopy was used to investigate the silica coating layer. The appropriate concentration of SiO 2 was found to be 0.5-0.75 wt%. The coating agents with additives showed significantly high hydrophilicity immediately after coating and after the brush-wear test. The coating agents with/without additives formed a durable coating layer even after the brush-wear test.

  4. Change of trace elements content in sewage water under the influence of hydrophilic macrophytes

    International Nuclear Information System (INIS)

    Akhmed-Ogly, K V; Savichev, O G

    2014-01-01

    According to the researches carried out by authors in 2013, the estimate of the effectiveness of domestic sewage treatment with the help of hydrophilic vegetation was received. It has been shown that if sewage is treated with the help of macrophytes, copper and lead concentration reduces. Thus, if the volume of sewage treated by reed mace is 500 ml and 1 l, lead concentration decreases 5 and 3,5 times, if sewage is treated by reed, lead concentration decreases 2,5 times in both cases; if sewage is treated by reed mace copper concentration decreases 0,9 and 1,8 times (if the volume of sewage is 500 ml and 1 l), if sewage is treated by reed, copper concentration decreases 1,4 and 1,5 times respectively. The conclusion has been drawn: in West Siberia it is possible to use the shallow reservoirs with natural aeration and hydrophilic vegetation for effective sewage treatment from such heavy metals as lead and copper

  5. Hydrophilic polymer-coated microcatheter-guide wire system for superselective angiographic procedures

    International Nuclear Information System (INIS)

    Kobayashi, Hisashi; Hiraki, Yoshiyuki; Nishimoto, Hidetou; Miyazono, Nobuaki; Satake, Mitsuo; Shinohara, Shinji

    1988-01-01

    A hydrophilic polymer-coated microcatheter-guide wire device has been newly developed for superselective angiography and interventional procedures. The injection rate of this microcatheter was estimated at 2.0 ml/sec. on the maximum pressure of 300 psi when used a non-ionic low osmolar contrast medium, Iopamidol 300. In two of three cases this catheter could make easy insertion into the peripheral branches of the right hepatic artery which were approximately 1 mm in vascular diameter. (author)

  6. Temporal Changes in Extracellular Polymeric Substances on Hydrophobic and Hydrophilic Membrane Surfaces in a Submerged Membrane Bioreactor

    KAUST Repository

    Matar, Gerald Kamil

    2016-03-02

    Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m2.h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m2.h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be considered

  7. Preparation of hydrophilic magnetic nanospheres with high saturation magnetization

    International Nuclear Information System (INIS)

    Xu Hong; Tong Naihu; Cui Longlan; Lu Ying; Gu Hongchen

    2007-01-01

    Well-defined silica-magnetite core-shell nanospheres were prepared via a modified sol-gel method. Sphere-like magnetite aggregates were obtained as cores of the final nanospheres by assembling in the presence of Tween 20. Characterization by transmission electron microscopy (TEM) showed spherical morphology of the nanospheres with controlled silica shell thickness from 9 to 30 nm, depending on the amount of tetraethoxysilane (TEOS) used. The nanospheres contained up to 41.7 wt% magnetite with a saturation magnetization of 21.8 emu/g. Up to 35 μg/mg of the model biomolecule streptavidin (SA) could be bound covalently to the hydrophilic silica nanospheres

  8. Safety of hydrophilic guidewires used for side-branch protection during stenting and proximal optimization technique in coronary bifurcation lesions

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Arka [Division of Cardiology, University of Alabama-Birmingham (United States); Brott, Brigitta C. [Division of Cardiology, University of Alabama-Birmingham (United States); Department of Biomedical Engineering, University of Alabama-Birmingham (United States); Foley, Robin [Department of Material Science and Engineering, University of Alabama-Birmingham (United States); Alli, Oluseun; Sasse, Mark; Ahmed, Mustafa; Al Solaiman, Firas; Reddy, Gautam; Ather, Sameer [Division of Cardiology, University of Alabama-Birmingham (United States); Leesar, Massoud A., E-mail: mleesar@uab.edu [Division of Cardiology, University of Alabama-Birmingham (United States)

    2016-10-15

    Background and propose: In coronary bifurcation lesions (CBL), hydrophilic guidewires used for side-branch (SB) protection can be withdrawn from underneath the stent easier than other wires. However, the safety of which has not been investigated. Methods/materials: We performed scanning electron microscopic (SEM) examination of hydrophilic wires – the Whisper and Runthrough wires – used for SB protection during stenting and proximal optimization technique (POT) in 30 patients with CBL. The distal 15 cm of the wire was examined every 1 mm by SEM and 4500 segments were analyzed to investigate for wire fracture, polymer shearing (PS), and its correlations with post-stenting creatine kinase (CK)-MB release. Results: SEM examination showed no evidence for wire fracture. The total area of PS and the largest defect on the wire were significantly larger with the Whisper wire versus the Runthrough wire (0.15 ± 0.04 mm{sup 2} vs. 0.026 ± 0.01 mm{sup 2} and 0.04 ± 0.05 mm{sup 2} vs. 0.01 ± 0.01 mm{sup 2}; P < 0.05, respectively). The total length of PS and the longest defect on the wire were significantly longer with the Whisper wire vs. the Runthrough wire (12.1 ± 14.5 mm vs. 2.7 ± 3.0 mm and 2.9 ± 4.2 mm vs. 1.0 ± 1.2 mm; P < 0.05, respectively), but there were weak correlations between the extents of PS with CK-MB release. Conclusions: Hydrophilic guidewires may be safely used for SB protection during stenting and POT in CBLs. The extent of PS was significantly greater with the Whisper wire than with the Runthrough wire, but its correlation with post-stenting CK-MB release was weak. - Highlights: • There was no wire fracture by jailing hydrophilic wires. • There was no wire entrapment by jailing hydrophilic wires. • There were weak correlations between polymer shearing and creatine kinase-MB levels. • The impact of polymer shearing on myocardial infraction warrants future studies.

  9. Hydrophilic crosslinked-polymeric surface capable of effective suppression of protein adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Kamon, Yuri; Inoue, Naoko; Mihara, Erika; Kitayama, Yukiya; Ooya, Tooru; Takeuchi, Toshifumi, E-mail: takeuchi@gold.kobe-u.ac.jp

    2016-08-15

    Highlights: • Three hydrophilic crosslinked polymers were examined for protein adsorption. • All polymers showed low nonspecific adsorption of negatively charged proteins. • Poly(MMPC) showed the lowest adsorption for positively charged proteins. • Poly(MMPC) is able to reduce nonspecific adsorption of a wide range of proteins. - Abstract: We investigated the nonspecific adsorption of proteins towards three hydrophilic crosslinked-polymeric thin layers prepared by surface-initiated atom transfer radical polymerization using N,N′-methylenebisacrylamide, 2-(methacryloyloxy)ethyl-[N-(2-methacryloyloxy)ethyl]phosphorylcholine (MMPC), or 6,6′-diacryloyl-trehalose crosslinkers. Protein binding experiments were performed by surface plasmon resonance with six proteins of different pI values including α-lactalbumin, bovine serum albumin (BSA), myoglobin, ribonuclease A, cytochrome C, and lysozyme in buffer solution at pH 7.4. All of the obtained crosslinked-polymeric thin layers showed low nonspecific adsorption of negatively charged proteins at pH 7.4 such as α-lactalbumin, BSA, and myoglobin. Nonspecific adsorption of positively charged proteins including ribonuclease A, cytochrome C, and lysozyme was the lowest for poly(MMPC). These results suggest poly(MMPC) can effectively reduce nonspecific adsorption of a wide range of proteins that are negatively or positively charged at pH 7.4. MMPC is a promising crosslinker for a wide range of polymeric materials requiring low nonspecific protein binding.

  10. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding.

    Science.gov (United States)

    Hinton, Thomas J; Hudson, Andrew; Pusch, Kira; Lee, Andrew; Feinberg, Adam W

    2016-10-10

    Polydimethylsiloxane (PDMS) elastomer is used in a wide range of biomaterial applications including microfluidics, cell culture substrates, flexible electronics, and medical devices. However, it has proved challenging to 3D print PDMS in complex structures due to its low elastic modulus and need for support during the printing process. Here we demonstrate the 3D printing of hydrophobic PDMS prepolymer resins within a hydrophilic Carbopol gel support via freeform reversible embedding (FRE). In the FRE printing process, the Carbopol support acts as a Bingham plastic that yields and fluidizes when the syringe tip of the 3D printer moves through it, but acts as a solid for the PDMS extruded within it. This, in combination with the immiscibility of hydrophobic PDMS in the hydrophilic Carbopol, confines the PDMS prepolymer within the support for curing times up to 72 h while maintaining dimensional stability. After printing and curing, the Carbopol support gel releases the embedded PDMS prints by using phosphate buffered saline solution to reduce the Carbopol yield stress. As proof-of-concept, we used Sylgard 184 PDMS to 3D print linear and helical filaments via continuous extrusion and cylindrical and helical tubes via layer-by-layer fabrication. Importantly, we show that the 3D printed tubes were manifold and perfusable. The results demonstrate that hydrophobic polymers with low viscosity and long cure times can be 3D printed using a hydrophilic support, expanding the range of biomaterials that can be used in additive manufacturing. Further, by implementing the technology using low cost open-source hardware and software tools, the FRE printing technique can be rapidly implemented for research applications.

  11. Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with L-ascorbic acid, as materials for soft tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Kucinska-Lipka, J., E-mail: juskucin@pg.gda.pl [Gdank University of Technology, Faculty of Chemistry, Department of Polymer Technology, Narutowicza St. 11/12, 80-233 Gdansk (Poland); Gubanska, I.; Strankowski, M. [Gdank University of Technology, Faculty of Chemistry, Department of Polymer Technology, Narutowicza St. 11/12, 80-233 Gdansk (Poland); Cieśliński, H.; Filipowicz, N. [Gdansk University of Technology, Faculty of Chemistry, Department of Microbiology, Narutowicza St. 11/12, 80-233 Gdansk (Poland); Janik, H. [Gdank University of Technology, Faculty of Chemistry, Department of Polymer Technology, Narutowicza St. 11/12, 80-233 Gdansk (Poland)

    2017-06-01

    In this paper we described synthesis and characteristic of obtained hydrophilic polyurethanes (PURs) modified with ascorbic acid (commonly known as vitamin C). Such materials may find an application in the biomedical field, for example in the regenerative medicine of soft tissues, according to ascorbic acid wide influence on tissue regeneration Flora (2009), Szymańska-Pasternak et al. (2011), Taikarimi and Ibrahim (2011), Myrvik and Volk (1954), Li et al. (2001), Cursino et al. (2005) . Hydrophilic PURs were obtained with the use of amorphous α,ω-dihydroxy(ethylene-butylene adipate) (dHEBA) polyol, 1,4-butanediol (BDO) chain extender and aliphatic 4,4′-methylenebis(cyclohexyl isocyanate) (HMDI). HMDI was chosen as a nontoxic diisocyanate, suitable for biomedical PUR synthesis. Modification with L-ascorbic acid (AA) was performed to improve obtained PUR materials biocompatibility. Chemical structure of obtained PURs was provided and confirmed by Fourier transform infrared spectroscopy (FTIR) and Proton nuclear magnetic resonance spectroscopy ({sup 1}HNMR). Differential scanning calorimetry (DSC) was used to indicate the influence of ascorbic acid modification on such parameters as glass transition temperature, melting temperature and melting enthalpies of obtained materials. To determine how these materials may potentially behave, after implementation in tissue, degradation behavior of obtained PURs in various chemical environments, which were represented by canola oil, saline solution, distilled water and phosphate buffered saline (PBS) was estimated. The influence of AA on hydrophilic-hydrophobic character of obtained PURs was established by contact angle study. This experiment revealed that ascorbic acid significantly improves hydrophilicity of obtained PUR materials and the same cause that they are more suitable candidates for biomedical applications. Good hemocompatibility characteristic of studied PUR materials was confirmed by the hemocompatibility test

  12. Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with L-ascorbic acid, as materials for soft tissue regeneration

    International Nuclear Information System (INIS)

    Kucinska-Lipka, J.; Gubanska, I.; Strankowski, M.; Cieśliński, H.; Filipowicz, N.; Janik, H.

    2017-01-01

    In this paper we described synthesis and characteristic of obtained hydrophilic polyurethanes (PURs) modified with ascorbic acid (commonly known as vitamin C). Such materials may find an application in the biomedical field, for example in the regenerative medicine of soft tissues, according to ascorbic acid wide influence on tissue regeneration Flora (2009), Szymańska-Pasternak et al. (2011), Taikarimi and Ibrahim (2011), Myrvik and Volk (1954), Li et al. (2001), Cursino et al. (2005) . Hydrophilic PURs were obtained with the use of amorphous α,ω-dihydroxy(ethylene-butylene adipate) (dHEBA) polyol, 1,4-butanediol (BDO) chain extender and aliphatic 4,4′-methylenebis(cyclohexyl isocyanate) (HMDI). HMDI was chosen as a nontoxic diisocyanate, suitable for biomedical PUR synthesis. Modification with L-ascorbic acid (AA) was performed to improve obtained PUR materials biocompatibility. Chemical structure of obtained PURs was provided and confirmed by Fourier transform infrared spectroscopy (FTIR) and Proton nuclear magnetic resonance spectroscopy ( 1 HNMR). Differential scanning calorimetry (DSC) was used to indicate the influence of ascorbic acid modification on such parameters as glass transition temperature, melting temperature and melting enthalpies of obtained materials. To determine how these materials may potentially behave, after implementation in tissue, degradation behavior of obtained PURs in various chemical environments, which were represented by canola oil, saline solution, distilled water and phosphate buffered saline (PBS) was estimated. The influence of AA on hydrophilic-hydrophobic character of obtained PURs was established by contact angle study. This experiment revealed that ascorbic acid significantly improves hydrophilicity of obtained PUR materials and the same cause that they are more suitable candidates for biomedical applications. Good hemocompatibility characteristic of studied PUR materials was confirmed by the hemocompatibility test with

  13. Hydrophilic interaction chromatography-mass spectrometry for anionic metabolic profiling of urine from antibiotic-treated rats

    NARCIS (Netherlands)

    Kok, Miranda G M; Swann, Jonathan R; Wilson, Ian D; Somsen, Govert W; de Jong, Gerhardus J

    Hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial-host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared

  14. Hydrophilic interaction chromatography-mass spectrometry for anionic metabolic profiling of urine from antibiotic-treated rats

    NARCIS (Netherlands)

    Kok, Miranda G M; Swann, Jonathan R.; Wilson, Ian D.; Somsen, Govert W.; de Jong, Gerhardus J.

    2014-01-01

    Hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial-host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared

  15. Hydrophilicity improvement of polyethersulfone membranes by grafting methacrylic acid with γ-ray irradiation

    International Nuclear Information System (INIS)

    Li Jing; Hou Zhengchi; Xie Leidong; Zhang Fengying; Deng Bo

    2005-01-01

    Grafting methyacrylic acid onto poly(ether sulfone) membranes was realized by means of simultaneous irradiation in liquids. The modified membranes with different grafting ratios were obtained by changing the concentration of methyacrylic acid. It was shown that the grafting ratio increased lineally as the monomer concentration was less than 10% and hydrophilicity of the membranes was improved with increasing grafting ratios. (authors)

  16. Role of the hydrophilic channels of simian virus 40 T-antigen helicase in DNA replication.

    Science.gov (United States)

    Wang, Weiping; Manna, David; Simmons, Daniel T

    2007-05-01

    The simian virus 40 (SV40) hexameric helicase consists of a central channel and six hydrophilic channels located between adjacent large tier domains within each hexamer. To study the function of the hydrophilic channels in SV40 DNA replication, a series of single-point substitutions were introduced at sites not directly involved in protein-protein contacts. The mutants were characterized biochemically in various ways. All mutants oligomerized normally in the absence of DNA. Interestingly, 8 of the 10 mutants failed to unwind an origin-containing DNA fragment and nine of them were totally unable to support SV40 DNA replication in vitro. The mutants fell into four classes based on their biochemical properties. Class A mutants bound DNA normally and had normal ATPase and helicase activities but failed to unwind origin DNA and support SV40 DNA replication. Class B mutants were compromised in single-stranded DNA and origin DNA binding at low protein concentrations. They were defective in helicase activity and unwinding of the origin and in supporting DNA replication. Class C and D mutants possessed higher-than-normal single-stranded DNA binding activity at low protein concentrations. The class C mutants failed to separate origin DNA and support DNA replication. The class D mutants unwound origin DNA normally but were compromised in their ability to support DNA replication. Taken together, these results suggest that the hydrophilic channels have an active role in the unwinding of SV40 DNA from the origin and the placement of the resulting single strands within the helicase.

  17. Hydrophilicity improvement in polyphenylsulfone nanofibrous filtration membranes through addition of polyethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Shirin [Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Membrane Processes and Membrane Research Center, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Mousavi, Seyed Mahmoud, E-mail: mmousavi@um.ac.ir [Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Shahtahmassebi, Nasser [Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Nanoresearch Center, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Saljoughi, Ehsan [Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2015-12-30

    Highlights: • Novel hydrophilic polyphenylsulfone electrospun nanofibrous membrane was prepared. • Blending the PPSU solution with 10 wt.% PEG 400 led to the optimum results. • Water contact angle of the optimum membrane was determined as 8.9°. • Remarkable increase in pure water flux and flux recovery was achieved. • Rejection values of the wastewater pollution indices remained almost unchanged. - Abstract: Novel hydrophilic polyphenylsulfone (PPSU) nanofibrous membrane was prepared by electrospinning of the PPSU solution blended with polyethylene glycol 400 (PEG 400). The influence of the PEG concentration on the membrane characteristics was studied using scanning electron microscopy (SEM), water contact angle measurement, and tensile test. Filtration performance of the membranes was investigated by measurement of pure water flux (PWF) and determination of the rejection values of the pollution indices during treatment of canned beans production wastewater. According to the results, blending the PPSU solution with 10 wt.% PEG 400 resulted in formation of a nanofibrous membrane with high porosity and increased mechanical strength which exhibited a low water contact angle of 8.9° and high water flux of 7920 L/m{sup 2}h. Flux recovery of the mentioned membrane which was assessed by filtration of a solution containing bovine serum albumin (BSA) was 83% indicating a noticeable antifouling property.

  18. Membrane Distillation of Meat Industry Effluent with Hydrophilic Polyurethane Coated Polytetrafluoroethylene Membranes

    Directory of Open Access Journals (Sweden)

    M. G. Mostafa

    2017-09-01

    Full Text Available Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE membranes with a hydrophilic polyurethane surface layer (PU-PTFE are used for the first time for direct contact MD (DCMD on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5–6 L/m2/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability.

  19. Membrane Distillation of Meat Industry Effluent with Hydrophilic Polyurethane Coated Polytetrafluoroethylene Membranes.

    Science.gov (United States)

    Mostafa, M G; Zhu, Bo; Cran, Marlene; Dow, Noel; Milne, Nicholas; Desai, Dilip; Duke, Mikel

    2017-09-29

    Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD) may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE) membranes with a hydrophilic polyurethane surface layer (PU-PTFE) are used for the first time for direct contact MD (DCMD) on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF) was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5-6 L/m²/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability.

  20. Sum Frequency Generation Vibrational Spectroscopy Studies on ModelPeptide Adsorption at the Hydrophobic Solid-Water and HydrophilicSolid-Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    York, Roger L. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been used to study the interfacial structure of several polypeptides and amino acids adsorbed to hydrophobic and hydrophilic surfaces under a variety of experimental conditions. Peptide sequence, peptide chain length, peptide hydrophobicity, peptide side-chain type, surface hydrophobicity, and solution ionic strength all affect an adsorbed peptide's interfacial structure. Herein, it is demonstrated that with the choice of simple, model peptides and amino acids, surface specific SFG vibrational spectroscopy can be a powerful tool to elucidate the interfacial structure of these adsorbates. Herein, four experiments are described. In one, a series of isosequential amphiphilic peptides are synthesized and studied when adsorbed to both hydrophobic and hydrophilic surfaces. On hydrophobic surfaces of deuterated polystyrene, it was determined that the hydrophobic part of the peptide is ordered at the solid-liquid interface, while the hydrophilic part of the peptide appears to have a random orientation at this interface. On a hydrophilic surface of silica, it was determined that an ordered peptide was only observed if a peptide had stable secondary structure in solution. In another experiment, the interfacial structure of a model amphiphilic peptide was studied as a function of the ionic strength of the solution, a parameter that could change the peptide's secondary structure in solution. It was determined that on a hydrophobic surface, the peptide's interfacial structure was independent of its structure in solution. This was in contrast to the adsorbed structure on a hydrophilic surface, where the peptide's interfacial structure showed a strong dependence on its solution secondary structure. In a third experiment, the SFG spectra of lysine and proline amino acids on both hydrophobic and hydrophilic surfaces were obtained by using a different experimental geometry that increases the SFG signal

  1. Thiolated nanocarriers for oral delivery of hydrophilic macromolecular drugs.

    Science.gov (United States)

    Dünnhaupt, S; Barthelmes, J; Köllner, S; Sakloetsakun, D; Shahnaz, G; Düregger, A; Bernkop-Schnürch, A

    2015-03-06

    It was the aim of this study to investigate the effect of unmodified as well as thiolated anionic poly(acrylic acid) (PAA) and cationic chitosan (CS) utilized in free-soluble form and as nanoparticulate system on the absorption of the hydrophilic compound FD4 across intestinal epithelial cell layer with and without a mucus layer. Modifications of these polymers were achieved by conjugation with cysteine to PAA (PAA-Cys) and thioglycolic acid to CS (CS-TGA). Particles were prepared via ionic gelation and characterized based on their amount of thiol groups, particle size and zeta potential. Effects on the cell layer concerning absorption enhancement, transepithelial electrical resistance (TEER) and cytotoxicity were investigated. Permeation enhancement was evaluated with respect to in vitro transport of FD4 across Caco-2 cells, while mucoadhesion was indirectly examined in terms of adsorption behaviour when cells were covered with a mucus layer. Lyophilized particles displayed around 1000 μmol/g of free thiol groups, particle sizes of less than 300 nm and a zeta potential of 18 mV (CS-TGA) and -14 mV (PAA-Cys). Cytotoxicity studies confirmed that all polymer samples were used at nontoxic concentrations (0.5% m/v). Permeation studies revealed that all thiolated formulations had pronounced effects on the paracellular permeability of mucus-free Caco-2 layers and enhanced the permeation of FD4 3.0- to 5.3-fold. Moreover, polymers administered as particles showed a higher permeation enhancement than their corresponding solutions. However, the absorption-enhancing effect of each thiolated formulation was significantly (pthiolated polymers as nanoparticulate delivery systems represent a promising tool for the oral administration of hydrophilic macromolecules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Laser micro-machining of hydrophobic-hydrophilic patterns for fluid driven self-alignment in micro-assembly

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Jorritsma, Mark; Arnaldo del Cerro, D.; Chang, Bo; Liimatainen, Ville; Zhou, Quan; Huis in 't Veld, Bert

    2011-01-01

    Fluid driven self-alignment is a low cost alternative to fast but relatively inaccurate robotic pickand-place assembly of micro-fabricated components. This fluidic self-alignment technique relies on a hydrophobic-hydrophilic pattern on the surface of the receiving substrate, which confines a fluid

  3. Wiping frictional properties of electrospun hydrophobic/hydrophilic polyurethane nanofiber-webs on soda-lime glass and silicon-wafer.

    Science.gov (United States)

    Watanabe, Kei; Wei, Kai; Nakashima, Ryu; Kim, Ick Soo; Enomoto, Yuji

    2013-04-01

    In the present work, we conducted the frictional tests of hydrophobic and hydrophilic polyurethane (PUo and PUi) nanofiber webs against engineering materials; soda-lime glass and silicon wafer. PUi/glass combination, with highest hydrophilicity, showed the highest friction coefficient which decrease with the increase of the applied load. Furthermore, the effects of fluorine coating are also investigated. The friction coefficient of fluorine coated hydrophobic PU nanofiber (PUof) shows great decrease against the silicon wafer. Finally, wiping ability and friction property are investigated when the substrate surface is contaminated. Nano-particle dusts are effectively collected into the pores by wiping with PUo and PUi nanofiber webs both on glass and silicon wafer. The friction coefficient gradually increased with the increase of the applied load.

  4. Poly thiophene hydrophobic and hydrophilic compounds, silver and iodine synthesized by plasma

    International Nuclear Information System (INIS)

    Palacios, J.C.; Chavez, J.A.; Olayo, M.G.; Cruz, G.J.

    2007-01-01

    Compounds in thin films of poly thiophene with silver and poly thiophene doped with iodine and silver using splendor discharges were synthesized. It is studied the wettability of the compounds and its transport properties. It was found that the compounds can modify their hydrophilic to hydrophobic behavior controlling their surface ruggedness and the metallic content. The doped with iodine plays a fundamental paper in the modification of the ruggedness of the compounds. (Author)

  5. Efficacy of highly hydrophilic soft contact lenses for persistent corneal epithelial defects after anterior segment surgery

    Directory of Open Access Journals (Sweden)

    Zhi-Wei Peng

    2015-02-01

    Full Text Available AIM:To investigate the efficacy of highly hydrophilic soft contact lenses for persistent corneal epithelial defects.METHODS:In this retrospective case analysis, 28 patients(28 eyeswith persistent corneal epithelial defects after anterior segment surgery from January 2011 to June 2013 in our hospital were reviewed. After regular treatment for at least 2wk, the persistent corneal epithelial defects were treated with highly hydrophilic soft contact lenses, until the corneal epithelial healing. Continued to wear the same lens no more than 3wk, or in need of replacement the new one. All cases were followed up for 6mo. Key indicators of corneal epithelial healling, corneal fluorescein staining and ocular symptoms improvement were observed.RESULTS: Twenty-one eyes were cured(75.00%, markedly effective in 5 eyes(17.86%, effective in 2 eyes(7.14%, no invalid cases, the total efficiency of 100.00%. Ocular symptoms of 25 cases(89.29%relieved within 2d, the rest 3 cases(10.71%relieved within 1wk. The corneal epithelial of 6 cases(21.43%repaired in 3wk, 13 cases(46.43%in 6wk, 7 cases(25.00%in 9wk, 2 cases(7.14%over 12wk. There were no signs of secondary infection. And no evidence of recurrence in 6mo. CONCLUSION: Highly hydrophilic soft contact lenses could repair persistent corneal epithelial defects after anterior segment surgery significantly, while quickly and effectively relieve a variety of ocular irritation.

  6. Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis.

    Science.gov (United States)

    Bui, Nhu-Ngoc; McCutcheon, Jeffrey R

    2013-02-05

    Engineered osmosis (e.g., forward osmosis, pressure-retarded osmosis, direct osmosis) has emerged as a new platform for applications to water production, sustainable energy, and resource recovery. The lack of an adequately designed membrane has been the major challenge that hinders engineered osmosis (EO) development. In this study, nanotechnology has been integrated with membrane science to build a next generation membrane for engineered osmosis. Specifically, hydrophilic nanofiber, fabricated from different blends of polyacrylonitrile and cellulose acetate via electrospinning, was found to be an effective support for EO thin film composite membranes due to its intrinsically wetted open pore structure with superior interconnectivity. The resulting composite membrane exhibits excellent permselectivity while also showing a reduced resistance to mass transfer that commonly impacts EO processes due to its thin, highly porous nanofiber support layer. Our best membrane exhibited a two to three times enhanced water flux and 90% reduction in salt passage when compared to a standard commercial FO membrane. Furthermore, our membrane exhibited one of the lowest structural parameters reported in the open literature. These results indicate that hydrophilic nanofiber supported thin film composite membranes have the potential to be a next generation membrane for engineered osmosis.

  7. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles.

    Science.gov (United States)

    Koehler, Kirsten A; DeMott, Paul J; Kreidenweis, Sonia M; Popovicheva, Olga B; Petters, Markus D; Carrico, Christian M; Kireeva, Elena D; Khokhlova, Tatiana D; Shonija, Natalia K

    2009-09-28

    Cloud condensation nuclei (CCN) activity and ice nucleation behavior (for temperaturesnucleation experiments below -40 degrees C, AEC particles nucleated ice near the expected condition for homogeneous freezing of water from aqueous solutions. In contrast, GTS, TS, and TC1 required relative humidity well in excess of water saturation at -40 degrees C for ice formation. GTS particles required water supersaturation conditions for ice activation even at -51 degrees C. At -51 to -57 degrees C, ice formation in particles with electrical mobility diameter of 200 nm occurred in up to 1 in 1000 TS and TC1 particles, and 1 in 100 TOS particles, at relative humidities below those required for homogeneous freezing in aqueous solutions. Our results suggest that heterogeneous ice nucleation is favored in cirrus conditions on oxidized hydrophilic soot of intermediate polarity. Simple considerations suggest that the impact of hydrophilic soot particles on cirrus cloud formation would be most likely in regions of elevated atmospheric soot number concentrations. The ice formation properties of AEC soot are reasonably consistent with present understanding of the conditions required for aircraft contrail formation and the proportion of soot expected to nucleate under such conditions.

  8. Effect of heat treatment on surface hydrophilicity-retaining ability of titanium dioxide nanotubes

    Science.gov (United States)

    Sun, Yu; Sun, Shupei; Liao, Xiaoming; Wen, Jiang; Yin, Guangfu; Pu, Ximing; Yao, Yadong; Huang, Zhongbing

    2018-05-01

    The aim of this study is to investigate the effect of different annealing temperature and atmosphere on the surface wettability retaining properties of titania nanotubes (TNs) fabricated by anodization. The TNs morphology, crystal phase composition and surface elemental composition and water contact angle (WCA) were investigated by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and contact angle instrument, respectively. After the samples annealed at 200 °C, 450 °C, 850 °C have been stored in air for 28 days, the WCAs increase to 31.7°, 21.1° and 110.5°, respectively. The results indicate that crystal phase composition of TNs plays an important role in surface wettability. Compared with the WCA (21.1°) of the samples annealed in air after 28 days, the WCA of samples annealed in oxygen-deficient atmosphere is lower, suggesting the contribution of oxygen vacancy in the enhanced hydrophilicity-retaining ability. Our study demonstrates that the surface hydrophilicity-retaining ability of TNs is related to the ordered nanotubular structure, crystal structure, the amount of surface hydroxyl group and oxygen vacancy defects.

  9. Functionalization of a Hydrophilic Commercial Membrane Using Inorganic-Organic Polymers Coatings for Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Lies Eykens

    2017-06-01

    Full Text Available Membrane distillation is a thermal separation technique using a microporous hydrophobic membrane. One of the concerns with respect to the industrialization of the technique is the development of novel membranes. In this paper, a commercially available hydrophilic polyethersulfone membrane with a suitable structure for membrane distillation was modified using available hydrophobic coatings using ORMOCER® technology to obtain a hydrophobic membrane that can be applied in membrane distillation. The surface modification was performed using a selection of different components, concentrations, and application methods. The resulting membranes can have two hydrophobic surfaces or a hydrophobic and hydrophilic surface depending on the application method. An extensive characterization procedure confirmed the suitability of the coating technique and the obtained membranes for membrane distillation. The surface contact angle of water could be increased from 27° up to 110°, and fluxes comparable to membranes commonly used for membrane distillation were achieved under similar process conditions. A 100 h test demonstrated the stability of the coating and the importance of using sufficiently stable base membranes.

  10. Ultrafast dynamics of hydrophilic carbonyl carotenoids - Relation between structure and excited-state properties in polar solvents

    Czech Academy of Sciences Publication Activity Database

    Chábera, P.; Fuciman, M.; Naqvi, K.R.; Polívka, Tomáš

    2010-01-01

    Roč. 373, 1-2 (2010), s. 56-64 ISSN 0301-0104 Institutional research plan: CEZ:AV0Z50510513 Keywords : hydrophilic carotenoids * excited-state dynamics * charge-transfer state Subject RIV: BO - Biophysics Impact factor: 2.017, year: 2010

  11. Comparison of hydrophobic and hydrophilic intraocular lens in preventing posterior capsule opacification after cataract surgery: An updated meta-analysis.

    Science.gov (United States)

    Zhao, Yang; Yang, Ke; Li, Jiaxin; Huang, Yang; Zhu, Siquan

    2017-11-01

    Posterior capsular opacification (PCO) is a common long-term complication of cataract surgery. Intraocular lens design and material have been implicated in influencing the development of PCO. This study evaluated the association of hydrophobic and hydrophilic intraocular lenses on preventing PCO. Medline, Cochrane, EMBASE, and Google Scholar databases were searched until August 3, 2016, using the following search terms: cataract, posterior capsule opacification, and intraocular lens. Eligible studies included randomized controlled trials (RCTs), retrospective, and cohort studies. Eleven studies were included in the study with a total of 889 eyes/patients. The overall analysis revealed that hydrophobic intraocular lenses were associated with lower Nd:YAG laser capsulotomy rates than hydrophilic lenses [odds ratio (OR) = 0.38, 95% confidence interval (95% CI) = 0.16-0.91, P = .029]. Hydrophobic intraocular lenses were also associated with lower subjective PCO score (diff. in means: -1.32, 95% CI = -2.39 to -0.25, P = .015) and estimated PCO score (diff. in means: -2.23; 95% CI, -3.80 to -0.68, P = .005) as compared with hydrophilic lenses. Objective PCO score was similar between lens types. (diff. in means: -0.075; 95% CI, -0.18 to 0.035; P = .182). Pooled analysis found that visual acuity was similar between hydrophobic and hydrophilic intraocular lenses (diff. in means: -0.016; 95% CI, -0.041 to 0.009, P = .208). In general, PCO scores and the rate of Nd:YAG laser capsulotomy were influenced by intraocular lens biomaterial. Lens made of hydrophobic biomaterial were overall superior in lowering the PCO score and the Nd:YAG laser capsulotomy rate, but not visual acuity.

  12. Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamarneh, Ibrahim, E-mail: hamarnehibrahim@yahoo.com [Department of Physics, Faculty of Science, Al-Balqa Applied University, Salt 19117 (Jordan); Pedrow, Patrick [School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164 (United States); Eskhan, Asma; Abu-Lail, Nehal [Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Surface hydrophilic property of surgical-grade 316L stainless steel was enhanced by Ar-O{sub 2} corona streamer plasma treatment. Black-Right-Pointing-Pointer Hydrophilicity, surface morphology, roughness, and chemical composition before and after plasma treatment were evaluated. Black-Right-Pointing-Pointer Contact angle measurements and surface-sensitive analyses techniques, including XPS and AFM, were carried out. Black-Right-Pointing-Pointer Optimum plasma treatment conditions of the SS 316L surface were determined. - Abstract: Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O{sub 2} gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kV{sub RMS}) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O{sub 2} plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.

  13. Systematic Comparison of Reverse Phase and Hydrophilic Interaction Liquid Chromatography Platforms for the Analysis of N-linked Glycans

    Science.gov (United States)

    Walker, S. Hunter; Carlisle, Brandon C.; Muddiman, David C.

    2013-01-01

    Due to the hydrophilic nature of glycans, reverse phase chromatography has not been widely used as a glycomic separation technique coupled to mass spectrometry. Other approaches such as hydrophilic interaction chromatography and porous graphitized carbon chromatography are often employed, though these strategies frequently suffer from decreased chromatographic resolution, long equilibration times, indefinite retention, and column bleed. Herein, it is shown that through an efficient hydrazone formation derivatization of N-linked glycans (∼4 hr of additional sample preparation time which is carried out in parallel), numerous experimental and practical advantages are gained when analyzing the glycans by online reverse phase chromatography. These benefits include an increased number of glycans detected, increased peak capacity of the separation, and the ability to analyze glycans on the identical liquid chromatography-mass spectrometry platform commonly used for proteomic analyses. The data presented show that separation of derivatized N-linked glycans by reverse phase chromatography significantly out-performs traditional separation of native or derivatized glycans by hydrophilic interaction chromatography. Furthermore, the movement to a more ubiquitous separation technique will afford numerous research groups the opportunity to analyze both proteomic and glycomic samples on the same platform with minimal time and physical change between experiments, increasing the efficiency of ‘multi-omic’ biological approaches. PMID:22954204

  14. Myocardial capillary permeability for small hydrophilic indicators during normal physiological conditions and after ischemia and reperfusion

    DEFF Research Database (Denmark)

    Svendsen, J H

    1991-01-01

    Myocardial capillary permeability for small hydrophilic solutes (51Cr-EDTA or 99mTc-DTPA) has been measured using intracoronary indicator bolus injection and external radioactivity registration (the single injection, residue detection method). The method is based on kinetic separation...

  15. CHARACTERIZATION OF TERNARY SYSTEM OF POORLY SOLUBLE DRUG IN VARIOUS HYDROPHILIC CARRIERS

    OpenAIRE

    Vijay Kumar; Shankaraiah MM; Venkatesh JS; Rangaraju D; C.Nagesh

    2011-01-01

    The present study aims to experiment the solid dispersion of poorly water soluble drug fenbendazole as model drug. Fenbendazole is an Antihelmintic drug (BCS class 2).The purpose of this study was to enhance the dissolution of Fenbendazole by solid dispersions consisting of the drug, a polymeric carrier, Binary and ternary system were prepared by kneading method using hydrophilic polymers like polyvinylpyrrolidone K-25 (PVP K25), beta-cyclodextrin (BCD),mannitol and urea. The prepared form...

  16. Synthesis of Hydrophilic Sulfur-Containing Adsorbents for Noble Metals Having Thiocarbonyl Group Based on a Methacrylate Bearing Dithiocarbonate Moieties

    Directory of Open Access Journals (Sweden)

    Haruki Kinemuchi

    2018-01-01

    Full Text Available Novel hydrophilic sulfur-containing adsorbents for noble metals were prepared by the radical terpolymerization of a methacrylate bearing dithiocarbonate moieties (DTCMMA, hydrophilic monomers, and a cross-linker. The resulting adsorbents efficiently and selectively adsorbed noble metals (Au, Ag, and Pd from various multielement aqueous solutions at room temperature owing to the thiocarbonyl group having high affinity toward noble metals. The metal adsorption by the adsorbents was proceeded by simple mixing followed by filtration. The noble metal selectivity of the adsorbent obtained from DTCMMA and N-isopropylacrylamide was higher than that of the adsorbent obtained from DTCMMA and N,N-dimethylacrylamide due to the lower nonspecific adsorption.

  17. Distribution of 14C after oral administration of [U-14C]labeled methyl linoleate hydroperoxides and their secondary oxidation products in rats

    International Nuclear Information System (INIS)

    Oarada, M.; Miyazawa, T.; Kaneda, T.

    1986-01-01

    To study the toxicity of low molecular weight (LMW) compounds formed during the autoxidation of oils, 14 C-labeled primary monomeric compounds (methyl linoleate hydroperoxides) and secondary oxidation products, i.e., polymer and LMW compounds prepared from autoxidized methyl [U- 14 C]linoleate hydroperoxides (MLHPO) were orally administered to rats, and their radioactive distributions in tissues and organs were compared. The polymeric fraction consisted mainly of dimers of MLHPO. For the LMW fraction, 4-hydroxy-2-nonenal, 8-hydroxy methyl octanoate and 10-formyl methyl-9-decenoate were identified as major constituents by gas chromatography-mass spectrometry (GC-MS) after chemical reduction and derivatization. When LMW compounds were administered to rats, 14 CO 2 expiration and the excreted radioactivity in urine in 12 hr were significantly higher than those from polymer or MLHPO administration. Maximum 14 CO 2 expiration appeared 2-4 hr after the dose of LMW compounds. Radioactivity of the upper part of small intestines six hr after the dose of LMW compounds was higher than the values from administered polymer or MLHPO. The remaining radioactivity in the digestive contents and feces 12 hr after administration of LMW compounds was much lower than the values observed from administered polymer or MLHPO. Among internal organs, the liver contained the highest concentration of radioactivities from polymer, MLHPO and LMW fractions, and an especially higher level of radioactivity was found in liver six hr after the administration of LMW compounds. Six hours after the dose of LMW compounds, a relatively higher level of radioactivity also was detected in kidney, brain, heart and lung

  18. Solubility and dissolution enhancement of flurbiprofen by solid dispersion using hydrophilic carriers

    Directory of Open Access Journals (Sweden)

    Bhaskar Daravath

    2018-05-01

    Full Text Available ABSTRACT The intent of the current work is to study the effect of polyethylene glycol 8000 and polyethylene glycol 10000 as hydrophilic carriers on dissolution behaviour of flurbiprofen. In the present study, solvent evaporation method was used to prepare flurbiprofen solid dispersions and evaluated for physico-chemical properties, drug-carrier compatibility studies and dissolution behaviour of drug. Solubility studies showed more solubility in higher pH values and formulations SD4 and SD8 were selected to prepare the fast dissolving tablets. FTIR and DSC study showed no interaction and drug was dispersed molecularly in hydrophilic carrier. XRD studies revealed that there was change in the crystallinity of the drug. The results of In vitro studies showed SD8 formulation confer significant improvement (p<0.05 in drug release, Q20 was 99.08±1.35% compared to conventional and marketed tablets (47.31±0.74% and 56.86±1.91%. The mean dissolution time (MDT was reduced to 8.79 min compared to conventional and marketed tablets (25.76 and 22.22 min. indicating faster drug release. The DE (% dissolution efficiency was increased by 2.5 folds (61.63% compared to conventional tablets (23.71%. From the results, it is evident that polyethylene glycol solid dispersions in less carrier ratio may enhance the solubility and there by improve the dissolution rate of flurbiprofen.

  19. Assessing interactions of hydrophilic nanoscale TiO{sub 2} with soil water

    Energy Technology Data Exchange (ETDEWEB)

    Priester, John H.; Ge, Yuan; Chang, Vivian [University of California, Santa Barbara, Bren School of Environmental Science and Management (United States); Stoimenov, Peter K. [University of California, Santa Barbara, Department of Chemistry and Biochemistry (United States); Schimel, Joshua P. [University of California, Santa Barbara, Earth Research Institute (United States); Stucky, Galen D. [University of California, Santa Barbara, UC Center for the Environmental Implications of Nanotechnology (United States); Holden, Patricia A., E-mail: holden@bren.ucsb.edu [University of California, Santa Barbara, Bren School of Environmental Science and Management (United States)

    2013-09-15

    The implications of manufactured nanoscale materials (MNMs) in unsaturated soil are mostly unknown. Owing to its widespread use, nanoscale (n) TiO{sub 2} is expected to enter soils where its accumulation could impact soil processes. Yet fundamental information is lacking regarding nTiO{sub 2} in situ wettability, i.e., interactions with soil water that relate to nTiO{sub 2} exposure and bioavailability. To probe nTiO{sub 2} interactions with soil water, we amended a natural soil with 20 mg per g of P25 nTiO{sub 2}, a high-production, hydrophilic MNM that, based on its small size (25 nm nominal), provides ample specific surface area (SSA) for water sorption. We then measured nTiO{sub 2}-amended soil SSA, and conducted a dynamic water vapor conditioning experiment. Early time-course water sorption into soil, with and without nTiO{sub 2}, was clearly diffusional. Over 9 months, soil water content asymptotically equilibrated. However, despite amending with nTiO{sub 2} levels that increased the soil SSA by 16 %, measured water sorption rates and endpoint soil water contents were mostly unchanged by P25 nTiO{sub 2}. Our results indicate that as-manufactured hydrophilic P25 nTiO{sub 2} was hydrophobic in soil, a finding relevant to nTiO{sub 2} bioavailability and transport.

  20. Hydrophilic carboxylic acids and iridoid glycosides in the juice of American and European cranberries (Vaccinium macrocarpon and V. oxycoccos), lingonberries (V. vitis-idaea), and blueberries (V. myrtillus)

    DEFF Research Database (Denmark)

    Jensen, Heidi Dorthe; Krogfelt, Karen A; Cornett, Claus

    2002-01-01

    iridoid glucosides were shown to be monotropein and 6,7-dihydromonotropein by MS and NMR spectroscopy. A fast reversed-phase HPLC method for quantification of the hydrophilic carboxylic acids was developed and used for analyses of cranberry, lingonberry, and blueberry juices. The level of hydrophilic...

  1. Temporal Changes in Extracellular Polymeric Substances on Hydrophobic and Hydrophilic Membrane Surfaces in a Submerged Membrane Bioreactor

    KAUST Repository

    Matar, Gerald; Gonzalez-Gil, Graciela; Maab, Husnul; Nunes, Suzana Pereira; Le-Clech, Pierre; Vrouwenvelder, Johannes S.; Saikaly, Pascal

    2016-01-01

    multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest

  2. An efficient hydrophilic interaction liquid chromatography separation of 7 phospholipid classes based on a diol column

    NARCIS (Netherlands)

    Zhu, C.; Dane, A.; Spijksma, G.; Wang, M.; Greef, J. van der; Luo, G.; Hankemeier, T.; Vreeken, R.J.

    2012-01-01

    A hydrophilic interaction liquid chromatography (HILIC) - ion trap mass spectrometry method was developed for separation of a wide range of phospholipids. A diol column which is often used with normal phase chromatography was adapted to separate different phospholipid classes in HILIC mode using a

  3. Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vatanpour, Vahid, E-mail: vahidvatanpour@khu.ac.ir; Zoqi, Naser

    2017-02-28

    Highlights: • A commercial PA RO membrane was modified by grafting of hydrophilic acrylic acid. • COOH-MWCNTs were mixed in grafting layer to increase permeability and antifouling. • However, more increase of CNTs caused in reduction of flux of the membranes. • Effect of acrylic acid amount, contact time and curing time was optimized. - Abstract: In this study, modification of commercial seawater reverse osmosis membranes was carried out with simultaneous use of surface grafting and nanoparticle incorporation. Membrane grafting with a hydrophilic acrylic acid monomer and thermal initiator was used to increase membrane surface hydrophilicity. The used nanomaterial was carboxylated multiwalled carbon nanotubes (MWCNTs), which were dispersed in the grafting solution and deposited on membrane surface to reduce fouling by creating polymer brushes and hydrodynamic resistance. Effectiveness of the grafting process (formation of graft layer on membrane surface) was proved by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analyses. Increase of membrane surface hydrophilicity was approved with contact angle test. First, the grafting was performed on the membrane surfaces with different monomer concentrations, various contact times and several membrane curing times (three variables for optimization). The modified membranes were tested by a cross-flow setup using saline solution for permeability and rejection tests, and bovine serum albumin (BSA) solution for fouling test. The results showed that the modified membranes with 0.75 M of monomer, 3 min contact time and 80 min curing time in an oven at 50 °C presented the highest flux and lowest rejection decline related to the commercial reverse osmosis membrane. In the next step, the optimum grafting condition was selected and the nanotubes with different weight percentages were dispersed in the acrylic acid monomer solution. The membrane containing 0.25 wt% COOH-MWCNTs showed the

  4. High Performance Thin-film Composite Membranes with Mesh-Reinforced Hydrophilic Sulfonated Polyphenylenesulfone (sPPSU) Substrates for Osmotically Driven Processes

    KAUST Repository

    Han, Gang; Zhao, Baiwang; Fu, Fengjiang; Chung, Neal Tai-Shung; Weber, Martin; Staudt, Claudia; Maletzko, Christian

    2015-01-01

    We have for the first time combined the strength of hydrophilic sulfonated material and thin woven open-mesh via a continuous casting process to fabricate mesh-reinforced ultrafiltration (UF) membrane substrates with desirable structure and morphology for the development of high-performance thin-film composite (TFC) osmosis membranes. A new sulfonated polyphenylenesulfone (sPPSU) polymer with super-hydrophilic nature is used as the substrate material, while a hydrophilic polyester (PET) open-mesh with a small thickness of 45 μm and an open area of 44.5% is employed as the reinforcing fabric during membrane casting. The newly developed sPPSU-TFC membranes not only exhibit a fully sponge-like cross-section morphology, but also possess excellent water permeability (A=3.4–3.7 L m−2 h−1 bar−1) and selectivity toward NaCl (B=0.10–0.23 L m−2 h−1). Due to the hydrophilic nature and low membrane thickness of 53–67 μm, the PET-woven reinforced sPPSU substrates have remarkably small structural parameters (S) of less than 300 μm. The sPPSU-TFC membranes thereby display impressive water fluxes (Jw) of 69.3–76.5 L m−2 h−1 and 38.7–47.0 L m−2 h−1 against a deionized water feed using 2 M NaCl as the draw solution under pressure retarded osmosis (PRO) and forward osmosis (FO) modes, respectively. This performance surpasses the state-of-the-art commercially available FO membranes. The sPPSU-TFC membranes also show exciting performance for synthetic seawater (3.5 wt% NaCl) desalination and water reclamation from real municipal wastewater. The newly developed PET-woven sPPSU-TFC membranes may have great potential to become a new generation membrane for osmotically driven processes.

  5. Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Vatanpour, Vahid; Zoqi, Naser

    2017-01-01

    Highlights: • A commercial PA RO membrane was modified by grafting of hydrophilic acrylic acid. • COOH-MWCNTs were mixed in grafting layer to increase permeability and antifouling. • However, more increase of CNTs caused in reduction of flux of the membranes. • Effect of acrylic acid amount, contact time and curing time was optimized. - Abstract: In this study, modification of commercial seawater reverse osmosis membranes was carried out with simultaneous use of surface grafting and nanoparticle incorporation. Membrane grafting with a hydrophilic acrylic acid monomer and thermal initiator was used to increase membrane surface hydrophilicity. The used nanomaterial was carboxylated multiwalled carbon nanotubes (MWCNTs), which were dispersed in the grafting solution and deposited on membrane surface to reduce fouling by creating polymer brushes and hydrodynamic resistance. Effectiveness of the grafting process (formation of graft layer on membrane surface) was proved by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analyses. Increase of membrane surface hydrophilicity was approved with contact angle test. First, the grafting was performed on the membrane surfaces with different monomer concentrations, various contact times and several membrane curing times (three variables for optimization). The modified membranes were tested by a cross-flow setup using saline solution for permeability and rejection tests, and bovine serum albumin (BSA) solution for fouling test. The results showed that the modified membranes with 0.75 M of monomer, 3 min contact time and 80 min curing time in an oven at 50 °C presented the highest flux and lowest rejection decline related to the commercial reverse osmosis membrane. In the next step, the optimum grafting condition was selected and the nanotubes with different weight percentages were dispersed in the acrylic acid monomer solution. The membrane containing 0.25 wt% COOH-MWCNTs showed the

  6. High Performance Thin-film Composite Membranes with Mesh-Reinforced Hydrophilic Sulfonated Polyphenylenesulfone (sPPSU) Substrates for Osmotically Driven Processes

    KAUST Repository

    Han, Gang

    2015-12-17

    We have for the first time combined the strength of hydrophilic sulfonated material and thin woven open-mesh via a continuous casting process to fabricate mesh-reinforced ultrafiltration (UF) membrane substrates with desirable structure and morphology for the development of high-performance thin-film composite (TFC) osmosis membranes. A new sulfonated polyphenylenesulfone (sPPSU) polymer with super-hydrophilic nature is used as the substrate material, while a hydrophilic polyester (PET) open-mesh with a small thickness of 45 μm and an open area of 44.5% is employed as the reinforcing fabric during membrane casting. The newly developed sPPSU-TFC membranes not only exhibit a fully sponge-like cross-section morphology, but also possess excellent water permeability (A=3.4–3.7 L m−2 h−1 bar−1) and selectivity toward NaCl (B=0.10–0.23 L m−2 h−1). Due to the hydrophilic nature and low membrane thickness of 53–67 μm, the PET-woven reinforced sPPSU substrates have remarkably small structural parameters (S) of less than 300 μm. The sPPSU-TFC membranes thereby display impressive water fluxes (Jw) of 69.3–76.5 L m−2 h−1 and 38.7–47.0 L m−2 h−1 against a deionized water feed using 2 M NaCl as the draw solution under pressure retarded osmosis (PRO) and forward osmosis (FO) modes, respectively. This performance surpasses the state-of-the-art commercially available FO membranes. The sPPSU-TFC membranes also show exciting performance for synthetic seawater (3.5 wt% NaCl) desalination and water reclamation from real municipal wastewater. The newly developed PET-woven sPPSU-TFC membranes may have great potential to become a new generation membrane for osmotically driven processes.

  7. Modification of bone graft by blending with lecithin to improve hydrophilicity and biocompatibility

    International Nuclear Information System (INIS)

    Wang, Y; Cui, F Z; Jiao, Y P; Hu, K; Fan, D D

    2008-01-01

    Lecithin was blended to improve the hydrophilicity and biocompatibility of bone graft containing poly(l-lactic acid) (PLLA). Solution blending and freeze drying were used to fabricate symmetrical scaffolds containing different percentages of lecithin (lecithin: PLLA = 0, 5, 10 wt%). Scanning electron microscopy showed that the scaffolds maintained the three-dimensional porous structure. A water uptake experiment proved the significant improvement of hydrophilicity of the blend scaffold. With the addition of lecithin, the compressive strength and compressive modulus decreased. When the weight ratio of lecithin to PLLA was up to 10%, the compressive strength was still more than the lower limit of natural cancellous bone. To test the biocompatibility of the scaffolds, cell culture in vitro and subcutaneous implantation in vivo were performed. MC3T3-E1 preosteoblastic cells were cultured on the scaffolds for 7 days. Methylthiazol tetrazolium assay and laser scanning confocal microscopy were used to exhibit proliferation and morphology of the cells. The subcutaneous implantation in rats tested inflammatory response to the scaffolds. The results proved the better biocompatibility and milder inflammatory reactions of the blend scaffold (lecithin: PLLA = 5%) compared with the scaffold without lecithin. The modified scaffold containing lecithin is promising for bone tissue engineering

  8. Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties.

    Science.gov (United States)

    Changotade, S Igondjo Tchen; Korb, G; Bassil, J; Barroukh, B; Willig, C; Colliec-Jouault, S; Durand, P; Godeau, G; Senni, K

    2008-12-01

    In this work, we first tested the influence of low-molecular-weight (LMW) fucoidan extracted from pheophicae cell wall on bidimensional cultured normal human osteoblasts' behaviors. Second, by impregnation procedure with LMW fucoidan of bone biomaterial (Lubboc), we explored in this bone extracellular matrix context its capabilities to support human osteoblastic behavior in 3D culture. In bidimensionnal cultures, we evidenced that LMW fucoidan promotes human osteoblast proliferation and collagen type I expression and favors precocious alkaline phosphatase activity. Furthermore, with LMW fucoidan, von Kossa's staining was positive at 30 days and positive only at 45 days in the absence of LMW fucoidan. In our three-dimensional culture models with the biomaterial pretreated with LMW fucoidan, osteoblasts promptly overgrew the pretreated biomaterial. We also evidenced that osteoblasts increased proliferation with pretreated biomaterial when compared with untreated biomaterial. Osteoblasts secreted osteocalcin and expressed BMP2 receptor on control material as well as with LMW fucoidan impregnated biomaterial. In conclusion, in our experimental conditions, LMW fucoidan stimulated expression of osteoblastic markers differentiation such as alkaline phosphatase activity, collagen type I expression, and mineral deposition; furthermore, cell proliferation was favored. These findings suggest that fucoidan could be clinically useful for bone regeneration and bone substitute design. (c) 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.

  9. Separation of carbohydrates using hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Fu, Qing; Liang, Tu; Li, Zhenyu; Xu, Xiaoyong; Ke, Yanxiong; Jin, Yu; Liang, Xinmiao

    2013-09-20

    A strategy was developed to rapidly evaluate chromatographic properties of hydrophilic interaction chromatography (HILIC) columns for separating carbohydrates. Seven HILIC columns (Silica, Diol, TSK Amide-80, XAmide, Click Maltose, Click β-CD, and Click TE-Cys columns) were evaluated by using three monosaccharide and seven disaccharides as probes. The influence of column temperature on the peak shape and tautomerization of carbohydrates, as well as column selectivity were investigated. The influence of surface charge property on the retention was also studied by using glucose, glucuronic acid, and glucosamine, which indicated that buffer salt concentration and pH value in mobile phase was necessary to control the ionic interactions between ionic carbohydrates and HILIC columns. According to evaluation results, the XAmide column was selected as an example to establish experimental schemes for separation of complex mixtures of oligosaccharide. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. In-the-bag decentration of a hydrophilic radially asymmetric multifocal intraocular lens secondary to capsule contraction.

    NARCIS (Netherlands)

    Linden, J.W.M. van der; Meulen, I.J. van der; Mourits, M.P.; Lapid-Gortzak, R.

    2013-01-01

    We report a case of in-the-bag decentration and tilt of a hydrophilic rotationally asymmetric multifocal intraocular lens (IOL) of the M Plus type secondary to capsule contraction. After uneventful surgery and follow-up for 3 months, progressive decentering and tilting of the IOL secondary to

  11. Mechanically durable underwater superoleophobic surfaces based on hydrophilic bulk metals for oil/water separation

    Science.gov (United States)

    Yu, Huadong; Lian, Zhongxu; Xu, Jinkai; Wan, Yanling; Wang, Zuobin; Li, Yiquan; Yu, Zhanjiang; Weng, Zhankun

    2018-04-01

    Despite the success of previous methods for fabricating underwater superoleophobic surfaces, most of the surfaces based on soft materials are prone to collapse and deformation due to their mechanically fragile nature, and they fail to perform their designed functions after the surface materials are damaged in water. In this work, the nanosecond laser-induced oxide coatings on hydrophilic bulk metals are reported which overcomes the limitation and shows the robust underwater superoleophobicity to a mechanical challenge encountered by surfaces deployed in water environment. The results show that the surface materials have the advantage that the underwater superoleophobicity is still preserved after the surfaces are scratched by knife or sandpaper and even completely destroyed because of the hydrophilic property of damaged materials in water. It is important that the results provide a guide for the design of durable underwater superoleophobic surfaces, and the development of superoleophobic materials in many potential applications such as the oil-repellent and the oil/water separation. Additionally, the nanosecond laser technology is simple, cost-effective and suitable for the large-area and mass fabrication of mechanically durable underwater superoleophobic metal materials.

  12. Search for Hydrophilic Marine Fungal Metabolites: A Rational Approach for Their Production and Extraction in a Bioactivity Screening Context

    Directory of Open Access Journals (Sweden)

    Jean-François Biard

    2011-01-01

    Full Text Available In the search for bioactive natural products, our lab screens hydrophobic extracts from marine fungal strains. While hydrophilic active substances were recently identified from marine macro-organisms, there was a lack of reported metabolites in the marine fungi area. As such, we decided to develop a general procedure for screening of hydrophobic metabolites. The aim of this study was to compare different processes of fermentation and extraction, using six representative marine fungal strains, in order to define the optimized method for production. The parameters studied were (a which polar solvent to select, (b which fermentation method to choose between solid and liquid cultures, (c which raw material, the mycelium or its medium, to extract and (d which extraction process to apply. The biochemical analysis and biological evaluations of obtained extracts led to the conclusion that the culture of marine fungi by agar surface fermentation followed by the separate extraction of the mycelium and its medium by a cryo-crushing and an enzymatic digestion with agarase, respectively, was the best procedure when screening for hydrophilic bioactive metabolites. During this development, several bioactivities were detected, confirming the potential of hydrophilic crude extracts in the search for bioactive natural products.

  13. Extraction of uranium (VI) from sea water using hydrous metalic oxide binded with hydrophilic polymers

    International Nuclear Information System (INIS)

    Shigetomi, Yasumasa; Kojima, Takehiro; Kamba, Hideaki

    1978-01-01

    In the past five years, many researches have been made to extract U(VI) from sea water. This is a report of the extraction of U(VI) from sea water using hydrous titanium oxide binded with hydrophilic polymers, the apparatus for the adsorption and the separation of U(VI) by means of ion exchange. (author)

  14. Nitric Acid-Treated Carbon Fibers with Enhanced Hydrophilicity for Candida tropicalis Immobilization in Xylitol Fermentation

    Directory of Open Access Journals (Sweden)

    Le Wang

    2016-03-01

    Full Text Available Nitric acid (HNO3-treated carbon fiber (CF rich in hydrophilic groups was applied as a cell-immobilized carrier for xylitol fermentation. Using scanning electron microscopy, we characterized the morphology of the HNO3-treated CF. Additionally, we evaluated the immobilized efficiency (IE of Candida tropicalis and xylitol fermentation yield by investigating the surface properties of nitric acid treated CF, specifically, the acidic group content, zero charge point, degree of moisture and contact angle. We found that adhesion is the major mechanism for cell immobilization and that it is greatly affected by the hydrophilic–hydrophilic surface properties. In our experiments, we found 3 hto be the optimal time for treating CF with nitric acid, resulting in an improved IE of Candida tropicalis of 0.98 g∙g−1 and the highest xylitol yield and volumetric productivity (70.13% and 1.22 g∙L−1∙h−1, respectively. The HNO3-treated CF represents a promising method for preparing biocompatible biocarriers for multi-batch fermentation.

  15. Gas chromatographic-mass spectrometric determination of hydrophilic compounds in environmental water by solid-phase extraction with activated carbon fiber felt.

    Science.gov (United States)

    Kawata, K; Ibaraki, T; Tanabe, A; Yagoh, H; Shinoda, A; Suzuki, H; Yasuhara, A

    2001-03-09

    Simple gas chromatographic-mass spectrometric determination of hydrophilic organic compounds in environmental water was developed. A cartridge containing activated carbon fiber felt was made by way of trial and was evaluated for solid-phase extraction of the compounds in water. The hydrophilic compounds investigated were acrylamide, N,N-dimethylacetamide, N,N-dimethylformamide, 1,4-dioxane, furfural, furfuryl alcohol, N-nitrosodiethylamine and N-nitrosodimethylamine. Overall recoveries were good (80-100%) from groundwater and river water. The relative standard deviations ranged from 4.5 to 16% for the target compounds. The minimum detectable concentrations were 0.02 to 0.03 microg/l. This method was successfully applied to several river water samples.

  16. Study on the improvement of hydrophilic character on polyvinylalcohol treated polyester fabric

    Directory of Open Access Journals (Sweden)

    S. Pitchai

    2014-12-01

    Full Text Available Polyester fabric was treated with polyvinyl alcohol in alkaline medium. The moisture regain, water retention and wettability of the PVA treated polyester fabric were tested. The PVA treated PET fabric was dyed with disperse dye. The presence of PVA in the treated PET fabric was assessed by spot test. The treated fabric was also characterized by scanning electron microscope, FTIR and differential scanning calorimetry. The PVA treated polyester fabric showed improved hydrophilic character over intact and sodium hydroxide treated PET fabrics.

  17. Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review.

    Science.gov (United States)

    Jandera, Pavel; Hájek, Tomáš

    2018-01-01

    Hydrophilic interaction liquid chromatography on polar columns in aqueous-organic mobile phases has become increasingly popular for the separation of many biologically important compounds in chemical, environmental, food, toxicological, and other samples. In spite of many new applications appearing in literature, the retention mechanism is still controversial. This review addresses recent progress in understanding of the retention models in hydrophilic interaction liquid chromatography. The main attention is focused on the role of water, both adsorbed by the column and contained in the bulk mobile phase. Further, the theoretical retention models in the isocratic and gradient elution modes are discussed. The dual hydrophilic interaction liquid chromatography reversed-phase retention mechanism on polar columns is treated in detail, especially with respect to the practical use in one- and two-dimensional liquid chromatography separations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Development of paper-based microfluidic analytical device for iron assay using photomask printed with 3D printer for fabrication of hydrophilic and hydrophobic zones on paper by photolithography.

    Science.gov (United States)

    Asano, Hitoshi; Shiraishi, Yukihide

    2015-07-09

    This paper describes a paper-based microfluidic analytical device for iron assay using a photomask printed with a 3D printer for fabrication of hydrophilic and hydrophobic zones on the paper by photolithography. Several designed photomasks for patterning paper-based microfluidic analytical devices can be printed with a 3D printer easily, rapidly and inexpensively. A chromatography paper was impregnated with the octadecyltrichlorosilane n-hexane solution and hydrophobized. After the hydrophobic zone of the paper was exposed to the UV light through the photomask, the hydrophilic zone was generated. The smallest functional hydrophilic channel and hydrophobic barrier were ca. 500 μm and ca. 100 μm in width, respectively. The fabrication method has high stability, resolution and precision for hydrophilic channel and hydrophobic barrier. This test paper was applied to the analysis of iron in water samples using a colorimetry with phenanthroline. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Hydrophilic olive cake extracts: Characterization by physicochemical properties and Cu(II) complexation

    International Nuclear Information System (INIS)

    Kolokassidou, K.; Szymczak, W.; Wolf, M.; Obermeier, C.; Buckau, G.; Pashalidis, I.

    2009-01-01

    Disposed olive cake generates hydrophilic components that can be mobilized in the aquatic environment. This paper deals with the characterization of such components, isolated by alkaline extraction. It is shown that these substances possess properties very much resembling humic acid, including a substantial inventory of proton exchanging groups. Extraction and purification of the hydrophilic components from the disposed olive cake was performed by the standard approach for isolation of humic acids from solid sources, i.e. alternating alkaline dissolution and acid flocculation, leaving the purified extract in the protonated form. The purified sample was characterized by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Fourier Transform Infra Red Spectroscopy (FTIR), UV-vis, Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and Asymmetrical Flow Field-Flow Fractionation (AFFFF). The complex formation properties were investigated by potentiometry using Cu(II) ion selective electrode under atmospheric conditions at I = 0.1 M NaClO 4 (aqueous solution) and pH 6. The formation constant for the CuHA complex is found to be log β = 5.3 ± 0.4 which is close to the corresponding value (log β = 5.2 ± 0.4) obtained from similar investigations with the commercially available Aldrich humic acid (this study) and corresponding published values for various humic acids. Both, structural properties and complex formation data show that the olive cake extract has considerable similarities with humic acids from different sources, pointing towards potential similarities in environmental behavior and impact.

  20. Surface hydrophilic modification of acrylonitrile-butadiene-styrene terpolymer by poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate): Preparation, characterization, and properties studies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tingting; Zhang, Jun, E-mail: zhangjun@njtech.edu.cn

    2016-12-01

    Highlights: • Surface hydrophilic modified ABS was prepared by melt blending with PETG. • O= C−O groups were enriched on the surface with increasing PETG content. • Hydrophilic property of the blends was enhanced with increasing PETG content. • Phase inversion behavior of the blends occurred around intermediate composition. • Tensile and flexural strength were enhanced with increasing PETG content. - Abstract: Surface hydrophilic modified acrylonitrile-butadiene-styrene (ABS) terpolymer was prepared by melt blending with poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) random copolymer as the modifier. Attenuated total reflectance-Fourier transform-infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) were used for surface analysis. Through the contact angle measurement, the relationship between surface properties of the ABS/PETG blends and PETG content was investigated. Scanning electron microscope (SEM) and dynamical mechanical thermal analysis (DMTA) were used to characterize interface morphology and compatibility of the blends. The effect of PETG content on the mechanical and rheological properties was examined. The ATR-FTIR and XPS analysis suggested that the hydrophilic groups were enriched on the surface with increasing PETG content in the blend. The decrease of the water contact angle and the increase of the polarity for the blends with increasing PETG content indicated that the hydrophilic property of the blends was enhanced with increasing PETG content. The ABS/PETG blends were partially miscible. And the blends with ≤50 wt% PETG had better compatibility than the blends with above 50 wt% PETG. It was clear that below 50 wt% PETG, the PETG phase was dispersed in spherical form and the ABS phase was continuous. Above 50 wt% PETG, the PETG phase became continuous and the ABS phase was dispersed in irregular form. Moreover, the tensile strength and flexural strength of the blends were enhanced with

  1. Improved detection of hydrophilic phosphopeptides using graphite powder microcolumns and mass spectrometry: evidence for in vivo doubly phosphorylated dynamin I and dynamin III

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Graham, Mark E; Robinson, Phillip J

    2004-01-01

    A common strategy in proteomics to improve the number and quality of peptides detected by mass spectrometry (MS) is to desalt and concentrate proteolytic digests using reversed phase (RP) chromatography prior to analysis. However, this does not allow for detection of small or hydrophilic peptides...... a large improvement in the detection of small amounts of phosphopeptides by MS and the approach has major implications for both small- and large-scale projects in phosphoproteomics.......A common strategy in proteomics to improve the number and quality of peptides detected by mass spectrometry (MS) is to desalt and concentrate proteolytic digests using reversed phase (RP) chromatography prior to analysis. However, this does not allow for detection of small or hydrophilic peptides......, or peptides altered in hydrophilicity such as phosphopeptides. We used microcolumns to compare the ability of RP resin or graphite powder to retain phosphopeptides. A number of standard phosphopeptides and a biologically relevant phosphoprotein, dynamin I, were analyzed. MS revealed that some phosphopeptides...

  2. Facile preparation of highly hydrophilic, recyclable high-performance polyimide adsorbents for the removal of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jieyang; Zheng, Yaxin; Luo, Longbo; Feng, Yan [State Key Laboratory of Polymer Material and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Zhang, Chaoliang [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu 610041 (China); Wang, Xu, E-mail: wx19861027@163.com [State Key Laboratory of Polymer Material and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Liu, Xiangyang, E-mail: lxy6912@sina.com [State Key Laboratory of Polymer Material and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2016-04-05

    Highlights: • High-performance polyimide was used as heavy metal adsorbents. • The contradiction between hydrophilicity and high performance of PI was solved. • Adsorption amount for Cu{sup 2+} of PI/silica was 77 times higher than that of PI. • The adsorption ability remained steady for more than 50 recycling processes. - Abstract: To obtain high-performance adsorbents that combine excellent adsorption ability, thermal stability, service life and recycling ability, polyimide (PI)/silica powders were prepared via a facile one-pot coprecipitation process. A benzimidazole unit was introduced into the PI backbone as the adsorption site. The benzimidazole unit induced more hydroxyls onto the silica, which provided hydrophilic sites for access by heavy metal ions. By comprehensively analyzing the effect of hydrophilcity, agglomeration, silica polycondensation, specific surface area and PI crystallinity, 10% was demonstrated to be the most proper feed silica content. The equilibrium adsorption amount (Q{sub e}) for Cu{sup 2+} of PI/silica adsorbents was 77 times higher than that of pure PI. Hydrogen chloride (HCl) was used as a desorbent for heavy metal ions and could be decomplexed with benzimidazole unit at around 300 °C, which was lower than the glass transition temperature of PI. The complexation and decomplexation process of HCl made PI/silica adsorbents recyclable, and the adsorption ability remained steady for more than 50 recycling processes. As PI/silica adsorbents possess excellent thermal stability, chemical resistance and radiation resistance and hydrophilicity, they have potential as superior recyclable adsorbents for collecting heavy metal ions from waste water in extreme environments.

  3. Preparation of hydrophilic PVDF/PPTA blend membranes by in situ polycondensation and its application in the treatment of landfill leachate

    International Nuclear Information System (INIS)

    Li, Hongbin; Shi, Wenying; Zhang, Yufeng; Zhou, Rong; Zhang, Haixia

    2015-01-01

    Graphical abstract: - Highlights: • High modulus PPTA molecules were introduced into PVDF membrane matrix through in situ polycondensation. • Membrane surface hydrophilicity and mechanical strength were improved. • An enhanced antifouling property was obtained when blend membrane was applied in the MBR in the treatment of landfill leachate. • Blend membrane also showed a relatively high removal rate of chemical oxygen demand (COD) and chrom. - Abstract: High modulus poly(p-phenylene terephtalamide) (PPTA) reinforced composites are of great scientific interests. But the thermodynamic difference makes the polymer pairs incompatible and endows the composites with inferior physical-chemical properties. In this study, hydrophilic poly(vinylidene fluoride) (PVDF)/poly(p-phenylene terephtalamide) (PPTA) blend membrane with improved hydrophilicity and mechanical strength was prepared through in situ polycondensation of p-phenylene diamine (PPD) and terephthaloyl chloride (TPC) in PVDF solution and subsequent immersion precipitation phase inversion process. The effects of PPTA concentration in polymer dopes on membrane formation process, structure, morphology and performance were systematically investigated. The results showed that thermodynamically, PPTA acted as a demixing enhancer which accelerated the phase inversion process. Dynamically, liquid-liquid phase separation was still in control of membrane formation process especially in the later period, whereas the addition of PPTA mainly promoted the early emergence of the liquid-liquid demixing. The surface hydrophilicity, ant-fouling properties and mechanical strength were significantly improved when PPTA content was 17 wt%. When PPTA content increased to 26 wt%, membrane bursting pressure increased to nearly 0.6 MPa which was 1.5 times higher than that of PVDF membrane. The resultant PVDF/PPTA blend membrane exhibited an improved antifouling property than that of PVDF membrane when applied in the MBR in the

  4. Preparation of hydrophilic PVDF/PPTA blend membranes by in situ polycondensation and its application in the treatment of landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongbin, E-mail: qinyu1105@126.com [School of Textiles Engineering, Henan Institute of Engineering, Zhengzhou, 450007 (China); Shi, Wenying [School of Textiles Engineering, Henan Institute of Engineering, Zhengzhou, 450007 (China); Zhang, Yufeng [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China); Zhou, Rong; Zhang, Haixia [School of Textiles Engineering, Henan Institute of Engineering, Zhengzhou, 450007 (China)

    2015-08-15

    Graphical abstract: - Highlights: • High modulus PPTA molecules were introduced into PVDF membrane matrix through in situ polycondensation. • Membrane surface hydrophilicity and mechanical strength were improved. • An enhanced antifouling property was obtained when blend membrane was applied in the MBR in the treatment of landfill leachate. • Blend membrane also showed a relatively high removal rate of chemical oxygen demand (COD) and chrom. - Abstract: High modulus poly(p-phenylene terephtalamide) (PPTA) reinforced composites are of great scientific interests. But the thermodynamic difference makes the polymer pairs incompatible and endows the composites with inferior physical-chemical properties. In this study, hydrophilic poly(vinylidene fluoride) (PVDF)/poly(p-phenylene terephtalamide) (PPTA) blend membrane with improved hydrophilicity and mechanical strength was prepared through in situ polycondensation of p-phenylene diamine (PPD) and terephthaloyl chloride (TPC) in PVDF solution and subsequent immersion precipitation phase inversion process. The effects of PPTA concentration in polymer dopes on membrane formation process, structure, morphology and performance were systematically investigated. The results showed that thermodynamically, PPTA acted as a demixing enhancer which accelerated the phase inversion process. Dynamically, liquid-liquid phase separation was still in control of membrane formation process especially in the later period, whereas the addition of PPTA mainly promoted the early emergence of the liquid-liquid demixing. The surface hydrophilicity, ant-fouling properties and mechanical strength were significantly improved when PPTA content was 17 wt%. When PPTA content increased to 26 wt%, membrane bursting pressure increased to nearly 0.6 MPa which was 1.5 times higher than that of PVDF membrane. The resultant PVDF/PPTA blend membrane exhibited an improved antifouling property than that of PVDF membrane when applied in the MBR in the

  5. A polyacrylamide-based silica stationary phase for the separation of carbohydrates using alcohols as the weak eluent in hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Cai, Jianfeng; Cheng, Lingping; Zhao, Jianchao; Fu, Qing; Jin, Yu; Ke, Yanxiong; Liang, Xinmiao

    2017-11-17

    A hydrophilic interaction liquid chromatography (HILIC) stationary phase was prepared by a two-step synthesis method, immobilizing polyacrylamide on silica sphere particles. The stationary phase (named PA, 5μm dia) was evaluated using a mixture of carbohydrates in HILIC mode and the column efficiency reached 121,000Nm -1 . The retention behavior of carbohydrates on PA stationary phase was investigated with three different organic solvents (acetonitrile, ethanol and methanol) employed as the weak eluent. The strongest hydrophilicity of PA stationary phase was observed in both acetonitrile and methanol as the weak eluent, when compared with another two amide stationary phases. Attributing to its high hydrophilicity, three oligosaccharides (xylooligosaccharide, fructooligosaccharide and chitooligosaccharides) presented good retention on PA stationary phase using alcohols/water as mobile phase. Finally, PA stationary phase was successfully applied for the purification of galactooligosaccharides and saponins of Paris polyphylla. It is feasible to use safer and cheaper alcohols to replace acetonitrile as the weak eluent for green analysis and purification of polar compounds on PA stationary phase. Copyright © 2017. Published by Elsevier B.V.

  6. DESIGN AND CONTROL OF SOAP-FREE HYDROPHILIC-HYDROPHOBIC CORE-SHELL LATEX PARTICLES WITH HIGH CARBOXYL CONTENT IN THE CORE OF THE PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Wen-jiao Ji; Yi-ming Jiang; Bo-tian Li; Wei Deng; Cheng-you Kan

    2012-01-01

    Soap-free hydrophilic-hydrophobic core-shell latex particles with high carboxyl content in the core of the particles were synthesized via the seeded emulsion polymerization using methyl methacrylate (MMA),butyl acrylate (BA),methacrylic acid (MAA),styrene (St) and ethylene glycol dimethacrylate (EGDMA) as monomers,and the influences of MMA content used in the core preparation on polymerization,particle size and morphology were investigated by transmission electron microscopy,dynamic light scattering and conductometric titration.The results showed that the seeded emulsion polymerization could be carried out smoothly using "starved monomer feeding process" when MAA content in the core preparation was equal to or less than 24 wt%,and the encapsulating efficiency of the hydrophilic P(MMA-BA-MAA-EGDMA) core with the hydrophobic PSt shell decreased with the increase in MAA content.When an interlayer of P(MMA-MAA-St) with moderate polarity was inserted between the P(MMA-BA-MAA-EGDMA) core and the PSt shell,well designed soap-free hydrophilic-hydrophobic core-shell latex particles with 24 wt% MAA content in the core preparation were obtained.

  7. Ammonium Sulfate Improves Detection of Hydrophilic Quaternary Ammonium Compounds through Decreased Ion Suppression in Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry.

    Science.gov (United States)

    Sugiyama, Eiji; Masaki, Noritaka; Matsushita, Shoko; Setou, Mitsutoshi

    2015-11-17

    Hydrophilic quaternary ammonium compounds (QACs) include derivatives of carnitine (Car) or choline, which are known to have essential bioactivities. Here we developed a technique for improving the detection of hydrophilic QACs using ammonium sulfate (AS) in matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS). In MALDI mass spectrometry for brain homogenates, the addition of AS greatly increased the signal intensities of Car, acetylcarnitine (AcCar), and glycerophosphocholine (GPC) by approximately 300-, 700-, and 2500-fold. The marked improvement required a higher AS concentration than that needed for suppressing the potassium adduction on phosphatidylcholine and 2,5-dihydroxybenzoic acid. Adding AS also increased the signal intensities of Car, AcCar, and GPC by approximately 10-, 20-, and 40-fold in MALDI-IMS. Consequently, the distributions of five hydrophilic QACs (Car, AcCar, GPC, choline, and phosphocholine) were simultaneously visualized by this technique. The distinct mechanism from other techniques such as improved matrix application, derivatization, or postionization suggests the great potential of AS addition to achieve higher sensitivity of MALDI-IMS for various analytes.

  8. Influences on the fraction of hydrophobic and hydrophilic black carbon in the atmosphere

    Directory of Open Access Journals (Sweden)

    G. R. McMeeking

    2011-05-01

    Full Text Available Black carbon (BC is a short term climate forcer that directly warms the atmosphere, slows convection, and hinders quantification of the effect of greenhouse gases on climate change. The atmospheric lifetime of BC particles with respect to nucleation scavenging in clouds is controlled by their ability to serve as cloud condensation nuclei (CCN. To serve as CCN under typical conditions, hydrophobic BC particles must acquire hygroscopic coatings. However, the quantitative relationship between coatings and hygroscopic properties for ambient BC particles is not known nor is the time scale for hydrophobic-to-hydrophilic conversion. Here we introduce a method for measuring the hygroscopicity of externally and internally mixed BC particles by coupling a single particle soot photometer with a humidified tandem differential mobility analyzer. We test this technique using uncoated and coated laboratory generated model BC compounds and apply it to characterize the hygroscopicity distribution of ambient BC particles. From these data we derive that the observed number fraction of BC that is CCN active at 0.2 % supersaturation is generally low in an urban area near sources and that it varies with the trajectory of the airmass. We anticipate that our method can be combined with measures of air parcel physical and photochemical age to provide the first quantitative estimates for characterizing hydrophobic-to-hydrophilic conversion rates in the atmosphere.

  9. Pure and Nb2O5-doped TiO2 amorphous thin films grown by dc magnetron sputtering at room temperature: Surface and photo-induced hydrophilic conversion studies

    International Nuclear Information System (INIS)

    Suchea, M.; Christoulakis, S.; Tudose, I.V.; Vernardou, D.; Lygeraki, M.I.; Anastasiadis, S.H.; Kitsopoulos, T.; Kiriakidis, G.

    2007-01-01

    Photo-induced hydrophilicity of titanium dioxide makes this material one of the most suitable for various coating applications in antifogging mirrors and self-cleaning glasses. The field of functional titanium dioxide coatings is expanding rapidly not only in applications for glass but also in applications for polymer, metal and ceramic materials. The high hydrophilic surface of TiO 2 is interesting for understanding also the basic photon-related surface science of titanium dioxide. In doing so, it is inevitably necessary to understand the relationship between the photoreaction and the surface properties. In this work, photo-induced hydrophilic conversion was evaluated on amorphous pure and niobium oxide-doped titanium dioxide thin films on Corning 1737F glass grown by dc magnetron sputtering technique at room temperature. This study is focused on the influence of the Ar:O ratio during sputtering plasma deposition on thin film surface morphology and subsequent photo-induced hydrophilic conversion results. Structural characterization carried out by X-ray diffraction and atomic force microscopy (AFM) has shown that our films are amorphous and extremely smooth with a surface roughness bellow 1 nm. Contact angle measurements were performed on as-deposited and during/after 10 min UV exposure. We present evidence that the photo-induced hydrophilic conversion of film surface is directly correlated with surface morphology and can be controlled by growth conditions

  10. Hydrophilic Conjugated Polymers with Large Bandgaps and Deep-Lying HOMO Levels as an Efficient Cathode Interlayer in Inverted Polymer Solar Cells.

    Science.gov (United States)

    Kan, Yuanyuan; Zhu, Yongxiang; Liu, Zhulin; Zhang, Lianjie; Chen, Junwu; Cao, Yong

    2015-08-01

    Two hydrophilic conjugated polymers, PmP-NOH and PmP36F-NOH, with polar diethanol-amine on the side chains and main chain structures of poly(meta-phenylene) and poly(meta-phenylene-alt-3,6-fluorene), respectively, are successfully synthesized. The films of PmP-NOH and PmP36F-NOH show absorption edges at 340 and 343 nm, respectively. The calculated optical bandgaps of the two polymers are 3.65 and 3.62 eV, respectively, the largest ones so far reported for hydrophilic conjugated polymers. PmP-NOH and PmP36F-NOH also possess deep-lying highest occupied molecular orbital levels of -6.19 and -6.15 eV, respectively. Inserting PmP-NOH and PmP36F-NOH as a cathode interlayer in inverted polymer solar cells with a PTB7/PC71 BM blend as the active layer, high power conversion efficiencies of 8.58% and 8.33%, respectively, are achieved, demonstrating that the two hydrophilic polymers are excellent interlayers for efficient inverted polymer solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hydration layers trapped between graphene and a hydrophilic substrate

    International Nuclear Information System (INIS)

    Temmen, M; Reichling, M; Bollmann, T R J; Ochedowski, O; Schleberger, M

    2014-01-01

    Graphene is mechanically exfoliated on CaF 2 (111) under ambient conditions. We demonstrate the formation of a several monolayer thick hydration layer on the hydrophilic substrate and its response to annealing at temperatures up to 750 K in an ultra-high vacuum environment. Upon heating, water is released, however, it is impossible to remove the first layer. The initially homogeneous film separates into water-containing and water-free domains by two-dimensional Ostwald ripening. Upon severe heating, thick graphene multilayers undergo rupture, while nanoblisters confining sealed water appear on thinner sheets, capable of the storage and release of material. From modeling the dimensions of the nanoblisters, we estimate the graphene/CaF 2 (111) interfacial adhesion energy to be 0.33±0.13 J m −2 , thereby viable for polymer-assisted transfer printing. (paper)

  12. Visual function after implantation of single-piece toric hydrophilic acrylic intraocular lenses with hydrophobic surface six months after cataract surgery

    Directory of Open Access Journals (Sweden)

    Alja Črnej

    2012-06-01

    Conclusion: Patients with medium to high corneal astigmatism and implanted single-piece toric hydrophilic acrylic IOLs with hydrophobic surface have very good visual function six months postoperatively.

  13. Mg-MOF-74/MgF₂ Composite Coating for Improving the Properties of Magnesium Alloy Implants: Hydrophilicity and Corrosion Resistance.

    Science.gov (United States)

    Liu, Wei; Yan, Zhijie; Ma, Xiaolu; Geng, Tie; Wu, Haihong; Li, Zhongyue

    2018-03-07

    Surface modification on Mg alloys is highly promising for their application in the field of bone repair. In this study, a new metal-organic framework/MgF₂ (Mg-MOF-74/MgF₂) composite coating was prepared on the surface of AZ31B Mg alloy via pre-treatment of hydrofluoric acid and in situ hydrothermal synthesis methods. The surface topography of the composite coating is compact and homogeneous, and Mg-MOF-74 has good crystallinity. The corrosion resistance of this composite coating was investigated through Tafel polarization test and immersion test in simulated body fluid at 37 °C. It was found that Mg-MOF-74/MgF₂ composite coating significantly slowed down the corrosion rate of Mg alloy. Additionally, Mg-MOF-74/MgF₂ composite coating expresses super-hydrophilicity with the water contact angle of nearly 0°. In conclusion, on the basis of MgF₂ anticorrosive coating, the introduction of Mg-MOF-74 further improves the biological property of Mg alloys. At last, we propose that the hydrophilicity of the composite coating is mainly owing to the large number of hydroxyl groups, the high specific surface area of Mg-MOF-74, and the rough coating produced by Mg-MOF-74 particles. Hence, Mg-MOF-74 has a great advantage in enhancing the hydrophilicity of Mg alloy surface.

  14. Structure dependent hydrophobic and hydrophilic interactions between nickel(II) Schiff base complexes and serum albumins: Spectroscopic and docking studies

    Energy Technology Data Exchange (ETDEWEB)

    Koley Seth, Banabithi; Ray, Aurkie; Banerjee, Mousumi; Bhattacharyya, Teerna [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Bhattacharyya, Dhananjay [Computational Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Basu, Samita, E-mail: samita.basu@saha.ac.in [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

    2016-03-15

    A systematic and comparative binding study between serum-albumins (SA) and a series of monomeric nickel(II)-Schiff-base-complexes (NSCs), which might be imperative to investigate the function of SA behind nickel allergy, has been carried out through docking and different spectroscopic techniques. The initial docking studies indicate structure-dependent selective hydrophobic and hydrophilic interactions. The pyridine and phenyl containing NSCs, which are more aromatic, show better π–π staking compared to pyrrole one. Again all the NSCs bind with BSA though amino acid residues of IB domain affecting local environment of the Trp-134 surrounded by both hydrophobic and hydrophilic residues instead of the hydrophobically buried Trp-212. In HSA the hydophobically buried Trp-214 is influenced by NSCs. The experimental results nicely support the docking outcomes. The changes in Gibbs free energy, binding affinity and the nature of hydrophilic/hydrophobic interactions of NSC–SA systems indicate greater accessibility of N{sub 2}O{sub 2} donor set complex compared to N{sub 4} one towards SA. Quantum chemical structure optimizations support the better planarity of NSC with N{sub 2}O{sub 2} which provides better binding. Therefore the structural variation of N{sub 2}O{sub 2} donor set complexes becomes much more useful compared to N{sub 4} one to search out the most compatible NSC towards SAs.

  15. Chemical modification of poly(vinyl alcohol): evaluation of hydrophilic/lipophilic balance

    International Nuclear Information System (INIS)

    Aranha, Isabele B.; Lucas, Elizabete F.

    2001-01-01

    Poly(vinyl alcohol) terpolymers have been obtained by reaction of partially hydrolized poly(vinyl alcohol) with different acid chlorides. The objective is the preparation of polymers with slight differences in their hydrophilic/lipophilic balance and in the interfacial activities of their solutions. The chemical modifications were characterized by means of 1 H NMR and the polymer properties were evaluated in terms of changes in solubility and surface tension. By chemical modification, polymers with low percentage of hydrophobic group were obtained. The water-soluble polymers obtained did not have the surface tension of their solutions altered. The solubility of the modified polymers decreased markedly, even with low contents of hydrophobic groups. (author)

  16. Transforming plastic surfaces with electrophilic backbones from hydrophobic to hydrophilic.

    Science.gov (United States)

    Kim, Samuel; Bowen, Raffick A R; Zare, Richard N

    2015-01-28

    We demonstrate a simple nonaqueous reaction scheme for transforming the surface of plastics from hydrophobic to hydrophilic. The chemical modification is achieved by base-catalyzed trans-esterification with polyols. It is permanent, does not release contaminants, and causes no optical or mechanical distortion of the plastic. We present contact angle measurements to show successful modification of several types of plastics including poly(ethylene terephthalate) (PET) and polycarbonate (PC). Its applicability to blood analysis is explored using chemically modified PET blood collection tubes and found to be quite satisfactory. We expect this approach will reduce the cost of manufacturing plastic devices with optimized wettability and can be generalized to other types of plastic materials having an electrophilic linkage as its backbone.

  17. Evaluation of a hydrophilic gingival dental sealant in beagle dogs.

    Science.gov (United States)

    Sitzman, Clarence

    2013-01-01

    A liquid solution, gingival sealant containing polymers that form a barrier film upon application was evaluated in dogs. It is a non-toxic, low viscosity, hydrophilic barrier sealant that dries in approximately 10 to 15-seconds after subgingival application. It was designed as a preventative to be applied immediately following a professional oral hygiene procedure in order to block plaque and calculus formation in the sulcus and aid in the prevention of periodontal disease in companion animals. Additionally, the polymer was designed to promote an aerobic environment in the sulcus by oxygen and water transport through engineered pores within the polymer. A 30-day split-mouth, blinded study in two groups of 15 beagle dogs was used. Plaque was significantly (p periodontal disease in dogs.

  18. Structure and Dynamics of Ionic Liquid [MMIM][Br] Confined in Hydrophobic and Hydrophilic Porous Matrices: A Molecular Dynamics Simulation Study.

    Science.gov (United States)

    Sharma, Anirban; Ghorai, Pradip Kr

    2016-11-17

    The effects of confinement on the structural and dynamical properties of the ionic liquid (IL) 1,3-dimethylimidazolium bromide ([MMIM][Br]) have been investigated by molecular dynamics simulations. We used zeolite faujasite (NaY) as a hydrophilic confinement and dealuminated faujasite (DAY) as a hydrophobic confinement. The presence of an extra framework cation, [Na + ], in NaY makes the host hydrophilic, whereas DAY, with no extra framework cation, is hydrophobic. Although both NaY and DAY have almost similar structures, the IL showed markedly different structural and dynamical properties in these confinements and in bulk. In the confinements, the cation-cation radial distribution function, which strongly depends on temperature, exhibits a layer-like structure, whereas in bulk, it shows a liquid-like structure that hardly depends on temperature. Although the interaction between [MMIM] + and Br - in DAY is stronger than that in both NaY and bulk, the strength of the interaction between them is almost invariant with temperature. Both [MMIM] + and Br - strongly interact with Na + of the host, and their interaction strongly depends on temperature, whereas the interaction of the IL with Si and O is very weak and invariant with temperature. In bulk, the self-diffusion coefficient, [D], of both [MMIM] + and Br - increases exponentially with temperature, and the D of the cation is slightly higher than that of the anion at all studied temperatures, whereas in the confinements, [MMIM] + moves much faster than Br - . For example, in the hydrophilic confinement, the D of the cation is 20-30 times higher than that of the anion. The D of both the ions decreases significantly in the confinements as compared to that in bulk. During diffusion, [MMIM] + diffuses closer to the inner surface in the hydrophilic confinement than that in the hydrophobic confinement. The diffusion pathway imperceptibly depends on temperature but strongly depends on the nature of the confinement. The self

  19. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    International Nuclear Information System (INIS)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2015-01-01

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H 2 O 2 under UV irradiation (H 2 O 2 /UV) and Fenton system under visible light (Fenton/H 2 O 2 /Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H 2 O 2 /UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H 2 O 2 /Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  20. Improvement of Tenofovir vaginal release from hydrophilic matrices through drug granulation with hydrophobic polymers.

    Science.gov (United States)

    Notario-Pérez, Fernando; Martín-Illana, Araceli; Cazorla-Luna, Raúl; Ruiz-Caro, Roberto; Peña, Juan; Veiga, María-Dolores

    2018-05-30

    Sustained-release vaginal microbicides hold out great hope for the prevention of sexual transmission of HIV from men to women. Tenofovir (TFV) -an antiretroviral drug- sustained-release vaginal compacts combining two release control systems (by drug-loading granules with hydrophobic polymers and incorporating them in a hydrophilic matrix) are proposed in this work as a possible microbicide. The polymers used for the drug granules are Eudragit® RS (ERS), an acrylic derivative, and Zein, a maize protein. The hydrophilic matrix is composed of a mixture of hydroxypropylmethyl cellulose (HPMC) and chitosan (CH). The thermal, microscopic, spectrophotometric and X-ray diffraction analysis showed that the drug was not altered during the granulation process. Studies of TFV release, swelling and ex vivo mucoadhesion were subsequently performed on simulated vaginal fluid. The formulation whereby TFV is granulated using twice its weight in ERS, and then including these granules in a matrix in which the CH predominates over HPMC, allows the sustained release of TFV for 144 h, mucoadhesion to the vaginal mucosa for 150 h and a moderate swelling, making it the most suitable formulation of all those studied. These compacts would therefore offer women protection against the sexual acquisition of HIV. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Radiation grafting of hydrophilic monomers on to plasticized poly(vinyl chloride) sheets: Pt. 1

    International Nuclear Information System (INIS)

    Kalliyana Krishnan, V.; Jayakrishnan, A.; Francis, J.D.

    1990-01-01

    Medical-grade plasticized polyvinyl chloride (PVC) sheets were surface modified using gamma-radiation grafting of a combination of hydrophilic monomers based on 2-hydroxyethyl methacrylate (HEMA) and N-vinyl pyrrolidone (NVP). The properties of the modified surfaces were evaluated using contact angle measurements, phase-contrast photomicroscopy and scanning electron microscopy. Surface energy calculations indicated that the surfaces became highly hydrophilic when grafted with even a 1% (v/v) solution of HEMA-NVP combination in the presence of 0.005 M CuSO 4 . Migration of the plasticizer di(2-ethylhexyl phthalate) from the grafted sheets was examined in hydrocarbon solvents such as n-hexane, n-heptane and n-octane and in extractant media such as cotton seed oil and polyethylene glycol-400 (PEG-400). The migration was found to be 0 C over a period of 5 h. Accelerated leaching studies in cotton seed oil and PEG-400 demonstrated that virtually no plasticizer migrated out in the former over a period of 96 h whereas the rate of migration in the latter medium showed only a mild reduction. The migration behaviour was Fickian in nature for grafted sheets. The method described may be useful as a simple, versatile technique for preventing plasticizer migration from plasticized PVC for medical applications. (author)

  2. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    Science.gov (United States)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2015-12-01

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H2O2 under UV irradiation (H2O2/UV) and Fenton system under visible light (Fenton/H2O2/Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H2O2/UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H2O2/Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  3. The Janus Face of PAMAM Dendrimers Used to Potentially Cure Nonenzymatic Modifications of Biomacromolecules in Metabolic Disorders—A Critical Review of the Pros and Cons

    Directory of Open Access Journals (Sweden)

    Cezary Watala

    2013-11-01

    Full Text Available Diabetes mellitus, which is characterised by high blood glucose levels and the burden of various macrovascular and microvascular complications, is a cause of much human suffering across the globe. While the use of exogenous insulin and other medications can control and sometimes prevent various diabetes-associated sequelae, numerous diabetic complications are still commonly encountered in diabetic patients. Therefore, there is a strong need for safe and effective antihyperglycaemic agents that provide an alternative or compounding option for the treatment of diabetes. In recent years, amino-terminated poly(amidoamine (PAMAM dendrimers (G2, G3 and G4 have attracted attention due to their protective value as anti-glycation and anti-carbonylation agents that can be used to limit the nonenzymatic modifications of biomacromolecules. The focus of this review is to present a detailed survey of our own data, as well as of the available literature regarding the toxicity, pharmacological properties and overall usefulness of PAMAM dendrimers. This presentation pays particular and primary attention to their therapeutic use in poorly controlled diabetes and its complications, but also in other conditions, such as Alzheimer’s disease, in which such nonenzymatic modifications may underlie the pathophysiological mechanisms. The impact of dendrimer administration on the overall survival of diabetic animals and on glycosylation, glycoxidation, the brain-blood barrier and cellular bioenergetics are demonstrated. Finally, we critically discuss the potential advantages and disadvantages accompanying the use of PAMAM dendrimers in the treatment of metabolic impairments that occur under conditions of chronic hyperglycaemia.

  4. Antioxidation activities of low-molecular-weight gelatin hydrolysate isolated from the sea cucumber Stichopus japonicus

    Science.gov (United States)

    Wang, Jingfeng; Wang, Yuming; Tang, Qingjuan; Wang, Yi; Chang, Yaoguang; Zhao, Qin; Xue, Changhu

    2010-03-01

    Gelatin extracted from the body wall of the sea cucumber ( Stichopus japonicus) was hydrolyzed with flavourzyme. Low-molecular-weight gelatin hydrolysate (LMW-GH) of 700-1700 Da was produced using an ultrafiltration membrane bioreactor system. Chemiluminescence analysis revealed that LMW-GH scavenges high free radicals in a concentration-dependent manner; IC50 value for superoxide and hydroxyl radicals was 442 and 285 μg mL-1, respectively. LMW-GH exhibited excellent inhibitory characteristics against melanin synthesis and tyrosinase activity in B16 cells. Furthermore, LMW-GH notably increased intracellular glutathione (GSH), which in turn suppressed melanogenesis. LMW-GH performs antioxidation activity, holding the potential of being used as a valuable ingredient in function foods, cosmetics and pharmaceuticals or nutriceuticals.

  5. Microtensile Bond Strength of Embrace Wetbond Hydrophilic Sealant in Different Moisture Contamination: An In-Vitro Study.

    Science.gov (United States)

    Panigrahi, Antarmayee; Srilatha, K T; Panigrahi, Rajat G; Mohanty, Susant; Bhuyan, Sanat K; Bardhan, Debojyoti

    2015-07-01

    Contamination of etched enamel with saliva has been shown to result in sealant failure. Recently, a hydrophilic sealant has been introduced. In absence of documented literature, this in vitro study was undertaken to ascertain the efficacy of Embrace Wet Bond without reduction of microtensile bond strength in the different moisture contamination. A 5mm block of sealant were built over prepared occlusal surface of 40 non-carious therapeutically extracted third molars which were sectioned into 1mm thick stick and tested using Zwick micro tensile tester. Obtained data were subjected to descriptive analysis, one-way ANOVA and Scheffe's post-hoc tests. Mean microtensile bond strength of Embrace sealant was not significantly lowered in different moisture contamination groups except Group 3 (air drying), which showed very highly significant (p<0.001) decrease in μTBS as compared to Group 1 (non-contaminated). Mean μTBS of Embrace sealant remains largely unchanged even in presence of moisture. Owing to its hydrophilic property, this sealant can be a great help in cases where maintaining isolation is difficult.

  6. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding

    OpenAIRE

    Hinton, Thomas J.; Hudson, Andrew; Pusch, Kira; Lee, Andrew; Feinberg, Adam W.

    2016-01-01

    Polydimethylsiloxane (PDMS) elastomer is used in a wide range of biomaterial applications including microfluidics, cell culture substrates, flexible electronics, and medical devices. However, it has proved challenging to 3D print PDMS in complex structures due to its low elastic modulus and need for support during the printing process. Here we demonstrate the 3D printing of hydrophobic PDMS prepolymer resins within a hydrophilic Carbopol gel support via freeform reversible embedding (FRE). In...

  7. Effect of short-term exposure to two hydrophilic-coated and one gel pre-lubricated urinary catheters on sperm vitality, motility and kinematics in vitro.

    Science.gov (United States)

    Auger, J; Rihaoui, R; François, N; Eustache, F

    2007-06-01

    This study aimed to determine the in vitro effect of a short-term exposure to two hydrophilic-coated and one gel pre-lubricated urinary catheters on human sperm quality. Semen samples of various qualities were coincubated with each catheter for 5 min at 37 degrees C. The percentages of live and motile sperm with their kinematic characteristics were blindly assessed in control and treated samples at the end of the coincubation and 10 and 55 min later. The three catheters had no effect on sperm vitality. Similarly, the lubricated catheter and one hydrophilic-coated catheter negligibly modulated sperm motility. In contrast, the other hydrophilic-coated catheter tested had a significant negative effect on sperm movement. Further studies are warranted, the issue being especially relevant to the collection of spermatozoa in spinal cord diseased patients catheterizing themselves several times a day. In this population, compounds releasing from the catheter and accumulating in the urethra could be an additional factor contributing to the poor sperm quality.

  8. Increase in the Hydrophilicity and Lewis Acid-Base Properties of Solid Surfaces Achieved by Electric Gliding Discharge in Humid Air: Effects on Bacterial Adherence

    International Nuclear Information System (INIS)

    Kamgang, J. O.; Brisset, J.-L.; Naitali, M.; Herry, J.-M.; Bellon-Fontaine, M.-N.; Briandet, R.

    2009-01-01

    This study addressed the effects of treatment with gliding discharge plasma on the surface properties of solid materials, as well as the consequences concerning adherence of a model bacterium. As evaluated by contact angles with selected liquids, plasma treatment caused an increase in surface hydrophilicity and in the Lewis acid-base components of the surface energy of all materials tested. These modifications were more marked for low density polyethylene and stainless steel than for polytetrafluoroethylene. After treatment, the hydrophilicity of the materials remained relatively stable for at least 20 days. Moreover, analysis of the topography of the materials by atomic force microscopy revealed that the roughness of both polymers was reduced by glidarc plasma treatment. As a result of all these modifications, solid substrates were activated towards micro-organisms and the adherence of S. epidermidis, a negatively charged Lewis-base and mildly hydrophilic strain selected as the model, was increased in almost all the cases tested. (plasma technology)

  9. Studies on Antiviral and Immuno-Regulation Activity of Low Molecular Weight Fucoidan from Laminaria japonica

    Science.gov (United States)

    Sun, Taohua; Zhang, Xinhui; Miao, Ying; Zhou, Yang; Shi, Jie; Yan, Meixing; Chen, Anjin

    2018-06-01

    The antiviral activity in vitro and in vivo and the effect of the immune system of two fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica (LMW fucoidans) were investigated in order to examine the possible mechanism. In vitro, I-type influenza virus, adenovirus and Parainfluenza virus I were used to infect Hep-2, Hela and MDCK cells, respectively. And 50% tissue culture infective dose was calculated to detect the antiviral activity of two LMW fucoidans. The results indicated that compared with the control group, 2 kinds of LMW fucoidans had remarkable antiviral activity in vitro in middle and high doses, while at low doses, the antiviral activity of 2 kinds of LMW fucoidans was not statistically different from that in the blank control group. And there was no statistically difference between two LMW fucoidans in antiviral activity. In vivo, LMW fucoidans could prolong the survival time of virus-infected mice, and could improve the lung index of virus-infected mice significantly, which have statistical differences with the control group significantly ( p 0.05). In this study, it was shown that both of two LMW fucoidans (LF1, LF2) could increase the thymus index, spleen index, phagocytic index, phagocytosis coefficient and half hemolysin value in middle and high doses, which suggested that LMW fucoidans could play an antiviral role by improving the quality of immune organs, improving immune cell phagocytosis and humoral immunity.

  10. Comparison of hydrophobic and hydrophilic intraocular lens in preventing posterior capsule opacification after cataract surgery

    OpenAIRE

    Zhao, Yang; Yang, Ke; Li, Jiaxin; Huang, Yang; Zhu, Siquan

    2017-01-01

    Abstract Background: Posterior capsular opacification (PCO) is a common long-term complication of cataract surgery. Intraocular lens design and material have been implicated in influencing the development of PCO. This study evaluated the association of hydrophobic and hydrophilic intraocular lenses on preventing PCO. Methods: Medline, Cochrane, EMBASE, and Google Scholar databases were searched until August 3, 2016, using the following search terms: cataract, posterior capsule opacification, ...

  11. Mechanical Stability of H3PO4-Doped PBI/Hydrophilic-Pretreated PTFE Membranes for High Temperature PEMFCs

    International Nuclear Information System (INIS)

    Park, Jaehyung; Wang, Liang; Advani, Suresh G.; Prasad, Ajay K.

    2014-01-01

    Graphical abstract: - Highlights: • PBI/PTFE membrane was prepared by porous PTFE with hydrophilic surface pretreatment. • The durability of the prepared PBI/PTFE membrane was compared with pure PBI, PBI with untreated PTFE, and PBI-Nafion with untreated PTFE membranes. • Accelerated durability tests and SEM showed improved durability based the PBI/PTFE membrane with pretreated PTFE. - Abstract: A novel polybenzimidazole (PBI)/poly(tetrafluoroethylene) (PTFE) composite membrane doped with phosphoric acid was fabricated for high temperature operation in a polymer electrolyte membrane (PEM) fuel cell. A hydrophilic surface pretreatment was applied to the porous PTFE matrix film to improve its interfacial adhesion to the PBI polymer, thereby avoiding the introduction of Nafion ionomer which is traditionally used as a coupling agent. The pretreated PTFE film was embedded within the composite membrane during solution-casting using 5wt% PBI/DMAc solution. The mechanical stability and durability of three types of MEAs assembled with PBI only, PBI with pretreated PTFE, and PBI-Nafion with untreated PTFE membranes were evaluated under an accelerated degradation testing protocol employing extreme temperature cycling. Degradation was characterized by recording polarization curves, hydrogen crossover, and proton resistance. Cross-sections of the membranes were examined before and after thermal cycling by scanning electron microscope. Energy-dispersive X-ray spectroscopy verified that the PBI is dispersed homogeneously in the porous PTFE matrix. Results show that the PBI composite membrane with pretreated PTFE has a lower degradation rate than the Nafion/PBI membrane with untreated PTFE. Thus, the hydrophilic pretreatment employed here greatly improved the mechanical stability of the composite membrane, which resulted in improved durability under an extreme thermal cycling regime

  12. Mesoscopic Simulations of the Phase Behavior of Aqueous EO 19 PO 29 EO 19 Solutions Confined and Sheared by Hydrophobic and Hydrophilic Surfaces

    KAUST Repository

    Liu, Hongyi

    2012-01-25

    The MesoDyn method is used to investigate associative structures in aqueous solution of a nonionic triblock copolymer consisting of poly(propylene oxide) capped on both ends with poly(ethylene oxide) chains. The effect of adsorbing (hydrophobic) and nonadsorbing (hydrophilic) solid surfaces in contact with aqueous solutions of the polymer is elucidated. The macromolecules form self-assembled structures in solution. Confinement under shear forces is investigated in terms of interfacial behavior and association. The formation of micelles under confinement between hydrophilic surfaces occurs faster than in bulk aqueous solution while layered structures assemble when the polymers are confined between hydrophobic surfaces. Micelles are deformed under shear rates of 1 μs -1 and eventually break to form persistent, adsorbed layered structures. As a result, surface damage under frictional forces is prevented. Overall, this study indicates that aqueous triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) (Pluronics, EO mPO nEO m) act as a boundary lubricant for hydrophobic surfaces but not for hydrophilic ones. © 2011 American Chemical Society.

  13. Mesoscopic Simulations of the Phase Behavior of Aqueous EO 19 PO 29 EO 19 Solutions Confined and Sheared by Hydrophobic and Hydrophilic Surfaces

    KAUST Repository

    Liu, Hongyi; Li, Yan; Krause, Wendy E.; Pasquinelli, Melissa A.; Rojas, Orlando J.

    2012-01-01

    The MesoDyn method is used to investigate associative structures in aqueous solution of a nonionic triblock copolymer consisting of poly(propylene oxide) capped on both ends with poly(ethylene oxide) chains. The effect of adsorbing (hydrophobic) and nonadsorbing (hydrophilic) solid surfaces in contact with aqueous solutions of the polymer is elucidated. The macromolecules form self-assembled structures in solution. Confinement under shear forces is investigated in terms of interfacial behavior and association. The formation of micelles under confinement between hydrophilic surfaces occurs faster than in bulk aqueous solution while layered structures assemble when the polymers are confined between hydrophobic surfaces. Micelles are deformed under shear rates of 1 μs -1 and eventually break to form persistent, adsorbed layered structures. As a result, surface damage under frictional forces is prevented. Overall, this study indicates that aqueous triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) (Pluronics, EO mPO nEO m) act as a boundary lubricant for hydrophobic surfaces but not for hydrophilic ones. © 2011 American Chemical Society.

  14. Surface wettability control by titanium dioxide photo-induced reaction. Super-hydrophilic properties; Sanka chitan ni yoru hikari reiki shinsuika gijutsu. Hikari shokubai chosinsuisei

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. [The University of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology

    1999-05-01

    Hydrophilicity results when the surface of titanium dioxide is reduced for the specified oxygen to be replaced by hydroxyl groups. The ease with which such a structural change occurs is subject to variation between titanium dioxide crystal surfaces, and is dependent greatly on the atmosphere. No hydrophilic trend is observed in an atmosphere of oxygen only without moisture and, in darkness without light, hydrophobicity occurs early. Although the contacta angle titanium dioxide with water with stability is not known, yet it is presumed, on the analogy of the case of strontium titanate, that it is in the range of 20-40 degrees. A hydrophilic trend below the range is attrributed to structural changes. The control of surface wettability is one of the basic tasks to fulfill in various kinds of mechanisms and manufacturing processes. The technology of wettability control using a titanium dioxide coating which is quite durable will be applied not only to functions involving defogging, dripproof, and self-cleaning, but also to the control of heat transmission in the mechanism and to the bonding process. (NEDO)

  15. Surface wettability control by titanium dioxide photo-induced reaction. Super-hydrophilic properties. Sanka chitan ni yoru hikari reiki shinsuika gijutsu. Hikari shokubai chosinsuisei

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. (The University of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology)

    1999-05-01

    Hydrophilicity results when the surface of titanium dioxide is reduced for the specified oxygen to be replaced by hydroxyl groups. The ease with which such a structural change occurs is subject to variation between titanium dioxide crystal surfaces, and is dependent greatly on the atmosphere. No hydrophilic trend is observed in an atmosphere of oxygen only without moisture and, in darkness without light, hydrophobicity occurs early. Although the contacta angle titanium dioxide with water with stability is not known, yet it is presumed, on the analogy of the case of strontium titanate, that it is in the range of 20-40 degrees. A hydrophilic trend below the range is attrributed to structural changes. The control of surface wettability is one of the basic tasks to fulfill in various kinds of mechanisms and manufacturing processes. The technology of wettability control using a titanium dioxide coating which is quite durable will be applied not only to functions involving defogging, dripproof, and self-cleaning, but also to the control of heat transmission in the mechanism and to the bonding process. (NEDO)

  16. Graft copolimerization of hydrophilic monomers onto irradiated polypropylene fibers

    International Nuclear Information System (INIS)

    Sundardi, F.

    1978-01-01

    A method of graft copolymerization of hydrophilic monomers, such as 1-vinyl-2-pyrrolidone, acrylonitrile, acrylic acid, and acrylamide, onto irradiated polypropylene fibers has been studied. γ ray as well as electron beam were employed for the irradiation processes. Graft-copolymerization kinetics and the properties of grafted fibers have been investigated. Moisture regain, dyes absorption, and melting point of the grafted fibers were found to increase with the increasing of the degree of grafting. Polypropylene for 1-vinyl-2-pyrrolidone grafted fibers showed excellent dye absorption for almost all kinds of dyes such as direct, basic, acid, reactive, disper, and naphthol dyes. However, for polypropylene acrylic acid grafted fibers, the colorfastness to washing was found to be unsatisfactory. The colorfastness to washing for polypropylene 1-vinyl-2-pyrrolidone grafted fibers was found to be fairly good for certain types of dyes such as vat and naphthol dyes. (author)

  17. Phase diagram of supercooled water confined to hydrophilic nanopores

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2012-07-01

    We present a phase diagram for water confined to cylindrical silica nanopores in terms of pressure, temperature, and pore radius. The confining cylindrical wall is hydrophilic and disordered, which has a destabilizing effect on ordered water structure. The phase diagram for this class of systems is derived from general arguments, with parameters taken from experimental observations and computer simulations and with assumptions tested by computer simulation. Phase space divides into three regions: a single liquid, a crystal-like solid, and glass. For large pores, radii exceeding 1 nm, water exhibits liquid and crystal-like behaviors, with abrupt crossovers between these regimes. For small pore radii, crystal-like behavior is unstable and water remains amorphous for all non-zero temperatures. At low enough temperatures, these states are glasses. Several experimental results for supercooled water can be understood in terms of the phase diagram we present.

  18. A novel procedure to detect low molecular weight compounds released by alkaline ester cleavage from low maturity coals to assess its feedstock for deep microbial life

    DEFF Research Database (Denmark)

    Glombitza, Clemens; Mangelsdorf, Kai; Horsfield, Brian

    2009-01-01

    and South Island of New Zealand (NZ) were examined to assess the amount of bound LMW organic acids. Formate, acetate and oxalate were detected in significant amounts whereas the amounts of these compounds decrease with increasing maturity of the coal sample. This decrease of LMW organic acids mainly...... for the investigation of low molecular weight (LMW) organic acids linked to the kerogen matrix is presented. These LMW organic acids form a potential feedstock for deep microbial populations. Twelve coal samples of different maturity (vitrinite reflectance (R0) of 0.28–0.80%) from several coal mines on the North...... and generation rates of LMW organic acids indicate that the NZ coals investigated exhibit the potential to feed deep terrestrial microbial life with appropriate substrates over geological time spans....

  19. Directed Self-Assembly in "Breath Figure" Templating of Melamine-Based Amphiphilic Copolymers: Effect of Hydrophilic End-Chain on Honeycomb Film Formation and Wetting.

    Science.gov (United States)

    Yin, Hongyao; Feng, Yujun; Billon, Laurent

    2018-01-09

    Amphiphilic copolymers are widely used in the fabrication of hierarchically honeycomb-structured films through a "breath figure" (BF) process because the hydrophilic block plays a key role in stabilising water templating. However, the hydrophilic monomers reported are mainly confined to acrylic acid and its derivatives, which largely limits understanding of the formation of BF arrays and the introduction of additional functions on porous films. The relationship between polymer composition, film microstructure and surface properties are also less documented. Herein, a novel melamine-based hydrophilic moiety, N-[3-({3-[(4,6-bis{[3-(dimethylamino)propyl]amino}-1,3,5-triazin-2yl)amino]propyl}(methyl)amino)propyl]methacrylamide (ANME), was incorporated into polystyrene (PS) chains by combining atom-transfer radical polymerisation and post-modification to afford three well-defined end-functionalised PS-PANME derivatives. These polymers were used to fabricate honeycomb films through the BF technique. Both inner and outer microstructures of the films were characterised by optical microscopy, AFM and SEM. Polymer hydrophilicity is enhanced upon increasing the PANME content, which results in variation of the film microstructure and porosity, and provokes a transition from Cassie-Baxter to Wenzel behaviour. Furthermore, the surface wettability of as-prepared honeycomb films and corresponding pillared films is mainly governed by film morphology, rather than by the properties of the polymers. Knowledge of the relationships between polymer composition and film structure, as well as surface wettability, is beneficial to design and prepare hierarchically porous films with desirable structures and properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Identification and analysis of low molecular weight dissolved organic carbon in subglacial basal ice ecosystems by ion chromatography

    Science.gov (United States)

    Lawson, E. C.; Wadham, J. L.; Lis, G. P.; Tranter, M.; Pickard, A. E.; Stibal, M.; Dewsbury, P.; Fitzsimons, S.

    2015-08-01

    Glacial runoff is an important source of dissolved organic carbon (DOC) for downstream heterotrophic activity, despite the low overall DOC concentrations. This is because of the abundance of bioavailable, low molecular weight (LMW) DOC species. However, the provenance and character of LMW-DOC is not fully understood. We investigated the abundance and composition of DOC in subglacial environments via a molecular level DOC analysis of basal ice, which forms by water/sediment freeze-on to the glacier sole. Spectrofluorometry and a novel ion chromatographic method, which has been little utilised in glacial science for LMW-DOC determinations, were employed to identify and quantify the major LMW fractions (free amino acids, carbohydrates and carboxylic acids) in basal ice from four glaciers, each with a different basal debris type. Basal ice from Joyce Glacier (Antarctica) was unique in that 98 % of the LMW-DOC was derived from the extremely diverse FAA pool, comprising 14 FAAs. LMW-DOC concentrations in basal ice were dependent on the bioavailability of the overridden organic carbon (OC), which in turn, was influenced by the type of overridden material. Mean LMW-DOC concentrations in basal ice from Russell Glacier (Greenland), Finsterwalderbreen (Svalbard) and Engabreen (Norway) were low (0-417 nM C), attributed to the relatively refractory nature of the OC in the overridden paleosols and bedrock. In contrast, mean LMW-DOC concentrations were an order of magnitude higher (4430 nM C) in basal ice from Joyce Glacier, a reflection of the high bioavailability of the overridden lacustrine material (>17 % of the sediment OC comprised extractable carbohydrates, a proxy for bioavailable OC). We find that the overridden material may act as a direct (via abiotic leaching) and indirect (via microbial cycling) source of DOC to the subglacial environment and provides a range of LMW-DOC compounds that may stimulate microbial activity in wet sediments in current subglacial

  1. Hydrophilic interaction liquid chromatography in the speciation analysis of selenium.

    Science.gov (United States)

    Sentkowska, Aleksandra; Pyrzynska, Krystyna

    2018-02-01

    The hydrophilic interaction liquid chromatography (HILIC) coupled to mass spectrometry was employed to study retention behavior of selected selenium compounds using two different HILIC stationary phases: silica and zwitterionic. Two organic solvents - acetonitrile and methanol - were compared as a component of mobile phase. Separation parameters such as a content of organic modifier, the eluent pH and inorganic buffer concentration were investigated. Based on all observations, methanol seems to be beneficial for the separation of studied compounds. The optimal HILIC separation method involved silica column and eluent composed of 85% MeOH and CH 3 COONH 4 (8 mM, pH 7) was compared to RP method in terms of time of the single run, the separation efficiency and limit of detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Molecular Dynamics Simulations of Water Droplets On Hydrophilic Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    and DNA microarrays technologies.Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water, at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle computations...... dynamics (MD) simulations of a hydrophilic air-water-silica system using the MD package FASTTUBE. We employ quantum chemistry calculation to obtain air-silica interaction parameters for the simulations. Our simulations are based in the following force fields: i) The silica-silica interaction is based...... of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems. For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence of air. Hence...

  3. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A. [Institute of Nuclear Physics, Ibrahimov Str., 1, 050032 Almaty (Kazakhstan); The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan); Güven, Olgun [Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Zdorovets, Maxim V. [Institute of Nuclear Physics, Ibrahimov Str., 1, 050032 Almaty (Kazakhstan); The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan); Taltenov, Abzal A. [The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan)

    2015-12-15

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H{sub 2}O{sub 2} under UV irradiation (H{sub 2}O{sub 2}/UV) and Fenton system under visible light (Fenton/H{sub 2}O{sub 2}/Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H{sub 2}O{sub 2}/UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H{sub 2}O{sub 2}/Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  4. Solid lipid nanoparticles for hydrophilic biotech drugs: optimization and cell viability studies (Caco-2 & HEPG-2 cell lines)

    Czech Academy of Sciences Publication Activity Database

    Severino, P.; Andreani, T.; Jäger, Alessandro; Chaud, M. V.; Santana, M. H. A.; Silva, A. M.; Souto, E. B.

    2014-01-01

    Roč. 81, 23 June (2014), s. 28-34 ISSN 0223-5234 R&D Projects: GA ČR GAP208/10/1600 Institutional support: RVO:61389013 Keywords : lipid nanoparticles * double emulsion * hydrophilic biotech drugs Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.447, year: 2014

  5. Comparison of the Retinal Straylight in Pseudophakic Eyes with PMMA, Hydrophobic Acrylic, and Hydrophilic Acrylic Spherical Intraocular Lens

    Directory of Open Access Journals (Sweden)

    Ya-wen Guo

    2014-01-01

    Full Text Available Purpose. To investigate the intraocular straylight value after cataract surgery. Methods. In this study, 76 eyes from 62 patients were subdivided into three groups. A hydrophobic acrylic, a hydrophilic acrylic, and a PMMA IOL were respectively, implanted in 24 eyes, 28 eyes, and 24 eyes. Straylight was measured using C-Quant at 1 week and 1 month postoperatively in natural and dilated pupils. Results. The hydrophilic acrylic IOLs showed significantly lower straylight values than those of the hydrophobic acrylic IOLs in dilated pupils at 1 week and 1 month after surgery (P0.05. Moreover, no significant difference was found in straylight between natural and dilated pupils in each group at 1 week and 1 month postoperatively (P>0.05. Conclusions. Although the hydrophobic acrylic IOL induced more intraocular straylight, straylight differences among the 3 IOLs were minimal. Pupil size showed no effect on intraocular straylight; the intraocular straylight was stable 1 week after surgery.

  6. Air-spun PLA nanofibers modified with reductively sheddable hydrophilic surfaces for vascular tissue engineering: synthesis and surface modification.

    Science.gov (United States)

    Ko, Na Re; Sabbatier, Gad; Cunningham, Alexander; Laroche, Gaétan; Oh, Jung Kwon

    2014-02-01

    Polylactide (PLA) is a class of promising biomaterials that hold great promise for various biological and biomedical applications, particularly in the field of vascular tissue engineering where it can be used as a fibrous mesh to coat the inside of vascular prostheses. However, its hydrophobic surface providing nonspecific interactions and its limited ability to further modifications are challenges that need to be overcome. Here, the development of new air-spun PLA nanofibers modified with hydrophilic surfaces exhibiting reduction response is reported. Surface-initiated atom transfer radical polymerization allows for grafting pendant oligo(ethylene oxide)-containing polymethacrylate (POEOMA) from PLA air-spun fibers labeled with disulfide linkages. The resulting PLA-ss-POEOMA fibers exhibit enhanced thermal stability and improved surface properties, as well as thiol-responsive shedding of hydrophilic POEOMA by the cleavage of its disulfide linkages in response to reductive reactions, thus tuning the surface properties. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The antibacterial and hydrophilic properties of silver-doped TiO{sub 2} thin films using sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xuemin [College of Physics and Electronic Information, Tianjin Normal University, Tianjin, 300387 (China); Hou Xinggang, E-mail: hou226@163.com [College of Physics and Electronic Information, Tianjin Normal University, Tianjin, 300387 (China); Luan Weijiang [College of Biology, Tianjin Normal University, Tianjin, 300387 (China); Li Dejun; Yao Kun [College of Physics and Electronic Information, Tianjin Normal University, Tianjin, 300387 (China)

    2012-08-01

    Ag-TiO{sub 2} composite thin films were deposited on glass slides by sol-gel spin coating technique. The surface structure, chemical components and transmittance spectra were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis spectrophotometer. The TiO{sub 2} thin films with silver molar ratio from 0 to 10% were tested for its antibacterial property by using Escherichia coliform (E. coli) under irradiation of UV light. The concentration of E. coli was evaluated by plating technique. The influences of different molar ratio of Ag on hydrophilicity and long-term durability of the films were also investigated by measuring the water contact angle. The results showed that the antibacterial ability was significantly improved by increasing silver content comparing with pure TiO{sub 2} thin film, and the best molar ratio of Ag was 5%. While the hydrophilicity of films increased with increasing silver content, and the best molar ratio of Ag was 1%.

  8. Sample Preparation Strategies for the Effective Quantitation of Hydrophilic Metabolites in Serum by Multi-Targeted HILIC-MS/MS

    Directory of Open Access Journals (Sweden)

    Elisavet Tsakelidou

    2017-03-01

    Full Text Available The effect of endogenous interferences of serum in multi-targeted metabolite profiling HILIC-MS/MS analysis was investigated by studying different sample preparation procedures. A modified QuEChERS dispersive SPE protocol, a HybridSPE protocol, and a combination of liquid extraction with protein precipitation were compared to a simple protein precipitation. Evaluation of extraction efficiency and sample clean-up was performed for all methods. SPE sorbent materials tested were found to retain hydrophilic analytes together with endogenous interferences, thus additional elution steps were needed. Liquid extraction was not shown to minimise matrix effects. In general, it was observed that a balance should be reached in terms of recovery, efficient clean-up, and sample treatment time when a wide range of metabolites are analysed. A quick step for removing phospholipids prior to the determination of hydrophilic endogenous metabolites is required, however, based on the results from the applied methods, further studies are needed to achieve high recoveries for all metabolites.

  9. Effects of hydrophilicity and microtopography of titanium implant surfaces on initial supragingival plaque biofilm formation. A pilot study.

    Science.gov (United States)

    Schwarz, F; Sculean, A; Wieland, M; Horn, N; Nuesry, E; Bube, C; Becker, J

    2007-12-01

    The aim of the present pilot study is to investigate the effects of hydrophilicity and microtopography of titanium implant surfaces on initial supragingival plaque biofilm formation. Test specimens were manufactured from commercially pure grade 2 titanium according to one of the following procedures: polished (P), acid-etched (A), chemically modified (mod) A (modA), sand-blasted large grit and A (SLA), and modSLA. Intraoral splints were used to collect an in vivo supragingival plaque biofilm in each group at 12, 24, and 48 h. Stained plaque biofilm (PB) areas (%) were morphometrically assessed. All groups exhibited significant increases of mean PB areas over time (p P > A =modA (p modSLA = P > A = modA (p A = modA (p < 0.001; respectively). Within the limits of a pilot study, it could be concluded that hydrophilicity had no apparent effect, while microtopography had a highly uneven and unpredictable influence on supragingival plaque biofilm formation.

  10. Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems.

    Science.gov (United States)

    Bernkop-Schnürch, A; Kast, C E; Guggi, D

    2003-12-05

    Thiolated polymers (= thiomers) in combination with reduced glutathione (GSH) were shown to improve the uptake of hydrophilic macromolecules from the GI tract. The mechanism responsible for this permeation enhancing effect seems to be based on the thiol groups of the polymer. These groups inhibit protein tyrosine phosphatase, being involved in the closing process of tight junctions, via a GSH-mediated mechanism. The strong permeation enhancing effect of various thiomer/GSH systems such as poly(acrylic acid)-cysteine/GSH or chitosan-4-thio-butylamidine (chitosan-TBA)/GSH could be shown via permeation studies on freshly excised intestinal mucosa in Ussing-type chambers. Furthermore, the efficacy of the system was also shown in vivo. By utilizing poly(acrylic acid)-cysteine/GSH as carrier matrix, an absolute oral bioavailability for low molecular weight heparin of 19.9 +/- 9.3% and a pharmacological efficacy--calculated on the basis of the areas under the reduction in serum glucose levels of the oral formulation versus subcutaneous (s.c.) injection-for orally given insulin of 7% could be achieved. The incorporation of salmon calcitonin in chitosan-TBA/GSH led on the other hand to a pharmacological efficacy based on the areas under the reduction in plasma calcium levels of the oral thiomer formulation versus intravenous (i.v.) injection of 1.3%. Because of this high efficacy (i), the possibility to combine thiomer/GSH systems with additional low molecular weight permeation enhancers acting in other ways (ii) and minimal toxicological risks as these polymers are not absorbed from the GI tract (iii), thiolated polymers represent a promising novel tool for the oral administration of hydrophilic macromolecules.

  11. d-PET-controlled “off-on” Polarity-sensitive Probes for Reporting Local Hydrophilicity within Lysosomes

    Science.gov (United States)

    Zhu, Hao; Fan, Jiangli; Mu, Huiying; Zhu, Tao; Zhang, Zhen; Du, Jianjun; Peng, Xiaojun

    2016-10-01

    Polarity-sensitive fluorescent probes are powerful chemical tools for studying biomolecular structures and activities both in vitro and in vivo. However, the lack of “off-on” polarity-sensing probes has limited the accurate monitoring of biological processes that involve an increase in local hydrophilicity. Here, we design and synthesize a series of “off-on” polarity-sensitive fluorescent probes BP series consisting of the difluoroboron dippyomethene (BODIPY) fluorophore connected to a quaternary ammonium moiety via different carbon linkers. All these probes showed low fluorescence quantum yields in nonpolar solution but became highly fluorescent in polar media. BP-2, which contains a two-carbon linker and a trimethyl quaternary ammonium, displayed a fluorescence intensity and quantum yield that were both linearly correlated with solvent polarity. In addition, BP-2 exhibited high sensitivity and selectivity for polarity over other environmental factors and a variety of biologically relevant species. BP-2 can be synthesized readily via an unusual Mannich reaction followed by methylation. Using electrochemistry combined with theoretical calculations, we demonstrated that the “off-on” sensing behavior of BP-2 is primarily due to the polarity-dependent donor-excited photoinduced electron transfer (d-PET) effect. Live-cell imaging established that BP-2 enables the detection of local hydrophilicity within lysosomes under conditions of lysosomal dysfunction.

  12. Hydrophilic Polymer Embolism: Implications for Manufacturing, Regulation, and Postmarket Surveillance of Coated Intravascular Medical Devices.

    Science.gov (United States)

    Mehta, Rashi I; Mehta, Rupal I

    2018-03-19

    Hydrophilic polymers are ubiquitously applied as surface coatings on catheters and intravascular medical technologies. Recent clinical literature has heightened awareness on the complication of hydrophilic polymer embolism, the phenomenon wherein polymer coating layers separate from catheter and device surfaces, and may be affiliated with a range of unanticipated adverse reactions. Significant system barriers have limited and delayed reporting on this iatrogenic complication, the full effects of which remain underrecognized by healthcare providers and manufacturers of various branded devices. In 2015, the United States Food and Drug Administration acknowledged rising clinical concerns and stated that the agency would work with stakeholders to further evaluate gaps that exist in current national and international device standards for coated intravascular medical technologies. The present article reviews current knowledge on this complication as well as factors that played a role in delaying detection and dissemination of information and new knowledge once hazards and clinical risks were identified. Furthermore, organ-specific effects and adverse reaction patterns are summarized, along with implications for device manufacturing, safety assurance, and regulation. Qualitative and quantitative particulate testing are needed to optimize coated intravascular device technologies. Moreover, general enhanced processes for medical device surveillance are required for timely adverse event management and to ensure patient safety.

  13. Fabrication of a biocomposite reinforced with hydrophilic eggshell proteins

    International Nuclear Information System (INIS)

    Kim, GeunHyung; Min, Taijin; Park, Su A; Kim, Wan Doo; Koh, Young Ho

    2007-01-01

    Soluble eggshell proteins were used as a reinforcing material of electrospun micro/nanofibers for tissue engineering. A biocomposite composed of poly(ε-caprolactone) (PCL) micro/nanofibers and soluble eggshell protein was fabricated with a two-step fabrication method, which is an electrospinning process followed by an air-spraying process. To achieve a stable electrospinning process, we used an auxiliary cylindrical electrode connected with a spinning nozzle. PCL biocomposite was characterized in water contact angle and mechanical properties as well as cell proliferation for its application as a tissue engineering material. It showed an improved hydrophilic characteristic compared with that of a micro/nanofiber web generated from a pure PCL solution using a typical electrospinning process. Moreover, the fabricated biocomposite had good mechanical properties compared to a typical electrospun micro/nanofiber mat. The fabricated biocomposite made human dermal fibroblasts grow better than pure PCL. From the results, the reinforced polymeric micro/nanofiber scaffold can be easily achieved with these modified processes

  14. On the hydrophilicity of electrodes for capacitive energy extraction

    International Nuclear Information System (INIS)

    Lian, Cheng; East China University of Science and Technology, Shanghai; Kong, Xian; Tsinghua University, Beijing; Liu, Honglai; Wu, Jianzhong

    2016-01-01

    The so-called Capmix technique for energy extraction is based on the cyclic expansion of electrical double layers to harvest dissipative energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the electrical potentials for the charging and discharging processes, which must be matched with the pore characteristics of the electrode materials. While a number of recent studies have examined the effects of the electrode pore size and geometry on the capacitive energy extraction processes, there is little knowledge on how the surface properties of the electrodes affect the thermodynamic efficiency. In this paper, we investigate the Capmix processes using the classical density functional theory for a realistic model of electrolyte solutions. The theoretical predictions allow us to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different surface hydrophobicity. Finally, in agreement with recent experiments, we find that the thermodynamic efficiency can be much improved by using most hydrophilic electrodes.

  15. Poly (fluorenyl ether ketone) ionomers containing separated hydrophilic multiblocks used in fuel cells as proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.; Xiao, M.; Wang, S.J.; Meng, Y.Z. [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275 (China); The Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-01-15

    A series of sulfonated poly(fluorenyl ether ketone) with different hydrophilic block lengths were synthesized via a two-step one-pot polymerization from 9,9'-bis(4-Hydroxypheyl) fluorine, 3,3'-disulfonated-4,4'-difluorobenzophenone, and 4,4'-difluorobenzophenone. The resulting sulfonated block polymers with high inherent viscosity (0.8-1.37 dL/g) were very soluble in polar organic solvents and can form flexible and transparent membranes by casting from their solutions. Transmission electron microscope (TEM) was used to examine the microstructure of the membranes and the results revealed that significant hydrophilic/hydrophobic microphase separation was produced. The effects of the multiblock structure and/or length were investigated by comparison of the properties of the multiblock copolymer and the corresponding random structure. The multiblock structure can provide enhanced proton transport, especially under partially hydrated conditions. The as-made membranes can also exhibit better oxidative stability and single cell performance than random copolymer. The multiblock structure design method provides a useful way to prepare proton exchange membrane used in PEM fuel cells. (author)

  16. Simple and fast PO-CL method for the evaluation of antioxidant capacity of hydrophilic and hydrophobic antioxidants

    Science.gov (United States)

    Zargoosh, Kiomars; Ghayeb, Yousef; Azmoon, Behnaz; Qandalee, Mohammad

    2013-08-01

    A simple and fast procedure is described for evaluating the antioxidant activity of hydrophilic and hydrophobic compounds by using the peroxyoxalate-chemiluminescence (PO-CL) reaction of Bis(2,4,6-trichlorophenyl) oxalate (TCPO) with hydrogen peroxide in the presence of di(tert-butyl)2-(tert-butylamino)-5-[(E)-2-phenyl-1-ethenyl]3,4-furandicarboxylate as a highly fluorescent fluorophore. The IC50 values of the well-known antioxidants were calculated and the results were expressed as gallic equivalent antioxidant capacity (GEAC). It was found that the proposed method is free of physical quenching and oxidant interference, for this reason, proposed method is able to determine the accurate scavenging activity of the antioxidants to the free radicals. Finally, the proposed method was applied to the evaluation of antioxidant activity of complex real samples such as soybean oil and sunflower oil (as hydrophobic samples) and honey (as hydrophilic sample). To the best of our knowledge, this is the first time that total antioxidant activity can be determined directly in soybean oil, sunflower oil and honey (not in their extracts) using PO-CL reactions.

  17. Understanding Am3+/Cm3+ separation with H4TPAEN and its hydrophilic derivatives: a quantum chemical study.

    Science.gov (United States)

    Huang, Pin-Wen; Wang, Cong-Zhi; Wu, Qun-Yan; Lan, Jian-Hui; Song, Gang; Chai, Zhi-Fang; Shi, Wei-Qun

    2018-05-10

    Am3+/Cm3+ separation is an extremely hard but important task in nuclear waste treatment. In this study, Am and Cm complexes formed with a back-extraction agent N,N,N',N'-tetrakis[(6-carboxypyridin-2-yl)methyl]ethylene-diamine (H4TPAEN) and its two derivatives with hydrophilic substituents (methoxy and morpholine groups) were investigated using the density functional theory (DFT). The optimized geometrical structures indicated that the Am3+ cation matched better with the cavities of the three studied ligands than Cm3+, and the Am3+ cations were located deeper in the cavities of the ligands. The bond order and quantum theory of atoms in molecules (QTAIM) analyses suggested that ionic interactions dominated An-N and An-O (An = Cm and Am) bonds. However, weak and different extents of partial covalency could also be found in the Am-N and Cm-N bonds. The O donor atoms in the carboxylate groups preferably coordinated with Cm3+ rather than Am3+, whereas the N atoms preferred Am3+. Therefore, the Am3+/Cm3+ selectivity of H4TPAEN and its two hydrophilic derivatives may be ascribed to the competition between the An-N and An-O interactions and the few dissimilarities in their geometrical structures. Based on our calculations, the methoxy and morpholine groups in the two derivatives can serve as electron-donating groups and enhance the strength of the An-NPY bonds (NPY denotes the nitrogen atom of pyridine ring). When compared with the Am-complex, the Cm-complex exhibited significant strength effect, resulting in the relatively lower Am3+/Cm3+ separation ability of the H4TPAEN's hydrophilic derivatives.

  18. Hydrophilic-lipophilic balanced magnetic nanoparticles: preparation and application in magnetic solid-phase extraction of organochlorine pesticides and triazine herbicides in environmental water samples.

    Science.gov (United States)

    He, Zeying; Wang, Peng; Liu, Donghui; Zhou, Zhiqiang

    2014-09-01

    In this study, a novel hydrophilic-lipophilic balanced magnetic nanoparticle, magnetic poly(divinylbenzene-co-N-vinylpyrrolidone) (HLB-MPNP) was successfully synthesized and applied for the extraction and determination of triazine and organochlorine pesticides in environmental water samples. The specific ratio of two monomers, hydrophilic N-vinylpyrrolidone and lipophilic divinylbenzene, endowed the magnetic nanoparticles with hydrophilic-lipophilic balanced character, which made it capable of extracting both polar and nonpolar analytes. The experimental parameters affecting extraction efficiency, including desorption conditions, sample pH, sample volume and extraction time were investigated and optimized. Under the optimum conditions, good linearity was obtained in the range of 0.20-10 μg L(-1) for triazine herbicides and 5.0-100 ng L(-1) for organochlorine pesticides, with correlation coefficients ranging from 0.994 to 0.999. The limits of determination were between 0.048 and 0.081 μg L(-1) for triazine herbicides and 0.39 and 3.26 ng L(-1) for organochlorine pesticides. The proposed method was successfully applied in the analysis of triazine and organochlorine pesticides in environmental water samples (ground, river and reservoir). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Optimization of o-phtaldialdehyde/2-mercaptoethanol postcolumn reaction for the hydrophilic interaction liquid chromatography determination of memantine utilizing a silica hydride stationary phase.

    Science.gov (United States)

    Douša, Michal; Pivoňková, Veronika; Sýkora, David

    2016-08-01

    A rapid procedure for the determination of memantine based on hydrophilic interaction chromatography with fluorescence detection was developed. Fluorescence detection after postcolumn derivatization with o-phtaldialdehyde/2-mercaptoethanol was performed at excitation and emission wavelengths of 345 and 450 nm, respectively. The postcolumn reaction conditions such as reaction temperature, derivatization reagent flow rate, and reagents concentration were studied due to steric hindrance of amino group of memantine. The derivatization reaction was applied for the hydrophilic interaction liquid chromatography method which was based on Cogent Silica-C stationary phase with a mobile phase consisting of a mixture of 10 mmol/L citric acid and 10 mmol/L o-phosphoric acid (pH 6.0) with acetonitrile using an isocratic composition of 2:8 v/v. The benefit of the reported approach consists in a simple sample pretreatment and a quick and sensitive hydrophilic interaction chromatography method. The developed method was validated in terms of linearity, accuracy, precision, and selectivity according to the International Conference on Harmonisation guidelines. The developed method was successfully applied for the analysis of commercial memantine tablets. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Homogeneous solutions of hydrophilic enzymes in nonpolar organic solvents. New systems for fundamental studies and biocatalytic transformations.

    Science.gov (United States)

    Mozhaev, V V; Poltevsky, K G; Slepnev, V I; Badun, G A; Levashov, A V

    1991-11-04

    A typical hydrophilic enzyme, CT, can be dissolved in nonpolar organic solvents (n-octane, cyclohexane and toluene) up to microM concentrations. In the homogeneous solution obtained, the enzyme possesses catalytic activity and enormously high thermostability. It does not lose this activity even after several hours refluxing in octane (126 degrees C) or cyclohexane (81 degrees C).

  1. Cooking does not decrease hydrophilic antioxidant capacity of wild blueberries.

    Science.gov (United States)

    Murphy, Rebecca Ree; Renfroe, Michael H; Brevard, Patricia Bowling; Lee, Robert E; Gloeckner, Janet W

    2009-01-01

    The present study examined the effects of domestic cooking methods on the hydrophilic antioxidant activity (HAA) of wild blueberries. Baked, microwaved, simmered, and pan-fried frozen wild blueberries, and a thawed uncooked control, were analyzed for HAA using an ABTS/H(2)O(2)/HRP decoloration method. All cooking treatments were derived from recipes using wild blueberries, and were performed in triplicate. A randomized block design was used to determine whether there were statistical differences in antioxidant content after cooking and between each of the trials. There were no statistically significant decreases after cooking the thawed berries. On both a fresh weight and a dry weight basis, pan-fried blueberries had significantly higher HAA than baked, simmered, and control blueberries (Pcooked berries retained significant HAA. Cooked wild blueberries can be recommended as a good source of dietary antioxidants.

  2. Preparation and electrochemical capacitance performances of super-hydrophilic conducting polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xingwei; Li, Xiaohan; Dai, Na; Wang, Gengchao; Wang, Zhun [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237 (China)

    2010-08-15

    Super-hydrophilic conducting polyaniline was prepared by surface modification of polyaniline using tetraethyl orthosilicate in water/ethanol solution, whereas its conductivity was 4.16 S cm{sup -1} at 25 C. And its electrochemical capacitance performances as an electrode material were evaluated by the cyclic voltammetry and galvanostatic charge/discharge test in 0.1 M H{sub 2}SO{sub 4} aqueous solution. Its initial specific capacitance was 500 F g{sup -1} at a constant current density of 1.5 A g{sup -1}, and the capacitance still reached about 400 F g{sup -1} after 5000 consecutive cycles. Moreover, its capacitance retention ratio was circa 70% with the growth of current densities from 1.5 to 20 A g{sup -1}, indicating excellent rate capability. It would be a promising electrode material for aqueous redox supercapacitors. (author)

  3. Understanding the drug release mechanism from a montmorillonite matrix and its binary mixture with a hydrophilic polymer using a compartmental modelling approach

    Science.gov (United States)

    Choiri, S.; Ainurofiq, A.

    2018-03-01

    Drug release from a montmorillonite (MMT) matrix is a complex mechanism controlled by swelling mechanism of MMT and an interaction of drug and MMT. The aim of this research was to explain a suitable model of the drug release mechanism from MMT and its binary mixture with a hydrophilic polymer in the controlled release formulation based on a compartmental modelling approach. Theophylline was used as a drug model and incorporated into MMT and a binary mixture with hydroxyl propyl methyl cellulose (HPMC) as a hydrophilic polymer, by a kneading method. The dissolution test was performed and the modelling of drug release was assisted by a WinSAAM software. A 2 model was purposed based on the swelling capability and basal spacing of MMT compartments. The model evaluation was carried out to goodness of fit and statistical parameters and models were validated by a cross-validation technique. The drug release from MMT matrix regulated by a burst release mechanism of unloaded drug, swelling ability, basal spacing of MMT compartment, and equilibrium between basal spacing and swelling compartments. Furthermore, the addition of HPMC in MMT system altered the presence of swelling compartment and equilibrium between swelling and basal spacing compartment systems. In addition, a hydrophilic polymer reduced the burst release mechanism of unloaded drug.

  4. Preparation and characterization of amphiphilic copolymer PVDF-g-PMABS and its application in improving hydrophilicity and protein fouling resistance of PVDF membrane

    Science.gov (United States)

    Chen, Fengtao; Shi, Xingxing; Chen, Xiaobing; Chen, Wenxing

    2018-01-01

    A facile strategy to improve the hydrophilicity and the antifouling properties of poly(vinylidene fluoride) (PVDF) membranes, a functional monomer of 4-methacrylamidobenzenesulfonic acid (MABS), was designed and synthesized through the amidation reaction between 2-methylacryloyl chloride and sulfanilic acid. Utilizing PVDF and the obtained MABS as reaction monomers, a novel amphiphilic copolymer was firstly prepared by radical polymerization method. The resulting PVDF-g-PMABS was used as a hydrophilic additive in the fabrication of PVDF porous membranes via immersion precipitation process. The surface chemical compositions and structure morphologies of as-prepared blend membranes (PVDF-g-PMABS/PVDF) were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), respectively. Contact angle measurement and cross-flow permeation test were employed to evaluate the hydrophilicity and antifouling properties of the membranes. It was found that the blend membrane with 4 wt.% PVDF-g-PMABS exhibited a noticeable pure water flux (136.34 L m-2 h-1) and a remarkable flux recovery ratio (FRR) of 98.60% in comparison with the pristine PVDF membrane (63.37 L m-2 h-1 and 38.67%, respectively). The enhanced performance was attributed to the synergetic effects of the strong hydrogen bonding force and the electrostatic repulsion of sulfonic groups against the protein foulants.

  5. Ultra-hydrophilic stent platforms promote early vascular healing and minimise late tissue response: a potential alternative to second-generation drug-eluting stents.

    Science.gov (United States)

    Kolandaivelu, Kumaran; Bailey, Lynn; Buzzi, Stefano; Zucker, Arik; Milleret, Vincent; Ziogas, Algirdas; Ehrbar, Martin; Khattab, Ahmed A; Stanley, James R L; Wong, Gee K; Zani, Brett; Markham, Peter M; Tzafriri, Abraham R; Bhatt, Deepak L; Edelman, Elazer R

    2017-04-20

    Simple surface modifications can enhance coronary stent performance. Ultra-hydrophilic surface (UHS) treatment of contemporary bare metal stents (BMS) was assessed in vivo to verify whether such stents can provide long-term efficacy comparable to second-generation drug-eluting stents (DES) while promoting healing comparably to BMS. UHS-treated BMS, untreated BMS and corresponding DES were tested for three commercial platforms. A thirty-day and a 90-day porcine coronary model were used to characterise late tissue response. Three-day porcine coronary and seven-day rabbit iliac models were used for early healing assessment. In porcine coronary arteries, hydrophilic treatment reduced intimal hyperplasia relative to the BMS and corresponding DES platforms (1.5-fold to threefold reduction in 30-day angiographic and histological stenosis; p<0.04). Endothelialisation was similar on UHS-treated BMS and untreated BMS, both in swine and rabbit models, and lower on DES. Elevation in thrombotic indices was infrequent (never observed with UHS, rare with BMS, most often with DES), but, when present, correlated with reduced endothelialisation (p<0.01). Ultra-hydrophilic surface treatment of contemporary stents conferred good healing while moderating neointimal and thrombotic responses. Such surfaces may offer safe alternatives to DES, particularly when rapid healing and short dual antiplatelet therapy (DAPT) are crucial.

  6. A matrix-assisted laser desorption/ionization mass spectroscopy method for the analysis of small molecules by integrating chemical labeling with the supramolecular chemistry of cucurbituril.

    Science.gov (United States)

    Ding, Jun; Xiao, Hua-Ming; Liu, Simin; Wang, Chang; Liu, Xin; Feng, Yu-Qi

    2018-10-05

    Although several methods have realized the analysis of low molecular weight (LMW) compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) by overcoming the problem of interference with MS signals in the low mass region derived from conventional organic matrices, this emerging field still requires strategies to address the issue of analyzing complex samples containing LMW components in addition to the LMW compounds of interest, and solve the problem of lack of universality. The present study proposes an integrated strategy that combines chemical labeling with the supramolecular chemistry of cucurbit [n]uril (CB [n]) for the MALDI MS analysis of LMW compounds in complex samples. In this strategy, the target LMW compounds are first labeled by introducing a series of bifunctional reagents that selectively react with the target analytes and also form stable inclusion complexes with CB [n]. Then, the labeled products act as guest molecules that readily and selectively form stable inclusion complexes with CB [n]. This strategy relocates the MS signals of the LMW compounds of interest from the low mass region suffering high interference to the high mass region where interference with low mass components is absent. Experimental results demonstrate that a wide range of LMW compounds, including carboxylic acids, aldehydes, amines, thiol, and cis-diols, can be successfully detected using the proposed strategy, and the limits of detection were in the range of 0.01-1.76 nmol/mL. In addition, the high selectivity of the labeling reagents for the target analytes in conjunction with the high selectivity of the binding between the labeled products and CB [n] ensures an absence of signal interference with the non-targeted LMW components of complex samples. Finally, the feasibility of the proposed strategy for complex sample analysis is demonstrated by the accurate and rapid quantitative analysis of aldehydes in saliva and herbal

  7. Comprehensive Analysis of Low-Molecular-Weight Human Plasma Proteome Using Top-Down Mass Spectrometry.

    Science.gov (United States)

    Cheon, Dong Huey; Nam, Eun Ji; Park, Kyu Hyung; Woo, Se Joon; Lee, Hye Jin; Kim, Hee Cheol; Yang, Eun Gyeong; Lee, Cheolju; Lee, Ji Eun

    2016-01-04

    While human plasma serves as a great source for disease diagnosis, low-molecular-weight (LMW) proteome (mass spectrometry to analyze the LMW proteoforms present in four types of human plasma samples pooled from three healthy controls (HCs) without immunoaffinity depletion and with depletion of the top two, six, and seven high-abundance proteins. The LMW proteoforms were first fractionated based on molecular weight using gel-eluted liquid fraction entrapment electrophoresis (GELFrEE). Then, the GELFrEE fractions containing up to 30 kDa were subjected to nanocapillary-LC-MS/MS, and the high-resolution MS and MS/MS data were processed using ProSightPC 3.0. As a result, a total of 442 LMW proteins and cleaved products, including those with post-translational modifications and single amino acid variations, were identified. From additional comparative analysis of plasma samples without immunoaffinity depletion between HCs and colorectal cancer (CRC) patients via top-down approach, tens of LMW proteoforms, including platelet factor 4, were found to show >1.5-fold changes between the plasma samples of HCs and CRC patients, and six of the LMW proteins were verified by Western blot analysis.

  8. Photo-induced hydrophilicity of TiO2-xNx thin films on PET plates

    International Nuclear Information System (INIS)

    Chou, H.-Y.; Lee, E.-K.; You, J.-W.; Yu, S.-S.

    2007-01-01

    TiO 2-x N x thin films were deposited on PET (polyethylene terephthalate) plates by sputtering a TiN target in a N 2 /O 2 plasma and without heating. X-ray photoemission spectroscopy (XPS) was used to investigate the N 1s, Ti 2p core levels and the nitrogen composition in the TiO 2-x N x films. The results indicate that Ti-O-N bonds are formed in the thin films. Two nitrogen states, substitution and interstitial nitrogen atoms, were attributed to peaks at 396 and 399 eV, respectively. It was observed that the nitrogen atoms occupy both the substitutive and interstitial sites in respective of the nitrogen content in the thin films. UV-VIS absorption spectroscopy of PET coated thin films shows a significant shift of the absorption edge to lower energy in the visible-light region. UV and visible-light irradiation are used to activate PET coated thin films for the development of hydrophilicity. The photo-induced surface wettability conversion reaction of the thin films has been investigated by means of water contact angle measurement. PET plates coated with TiO 2-x N x thin films are found to exhibit lower water contact angle than non-coated plates when the surface is illuminated with UV and visible light. The effects of nitrogen doping on photo-generated hydrophilicity of the thin films are investigated in this work

  9. Bioremediation of aqueous pollutants using biomass embedded in hydrophilic foam. Final report

    International Nuclear Information System (INIS)

    Wilde, E.W.; Radway, J.C.; Santo Domingo, J.; Zingmark, R.G.; Whitaker, M.J.

    1996-01-01

    The major objective of this project was to examine the potential of a novel hydrophilic polyurethane foam as an immobilization medium for algal, bacteria, and other types of biomass, and to test the resulting foam/biomass aggregates for their use in cleaning up waters contaminated with heavy metals, radionuclides and toxic organic compounds. Initial investigations focused on the bioremoval of heavy metals from wastewaters at SRS using immobilized algal biomass. This effort met with limited success for reasons which included interference in the binding of biomass and target metals by various non-target constituents in the wastewater, lack of an appropriate wastewater at SRS for testing, and the unavailability of bioreactor systems capable of optimizing contact of target pollutants with sufficient biomass binding sites. Subsequent studies comparing algal, bacterial, fungal, and higher plant biomass demonstrated that other biomass sources were also ineffective for metal bioremoval under the test conditions. Radionuclide bioremoval using a Tc-99 source provided more promising results than the metal removal studies with the various types of biomass, and indicated that the alga Cyanidium was the best of the tested sources of biomass for this application. However, all of the biomass/foam aggregates tested were substantially inferior to a TEVA resin for removing Tc-99 in comparative testing. The authors also explored the use of hydrophilic polyurethane foam to embed Burkholderia cepacia, which is an efficient degrader of trichloroethylene (TCE), a contaminant of considerable concern at SRS and elsewhere. The embedded population proved to be incapable of growth on nutrient media, but retained respiratory activity. Lastly, the degradative capabilities of embedded G4 were examined. Phenol- or benzene-induced bacteria retained the ability to degrade TCE and benzene. The authors were successful in inducing enzyme activity after the organisms had already been embedded

  10. Bioremediation of aqueous pollutants using biomass embedded in hydrophilic foam. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W.; Radway, J.C.; Santo Domingo, J.; Zingmark, R.G.; Whitaker, M.J.

    1996-12-31

    The major objective of this project was to examine the potential of a novel hydrophilic polyurethane foam as an immobilization medium for algal, bacteria, and other types of biomass, and to test the resulting foam/biomass aggregates for their use in cleaning up waters contaminated with heavy metals, radionuclides and toxic organic compounds. Initial investigations focused on the bioremoval of heavy metals from wastewaters at SRS using immobilized algal biomass. This effort met with limited success for reasons which included interference in the binding of biomass and target metals by various non-target constituents in the wastewater, lack of an appropriate wastewater at SRS for testing, and the unavailability of bioreactor systems capable of optimizing contact of target pollutants with sufficient biomass binding sites. Subsequent studies comparing algal, bacterial, fungal, and higher plant biomass demonstrated that other biomass sources were also ineffective for metal bioremoval under the test conditions. Radionuclide bioremoval using a Tc-99 source provided more promising results than the metal removal studies with the various types of biomass, and indicated that the alga Cyanidium was the best of the tested sources of biomass for this application. However, all of the biomass/foam aggregates tested were substantially inferior to a TEVA resin for removing Tc-99 in comparative testing. The authors also explored the use of hydrophilic polyurethane foam to embed Burkholderia cepacia, which is an efficient degrader of trichloroethylene (TCE), a contaminant of considerable concern at SRS and elsewhere. The embedded population proved to be incapable of growth on nutrient media, but retained respiratory activity. Lastly, the degradative capabilities of embedded G4 were examined. Phenol- or benzene-induced bacteria retained the ability to degrade TCE and benzene. The authors were successful in inducing enzyme activity after the organisms had already been embedded.

  11. Mechanism study of endothelial protection and inhibits platelet activation of low molecular weight fucoidan from Laminaria japonica

    Science.gov (United States)

    Chen, Anjin; Zhang, Fang; Shi, Jie; Zhao, Xue; Yan, Meixing

    2016-10-01

    Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline (0.4 mg kg-1) and human umbilical vein endothelial cells were cultured. vWF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce vWF level in vascular endothelial injury rats and also significantly reduce vWF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and vWF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.

  12. A New Concept to Transport a Droplet on Horizontal Hydrophilic/Hydrophobic Surfaces

    International Nuclear Information System (INIS)

    Myong, Hyon Kook

    2014-01-01

    A fluid transport technique is a key issue for the development of microfluidic systems. In this paper, a new concept for transporting a droplet without external power sources is proposed and verified numerically. The proposed device is a heterogeneous surface which has both hydrophilic and hydrophobic horizontal surfaces. The numerical simulation to demonstrate the new concept is conducted by an in-house solution code (PowerCFD) which employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method (CICSAM) in a volume of fluid (VOF) scheme for phase interface capturing. It is found that the proposed concept for droplet transport shows superior performance for droplet transport in microfluidic systems

  13. Hydrophilization of poly(ether ether ketone) films by surface-initiated atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Jankova Atanasova, Katja; Hvilsted, Søren

    2010-01-01

    Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) has been exploited to hydrophilize PEEK. The ketone groups on the PEEK surface were reduced to hydroxyl groups which were converted to bromoisobutyrate initiating sites for SI-ATRP. The modification steps were followed by contact...... angle measurements and XPS. Moreover, ATR FTIR has been used to confirm the formation of initiating groups. Grafting of PEGMA from PEEK was performed in aqueous solution. The presence of the PPEGMA grafts on PEEK was revealed by the thermograms from TGA whereas investigations with AFM rejected changes...

  14. A Simple Hydrophilic Treatment of SU-8 Surfaces for Cell Culturing and Cell Patterning

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Stangegaard, Michael; Dufva, Hans Martin

    2005-01-01

    SU-8, an epoxy-based photoresist, widely used in constitution different mTAS systems, is incompatible with mammalian cell adhesion and culture in its native form. Here, we demonstrate a simple, cheap and robust two-step method to render a SU-8 surface hydrophilic and compatible with cell culture........ The contact angle of SU-8 surface was significantly reduced from 90° to 25° after the surface modification. The treated SU-8 surfaces provided a cell culture environment that was comparable with cell culture flask surface in terms of generation time and morphology....

  15. Magnetic hydrophilic-lipophilic balance sorbent for efficient extraction of chemical warfare agents from water samples.

    Science.gov (United States)

    Singh, Varoon; Purohit, Ajay Kumar; Chinthakindi, Sridhar; Goud D, Raghavender; Tak, Vijay; Pardasani, Deepak; Shrivastava, Anchal Roy; Dubey, Devendra Kumar

    2016-02-19

    Magnetic hydrophilic-lipophilic balance (MHLB) hybrid resin was prepared by precipitation polymerization using N-vinylpyrrolidone (PVP) and divinylbenzene (DVB) as monomers and Fe2O3 nanoparticles as magnetic material. These resins were successfully applied for the extraction of chemical warfare agents (CWAs) and their markers from water samples through magnetic dispersive solid-phase extraction (MDSPE). By varying the ratios of monomers, resin with desired hydrophilic-lipophilic balance was prepared for the extraction of CWAs and related esters of varying polarities. Amongst different composites Fe2O3 nanoparticles coated with 10% PVP+90% DVB exhibited the best recoveries varying between 70.32 and 97.67%. Parameters affecting the extraction efficiencies, such as extraction time, desorption time, nature and volume of desorption solvent, amount of extraction sorbent and the effect of salts on extraction were investigated. Under the optimized conditions, linearity was obtained in the range of 0.5-500 ng mL(-1) with correlation ranging from 0.9911-0.9980. Limits of detection and limits of quantification were 0.5-1.0 and 3.0-5.0 ng mL(-1) respectively with RSDs varying from 4.88-11.32% for markers of CWAs. Finally, the developed MDSPE method was employed for extraction of analytes from water samples of various sources and the OPCW proficiency test samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Structural and dynamical properties of water confined between two hydrophilic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Di Napoli, Solange, E-mail: dinapoli@tandar.cnea.gov.a [Depto. de Fisica - CAC, Comision Nacional de Energia Atomica, Av. Gral Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Gamba, Zulema, E-mail: gamba@tandar.cnea.gov.a [Depto. de Fisica - CAC, Comision Nacional de Energia Atomica, Av. Gral Paz 1499, (1650) San Martin, Buenos Aires (Argentina)

    2009-10-01

    The properties of water in the vicinity of surfaces and under confinement have been extensively studied because of the relevance of a quantitative understanding of many processes that not only take place in biological systems, like cells, membranes and microemulsions, but also in many others such as confined water in rocks, ionic channels and interestellar matter. In this work we perform molecular dynamic calculations of the nanoscopic structure of TIP5P model water confined between two hydrophilic surfaces. We calculate the diffusion coefficients and the atomic density profile of water molecules and polar ions in the system as a function of the number of water molecules per amphiphilic (n{sub W}). We also study the dependence of the water layer thickness and the profiles of water dipole orientation with this parameter.

  17. Structural and dynamical properties of water confined between two hydrophilic surfaces

    International Nuclear Information System (INIS)

    Di Napoli, Solange; Gamba, Zulema

    2009-01-01

    The properties of water in the vicinity of surfaces and under confinement have been extensively studied because of the relevance of a quantitative understanding of many processes that not only take place in biological systems, like cells, membranes and microemulsions, but also in many others such as confined water in rocks, ionic channels and interestellar matter. In this work we perform molecular dynamic calculations of the nanoscopic structure of TIP5P model water confined between two hydrophilic surfaces. We calculate the diffusion coefficients and the atomic density profile of water molecules and polar ions in the system as a function of the number of water molecules per amphiphilic (n W ). We also study the dependence of the water layer thickness and the profiles of water dipole orientation with this parameter.

  18. Chitosan-thioglycolic acid as a versatile antimicrobial agent.

    Science.gov (United States)

    Geisberger, Georg; Gyenge, Emina Besic; Hinger, Doris; Käch, Andres; Maake, Caroline; Patzke, Greta R

    2013-04-08

    As functionalized chitosans hold great potential for the development of effective and broad-spectrum antibiotics, representative chitosan derivatives were tested for antimicrobial activity in neutral media: trimethyl chitosan (TMC), carboxy-methyl chitosan (CMC), and chitosan-thioglycolic acid (TGA; medium molecular weight: MMW-TGA; low molecular weight: LMW-TGA). Colony forming assays indicated that LMW-TGA displayed superior antimicrobial activity over the other derivatives tested: a 30 min incubation killed 100% Streptococcus sobrinus (Gram-positive bacteria) and reduced colony counts by 99.99% in Neisseria subflava (Gram-negative bacteria) and 99.97% in Candida albicans (fungi). To elucidate LMW-TGA effects at the cellular level, microscopic studies were performed. Use of fluorescein isothiocyanate (FITC)-labeled chitosan derivates in confocal microscopy showed that LMW-TGA attaches to microbial cell walls, while transmission electron microscopy indicated that this derivative severely affects cell wall integrity and intracellular ultrastructure in all species tested. We therefore propose LMW-TGA as a promising and effective broad-band antimicrobial compound.

  19. Interactions between nano-TiO2 and the oral cavity: impact of nanomaterial surface hydrophilicity/hydrophobicity.

    Science.gov (United States)

    Teubl, Birgit J; Schimpel, Christa; Leitinger, Gerd; Bauer, Bettina; Fröhlich, Eleonore; Zimmer, Andreas; Roblegg, Eva

    2015-04-09

    Titanium dioxide (TiO2) nanoparticles are available in a variety of oral applications, such as food additives and cosmetic products. Thus, questions about their potential impact on the oro-gastrointestinal route rise. The oral cavity represents the first portal of entry and is known to rapidly interact with nanoparticles. Surface charge and size contribute actively to the particle-cell interactions, but the influence of surface hydrophilicity/hydrophobicity has never been shown before. This study addresses the biological impact of hydrophilic (NM 103, rutile, 20 nm) and hydrophobic (NM 104, rutile, 20 nm) TiO2 particles within the buccal mucosa. Particle characterization was addressed with dynamic light scattering and laser diffraction. Despite a high agglomeration tendency, 10% of the particles/agglomerates were present in the nanosized range and penetrated into the mucosa, independent of the surface properties. However, significant differences were observed in intracellular particle localization. NM 104 particles were found freely distributed in the cytoplasm, whereas their hydrophobic counterparts were engulfed in vesicular structures. Although cell viability/membrane integrity was not affected negatively, screening assays demonstrated that NM 104 particles showed a higher potential to decrease the physiological mitochondrial membrane potential than NM 103, resulting in a pronounced generation of reactive oxygen species. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Root desiccation and drought stress responses of bareroot Quercus rubra seedlings treated with a hydrophilic polymer root dip

    Science.gov (United States)

    Kent G. Apostol; Douglass F. Jacobs; R. Kasten Dumroese

    2009-01-01

    Root hydrogel, a hydrophilic polymer, has been used to improve transplanting success of bareroot conifer seedlings through effects on water holding capacity. We examined mechanisms by which Terra-sorb Fine Hydrogel reduces damage that occurs when roots of 1-year old, dormant northern red oak (Quercus rubra L.) were subjected to shortterm (1, 3, and 5...

  1. Controlled surface morphology and hydrophilicity of polycaprolactone toward human retinal pigment epithelium cells.

    Science.gov (United States)

    Shahmoradi, Saleheh; Yazdian, Fatemeh; Tabandeh, Fatemeh; Soheili, Zahra-Soheila; Hatamian Zarami, Ashraf Sadat; Navaei-Nigjeh, Mona

    2017-04-01

    Applying scaffolds as a bed to enhance cell proliferation and even differentiation is one of the treatment of retina diseases such as age-related macular degeneration (AMD) which deteriorating photoreceptors and finally happening blindness. In this study, aligned polycaprolactone (PCL) nanofibers were electrospun and at different conditions and their characteristics were measured by scanning electron microscope (SEM) and contact angle. Response surface methodology (RSM) was used to optimize the diameter of fabricated nanofibers. Two factors as solution concentration and voltage value were considered as independent variables and their effects on nanofibers' diameters were evaluated by central composite design and the optimum conditions were obtained as 0.12g/mL and 20kV, respectively. In order to decrease the hydrophobicity of PCL, the surface of the fabricated scaffolds was modified by alkaline hydrolysis method. Contact time of the scaffolds and alkaline solution and concentration of alkaline solution were optimized using Box Behnken design and (120min and 5M were the optimal, respectively). Contact angle measurement showed the high hydrophilicity of treated scaffolds (with contact angle 7.48°). Plasma surface treatment was applied to compare the effect of using two kinds of surface modification methods simultaneously on hydrolyzed scaffolds. The RPE cells grown on scaffolds were examined by immunocytochemistry (ICC), MTT and continuous inspection of cellular morphology. Interestingly, Human RPE cells revealed their characteristic morphology on hydrolyzed scaffold well. As a result, we introduced a culture substrate with low diameter (185.8nm), high porosity (82%) and suitable hydrophilicity (with contact angle 7.48 degree) which can be promising for hRPE cell transplantation. Copyright © 2016. Published by Elsevier B.V.

  2. Deposition of lipid, protein, and secretory phospholipase A2 on hydrophilic contact lenses.

    Science.gov (United States)

    Mochizuki, Hiroshi; Yamada, Masakazu; Hatou, Shin; Kawashima, Motoko; Hata, Seiichiro

    2008-01-01

    Recent studies have shown that low tear phospholipid levels are associated with tear film instability in hydrophilic contact lens wearers. The concentration of secretory phospholipase A2 (sPLA2), the enzyme that hydrolyzes phospholipids, in tears is known to exceed the levels found in serum by four orders of magnitude. This study was performed to determine the levels of sPLA2 from the deposition on two different frequent-replacement contact lens materials. Polymacon and etafilcon A contact lenses worn for 2 weeks by 16 experienced contact lens wearers were used for the analysis. Total lipids were determined by the sulfo-phospho-vanillin reaction. Phospholipids in lipid extracts were estimated by phosphorus determination with ammonium molybdate through enzymatic digestion. Total protein was measured by bicinchoninic acid analysis. Double-antibody sandwich enzyme-linked immunosorbent assay was used to determine sPLA2 concentrations. Total lipid deposition was found to be greater in the polymacon group (66.3+/-16.3 microg/lens) than in the etafilcon A group, although phospholipids were not detected in either group. The etafilcon A group had greater deposition of protein (3.7+/-0.7 mg/lens) than the polymacon group had. The etafilcon A group deposited statistically significantly more group IIa sPLA2 (1.1+/-0.3 microg/lens) than the polymacon group (0.07+/-0.04 microg/lens) did (P<0.001). There was a significant difference in the lipid and protein deposition profiles in the two lenses tested. A significant amount of sPLA2 in the deposition on contact lenses may play a role in tear film instability in hydrophilic contact lens wearers.

  3. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.

    Science.gov (United States)

    Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2017-04-18

    The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light

  4. Radiation initiated grafting of hydrophilic and reactive monomers on polyetherurethane for biomedical application

    International Nuclear Information System (INIS)

    Jansen, B.; Ellinghorst, G.

    1981-01-01

    Hydrogels such poly(hydroxyethylmethacrylate), poly (acrylamide) and poly(2,3-dihydroxypropylmethacrylate) are a class of well-known materials with good to excellent biomedical properties. Unfortunately the mechanical behaviour of the water-swollen gels is poor, and thus their application in pure state is limited. Much work has been done, especially by the grafting technique, on supporting the hydrogels by several techniques in order to improve their mechanical properties. In this work grafting of hydrogel forming or reactive monomers (which can be made hydrophilic by a following chemical process) onto a polyetherurethane was performed by a technique in which the trunk polymer is swollen in the graft monomer before irradiation. (author)

  5. Hydrophobic/Hydrophilic Cooperative Janus System for Enhancement of Fog Collection.

    Science.gov (United States)

    Cao, Moyuan; Xiao, Jiasheng; Yu, Cunming; Li, Kan; Jiang, Lei

    2015-09-09

    Harvesting micro-droplets from fog is a promising method for solving global freshwater crisis. Different types of fog collectors have been extensively reported during the last decade. The improvement of fog collection can be attributed to the immediate transportation of harvested water, the effective regeneration of the fog gathering surface, etc. Through learning from the nature's strategy for water preservation, the hydrophobic/hydrophilic cooperative Janus system that achieved reinforced fog collection ability is reported here. Directional delivery of the surface water, decreased re-evaporation rate of the harvested water, and thinner boundary layer of the collecting surface contribute to the enhancement of collection efficiency. Further designed cylinder Janus collector can facilely achieve a continuous process of efficient collection, directional transportation, and spontaneous preservation of fog water. This Janus fog harvesting system should improve the understanding of micro-droplet collection system and offer ideas to solve water resource crisis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Comparative proteome analysis of glutenin synthesis and accumulation in developing grains between superior and poor quality bread wheat cultivars.

    Science.gov (United States)

    Liu, Wan; Zhang, Yanzhen; Gao, Xuan; Wang, Ke; Wang, Shunli; Zhang, Yong; He, Zhonghu; Ma, Wujun; Yan, Yueming

    2012-01-15

    Wheat glutenins are the major determinants of wheat quality. In this study, grains at the development stage from three wheat cultivars (Jimai 20, Jin 411 and Zhoumai 16) with different bread-making quality were harvested based on thermal times from 150 °C(d) to 750 °C(d) , and were used to investigate glutenin accumulation patterns and their relationships with wheat quality. High and low molecular weight glutenin subunits (HMW-GSs and LMW-GSs) were synthesised concurrently. No obvious correlations between HMW/LMW glutenin ratios and dough property were observed. Accumulation levels of HMW-GSs and LMW-GSs as well as 1Bx13 + 1By16 and 1Dx4 + 1Dy12 subunits were higher in superior gluten quality cultivar Jimain 20 than in poor quality cultivar Jing 411 and Zhoumai 16. According to the results of two-dimensional gel electrophoresis, six types of accumulation patterns in LMW-GSs were identified and classified. The possible relationships between individual LMW-GSs and gluten quality were established. The high accumulation level of HMW-GSs and LMW-GSs as well as 1Bx13 + 1By16 and 1Dx4 + 1Dy12 subunits contributed to the superior gluten quality of Jimai 20. Two highly expressed and 16 specifically expressed LMW glutenin subunits in Jimain 20 had positive effects on dough quality, while 17 specifically expressed subunits in Zhoumai 16 and Jing 411 appeared to have negative effects on gluten quality. Copyright © 2011 Society of Chemical Industry.

  7. Oxidized template-synthesized mesoporous carbon with pH-dependent adsorption activity: A promising adsorbent for removal of hydrophilic ionic liquid

    Science.gov (United States)

    Zhang, Ling; Cao, Wugang; Alvarez, Pedro J. J.; Qu, Xiaolei; Fu, Heyun; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang

    2018-05-01

    Aiming to remove ionic liquid pollutants from water, an ordered mesoporous carbon CMK-3 (OMC) was prepared and modified by oxidation with nitric acid. A commercial microporous activated carbon adsorbent, Filtrasorb-300 (AC), was used as benchmark. Boehm titration showed that oxidized OMC had a substantially higher oxygen content than oxidized AC. Adsorption of the hydrophilic imidazolium-based ionic liquid 1-Butyl-3-methylimidazolium chloride ([Bmim]Cl) on OMC and AC was well-described by the Freundlich isotherm model. Surface oxidation markedly enhanced [Bmim]Cl adsorption by both OMC and AC. Nevertheless, [Bmim]Cl adsorption was much higher on oxidized OMC than on oxidized AC. Increasing pH had negligible influence on [Bmim]Cl adsorption on pristine OMC, but enhanced adsorption on oxidized OMC. Regeneration tests showed stable performance of oxidized OMC over five adsorption-desorption cycles. Thus, oxidized OMC can be a highly effective adsorbent for the removal of hydrophilic ionic liquids from water.

  8. Growth of tin oxide thin films composed of nanoparticles on hydrophilic and hydrophobic glass substrates by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Paloly, Abdul Rasheed; Satheesh, M. [Nano Functional Materials Lab, Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Martínez-Tomás, M. Carmen; Muñoz-Sanjosé, Vicente [Departamento de Física Aplicada y Electromagnetismo, Universitat de Valencia, c/Dr Moliner 50, Burjassot, Valencia 46100 (Spain); Rajappan Achary, Sreekumar [Nano Functional Materials Lab, Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Bushiri, M. Junaid, E-mail: junaidbushiri@gmail.com [Nano Functional Materials Lab, Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India)

    2015-12-01

    Highlights: • SnO{sub 2} thin films were grown on hydrophilic and hydrophobic glass substrates. • Samples on hydrophobic substrates are having comparatively larger lattice volume. • Films on hydrophobic substrates have larger particles and low density distribution. • Substrate dependent photoluminescence emission is observed and studied. • SnO{sub 2} thin films grown over hydrophobic substrates may find potential applications. - Abstract: In this paper, we have demonstrated the growth of tin oxide (SnO{sub 2}) thin films composed of nanoparticles on hydrophobic (siliconized) and hydrophilic (non-siliconized) glass substrates by using the spray pyrolysis technique. X-ray diffraction (XRD) analysis confirmed the formation of SnO{sub 2} thin films with tetragonal rutile-phase structure. Average particle size of nanoparticles was determined to be in the range of 3–4 nm measured from the front view images obtained by a field emission gun scanning electron microscope (FESEM), while the size of nanoparticle clusters, when present, were in the range of 11–20 nm. Surface morphology of SnO{sub 2} films grown over hydrophobic substrates revealed larger isolated particles which are less crowded compared to the highly crowded and agglomerated smaller particles in films on hydrophilic substrates. Blue shift in the band gap is observed in samples in which the average particle size is slightly larger than the exciton Bohr radius. Photoluminescence (PL) analysis of samples grown over hydrophobic substrates exhibited an intense defect level emission and a weak near band edge emission. The enhanced visible emission from these SnO{sub 2} thin films is attributed to lattice defects formed during the film growth due to the mismatch between the film and the hydrophobic substrate surface.

  9. Metabolomic profiling using Orbitrap Fourier transform mass spectrometry with hydrophilic interaction chromatography : a method with wide applicability to analysis of biomolecules

    NARCIS (Netherlands)

    Kamleh, A.; Barrett, M. P.; Wildridge, D.; Burchmore, R. J. S.; Scheltema, R. A.; Watson, D. G.

    It was shown that coupling hydrophilic interaction chromatography (HILIC) to Orbitrap Fourier transform mass spectrometery (FT-MS) provided an excellent tool for metabolic profiling, principally due to rapid elution of lipids in advance of most metabolites entering the mass spectrometer. We used in

  10. Environmentally benign electroless nickel plating using supercritical carbon-dioxide on hydrophilically modified acrylonitrile-butadiene-styrene

    Science.gov (United States)

    Tengsuwan, Siwach; Ohshima, Masahiro

    2014-08-01

    Electroless Ni-P plating using supercritical carbon dioxide (scCO2) in conjunction with copolymer-based hydrophilic modification was applied to an acrylonitrile-butadiene-styrene (ABS) substrate. The surface of ABS substrate was hydrophilically modified by blending with a multi-block copolymer, poly(ether-ester-amide)s (PEEA), in injection molding process. The substrate was then impregnated with Pd(II)-hexafluoroacetylacetonate, Pd(hfa)2, using scCO2, followed by the electroless plating reaction. ABS/PEEA substrates with different PEEA to ABS blend ratios and different volume ratios of butadiene to the styrene-acrylonitrile copolymer (SAN) matrix were prepared to investigate how the dispersed PEEA and butadiene domains affected the blend morphology and the adhesive strength of the plating metal-to-polymer contact. Increasing the PEEA copolymer to ABS blend ratio increased the mass transfer rate of the plating solution in the ABS substrate. Consequently, the metal-polymer composite layer became thicker, which increased the adhesive strength of the metal-to-polymer contact because of the anchoring effect. The butadiene domains appeared to attract the Pd catalyst precursor, and thus, the proportion of butadiene in the ABS matrix also affected the adhesive strength of the contact between the metal layer and the substrate. The ABS substrate was successfully plated with a Ni-P metal layer with an average adhesive strength of 9.1 ± 0.5 N cm-1 by choosing appropriate ABS/PEEA blend ratios and a Pd(hfa)2 concentration.

  11. Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles.

    Science.gov (United States)

    Liu, Dongfei; Bimbo, Luis M; Mäkilä, Ermei; Villanova, Francesca; Kaasalainen, Martti; Herranz-Blanco, Barbara; Caramella, Carla M; Lehto, Vesa-Pekka; Salonen, Jarno; Herzig, Karl-Heinz; Hirvonen, Jouni; Santos, Hélder A

    2013-09-10

    Nanoparticulate drug delivery systems offer remarkable opportunities for clinical treatment. However, there are several challenges when they are employed to deliver multiple cargos/payloads, particularly concerning the synchronous delivery of small molecular weight drugs and relatively larger peptides. Since porous silicon (PSi) nanoparticles (NPs) can easily contain high payloads of drugs with various properties, we evaluated their carrier potential in multi-drug delivery for co-loading of the hydrophobic drug indomethacin and the hydrophilic human peptide YY3-36 (PYY3-36). Sequential loading of these two drugs into the PSi NPs enhanced the drug release rate of each drug and also their amount permeated across Caco-2 and Caco-2/HT29 cell monolayers. Regardless of the loading approach used, dual or single, the drug permeation profiles were in good correlation with their drug release behaviour. Furthermore, the permeation studies indicated the critical role of the mucus intestinal layer and the paracellular resistance in the permeation of the therapeutic compounds across the intestinal wall. Loading with PYY3-36 also greatly improved the cytocompatibility of the PSi NPs. Conformational analysis indicated that the PYY3-36 could still display biological activity after release from the PSi NPs and permeation across the intestinal cell monolayers. These results are the first demonstration of the promising potential of PSi NPs for simultaneous multi-drug delivery of both hydrophobic and hydrophilic compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. [Preparation of hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata and study on its in vitro release mechanism].

    Science.gov (United States)

    Xu, Fang-Fang; Shi, Wei; Zhang, Hui; Guo, Qing-Ming; Wang Zhen-Zhong; Bi, Yu-An; Wang, Zhi-Min; Xiao, Wei

    2015-01-01

    In this study, hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata were prepared and the in vitro release behavior were also evaluated. The optimal prescription was achieved by studying the main factor of the type and amount of hydroxypropyl methylcellulose (HPMC) using single factor test and evaluating through cumulative release of three lactones. No burst drug release from the obtained matrix tablets was observed. Drug release sustained to 14 h. The release mechanism of three lactones from A. paniculata was accessed by zero-order, first-order, Higuchi and Peppas equation. The release behavior of total lactones from A. paniculata was better agreed with Higuchi model and the drug release from the tablets was controlled by degradation of the matrix. The preparation of hydrophilic matrix sustained release tablets of total lactones from A. paniculata with good performance of drug release was simple.

  13. Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Primo, Gastón A.; Alvarez Igarzabal, Cecilia I. [IMBIV (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba X5000HUA (Argentina); Pino, Gustavo A.; Ferrero, Juan C. [INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Córdoba X5000IUS (Argentina); Rossa, Maximiliano, E-mail: mrossa@fcq.unc.edu.ar [INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Córdoba X5000IUS (Argentina)

    2016-04-30

    Graphical abstract: - Highlights: • Laser-induced surface modification of crosslinked hydrophilic co-polymers by ns pulses. • Formation of ablation craters observed under most of the single-pulse experimental conditions. • UV laser foaming of dried hydrogel samples resulting from single- and multiple-pulse experiments. • Threshold values of the incident laser fluence reported for the observed surface modifications. • Lower threshold fluences for acrylate-based, compared to acrylamide-based hydrogels. - Abstract: This work reports an investigation of the surface modifications induced by irradiation with nanosecond laser pulses of ultraviolet and visible wavelengths on crosslinked hydrophilic co-polymeric materials, which have been functionalized with 1-vinylimidazole as a co-monomer. A comparison is made between hydrogels differing in the base co-monomer (N,N-dimethylaminoethyl methacrylate and N-[3-(dimethylamino)propyl] methacrylamide) and in hydration state (both swollen and dried states). Formation of craters is the dominant morphological change observed by ablation in the visible at 532 nm, whereas additional, less aggressive surface modifications, chiefly microfoams and roughness, are developed in the ultraviolet at 266 nm. At both irradiation wavelengths, threshold values of the incident laser fluence for the observation of the various surface modifications are determined under single-pulse laser irradiation conditions. It is shown that multiple-pulse irradiation at 266 nm with a limited number of laser shots can be used alternatively for generating a regular microfoam layer at the surface of dried hydrogels based on N,N-dimethylaminoethyl methacrylate. The observations are rationalized on the basis of currently accepted mechanisms for laser-induced polymer surface modification, with a significant contribution of the laser foaming mechanism. Prospective applications of the laser-foamed hydrogel matrices in biomolecule immobilization are suggested.

  14. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery

    International Nuclear Information System (INIS)

    Mandal, Biman B; Kundu, S C

    2009-01-01

    In recent times self-assembled micellar nanoparticles have been successfully employed in tissue engineering for targeted drug delivery applications. In this review, silk sericin protein from non-mulberry Antheraea mylitta tropical tasar silk cocoons was blended with pluronic F-127 and F-87 in the presence of solvents to achieve self-assembled micellar nanostructures capable of carrying both hydrophilic (FITC-inulin) and hydrophobic (anticancer drug paclitaxel) drugs. The fabricated nanoparticles were subsequently characterized for their size distribution, drug loading capability, cellular uptake and cytotoxicity. Nanoparticle sizes ranged between 100 and 110 nm in diameter as confirmed by dynamic light scattering. Rapid uptake of these particles into cells was observed in in vitro cellular uptake studies using breast cancer MCF-7 cells. In vitro cytotoxicity assay using paclitaxel-loaded nanoparticles against breast cancer cells showed promising results comparable to free paclitaxel drugs. Drug-encapsulated nanoparticle-induced apoptosis in MCF-7 cells was confirmed by FACS and confocal microscopic studies using Annexin V staining. Up-regulation of pro-apoptotic protein Bax, down-regulation of anti-apoptotic protein Bcl-2 and cleavage of regulatory protein PARP through Western blot analysis suggested further drug-induced apoptosis in cells. This study projects silk sericin protein as an alternative natural biomaterial for fabrication of self-assembled nanoparticles in the presence of poloxamer for successful delivery of both hydrophobic and hydrophilic drugs to target sites.

  15. A new experimental design method to optimize formulations focusing on a lubricant for hydrophilic matrix tablets.

    Science.gov (United States)

    Choi, Du Hyung; Shin, Sangmun; Khoa Viet Truong, Nguyen; Jeong, Seong Hoon

    2012-09-01

    A robust experimental design method was developed with the well-established response surface methodology and time series modeling to facilitate the formulation development process with magnesium stearate incorporated into hydrophilic matrix tablets. Two directional analyses and a time-oriented model were utilized to optimize the experimental responses. Evaluations of tablet gelation and drug release were conducted with two factors x₁ and x₂: one was a formulation factor (the amount of magnesium stearate) and the other was a processing factor (mixing time), respectively. Moreover, different batch sizes (100 and 500 tablet batches) were also evaluated to investigate an effect of batch size. The selected input control factors were arranged in a mixture simplex lattice design with 13 experimental runs. The obtained optimal settings of magnesium stearate for gelation were 0.46 g, 2.76 min (mixing time) for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The optimal settings for drug release were 0.33 g, 7.99 min for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The exact ratio and mixing time of magnesium stearate could be formulated according to the resulting hydrophilic matrix tablet properties. The newly designed experimental method provided very useful information for characterizing significant factors and hence to obtain optimum formulations allowing for a systematic and reliable experimental design method.

  16. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Biman B; Kundu, S C, E-mail: kundu@hijli.iitkgp.ernet.i [Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302 (India)

    2009-09-02

    In recent times self-assembled micellar nanoparticles have been successfully employed in tissue engineering for targeted drug delivery applications. In this review, silk sericin protein from non-mulberry Antheraea mylitta tropical tasar silk cocoons was blended with pluronic F-127 and F-87 in the presence of solvents to achieve self-assembled micellar nanostructures capable of carrying both hydrophilic (FITC-inulin) and hydrophobic (anticancer drug paclitaxel) drugs. The fabricated nanoparticles were subsequently characterized for their size distribution, drug loading capability, cellular uptake and cytotoxicity. Nanoparticle sizes ranged between 100 and 110 nm in diameter as confirmed by dynamic light scattering. Rapid uptake of these particles into cells was observed in in vitro cellular uptake studies using breast cancer MCF-7 cells. In vitro cytotoxicity assay using paclitaxel-loaded nanoparticles against breast cancer cells showed promising results comparable to free paclitaxel drugs. Drug-encapsulated nanoparticle-induced apoptosis in MCF-7 cells was confirmed by FACS and confocal microscopic studies using Annexin V staining. Up-regulation of pro-apoptotic protein Bax, down-regulation of anti-apoptotic protein Bcl-2 and cleavage of regulatory protein PARP through Western blot analysis suggested further drug-induced apoptosis in cells. This study projects silk sericin protein as an alternative natural biomaterial for fabrication of self-assembled nanoparticles in the presence of poloxamer for successful delivery of both hydrophobic and hydrophilic drugs to target sites.

  17. Self-Healing and Thermo-Responsive Dual-Crosslinked Alginate Hydrogels based on Supramolecular Inclusion Complexes

    Science.gov (United States)

    Miao, Tianxin; Fenn, Spencer L.; Charron, Patrick N.; Oldinski, Rachael A.

    2015-01-01

    β-cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a large variety of non-polar guest molecules to form non-covalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form physically-crosslinked hydrogel networks upon mixing with a guest molecule. Herein describes the development and characterization of self-healing, thermo-responsive hydrogels, based on host-guest inclusion complexes between alginate-graft-β-CD and Pluronic® F108 (poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)). The mechanics, flow characteristics, and thermal response were contingent on the polymer concentrations, and the host-guest molar ratio. Transient and reversible physical crosslinking between host and guest polymers governed self-assembly, allowing flow under shear stress, and facilitating complete recovery of the material properties within a few seconds of unloading. The mechanical properties of the dual-crosslinked, multi-stimuli responsive hydrogels were tuned as high as 30 kPa at body temperature, and are advantageous for biomedical applications such as drug delivery and cell transplantation. PMID:26509214

  18. Characterization of inclusion complexes of organic ions with hydrophilic hosts by ion transfer voltammetry with solvent polymeric membranes.

    Science.gov (United States)

    Olmos, José Manuel; Laborda, Eduardo; Ortuño, Joaquín Ángel; Molina, Ángela

    2017-03-01

    The quantitative characterization of inclusion complexes formed in aqueous phase between organic ions and hydrophilic hosts by ion-transfer voltammetry with solvent polymeric membrane ion sensors is studied, both in a theoretical and experimental way. Simple analytical solutions are presented for the determination of the binding constant of the complex from the variation with the host concentration of the electrochemical signal. These solutions are valid for any voltammetric technique and for solvent polymeric membrane ion sensors comprising one polarisable interface (1PI) and also, for the first time, two polarisable interfaces (2PIs). Suitable experimental conditions and data analysis procedures are discussed and applied to the study of the interactions of a common ionic liquid cation (1-octyl-3-metyl-imidazolium) and an ionisable drug (clomipramine) with two hydrophilic cyclodextrins: α-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin. The experimental study is performed via square wave voltammetry with 2PIs and 1PI solvent polymeric membranes and in both cases the electrochemical experiments enable the detection of inclusion complexes and the determination of the corresponding binding constant. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Hydrophilic Interaction Liquid Chromatography/Mass Spectrometry: An Attractive and Prospective Method for the Quantitative Bioanalysis in Drug Metabolism.

    Science.gov (United States)

    Li, Zheng; Han, Jie; Sun, Shi-an; Chen, Kai; Tang, Dao-quan

    2016-01-01

    During the development, dosage optimization and safety evaluation of a drug, rapid and precise monitoring of administered drug and/or its metabolites in biological samples including blood, plasma, serum, tissues and saliva are vital. As drug biotransformation produces more hydrophilic metabolites for the enhancement of drug elimination, which is often a challenge for traditional reversed-phase liquid chromatography (RPLC) separation. Because hydrophilic interaction liquid chromatography (HILIC) is capable of retaining polar compounds and readily compatible with mass spectrometry (MS), HILIC has been used as a complementary separation technique to RPLC for analysis of polar metabolites, especially polar drugs and their metabolites. This review covers core aspects of HILIC-MS/MS method and overall profile of its application in analysis of drug and/or its metabolites. The emphasis of this paper has been placed on the applications of HILIC-MS/MS method in quantitative bioanalysis of drugs alone or along with their metabolites in drug metabolism studies in recent years. As a fundamental and critical step of bioanalytical method, conventional sample preparation techniques of biological matrices for the HILIC-MS/MS analysis of drugs and/or their metabolites are also briefly featured.

  20. Hydrophilic Graphene Preparation from Gallic Acid Modified Graphene Oxide in Magnesium Self-Propagating High Temperature Synthesis Process

    Science.gov (United States)

    Cao, Lei; Li, Zhenhuan; Su, Kunmei; Cheng, Bowen

    2016-10-01

    Hydrophilic graphene sheets were synthesized from a mixture of magnesium and gallic acid (GA) modified graphene oxide (GO) in a self-propagating high-temperature synthesis (SHS) process, and hydrophilic graphene sheets displayed the higher C/O ratio (16.36), outstanding conductivity (~88900 S/m) and excellent water-solubility. GO sheets were connected together by GA, and GA was captured to darn GO structure defects through the formation of hydrogen bonds and ester bonds. In SHS process, the most oxygen ions of GO reacted with magnesium to prevent the escape of carbon dioxide and carbon monoxide to from the structure defects associated with vacancies, and GA could take place the high-temperature carbonization, during which a large-area graphene sheets formed with a part of the structure defects being repaired. When only GO was reduced by magnesium in SHS process, and the reduced GO (rGO) exhibited the smaller sheets, the lower C/O ratio (15.26), the weaker conductivity (4200 S/m) and the poor water-solubility because rGO inevitably left behind carbon vacancies and topological defects. Therefore, the larger sheet, less edge defects and free structure defects associated with vacancies play a key role for graphene sheets good dispersion in water.

  1. Neutral hydrophilic coatings for capillary electrophoresis prepared by controlled radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Fabián H.; Gómez, Jorge E.; Espinal, José H.; Sandoval, Junior E., E-mail: junior.sandoval@correounivalle.edu.co

    2016-12-15

    In the present study, porous silica particles as well as impervious fused-silica wafers and capillary tubes were modified with hydrophilic polymers (hydroxylated polyacrylamides and polyacrylates), using a surface-confined grafting procedure based on atom transfer radical polymerization (ATRP) which was also surface-initiated from α-bromoisobutyryl groups. Initiator immobilization was achieved by hydrosilylation of allyl alcohol on hydride silica followed by esterification of the resulting propanol-bonded surface with α-bromoisobutyryl bromide. Elemental analysis, IR and NMR spectroscopies on silica micro-particles, atomic force microscopy, ellipsometry and profilometry on fused-silica wafers, as well as CE on fused-silica tubes were used to characterize the chemically modified silica substrate at different stages. We studied the effect of monomer concentration as well as cross-linker on the ability of the polymer film to reduce electroosmosis and to prevent protein adsorption (i. e., its non-fouling capabilities) and found that the former was rather insensitive to both parameters. Surface deactivation towards adsorption was somewhat more susceptible to monomer concentration and appeared also to be favored by a low concentration of the cross-linker. The results show that hydrophilic polyacrylamide and polyacrylate coatings of controlled thickness can be prepared by ATRP under very mild polymerization conditions (aqueous solvent, room temperature and short reaction times) and that the coated capillary tubes exhibit high efficiencies for protein separations (0.3–0.6 million theoretical plates per meter) as well as long-term hydrolytic stability under the inherently harsh conditions of capillary isoelectric focusing. Additionally, there was no adsorption of lysozyme on the coated surface as indicated by a complete recovery of the basic enzyme. Furthermore, since polymerization is confined to the inner capillary surface, simple precautions (e.g., solution

  2. Water-soluble low-molecular-weight -(1, 3–1, 6 D-Glucan inhibit cedar pollinosis

    Directory of Open Access Journals (Sweden)

    Tomoko Jippo

    2015-02-01

    Full Text Available Background: The incidence of allergic diseases such as allergic rhinitis, atopic dermatitis, asthma, and food allergies has increased in several countries. Mast cells have critical roles in various biologic processes related to allergic diseases. Mast cells express the high-affinity receptor for immunoglobulin (Ig E on their surface. The interaction of multivalent antigens with surface-bound IgE causes the secretion of granule-stored mediators, as well as the de novosynthesis of cytokines. Those mediators and cytokines proceed the allergic diseases. We investigated the effects of water-soluble, low-molecular-weight -(1, 3–1, 6 D-glucan isolated from Aureobasidium pullulans 1A1 strain black yeast (LMW--glucan on mast cell-mediated anaphylactic reactions. We reported that LMW--glucan dose-dependently inhibited the degranulation of mast cells. Furthermore, we found that orally administered LMW--glucan inhibited the IgE-mediated passive cutaneous anaphylaxis (PCA reaction in mice. Here, we examined if LMW--glucan had effects on Japanese cedar pollinosis. Findings: In a clinical study, a randomized, single-blind, placebo-controlled, parallel group study in 65 subjects (aged 2262 was performed. This study was undertaken 3 weeks before and until the end of the cedar pollen season. During the study, all subjects consumed one bottle of placebo or LMW--glucan daily and all subjects were required to record allergic symptoms in a diary. The LMW--glucan group had a significantly lower prevalence of sneezing, nose-blowing, tears, and hindrance to the activities of daily living than the placebo group. Conclusions: These results suggested that LMW--glucan could be an effective treatment for allergic diseases

  3. Hydrophilic interaction chromatography (HILIC) in the analysis of antibiotics.

    Science.gov (United States)

    Kahsay, Getu; Song, Huiying; Van Schepdael, Ann; Cabooter, Deirdre; Adams, Erwin

    2014-01-01

    This paper presents a general overview of the application of hydrophilic interaction chromatography (HILIC) in the analysis of antibiotics in different sample matrices including pharmaceutical, plasma, serum, fermentation broths, environmental water, animal origin, plant origin, etc. Specific applications of HILIC for analysis of aminoglycosides, β-lactams, tetracyclines and other antibiotics are reviewed. HILIC can be used as a valuable alternative LC mode for separating small polar compounds. Polar samples usually show good solubility in the mobile phase containing some water used in HILIC, which overcomes the drawbacks of the poor solubility often encountered in normal phase LC. HILIC is suitable for analyzing compounds in complex systems that elute near the void in reversed-phase chromatography. Ion-pair reagents are not required in HILIC which makes it convenient to couple with MS hence its increased popularity in recent years. In this review, the retention mechanism in HILIC is briefly discussed and a list of important applications is provided including main experimental conditions and a brief summary of the results. The references provide a comprehensive overview and insight into the application of HILIC in antibiotics analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Membrane morphological study nanostructured based hydrophobic/hydrophilic applied in devices of PEMFC

    International Nuclear Information System (INIS)

    Loureiro, Felipe Augusto M.; Dahmouche, K; Rocco, Ana Maria

    2015-01-01

    The increasingly high energy demand generated by the increase of world population and consumption of fuels based on non-renewable sources has stimulated, in recent decades, the development of alternatives with less environmental impact and are based on renewable sources. Among these, the fuel cells (FC) have extremely promising possibilities. For the development of FC with market viability, it is necessary to obtain materials with optimized properties, among which the proton conducting membranes. In this work, we developed semi-interpenetrating polymer membranes (SIPN) based on diglycidyl ether of bisphenol-A (DGEBA) and polyethyleneimine (PEI), aiming their application in PEMFC. The membranes nanostructure was studied by AFM and SAXS means and it was identified ordinate hydrophobic/hydrophilic nano domains, which have determined the membrane properties, specially the proton conductivity. (author)

  5. Physical Stability of Whippable Oil-in-Water Emulsions

    DEFF Research Database (Denmark)

    Munk, Merete Bøgelund

    Whippable emulsions based on vegetable fat are increasingly used as replacement for dairy whipping creams. One of the quality criteria of whippable emulsions is that it should be low-viscous prior to whipping, but sudden viscosity increase or even solidification during storage and transport...... the impact of ingredient composition, with focus on low-molecular-weight (LMW) emulsifiers. Three monoglyceride-based LMW-emulsifiers were selected: Lactic acid ester of saturated monoglyceride (LACTEM), unsaturated monoglyceride (GMU), and saturated monoglyceride (GMS). LMW-emulsifiers had major impact...

  6. Identification of Low Molecular Weight Glutenin Alleles by Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) in Common Wheat (Triticum aestivum L.)

    Science.gov (United States)

    Islam, Shahidul; Applebee, Marie; Appels, Rudi; Yan, Yueming; Ma, Wujun

    2015-01-01

    Low molecular weight glutenin subunits (LMW-GS) play an important role in determining dough properties and breadmaking quality. However, resolution of the currently used methodologies for analyzing LMW-GS is rather low which prevents an efficient use of genetic variations associated with these alleles in wheat breeding. The aim of the current study is to evaluate and develop a rapid, simple, and accurate method to differentiate LMW-GS alleles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A set of standard single LMW-GS allele lines as well as a suite of well documented wheat cultivars were collected from France, CIMMYT, and Canada. Method development and optimization were focused on protein extraction procedures and MALDI-TOF instrument settings to generate reproducible diagnostic spectrum peak profiles for each of the known wheat LMW-GS allele. Results revealed a total of 48 unique allele combinations among the studied genotypes. Characteristic MALDI-TOF peak patterns were obtained for 17 common LMW-GS alleles, including 5 (b, a or c, d, e, f), 7 (a, b, c, d or i, f, g, h) and 5 (a, b, c, d, f) patterns or alleles for the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. In addition, some reproducible MALDI-TOF peak patterns were also obtained that did not match with any known alleles. The results demonstrated a high resolution and throughput nature of MALDI-TOF technology in analyzing LMW-GS alleles, which is suitable for application in wheat breeding programs in processing a large number of wheat lines with high accuracy in limited time. It also suggested that the variation of LMW-GS alleles is more abundant than what has been defined by the current nomenclature system that is mainly based on SDS-PAGE system. The MALDI-TOF technology is useful to differentiate these variations. An international joint effort may be needed to assign allele symbols to these newly identified alleles and determine their effects on end

  7. The Separation and Quantitation of Peptides with and without Oxidation of Methionine and Deamidation of Asparagine Using Hydrophilic Interaction Liquid Chromatography with Mass Spectrometry (HILIC-MS)

    Science.gov (United States)

    Badgett, Majors J.; Boyes, Barry; Orlando, Ron

    2017-05-01

    Peptides with deamidated asparagine residues and oxidized methionine residues are often not resolved sufficiently to allow quantitation of their native and modified forms using reversed phase (RP) chromatography. The accurate quantitation of these modifications is vital in protein biotherapeutic analysis because they can affect a protein's function, activity, and stability. We demonstrate here that hydrophilic interaction liquid chromatography (HILIC) adequately and predictably separates peptides with these modifications from their native counterparts. Furthermore, coefficients describing the extent of the hydrophilicity of these modifications have been derived and were incorporated into a previously made peptide retention prediction model that is capable of predicting the retention times of peptides with and without these modifications.

  8. Improvement of antithrombogenicity of a fluoro polymer by radiation-induced grafting of hydrophilic monomer

    International Nuclear Information System (INIS)

    Otsuhata, Kazushige; Razzak, M.T.; Tabata, Yoneho; Ohashi, Fumito; Takeuchi, Atsushi.

    1985-01-01

    Fluoro polymers have been used as biomaterials in medical field since they have good compatibility with both tissue and blood, and their biomaterial application are of variety. Blood compatibility of fluoro polymers, however, are not always enough for every applications. Especially, there is a large difficulty in the application for artificial vessel with small radius below than 4 mm. In the present study, grafting of a hydrophilic monomer onto a fluoro polymer has been carried out to improve blood compatibility of the fluoro polymer. The technique of grafting employed here was simultaneous irradiation method of gamma rays from a 60 Co source. The fluoro polymer and the hydrophilic monomer used in the experiment were alternative copolymer of ethylene and tetrafluoethylene(AFLON) and N,N-dimethylacry lamide(DMAA), respectively. After grafting, it was found by in vitro tests that antithrombogenicity of AFLON was improved by grafting of DMAA. It was, however, also found that degree of the improvement is affected by grafting conditions. When ethyl acetate was used as a solvent for the graft copolymerization, the improvement was affected by dose rate. Blood compatibility of DMAA-g-AFLON obtained at a higher dose rate of 1 x 10 5 rad/h was not improved, while it was improved in the sample of DMAA-g-AFLON obtained at a lower dose rate of 1 x 10 4 rad/h. On the other hand, when acetone was used as a solvent for the grafting, the degree of grafting gave a significant effect on the improvement. Blood compatibility of all samples with grafting percent more than 20 % was improved by grafting of DMAA. (author)

  9. Colon-specific pulsatile drug release provided by electrospun shellac nanocoating on hydrophilic amorphous composites.

    Science.gov (United States)

    Yang, Yao-Yao; Liu, Zhe-Peng; Yu, Deng-Guang; Wang, Ke; Liu, Ping; Chen, Xiaohong

    2018-01-01

    Colon-specific pulsatile drug release, as a combined drug controlled-release model, is a useful drug delivery manner for a series of diseases. New nanomedicines and related preparation methods are highly desired. With diclofenac sodium (DS) as a model drug, a new type of structural nanocomposite (SC), in which composite polyvinylpyrrolidone (PVP)-DS core was coated by shellac, was fabricated via modified coaxial electrospinning. For comparison, traditional PVP-DS monolithic hydrophilic nanocomposites (HCs) were generated using a traditional blending process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), water contact angle (WCA), and in vitro dissolution and ex vivo permeation tests were conducted to characterize the composites. SEM images demonstrated that both composites were linear nanofibers with smooth surface morphology and cross sections. TEM disclosed that the SCs had a thin shellac sheath layer of approximately 12 nm. XRD and ATR-FTIR results demonstrated that the crystalline DS was converted into amorphous composites with PVP because of favorable secondary interactions. WCA and in vitro dissolution tests demonstrated that the sheath shellac layers in SC could resist acid conditions and provide typical colon-specific pulsatile release, rather than a pulsatile release of HC under acid conditions. Ex vivo permeation results demonstrated that the SCs were able to furnish a tenfold drug permeation rate than the DS particles on the colon membrane. A new SC with a shellac coating on hydrophilic amorphous nanocomposites could furnish a colon-specific pulsatile drug release profile. The modified coaxial process can be exploited as a useful tool to create nanocoatings.

  10. Enzymatic production of biodiesel from waste cooking oil in a packed-bed reactor: an engineering approach to separation of hydrophilic impurities.

    Science.gov (United States)

    Hama, Shinji; Yoshida, Ayumi; Tamadani, Naoki; Noda, Hideo; Kondo, Akihiko

    2013-05-01

    An engineering approach was applied to an efficient biodiesel production from waste cooking oil. In this work, an enzymatic packed-bed reactor (PBR) was integrated with a glycerol-separating system and used successfully for methanolysis, yielding a methyl ester content of 94.3% and glycerol removal of 99.7%. In the glycerol-separating system with enhanced retention time, the effluent contained lesser amounts of glycerol and methanol than those in the unmodified system, suggesting its promising ability to remove hydrophilic impurities from the oil layer. The PBR system was also applied to oils with high acid values, in which fatty acids could be esterified and the large amount of water was extracted using the glycerol-separating system. The long-term operation demonstrated the high lipase stability affording less than 0.2% residual triglyceride in 22 batches. Therefore, the PBR system, which facilitates the separation of hydrophilic impurities, is applicable to the enzymatic biodiesel production from waste cooking oil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Dependence of adsorption rate for uranium on porous property of hydrophilic amidoxime type adsorbent

    International Nuclear Information System (INIS)

    Hirotsu, Takahiro; Takagi, Norio; Katoh, Shunsaku; Sugasaka, Kazuhiko; Takai, Nobuharu; Seno, Manabu; Itagaki, Takaharu; Ouchi, Hidenaga.

    1984-01-01

    Dependence of macro- and microporous properties of the amidoxime chelating resins was investigated on the rate of adsorption for uranium from sea water. These resins, which were cross-linked with hydrophilic monomers at the degree of cross-linking of 40 wt%, were macroreticular type porous ones. The rate of adsorption increased as the macropore volume increased. In addition, it depended on the length of the cross-linking agent: the resin cross-linked with tetraethylene glycol dimethacrylate showed the maximum rate of adsorption for uranium. These results suggested that the diffusion of uranyl ions in the resin was responsible for the rate of adsorption for uranium. (author)

  12. Fabrication of hydrophilic S/In{sub 2}O{sub 3} core–shell nanocomposite for enhancement of photocatalytic performance under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Sugang; Cao, Zhisheng; Fu, Xianliang [Department of Chemistry, Huaibei Normal University, Anhui Huaibei, 235000 (China); Chen, Shifu, E-mail: chshifu@chnu.edu.cn [Department of Chemistry, Huaibei Normal University, Anhui Huaibei, 235000 (China); Department of Chemistry, Anhui Science and Technology University, Anhui Fengyang, 233100 (China)

    2015-01-01

    Graphical abstract: - Highlights: • The elemental core–shell heterostructure was reported for the first time. • The hydrophilic core–shell S/In{sub 2}O{sub 3} photocatalyst was prepared by ball milling. • The rate constant of 10% S/In{sub 2}O{sub 3} is 11.6 and 13.5 times that of In{sub 2}O{sub 3} and S. • The hydrophilicity and efficiently separation of carriers are major factor. - Abstract: Recently, elemental semiconductors as new photocatalysts excited by visible light have attracted great attention due to their potential applications for environmental remediation and clean energy generation. However, it is still a challenge to fabricate elemental photocatalysts with high activity and stability. In this paper, a straightforward ball-milling method was carried out to fabricate core–shell S/In{sub 2}O{sub 3} nanocomposite photocatalyst with high performance. The photocatalyst was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS), Brunauer–Emmett–Teller (BET) method, photoluminescence spectra (PL) and super-hydrophilic experiment. The results showed that In{sub 2}O{sub 3} nanoparticles were successfully grown round of S blocks and formed core–shell heterostructures. The 10% S/In{sub 2}O{sub 3} core–shell nanocomposite exhibited the highest photocatalytic activity for degradation of rhodamine B (RhB) under visible light irradiation. The reaction rate constant (k) of the 10% S/In{sub 2}O{sub 3} core–shell nanocomposite is about 8.7 times as high as the sum of pure In{sub 2}O{sub 3} and S because of the formation of core–shell S/In{sub 2}O{sub 3} heterostructures, which might remedy the drawbacks of poor hydrophilicity of S, enhance visible light absorption and separate the photogenerated carriers efficiently. Furthermore, the mechanism of influence on the photocatalytic activity of the S

  13. Effect of incorporating graphene oxide and surface imprinting on polysulfone membranes on flux, hydrophilicity and rejection of salt and polycyclic aromatic hydrocarbons from water

    Science.gov (United States)

    Kibechu, Rose Waithiegeni; Ndinteh, Derek Tantoh; Msagati, Titus Alfred Makudali; Mamba, Bhekie Briliance; Sampath, S.

    2017-08-01

    We report a significant enhancement of hydrophillity of polysulfone (Psf) membranes after modification with graphene oxide (GO) as a filler followed by surface imprinting on the surface of GO/Psf composite imprinted membranes (CIMs). The surface imprinting on the GO-Psf membrane was employed in order to enhance its selectivity towards polycyclic aromatic hydrocarbons (PAHs) in water. The CIMs were prepared through a process of phase inversion of a mixture of graphene oxide and polysulfone (Psf) in N-methylpyrrolidone (NMP). Fourier-transform spectroscopy (FT-IR) of the imprinted showed new peaks at 935 cm-1 and 1638 cm-1 indicating success in surface imprinting on the GO-Psf membrane. The CIM also showed improvement in flux from 8.56 LM-2 h-1 of unmodified polysulfone membrane to 15.3 LM-2 h-1 in the CIM, salt rejection increased from 57.2 ± 4.2% of polysulfone membrane to 76 ± 4.5%. The results obtained from the contact angle measurements showed a decrease with increase in GO content from 72 ± 2.7% of neat polysulfone membrane to 62.3 ± 2.1% of CIM indicating an improvement in surface hydrophilicity. The results from this study shows that, it is possible to improve the hydrophilicity of the membranes without affecting the performance of the membranes.

  14. Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles

    KAUST Repository

    Liang, Shuai

    2013-07-24

    Polyvinylidene fluoride (PVDF) has drawn much attention as a predominant ultrafiltration (UF) membrane material due to its outstanding mechanical and physicochemical properties. However, current applications suffer from the low fouling resistance of the PVDF membrane due to the intrinsic hydrophobic property of the membrane. The present study demonstrates a novel approach for the fabrication of a highly hydrophilic PVDF UF membrane via postfabrication tethering of superhydrophilic silica nanoparticles (NPs) to the membrane surface. The pristine PVDF membrane was grafted with poly(methacrylic acid) (PMAA) by plasma induced graft copolymerization, providing sufficient carboxyl groups as anchor sites for the binding of silica NPs, which were surface-tailored with amine-terminated cationic ligands. The NP binding was achieved through a remarkably simple and effective dip-coating technique in the presence or absence of the N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) cross-linking process. The properties of the membrane prepared from the modification without EDC/NHS cross-linking were comparable to those for the membrane prepared with the EDC/NHS cross-linking. Both modifications almost doubled the surface energy of the functionalized membranes, which significantly improved the wettability of the membrane and converted the membrane surface from hydrophobic to highly hydrophilic. The irreversibly bound layer of superhydrophilic silica NPs endowed the membranes with strong antifouling performance as demonstrated by three sequential fouling filtration runs using bovine serum albumin (BSA) as a model organic foulant. The results suggest promising applications of the postfabrication surface modification technique in various membrane separation areas. © 2013 American Chemical Society.

  15. Superstable Ultrathin Water Film Confined in a Hydrophilized Carbon Nanotube.

    Science.gov (United States)

    Tomo, Yoko; Askounis, Alexandros; Ikuta, Tatsuya; Takata, Yasuyuki; Sefiane, Khellil; Takahashi, Koji

    2018-03-14

    Fluids confined in a nanoscale space behave differently than in the bulk due to strong interactions between fluid molecules and solid atoms. Here, we observed water confined inside "open" hydrophilized carbon nanotubes (CNT), with diameter of tens of nanometers, using transmission electron microscopy (TEM). A 1-7 nm water film adhering to most of the inner wall surface was observed and remained stable in the high vacuum (order of 10 -5 Pa) of the TEM. The superstability of this film was attributed to a combination of curvature, nanoroughness, and confinement resulting in a lower vapor pressure for water and hence inhibiting its vaporization. Occasional, suspended ultrathin water film with thickness of 3-20 nm were found and remained stable inside the CNT. This film thickness is 1 order of magnitude smaller than the critical film thickness (about 40 nm) reported by the Derjaguin-Landau-Verwey-Overbeek theory and previous experimental investigations. The stability of the suspended ultrathin water film is attributed to the additional molecular interactions due to the extended water meniscus, which balances the rest of the disjoining pressures.

  16. Labile conjugation of a hydrophilic drug to PLA oligomers to modify a drug delivery system: cephradin in a PLAGA matrix.

    Science.gov (United States)

    Ustariz-Peyret, C; Coudane, J; Vert, M; Kaltsatos, V; Boisramené, B

    2000-01-01

    The physical entrapment of a hydrophilic drug within degradable microspheres is generally difficult because of poor entrapment yield and/or fast release, depending on the microsphere fabrication method. In order to counter the effects of drug hydrophilicity, it is proposed to covalently attach the drug to lactic acid oligomers, with the aim of achieving temporary hydrophobization and slower release controlled by the separation of the drug from the degradable link within the polymer matrix. This strategy was tested on microspheres of the antibiotic cephradin. As the prodrug form, the entrapment of the drug was almost quantitative. The prodrug did degrade in an aqueous medium, modelling body fluids, but cleavage did not occur at the drug-oligomer junction and drug molecules bearing two lactyl residual units were released. When the prodrug is entrapped within a PLAGA matrix, no release was observed within the experimental time period. However, data suggest that conjugation via a bond more sensitive to hydrolysis than the main chain PLA ester bonds should make the system work as desired.

  17. Postoperative diffuse opacification of a hydrophilic acrylic intraocular lens: analysis of an explant.

    Science.gov (United States)

    Cavallini, Gian Maria; Volante, Veronica; Campi, Luca; De Maria, Michele; Fornasari, Elisa; Urso, Giancarlo

    2017-06-14

    We describe the clinicopathological and ultrastructural features of an opaque single-piece hydrophilic acrylic intraocular lens (IOL) explanted from a patient. The main outcome of this report is the documentation of calcium deposits confirmed by surface analysis. The decrease in visual acuity was due to the opacification of the IOL. The opacification involved both the optic plate and the haptics. The analysis at the scansion electron microscope revealed that the opacity was caused by the deposition of calcium and phosphate within the lens optic and haptics. This is the first case about the opacification of an Oculentis L-313. The opacification was characterized by calcium and phosphate deposition probably due to a morphological alteration of the posterior surface of the IOL.

  18. Modulation of the hydrophilic character and influence on the biocompatibility of polyurethane-siloxane based hybrids

    Directory of Open Access Journals (Sweden)

    San Roman, J.

    2011-02-01

    Full Text Available Organic-inorganic hybrid materials are known for their outstanding chemical and physical properties. Although some studies have been published regarding the use of hybrids for biomedical applications, relationship between hydrophilic character and biodegradation, bioactivity and biocompatibility has not been studied yet. The sol–gel method has been chosen for the manufacturing of siloxane-polyurethane hybrids for the exceptional potential of the method to obtain nanostructured materials. The effect of the amount of the urethane oligomer (OPU on the structure, hydrophilic character, degradability, bioactivity and citotoxicity was investigated. Gelling time of these hybrids increases linearly with the decrease on the Siloxane/OPU ratio up to an 80/20 value. Hydrophilic character of the hybrids can be modulated and affects dramatically the degradation rate of the specimens. A hybrid with a 50/50 Siloxane/OPU ratio displayed an appropriate degradation rate, bioactivity and lack of cell toxicity that makes this material a candidate for further studies for applications in bone regeneration.

    Los materiales híbridos Orgánico-Inorgánico son conocidos por sus excepcionales propiedades químicas y físicas. Aunque se han publicado algunos estudios respecto al uso de híbridos para aplicaciones biomédicas, aun faltan estudios que determinen la relación que existe entre el carácter hidrofílico de estos materiales y las propiedades que les permiten ser utilizados como biomateriales: degradación, bioactividad y biocompatibilidad. El método sol-gel se ha escogido para la fabricación de híbridos debido a la posibilidad de obtener materiales nanoestructurados que comprenden un componente orgánico y un inorgánico. Se investigó el efecto de la cantidad del olígomero de uretano (OPU sobre la estructura, el carácter hidrofílico, la degradabilidad, la bioactividad y la citotoxicidad. El tiempo de gelificación de estos híbridos incrementa

  19. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Holinga IV, George Joseph [Univ. of California, Berkeley, CA (United States)

    2010-09-01

    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  20. Synthesis and antiproliferative properties of new hydrophilic esters of triterpenic acids.

    Science.gov (United States)

    Eignerova, Barbara; Tichy, Michal; Krasulova, Jana; Kvasnica, Miroslav; Rarova, Lucie; Christova, Romana; Urban, Milan; Bednarczyk-Cwynar, Barbara; Hajduch, Marian; Sarek, Jan

    2017-11-10

    To improve the properties of cytotoxic triterpenoid acids 1-5, a large set of hydrophilic esters was synthesized. We choose betulinic acid (1), dihydrobetulinic acid (2), 21-oxoacid 3 along with highly active des-E lupane acids 4 and 5 as a model set of compounds for esterification of which the properties needed to be improved. As ester moieties were used - methoxyethanol and 2-(2-methoxyethoxy)ethanol and glycolic unit (type a-d), pyrrolidinoethanol, piperidinoethanol and morpholinoethanol (type f-h), and monosaccharide groups (type i-l). As a result, 56 triterpenic esters (49 new compounds) were obtained and their cytotoxicity on four cancer cell lines and normal human fibroblasts was tested. All new compounds were fully soluble at all tested concentrations, which used to be a problem of the parent compounds 1 and 2. 16 compounds had IC 50  acids 1-5. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Compositional differences in simulated root exudates elicit a limited functional and compositional response in soil microbial communities.

    Science.gov (United States)

    Strickland, Michael S; McCulley, Rebecca L; Nelson, Jim A; Bradford, Mark A

    2015-01-01

    Inputs of low molecular weight carbon (LMW-C) to soil - primarily via root exudates- are expected to be a major driver of microbial activity and source of stable soil organic carbon. It is expected that variation in the type and composition of LMW-C entering soil will influence microbial community composition and function. If this is the case then short-term changes in LMW-C inputs may alter processes regulated by these communities. To determine if change in the composition of LMW-C inputs influences microbial community function and composition, we conducted a 90 day microcosm experiment whereby soils sourced from three different land covers (meadows, deciduous forests, and white pine stands) were amended, at low concentrations, with one of eight simulated root exudate treatments. Treatments included no addition of LMW-C, and the full factorial combination of glucose, glycine, and oxalic acid. After 90 days, we conducted a functional response assay and determined microbial composition via phospholipid fatty acid analysis. Whereas we noted a statistically significant effect of exudate treatments, this only accounted for ∼3% of the variation observed in function. In comparison, land cover and site explained ∼46 and ∼41% of the variation, respectively. This suggests that exudate composition has little influence on function compared to site/land cover specific factors. Supporting the finding that exudate effects were minor, we found that an absence of LMW-C elicited the greatest difference in function compared to those treatments receiving any LMW-C. Additionally, exudate treatments did not alter microbial community composition and observable differences were instead due to land cover. These results confirm the strong effects of land cover/site legacies on soil microbial communities. In contrast, short-term changes in exudate composition, at meaningful concentrations, may have little impact on microbial function and composition.

  2. A Facile Strategy for Catalyst Separation and Recycling Suitable for ATRP of Hydrophilic Monomers Using a Macroligand.

    Science.gov (United States)

    Jiang, Xiaowu; Wu, Jian; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2016-01-01

    How to simply and efficiently separate and recycle catalyst has still been a constraint for the wide application of atom transfer radical polymerization (ATRP), especially for the polymerization systems with hydrophilic monomers because the polar functional groups may coordinate with transition metal salts, resulting in abundant catalyst residual in the resultant water-soluble polymers. In order to overcome this problem, a latent-biphasic system is developed, which can be successfully used for ATRP catalyst separation and recycling in situ for various kinds of hydrophilic monomers for the first time, such as poly(ethylene glycol) monomethyl ether methacrylate (PEGMA), 2-hydroxyethyl methacrylate (HEMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA), N,N-dimethyl acrylamide (DMA), and N-isopropylacrylamide (NIPAM). Herein, random copolymer of octadecyl acrylate (OA), MA-Ln (2-(bis(pyridin-2-ylmethyl)amino)ethyl acrylate), and POA-ran-P(MA-Ln) is designed as the macroligand, and heptane/ethanol is selected as the biphasic solvent. Copper(II) bromide (CuBr2 ) is employed as the catalyst, PEG-bound 2-bromo-2-methylpropanoate (PEG350 -Br) as the water-soluble ATRP initiator and 2,2'-azobis(isobutyronitrile) (AIBN) as the azo-initiator to establish an ICAR (initiators for continuous activator regeneration) ATRP system. Importantly, well-defined water-soluble polymers are obtained even though the recyclable catalyst is used for sixth times. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Surface Hydrophilicity of Poly(l-Lactide Acid Polymer Film Changes the Human Adult Adipose Stem Cell Architecture

    Directory of Open Access Journals (Sweden)

    Chiara Argentati

    2018-02-01

    Full Text Available Current knowledge indicates that the molecular cross-talk between stem cells and biomaterials guides the stem cells’ fate within a tissue engineering system. In this work, we have explored the effects of the interaction between the poly(l-lactide acid (PLLA polymer film and human adult adipose stem cells (hASCs, focusing on the events correlating the materials’ surface characteristics and the cells’ plasma membrane. hASCs were seeded on films of pristine PLLA polymer and on a PLLA surface modified by the radiofrequency plasma method under oxygen flow (PLLA+O2. Comparative experiments were performed using human bone-marrow mesenchymal stem cells (hBM-MSCs and human umbilical matrix stem cells (hUCMSCs. After treatment with oxygen-plasma, the surface of PLLA films became hydrophilic, whereas the bulk properties were not affected. hASCs cultured on pristine PLLA polymer films acquired a spheroid conformation. On the contrary, hASCs seeded on PLLA+O2 film surface maintained the fibroblast-like morphology typically observed on tissue culture polystyrene. This suggests that the surface hydrophilicity is involved in the acquisition of the spheroid conformation. Noteworthy, the oxygen treatment had no effects on hBM-MSC and hUCMSC cultures and both stem cells maintained the same shape observed on PLLA films. This different behavior suggests that the biomaterial-interaction is stem cell specific.

  4. An SFG study of interfacial amino acids at the hydrophilic SiO2 and hydrophobic deuterated polystyrene surfaces.

    Science.gov (United States)

    Holinga, George J; York, Roger L; Onorato, Robert M; Thompson, Christopher M; Webb, Nic E; Yoon, Alfred P; Somorjai, Gabor A

    2011-04-27

    Sum frequency generation (SFG) vibrational spectroscopy was employed to characterize the interfacial structure of eight individual amino acids--L-phenylalanine, L-leucine, glycine, L-lysine, L-arginine, L-cysteine, L-alanine, and L-proline--in aqueous solution adsorbed at model hydrophilic and hydrophobic surfaces. Specifically, SFG vibrational spectra were obtained for the amino acids at the solid-liquid interface between both hydrophobic d(8)-polystyrene (d(8)-PS) and SiO(2) model surfaces and phosphate buffered saline (PBS) at pH 7.4. At the hydrophobic d(8)-PS surface, seven of the amino acids solutions investigated showed clear and identifiable C-H vibrational modes, with the exception being l-alanine. In the SFG spectra obtained at the hydrophilic SiO(2) surface, no C-H vibrational modes were observed from any of the amino acids studied. However, it was confirmed by quartz crystal microbalance that amino acids do adsorb to the SiO(2) interface, and the amino acid solutions were found to have a detectable and widely varying influence on the magnitude of SFG signal from water at the SiO(2)/PBS interface. This study provides the first known SFG spectra of several individual amino acids in aqueous solution at the solid-liquid interface and under physiological conditions.

  5. Granular activated carbon adsorption of organic micro-pollutants in drinking water and treated wastewater--Aligning breakthrough curves and capacities.

    Science.gov (United States)

    Zietzschmann, Frederik; Stützer, Christian; Jekel, Martin

    2016-04-01

    Small-scale granular activated carbon (GAC) tests for the adsorption of organic micro-pollutants (OMP) were conducted with drinking water and wastewater treatment plant (WWTP) effluent. In both waters, three influent OMP concentration levels were tested. As long as the influent OMP concentrations are below certain thresholds, the relative breakthrough behavior is not impacted in the respective water. Accordingly, the GAC capacity for OMP is directly proportional to the influent OMP concentration in the corresponding water. The differences between the OMP breakthrough curves in drinking water and WWTP effluent can be attributed to the concentrations of the low molecular weight acid and neutral (LMW) organics of the waters. Presenting the relative OMP concentrations (c/c0) over the specific throughput of the LMW organics (mg LMW organics/g GAC), the OMP breakthrough curves in drinking water and WWTP effluent superimpose each other. This superimposition can be further increased if the UV absorbance at 254 nm (UV254) of the LMW organics is considered. In contrast, using the specific throughput of the dissolved organic carbon (DOC) did not suffice to obtain superimposed breakthrough curves. Thus, the LMW organics are the major water constituent impacting OMP adsorption onto GAC. The results demonstrate that knowing the influent OMP and LMW organics concentrations (and UV254) of different waters, the OMP breakthroughs and GAC capacities corresponding to any water can be applied to all other waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Robust optimization of psychotropic drug mixture separation in hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Rakić, Tijana; Jovanović, Marko; Dumić, Aleksandra; Pekić, Marina; Ribić, Sanja; Stojanović, Biljana Jancić

    2013-01-01

    This paper presents multiobjective optimization of complex mixtures separation in hydrophilic interaction liquid chromatography (HILIC). The selected model mixture consisted of five psychotropic drugs: clozapine, thioridazine, sulpiride, pheniramine and lamotrigine. Three factors related to the mobile phase composition (acetonitrile content, pH of the water phase and concentration of ammonium acetate) were optimized in order to achieve the following goals: maximal separation quality, minimal total analysis duration and robustness of an optimum. The consideration of robustness in early phases of the method development provides reliable methods with low risk for failure in validation phase. The simultaneous optimization of all goals was achieved by multiple threshold approach combined with grid point search. The identified optimal separation conditions (acetonitrile content 83%, pH of the water phase 3.5 and ammonium acetate content in water phase 14 mM) were experimentally verified.

  7. Competitive displacement of sodium caseinate by low-molecular-weight emulsifiers and the effects on emulsion texture and rheology.

    Science.gov (United States)

    Munk, M B; Larsen, F H; van den Berg, F W J; Knudsen, J C; Andersen, M L

    2014-07-29

    Low-molecular-weight (LMW) emulsifiers are used to promote controlled destabilization in many dairy-type emulsions in order to obtain stable foams in whippable products. The relation between fat globule aggregation induced by three LMW emulsifiers, lactic acid ester of monoglyceride (LACTEM), saturated monoglyceride (GMS), and unsaturated monoglyceride (GMU) and their effect on interfacial protein displacement was investigated. It was found that protein displacement by LMW emulsifiers was not necessary for fat globule aggregation in emulsions, and conversely fat globule aggregation was not necessarily accompanied by protein displacement. The three LMW emulsifiers had very different effects on emulsions. LACTEM induced shear instability of emulsions, which was accompanied by protein displacement. High stability was characteristic for emulsions with GMS where protein was displaced from the interface. Emulsions containing GMU were semisolid, but only low concentrations of protein were detected in the separated serum phase. The effects of LACTEM, GMS, and GMU may be explained by three different mechanisms involving formation of interfacial α-gel, pickering stabilization and increased exposure of bound casein to the water phase. The latter may facilitate partial coalescence. Stabilizing hydrocolloids did not have any effect on the LMW emulsifiers' ability to induce protein displacement.

  8. Permanent hydrophilic modification of polypropylene and poly(vinyl alcohol) films by vacuum ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte, Guilherme Kretzmann [Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Charles, German [Centro de Química Aplicada (CEQUIMAP), Facultad de Ciencias Químicas, Unversidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba 5000 (Argentina); Strumia, Miriam Cristina [Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IPQA-Conicet, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba 5000 (Argentina); Weibel, Daniel Eduardo, E-mail: danielw@iq.ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil)

    2016-09-30

    Highlights: • Polypropylene and Poly(vinyl alcohol) were surface modified by vacuum ultraviolet (VUV) irradiation. • The hydrophilicity of the treated films was permanent and resisted aging for several months. • Grafting of styrene monomer was only observed in the VUV irradiated regions. • The obtained results showed the potential in the use of VUV treatment for surface modification and processing of polymers which lack chromophores in the UV region. - Abstract: Polypropylene (PP) and Poly(vinyl alcohol) (PVA) both synthetics polymers but one of them biodegradable, were surface modified by vacuum ultraviolet (VUV) irradiation. After VUV irradiation in an inert nitrogen atmosphere, the films were exposed to oxygen gas. The treated films were characterized by water contact angle measurements (WCA), optical profilometry, FTIR-ATR, XPS, UPS and NEXAFS techniques. PP and PVA VUV-treated films reached superhydrophilic conditions (WCAs <10°) in about 30 min of irradiation under our experimental conditions. It was observed that when the WCAs reached about 35–40° the hydrophilicity was permanent in both polymers. These results contrasted with typical plasma treatments were a rapid hydrophobic recovery with aging time is usually observed. UPS and XPS data showed the presence of new functionalities on the PP and PVA surfaces that were assigned to COO, C=O, C−O and C=C functional groups. Finally, grafting of styrene (ST) as a typical monomer was tested on PP films. It was confirmed that only in the VUV irradiated region an efficient grafting of ST or polymerized ST was found. Outside the irradiated regions no ST grafted was observed. Our results showed the potential use of VUV treatment for surface modification and processing of polymers which lack chromophores in the UV region.

  9. Proteinaceous Resin and Hydrophilic Encapsulation: A Self-Healing-Related Study

    Science.gov (United States)

    Zheng, Ting

    Inspired by living organisms, self-healing materials have been designed as smart materials. Their automatic healing nature is achieved through the use of capsule in which the healing agent is encapsulated. The occurrence of cracks leads to ripping of the capsule, along with crack propagation and release of the healing agent that wets the crack surface to eventually heal (bond) the crack. Such automatic repair of the crack significantly extends the service life of the material. A vast majority of existing self-healing systems have been designed for the epoxy matrix - the most common commercially used thermoset - that possesses low crack resistance. Currently, self-healing systems have not yet been introduced for fully protein-based materials, despite their great potential to replace currently used synthesis precursors for the latter and the eco-friendly nature of self-healing materials. This has been probably due to two major obstacles: poor mechanical properties of the protein-based matrix, and extreme difficulty associated with the encapsulation of hydrophilic healing agents suitable for the protein-based matrix. This study provides possible solutions towards addressing both these obstacles. To improve the inherent mechanical properties of protein-based resin, soy protein isolate (SPI) was chosen as the model in this study. Dialdehyde carboxymethyl cellulose (DCMC) was synthesized and used as the crosslinking agent to modify the SPI film. As-synthesized DCMC - a fully bio-based material - exhibited high mechanical strength, excellent thermal stability, and reduced moisture sensitivity. Good compatibility and effective crosslinking were believed to be the key reasons for such property enhancements. However, these were accompanied by poor crack resistance, where self-healing is a pertinent solution. A novel healing system for the protein matrix was designed in this work via the use of formaldehyde as a healing agent. Subsequently, the well-acknowledged challenge, e

  10. PLA-PEG-PLA copolymer-based polymersomes as nanocarriers for delivery of hydrophilic and hydrophobic drugs: preparation and evaluation with atorvastatin and lisinopril.

    Science.gov (United States)

    Danafar, H; Rostamizadeh, K; Davaran, S; Hamidi, M

    2014-10-01

    Tri-block poly(lactide)-poly(ethylene glycol)-poly(lactide) (PLA-PEG-PLA) copolymers were synthesized and used to prepare polymersomes loaded separately by the hydrophobic and hydrophilic model drugs, atorvastatin and lisinopril, respectively. The resulting nanostructures were characterized by various techniques such as FTIR, DSC, PCS and AFM. The polymersomes exhibited high encapsulation efficiencies of almost 78% and 70.8% for atorvastatin and lisinopril, respectively. Investigation on FTIR and DSC results revealed that such a high encapsulation efficiency is due to strong interaction between atorvastatin and the copolymer. The impact of drug/copolymer ratio and copolymer composition on drug-loading efficiency and drug release behavior were also studied. The results showed that in case of lisinopril, polymersomes exhibited a triphasic drug release, while for atorvastatin a biphasic release profile was obtained. Overall, the results indicated that PLA-PEG-PLA polymersomes can be considered as a promising carrier for both hydrophilic and hydrophobic drugs.

  11. Microemulsions as model fluids for enhanced oil recovery: dynamics adjacent to planar hydrophilic walls

    Directory of Open Access Journals (Sweden)

    Mattauch S.

    2012-10-01

    Full Text Available After the dynamics of microemulsions adjacent to a planar hydrophilic wall have been characterized using grazing incidence neutron spin echo spectroscopy, the model of Seifert was employed to explain the discovered acceleration for the surface near lamellar ordered membranes. Reflections of hydrodynamic waves by the wall – or the volume conservation between the membrane and the wall – explain faster relaxations and, therefore, a lubrication effect that is important for flow fields in narrow pores. The whole scenery is now spectated by using different scenarios of a bicontinuous microemulsion exposed to clay particles and of a lamellar microemulsion adjacent to a planar wall. The Seifert concept could successfully be transferred to the new problems.

  12. Shear bond strength of hydrophilic adhesive systems to enamel.

    Science.gov (United States)

    Hara, A T; Amaral, C M; Pimenta, L A; Sinhoreti, M A

    1999-08-01

    To compare the enamel shear bond strength of four hydrophilic adhesive systems: one multiple-bottle (Scotchbond Multi-Purpose Plus), two one-bottle (Stae, Single Bond) and one self-etching (Etch & Prime). 120 bovine incisor teeth were obtained, embedded in polyester resin, polished to 600 grit to form standardized enamel surfaces, and randomly assigned to four groups (n = 30). Each adhesive system was used on enamel according to the manufacturer's instructions, and resin-based composite (Z100) cylinders with 3 mm diameter and 5 mm height were bonded. Specimens were stored in humid environment for 1 week, and bond strength was determined using a universal testing machine, at a crosshead speed of 0.5 mm/minute. The mean shear bond strength values (MPa +/- SD) were: Single Bond: 24.28 +/- 5.27 (a); Scotchbond Multi-Purpose Plus: 21.18 +/- 4.35 (ab); Stae: 19.56 +/- 4.71 (b); Etch & Prime 3.0: 15.13 +/- 4.92 (c). ANOVA revealed significant difference in means (P < 0.01) and Tukey's test showed the statistical differences that are expressed by different letters for each group. It could be concluded that the self-etching adhesive system did not provide as good a bond to enamel surface, as did the one- and multiple-bottle systems.

  13. TiO2/silane coupling agent composed of two layers structure: A super-hydrophilic self-cleaning coating applied in PV panels

    International Nuclear Information System (INIS)

    Zhong, Hong; Hu, Yan; Wang, Yuanhao; Yang, Hongxing

    2017-01-01

    Highlights: •A self-coating with composited layer structure can applied in PV panels is proposed. •This coating is consisted of TiO 2 and KH550. •pH in hydrothermal reaction is an important factor to control the self-cleaning property and light transmittance of coating. •This coating can increase the output of PV panels in outside test. -- Abstract: To improve the properties of anti-dust for PV modules, the concept of self-cleaning has been proposed for many years. However, the traditional self-cleaning coating is unstable in nature environment, which limited its application in the PV panels. Therefore, this study aims to design a novel super-hydrophilic coating with high stability and corrosion resistance, which would be very advantageous to apply in the PV panels. The super-hydrophilic self-cleaning coating is composed of 3-triethoxysilylpropylamine (KH550) and TiO 2 . KH550 is a kind of surface modification agent, which creates more active groups on the surface of glasses. TiO 2 is prepared by a hydrothermal reaction with titanium ethoxide, and the influence of pH is investigated as an important factor during the application in PV panels. The composition was measured by UV/VIS/NIR spectrophotometer, and the particle size distribution and the surface structure were characterized by Scanning Electron Microscope (SEM). The TiO 2 nanocrystal was investigated by X-Ray Diffraction (XRD) and Transmission Electron Microscope (TEM). The water contact angle (WCA) was measured by contact angle instrument. It was found that the static water contact angle on the surface of super-hydrophobic coating was as lower than 5°, which show an excellent super-hydrophilic property. Abstract should state the principal results and conclusions briefly, and the significance of this study.

  14. Hybrid selective surface hydrophilization and froth flotation separation of hazardous chlorinated plastics from E-waste with novel nanoscale metallic calcium composite

    Energy Technology Data Exchange (ETDEWEB)

    Mallampati, Srinivasa Reddy, E-mail: srireddys@ulsan.ac.kr; Heo, Je Haeng; Park, Min Hee

    2016-04-05

    Highlights: • Nanometallic Ca/CaO treatment significantly enhanced PVC surface hydrophilicity. • The contact angle of PVC significantly decreased compared to other E-waste plastics. • 100% of PVC was selectively separated with 96.4% purity from E-waste plastics. • SEM/XPS results indicated an oxidative degradation of chlorides on the PVC surface. • Hybrid treatment with nanometallic Ca/CaO and froth flotation is effective. - Abstract: Treatment by a nanometallic Ca/CaO composite has been found to selectively hydrophilize the surface of polyvinyl chloride (PVC), enhancing its wettability and thereby promoting its separation from E-waste plastics by means of froth flotation. The treatment considerably decreased the water contact angle of PVC, by about 18°. The SEM images of the PVC plastic after treatment displayed significant changes in their surface morphology compared to other plastics. The SEM-EDS results reveal that a markedly decrease of [Cl] concentration simultaneously with dramatic increase of [O] on the surface of the PCV samples. XPS results further confirmed an increase of hydrophilic functional groups on the PVC surface. Froth flotation at 100 rpm mixing speed was found to be optimal, separating 100% of the PVC into a settled fraction of 96.4% purity even when the plastics fed into the reactor were of nonuniform size and shape. The total recovery of PVC-free plastics in E-waste reached nearly 100% in the floated fraction, significantly improved from the 20.5 wt% of light plastics that can be recovered by means of conventional wet gravity separation. The hybrid method of nanometallic Ca/CaO treatment and froth flotation is effective in the separation of hazardous chlorinated plastics from E-waste plastics.

  15. Hybrid selective surface hydrophilization and froth flotation separation of hazardous chlorinated plastics from E-waste with novel nanoscale metallic calcium composite

    International Nuclear Information System (INIS)

    Mallampati, Srinivasa Reddy; Heo, Je Haeng; Park, Min Hee

    2016-01-01

    Highlights: • Nanometallic Ca/CaO treatment significantly enhanced PVC surface hydrophilicity. • The contact angle of PVC significantly decreased compared to other E-waste plastics. • 100% of PVC was selectively separated with 96.4% purity from E-waste plastics. • SEM/XPS results indicated an oxidative degradation of chlorides on the PVC surface. • Hybrid treatment with nanometallic Ca/CaO and froth flotation is effective. - Abstract: Treatment by a nanometallic Ca/CaO composite has been found to selectively hydrophilize the surface of polyvinyl chloride (PVC), enhancing its wettability and thereby promoting its separation from E-waste plastics by means of froth flotation. The treatment considerably decreased the water contact angle of PVC, by about 18°. The SEM images of the PVC plastic after treatment displayed significant changes in their surface morphology compared to other plastics. The SEM-EDS results reveal that a markedly decrease of [Cl] concentration simultaneously with dramatic increase of [O] on the surface of the PCV samples. XPS results further confirmed an increase of hydrophilic functional groups on the PVC surface. Froth flotation at 100 rpm mixing speed was found to be optimal, separating 100% of the PVC into a settled fraction of 96.4% purity even when the plastics fed into the reactor were of nonuniform size and shape. The total recovery of PVC-free plastics in E-waste reached nearly 100% in the floated fraction, significantly improved from the 20.5 wt% of light plastics that can be recovered by means of conventional wet gravity separation. The hybrid method of nanometallic Ca/CaO treatment and froth flotation is effective in the separation of hazardous chlorinated plastics from E-waste plastics.

  16. PLGA/alginate composite microspheres for hydrophilic protein delivery

    International Nuclear Information System (INIS)

    Zhai, Peng; Chen, X.B.; Schreyer, David J.

    2015-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility

  17. PLGA/alginate composite microspheres for hydrophilic protein delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Peng [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Chen, X.B. [Department of Mechanical Engineering, University of Saskatchewan, S7N5A9 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Schreyer, David J., E-mail: david.schreyer@usask.ca [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada)

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility.

  18. Hydrophilicity improvement in polyphenylsulfone nanofibrous filtration membranes through addition of polyethylene glycol

    Science.gov (United States)

    Kiani, Shirin; Mousavi, Seyed Mahmoud; Shahtahmassebi, Nasser; Saljoughi, Ehsan

    2015-12-01

    Novel hydrophilic polyphenylsulfone (PPSU) nanofibrous membrane was prepared by electrospinning of the PPSU solution blended with polyethylene glycol 400 (PEG 400). The influence of the PEG concentration on the membrane characteristics was studied using scanning electron microscopy (SEM), water contact angle measurement, and tensile test. Filtration performance of the membranes was investigated by measurement of pure water flux (PWF) and determination of the rejection values of the pollution indices during treatment of canned beans production wastewater. According to the results, blending the PPSU solution with 10 wt.% PEG 400 resulted in formation of a nanofibrous membrane with high porosity and increased mechanical strength which exhibited a low water contact angle of 8.9° and high water flux of 7920 L/m2h. Flux recovery of the mentioned membrane which was assessed by filtration of a solution containing bovine serum albumin (BSA) was 83% indicating a noticeable antifouling property.

  19. Fast formation of hydrophilic and reactive polymer micropatterns by photocatalytic lithography method

    International Nuclear Information System (INIS)

    Chang, Chi-Jung; Wang, Chih-Feng; Chen, Jem-Kun; Hsieh, Chih-Chiao; Chen, Po-An

    2013-01-01

    An approach is developed for the fast formation of a hydrophilic pattern on superhydrophobic substrates with good contrast due to the large wettability contrast between superhydrophobic and superhydrophilic areas. It can be used for forming a polymer pattern with reactive functional groups. TiO 2 nanoparticles were grafted with long alkyl chains and then coated on substrates to produce superhydrophobic films. Photocatalytic degradation of the grafted alkyl chains was effected with UV light irradiation and resulted in transition from superhydrophobicity to superhydrophilicity. After UV light irradiation through a mask for 30 s, dyes or polymers were adsorbed on the photoinduced superhydrophilic areas to make micropatterns. The photoinduced superhydrophilic switching properties can be tuned by changing the alkyl chain length. The ninhydrin assay was adapted to identify free amino groups of polymers on the patterned area. Polymer patterns with free amino groups can be achieved.

  20. Fast formation of hydrophilic and reactive polymer micropatterns by photocatalytic lithography method

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chi-Jung, E-mail: changcj@fcu.edu.tw [Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 407, Taiwan (China); Wang, Chih-Feng [Department of Materials Science and Engineering, I-Shou University, 1, Syuecheng Road, Dashu District, Kaohsiung 840, Taiwan (China); Chen, Jem-Kun [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan (China); Hsieh, Chih-Chiao; Chen, Po-An [Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 407, Taiwan (China)

    2013-12-01

    An approach is developed for the fast formation of a hydrophilic pattern on superhydrophobic substrates with good contrast due to the large wettability contrast between superhydrophobic and superhydrophilic areas. It can be used for forming a polymer pattern with reactive functional groups. TiO{sub 2} nanoparticles were grafted with long alkyl chains and then coated on substrates to produce superhydrophobic films. Photocatalytic degradation of the grafted alkyl chains was effected with UV light irradiation and resulted in transition from superhydrophobicity to superhydrophilicity. After UV light irradiation through a mask for 30 s, dyes or polymers were adsorbed on the photoinduced superhydrophilic areas to make micropatterns. The photoinduced superhydrophilic switching properties can be tuned by changing the alkyl chain length. The ninhydrin assay was adapted to identify free amino groups of polymers on the patterned area. Polymer patterns with free amino groups can be achieved.

  1. Low-molecular-weight cyclin E: the missing link between biology and clinical outcome

    International Nuclear Information System (INIS)

    Akli, Said; Keyomarsi, Khandan

    2004-01-01

    Cyclin E, a key mediator of transition during the G 1 /S cellular division phase, is deregulated in a wide variety of human cancers. Our group recently reported that overexpression and generation of low-molecular-weight (LMW) isoforms of cyclin E were associated with poor clinical outcome among breast cancer patients. However, the link between LMW cyclin E biology in mediating a tumorigenic phenotype and clinical outcome is unknown. To address this gap in knowledge, we assessed the role of LMW isoforms in breast cancer cells; we found that these forms of cyclin E induced genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. These findings suggest that high levels of LMW isoforms of cyclin E not only can predict failure to endocrine therapy but also are true prognostic indicators because of their influence on cell proliferation and genetic instability

  2. Hydrophilic interaction liquid chromatography coupled to high-resolution mass spectrometry to determine artificial sweeteners in environmental waters.

    Science.gov (United States)

    Salas, Daniela; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa Maria

    2015-06-01

    Artificial sweeteners are food additives employed as sugar substitutes which are now considered to be emerging organic contaminants. In the present study, a method is developed for the determination of a group of artificial sweeteners in environmental waters. Considering the polar and hydrophilic character of these compounds, hydrophilic interaction liquid chromatography is proposed for their separation as an alternative to traditional reversed-phase liquid chromatography. Two stationary phases with different chemistry were compared for this purpose. For the detection of the analytes, high-resolution mass spectrometry (Orbitrap) was employed to take advantage of its benefits in terms of reliable quantification and confirmation for the measurement of accurate masses. Solid-phase extraction was chosen as the sample treatment, in which the extract in a mixture of NH4OH:MeOH:ACN (1:4:15) was directly injected into the chromatographic system, simplifying the analytical procedure. The optimized method was validated on river and waste water samples. For example, in the case of effluent water samples, limits of detection ranged from 0.002 to 0.7 μg/L and limits of quantification ranged from 0.004 to 1.5 μg/L. Apparent (whole method) recoveries ranged from 57 to 74% with intra-day precision (%RSD, n = 5) ranging from 6 to 25%. The method was successfully applied to water samples from different rivers in Catalonia and different waste water treatment plants in Tarragona. Acesulfame, cyclamate, saccharine and sucralose were found in several samples.

  3. Enrichment, development, and assessment of Indian basil oil based antiseptic cream formulation utilizing hydrophilic-lipophilic balance approach.

    Science.gov (United States)

    Yadav, Narayan Prasad; Meher, Jaya Gopal; Pandey, Neelam; Luqman, Suaib; Yadav, Kuldeep Singh; Chanda, Debabrata

    2013-01-01

    The present work was aimed to develop an antiseptic cream formulation of Indian basil oil utilizing hydrophilic-lipophilic balance approach. In order to determine the required-hydrophilic lipophilic balance (rHLB) of basil oil, emulsions of basil oil were prepared by phase inversion temperature technique using water, Tween 80, and Span 80. Formulated emulsions were assessed for creaming (BE9; 9.8, BE10; 10.2), droplet size (BE18; 3.22 ± 0.09 μ m), and turbidity (BE18; 86.12 ± 2.1%). To ensure correctness of the applied methodology, rHLB of light liquid paraffin was also determined. After rHLB determination, basil oil creams were prepared with two different combinations of surfactants, namely, GMS : Tween 80 (1 : 3.45) and SLS : GMS (1 : 3.68), and evaluated for in vitro antimicrobial activity, skin irritation test, viscosity and consistency. The rHLB of basil oil and light liquid paraffin were found to be 13.36 ± 0.36 and 11.5 ± 0.35, respectively. Viscosity, and consistency parameters of cream was found to be consistent over 90 days. Cream formulations showed net zone of growth inhibition in the range of 5.0-11.3 mm against bacteria and 4.3-7.6 mm against fungi. Primary irritation index was found to be between 0.38 and1.05. Conclusively stable, consistent, non-irritant, enriched antiseptic basil oil cream formulations were developed utilizing HLB approach.

  4. Elastic vesicles for transdermal drug delivery of hydrophilic drugs: a comparison of important physicochemical characteristics of different vesicle types.

    Science.gov (United States)

    Ntimenou, Vassiliki; Fahr, Alfred; Antimisiaris, Sophia G

    2012-08-01

    The aim of this study is to evaluate the influence of different lipid vesicular systems on the skin permeation ability of hydrophilic molecules, and understand if and which vesicle physicochemical properties may be used as predictive tools. Calcein and carboxyfluorescein were used as hydrophilic drug models. All vesicles (conventional liposomes [CLs], transfersomes [TRs] and invasomes [INVs]), were characterized for particle size distribution, zeta-potential, vesicular shape and morphology, encapsulation efficiency, integrity, colloidal stability, elasticity and finally in vitro human skin permeation. Dynamic light scattering (DLS) and cryo-transmission electron microscopy (cryo-TEM) defined that almost all vesicles had spherical structure, low polydispersity (PI Elasticity values (measured by extrusion through membranes) were in the order INVs > TRs > CLs. Three vesicle types were selected (having different elasticity) and in vitro skin permeation experiments demonstrated that calcein permeation was minimal from an aqueous solution, slightly enhanced from CLs, and enhanced by 1.8 and 7.2 times from TRs and INVs, respectively. Permeation and elasticity values were correlated by rank order but not linearly, indicating that elasticity can be used as a crude predictive tool for enhancement of skin transport. Drug encapsulation efficiency was not found to be an important factor in the current study.

  5. New approach of long-term modification of Topas® to acquire surface hydrophilicity for chromosome spreading

    DEFF Research Database (Denmark)

    Mednova, Olga; Kwasny, Dorota; Rozlosnik, Noemi

    2014-01-01

    as a description of the optimal cleaning procedure and storage conditions to maintain the modified surface. Three minutes of oxygen plasma activation followed by 4 min of acrylic acid UV-photografting at 50 °C leads to the most stable hydrophilicity that was characterized by an initial water contact angle of 53.......5° ± 1.2°. Storage of the modified material in cold water at 4 °C and refraining from ultrasonic cleaning limit water contact angle increase to 5° over 30 days. In comparison with pristine hydrophobic Topas, the proposed treatment improves chromosome spreading ability significantly....

  6. Hydrophilic MoSe2 Nanosheets as Effective Photothermal Therapy Agents and Their Application in Smart Devices.

    Science.gov (United States)

    Lei, Zhouyue; Zhu, Wencheng; Xu, Shengjie; Ding, Jian; Wan, Jiaxun; Wu, Peiyi

    2016-08-17

    A facile poly(vinylpyrrolidone) (PVP)-assisted exfoliation method is utilized to simultaneously exfoliate and noncovalently modify MoSe2 nanosheets. The resultant hydrophilic nanosheets are shown to be promising candidates for biocompatible photothermal therapy (PTT) agents, and they could also be encapsulated into a hydrogel matrix for some intelligent devices. This work not only provides novel insights into exfoliation and modification of transition metal dichalcogenide (TMD) nanosheets but also might spark more research into engineering multifunctional TMD-related nanocomposites, which is in favor of further exploiting the attractive properties of these emerging layered two-dimensional (2D) nanomaterials.

  7. Interfacial rheological properties of adsorbed protein layers and surfactants : a review

    NARCIS (Netherlands)

    Bos, M.A.; Vliet, T. van

    2001-01-01

    Proteins and low molecular weight (LMW) surfactants are widely used for the physical stabilisation of many emulsions and foam based food products. The formation and stabilisation of these emulsions and foams depend strongly on the interfacial properties of the proteins and the LMW surfactants.

  8. Contact and respiratory sensitizers can be identified by cytokine profiles following inhalation exposure

    NARCIS (Netherlands)

    Jong, W.H. de; Arts, J.H.E.; Klerk, A. de; Schijf, M.A.; Ezendam, J.; Kuper, C.F.; Loveren, H. van

    2009-01-01

    There are currently no validated animal models that can identify low molecular weight (LMW) respiratory sensitizers. The Local Lymph Node Assay (LLNA) is a validated animal model developed to detect contact sensitizers using skin exposure, but all LMW respiratory sensitizers tested so far were also

  9. Extraction of low molecular weight RNA from Citrus trifolita tissues ...

    African Journals Online (AJOL)

    Jane

    2010-12-20

    Dec 20, 2010 ... A critical prerequisite in miRNA studies is acquisition of high quality LMW RNA. LMW RNA is ..... air-dried for a few minutes and then exposed to BIOMAX X-ray film for 48 h using an .... Approaches to microRNA discovery. Nat.

  10. Enhanced dissolution and oral bioavailability of valsartan solid dispersions prepared by a freeze-drying technique using hydrophilic polymers.

    Science.gov (United States)

    Xu, Wei-Juan; Xie, Hong-Juan; Cao, Qing-Ri; Shi, Li-Li; Cao, Yue; Zhu, Xiao-Yin; Cui, Jing-Hao

    2016-01-01

    This study aimed to improve the dissolution rate and oral bioavailability of valsartan (VAL), a poorly soluble drug using solid dispersions (SDs). The SDs were prepared by a freeze-drying technique with polyethylene glycol 6000 (PEG6000) and hydroxypropylmethylcellulose (HPMC 100KV) as hydrophilic polymers, sodium hydroxide (NaOH) as an alkalizer, and poloxamer 188 as a surfactant without using any organic solvents. In vitro dissolution rate and physicochemical properties of the SDs were characterized using the USP paddle method, differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and Fourier transform-infrared (FT-IR) spectroscopy, respectively. In addition, the oral bioavailability of SDs in rats was evaluated by using VAL (pure drug) as a reference. The dissolution rates of the SDs were significantly improved at pH 1.2 and pH 6.8 compared to those of the pure drug. The results from DSC, XRD showed that VAL was molecularly dispersed in the SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between VAL and its carriers. The SDs exhibited significantly higher values of AUC 0-24 h and Cmax in comparison with the pure drug. In conclusion, hydrophilic polymer-based SDs prepared by a freeze-drying technique can be a promising method to enhance dissolution rate and oral bioavailability of VAL.

  11. Measurement and Modeling of Setschenow Constants for Selected Hydrophilic Compounds in NaCl and CaCl2 Simulated Carbon Storage Brines.

    Science.gov (United States)

    Burant, Aniela; Lowry, Gregory V; Karamalidis, Athanasios K

    2017-06-20

    Carbon capture, utilization, and storage (CCUS), a climate change mitigation strategy, along with unconventional oil and gas extraction, generates enormous volumes of produced water containing high salt concentrations and a litany of organic compounds. Understanding the aqueous solubility of organic compounds related to these operations is important for water treatment and reuse alternatives, as well as risk assessment purposes. The well-established Setschenow equation can be used to determine the effect of salts on aqueous solubility. However, there is a lack of reported Setschenow constants, especially for polar organic compounds. In this study, the Setschenow constants for selected hydrophilic organic compounds were experimentally determined, and linear free energy models for predicting the Setschenow constant of organic chemicals in concentrated brines were developed. Solid phase microextraction was employed to measure the salting-out behavior of six selected hydrophilic compounds up to 5 M NaCl and 2 M CaCl 2 and in Na-Ca-Cl brines. All compounds, which include phenol, p-cresol, hydroquinone, pyrrole, hexanoic acid, and 9-hydroxyfluorene, exhibited log-linear behavior up to these concentrations, meaning Setschenow constants previously measured at low salt concentrations can be extrapolated up to high salt concentrations for hydrophilic compounds. Setschenow constants measured in NaCl and CaCl 2 brines are additive for the compounds measured here; meaning Setschenow constants measured in single salt solutions can be used in multiple salt solutions. The hydrophilic compounds in this study were selected to elucidate differences in salting-out behavior based on their chemical structure. Using data from this study, as well as literature data, linear free energy relationships (LFERs) for prediction of NaCl, CaCl 2 , LiCl, and NaBr Setschenow constants were developed and validated. Two LFERs were improved. One LFER uses the Abraham solvation parameters, which include

  12. Compositional differences in simulated root exudates elicit a limited functional and compositional response in soil microbial communities

    Directory of Open Access Journals (Sweden)

    Michael S Strickland

    2015-08-01

    Full Text Available Inputs of low molecular weight carbon (LMW-C to soil −primarily via root exudates− are expected to be a major driver of microbial activity and source of stable soil organic carbon. It is expected that variation in the type and composition of LMW-C entering soil will influence microbial community composition and function. If this is the case then short-term changes in LMW-C inputs may alter processes regulated by these communities. To determine if change in the composition of LMW-C inputs influences microbial community function and composition, we conducted a 90 day microcosm experiment whereby soils sourced from three different land covers (meadows, deciduous forests, and white pine stands were amended, at low concentrations, with one of eight simulated root exudate treatments. Treatments included no addition of LMW-C, and the full factorial combination of glucose, glycine, and oxalic acid. After 90 days, we conducted a functional response assay and determined microbial composition via phospholipid fatty acid analysis. Whereas we noted a statistically significant effect of exudate treatments, this only accounted for ~3% of the variation observed in function. In comparison, land cover and site explained ~46 and ~41% of the variation, respectively. This suggests that exudate composition has little influence on function

  13. In vivo and in vitro dermal penetration of lipophilic and hydrophilic pesticides in mice

    International Nuclear Information System (INIS)

    Grissom, R.E. Jr.; Brownie, C.; Guthrie, F.E.

    1987-01-01

    Dermal absorption is a major portal of entry for a wide variety of potentially toxic substances. In vivo and in vitro investigations assessing penetration of topically applied xenobiotics using both human and other animals have been conducted. Current ethical considerations have drastically curtailed the testing of xenobiotics in human volunteers; consequently, dermal penetration in humans is usually estimated from in vivo tests in animals and in vitro tests using either human or animal skin. In order for in vitro penetration results to be meaningful, there needs to be close relationship with in vivo data. The objective of the present study was to investigate the relationship between in vivo and in vitro penetration of both hydrophilic and lipophilic 14 C-labelled compounds in mice

  14. A comparative study of three different synthesis routes for hydrophilic fluorophore-doped silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shahabi, Shakiba [University of Bremen, Advanced Ceramics (Germany); Treccani, Laura, E-mail: treccani@petroceramics.com [Petroceramics S.p.A., Kilometro Rosso Science Park (Italy); Rezwan, Kurosch [University of Bremen, Advanced Ceramics (Germany)

    2016-01-15

    The synthesis of fluorophore-doped silica nanoparticles (FDS NPs) with two conventional approaches, Stöber and microemulsion, as well as a novel amino acid-catalyzed seeds regrowth technique (ACSRT) is presented. The efficiency of each applied synthesis route toward incorporation of selected hydrophilic fluorophores, including rhodamine B isothiocyanate and fluorescein isothiocyanate, without and with an amine-containing crosslinker, into silica matrix was systematically studied. Our results clearly highlight the advantages of ACSRT to obtain FDS NPs with a remarkable encapsulation efficiency, high quantum yield, and enhanced stability against bleaching and dye leaking due to efficient embedding of the dyes inside silica network even without the amine-containing silane reagent. Moreover, evaluation of photostability of FDNPs internalized in human bone cells demonstrates the merits of ACSRT.

  15. Modelling of Hydrophilic Interaction Liquid Chromatography Stationary Phases Using Chemometric Approaches

    Science.gov (United States)

    Ortiz-Villanueva, Elena; Tauler, Romà

    2017-01-01

    Metabolomics is a powerful and widely used approach that aims to screen endogenous small molecules (metabolites) of different families present in biological samples. The large variety of compounds to be determined and their wide diversity of physical and chemical properties have promoted the development of different types of hydrophilic interaction liquid chromatography (HILIC) stationary phases. However, the selection of the most suitable HILIC stationary phase is not straightforward. In this work, four different HILIC stationary phases have been compared to evaluate their potential application for the analysis of a complex mixture of metabolites, a situation similar to that found in non-targeted metabolomics studies. The obtained chromatographic data were analyzed by different chemometric methods to explore the behavior of the considered stationary phases. ANOVA-simultaneous component analysis (ASCA), principal component analysis (PCA) and partial least squares regression (PLS) were used to explore the experimental factors affecting the stationary phase performance, the main similarities and differences among chromatographic conditions used (stationary phase and pH) and the molecular descriptors most useful to understand the behavior of each stationary phase. PMID:29064436

  16. Evaluation of wheat by polyacrylamide gel electrophoresis

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... wheat grains, the low molecular weight (LMW) (10 –70. KDa) and the high ... phoresis has been used to show that large size variation exists between LMW ... extraction buffer (Tris-Hcl 0.05M (pH 8), 0.02% SDS, 30.3% urea,.

  17. Sequential plasma activation methods for hydrophilic direct bonding at sub-200 °C

    Science.gov (United States)

    He, Ran; Yamauchi, Akira; Suga, Tadatomo

    2018-02-01

    We present our newly developed sequential plasma activation methods for hydrophilic direct bonding of silica glasses and thermally grown SiO2 films. N2 plasma was employed to introduce a metastable oxynitride layer on wafer surfaces for the improvement of bond energy. By using either O2-plasma/N2-plasma/N-radical or N2-plasma/N-radical sequential activation, the quartz-quartz bond energy was increased from 2.7 J/m2 to close to the quartz bulk fracture energy that was estimated to be around 9.0 J/m2 after post-bonding annealing at 200 °C. The silicon bulklike bond energy between thermal SiO2 films was also obtained. We suggest that the improvement is attributable to surface modification such as N-related defect formation and asperity softening by the N2 plasma surface treatment.

  18. A simple and effective approach to prepare injectable macroporous calcium phosphate cement for bone repair: Syringe-foaming using a viscous hydrophilic polymeric solution.

    Science.gov (United States)

    Zhang, Jingtao; Liu, Weizhen; Gauthier, Olivier; Sourice, Sophie; Pilet, Paul; Rethore, Gildas; Khairoun, Khalid; Bouler, Jean-Michel; Tancret, Franck; Weiss, Pierre

    2016-02-01

    In this study, we propose a simple and effective strategy to prepare injectable macroporous calcium phosphate cements (CPCs) by syringe-foaming via hydrophilic viscous polymeric solution, such as using silanized-hydroxypropyl methylcellulose (Si-HPMC) as a foaming agent. The Si-HPMC foamed CPCs demonstrate excellent handling properties such as injectability and cohesion. After hardening the foamed CPCs possess hierarchical macropores and their mechanical properties (Young's modulus and compressive strength) are comparable to those of cancellous bone. Moreover, a preliminary in vivo study in the distal femoral sites of rabbits was conducted to evaluate the biofunctionality of this injectable macroporous CPC. The evidence of newly formed bone in the central zone of implantation site indicates the feasibility and effectiveness of this foaming strategy that will have to be optimized by further extensive animal experiments. A major challenge in the design of biomaterial-based injectable bone substitutes is the development of cohesive, macroporous and self-setting calcium phosphate cement (CPC) that enables rapid cell invasion with adequate initial mechanical properties without the use of complex processing and additives. Thus, we propose a simple and effective strategy to prepare injectable macroporous CPCs through syringe-foaming using a hydrophilic viscous polymeric solution (silanized-hydroxypropyl methylcellulose, Si-HPMC) as a foaming agent, that simultaneously meets all the aforementioned aims. Evidence from our in vivo studies shows the existence of newly formed bone within the implantation site, indicating the feasibility and effectiveness of this foaming strategy, which could be used in various CPC systems using other hydrophilic viscous polymeric solutions. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Compatibilization of acrylonitrile-butadiene-styrene terpolymer/poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) blend: effect on morphology, interface, mechanical properties and hydrophilicity

    Science.gov (United States)

    Chen, Tingting; Zhang, Jun

    2018-04-01

    The compatibilization of acrylonitrile-butadiene-styrene terpolymer (ABS) and poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) blends was first investigated. Styrene-acrylonitrile-glycidyl methacrylate terpolymer (SAG) and ABS grafted with maleic anhydride (ABS-g-MAH) were selected as reactive compatibilizers for the ABS/PETG blends. The compatibilization effect was assessed by scanning electron microscope (SEM), differential scanning calorimetry (DSC) and mechanical properties. And the effect of compatibilizers on the hydrophilicity of the blends was evaluated as well. SEM observation and DSC analysis confirmed that both SAG and ABS-g-MAH compatibilizers could improve the compatibility between ABS and PETG, leading to an improvement in toughness of the blend. The possible cause for the improvement of compatibility was the reaction between compatibilizers and PETG, which could in situ turn out compatibilizers that acted as interfacial agents to enhance the interfacial interaction in the blend. Especially, the addition of SAG significantly decreased the dispersion phase size and the interface voids almost disappeared. Since the in situ reactions between the epoxy groups of SAG and the end groups (sbnd COOH or sbnd OH) of PETG generated PETG-co-SAG copolymer at the blend interface, and the cross-linking reactions proposed to take place between SAG and the PETG-co-SAG copolymer, acting as compatibilizer, could significantly increase the interfacial interaction. The addition of SAG also enhanced the stiffness of the blends. Moreover, the addition of SAG made the blend more hydrophilic, whereas the addition of ABS-g-MAH made the blend more hydrophobic. Therefore, SAG was a good compatibilizer for the ABS/PETG blends and could simultaneously provide the blends with toughening, stiffening and hydrophilic effects.

  20. Hydrophilic actinide complexation studied by solvent extraction radiotracer technique

    International Nuclear Information System (INIS)

    Rydberg, J.

    1996-10-01

    Actinide migration in the ground water is enhanced by the formation of water soluble complexes. It is essential to the risk analysis of a wet repository to know the concentration of central atoms and the ligands in the ground water, and the stability of complexes formed between them. Because the chemical behavior at trace concentrations often differ from that at macro concentrations, it is important to know the chemical behavior of actinides at trace concentrations in ground water. One method used for such investigations is the solvent extraction radiotracer (SXRT) technique. This report describes the SXRT technique in some detail. A particular reason for this analysis is the claim that complex formation constants obtained by SXRT are less reliable than results obtained by other techniques. It is true that several difficulties are encountered in the application of SXRT technique to actinide solution, such as redox instability, hydrophilic complexation by side reactions and sorption, but it is also shown that a careful application of the SXRT technique yields results as reliable as by any other technique. The report contains a literature survey on solvent extraction studies of actinide complexes formed in aqueous solutions, particularly by using the organic reagent thenoyltrifluoroacetone (TTA) dissolved in benzene or chloroform. Hydrolysis constants obtained by solvent extraction are listed as well as all actinide complexes studied by SX with inorganic and organic ligands. 116 refs, 11 tabs

  1. Hydrophilic actinide complexation studied by solvent extraction radiotracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry and Radiochemistry Consultant Group, Vaestra Froelunda (Sweden)

    1996-10-01

    Actinide migration in the ground water is enhanced by the formation of water soluble complexes. It is essential to the risk analysis of a wet repository to know the concentration of central atoms and the ligands in the ground water, and the stability of complexes formed between them. Because the chemical behavior at trace concentrations often differ from that at macro concentrations, it is important to know the chemical behavior of actinides at trace concentrations in ground water. One method used for such investigations is the solvent extraction radiotracer (SXRT) technique. This report describes the SXRT technique in some detail. A particular reason for this analysis is the claim that complex formation constants obtained by SXRT are less reliable than results obtained by other techniques. It is true that several difficulties are encountered in the application of SXRT technique to actinide solution, such as redox instability, hydrophilic complexation by side reactions and sorption, but it is also shown that a careful application of the SXRT technique yields results as reliable as by any other technique. The report contains a literature survey on solvent extraction studies of actinide complexes formed in aqueous solutions, particularly by using the organic reagent thenoyltrifluoroacetone (TTA) dissolved in benzene or chloroform. Hydrolysis constants obtained by solvent extraction are listed as well as all actinide complexes studied by SX with inorganic and organic ligands. 116 refs, 11 tabs.

  2. [Systematic evaluation of retention behavior of carbohydrates in hydrophilic interaction liquid chromatography].

    Science.gov (United States)

    Fu, Qing; Wang, Jun; Liang, Tu; Xu, Xiaoyong; Jin, Yu

    2013-11-01

    A systematic evaluation of retention behavior of carbohydrates in hydrophilic interaction liquid chromatography (HILIC) was performed. The influences of mobile phase, stationary phase and buffer salt on the retention of carbohydrates were investigated. According to the results, the retention time of carbohydrates decreased as the proportion of acetonitrile in mobile phase decreased. Increased time of carbohydrates was observed as the concentration of buffer salt in mobile phase increased. The retention behavior of carbohydrates was also affected by organic solvent and HILIC stationary phase. Furthermore, an appropriate retention equation was used in HILIC mode. The retention equation lnk = a + blnC(B) + cC(B) could quantitatively describe the retention factors of carbohydrates of plant origin with good accuracy: the relative error of the predicted time to actual time was less than 0.3%. The evaluation results could provide guidance for carbohydrates to optimize the experimental conditions in HILIC method development especially for carbohydrate separation

  3. Hydrophilicity and morphological investigation of polycarbonate irradiated by ArF excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Jaleh, B. [Bu-Ali-Sina University, Physics Department, Postal Code 65174, Hamedan (Iran, Islamic Republic of)], E-mail: jaleh@basu.ac.ir; Parvin, P. [Amir Kabir University of Technology, Physics Department, P.O. Box: 15875-4413, Tehran (Iran, Islamic Republic of); Laser Research Center, AEOI, P.O. Box: 11365-8486, Tehran (Iran, Islamic Republic of); Sheikh, N. [Nuclear Science and Technology Research Institute, Radiation Applications Research School, Tehran (Iran, Islamic Republic of); Zamanipour, Z. [Laser Research Center, AEOI, P.O. Box: 11365-8486, Tehran (Iran, Islamic Republic of); Sajad, B. [Azzahra University, Physics Department, Tehran (Iran, Islamic Republic of)

    2007-12-15

    Lasers are used to modify polymeric materials. In this work, a number of polycarbonate (PC) pieces were exposed by ArF excimer laser, 193 nm, at various UV doses from 10 to 100 J/cm{sup 2} with 50-500 mJ/pulse at 10 Hz pulse repetition rate. Morphology of PC has been investigated by scanning electron microscope (SEM) at three regimes pre-ablation, slow and fast ablation. SEM identifies that the conical defects are created on the polymer surface to grow opposite to the direction of laser irradiation. It increases the superficial absorptivity of the material dependent on the ArF laser induced conical microstructure geometry. The contact angle measurement was performed here, in order to determine the hydrophilicity of the irradiated polymer at various coherent doses. It is shown that the contact angle of PC samples which are exposed to the ArF laser significantly alters with UV dose below 7 J/cm{sup 2}.

  4. Hydrophilicity improvement of polyethersulfone powders by grafting acrylic acid with γ-ray simultaneous irradiation method

    International Nuclear Information System (INIS)

    Deng Bo; Hou Zhengchi; Zhang Fengying; Xie Leidong; Li Jing; Yang Haijun

    2005-01-01

    Acrylic acid was grafted to Polyethersulfone (PES) powders by liquid-phase simultaneous irradiation. Effects of grafting conditions, such as absorbed dose, volume fraction of monomer, inhibitor (Cu 2+ ) concentration, and pH of the grafting solution on degree of the grafting were investigated. Combined with gravimetric analysis, a working curve of grafting degree through FT-IR quantitative analysis was obtained. The highest grafting degree was achieved at dose of 25 kGy, volume fraction of monomer of 30% and inhibitor concentration of 0.004 mol/L. Greater degrees of the grafting could be obtained by adding increasing amount of hydrochloric acid to the system. Hydrophilicity of the grafted PES powders increased with higher degrees of the grafting. (authors)

  5. Evaluation of the microstructure of waterborne poly(urethane-urea)s nanocomposites with hydrophilic clay (NWPUU)

    International Nuclear Information System (INIS)

    Miranda, Gisele dos S.; Delpech, Marcia C.; Reis, Rodrigo A. dos; Pereira, Alexandre Z.I; Coelho, Aline B.

    2015-01-01

    Waterborne poly(urethane-urea)s (WPUU) and respective nanocomposites based on hydrophilic clay (NWPUU) generally show segregation between hard and soft domains, in a greater or lesser extent, which directly influences the stability of the dispersion and affect the final properties of the material. Simple characterization techniques, such as infrared spectroscopy (FTIR) and X ray diffraction (XRD), employed in this study, can generate information about the microstructure and phase miscibility, using small amounts of material. The evaluation of the results obtained from the techniques showed that increments in rigid domains content and in the amount of internal emulsifier, as well as the presence of clay, decreased the size of the crystallites (crystallinity of the soft segments). (author)'

  6. Influence of low-molecular-weight glutenin subunit haplotypes on dough rheology and baking quality in elite common wheat varieties

    Science.gov (United States)

    The low molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins directly involved in the formation of gluten. Depending on the first amino acid residue of the mature proteins, the LMW-GSs are divided into methionine, serine or isoleucine type. These proteins are encod...

  7. Role of αA-crystallin-derived αA66-80 peptide in guinea pig lens crystallin aggregation and insolubilization.

    Science.gov (United States)

    Raju, Murugesan; Mooney, Brian P; Thakkar, Kavi M; Giblin, Frank J; Schey, Kevin L; Sharma, K Krishna

    2015-03-01

    Earlier we reported that low molecular weight (LMW) peptides accumulate in aging human lens tissue and that among the LMW peptides, the chaperone inhibitor peptide αA66-80, derived from α-crystallin protein, is one of the predominant peptides. We showed that in vitro αA66-80 induces protein aggregation. The current study was undertaken to determine whether LMW peptides are also present in guinea pig lens tissue subjected to hyperbaric oxygen (HBO) in vivo. The nuclear opacity induced by HBO in guinea pig lens is the closest animal model for studying age-related cataract formation in humans. A LMW peptide profile by mass spectrometry showed the presence of an increased amount of LMW peptides in HBO-treated guinea pig lenses compared to age-matched controls. Interestingly, the mass spectrometric data also showed that the chaperone inhibitor peptide αA66-80 accumulates in HBO-treated guinea pig lens. Following incubation of synthetic chaperone inhibitor peptide αA66-80 with α-crystallin from guinea pig lens extracts, we observed a decreased ability of α-crystallin to inhibit the amorphous aggregation of the target protein alcohol dehydrogenase and the formation of large light scattering aggregates, similar to those we have observed with human α-crystallin and αA66-80 peptide. Further, time-lapse recordings showed that a preformed complex of α-crystallin and αA66-80 attracted additional crystallin molecules to form even larger aggregates. These results demonstrate that LMW peptide-mediated cataract development in aged human lens and in HBO-induced lens opacity in the guinea pig may have common molecular pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Tuning the Hydrophilic/Hydrophobic Balance to Control the Structure of Chitosan Films and Their Protein Release Behavior.

    Science.gov (United States)

    Becerra, Jose; Sudre, Guillaume; Royaud, Isabelle; Montserret, Roland; Verrier, Bernard; Rochas, Cyrille; Delair, Thierry; David, Laurent

    2017-05-01

    The control over the crystallinity of chitosan and chitosan/ovalbumin films can be achieved via an appropriate balance of the hydrophilic/hydrophobic interactions during the film formation process, which then controls the release kinetics of ovalbumin. Chitosan films were prepared by solvent casting. The presence of the anhydrous allomorph can be viewed as a probe of the hydrophobic conditions at the neutralization step. The semicrystalline structure, the swelling behavior of the films, the protein/chitosan interactions, and the release behavior of the films were impacted by the DA and the film processing parameters. At low DAs, the chitosan films neutralized in the solid state corresponded to the most hydrophobic environment, inducing the crystallization of the anhydrous allomorph with and without protein. The most hydrophilic conditions, leading to the hydrated allomorph, corresponded to non-neutralized films for the highest DAs. For the non-neutralized chitosan acetate (amorphous) films, the swelling increased when the DA decreased, whereas for the neutralized chitosan films, the swelling decreased. The in vitro release of ovalbumin (model protein) from chitosan films was controlled by their swelling behavior. For fast swelling films (DA = 45%), a burst effect was observed. On the contrary, a lag time was evidenced for DA = 2.5% with a limited release of the protein. Furthermore, by blending chitosans (DA = 2.5% and 45%), the release behavior was improved by reducing the burst effect and the lag time. The secondary structure of ovalbumin was partially maintained in the solid state, and the ovalbumin was released under its native form.

  9. Potential Anti-Inflammatory Effects of the Hydrophilic Fraction of Pomegranate (Punica granatum L. Seed Oil on Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Susan Costantini

    2014-06-01

    Full Text Available In this work, we characterized conjugated linolenic acids (e.g., punicic acid as the major components of the hydrophilic fraction (80% aqueous methanol extract from pomegranate (Punica granatum L. seed oil (PSO and evaluated their anti-inflammatory potential on some human colon (HT29 and HCT116, liver (HepG2 and Huh7, breast (MCF-7 and MDA-MB-231 and prostate (DU145 cancer lines. Our results demonstrated that punicic acid and its congeners induce a significant decrease of cell viability for two breast cell lines with a related increase of the cell cycle G0/G1 phase respect to untreated cells. Moreover, the evaluation of a great panel of cytokines expressed by MCF-7 and MDA-MB-231 cells showed that the levels of VEGF and nine pro-inflammatory cytokines (IL-2, IL-6, IL-12, IL-17, IP-10, MIP-1α, MIP-1β, MCP-1 and TNF-α decreased in a dose dependent way with increasing amounts of the hydrophilic extracts of PSO, supporting the evidence of an anti-inflammatory effect. Taken together, the data herein suggest a potential synergistic cytotoxic, anti-inflammatory and anti-oxidant role of the polar compounds from PSO.

  10. Polylactic acid nano- and microchamber arrays for encapsulation of small hydrophilic molecules featuring drug release via high intensity focused ultrasound.

    Science.gov (United States)

    Gai, Meiyu; Frueh, Johannes; Tao, Tianyi; Petrov, Arseniy V; Petrov, Vladimir V; Shesterikov, Evgeniy V; Tverdokhlebov, Sergei I; Sukhorukov, Gleb B

    2017-06-01

    Long term encapsulation combined with spatiotemporal release for a precisely defined quantity of small hydrophilic molecules on demand remains a challenge in various fields ranging from medical drug delivery, controlled release of catalysts to industrial anti-corrosion systems. Free-standing individually sealed polylactic acid (PLA) nano- and microchamber arrays were produced by one-step dip-coating a PDMS stamp into PLA solution for 5 s followed by drying under ambient conditions. The wall thickness of these hydrophobic nano-microchambers is tunable from 150 nm to 7 μm by varying the PLA solution concentration. Furthermore, small hydrophilic molecules were successfully in situ precipitated within individual microchambers in the course of solvent evaporation after sonicating the PLA@PDMS stamp to remove air-bubbles and to load the active substance containing solvent. The cargo capacity of single chambers was determined to be in the range of several picograms, while it amounts to several micrograms per cm 2 . Two different methods for sealing chambers were compared: microcontact printing versus dip-coating whereby microcontact printing onto a flat PLA sheet allows for entrapment of micro-air-bubbles enabling microchambers with both ultrasound responsiveness and reduced permeability. Cargo release triggered by external high intensity focused ultrasound (HIFU) stimuli is demonstrated by experiment and compared with numerical simulations.

  11. Preparation and evaluation of a hydrophilic interaction and cation-exchange chromatography stationary phase modified with 2-methacryloyloxyethyl phosphorylcholine.

    Science.gov (United States)

    Xiong, Caifeng; Yuan, Jie; Wang, Zhiying; Wang, Siyao; Yuan, Chenchen; Wang, Lili

    2018-04-20

    In this work, 2-methacryloyloxyethyl phosphorylcholine (MPC) was used as a ligand to prepare a novel mixed-mode chromatography (MMC) stationary phase by the thiol-ene click reaction onto silica (MPC-silica). It was found that this MPC-silica showed the retention characteristics of hydrophilic interaction chromatography (HILIC) and weak cation exchange chromatography (WCX) under suitable mobile phase conditions. In detail, acidic and basic hydrophilic compounds and puerarin from pueraria were separated quickly with HILIC mode. Meanwhile, six standard proteins were allowed to reach baseline separation in WCX mode, and protein separation from egg white was also achieved with this mode. In addition, reduced/denatured lysozyme could be refolded with the MPC-silica column. In the meantime, the MPC-silica has been applied for refolding with simultaneous purification of recombinant human Delta-like1-RGD (rhDll1-RGD) expressed in Escherichia coli. The results show that the mass recovery and purity of rhDll1-RGD could reach 63.4% and 97% by one step, respectively. Furthermore, the reporter assay results demonstrated that refolded with simultaneously purified rhDll1-RGD could efficiently activate the signalling pathway in a dose-dependent manner. In general, this MPC-silica has good resolution and selectivity in the separation of polar compounds and protein samples in different high-performance liquid chromatography (HPLC) modes, and it successfully achieved refolding with simultaneous purification of denatured protein. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Microleakage of hydrophilic adhesive systems in Class V composite restorations.

    Science.gov (United States)

    Amaral, C M; Hara, A T; Pimenta, L A; Rodrigues, A L

    2001-02-01

    To investigate the microleakage of four hydrophilic adhesive systems: one "multiple-bottles" (Scotchbond Multi-Purpose Plus); two "one-bottle" (Single Bond, Stae); and one self-etching (Etch & Prime 3.0). 120 bovine incisor teeth were divided into four groups (n = 30) and Class V cavities were prepared at the cemento-enamel junction. The cavities were restored with the adhesive systems and with Z100 composite. The teeth were thermocycled 1,000 times between 5+/-2 degrees C and 55+/-2 degrees C with a dwell time of 1 min, and then placed in a 2% methylene blue dye (pH 7.0) for 4 hrs, washed and sectioned vertically through the center of the restorations. The qualitative evaluation was made by three examiners who distributed pre-established scores (0-4) for each tooth using a stereomicroscope at x30 magnification. In enamel margins little microleakage was observed and the Kruskal-Wallis analysis did not show differences. In dentin margins the Kruskal-Wallis and multiple comparison analyses were applied: microleakage was significantly greater with Stae (median 3) and Scotchbond MP Plus (median 4). Single Bond (median 1) and Etch & Prime 3.0 (median 2) showed the best results in dentin margins, and the statistical analysis did not demonstrate differences in microleakage among these groups.

  13. Separation of multiphosphorylated peptide isomers by hydrophilic interaction chromatography on an aminopropyl phase.

    Science.gov (United States)

    Singer, David; Kuhlmann, Julia; Muschket, Matthias; Hoffmann, Ralf

    2010-08-01

    The separation of isomeric phosphorylated peptides is challenging and often impossible for multiphosphorylated isomers using chromatographic and capillary electrophoretic methods. In this study we investigated the separation of a set of single-, double-, and triple-phosphorylated peptides (corresponding to the human tau protein) by ion-pair reversed-phase chromatography (IP-RPC) and hydrophilic interaction chromatography (HILIC). In HILIC both hydroxyl and aminopropyl stationary phases were tested with aqueous acetonitrile in order to assess their separation efficiency. The hydroxyl phase separated the phosphopeptides very well from the unphosphorylated analogue, while on the aminopropyl phase even isomeric phosphopeptides attained baseline separation. Thus, up to seven phosphorylated versions of a given tau domain were separated. Furthermore, the low concentration of an acidic ammonium formate buffer allowed an online analysis with electrospray ionization tandem mass spectrometry (ESI-MS/MS) to be conducted, enabling peptide sequencing and identification of phosphorylation sites.

  14. Efficacy of silver/hydrophilic poly(p-xylylene) on preventing bacterial growth and biofilm formation in urinary catheters.

    Science.gov (United States)

    Heidari Zare, Hamideh; Juhart, Viktorija; Vass, Attila; Franz, Gerhard; Jocham, Dieter

    2017-01-18

    Catheter associated urinary tract infections (CAUTI), caused by several strains of bacteria, are a common complication for catheterized patients. This may eventually lead to a blockage of the catheter due to the formation of a crystalline or amorphous biofilm. Inhibiting bacteria should result in a longer application time free of complaints. This issue has been investigated using an innovative type of silver-coated catheter with a semipermeable cap layer to prevent CAUTI. In this work, two different types of silver catheters were investigated, both of which were capped with poly(p-xylylene) (PPX-N) and exhibited different surface properties that completely changed their wetting conduct with water. The contact angle of conventionally deposited PPX-N is approximately 80°. After O 2 plasma treatment, the contact angle drops to approximately 30°. These two systems, Ag/PPX-N and Ag/PPX-N-O 2 , were tested in synthetic urine at a body temperature of 37 °C. First, the optical density and the inhibition zones of both bacteria strains (Escherichia coli and Staphylococcus cohnii) were examined to confirm the antibacterial effect of these silver-coated catheters. Afterward, the efficacy of silver catheters with different treatments of biofilm formed by E. coli and S. cohnii were tested with crystal violet staining assays. To estimate the life cycles of silver/PPX-catheters, the eluted amount of silver was assessed at several time intervals by anodic stripping voltammetry. The silver catheter with hydrophilic PPX-N coating limited bacterial growth in synthetic urine and prevented biofilm formation. The authors attribute the enhanced bacteriostatic effect to increased silver ion release detected under these conditions. With this extensive preparatory analytic work, the authors studied the ability of the two different cap layers (without silver), PPX-N and oxygen plasma treated PPX-N, to control the growth of a crystalline biofilm by measuring the concentrations of the Ca 2

  15. Engineering a self-driven PVDF/PDA hybrid membranes based on membrane micro-reactor effect to achieve super-hydrophilicity, excellent antifouling properties and hemocompatibility

    Science.gov (United States)

    Li, Jian-Hua; Ni, Xing-Xing; Zhang, De-Bin; Zheng, Hui; Wang, Jia-Bin; Zhang, Qi-Qing

    2018-06-01

    A facile and versatile approach for the preparation of super-hydrophilic, excellent antifouling and hemocompatibility membranes had been developed through the generation in situ of bio-inspired polydopamine (PDA) microspheres on PVDF membranes. SEM images showed that the PDA microspheres were uniformly dispersed on the upper surface and the lower surface of the modified membranes. And there were a great number of PDA microspheres immobilized on the cross-section, but the interconnected pores structure was not destroyed. These facts indicated the existence of membrane micro-reactor effect for the whole membrane structure. Considering the remarkable improvement of hydrophilicity, antifouling properties, and permeation fluxes, we also proposed the cluster phenolic hydroxyl effect for the PVDF/PDA hybrid membranes. And the cluster phenolic hydroxyl effect can be ascribed to the all directions distributed phenolic hydroxyl groups on the whole membrane structure. Besides, the self-driven filtration experiments showed the great wetting ability and permeability of the PVDF/PDA hybrid membranes in filtration process without any external pressure. This implied the existence of accelerating self-driven force after the water flow flowed into the internal of membranes, which contributed to the increase of water flow velocity. All the three aspects were in favor of the enhancement of hydrophilicity, antifouling properties and permeability of the modified membranes. Moreover, the conventional filtration tests, oil/water emulsion filtration tests and protein adsorption tests were also carried out to discuss the practical applications of PVDF/PDA hybrid membranes. And the hemocompatibility of the modified membranes was also proved to enhance greatly through the hemolysis tests and platelet adhesion tests, indicating that the membranes were greatly promising in biomedical applications. The strategy of material modification reported here is substrate-independent and can be extended

  16. Definition of the low molecular weight glutenin subunit gene family members in a set of standard bread wheat (Triticum aestivum L.) varieties

    Science.gov (United States)

    Low-molecular-weight glutenin subunits (LMW-GS) are a class of seed storage proteins that play a major role in the determination of the viscoelastic properties of wheat dough. Most of the LMW-GSs are encoded by a multi-gene family located on the short arms of the homoeologous group 1 chromosomes, at...

  17. High Brightness OLED Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, Jeffrey [OLEDWorks LLC; Kondakova, Marina [OLEDWorks LLC; Boroson, Michael [OLEDWorks LLC; Hamer, John [OLEDWorks LLC

    2016-05-25

    In this work we describe the technology developments behind our current and future generations of high brightness OLED lighting panels. We have developed white and amber OLEDs with excellent performance based on the stacking approach. Current products achieve 40-60 lm/W, while future developments focus on achieving 80 lm/W or higher.

  18. Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid

    Science.gov (United States)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Steinmetz, Nicole F.; Lomonossoff, George P.; Evans, David J.

    2012-08-01

    Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors.Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors. Electronic supplementary information (ESI) available: Alternative conjugation strategies, agarose gel electrophoresis of CPMV and CPMV-HRP conjugates, UV-vis spectrum of HRP-ADHCPMV, agarose gel electrophoresis of GOX-ADHCPMV particles and corresponding TEM image, calibration curves for HRP-ADHCPMV and GOX-ADHCPMV, DLS data for GOX-ADHCPMV are made available. See DOI: 10.1039/c2nr31485a

  19. Hybrid Biodegradable Hydrogels Obtained from Nanoclay and Carboxymethylcellulose Polysaccharide: Hydrophilic, Kinetic, Spectroscopic and Morphological Properties.

    Science.gov (United States)

    Nascimento, Denis W S; de Moura, Márcia R; Mattoso, Luiz H C; Aouada, Fauze A

    2017-01-01

    In this paper, series of novel nanocomposite hydrogels based on polyacrylamide (PAAm), carboxymethylcellulose (CMC) and nanoclay were synthesized. Hydrophilic, kinetic, spectroscopic and morphological properties were investigated as function of their constituents. Spectroscopic properties confirmed the obtaining of the nanocomposites. It was also observed that the nanocomposites have walls of pores with a more rugged morphology compared with the morphology of the hydrogel without clay, contributing to repel the water molecules. Besides, the results showed that the velocity and quantity of water uptake may be controlled by adjusting of matrix rigidity, i.e., nanoclay content into polymeric matrix. This behavior is required to future application in agriculture fields, specifically as carrier vehicle in controlled release of agrochemicals. Thus, these nanocomposites have technological application.

  20. Effects of ultrasound and sodium lauryl sulfate on the transdermal delivery of hydrophilic permeants: Comparative in vitro studies with full-thickness and split-thickness pig and human skin.

    Science.gov (United States)

    Seto, Jennifer E; Polat, Baris E; Lopez, Renata F V; Blankschtein, Daniel; Langer, Robert

    2010-07-01

    The simultaneous application of ultrasound and the surfactant sodium lauryl sulfate (referred to as US/SLS) to skin enhances transdermal drug delivery (TDD) in a synergistic mechanical and chemical manner. Since full-thickness skin (FTS) and split-thickness skin (STS) differ in mechanical strength, US/SLS treatment may have different effects on their transdermal transport pathways. Therefore, we evaluated STS as an alternative to the well-established US/SLS-treated FTS model for TDD studies of hydrophilic permeants. We utilized the aqueous porous pathway model to compare the effects of US/SLS treatment on the skin permeability and the pore radius of pig and human FTS and STS over a range of skin electrical resistivity values. Our findings indicate that the US/SLS-treated pig skin models exhibit similar permeabilities and pore radii, but the human skin models do not. Furthermore, the US/SLS-enhanced delivery of gold nanoparticles and quantum dots (two model hydrophilic macromolecules) is greater through pig STS than through pig FTS, due to the presence of less dermis that acts as an artificial barrier to macromolecules. In spite of greater variability in correlations between STS permeability and resistivity, our findings strongly suggest the use of 700microm-thick pig STS to investigate the in vitro US/SLS-enhanced delivery of hydrophilic macromolecules. 2010 Elsevier B.V. All rights reserved.

  1. Study of morphology and mechanical properties of hydrophilic films based on compositions of poly(acrylic acid) and poly(2-hydroxy ethylvinylether)

    International Nuclear Information System (INIS)

    Bitekenova, A.; Dzhusupbekova, A.; Khutoryanskij, V.; Nurkeeva, Z.

    2003-01-01

    The hydrophilic films based on compositions of poly(acrylic acid) and poly(2-hydroxy ethylvinylether) were obtained from blend of the corresponding monomers. Radiation crosslinking of composite materials are realize by γ-irradiation method and the gelation doses were calculated. It was shown that mechanical properties of films depend on composition (content of notion component) and conditions of crosslinking. The morphology of polymeric films was investigated by scanning electron microscopy

  2. Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat

    Directory of Open Access Journals (Sweden)

    Zhang Xiaofei

    2012-12-01

    Full Text Available Abstract Background Low-molecular-weight glutenin subunits (LMW-GS strongly influence the bread-making quality of bread wheat. These proteins are encoded by a multi-gene family located at the Glu-A3, Glu-B3 and Glu-D3 loci on the short arms of homoeologous group 1 chromosomes, and show high allelic variation. To characterize the genetic and protein compositions of LMW-GS alleles, we investigated 16 Aroona near-isogenic lines (NILs using SDS-PAGE, 2D-PAGE and the LMW-GS gene marker system. Moreover, the composition of glutenin macro-polymers, dough properties and pan bread quality parameters were determined for functional analysis of LMW-GS alleles in the NILs. Results Using the LMW-GS gene marker system, 14–20 LMW-GS genes were identified in individual NILs. At the Glu-A3 locus, two m-type and 2–4 i-type genes were identified and their allelic variants showed high polymorphisms in length and nucleotide sequences. The Glu-A3d allele possessed three active genes, the highest number among Glu-A3 alleles. At the Glu-B3 locus, 2–3 m-type and 1–3 s-type genes were identified from individual NILs. Based on the different compositions of s-type genes, Glu-B3 alleles were divided into two groups, one containing Glu-B3a, B3b, B3f and B3g, and the other comprising Glu-B3c, B3d, B3h and B3i. Eight conserved genes were identified among Glu-D3 alleles, except for Glu-D3f. The protein products of the unique active genes in each NIL were detected using protein electrophoresis. Among Glu-3 alleles, the Glu-A3e genotype without i-type LMW-GS performed worst in almost all quality properties. Glu-B3b, B3g and B3i showed better quality parameters than the other Glu-B3 alleles, whereas the Glu-B3c allele containing s-type genes with low expression levels had an inferior effect on bread-making quality. Due to the conserved genes at Glu-D3 locus, Glu-D3 alleles showed no significant differences in effects on all quality parameters. Conclusions This work

  3. Determination of hydrophilic–lipophilic balance value and emulsion properties of sacha inchi oil

    Directory of Open Access Journals (Sweden)

    Kiattiphumi Saengsorn

    2017-12-01

    Full Text Available Objective: To determine hydrophilic–lipophilic balance (HLB value, stability of formulate emulsion and properties of sacha inchi oil. Methods: The physiochemical characteristics of sacha inchi oil were first investigated. Free radical scavenging property was studied by DPPH assay. HLB value of sacha inchi oil was experimentally determined by preparing the emulsion using emulsifiers at different HLB value. Sacha inchi oil emulsion was prepared using the obtained HLB and its stability was conducted by centrifugation, temperature cycling, and accelerated stability test. The efficiency of the prepared emulsion was clinically investigated by 15 volunteers. The primary skin irritation was performed using closed patch test. Subjective sensory assessment was evaluated by using 5-point hedonic scale method. Results: Peroxide value of sacha inchi oil was 18.40 meq O2/kg oil and acid value was 1.86 KOH/g oil. The major fatty acids are omega-3 (44%, omega-6 (35% and omega-9 (9%. The vitamin E content was 226 mg/100 g oil. Moreover, sacha inchi oil (167 ppm and its emulsion showed 85% and 89% DPPH inhibition, respectively. The experimental HLB value of sacha inchi oil was 8.5. The sacha inchi oil emulsion exhibited good stability after stability test. The emulsion was classified as non-irritant after tested by primary skin irritation method. The skin hydration value significantly increased from 38.59 to 45.21 (P < 0.05 after applying sacha inchi oil emulsion for 1 month and the overall product satisfaction of volunteers after use was with score of 4.2. Conclusions: This work provides information on HLB value and emulsion properties of sacha inchi oil which is useful for cosmetic and pharmaceutical application. Keywords: Sacha inchi oil, Hydrophilic–lipophilic balance value, Emulsion stability, Efficacy test, Sensory test

  4. Different effectiveness of two pastas supplemented with either lipophilic or hydrophilic/phenolic antioxidants in affecting serum as evaluated by the novel Antioxidant/Oxidant Balance approach.

    Science.gov (United States)

    Laus, Maura N; Soccio, Mario; Alfarano, Michela; Pasqualone, Antonella; Lenucci, Marcello S; Di Miceli, Giuseppe; Pastore, Donato

    2017-04-15

    Effectiveness in improving serum antioxidant status of two functional pastas was evaluated by the novel Antioxidant/Oxidant Balance (AOB) parameter, calculated as Antioxidant Capacity (AC)/Peroxide Level ratio, assessed here for the first time. In particular, Bran Oleoresin (BO) and Bran Water (BW) pastas, enriched respectively with either lipophilic (tocochromanols, carotenoids) or hydrophilic/phenolic antioxidants extracted from durum wheat bran, were studied. Notably, BO pasta was able to improve significantly (+65%) serum AOB during four hours after intake similarly to Lisosan G, a wheat antioxidant-rich dietary supplement. Contrarily, BW pasta had oxidative effect on serum so as conventional pasta and glucose, thus suggesting greater effectiveness of lipophilic than hydrophilic/phenolic antioxidants under our experimental conditions. Interestingly, no clear differences between the two pastas were observed, when AC measurements of either serum after pasta intake or pasta extracts by in vitro assays were considered, thus strengthening effectiveness and reliability of AOB approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of the hydrophilic block length on the surface-active and micellar thermodynamic properties of oxyethylene-oxybutylene diblock copolymers in aqueous solution

    International Nuclear Information System (INIS)

    Khan, A.; Usman, M.; Siddiq, M.; Fatima, G.; Harrison, W.

    2009-01-01

    The effect of hydrophilic block length on the surface and micellar thermodynamic properties of aqueous solution of E/sub 40/B/sub 8/, E/sub 80/B/sub 8/ and E/sub 120/B/sub 8/ diblock copolymers, were studied by surface tension measurements over a wide concentration and temperature range; where E stands for an oxyethylene unit and B for an oxybutylene unit. Like conventional surfactants, two breaks (change in the slope) were observed in the surface tension vs logarithm of concentration curve for all the three copolymers. Surface tension measurements were used to estimate surface excess concentrations (r m), area per molecule at air/water interface a and thermodynamic parameters for all adsorption of the pre-micellar region in the temperature range 20 to 50 degree C. Likewise the critical micelle concentration, CMC and thermodynamic parameters for micellization were also calculated for the post-micellar solutions at all temperatures. For comparison the thermodynamic parameters of adsorption and micellization are discussed in detail. The impact of varying E-block length and temperature on all calculated parameters are also discussed. This study shows the importance of hydrophobic-hydrophilic-balance (HHB) of copolymers on various surface and micellar properties. (author)

  6. Expression Profile of Three Splicing Factors in Pleural Cells Based on the Underlying Etiology and Its Clinical Values in Patients with Pleural Effusion

    Directory of Open Access Journals (Sweden)

    A-Lum Han

    2018-02-01

    Full Text Available Splicing factors (SFs are involved in oncogenesis or immune modulation, the common underlying processes giving rise to pleural effusion (PE. The expression profiles of three SFs (HNRNPA1, SRSF1, and SRSF3 and their clinical values have never been assessed in PE. The three SFs (in pellets of PE and conventional tumor markers were analyzed using PE samples in patients with PE (N = 336. The sum of higher–molecular weight (Mw forms of HNRNPA1 (Sum-HMws-HNRNPA1 and SRSF1 (Sum-HMws-SRSF1 and SRSF3 levels were upregulated in malignant PE (MPE compared to benign PE (BPE; they were highest in cytology-positive MPE, followed by tuberculous PE and parapneumonic PE. Meanwhile, the lowest-Mw HNRNPA1 (LMw-HNRNPA1 and SRSF1 (LMw-SRSF1 levels were not upregulated in MPE. Sum-HMws-HNRNPA1, Sum-HMws-SRSF1, and SRSF3, but neither LMw-HNRNPA1 nor LMw-SRSF1, showed positive correlations with cancer cell percentages in MPE. The detection accuracy for MPE was high in the order of carcinoembryonic antigen (CEA, 85%, Sum-HMws-HNRNPA1 (76%, Sum-HMws-SRSF1 (68%, SRSF3, cytokeratin-19 fragments (CYFRA 21-1, LMw-HNRNPA1, and LMw-SRSF1. Sum-HMws-HNRNPA1 detected more than half of the MPE cases that were undetected by cytology and CEA. Sum-HMws-HNRNPA1, but not other SFs or conventional tumor markers, showed an association with longer overall survival among patients with MPE receiving chemotherapy. Our results demonstrated different levels of the three SFs with their Mw-specific profiles depending on the etiology of PE. We suggest that Sum-HMws-HNRNPA1 is a supplementary diagnostic marker for MPE and a favorable prognostic indicator for patients with MPE receiving chemotherapy.

  7. Spatial distributions of and diurnal variations in low molecular weight carbonyl compounds in coastal seawater, and the controlling factors

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kazuhiko, E-mail: takedaq@hiroshima-u.ac.jp [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); Katoh, Shinya; Mitsui, Yumi; Nakano, Shinichi [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); Nakatani, Nobutake [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); Department of Environmental and Symbiotic Sciences, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501 (Japan); Sakugawa, Hiroshi [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan)

    2014-09-15

    We studied the spatial distributions of and the diurnal variations in four low molecular weight (LMW) carbonyl compounds, formaldehyde, acetaldehyde, propionaldehyde, and glyoxal, in coastal seawater. The samples were taken from the coastal areas of Hiroshima Bay, the Iyo Nada, and the Bungo Channel, western Japan. The formaldehyde, acetaldehyde, and glyoxal concentrations were higher in the northern part of Hiroshima Bay than at offshore sampling points in the Iyo Nada and the Bungo Channel. These three compounds were found at much higher concentrations in the surface water than in deeper water layers in Hiroshima Bay. It is noteworthy that propionaldehyde was not detected in any of the seawater samples, the concentrations present being lower than the detection limit (1 nanomole per liter (nM)) of the high performance liquid chromatography (HPLC) system we used. Photochemical and biological experiments were performed in the laboratory to help understand the characteristic distributions and fates of the LMW carbonyl compounds. The primary process controlling their fate in the coastal environment appears to be their biological consumption. The direct photo degradation of propionaldehyde, initiated by ultraviolet (UV) absorption, was observed, although formaldehyde and acetaldehyde were not degraded by UV irradiation. Our results suggest that the degradation of the LMW carbonyl compounds by photochemically formed hydroxyl radicals is relatively insignificant in the study area. Atmospheric deposition is a possible source of soluble carbonyl compounds in coastal surface seawater, but it may not influence the carbonyl concentrations in offshore waters. - Highlights: • Low molecular weight (LMW) carbonyl compounds in coastal seawater were determined. • Photochemical productions of LMW carbonyl compounds in seawater were observed. • LMW carbonyl compounds were largely consumed biologically. • Photochemical degradation was relatively insignificant in the study area.

  8. Spatial distributions of and diurnal variations in low molecular weight carbonyl compounds in coastal seawater, and the controlling factors

    International Nuclear Information System (INIS)

    Takeda, Kazuhiko; Katoh, Shinya; Mitsui, Yumi; Nakano, Shinichi; Nakatani, Nobutake; Sakugawa, Hiroshi

    2014-01-01

    We studied the spatial distributions of and the diurnal variations in four low molecular weight (LMW) carbonyl compounds, formaldehyde, acetaldehyde, propionaldehyde, and glyoxal, in coastal seawater. The samples were taken from the coastal areas of Hiroshima Bay, the Iyo Nada, and the Bungo Channel, western Japan. The formaldehyde, acetaldehyde, and glyoxal concentrations were higher in the northern part of Hiroshima Bay than at offshore sampling points in the Iyo Nada and the Bungo Channel. These three compounds were found at much higher concentrations in the surface water than in deeper water layers in Hiroshima Bay. It is noteworthy that propionaldehyde was not detected in any of the seawater samples, the concentrations present being lower than the detection limit (1 nanomole per liter (nM)) of the high performance liquid chromatography (HPLC) system we used. Photochemical and biological experiments were performed in the laboratory to help understand the characteristic distributions and fates of the LMW carbonyl compounds. The primary process controlling their fate in the coastal environment appears to be their biological consumption. The direct photo degradation of propionaldehyde, initiated by ultraviolet (UV) absorption, was observed, although formaldehyde and acetaldehyde were not degraded by UV irradiation. Our results suggest that the degradation of the LMW carbonyl compounds by photochemically formed hydroxyl radicals is relatively insignificant in the study area. Atmospheric deposition is a possible source of soluble carbonyl compounds in coastal surface seawater, but it may not influence the carbonyl concentrations in offshore waters. - Highlights: • Low molecular weight (LMW) carbonyl compounds in coastal seawater were determined. • Photochemical productions of LMW carbonyl compounds in seawater were observed. • LMW carbonyl compounds were largely consumed biologically. • Photochemical degradation was relatively insignificant in the study area

  9. Quantitative phosphoproteomics using acetone-based peptide labeling: Method evaluation and application to a cardiac ischemia/reperfusion model

    Science.gov (United States)

    Wijeratne, Aruna B.; Manning, Janet R.; Schultz, Jo El J.; Greis, Kenneth D.

    2013-01-01

    Mass spectrometry (MS) techniques to globally profile protein phosphorylation in cellular systems that are relevant to physiological or pathological changes have been of significant interest in biological research. In this report, an MS-based strategy utilizing an inexpensive acetone-based peptide labeling technique known as reductive alkylation by acetone (RABA) for quantitative phosphoproteomics was explored to evaluate its capacity. Since the chemistry for RABA-labeling for phosphorylation profiling had not been previously reported, it was first validated using a standard phosphoprotein and identical phosphoproteomes from cardiac tissue extracts. A workflow was then utilized to compare cardiac tissue phosphoproteomes from mouse hearts not expressing FGF2 vs. hearts expressing low molecular weight fibroblast growth factor-2 (LMW FGF2) to relate low molecular weight fibroblast growth factor-2 (LMW FGF2) mediated cardioprotective phenomena induced by ischemia/reperfusion (I/R) injury of hearts, with downstream phosphorylation changes in LMW FGF2 signaling cascades. Statistically significant phosphorylation changes were identified at 14 different sites on 10 distinct proteins including some with mechanisms already established for LMW FGF2-mediated cardioprotective signaling (e.g. connexin-43), some with new details linking LMW FGF2 to the cardioprotective mechanisms (e.g. cardiac myosin binding protein C or cMyBPC), and also several new downstream effectors not previously recognized for cardio-protective signaling by LMW FGF2. Additionally, one of the phosphopeptides, cMyBPC/pSer-282, identified was further verified with site-specific quantification using an SRM (selected reaction monitoring)-based approach that also relies on isotope labeling of a synthetic phosphopeptide with deuterated acetone as an internal standard. Overall, this study confirms that the inexpensive acetone-based peptide labeling can be used in both exploratory and targeted quantification

  10. A practical extension of hydrodynamic theory of porous transport for hydrophilic solutes.

    Science.gov (United States)

    Bassingthwaighte, James B

    2006-03-01

    The equations for transport of hydrophilic solutes through aqueous pores provide a fundamental basis for examining capillary-tissue exchange and water and solute flux through transmembrane channels, but the theory remains incomplete for ratios, alpha, of sphere diameters to pore diameters greater than 0.4. Values for permeabilities, P, and reflection coefficients, sigma, from Lewellen, working with Lightfoot et al., at alpha = 0.5 and 0.95, were combined with earlier values for alpha solute. The new expression for the diffusive hindrance is F'(alpha) = (1 - alpha2)(3/2) phi/[1 + 0.2 x alpha2 x (1 - alpha2)16], and for the drag factor is G'(alpha) = (1 - 2alpha(2)/3 - 0.20217 alpha5)/(1 - 0.75851 alpha5) - 0.0431[1 - (1 - alpha10)]. All of these converge monotonically to the correct limits at alpha = 1. These are the first expressions providing hydrodynamically based estimates of sigma(alpha) and P(alpha) over 0 < alpha < 1 They should be accurate to within 1-2%.

  11. The PM2.5 capture of poly (lactic acid)/nano MOFs eletrospinning membrane with hydrophilic surface

    Science.gov (United States)

    Wang, Yating; Dai, Xiu; Li, Xu; Wang, Xinlong

    2018-03-01

    In this article, metal organic frameworks (MOFs) material is introduced in the poly (lactic acid) (PLA) by electrospinning to fabricate the nanocomposite membrane. The acrylic acid (AA) is grafted onto the membrane under UV light. The prepared membrane is studied by scanning electron microscopy (SEM), x-ray diffraction (XRD), thermogravimetry (TG), contact angle test and tensile strength test. The SEM image and XRD indicate that nano MOFs particles adhere to the membrane. Contact angle test shows that grafting AA on the composite fiber membrane improves its hydrophilicity effectively. TG analyses show that the particulate matter (PM) capture capacity of PLA membrane with 2 wt% ZIF-8 content is 22%, which rises to 37% after grafting.

  12. Transport mechanism of an initially spherical droplet on a combined hydrophilic/hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kwon, Young Hoo [Dept. of Mechanical Engineering, Kookmin University, Seoul (Korea, Republic of)

    2015-11-15

    Fluid transport is a key issue in the development of microfluidic systems. Recently, Myong (2014) has proposed a new concept for droplet transport without external power sources, and numerically validated the results for a hypothetical 2D shape, initially having a hemicylindrical droplet shape. Myong and Kwon (2015) have also examined the transport mechanism for an actual water droplet, initially having a 3D hemispherical shape, on a horizontal hydrophilic/hydrophobic surface, based on the numerical results of the time evolution of the droplet shape, as well as the total kinetic, gravitational, pressure and surface free energies inside the droplet. In this study, a 3D numerical analysis of an initially spherical droplet is carried out to establish a new concept for droplet transport. Further, the transport mechanism of an actual water droplet is examined in detail from the viewpoint of the capillarity force imbalance through the numerical results of droplet shape and various energies inside the droplet.

  13. Supramolecular Complex Antioxidant Consisting of Vitamins C, E and Hydrophilic-Hydrophobic Silica Nanoparticles

    Science.gov (United States)

    Laguta, I. V.; Kuzema, P. O.; Stavinskaya, O. N.; Kazakova, O. A.

    Samples with varied amount of surface trimethylsilyl groups were obtained via gas-phase chemical modification of silica nanoparticles. The biocompatibility tests conducted in erythrocyte suspension have shown that hydrophobization of silica decreases its damaging effect to the cells. Being wettable in aqueous media, partially silylated silicas have higher affinity to hydrophobic bioactive molecules in comparison with the initial silica. Novel antioxidant consisting of vitamins C and E and silica with 40% of surface trimethylsilyl groups was formulated. It was found that supramolecular complexes are formed on the silica surface due to the affinity of water- and fat-soluble antioxidants to hydrophilic silanol and hydrophobic trimethylsilyl groups, respectively. Test reactions (total phenolic index determination, DPPH test) and in vitro studies (spectral analysis of erythrocyte suspensions undergoing UV irradiation) revealed the correlation between antioxidant activity of the complex antioxidant and the vitamins’ content. The antioxidant remained active during long-term storage under standard conditions.

  14. Application research of hydrophilic low-yellowing silicone softener treated on cotton fabric%亲水性低黄变有机硅柔软剂对棉织物整理的应用研究

    Institute of Scientific and Technical Information of China (English)

    冯娜; 贺江平; 颜怀谦

    2016-01-01

    采用自制亲水低黄变硅油乳液对白色棉织物进行整理,通过测试整理织物的手感、白度、润湿性、硬挺度等性能,得出其在棉织物上最佳整理工艺:乳液用量60 g/L、pH=6、一浸一轧、轧余率80%、预烘温度80℃、预烘时间2 min、焙烘温度140℃、焙烘时间80 s。结果表明,自制亲水低黄变有机硅柔软剂在手感和亲水性方面均优于市售亲水硅油。%The self-made hydrophilic low-yellowing silicone emulsion was treated on white cotton fabric. And the optimum process was determined by testing the properties of treated fabric, containing its handle, whiteness, wettability and stiffness. The optimum process of the treatment was obtained: amount of emulsion 60 g/L, pH=6, dipping once and rolling once, pickup 80%, predrying at 80℃for 2 min, curing at 140℃for 80 s. The results showed that the self-made hydrophilic low-yellowing silicone was superior to commercial hydrophilic silicone in handle and hydrophilicity.

  15. Effect of saliva contamination on bond strength witha hydrophilic composite resin

    Directory of Open Access Journals (Sweden)

    Mauren Bitencourt Deprá

    2013-02-01

    Full Text Available OBJECTIVE: To evaluate the influence of saliva contamination on the bond strength of metallic brackets bonded to enamel with hydrophilic resin composite. METHODS: Eighty premolars were randomly divided into 4 groups (n = 20 according to bonding material and contamination: G1 bonded with Transbond XT with no saliva contamination, G2 bonded with Transbond XT with saliva contamination, G3 bonded with Transbond Plus Color Change with no saliva contamination and G4 bonded with Transbond Plus Color Change with saliva contamination. The results were statistically analyzed (ANOVA/Tukey. RESULTS: The means and standard deviations (MPa were: G110.15 ± 3.75; G2 6.8 ± 2.54; G3 9.3 ± 3.36; G4 8.3 ± 2.95. The adhesive remnant index (ARI ranged between 0 and 1 in G1 and G4. In G2 there was a prevalence of score 0 and similar ARI distribution in G3. CONCLUSION: Saliva contamination reduced bond strength when Transbond XT hydrophobic resin composite was used. However, the hydrophilic resin Transbond Plus Color Change was not affected by the contamination.OBJETIVO: avaliar a influência da contaminação por saliva na resistência de união de braquetes metálicos colados ao esmalte com um compósito resinoso hidrofílico. MÉTODOS: oitenta pré-molares foram divididos aleatoriamente em quatro grupos (n=20, de acordo com o material de colagem e a presença de contaminação - G1 colagem com Transbond XT na ausência de contaminação; G2 colagem com Transbond XT na presença de contaminação; G3 colagem com Transbond Plus Color Change na ausência de contaminação; G4 colagem com Transbond Plus Color Change na presença de contaminação. Os resultados foram tratados estatisticamente (ANOVA/Tukey. RESULTADOS: as médias e desvios-padrão (MPa foram G1 = 10,15 ± 3,75; G2 = 6,8 ± 2,54; G3 = 9,3 ± 3,36; G4 = 8,3 ± 2,95. O índice de adesivo remanescente (IAR variou entre 0 e 1 no G1 e no G4; no G2, houve predomínio do escore 0 e distribuição similar no

  16. Antibodies from a Human Survivor Define Sites of Vulnerability for Broad Protection Against Ebolaviruses

    Science.gov (United States)

    2017-03-31

    search, analyzed data, and wrote and/or edited the paper . E.G. and L.M.W. designed the germline-reverted constructs and E.G., L.M.W., A.Z.W., D.M.A... albumin (PBSA), and incubated with dilutions of test antibody (5, 50 nM). Bound Abs were detected with anti-human IgG conjugated to horseradish

  17. Investigation of hydrodynamic behaviour of a pilot-scale trickle bed reactor packed with hydrophobic and hydrophilic packings using radiotracer technique

    International Nuclear Information System (INIS)

    Rajesh Kumar; Sadhana Mohan; Pant, H.J.; Sharma, V.K.; Mahajani, S.M.

    2012-01-01

    A radiotracer study was carried out in a trickle bed reactor (TBR) independently filled with two different types of packing i.e., hydrophobic and hydrophilic. The study was aimed at to estimate liquid holdup and investigate the dispersion characteristics of liquid phase with both types of packing at different operating conditions. Water and H2 gas were used as aqueous and gas phase, respectively. The liquid and gas flow rates used ranged from 0.83 x 10 -7 -16.67 x 10 -7 m 3 /s and 0-3.33 x 10 -4 m 3 (std)/s, respectively. Residence time distribution (RTD) of liquid phase was measured using 82 Br as radiotracer and about 10 MBq activity was used in each run. Mean residence time (MRT) and holdup of liquid phase were estimated from the measured RTD data. An axial dispersion with exchange model was used to simulate the measured RTD curves and model parameters (Peclet number and MRT) were obtained. At higher liquid flow rates, the TBR behaves as a plug flow reactor, whereas at lower liquid flow rates, the flow was found to be highly dispersed. The results of investigation indicated that the dispersion of liquid phase is higher in case of hydrophobic packing, whereas holdup is higher in case of hydrophilic packing. (author)

  18. Rapid quantification of underivatized amino acids in plasma by hydrophilic interaction liquid chromatography (HILIC) coupled with tandem mass-spectrometry.

    Science.gov (United States)

    Prinsen, Hubertus C M T; Schiebergen-Bronkhorst, B G M; Roeleveld, M W; Jans, J J M; de Sain-van der Velden, M G M; Visser, G; van Hasselt, P M; Verhoeven-Duif, N M

    2016-09-01

    Amino acidopathies are a class of inborn errors of metabolism (IEM) that can be diagnosed by analysis of amino acids (AA) in plasma. Current strategies for AA analysis include cation exchange HPLC with post-column ninhydrin derivatization, GC-MS, and LC-MS/MS-related methods. Major drawbacks of the current methods are time-consuming procedures, derivative problems, problems with retention, and MS-sensitivity. The use of hydrophilic interaction liquid chromatography (HILIC) columns is an ideal separation mode for hydrophilic compounds like AA. Here we report a HILIC-method for analysis of 36 underivatized AA in plasma to detect defects in AA metabolism that overcomes the major drawbacks of other methods. A rapid, sensitive, and specific method was developed for the analysis of AA in plasma without derivatization using HILIC coupled with tandem mass-spectrometry (Xevo TQ, Waters). Excellent separation of 36 AA (24 quantitative/12 qualitative) in plasma was achieved on an Acquity BEH Amide column (2.1×100 mm, 1.7 μm) in a single MS run of 18 min. Plasma of patients with a known IEM in AA metabolism was analyzed and all patients were correctly identified. The reported method analyzes 36 AA in plasma within 18 min and provides baseline separation of isomeric AA such as leucine and isoleucine. No separation was obtained for isoleucine and allo-isoleucine. The method is applicable to study defects in AA metabolism in plasma.

  19. Hydrophilic 2,9-bis-triazolyl-1,10-phenanthroline ligands enable selective Am(iii) separation: a step further towards sustainable nuclear energy.

    Science.gov (United States)

    Edwards, Alyn C; Mocilac, Pavle; Geist, Andreas; Harwood, Laurence M; Sharrad, Clint A; Burton, Neil A; Whitehead, Roger C; Denecke, Melissa A

    2017-05-02

    The first hydrophilic, 1,10-phenanthroline derived ligands consisting of only C, H, O and N atoms for the selective extraction of Am(iii) from spent nuclear fuel are reported herein. One of these 2,9-bis-triazolyl-1,10-phenanthroline (BTrzPhen) ligands combined with a non-selective extracting agent, was found to exhibit process-suitable selectivity for Am(iii) over Eu(iii) and Cm(iii), providing a clear step forward.

  20. Effects of proteins on absorption by the rat of iron from polymeric and low-molecular-weight iron species

    International Nuclear Information System (INIS)

    Berner, L.; Miller, D.

    1986-01-01

    To examine effects of proteins on Fe absorption from polymeric ferric hydroxides (polys) or low-molecular-weight complexes (LMW Fe), 2 studies were conducted. First, anemic rats were given 59 Fe-labeled polys or LMW Fe in the presence and absence of pepsin-digested soy protein isolate, casein, and BSA. The doses were introduced into ligated duodenal segments for 1 hr. Uptake into the carcass of 59 Fe from polys was doubled in the presence of BSA (7.8 vs 16.1%, p 59 Fe from LMW Fe was 7X greater than from polys; BSA and casein had no effect but soy depressed Fe uptake by almost 50% (57.4 vs 35.5%, p < .05). The second experiment repeated the first except that the proteins were not pepsin-digested and the doses were given by gastric intubation. All Fe, whether from polys or LMW Fe, was highly available (although in vitro digestions reveal that polys are not depolymerized to a large degree under simulated stomach conditions). Soy depressed Fe uptake from both sources (92.9 vs. 81.6%, LMW Fe and 85.4 vs 73.7%, polys) while casein and BSA had no effect. These results show: (1) BSA can depolymerize polys in the rat duodenum, thus enhancing absorption; (2) soy isolate generally depressed Fe uptake; and (3) the rat stomach appears to have an exceptional capacity for equalizing Fe sources

  1. Preparation and investigation of nano-AlN lubricant with high performance

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yu; Tao, Yuxiao; Wang, Biaobing [School of Materials Science and Engineering, Changzhou University, Changzhou 201326 (China); Tai, Yanlong, E-mail: ytai@ucdavis.edu [Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 (United States)

    2014-09-15

    A new kind of macromolecular coupling agent (LMW-a-PP-g-MAH) of maleic anhydride (MAH) onto low-molecular-weight atactic polypropylene (LMW-a-PP) was synthesized according to molecular design and was used as modifier for surface modification of nano-Aluminum nitride (AlN) by a high-pressure homogenization (HPH) process. IR was conducted to confirm the chemical structure of the step products of LMW-a-PP-g-MAH. The availability as a modifier for surface modification of nano-AlN was distinguished by Fourier transform infrared spectroscopy (FTIR), particle size analysis, transmission electron microscope (TEM), thermogravimetric analysis (TGA), contact angle experiments and the dispersion stability in dimethylbenzene and Greatwall lubrication oil. It can be inferred that the optimal loading is 10 wt. %–12 wt. % of LMW-a-PP-g-MAH to modify nano-AlN particles. Nano-AlN lubricating composite materials (LMW-a-PP-g-MAH-AlN) was used to improve the antifriction performance and the load capability of Greatwall lubrication oil, and maximum non-seizure load (P{sub B}) can increase highly from 1000 N to 1490 N when the loading is 0.3 wt. %. - Highlights: • Design and synthesis of macromolecular coupling agent (a-PP-g-MAH). • Surface modification and characterization of nano-AlN by HPH process. • Preparation and investigation of nano-AlN/lubricating oil with high performance.

  2. Hydrophilic microfiltration membranes prepared from acryl amide grafted PVDF powder by γ-rays pre-irradiation

    International Nuclear Information System (INIS)

    Yang Xuanxuan; Deng Bo; Yu Ming; Yu Yang; Zhang Bowu; Li Jingye

    2011-01-01

    Acryl amide (AAm) was grafted onto poly (vinylidene fluoride) (PVDF) powder by a γ-rays pre-irradiation induced graft polymerization technique. The DG values of the PVDF-g-PAM powder were determined by fluorine elemental analysis. Effects of grafting time on DG of PVDF-g-PAM powder at the same monomer concentration were studied. And modified powder was dissolved in NMP and added PVP as pre-forming agent. The microfiltration (MF) membranes were cast using a phase inversion method. The contact angle, degree of swelling, water flux and antifouling properties of those modified MF membranes were investigated. The results indicated that the hydrophilicity of modified MF membranes was improved obviously and the antifouling property of modified MF membranes (DG of 13%) was better than that of the pristine membrane. (authors)

  3. Hydrophilic/hydrophobic surface modification impact on colloid lithography: Schottky-like defects, dislocation, and ideal distribution

    Science.gov (United States)

    Burtsev, Vasilii; Marchuk, Valentina; Kugaevskiy, Artem; Guselnikova, Olga; Elashnikov, Roman; Miliutina, Elena; Postnikov, Pavel; Svorcik, Vaclav; Lyutakov, Oleksiy

    2018-03-01

    Nano-spheres lithography is actually considered as a powerful tool to manufacture various periodic structures with a wide potential in the field of nano- and micro-fabrication. However, during self-assembling of colloid microspheres, various defects and mismatches can appear. In this work the size and quality of single-domains of closed-packed polystyrene (PS), grown up on thin Au layers modified by hydrophilic or hydrophobic functional groups via diazonium chemistry was studied. The effects of the surface modification on the quality and single-domain size of polystyrene (PS) microspheres array were investigated and discussed. Modified surfaces were characterized using the AFM and wettability tests. PS colloidal suspension was deposited using the drop evaporation method. Resulted PS microspheres array was characterized using the SEM, AFM and confocal microscopy technique.

  4. Synthesis of Hydrophilic and Amphiphilic Acryl Sucrose Monomers and Their Copolymerisation with Styrene, Methylmethacrylate and α- and β-Pinenes

    Directory of Open Access Journals (Sweden)

    Maria Teresa Barros

    2010-04-01

    Full Text Available Herein, we report the synthesis of monomethacryloyl sucrose esters, and their successful free radical homo- and co-polymerisation with styrene, methylmethacrylate, α- and β-pinene. The chemical, physical, structural and surface chemical properties of these polymers, containing a hydrophobic olefin backbone and hydrophilic sugar moieties as side chains, have been investigated. Biodegradation tests of the copolymer samples by a microbial fungal culture (Aspergillus niger method showed good biodegradability. The chemical structure and surface chemistry of the synthesized homo- and co-polymers demonstrate their potential technological relevance as amphiphilic and biodegradable polymers.

  5. Improvement of PET surface hydrophilicity and roughness through blending

    Energy Technology Data Exchange (ETDEWEB)

    Kolahchi, Ahmad Rezaei; Ajji, Abdellah; Carreau, Pierre J. [CREPEC, Chemical Engineering Department, Polytechnique Montreal, 2500 chemin de Polytechnique, Quebec, Montreal (Canada)

    2015-05-22

    Controlling the adhesion of the polymer surface is a key issue in surface science, since polymers have been a commonly used material for many years. The surface modification in this study includes two different aspects. One is to enhance the hydrophilicity and the other is to create the roughness on the PET film surface. In this study we developed a novel and simple approach to modify polyethylene terephthalate (PET) film surface through polymer blending in twin-screw extruder. One example described in the study uses polyethylene glycol (PEG) in polyethylene terephthalate (PET) host to modify a PET film surface. Low content of polystyrene (PS) as a third component was used in the system to increase the rate of migration of PEG to the surface of the film. Surface enrichment of PEG was observed at the polymer/air interface of the polymer film containing PET-PEG-PS whereas for the PET-PEG binary blend more PEG was distributed within the bulk of the sample. Furthermore, a novel method to create roughness at the PET film surface was proposed. In order to roughen the surface of PET film, a small amount of PKHH phenoxy resin to change PS/PET interfacial tension was used. The compatibility effect of PKHH causes the formation of smaller PS droplets, which were able to migrate more easily through PET matrix. Consequently, resulting in a locally elevated concentration of PS near the surface of the film. The local concentration of PS eventually reached a level where a co-continuous morphology occurred, resulting in theinstabilities on the surface of the film.

  6. High luminous flux from single crystal phosphor-converted laser-based white lighting system

    KAUST Repository

    Cantore, Michael; Pfaff, Nathan; Farrell, Robert M.; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.

    2015-01-01

    efficacy of 86.7 lm/W at 1.4 A and 4.24 V and a peak luminous flux of 1100 lm at 3.0 A and 4.85 V with a luminous efficacy of 75.6 lm/W. Simulations of a pc-LD confirm that the single crystal YAG:Ce sample did not experience thermal quenching at peak LD

  7. Sol-Gel Synthesis of Phosphate-Based Glasses for Hydrophilic Enamel Applications

    International Nuclear Information System (INIS)

    Kim, Dae-Sung; Ryu, Bong-ki

    2017-01-01

    In this study, quaternary phosphate-based sol-gel derived glasses were synthesized from a P 2 O 5 -CaO-Na 2 O-TiO 2 system with a high TiO 2 content of up to 50 mol%. The sol-gel method was chosen because incorporating a high percentage of titanium into a phosphate network via traditional melt-quench methods is non-trivial. The structure and thermal properties of the obtained stabilized sol-gel glasses were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The XRD results confirmed the amorphous nature of all of the stabilized sol–gel derived glasses. The FTIR results revealed that added TiO 2 enters the network as (TiO 6 ), which likely acts as a modifier oxide. Consequently, the number of terminal oxygen atoms increases, leading to an increase in the number of P-OH bonds. In addition, DSC results confirmed a decrease in glass transition and crystallization temperatures with increasing TiO 2 content. This is the first report of a sol-gel synthesis strategy combined with enameling to prepare glass at low processing temperatures and the first use of such a system for both hydrophilic and chemical resistance purposes.

  8. Sol-Gel Synthesis of Phosphate-Based Glasses for Hydrophilic Enamel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Sung; Ryu, Bong-ki [Pusan National University, Busan (Korea, Republic of)

    2017-04-15

    In this study, quaternary phosphate-based sol-gel derived glasses were synthesized from a P{sub 2}O{sub 5}-CaO-Na{sub 2}O-TiO{sub 2} system with a high TiO{sub 2} content of up to 50 mol%. The sol-gel method was chosen because incorporating a high percentage of titanium into a phosphate network via traditional melt-quench methods is non-trivial. The structure and thermal properties of the obtained stabilized sol-gel glasses were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The XRD results confirmed the amorphous nature of all of the stabilized sol–gel derived glasses. The FTIR results revealed that added TiO{sub 2} enters the network as (TiO{sub 6}), which likely acts as a modifier oxide. Consequently, the number of terminal oxygen atoms increases, leading to an increase in the number of P-OH bonds. In addition, DSC results confirmed a decrease in glass transition and crystallization temperatures with increasing TiO{sub 2} content. This is the first report of a sol-gel synthesis strategy combined with enameling to prepare glass at low processing temperatures and the first use of such a system for both hydrophilic and chemical resistance purposes.

  9. A novel experimental design method to optimize hydrophilic matrix formulations with drug release profiles and mechanical properties.

    Science.gov (United States)

    Choi, Du Hyung; Lim, Jun Yeul; Shin, Sangmun; Choi, Won Jun; Jeong, Seong Hoon; Lee, Sangkil

    2014-10-01

    To investigate the effects of hydrophilic polymers on the matrix system, an experimental design method was developed to integrate response surface methodology and the time series modeling. Moreover, the relationships among polymers on the matrix system were studied with the evaluation of physical properties including water uptake, mass loss, diffusion, and gelling index. A mixture simplex lattice design was proposed while considering eight input control factors: Polyethylene glycol 6000 (x1 ), polyethylene oxide (PEO) N-10 (x2 ), PEO 301 (x3 ), PEO coagulant (x4 ), PEO 303 (x5 ), hydroxypropyl methylcellulose (HPMC) 100SR (x6 ), HPMC 4000SR (x7 ), and HPMC 10(5) SR (x8 ). With the modeling, optimal formulations were obtained depending on the four types of targets. The optimal formulations showed the four significant factors (x1 , x2 , x3 , and x8 ) and other four input factors (x4 , x5 , x6 , and x7 ) were not significant based on drug release profiles. Moreover, the optimization results were analyzed with estimated values, targets values, absolute biases, and relative biases based on observed times for the drug release rates with four different targets. The result showed that optimal solutions and target values had consistent patterns with small biases. On the basis of the physical properties of the optimal solutions, the type and ratio of the hydrophilic polymer and the relationships between polymers significantly influenced the physical properties of the system and drug release. This experimental design method is very useful in formulating a matrix system with optimal drug release. Moreover, it can distinctly confirm the relationships between excipients and the effects on the system with extensive and intensive evaluations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Polar silica-based stationary phases. Part II- Neutral silica stationary phases with surface bound maltose and sorbitol for hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Rathnasekara, Renuka; El Rassi, Ziad

    2017-07-28

    Two neutral polyhydroxylated silica bonded stationary phases, namely maltose-silica (MALT-silica) and sorbitol-silica (SOR-silica), have been introduced and chromatographically characterized in hydrophilic interaction liquid chromatography (HILIC) for a wide range of polar compounds. The bonding of the maltose and sorbitol to the silica surface was brought about by first converting bare silica to an epoxy-activated silica surface via reaction with γ-glycidoxypropyltrimethoxysilane (GPTMS) followed by attaching maltose and sorbitol to the epoxy surface in the presence of the Lewis acid catalyst BF 3 .ethereate. Both silica based columns offered the expected retention characteristics usually encountered for neutral polar surface. The retention mechanism is majorly based on solute' differential partitioning between an organic rich hydro-organic mobile phase (e.g., ACN rich mobile phase) and an adsorbed water layer on the surface of the stationary phase although additional hydrogen bonding was also responsible in some cases for solute retention. The MALT-silica column proved to be more hydrophilic and offered higher retention, separation efficiency and resolution than the SOR-silica column among the tested polar solutes such as derivatized mono- and oligosaccharides, weak phenolic acids, cyclic nucleotide monophosphate and nucleotide-5'-monophosphates, and weak bases, e.g., nucleobases and nucleosides. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Hydrophilic interaction chromatography coupled matrix assisted laser desorption/ionization mass spectrometry for molecular analysis of organic compounds in medicines, tea, and coffee.

    Science.gov (United States)

    Wang, Ren-Qi; Bao, Kai; Croué, Jean-Philippe; Ng, Siu Choon

    2013-11-21

    Natural occurring organic compounds from food, natural organic matter, as well as metabolic products have received intense attention in current chemical and biological studies. Examination of unknown compounds in complex sample matrices is hampered by the limited choices for data readout and molecular elucidation. Herein, we report a generic method of hydrophilic interaction chromatography (HILIC) coupled with matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the rapid characterization of ingredients in pharmaceutical compounds, tea, and coffee. The analytes were first fractionated using a cationic HILIC column prior to MALDI-MS analyses. It was found that the retention times of a compound arising from different samples were consistent under the same conditions. Accordingly, molecules can be readily characterized by both the mass and chromatographic retention time. The retention behaviors of acidic and basic compounds on the cationic HILIC column were found to be significantly influenced by the pH of mobile phases, whereas neutral compounds depicted a constant retention time at different pH. The general HILIC-MALDI-MS method is feasible for fast screening of naturally occurring organic compounds. A series of homologs can be determined if they have the same retention behavior. Their structural features can be elucidated by considering their mass differences and hydrophilic properties as determined by HILIC chromatogram.

  12. Formas farmacêuticas de liberação modificada: polímeros hidrifílicos Modified release of drug delivery systems: hydrophilic polymers

    Directory of Open Access Journals (Sweden)

    Carla Martins Lopes

    2005-06-01

    Full Text Available Os sistemas de liberação de fármacos são parte integrante da investigação farmacêutica. A maioria dos sistemas de liberação oral de fármacos é baseada em matrizes poliméricas. Nas duas décadas passadas, as matrizes hidrofílicas tornaram-se muito populares na formulação de formas farmacêuticas de liberação modificada. A escolha do polímero hidrofílico na formulação da matriz pode fornecer uma combinação apropriada dos mecanismos de intumescimento, de dissolução ou de erosão e determinam a cinética de liberação in vitro. As matrizes de intumescimento são sistemas monolíticos preparados pela compressão de mistura de um polímero hidrofílico e de um fármaco. Elas representam sistemas da liberação em que os vários mecanismos podem ser adaptados ao programa de liberação. O sucesso desses sistemas está relacionado com a tecnologia de fabricação e com as características físicas e físico-químicas do polímero, responsáveis pelo mecanismo de liberação.Drug delivery systems (DDS became an integral part of pharmaceutical research. The majority of oral DDS are matrix-based systems. Hydrophilic matrices for the past two decades have been popular in the formulation of controlled release solid dosage forms. Swellable matrices are monolithic systems prepared by compression of a powdered mixture of a hydrophilic polymer and a drug. They represent a delivery system in which various mechanisms can be adapted to the delivery program. Their success is linked to the established tabletting technology of manufacture. The choice of the hydrophilic polymer in the matrix formulation can provide an appropriate combination of swelling, dissolution or erosion mechanisms to evaluate in vitro release kinetics.

  13. Two-Dimensional MoS2-Based Zwitterionic Hydrophilic Interaction Liquid Chromatography Material for the Specific Enrichment of Glycopeptides.

    Science.gov (United States)

    Xia, Chaoshuang; Jiao, Fenglong; Gao, Fangyuan; Wang, Heping; Lv, Yayao; Shen, Yehua; Zhang, Yangjun; Qian, Xiaohong

    2018-06-05

    Mass spectrometry (MS)-based glycoproteomics research requires highly efficient sample preparation to eliminate interference from non-glycopeptides and to improve the efficiency of glycopeptide detection. In this work, a novel MoS 2 /Au-NP (gold nanoparticle)-L-cysteine nanocomposite was prepared for glycopeptide enrichment. The two-dimensional (2D) structured MoS 2 nanosheets served as a matrix that could provide a large surface area for immobilizing hydrophilic groups (such as L-cysteine) with low steric hindrance between the materials and the glycopeptides. As a result, the novel nanomaterial possessed an excellent ability to capture glycopeptides. Compared to commercial zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) materials, the novel nanomaterials exhibited excellent enrichment performance with ultrahigh selectivity and sensitivity (approximately 10 fmol), high binding capacity (120 mg g -1 ), high enrichment recovery (more than 93%), satisfying batch-to-batch reproducibility, and good universality for glycopeptide enrichment. In addition, its outstanding specificity and efficiency for glycopeptide enrichment was confirmed by the detection of glycopeptides from an human serum immunoglobulin G (IgG) tryptic digest in quantities as low as a 1:1250 molar ratio of IgG tryptic digest to bovine serum albumin tryptic digest. The novel nanocomposites were further used for the analysis of complex samples, and 1920 glycopeptide backbones from 775 glycoproteins were identified in three replicate analyses of 50 μg of proteins extracted from HeLa cell exosomes. The resulting highly informative mass spectra indicated that this multifunctional nanomaterial-based enrichment method could be used as a promising tool for the in-depth and comprehensive characterization of glycoproteomes in MS-based glycoproteomics.

  14. Hybrid selective surface hydrophilization and froth flotation separation of hazardous chlorinated plastics from E-waste with novel nanoscale metallic calcium composite.

    Science.gov (United States)

    Mallampati, Srinivasa Reddy; Heo, Je Haeng; Park, Min Hee

    2016-04-05

    Treatment by a nanometallic Ca/CaO composite has been found to selectively hydrophilize the surface of polyvinyl chloride (PVC), enhancing its wettability and thereby promoting its separation from E-waste plastics by means of froth flotation. The treatment considerably decreased the water contact angle of PVC, by about 18°. The SEM images of the PVC plastic after treatment displayed significant changes in their surface morphology compared to other plastics. The SEM-EDS results reveal that a markedly decrease of [Cl] concentration simultaneously with dramatic increase of [O] on the surface of the PCV samples. XPS results further confirmed an increase of hydrophilic functional groups on the PVC surface. Froth flotation at 100rpm mixing speed was found to be optimal, separating 100% of the PVC into a settled fraction of 96.4% purity even when the plastics fed into the reactor were of nonuniform size and shape. The total recovery of PVC-free plastics in E-waste reached nearly 100% in the floated fraction, significantly improved from the 20.5wt% of light plastics that can be recovered by means of conventional wet gravity separation. The hybrid method of nanometallic Ca/CaO treatment and froth flotation is effective in the separation of hazardous chlorinated plastics from E-waste plastics. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Exchange of polycyclic aromatic hydrocarbons across the air-water interface in the Bohai and Yellow Seas

    Science.gov (United States)

    Chen, Yingjun; Lin, Tian; Tang, Jianhui; Xie, Zhiyong; Tian, Chongguo; Li, Jun; Zhang, Gan

    2016-09-01

    In this study, air and surface seawater samples collected from the Bohai (BS) and Yellow Seas (YS) in May 2012 were determined exchange of PAHs, especially of low-molecular-weight (LMW) PAHs (three- and four-ring PAHs) at the air-water interface. Net volatilization fluxes of LMW PAHs were 266-1454 ng/m2/d and decreased with distance from the coast, indicating that these PAHs transported from coastal runoff were potential contributors to the atmosphere in the BS and YS. Moreover, LMW PAHs were enriched in the dissolved phase compared with those in the particulate phase in the water column, possibly suggesting that the volatilized LMW PAHs were directly derived from wastewater discharge or petroleum pollution rather than released from contaminated sediments. The air-sea exchange fluxes of the three-ring PAHs were 2- to 20-fold higher than their atmospheric deposition fluxes in the BS and YS. The input to and output from the water reached equilibrium for four-ring PAHs. Differently, five- and six-ring PAHs were introduced into the marine environment primarily through dry and wet deposition, indicating that the water column was still a sink of these PAHs from the surrounding atmosphere.

  16. Synthesis of silver nanoparticles on the basis of low and high molar mass exopolysaccharides of Bradyrhizobium japonicum 36 and its antimicrobial activity against some pathogens.

    Science.gov (United States)

    Rasulov, Bakhtiyor; Rustamova, Nigora; Yili, Abulimiti; Zhao, Hai-Qing; Aisa, Haji A

    2016-07-01

    Silver nanoparticles (SNPs) were synthesized on the basis of exopolysaccharides (low and high molar mass) of diazotrophic Bradyrhizobium japonicum 36 strain. The synthesis of SNPs was carried out by direct reduction of silver nitrate with ethanol-insoluble (high molar mass, HMW) and ethanol-soluble (low molar mass, LMW) fractions of exopolysaccharides (EPS), produced by diazotrophic strain B. japonicum 36. SNPs were characterized using UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). SNPs synthesized on the basis of LMW EPS absorbed radiation in the visible regions of 420 nm, whereas SNPs based on the HMW EPS have a wavelength maximum at 450 nm because of the strong SPR transition. Moreover, the antibacterial and antifungal activities of the SNPs were examined in vitro against Escherichia coli, Staphylococcus aureus, and Candida albicans. SNPs synthesized on the basis of LMW EPS were active than those synthesized on the basis of HMW EPS. Besides, UV-visible spectroscopic evaluation confirmed that SNPs synthesized on the basis of LMW EPS were far more stable than those obtained on the basis of HMW EPS.

  17. Formulation of gastroretentive floating drug delivery system using hydrophilic polymers and its in vitro characterization

    Directory of Open Access Journals (Sweden)

    Venkata Srikanth Meka

    2014-04-01

    Full Text Available The aim of the present research is to formulate and evaluate the gastroretentive floating drug delivery system of antihypertensive drug, propranolol HCl. Gastroretentive floating tablets (GRFT were prepared by using a synthetic hydrophilic polymer polyethylene oxide of different grades such as PEO WSR N-12 K and PEO 18 NF as release retarding polymers and calcium carbonate as gas generating agent. The GRFT were compressed by direct compression strategy and the tablets were evaluated for physico-chemical properties, in vitro buoyancy, swelling studies, in vitro dissolution studies and release mechanism studies. From the dissolution and buoyancy studies, F 9 was selected as an optimized formulation. The optimized formulation followed zero order rate kinetics with non-Fickian diffusion mechanism. The optimized formulation was characterised with FTIR studies and observed no interaction between the drug and the polymers.

  18. Enzymatic Synthesis and Characterization of Hydrophilic Sugar Based Polyesters and Their Modification with Stearic Acid

    Directory of Open Access Journals (Sweden)

    Muhammad Humayun Bilal

    2016-03-01

    Full Text Available Biodegradable and hydrophilic functional polyesters were synthesized enzymatically using xylitol or d-sorbitol together with divinyl adipate and lipase B from Candida antartica (CAL-B. The resulting polyesters had pendant OH-groups from their sugar units which were esterified to different degrees with stearic acid chloride. The structure and the degrees of polymerization of the resulting graft copolymers based on poly(xylitol adipate and poly(d-sorbitol adipate were characterized by 1H NMR spectroscopy and SEC. DSC, WAXS and SAXS measurements indicated that a phase separation between polymer backbone and stearoyl side chains occurred in the graft copolymers, and, additionally, the side chains were able to crystallize which resulted in the formation of a lamellar morphology. Additionally, nanoparticles of the graft copolymers in an aqueous environment were studied by DLS and negative stain TEM.

  19. pH studies in the synthesis of amino acid coated hydrophilic MNPs

    Science.gov (United States)

    Saxena, Namita; Dube, Charu Lata

    2018-04-01

    Magnetic iron oxide nanoparticles magnetite and maghemite (MNPs) are specially useful in various fields like biomedical, waste disposal, catalysis etc. because of their biocompatibility and magnetic properties. They can be manipulated by applying magnetic field and hence their easier separation, wider applications and unending scope in the field of research. They are inherently hydrophobic, and aggregate easily mainly due to magnetic and nanosize effects. The present work reports the synthesis of hydrophilic, stably dispersed MNPs coated by different amino acids at different pH values. Lower concentration of amino acids, 1/3 (moles by moles) of Iron salts concentration was used in the study. Crystallites were found to be approximately 6-7 nm in size, as determined by XRD and also found to have good magnetization values in VSM studies. The effects of coating are mainly studied by FTIR and TG. Higher/lower pH values have been studied for better coating, and it is observed that higher pH is more helpful in getting better results, on bare MNPs synthesized under a pH of approximately 13.3. The effects of net charge on coating efficiency were also studied.

  20. A robust ligand exchange approach for preparing hydrophilic, biocompatible photoluminescent quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sujuan; Zhou, Changhua [Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004 (China); Yuan, Hang [Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Shen, Huaibin [Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004 (China); Zhao, Wenxiu [Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Ma, Lan, E-mail: malan@sz.tsinghua.edu.cn [Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Li, Lin Song, E-mail: lsli@henu.edu.cn [Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004 (China)

    2013-08-01

    Graphical abstract: - Highlights: • Aqueous CdSe/ZnS QDs were prepared using polymaleic anhydrides as capping ligand. • Effect of reaction temperature and time were systematically studied in the synthesis process. • Water-soluble QDs exhibited a good stability in physiological relevant environment. • The aqueous QDs were applied as biological probe to detect human embryonic stem cell. - Abstract: This paper describes a robust ligand exchange approach for preparing biocompatible CdSe/ZnS quantum dots (QDs) to make bioprobe for effective cell imaging. In this method, polymaleic anhydride (PMA) ligand are first used to replace original hydrophobic ligand (oleic acid) and form a protection shell with multiple hydrophilic groups to coat and protect CdSe/ZnS QDs. The as-prepared aqueous QDs exhibit small particle size, good colloidal stability in aqueous solutions with a wide range of pH, salt concentrations and under thermal treatment, which are necessary for biological applications. The use of this new class of aqueous QDs for effective cell imaging shows strong fluorescence signal to human embryonic stem cell, which demonstrate that PMA coated QDs are fully satisfied with the requirements of preparing high quality biological probe.