WorldWideScience

Sample records for llw disposal trenches

  1. Evaluation of Proposed New LLW Disposal Activity Disposal of Compacted Job Control Waste, Non-compactible, Non-incinerable Waste, And Other Wasteforms In Slit Trenches

    International Nuclear Information System (INIS)

    WILHITE, ELMER L.

    2000-01-01

    The effect of trench disposal of low-level wasteforms that were not analyzed in the original performance assessment for the E-Area low-level waste facility, but were analyzed in the revised performance assessment is evaluated. This evaluation was conducted to provide a bridge from the current waste acceptance criteria, which are based on the original performance assessment, to those that will be developed from the revised performance assessment. The conclusion of the evaluation is that any waste except for materials that would retain radionuclides more strongly than soil that meets the radionuclide concentration of package limits for trench burial based on the revised performance assessment, and presented in Table 1 of this document, is suitable for trench disposal; provided that, for cellulosic material the current 40 percent restriction is retained. Table 2 of this document lists materials acceptable for trench disposal

  2. Economic analysis of alternative LLW disposal methods

    International Nuclear Information System (INIS)

    Foutes, C.E.

    1987-01-01

    The Environmental Protection Agency (EPA) has evaluated the costs and benefits of alternative disposal technologies as part of its program to develop generally applicable environmental standards for the land disposal of low-level radioactive waste (LLW). Costs, population health effects and Critical Population Group (CPG) exposures resulting from alternative waste treatment and disposal methods were developed and input into the analysis. The cost-effectiveness analysis took into account a number of waste streams, hydrogeologic and climatic region settings, and waste treatment and disposal methods. Total costs of each level of a standard included costs for packaging, processing, transportation, and burial of waste. Benefits are defined in terms of reductions in the general population health risk (expected fatal cancers and genetic effects) evaluated over 10,000 years. A cost-effectiveness ratio, was calculated for each alternative standard. This paper describes the alternatives considered and preliminary results of the cost-effectiveness analysis

  3. The cost of LLW disposal - Is it sound economics?

    International Nuclear Information System (INIS)

    Stelluto, Janis D.

    1992-01-01

    Low-level radioactive waste (LLW) management is a growth industry. Since 1980, when the LLW Policy Act was passed, regional and state LLW bureaucracies have grown, and LLW services and consulting businesses have prospered. Most states and federal agencies have LLW programs with increased regulation of LLW management. Costs of all these programs have soared as facilities for LLW disposal are proposed in sixteen, or more, locations in the country. LLW management costs have also increased as licensees implement comprehensive programs for volume reduction and waste form stabilization. Yet, the total cost of LLW management service is borne by nearly the same universe of payers as in 1980: taxpayers and radioactive materials licensees. Those costs are, in turn, passed on through taxes and consumer costs. Ultimately, everybody pays. Despite this investment, the LLW situation is adrift. New facilities have not been built, and existing facilities are closing or limiting access. LLW management has not advanced to a respected field of engineering and science. Nor does it include exceptional benefit and opportunity to host communities. A new focus is needed to allow an economically sound solution to emerge, one where the supply of LLW management and disposal fits the demand for service. (author)

  4. Economic analysis of alternative LLW disposal methods

    International Nuclear Information System (INIS)

    Foutes, C.E.; Queenan, C.J. III

    1987-01-01

    The Environmental Protection Agency (EPA) has evaluated the costs and benefits of alternative disposal technologies as part of its program to develop generally applicable environmental standards for the land disposal of low-level radioactive waste (LLW). Costs, population health effects and Critical Population Group (CPG) exposures resulting from alternative waste treatment and disposal methods were evaluated both in absolute terms and also relative to a base case (current practice). Incremental costs of the standard included costs for packaging, processing, transportation, and burial of waste. Benefits are defined in terms of reductions in the general population health risk (expected fatal cancers and genetic effects) evaluated over 10,000 years. A cost-effectiveness ratio, defined as the incremental cost per avoided health effect, was calculated for each alternative standard. The cost-effectiveness analysis took into account a number of waste streams, hydrogeologic and climatic region settings, and waste treatment and disposal methods. This paper describes the alternatives considered and preliminary results of the cost-effectiveness analysis. 15 references, 7 figures, 3 tables

  5. Trends of radioactive waste management policy and disposal of LLW/ILW in the UK

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    2003-01-01

    In 1997, the UK program for the deep disposal of radioactive waste was stopped with the refusal by the Secretary of State for the Environment to allow Nuclear Industry Radioactive Waste Executive, Ltd. (Nirex) to go ahead with its plans for an underground Rock Characterization Facility (RCF) at Sellafield, seen as the precursor of an underground repository for LLW/ILW. Department of Environment, Food and Rural Affairs (DEFRA) and the Developed Administrations published a white paper 'Managing Radioactive Waste Safety' Proposal for developing a policy for managing solid radioactive waste in the UK on 12 September 2001. The paper set out five-stage program of action for reaching decisions until 2007. It suggests their view can be sought via opinion polls, the Internet, workshops, citizens, juries, consensus conferences, stakeholder, local authority and community groups and research panels. With the exception of a disposal facility associated with the operation of the Dounreay site on the north coast of Scotland, essentially all LLW in the UK is disposed of at the Drigg site, near Sellafield. The site has been in operation since 1959. Until 1988, disposals were solely in trenches, cut into the glacial tills underlying the site. In 1988, an engineered concrete vault was brought into operation and is currently in use. Drigg only has a finite capacity in the currently area and may be full by about 2050, hence new arrangements will have to examine. This report describes the trends of radioactive waste management policy and disposal of LLW/ILW in the UK. These include: NDA(Nuclear Decommissioning Authority) organization plan, Feb. 2003; Encapsulation of LLW/ILW and safe store for ILW; Summary of LLW repository at the Drigg site; Nirex concept for underground storage/disposal of LLW/ILW. This information and new approach of the safe management of radioactive waste in the UK will prove helpful to the planning for future management and disposal of LLW in Japan. (author)

  6. Models and criteria for LLW disposal performance

    International Nuclear Information System (INIS)

    Smith, C.F.; Cohen, J.J.

    1980-12-01

    A primary objective of the Low Level Waste (LLW) Management Program is to assure that public health is protected. Predictive modeling, to some extent, will play a role in meeting this objective. This paper considers the requirements and limitations of predictive modeling in providing useful inputs to waste mangement decision making. In addition, criteria development needs and the relation between criteria and models are discussed

  7. Models and criteria for LLW disposal performance

    International Nuclear Information System (INIS)

    Smith, C.F.; Cohen, J.J.

    1980-01-01

    A primary objective of the Low Level Waste (LLW) Management Program is to assure that public health is protected. Predictive modeling, to some extent, will play a role in meeting this objective. This paper considers the requirements and limitations of predictive modeling in providing useful inputs to waste management decision making. In addition, criteria development needs and the relation between criteria and models are discussed

  8. Trench design and construction techniques for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Tucker, P.G.

    1983-02-01

    This document provides information on trench design and construction techniques which can be used in the disposal of LLW by shallow land burial. It covers practices currently in use not only in the LLW disposal field, but also methods and materials being used in areas of hazardous and municipal waste disposal which are compatible with the performance objectives of 10 CFR Part 61. The complexity of a disposal site and its potential problems dictate the use of site-specific characteristics when designing a LLW disposal trench. This report presents the LLW disposal trench as consisting of various elements or unit processes. The term unit processes is used as it more fully relays the impact of the designer's choice of methods and materials. When choosing a material to fulfill the function of a certain trench element, the designer is also stipulating a portion of his operational procedure which must be compatible with the disposal operation as a whole. Information is provided on the properties, selection, and installation of various materials such as bentonite, soil-cement, polymeric materials, asphaltic materials, and geotechnical fabrics. This is not intended to outline step-by-step procedures. Basically, three time frames are addressed with respect to construction techniques; preoperational, operational, and postoperational. Within each of these time frames there are certain construction techniques which can be employed by the designer to enhance the overall ease of construction and ultimate success of the disposal facility. Among the techniques presented are precontouring the disposal area, alignment of the trench axis, sloping the trench bottom, incremental excavation, and surface water (runoff) management

  9. Managing commercial low-level radioactive waste beyond 1992: Transportation planning for a LLW disposal facility

    International Nuclear Information System (INIS)

    Quinn, G.J.

    1992-01-01

    This technical bulletin presents information on the many activities and issues related to transportation of low-level radioactive waste (LLW) to allow interested States to investigate further those subjects for which proactive preparation will facilitate the development and operation of a LLW disposal facility. The activities related to transportation for a LLW disposal facility are discussed under the following headings: safety; legislation, regulations, and implementation guidance; operations-related transport (LLW and non-LLW traffic); construction traffic; economics; and public involvement

  10. LLW disposal, 1996 and beyond, an industry perspective

    International Nuclear Information System (INIS)

    Genoa, P.H.

    1996-01-01

    In this article the author reviews what has been done in the past 15 years in terms of opening sites for disposal of low-level radioactive wastes, and what seems to be on the horizon. He reviews process timelines, timelines from regional efforts, and timelines for LLW facilities. The author also looks at what types of changes have been made in the generation, control, and volume of LLW. He examines the pressures which have driven these changes, both from society and from cost control economics. The author tries to look at what government, waste generators, and the waste management industry should do to make progress toward adequate solutions to address the LLW disposal problems

  11. Economy may be harmed by lack of LLW disposal

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A study released by Organizations United for Responsible Low-Level Radioactive Waste Solutions warns that the substantial benefits of using radioactive materials are threatened by the lack of a low-level waste (LLW) disposal facility. The main point of the study is the threat to the American economy posed by insufficient facilities for disposal of the 1.7 billion ft 3 of LLW produced by the use of radioactive materials every year only 34.8 percent of which comes from nuclear power plants. open-quotes Thirty years of experience have provided the technical knowledge to design waste disposal facilities that protect the public and environment. But an impending lack of adequate disposal facilities jeopardizes our continued use of radioactive materials,close quotes according to the study

  12. The Evolution of Low-Level Radioactive Waste (LLW) Disposal Practices at the Savannah River Site Coupled with Vigorous Stakeholder Interaction

    International Nuclear Information System (INIS)

    Goldston, W. T.; Wilhite, E. L.; Cook, J. R.; Sauls, V. W.

    2002-01-01

    Low-level radioactive waste (LLW) disposal practices at SRS evolved from trench disposal with little long-term performance basis to disposal in robust concrete vaults, again without modeling long-term performance. Now, based on an assessment of long-term performance of various waste forms and methods of disposal, the LLW disposal program allows for a ''smorgasbord'' of various disposal techniques and waste forms, all modeled to ensure long-term performance is understood. New disposal techniques include components-in-grout, compaction/volume reduction prior to disposal, and trench disposal of extremely low activity waste. Additionally, factoring partition coefficient (Kd) measurements based on waste forms has been factored into performance models. This paper will trace the development of the different disposal methods, and the extensive public communications effort that resulted in endorsement of the changes by the SRS Citizens Advisory Board

  13. How a developing country is facing LLW disposal problem

    International Nuclear Information System (INIS)

    Huang, C.C.; Shao, Y.T.; Tsai, C.M.

    1993-01-01

    Taiwan is a small island which measures about 36,000 square kilometers with over 70% mountainous area. Today over 90% of low-level radioactive waste (LLW) is produced from six nuclear power units operated by the Taiwan Power Company (Taipower or TPC). The rest of the country's LLW is produced from medical, agricultural, industrial, educational and research programs. Due to the fact that over 90% of Taiwan's LLW is produced by Taipower, Taipower was designated by the Government to dispose of LLW for entire country. This paper will focus on the planning and implementation of the first phase. Through area screening and potential site evaluation, candidate sites will be selected based on currently available information and sites investigation. At the same time, the disposal methods will be evaluated in terms of safety, cost, and Taiwan's generic conditions of climate, geology, and topography. The conceptual design of the disposal method(s) will then be developed. Also, during site investigation, preliminary designs will be made

  14. Guidance for closure of existing DOE LLW disposal sites

    International Nuclear Information System (INIS)

    Blanchfield, L.

    1987-01-01

    During FY 1986, a closure guidance document was developed. The purpose of this document is to provide guidance in support of DOE Order 5820.2 to site operating contractors for the stabilization and closure of existing low-level waste (LLW) shallow land disposal sites at US Department of Energy (DOE) facilities. Guidance is provided to aid operators in placing existing LLW sites in a closed conditions, i.e., a condition in which a nonoperational site meets postclosure performance requirements and can be shown, within a high degree of confidence, to perform as anticipated in the future, under the most cost-effective maintenance approach. Guidance is based on the philosophy that closure should be planned and performed using a systems approach. Plans for FY 1987 call for revision of the document to incorporate more information on closure of LLW sites also containing radioactive mixed waste and/or transuranic waste. 4 references, 3 figures, 2 tables

  15. Development of LLW and VLLW disposal business cost estimation system

    International Nuclear Information System (INIS)

    Koibuchi, Hiroko; Ishiguro, Hideharu; Matsuda, Kenji

    2004-01-01

    In order to undertake the LLW and VLLW disposal business, various examinations are carried out in RANDEC. Since it is important in undertaking this business to secure funds, a disposal cost must be calculated by way of trial. However, at present, there are many unknown factors such as the amount of wastes, a disposal schedule, the location of a disposal site, and so on, and the cost cannot be determined. Meanwhile, the cost depends on complicated relations among these factors. Then, a 'LLW and VLLW disposal business cost estimation system' has been developed to calculate the disposal cost easily. This system can calculate an annual balance of payments by using a construction and operation cost of disposal facilities, considering economic parameters of tax, inflation rate, interest rate and so on. And the system can calculate internal reserves to assign to next-stage upkeep of the disposal facilities after the disposal operation. A model of disposal site was designed based on assumption of some preconditions and a study was carried out to make a trial calculation by using the system. Moreover, it will be required to reduce construction cost by rationalizing the facility and to make flat an annual business spending by examining the business schedule. (author)

  16. Lessons learned from international siting experiences of LLW Disposal facilities

    International Nuclear Information System (INIS)

    McCabe, G.H.

    1990-01-01

    This paper reports that the United States can gain insight into successfully siting low-level radioactive waste (LLW) disposal facilities by studying the process in other nations. Siting experiences in France and Sweden are compared to experiences in the United States. Three factors appear to making siting of LLW disposal facilities easier in France and Sweden than in the United States. First, the level of public trust in the government and the entities responsible for siting, developing, and operating a LLW disposal facility is much greater in France and Sweden than in the United States. Second, France and Sweden are much more dependent on nuclear power than is the United States. Third, French and Swedish citizens do not have the same access to the siting process (i.e., legal means to intervene) as do U.S. citizens. To compensate for these three factors, public officials responsible for siting a facility may need to better listen to the concerns of public interest groups and citizen advisory committees and amend their siting process accordingly and better share power and control with the public. If these two techniques are implemented earnestly by the states, siting efforts may be increasingly more successful in the United States

  17. Developing a LLW disposal facility in California

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.; Hanrahan, T.P.

    1988-01-01

    US Ecology has been designated by the State of California to site and operate a low-level radioactive waste disposal facility. The firm identified three sites for detailed characterization work in February, 1987. Ecological and archaeological studies and related environmental assessments were undertaken to obtain land use permits from the Bureau of Land Management, which holds title to the sites. Geophysics investigations, exploratory borings, well drilling and weather station installation followed. Local Committees were established for each site to assist US Ecology in evaluating socio-economic impacts, and Native Americans were consulted regarding cultural resources. The project's Citizens Advisory Committee assisted in evaluating the three candidate sites. US Ecology systematically integrated citizen involvement into the technical studies leading to selection of the two site finalists. This approach furthered two objectives. Community leaders and the public received accurate information on the nature of low-level radioactive waste and the environmental conditions appropriate for its disposal

  18. Generation and release of radioactive gases in LLW disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yim, M.S. [Harvard School Public Health, Boston, MA (United States); Simonson, S.A. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-02-01

    The atmospheric release of radioactive gases from a generic engineered LLW disposal facility and its radiological impacts were examined. To quantify the generation of radioactive gases, detailed characterization of source inventory for carbon-14, tritium, iodine-129, krypton-85, and radon-222, was performed in terms of their activity concentrations; their distribution within different waste classes, waste forms and containers; and their subsequent availability for release in volatile or gaseous form. The generation of gases was investigated for the processes of microbial activity, radiolysis, and corrosion of waste containers and metallic components in wastes. The release of radionuclides within these gases to the atmosphere was analyzed under the influence of atmospheric pressure changes.

  19. Final Design Report for the RH LLW Disposal Facility (RDF) Project, Revision 3

    International Nuclear Information System (INIS)

    Austad, Stephanie Lee

    2015-01-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  20. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  1. Control of water infiltration into near surface LLW disposal units

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1992-10-01

    The project objective is to assess means for controlling waste infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large scale lysimeters (70inch x 45inch x lOinch) at Beltsville, MD and results of the assessment are applicable to disposal of LLW, uranium mill tailings, hazardous waste, and sanitary landfills. Three concepts are under investigation: (1) resistive layer barrier, (2) conductive layer barrier, and bioengineering water management. The resistive layer barrier consists of compacted earth (clay). The conductive layer barrier is a special case of the capillary barrier and it requires a flow layer (e.g. fine sandy loam) over a capillary break. As long as unsaturated conditions am maintained water is conducted by the flow layer to below the waste. This barrier is most efficient at low flow rates and is thus best placed below a resistive layer barrier. Such a combination of the resistive layer over the conductive layer barrier promises to be highly effective provided there is no appreciable subsidence. Bioengineering water management is a surface cover that is designed to accommodate subsidence. It consists of impermeable panels which enhance run-off and limit infiltration. Vegetation is planted in narrow openings between panels to transpire water from below the panels. TWs system has successfully dewatered two lysimeters thus demonstrating that this procedure could be used for remedial action (''drying out'') existing water-logged disposal sites at low cost

  2. Geology of the Integrated Disposal Facility Trench

    International Nuclear Information System (INIS)

    Reidel, Steve P.; Fecht, Karl R.

    2005-01-01

    This report describes the geology of the integrated Disposal Facility (IDF) Trench. The stratigraphy consists of some of the youngest sediments of the Missoula floods (younger than 770 ka). The lithology is dominated sands with minor silts and gravels that are largely unconsolidated. The stratigraphy can be subdivided into five geologic units that can be mapped throughout the trench. Four of the units were deposited by the Missoula floods and the youngest consists of windblown sand and silt. The sediment has little moisture and is consistent with that observed in the characterization boreholes. The sedimentary layers are flat lying and there are no faults or folds present. Two clastic dikes were encountered, one along the west wall and one that can be traced from the north to the southwall. The north-south clastic dike nearly bifurcates the trench but the west wall clastic dike can not be traced very far east into the trench. The classic dikes consist mainly of sand with clay-lined walls. The sediment in the dikes is compacted to partly cemented and are more resistant than the layered sediments

  3. LLW/Il conditioning for transportation, storage and disposal

    International Nuclear Information System (INIS)

    Pech, R.; Chevalier, Ph.

    2000-01-01

    In France, Sogefibre (Cogema subsidiary) has developed original containers adapted to the conditioning of LLW and ILW and assuring integrity of the waste form over long period of time. These containers have been designed according to the following criteria, derived from Andra's requirement for the surface disposal: Mechanical strength, resistance to microcracking, Radioactive containment and long life: 300 years minimum. Choice of formulation for the concrete as well as selection of raw materials have been optimised in this objective. Sizes and shapes of Fiber Reinforced Concrete Containers (FRCC) have been developed in relation with handling means of Cogema La Hague facilities for automatized operations. Experience gained after nearly 10 years and 40000 FRCC produced shows that choices have been right and properties of FRCC effectively useful. The paper also recalls mechanical and containment properties and the durability assessment recently updated thanks to results of computer modelling. Degradation phenomenon of the Blended Ternary Cement (clinker, slag, ash) used in FRCC is described and the model presented. (authors)

  4. Study of physical resistance of the disposal facility for accidental artificial event in LLW disposal facility

    International Nuclear Information System (INIS)

    Ogawa, Suihei; Irie, Masaaki; Uchida, Masahiro

    2013-11-01

    This report refer to results of examine what follows for structural stability evaluation for the LLW disposal facility in depth over general human activity in underground. Study of physically resistance on the facility for accidental artificial event, namely tunneling an operation facing the disposal facility in future. Physically resistance to excavation of tunneling etc. in disposal facility is studied based on supposing of Tunnel Boring Machine as an excavator, paying attention to reinforcement bar in concrete and steel plate of waste package, as feature of strength in these material differs from rock strength. And it is examined not only resistibility on excavation but also about hard situations of excavation in tunneling works, and namely give thorough consideration to critical quantity of cutting to reinforcement bar and steel plate that could keep resistibility on excavation based on tunneling velocity and limits time furthermore. It requests necessity of evaluation in consider with metal corrosion that status alteration on disposal facility is considered with on timescale. Period of keep on the physically resistance is estimated by velocity of metal corrosion consequently. The physically resistance is kept until metal corrosion reach remaining its material, giving a limits of the physically resistance on inside of facility. Main point of physically resistance in the report will be made the good use of a practice to physically resistance evaluation of in safety assessment. (author)

  5. Overview of EPA's environmental standards for the land disposal of LLW and NARM waste - 1988

    International Nuclear Information System (INIS)

    Gruhlke, J.M.; Galpin, F.L.; Holcomb, W.F.

    1988-01-01

    The Environmental Protection Agency program to develop proposed generally applicable environmental standards for land disposal of low-level radioactive waste (LLW) and certain naturally occurring and accelerator-produced radioactive wastes has been completed. The elements of the proposed standards include the following: (a) exposure limits for predisposal management and storage operations, (b) criteria for other regulatory agencies to follow in specifying wastes that are below regulatory concern; (c) postdisposal exposure limits, (d) groundwater protection requirements, and (e) qualitative implementation requirements. In addition to covering those radioactive wastes subject to the Atomic Energy Act, the Agency also intends to propose a standard to require the disposal of high concentration, naturally occurring and accelerator-produced radioactive materials wastes exceeding 2 nCi/g, excluding a few consumer items, in regulated LLW disposal facilities

  6. Development of DUST: A computer code that calculates release rates from a LLW disposal unit

    International Nuclear Information System (INIS)

    Sullivan, T.M.

    1992-01-01

    Performance assessment of a Low-Level Waste (LLW) disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the disposal unit source term). The major physical processes that influence the source term are water flow, container degradation, waste form leaching, and radionuclide transport. A computer code, DUST (Disposal Unit Source Term) has been developed which incorporates these processes in a unified manner. The DUST code improves upon existing codes as it has the capability to model multiple container failure times, multiple waste form release properties, and radionuclide specific transport properties. Verification studies performed on the code are discussed

  7. Iodine-129 Dose in LLW Disposal Facility Performance Assessments

    International Nuclear Information System (INIS)

    Wilhite, E.L.

    1999-01-01

    Iodine-129 has the lowest Performance Assessment derived inventory limit in SRS disposal facilities. Because iodine is concentrated in the body to one organ, the thyroid, it has been thought that dilution with stable iodine would reduce the dose effects of 129I.Examination of the dose model used to establish the Dose conversion factor for 129I shows that, at the levels considered in performance assessments of low-level waste disposal facilities, the calculated 129I dose already accounts for ingestion of stable iodine. At higher than normal iodine ingestion rates, the uptake of iodine by the thyroid itself decrease, which effectively cancels out the isotopic dilution effect

  8. Performance assessment review for DOE LLW disposal facilities

    International Nuclear Information System (INIS)

    Wilhite, Elmer L.

    1992-01-01

    The United States Department of Energy (US DOE) disposes of low-level radioactive waste in near-surface disposal facilities. Safety of the disposal operations is evaluated for operational safety as well as long-term safety. Operational safety is evaluated based on the perceived level of hazard of the operation and may vary from a simple safety assessment to a safety analysis report. Long-term safety of all low-level waste disposal systems is evaluated through the conduct of a radiological performance assessment. The US DOE has established radiological performance objectives for disposal of low-level waste. They are to protect a member of the general public from receiving over 25 mrem/y, and an inadvertent intruder into the waste from receiving over 100 mrem/y continuous exposure or 500 mrem from a single exposure. For a disposal system to be acceptable, a performance assessment must be prepared which must be technically accurate and provide reasonable assurance that these performance objectives are met. Technical quality of the performance assessments is reviewed by a panel of experts. The panel of experts is used in two ways to assure the technical quality of performance assessment. A preliminary (generally 2 day) review by the panel is employed in the late stages of development to provide guidance on finalizing the performance assessment. The comments from this review are communicated to the personnel responsible for the performance assessment for consideration and incorporation. After finalizing the performance assessment, it is submitted for a formal review. The formal review is accomplished by a much more thorough analysis of the performance assessment over a multi-week time period. The panel then formally reports their recommendations to the US DOE waste management senior staff who make the final determination on acceptability of the performance assessment. A number of lessons have been learned from conducting several preliminary reviews of performance

  9. Control of water infiltration into near surface LLW disposal units

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ridky, R.W.; Schulz, R.K.

    1989-01-01

    Water infiltration to buried waste is the prime problem of concern in designing waste disposal units for the humid areas. Conventional compacted clay layers (resistance layer barriers) have been subject to failure by subsidence and by permeability increases brought about by plant roots. A clay barrier with a rock cover sans plants is being investigated. Also a combination of a resistive layer overlying a conductive layer is being investigated. Laboratory studies indicate that this approach can be very effective and field evaluations are underway. However, it must be noted that subsidence will negate the effectiveness of any buried layer barriers. A surface barrier (bioengineering management) has been valuated in the field and found to be very effective in preventing water entry into waste disposal units. This surface barrier is easily repairable if damaged by subsidence and could be the system of choice under active subsidence conditions

  10. California LLW disposal site development update: Ahead of milestone schedule

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.

    1987-01-01

    US Ecology has been designated by the State of California to locate, develop and operate a low-level radioactive waste disposal facility. In early 1986, the firm identified eighteen desert basins in southeastern California for siting consideration. Three candidate sites were selected for detailed field characterization work in February, 1987. A preferred site for licensing purposes will be identified in early 1988. California is currently ahead of the siting milestone schedule mandated by the Low-Level Radioactive Waste Policy Amendments Act. It is likely that a license application will be filed before the 1990 milestone date. This paper describes the process undertaken by US Ecology to identify three candidates sites for characterization, and the public involvement program supporting this decision. Future activities leading to final site development are also described

  11. Updated Strategic Assessment of the U.S. NRC Low-Level Radioactive Waste (LLW) Program and the new WCS Commercial Disposal Facility for LLW

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, David S.; Kim, Chang-Lak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-05-15

    The purpose of this paper is to review the updated NRC low level radioactive waste regulatory strategy and also present an update on a significant change in the LLW disposal landscape in the U.S., the opening of a new commercial disposal facility, the Texas Compact Waste Facility (CWF) in Andrews, Texas. Operational since spring of 2012, the CWF is owned and licensed by the state of Texas and operated by Waste Control Specialists LLC (WCS). The WCS facility in western Andrews County is the only commercial facility in the United States licensed to dispose of Class A, B and C LLW in the U.S. in the past 40 years. Based on the observation that other suitable sites have been identified such as the Clive, Utah site that meet (almost) all of these criteria it would appear that the first and last factors in our list are the most problematic and it will require a change in the public acceptance and the political posture of states to help solve the national issue of safe and cost-effective LLW disposal.

  12. Mechanisms of long-term concrete degradation in LLW disposal facilities

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1987-01-01

    Most low-level waste (LLW) disposal alternatives, except shallow land burial and improved shallow land burial, involve the use of concrete as an extra barrier for containment. Because concrete is a porous-type material, its moisture retention and transport properties can be characterized with parameters that are also used to characterize the geohydrologic properties of soils. Several processes can occur with the concrete to degrade it and to increase both the movement of water and contaminants through the disposal facility. The effect of these processes must be quantified in designing and estimating the long-term performance of disposal facilities. Modeling the long-term performance of LLW disposal technologies involves, first, estimating the degradation rate of the concrete in a particular facility configuration and environmental setting; second, calculating the water flow through the facility as a function of time; third, calculating the contaminant leaching usually by diffusion or dissolution mechanisms, and then coupling the facility water and contaminant outflow to a hydrogeological and environmental uptake model for environmental releases or doses

  13. Assessment of Reusing 14-Ton, Thin-Wall, Depleted UF6 Cylinders as LLW Disposal Containers

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Poole, A.B.; Shelton, J.H.

    2000-01-01

    Approximately 700,000 MT of DUF 6 is stored, or will be produced under a current agreement with the USEC, at the Paducah site in Kentucky, Portsmouth site in Ohio, and ETTP site in Tennessee. On July 21, 1998, the 105th Congress approved Public Law 105-204, which directed that facilities be built at the Kentucky and Ohio sites to convert DUF 6 to a stable form for disposition. On July 6, 1999, the Department of Energy (DOE) issued the ''Final Plan for the Conversion of Depleted Uranium Hexafluoride as Required by Public Law 105-204'', in which DOE committed to develop a ''Depleted Uranium Hexafluoride Materials Use Roadmap''. On September 1,2000, DOE issued the ''Draft Depleted Uranium Hexafluoride Materials Use Roadmap'' (Roadmap), which provides alternate paths for the long-term storage, beneficial use, and eventual disposition of each product form and material that will result from the DUF 6 conversion activity. One of the paths being considered for DUF 6 cylinders is to reuse the empty cylinders as containers to transport and dispose of LLW, including the converted DU. The Roadmap provides results of the many alternate uses and disposal paths for conversion products and the empty DUF 6 storage cylinders. As a part of the Roadmap, evaluations were conducted of cost savings, technical maturity, barriers to implementation, and other impacts. Results of these evaluations indicate that using the DUF 6 j storage cylinders as LLW disposal containers could provide moderate cost savings due to the avoided cost of purchasing LLW packages and the avoided cost of disposing of the cylinders. No significant technical or institutional .issues were identified that.would make using cylinders as LLW packages less effective than other disposition paths. Over 58,000 cylinders have been used, or will be used, to store DUF 6 . Over 5 1,000 of those cylinders are 14TTW cylinders with a nominal wall thickness of 5/16-m (0.79 cm). These- 14TTW cylinders, which have a nominal diameter

  14. The establishment of computer codes for radiological assessment on LLW final disposal in Taiwan

    International Nuclear Information System (INIS)

    Yang, C.C.; Chen, H.T.; Shih, C.L.; Yeh, C.S.; Tsai, C.M.

    1988-01-01

    For final shallow land disposal of Low Level Waste (LLW) in Taiwan, an effort was initiated to establish the evaluation codes for the needs of environmental impact analysis. The objective of the computer code is to set up generic radiological standards for future evaluation on 10 CFR Part 61 Licensing Requirements for Land Disposal of Radioactive Wastes. In determining long-term influences resulting from radiological impacts of LLW at disposal sites there are at least three quantifiable impact measures selected for calculation: dose to members of the public (individual and population), occupational exposures and costs. The computer codes are from INTRUDE, INVERSI and INVERSW of NUREG-0782, OPTIONR and GRWATRR of NUREG-0945. They are both installed in FACOM-M200 and IBM PC/AT systems of Institute of Nuclear Energy Research (INER). The systematic analysis of the computer codes depends not only on the data bases supported by NUREG/CR-1759 - Data Base for Radioactive Waste Management, Volume 3, Impact Analysis Methodology Report but also the information collected from the different exposure scenarios and pathways. The sensitivity study is also performed to assure the long-term stability and security for needs of determining performance objectives

  15. LLW disposal wasteform preparation in the UK: the role of high force compaction

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L. F.; Fearnley, I. G. [British Nuclear Fuels Ltd., Sellafield (United Kingdom)

    1991-07-01

    British Nuclear Fuels plc (BNFL) owns and operates the principal UK solid low level radioactive waste (LLW) disposal site. The site is located at Drigg in West Cumbria some 6 km to the south east of BNFL's Sellafield reprocessing complex. Sellafield is the major UK generator of LLW, accounting for about 85% of estimated future arisings of raw (untreated, unpackaged) waste. Non-Sellafield consignors to the Drigg site include other BNFL production establishments, nuclear power stations, sites of UKAEA, Ministry of Defence facilities, hospitals, universities, radioisotope production sites and various other industrial organisations. In September 1987, BNFL announced a major upgrade of operations at the Drigg site aimed at improving management practices, the efficiency of space utilisation and enhancing the visual impact of disposal operations. During 1989 a review of plans for compaction and containerisation of Sellafield waste identified that residual voidage in ISO freight containers could be significant even after the introduction of compaction. Subsequent studies which examined a range of compaction and packaging options concluded that the preferred scheme centred on the use of high force compaction (HFC) of compactable waste, and grouting to take up readily accessible voidage in the wasteform. The paper describes the emergence of high force compaction as the preferred scheme for wasteform preparation and subsequent benefits against the background of the overall development of Low Level Waste disposal operations at Drigg.

  16. LLW disposal wasteform preparation in the UK: the role of high force compaction

    International Nuclear Information System (INIS)

    Johnson, L. F.; Fearnley, I. G.

    1991-01-01

    British Nuclear Fuels plc (BNFL) owns and operates the principal UK solid low level radioactive waste (LLW) disposal site. The site is located at Drigg in West Cumbria some 6 km to the south east of BNFL's Sellafield reprocessing complex. Sellafield is the major UK generator of LLW, accounting for about 85% of estimated future arisings of raw (untreated, unpackaged) waste. Non-Sellafield consignors to the Drigg site include other BNFL production establishments, nuclear power stations, sites of UKAEA, Ministry of Defence facilities, hospitals, universities, radioisotope production sites and various other industrial organisations. In September 1987, BNFL announced a major upgrade of operations at the Drigg site aimed at improving management practices, the efficiency of space utilisation and enhancing the visual impact of disposal operations. During 1989 a review of plans for compaction and containerisation of Sellafield waste identified that residual voidage in ISO freight containers could be significant even after the introduction of compaction. Subsequent studies which examined a range of compaction and packaging options concluded that the preferred scheme centred on the use of high force compaction (HFC) of compactable waste, and grouting to take up readily accessible voidage in the wasteform. The paper describes the emergence of high force compaction as the preferred scheme for wasteform preparation and subsequent benefits against the background of the overall development of Low Level Waste disposal operations at Drigg

  17. A process for establishing a financial assurance plan for LLW disposal facilities

    International Nuclear Information System (INIS)

    Smith, P.

    1993-04-01

    This document describes a process by which an effective financial assurance program can be developed for new low-level radioactive waste (LLW) disposal facilities. The report identifies examples of activities that might cause financial losses and the types of losses they might create, discusses mechanisms that could be used to quantify and ensure against the various types of potential losses identified and describes a decision process to formulate a financial assurance program that takes into account the characteristics of both the potential losses and available mechanisms. A sample application of the concepts described in the report is provided

  18. A process for establishing a financial assurance plan for LLW disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [EG and G Idaho, Inc., Idaho Falls, ID (United States). National Low-Level Waste Management Program

    1993-04-01

    This document describes a process by which an effective financial assurance program can be developed for new low-level radioactive waste (LLW) disposal facilities. The report identifies examples of activities that might cause financial losses and the types of losses they might create, discusses mechanisms that could be used to quantify and ensure against the various types of potential losses identified and describes a decision process to formulate a financial assurance program that takes into account the characteristics of both the potential losses and available mechanisms. A sample application of the concepts described in the report is provided.

  19. Innovative designs for low-level nuclear waste disposal trenches

    International Nuclear Information System (INIS)

    Nowatzki, E.A.; Armstrong, G.; McCray, J.

    1985-01-01

    Shallow land burial of low-level nuclear wastes presents many problems that are within the scope of civil engineering analysis and design. These include groundwater seepage, surface water runoff and collection, and the subsidence of trench backfills. Unfortunately, at the time the first disposal sites were being developed, major emphasis was placed on the health-physics aspects of the problem with the result that many of the civil engineering aspects were overlooked and severe problems relating to site integrity exist today. This paper presents the results of a U.S. Nuclear Regulatory Commission (USNRC) sponsored research project conducted at the University of Arizona, Tucson, Arizona, to assess trench cap design from the viewpoint of stability, water infiltration, and economy. Full-scale trenches were constructed that incorporated four different designs. These designs range from a relatively simple cap consisting of engineered backfill with a sloping, compacted soil crown to a more complex cap-crown system that incorporates compacted backfill and a steel reinforced soil-cement cap with an overlaying ''wick'' drain. The results of structural and hydrological monitoring over a period of approximately 15 months are presented. Recommendations are made regarding standard design criteria for future sites based on the results of this research

  20. Geophysical investigation of the 116-H-1 liquid waste disposal trench, 100-HR-1 operable unit

    International Nuclear Information System (INIS)

    Bergstrom, K.A.; Mitchell, T.H.

    1996-04-01

    A geophysical investigation and data integration were conducted for the 116-H-1 Liquid Waste Disposal Trench, which is located in the 100-HR-1 Operable Unit. The 116-H-1 Liquid Waste Disposal Trench is also known as the 107-H Liquid Waste Disposal Trench, the 107-H Rupture Effluent Trench, and the 107-H Trench (Deford and Einan 1995). The trench was primarily used to hold effluent from the 107-H Retention Basin that had become radioactive from contact with ruptured fuel elements. The effluent may include debris from the ruptured fuel elements (Koop 1964). The 116-H-1 Liquid Waste Disposal Trench was also used to hold water and sludge from the 107-H Retention Basin during the basin's deactivation in 1965

  1. Restraint effect of water infiltration by soil cover types of LLW disposal facility

    International Nuclear Information System (INIS)

    Park, S. M.; Lee, E. Y.; Lee, C. K.; Kim, C. L.

    2002-01-01

    Since soil cover for LLW disposal vault shows quite different restraint effect of water infiltration depending on its type, four different types of soil cover were studied and simulated using HELP code. Simulation result showed that Profile B1 is the most effective type in restraint of water infiltration to the disposal vault. Profile B1 is totally 6m thick and composed of silt, gravelly sand, pea gravel, sand and clayey soil mixed with bentonite 20%. Profile B1 also includes artificial layers, such as asphalt and geomembrane layers. This profile is designed conceptually by NETEC for the soil cover of the near surface disposal facility of the low-level radioactive waste. For comparison, 3 types of different profile were tested. One profile includes bentonite mixed layer only as water barrier layer, or one as same as profile B1 but without geomembrane layer or one without asphalt layer respectively. The simulation using HELP code showed that the water balance in profile B1 was effectively controlled

  2. Unreviewed Disposal Question Evaluation: Waste Disposal in Engineered Trenches 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-12

    Revision 0 of this UDQE addressed the proposal to place Engineered Trench #3 (ET#3) in the footprint designated for Slit Trench #12 (ST#12) and operate using ST#12 disposal limits. Similarly, Revision 1 evaluates whether ET#4 can be located in and operated to Slit Trench #13 (ST#13) disposal limits. Both evaluations conclude that the proposed operations result in an acceptably small risk of exceeding a SOF of 1.0 and approve these actions from a performance assessment (PA) perspective. Because ET#3 will be placed in the location previously designated for ST#12, Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore, new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  3. Performance monitoring of an improved disposal trench in a humid environment in a fractured geology

    International Nuclear Information System (INIS)

    Mills, D.; Razor, J.

    1988-01-01

    An engineering evaluation of an improved disposal trench at the Maxey Flats Waste Disposal Site is being conducted in order to demonstrate the feasibility of a burial trench suitable for use at a site in a humid environment and underlain by complex and fractured geologic media. This demonstration is one of several proposed final site stabilization alternatives which will have to be evaluated prior to final site closure. Due to requirements in the Central Midwest Compact Commission, no waste generated as a result of the site closure may be disposed in the Commission's disposal site. Hence, the waste will be disposed on-site. The demonstration trench was constructed and filled with waste during the fall of 1985 with final trench capping being completed in July 1986. Since that time the trench has been evaluated utilizing trench settlement monument elevations, leachate production measurements, leachate radionuclide analysis, chemical tracer analysis and trench water balance. Measurements performed to date indicated that the trench lower infiltration barrier has a permeability of about 1E-7 cm/sec. Water balance measurements indicated that less than one percent of the total rainfall crossed the trench capillary barrier. No settlement of the trench cap has been observed. No liquid has appeared in the leachate collection and monitoring sumps

  4. Some considerations in the evaluation of concrete as a structural material for alternative LLW disposal technologies

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Siskind, B.; Bowerman, B.S.; Piciulo, P.L.

    1987-01-01

    The objective of this study was to develop information needed to evaluate the long-term performance of concrete and reinforced concrete as a structural material for alternative LLW disposal methods. The capability to carry out such an evaluation is required for licensing a site which employs one of these alternative methods. The basis for achieving the study objective was the review and analysis of the literature on concrete and its properties, particularly its durability. In carrying out this program characteristics of concrete useful in evaluating its performance and factors that can affect its performance were identified. The factors are both intrinsic, i.e., associated with composition of the concrete (and thus controllable), and extrinsic, i.e., due to external environmental forces such as climatic conditions and aggressive chemicals in the soil. The testing of concrete, using both accelerated tests and long-term non-accelerated tests, is discussed with special reference to its application to modeling of long-term performance prediction. On the basis of the study's results, conditions for acceptance are recommended as an aid in the licensing of disposal sites which make use of alternative methods

  5. Disposal project for LLW and VLLW generated from research facilities in Japan: A feasibility study for the near surface disposal of VLLW that includes uranium

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Hasegawa, M.; Sakamoto, Y.; Nakatani, T.

    2016-01-01

    Conclusion and future work: • JAEA plans trench disposal of U-bearing waste with less than 100 Bq/g. • Two safety measures of trench disposal of U-bearing waste have been discussed taking into account increasing radioactivity over a long period of time. 1. First is to carry out dose assessment of site use scenario by using a conservatively stylized condition. 2. Second is to control the average concentration of U in the trench facilities based on the concept of the existing exposure situation. • We are continuously developing the method for safety measures of near surface disposal of VLLW including U-bearing waste.

  6. Unreviewed Disposal Question: A Discipline Process to Manage Change in LLW Disposal

    International Nuclear Information System (INIS)

    Goldston, W.T.

    2000-01-01

    The Department of Energy's waste management Order, DOE O 435.1, requires that low--level waste disposal facilities develop and maintain a radiological performance assessment to ensure that disposal operations are within a performance envelope defined by performance objectives for long-term protection of the public and the environment. The Order also requires that a radiological composite analysis be developed and maintained to ensure that the disposal facility, in combination with other sources of radioactive material that may remain when all DOE activities have ceased, will not compromise future radiological protection of the public and the environment. The Order further requires that a Disposal Authorization Statement (DAS) be obtained from DOE Headquarters and that the disposal facility be operated within the performance assessment, composite analysis, and DAS. Maintenance of the performance assessment and composite analysis includes conducting test, research, and monitoring activities to increase confidence in the results of the analyses. It also includes updating the analyses as changes are proposed in the disposal operations, or other information requiring an update, becomes available. Personnel at the Savannah River Site have developed and implemented an innovative process for reviewing proposed or discovered changes in low-level radioactive waste disposal operations. The process is a graded approach to determine, in a disciplined manner, whether changes are within the existing performance envelope, as defined by the performance assessment, composite analysis, and DAS, or whether additional analysis is required to authorize the change. This process is called the Unreviewed Disposal Question (UDQ) process. It has been developed to be analogous to the Unreviewed Safety Question (UDQ) process that has been in use within DOE for many years. This is the first formalized system implemented in the DOE complex to examine low-level waste disposal changes the way the

  7. Control of water infiltration into near surface LLW disposal units: Task report, A discussion

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1988-03-01

    The principal pathway for water entry into LLW disposal units in the humid eastern United States is through their covers. Two types of sub-surface features that may be constructed to enhance run-off (surface or sub-surface run-off) and thus reduce percolation are the resistive layer barrier, and the conductive layer barrier. The resistive layer barrier is the compacted soil or compacted clay layer and depends on compaction of permeable porous material to obtain low flow rates. The conductive layer barrier is a special case of the capillary barrier. Use is made of the capillary barrier phenomenon not only to increase the moisture content above an interface but to divert water away from the waste. During such diversion the water is at all times at negative capillary potential or under tension in the flow layer. A very effective barrier system might be constructed by placing a resistive barrier over a conductive barrier. Such a system must fail if appreciable subsidence takes place. An alternate procedure called bioengineering management utilizes engineered features at the surface (as opposed to the subsurface) to ensure adequate run-off. The engineered features are combined with stressed vegetation, that is, vegetation in an overdraft condition, to control deep percolation. (59 refs., 10 figs.)

  8. Evaluation of Proposed New LLW Disposal Activity: Disposal of Aqueous PUREX Waste Stream in the Saltstone Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2003-01-01

    The Aqueous PUREX waste stream from Tanks 33 and 35, which have been blended in Tank 34, has been identified for possible processing through the Saltstone Processing Facility for disposal in the Saltstone Disposal Facility

  9. Trench water chemistry at commercially operated low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Pietrzak, R.F.; Dayal, R.; Kinsley, M.T.; Clinton, J.; Czyscinski, K.S.; Weiss, A.J.

    1982-01-01

    Water samples from the disposal trenches of two low-level radioactive-waste-disposal sites were analyzed for their inorganic, organic, and radionuclide contents. Since oxidation of the trench waters can occur during their movement along the groundwater flow path, experiments were performed to measure the chemical and physical changes that occur in these waters upon oxidation. Low concentrations of chelating agents, shown to exist in trench waters, may be responsible for keeping radionuclides, particularly 60 Co, in solution. 4 figures, 5 tables

  10. Incremental Risks of Transporting NARM to the LLW Disposal Facility at Hanford

    International Nuclear Information System (INIS)

    Weiner, R.F.

    1999-01-01

    This study models the incremental radiological risk of transporting NARM to the Hanford commercial LLW facility, both for incident-free transportation and for possible transportation accidents, compared with the radiological risk of transporting LLW to that facility. Transportation routes are modeled using HIGHWAY 3.1 and risks are modeled using RADTRAN 4. Both annual population doses and risks, and annual average individual doses and risks are reported. Three routes to the Hanford site were modeled from Albany, OR, from Coeur d'Alene, ID (called the Spokane route), and from Seattle, WA. Conservative estimates are used in the RADTRAN inputs, and RADTRAN itself is conservative

  11. Control of water infiltration into near surface LLW [low-level radioactive waste] disposal units

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.O.

    1990-12-01

    Three kinds of waste disposal unit covers a barriers to water infiltration are being investigated. They are: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g. clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained the conductive layer will wick water around the capillary break. Below grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover. Remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier, or perhaps even better, a resistive layer barrier/conductive layer barrier system. This latter system would then give long-term effective protection against water entry to waste and without institutional care. These various concepts are being assessed in six large (70ft x 45ft x 10ft each) lysimeters at Beltsville, Maryland. 6 refs., 20 figs.,

  12. Control of water infiltration into near surface LLW disposal units. Progress report on field experiments at a humid region site, Beltsville, Maryland: Volume 8

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.

    1995-04-01

    This study's objective is to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters 21.34 m x 13.72 m x 3.05 m (75 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration are being investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g., clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover, and remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier or, perhaps even better, by a resistive layer barrier/conductive layer barrier system. The latter system would then give long-term effective protection against water entry into waste without institutional care

  13. Control of water infiltration into near surface LLW disposal units: Progress report on field experiments at a humid region site, Beltsville, Maryland

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.

    1996-08-01

    This study's objective is to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters 21.34 m x 13.72 m x 3.05 m (70 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration are being investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g., clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover, and remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier or, perhaps even better, by a resistive layer barrier/conductive layer barrier system. The latter system would then give long-term effective protection against water entry into waste without institutional care

  14. Control of water infiltration into near surface LLW disposal units-progress report on field experiments at a humid region site, Beltsville, Maryland

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ridky, R.W.; Schulz, R.K.

    1994-01-01

    The study's objective is to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters (75'x45'x10') at Beltsville, MD, and results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration are being investigated. They are: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover. Remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier, or perhaps even better, a resistive layer barrier/conductive layer barrier system. This latter system would then give long-term effective protection against water entry into waste and without institutional care

  15. Characterization of trench water at the Maxey Flats low-level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Weiss, A.J.; Francis, A.J.; Colombo, P.

    1977-01-01

    Currently the United States Geological Survey is conducting a study of the hydrogeological and geochemical behavior of commercially operated low-level radioactive waste disposal sites. The data collected from this study will be used to establish criteria for selection of new sites for disposal of radioactive wastes. As part of this study, water samples from trenches at the Maxey Flats, Kentucky site were analyzed at Brookhaven National Laboratory to determine the source terms of the radionuclides and other components in solution in the trenches. Procedures for collection and filtration of the samples under anoxic conditions are described. The samples were analyzed for inorganic, radiochemical and organic constituents. The inorganic analysis includes the measurements of pH, specific conductance, alkalinity, and various cations and anions. The radionuclides were measured by the gross alpha, gross beta, tritium, and gamma activities, followed by specific measurements of strontium-90 and plutonium isotopes. The organics were extracted, concentrated, and identified by gas chromatography/mass spectrometry. Considerable quantities of organics were detected in all of the trench waters sampled. Specific organics were found in most of the trenches, however, the organic composition of the trench waters vary. The presence of a variety of organic compounds in trench waters suggest that they may play an important role in the transport of radionuclides

  16. Microbial activity of trench leachates from shallow-land, low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Francis, A.J.; Dobbs, S.; Nine, B.J.

    1980-01-01

    Trench leachate samples collected anoxically from shallow-land, low-level radioactive waste disposal sites were analyzed for total aerobic and anaerobic populations, sulfate reducers, denitrifiers, and methanogens. Among the several aerobic and anaerobic bacteria isolated, only Bacillus sp., Pseudomonas sp., Citrobacter sp., and Clostridium sp. were identified. Mixed bacterial cultures isolated from the trench leachates were able to grow anaerobically in trench leachates, which indicates that the radionuclides and organic chemicals present were not toxic to these bacteria. Changes in concentrations of several of the organic constituents of the waste leachate samples were observed due to anaerobic microbial activity. Growth of a mixed culture of trench-water bacteria in media containing a mixture of radionuclides, 60 Co, 85 Sr, and 134 137 Cs, was not affected at total activity concentrations of 2.6 x 10 2 and 2.7 x 10 3 pCi/ml

  17. Greater Confinement Disposal trench and borehole operations status

    International Nuclear Information System (INIS)

    Harley, J.P. Jr.; Wilhite, E.L.; Jaegge, W.J.

    1987-01-01

    Greater Confinement Disposal (GCD) facilities have been constructed within the operating burial ground at the Savannah River Plant (SRP) to dispose of the higher activity fraction of SRP low-level waste. GCD practices of waste segregation, packaging, emplacement below the root zone, and waste stabilization are being used in the demonstration. 2 refs., 2 figs., 2 tabs

  18. The design and performance of a low-cost, soil cement cap for LLNW disposal trenches

    International Nuclear Information System (INIS)

    Nowatzki, E.A.

    1986-01-01

    Over the past three years, the University of Arizona has conducted research for the U.S. Nuclear Regulatory Commission (USNRC) to assess various trench cap designs from the viewpoint of structural stability, water infiltration, and economy. As part of that project, four experimental trenches were built and monitored at each of two semi-arid sites in the vicinity of Tucson, Arizona. In this paper, the design and construction of one of those trenches are described in detail. That trench included a cap-crown system that incorporates compacted soil backfill and a steel-reinforced, soil-cement cap with an overlying 'wick' drain. The results of structural monitoring over a period of approximately 2 years are presented and compared to those of a more conventionally designed trench. The results are evaluated with respect to surface subsidence and movements of the cap-crown components as they affect moisture infiltration. Recommendations are made regarding standard design criteria for LLNW disposal trenches based on the results of this research

  19. Design improvements on shallow-land burial trenches for disposing of low-level radioactive waste

    International Nuclear Information System (INIS)

    Takamura, E.S.; Salsman, J.M.

    1984-01-01

    The lack of success of closed low-level radioactive waste disposal sites has prompted the federal government to increase regulation of these facilities. In order to meet these increased requirements, several waste trench improvements are necessary. These improvements to the trench include sandy-clay caps, compacted sandy-clay bottoms, in-place geophysical instruments and vadose zone sampling equipment, and concrete sidewalls. These design improvements presented in this paper should increase the containment of the radionuclides by decreasing the waste contact with infiltrating groundwater. The design improves on the monitoring and sampling methods for detecting radionuclides transported through the leachate or gas effluent streams. 13 references, 4 figures

  20. Integration of U.S. Department of Energy (DOE) contractor installations for the purpose of optimizing treatment, storage, and disposal of low-level radioactive waste (LLW)

    International Nuclear Information System (INIS)

    Lucas, M.; Gnoose, J.; Coony, M.; Martin, E.; Piscitella, R.

    1998-02-01

    The US Department of Energy (DOE) manages a multibillion dollar environmental management (EM) program. In June 1996, the Assistant Secretary of Energy for EM issued a memorandum with guidance and a vision for a ten year planning process for the EM Program. The purpose of this process, which became known as the Accelerated Cleanup: Focus on 2006, is to make step changes within the DOE complex regarding the approach for making meaningful environmental cleanup progress. To augment the process, Assistant Secretary requested the site contractors to engage in an effort to identify and evaluate integration alternatives for EM waste stream treatment, storage, and disposal (TSD) that would parallel the 2006 Plan. In October 1996, ten DOE contractor installations began the task of identifying alternative opportunities for low level radioactive waste (LLW). Cost effective, efficient solutions were necessary to meet all requirements associated with storing, characterizing, treating, packaging, transporting, and disposing of LLW while protecting the workers' health and safety, and minimizing impacts to the environment. To develop these solutions, a systems engineering approach was used to establish the baseline requirements, to develop alternatives, and to evaluate the alternatives. Key assumptions were that unique disposal capabilities exist within the DOE that must be maintained; private sector disposal capability for some LLW may not continue to exist into the foreseeable future; and decisions made by the LLW Team must be made on a system or complex wide basis to fully realize the potential cost and schedule benefits. This integration effort promoted more accurate waste volume estimates and forecasts; enhanced recognition of existing treatment, storage, and disposal capabilities and capacities; and improved identification of cost savings across the complex

  1. Control of water infiltration into near surface LLW disposal units - Progress report on field experiments at a humid region site, Beltsville, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    O' Donnell, Edward [U.S. Nuclear Regulatory Commission, Washington, DC (United States); Ridky, Robert W [University of Maryland, College Park, MD (United States); Schulz, Robert K [University of California, Berkeley, CA (United States)

    1992-07-01

    The study's objective is to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters (75x45x10') at Beltsville, MD, and results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration are being investigated. They are: 1) resistive layer barrier, 2) conductive layer barrier, and 3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g., clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover. Remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier, or perhaps even better, a resistive layer barrier/conductive layer barrier system. This latter system would then give long-term effective protection against water entry into waste and without institutional care. As mentioned in the preceding paragraph, a bioengineering management cover might well be the cover of choice during tho active subsidence phase of a waste disposal unit. Some maintenance is required during that period. Final

  2. Control of water infiltration into near surface LLW disposal units - Progress report on field experiments at a humid region site, Beltsville, Maryland

    International Nuclear Information System (INIS)

    O'Donnell, Edward; Ridky, Robert W.; Schulz, Robert K.

    1992-01-01

    The study's objective is to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters (75x45x10') at Beltsville, MD, and results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration are being investigated. They are: 1) resistive layer barrier, 2) conductive layer barrier, and 3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g., clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover. Remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier, or perhaps even better, a resistive layer barrier/conductive layer barrier system. This latter system would then give long-term effective protection against water entry into waste and without institutional care. As mentioned in the preceding paragraph, a bioengineering management cover might well be the cover of choice during tho active subsidence phase of a waste disposal unit. Some maintenance is required during that period. Final

  3. Development of high integrity, maximum durability concrete structures for LLW disposal facilities

    International Nuclear Information System (INIS)

    Taylor, W.P.

    1992-01-01

    A number of disposal facilities for Low-Level Radioactive Wastes have been planned for the Savannah River Site. Design has been completed for disposal vaults for several waste classifications and construction is nearly complete or well underway on some facilities. Specific design criteria varies somewhat for each waste classification. All disposal units have been designed as below-grade concrete vaults, although the majority will be above ground for many years before being encapsulated with earth at final closure. Some classes of vaults have a minimum required service life of 100 years. All vaults utilize a unique blend of cement, blast furnace slag and pozzolan. The design synthesizes the properties of the concrete mix with carefully planned design details and construction methodologies to (1) eliminate uncontrolled cracking; (2) minimize leakage potential; and (3) maximize durability. The first of these vaults will become operational in 1992. 9 refs

  4. Dose and risk assessment of norm Contaminated waste released from trench disposal facility

    International Nuclear Information System (INIS)

    Abdel Geleel, M.; Ramadan, A.B.; Tawfik, A.A.

    2005-01-01

    Oil and gas extraction and processing operations accumulate naturally occurring radioactive material (NORM) at concentrations above normal in by-product waste streams. The petroleum industry adopted methods for managing of NORM that are more restrictive than past practices and are likely to provide greater isolation of the radioactivity. Trench was used as a disposal facility for NORM contaminated wastes at one site of the petroleum industry in Egypt. The aim of this work is to calculate the risk and dose assessment received from trench disposal facility directly and after closure (1000 year). RESRAD computer code was used. The results indicated that the total effective dose (TED) received after direct closure of trench disposal facility was 7.7E-4 mSv/y while after 1000 years, it will he 3.4E-4. The health cancer risk after direct closure was 3.3E-8 while after 1000 years post closure it was 6E-8. Results of this assessment will help examine policy issues concerning different options and regulation of NORM contaminated waste generated by petroleum industry

  5. Northwest disposal site for LLW and ILW in China radioactive impact assessment

    International Nuclear Information System (INIS)

    Wei Kuizi; He Chunying; Lu Baozhen; Li Tingjun

    1993-01-01

    This paper describes the studies and main conclusions in site selection, design, and radioactive impact assessment of the Northwest Disposal Site of China for intermediate- and low-level radioactive wastes. At the end of the paper, further works are proposed

  6. Review on waste inventory, waste characteristics and candidate site for LLW disposal in Thailand

    International Nuclear Information System (INIS)

    Yamkate, P.; Sriyotha, P.; Punnachaiya, M.; Danladkaew, K.

    1997-01-01

    It is a worldwide practice that radioactive waste has to be kept under control to be ensured of low potential impact on man and his environment. In Thailand, the OAEP is responsible for all radioactive waste management activities, both operation and the competent authority. The radioactive waste in Thailand consists of low level wastes from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. A plan for central disposal site has been set up. The near surface disposal method is chosen for this aspect because of its simple, inexpensive and adequate safe and very well know process. 8 refs., 6 tabs

  7. Materials and degradation modes in an alternative LLW [low-level waste] disposal facility

    International Nuclear Information System (INIS)

    Cowgill, M.G.; MacKenzie, D.R.

    1989-01-01

    The materials used in the construction of alternative low-level waste disposal facilities will be subject to interaction with both the internal and the external environments associated with the facilities and unless precautions are taken, may degrade, leading to structural failure. This paper reviews the characteristics of both environments with respect to three alternative disposal concepts, then assesses how reaction with them might affect the properties of the materials, which include concrete, steel-reinforced concrete, structural steel, and various protective coatings and membranes. It identifies and evaluates the probability of reactions occurring which might lead to degradation of the materials and so compromise the structure. The probability of failure (interpreted relative to the ability of the structure to restrict ingress and egress of water) is assessed for each material and precautionary measures, intended to maximize the durability of the facility, are reviewed. 19 refs., 2 tabs

  8. Derivation of upper bound concentration of LLW for land disposal in Taiwan

    International Nuclear Information System (INIS)

    Chang, F.D.; Liou, C.T.; Su, M.F.; Tsai, S.C.

    1989-01-01

    The upper bound concentrations of radionuclides in the low level waste to be disposed in Taiwan are investigated based on a proposed reference site with all of the scenarios and exposure pathways reflecting the local conditions and environmental characteristics. The analysis reveals that most of the upper bound concentrations are determined from the scenario of intruder-agriculture. It can also be found that the Transuranic radionuclides and those with long half-lives are the dominant radionuclides which result in major radiological impact to the environment in this intruder-agriculture scenario

  9. Approaches to LLW disposal site selection and current progress of host states

    International Nuclear Information System (INIS)

    Walsh, J.J.; Kerr, T.A.

    1990-11-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 and under the guidance of 10 CFR 61, States have begun entering into compacts to establish and operate regional disposal facilities for low-level radioactive waste. The progress a state makes in implementing a process to identify a specific location for a disposal site is one indication of the level of a state's commitment to meeting its responsibilities under Federal law and interstate compact agreements. During the past few years, several States have been engaged in site selection processes. The purpose of this report is to summarize the site selection approaches of some of the Host States (California, Michigan, Nebraska, New York, North Carolina, Texas, and Illinois), and their progress to date. An additional purpose of the report is to discern whether the Host States's site selection processes were heavily influenced by any common factors. One factor each state held in common was that political and public processes exerted a powerful influence on the site selection process at virtually every stage. 1 ref

  10. Corrective action decision document for the Roller Coaster Lagoons and North Disposal Trench (Corrective Action Unit Number 404)

    International Nuclear Information System (INIS)

    1997-01-01

    The North Disposal Trench, located north of the eastern most lagoon, was installed in 1963 to receive solid waste and construction debris from the Operation Roller Coaster man camp. Subsequent to Operation Roller Coaster, the trench continued to receive construction debris and range cleanup debris (including ordnance) from Sandia National Laboratories and other operators. A small hydrocarbon spill occurred during Voluntary Corrective Action (VCA) activities (VCA Spill Area) at an area associated with the North Disposal Trench Corrective Action Site (CAS). Remediation activities at this site were conducted in 1995. A corrective action investigation was conducted in September of 1996 following the Corrective Action Investigation Plan (CAIP); the detailed results of that investigation are presented in Appendix A. The Roller Coaster Lagoons and North Disposal Trench are located at the Tonopah Test Range (TTR), a part of the Nellis Air Force Range, which is approximately 225 kilometers (140 miles) northwest of Las Vegas, Nevada, by air

  11. LLW simmers as states scramble

    International Nuclear Information System (INIS)

    Malloy, M.

    1994-01-01

    Low-level radioactive waste disposal could be reaching a crisis point as states and private industry scramble to come up with permitted disposal facilities. Although not as notorious as high-level radioactive waste, the disposal of low-level radioactive wastes (LLW) is becoming more of concern -- some say nearing a crisis -- nationwide, because of the limited number of storage sites available. Most states have formed into groups called compacts, in which they jointly set up storage and disposal sites for their LLW. Most of the overall universe of LLW is generated and handled by the US Department of Energy. The remainder is produced and dealt with commercially. Commercial sources account for about one million cubic feet of LLW annually. LLW is defined as anything that is not the more potent, spent high-level nuclear fuel waste or radioactive waste from transuranic processes. Ninety to ninety-five percent of LLW is trash. The rest is either short-lived, or in a third category of both long- and short-lived LLW. That third category, while small, can still account for a high amount of curies of radioactivity

  12. Fully engineered shallow trench design concepts for disposal of low and intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Locke, J.

    1984-09-01

    In this report, the results of the reviews of design concepts, waste arisings and release mechanisms are described. The basic principles of radiological protection and the proposed strategy for land disposal in the UK are outlined. The essential features of engineered trenches are described with some discussion of the likely material choices and their influence on nuclide release. The radiological protection criteria adopted in this study is that the overall risk of serious health effects arising from any release of radioactivity from a shallow engineered trench should always be less than 10 -6 per annum, which corresponds to a received dose of 0.1 mSv/yr. This approach to radiological protection takes account of the two components of risk of health detriment to future generations; namely the probability that a release of radionuclides will occur and the probability that the subsequent radiation doses will give rise to deleterious effects. A compilation is presented of the waste streams and expected volumes and activities that may be designated for LAND 2 disposal and an initial estimate of the associated nuclide inventory is given. (author)

  13. Corrective action plan for CAU No. 404: Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Roller Coaster Sewage Lagoons and North Disposal Trench Corrective Action Unit (CAU) No. 404. The site is located on the Tonopah Test Range. CAU 404 consists of two Corrective Action Sites (CAS): the Roller Coaster Lagoons (CAS No TA-03-001-TA-RC) and the North Disposal Trench (CAS No TA-21-001-TA-RC). A site map of the lagoons and trench is provided. The Roller Coaster Sewage Lagoons are comprised of two unlined lagoons that received liquid sanitary waste in 1963 from the Operation Roller Coaster Man Camp and debris from subsequent construction and range cleanup activities. The North Disposal Trench was excavated in approximately 1963 and received solid waste and debris from the man camp and subsequent construction and range cleanup activities. A small hydrocarbon spill occurred during the 1995 Voluntary Corrective Action (VCA) activities in an area associated with the North Disposal Trench CAS.

  14. Corrective action plan for CAU No. 404: Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range

    International Nuclear Information System (INIS)

    1997-07-01

    This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Roller Coaster Sewage Lagoons and North Disposal Trench Corrective Action Unit (CAU) No. 404. The site is located on the Tonopah Test Range. CAU 404 consists of two Corrective Action Sites (CAS): the Roller Coaster Lagoons (CAS No TA-03-001-TA-RC) and the North Disposal Trench (CAS No TA-21-001-TA-RC). A site map of the lagoons and trench is provided. The Roller Coaster Sewage Lagoons are comprised of two unlined lagoons that received liquid sanitary waste in 1963 from the Operation Roller Coaster Man Camp and debris from subsequent construction and range cleanup activities. The North Disposal Trench was excavated in approximately 1963 and received solid waste and debris from the man camp and subsequent construction and range cleanup activities. A small hydrocarbon spill occurred during the 1995 Voluntary Corrective Action (VCA) activities in an area associated with the North Disposal Trench CAS

  15. LLW and ILW disposal

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Summaries from the Nuclear Energy Agency of the OECD of the main programmes for low and intermediate level waste repositories in countries with the firmest timetables for their development are given in the form of a table and notes. An IAEA overview of low and intermediate level waste management practice in 26 countries is also tabulated. (author)

  16. DOE LLW classification rationale

    International Nuclear Information System (INIS)

    Flores, A.Y.

    1991-01-01

    This report was about the rationale which the US Department of Energy had with low-level radioactive waste (LLW) classification. It is based on the Nuclear Regulatory Commission's classification system. DOE site operators met to review the qualifications and characteristics of the classification systems. They evaluated performance objectives, developed waste classification tables, and compiled dose limits on the waste. A goal of the LLW classification system was to allow each disposal site the freedom to develop limits to radionuclide inventories and concentrations according to its own site-specific characteristics. This goal was achieved with the adoption of a performance objectives system based on a performance assessment, with site-specific environmental conditions and engineered disposal systems

  17. Special Analysis: Updated Analysis of the Effect of Wood Products on Trench Disposal Limits at the E-Area Low-Level Waste Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2001-01-01

    This Special Analysis (SA) develops revised radionuclide inventory limits for trench disposal of low-level radioactive waste in the presence of wood products in the E-Area Low-Level Waste Facility. These limits should be used to modify the Waste Acceptance Criteria (WAC) for trench disposal. Because the work on which this SA is based employed data from tests using 100 percent wood products, the 40 percent limitation on wood products for trench (i.e., slit or engineered trench) disposal is not needed in the modified WAC

  18. Packaging LLW and ILW

    International Nuclear Information System (INIS)

    Flowers, R.H.; Owen, R.G.

    1991-01-01

    Low level waste (LLW) accounts for 70-80% by volume of all radioactive wastes produced by the nuclear industry. It has low specific activity, negligible actinide content and requires little, if any, shielding to protect workers. Volume reduction for LLW of high volume but low density may be achieved by incineration and compaction as appropriate, before packaging for disposal by near surface burial. Intermediate level waste (ILW) is treated and packed to convert it into a stable form to minimize any release of activity and make handling easier. The matrix chosen for immobilization, usually cement, polymers or bitumen, depends on the nature of the waste and the acceptance criteria of the disposal facility. The special case of LLW and ILW which will arise from reactor decommissioning is discussed. Packaging methods adopted by individual countries are reviewed. The range of costs involved for packaging ILW is indicated. There is no international consensus on the performance required from packaged waste to ensure its suitability both for interim storage and final disposal. (UK)

  19. Soil prokaryotic communities in Chernobyl waste disposal trench T22 are modulated by organic matter and radionuclide contamination.

    Science.gov (United States)

    Theodorakopoulos, Nicolas; Février, Laureline; Barakat, Mohamed; Ortet, Philippe; Christen, Richard; Piette, Laurie; Levchuk, Sviatoslav; Beaugelin-Seiller, Karine; Sergeant, Claire; Berthomieu, Catherine; Chapon, Virginie

    2017-08-01

    After the Chernobyl nuclear power plant accident in 1986, contaminated soils, vegetation from the Red Forest and other radioactive debris were buried within trenches. In this area, trench T22 has long been a pilot site for the study of radionuclide migration in soil. Here, we used 454 pyrosequencing of 16S rRNA genes to obtain a comprehensive view of the bacterial and archaeal diversity in soils collected inside and in the vicinity of the trench T22 and to investigate the impact of radioactive waste disposal on prokaryotic communities. A remarkably high abundance of Chloroflexi and AD3 was detected in all soil samples from this area. Our statistical analysis revealed profound changes in community composition at the phylum and OTUs levels and higher diversity in the trench soils as compared to the outside. Our results demonstrate that the total absorbed dose rate by cell and, to a lesser extent the organic matter content of the trench, are the principal variables influencing prokaryotic assemblages. We identified specific phylotypes affiliated to the phyla Crenarchaeota, Acidobacteria, AD3, Chloroflexi, Proteobacteria, Verrucomicrobia and WPS-2, which were unique for the trench soils. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. SPECIAL ANALYSIS FOR SLIT TRENCH DISPOSAL OF THE REACTOR PROCESS HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.; Collard, L.; Aleman, S.; Gorensek, M.; Butcher, T.

    2012-06-18

    The Savannah River National Laboratory (SRNL), in response to a request from Solid Waste Management (SWM), conducted a Special Analysis (SA) to evaluate the performance of nineteen heat exchangers that are to be disposed in the E-Area low level waste facility Slit Trench 9 (ST 9). Although these nineteen heat exchangers were never decontaminated, the majority of the radionuclides in the heat exchanger inventory list were determined to be acceptable for burial because they are less than the 'generic' waste form inventory limits given in the 2008 Performance Assessment (PA) (WSRC, 2008). However, as generic waste, the H-3 and C-14 inventories resulted in unacceptable sum-of-fractions (SOFs). Initial scoping analyses performed by SRNL indicated that if alterations were made to certain external nozzles to mitigate various potential leak paths, acceptable SOFs could be achieved through the use of a 'Special' waste form. This SA provides the technical basis for this new 'Special' waste form and provides the inventory limits for H-3 and C-14 for these nineteen heat exchangers such that the nineteen heat exchangers can be disposed in ST 9. This 'Special' waste form is limited to these nineteen heat exchangers in ST 9 and applies for H-3 and C-14, which are designated as H-3X and C-14X, respectively. The SA follows the same methodology used in the 2008 PA and the 2008 SA except for the modeling enhancements noted below. Infiltration rates above the heat exchangers are identical to those used in the 2008 PA; however, flow through the heat exchangers is unique. Because it is unknown exactly how sealed heat exchanger openings will perform and how surface and embedded contaminants will be released, multiple base cases or scenarios were established to investigate a set of performances. Each scenario consists of flow options (based on the performance of sealed openings) and a near-field release of contaminants (based on corrosion and

  1. Control of water infiltration into near surface LLW disposal units. Progress report on field experiments at a humid region site, Beltsville, Maryland: Volume 7

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1994-12-01

    The project objective is to assess means for controlling waste infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large scale lysimeters (70 ft x 45 ft x 10 ft) at Beltsville, MD and results of the assessment are applicable to disposal of LLW, uranium mill tailings, hazardous waste, and sanitary landfills. Three concepts are under investigation: (1) resistive layer barrier, (2) conductive layer barrier, and bioengineering water management. The resistive layer barrier consists of compacted earth (clay). The conductive layer barrier is a special case of the capillary barrier and it requires a flow layer (e.g. fine sandy loam) over a capillary break. As long as unsaturated conditions are maintained water is conducted by the flow layer to below the waste. This barrier is most efficient at low flow rates and is thus best placed below a resistive layer barrier. Such a combination of the resistive layer over the conductive layer barrier promises to be highly effective provided there is no appreciable subsidence. Bioengineering water management is a surface cover that is designed to accommodate subsidence. It consists of impermeable panels which enhance run-off and limit infiltration. Vegetation is planted in narrow openings between panels to transpire water from below the panels. This system has successfully dewatered two lysimeters thus demonstrating that this procedure could be used for remedial action (drying out) existing water-logged disposal sites at low cost

  2. Investigation on proper materials of a liner system for trench type disposal facilities of radioactive wastes from research, industrial and medical facilities

    International Nuclear Information System (INIS)

    Nakata, Hisakazu; Amazawa, Hiroya; Sakai, Akihiro; Arikawa, Masanobu; Sakamoto, Yoshiaki

    2011-08-01

    The Low-level Radioactive Waste Disposal Project Center of Japan Atomic Energy Agency will settle on near surface disposal facilities with and without engineered barriers for radioactive wastes from research, industrial and medical facilities. Both of them are so called 'concrete pit type' and 'trench type', respectively. The technical standard of constructing and operating a disposal facility based on 'Law for the Regulations of Nuclear Source Material, Nuclear Fuel Material and Reactors' have been regulated partly by referring to that of 'Waste Management and Public Cleansing Law'. This means that the concrete pit type and the trench type disposal facility resemble an isolated type for specified industrial wastes and a non leachate controlled type final disposal site for stable industrial wastes, respectively. On the other, We plan to design a disposal facility with a liner system corresponding to a leachate controlled type final disposal site on a crucial assumption that radioactive wastes other than stable industrial wastes to be disposed into the trench type disposal facility is generated. By current nuclear related regulations in Japan, There are no technical standard of constructing the disposal facility with the liner system referring to that of 'Waste Management and Public Cleansing Law'. We investigate the function of the liner system in order to design a proper liner system for the trench type disposal facility. In this report, We investigated liner materials currently in use by actual leachate controlled type final disposal sites in Japan. Thereby important items such as tensile strength, durability from a view point of selecting proper liner materials were studied. The items were classified into three categories according to importance. We ranked proper liner materials for the trench type disposal facility by evaluating the important items per material. As a result, high density polyethylene(HDPE) of high elasticity type polymetric sheet was selected

  3. Implementation of a geological disposal facility (GDF) in the UK by the NDA Radioactive Waste Management Directorate (RWMD): the potential for interaction between the co-located ILW/LLW and HLW/SF components of a GDF - 16306

    International Nuclear Information System (INIS)

    Towler, George; Hicks, Tim; Watson, Sarah; Norris, Simon

    2009-01-01

    In June 2008 the UK government published a 'White Paper' as part of the 'Managing Radioactive Waste Safety' (MRWS) programme to provide a framework for managing higher activity radioactive wastes in the long-term through geological disposal. The White Paper identifies that there are benefits to disposing all of the UK's higher activity wastes (Low and Intermediate Level Waste (LLW and ILW), High Level Waste (HLW), Spent Fuel (SF), Uranium (U) and Plutonium (Pu)) at the same site, and this is currently the preferred option. It also notes that research will be required to support the detailed design and safety assessment in relation to any potentially detrimental interactions between the different modules. Different disposal system designs and associated Engineered Barrier Systems (EBS) will be required for these different waste types, i.e. ILW/LLW and HLW/SF. If declared as waste U would be disposed as ILW and Pu as HLW/SF. The Geological Disposal Facility (GDF) would therefore comprise two co-located modules (respectively for ILW/LLW and HLW/SF). This paper presents an overview of a study undertaken to assess the implications of co-location by identifying the key Thermo-Hydro-Mechanical-Chemical (THMC) interactions that might occur during both the operational and post-closure phases, and their consequences for GDF design, performance and safety. The MRWS programme is currently seeking expressions of interest from communities to host a GDF. Therefore, the study was required to consider a wide range of potential GDF host rocks and consistent, conceptual disposal system designs. Two example disposal concepts (i.e. combinations of host rock, GDF design including wasteform and layout, etc.) were carried forward for detailed assessment and a third for qualitative analysis. Dimensional and 1D analyses were used to identify the key interactions, and 3D models were used to investigate selected interactions in more detail. The results of this study show that it is possible

  4. Compliance matrix for the mixed waste disposal facilities, Trenches 31 ampersand 34, burial ground 218-W-5

    International Nuclear Information System (INIS)

    Carlyle, D.W.

    1994-01-01

    The purpose of the Trench 31 ampersand 34 Mixed Waste Disposal Facility Compliance Matrix is to provide objective evidence of implementation of all regulatory and procedural-institutional requirements for the disposal facilities. This matrix provides a listing of the individual regulatory and procedural-institutional requirements that were addressed. Subject matter experts reviewed pertinent documents that had direct or indirect impact on the facility. Those found to be applicable were so noted and listed in Appendix A. Subject matter experts then extracted individual requirements from the documents deemed applicable and listed them in the matrix tables. The results of this effort are documented in Appendix B

  5. Corrective Action Investigation Plan for Corrective Action Unit 410: Waste Disposal Trenches, Tonopah Test Range, Nevada, Revision No.:0

    International Nuclear Information System (INIS)

    2002-01-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 410 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 410 is located on the Tonopah Test Range (TTR), which is included in the Nevada Test and Training Range (formerly the Nellis Air Force Range) approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of five Corrective Action Sites (CASs): TA-19-002-TAB2, Debris Mound; TA-21-003-TANL, Disposal Trench; TA-21-002-TAAL, Disposal Trench; 09-21-001-TA09, Disposal Trenches; 03-19-001, Waste Disposal Site. This CAU is being investigated because contaminants may be present in concentrations that could potentially pose a threat to human health and/or the environment, and waste may have been disposed of with out appropriate controls. Four out of five of these CASs are the result of weapons testing and disposal activities at the TTR, and they are grouped together for site closure based on the similarity of the sites (waste disposal sites and trenches). The fifth CAS, CAS 03-19-001, is a hydrocarbon spill related to activities in the area. This site is grouped with this CAU because of the location (TTR). Based on historical documentation and process know-ledge, vertical and lateral migration routes are possible for all CASs. Migration of contaminants may have occurred through transport by infiltration of precipitation through surface soil which serves as a driving force for downward migration of contaminants. Land-use scenarios limit future use of these CASs to industrial activities. The suspected contaminants of potential concern which have been identified are volatile organic compounds; semivolatile organic compounds; high explosives; radiological constituents including depleted uranium

  6. Long-Term Performance of Transuranic Waste Inadvertently Disposed in a Shallow Land Burial Trench at the Nevada Test Site

    International Nuclear Information System (INIS)

    Shott, Gregory J.; Yucel, Vefa

    2009-01-01

    In 1986, 21 m3 of transuranic (TRU) waste was inadvertently disposed in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site. U.S. Department of Energy (DOE) TRU waste must be disposed in accordance with Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes. The Waste Isolation Pilot Plant is the only facility meeting these requirements. The National Research Council, however, has found that exhumation of buried TRU waste for disposal in a deep geologic repository may not be warranted when the effort, exposures, and expense of retrieval are not commensurate with the risk reduction achieved. The long-term risks of leaving the TRU waste in-place are evaluated in two probabilistic performance assessments. A composite analysis, assessing the dose from all disposed waste and interacting sources of residual contamination, estimates an annual total effective dose equivalent (TEDE) of 0.01 mSv, or 3 percent of the dose constraint. A 40 CFR 191 performance assessment also indicates there is reasonable assurance of meeting all requirements. The 40 CFR 191.15 annual mean TEDE for a member of the public is estimated to reach a maximum of 0.055 mSv at 10,000 years, or approximately 37 percent of the 0.15 mSv individual protection requirement. In both assessments greater than 99 percent of the dose is from co-disposed low-level waste. The simulated probability of the 40 CFR 191.13 cumulative release exceeding 1 and 10 times the release limit is estimated to be 0.0093 and less than 0.0001, respectively. Site characterization data and hydrologic process modeling support a conclusion of no groundwater pathway within 10,000 years. Monte Carlo uncertainty analysis indicates that there is reasonable assurance of meeting all regulatory requirements. Sensitivity analysis indicates that the results

  7. Modeling the Hydrogeochemical Transport of Radionuclides through Engineered Barriers System in the Proposed LLW Disposal Site of Taiwan - 12082

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen-Sheng [Hydrotech Research Institute, National Taiwan University, Taipei, Taiwan (China); Liu, Chen-Wuing; Tsao, Jui-Hsuan [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan (China); Li, Ming-Hsu [Institute of Hydrological and Oceanic Sciences, National Central University, Jhongli, Taiwan (China)

    2012-07-01

    A proposed site for final disposal of low-level radioactive waste located in Daren Township of Taitung County along the southeastern coast has been on the selected list in Taiwan. The geology of the Daren site consists of argillite and meta-sedimentary rocks. A mined cavern design with a tunnel system of 500 m below the surface is proposed. Concrete is used as the main confinement material for the engineered barrier. To investigate the hydrogeochemical transport of radionuclides through engineered barriers system, HYDROGEOCHEM5.0 model was applied to simulate the complex chemical interactions among radionuclides, the cement minerals of the concrete, groundwater flow, and transport in the proposed site. The simulation results showed that the engineered barriers system with the side ditch efficiently drained the ground water and lowered the concentration of the concrete degradation induced species (e.g., hydrogen ion, sulfate, and chloride). The velocity of groundwater observed at side ditch gradually decreased with time due to the fouling of pore space by the mineral formation of ettringite and thaumasite. The short half-life of Co-60, Sr-90 and Cs-137 significantly reduced the concentrations, whereas the long half-life of I-129(1.57x10{sup 7} years) and Am-241(432 years) remain stable concentrations at the interface of waste canister and concrete barrier after 300 years. The mineral saturation index (SI) was much less than zero due to the low aqueous concentration of radionuclide, so that the precipitation formation of Co-60, Sr-90, I-129, Cs-137 and Am-241 related minerals were not found. The effect of adsorption/desorption (i.e., surface complexation model) could be a crucial geochemical mechanism for the modeling of liquid-solid phase behavior of radionuclide in geochemically dynamic environments. Moreover, the development of advanced numerical models that are coupled with hydrogeochemical transport and dose assessment of radionuclide is required in the future

  8. Evaluation of 1985--1986 corrective actions at ORNL liquid waste disposal trench 7

    International Nuclear Information System (INIS)

    Spalding, B.P.

    1991-04-01

    Several corrective actions were taken in 1985--1986 at the site of ORNL radioactive liquid waste seepage trench 7 in an effort to reduce the discharge of radionuclides, mostly 60 Co, from a groundwater seep on the eastern side of the site. First, the size of the asphalt cap over the trench was doubled, and cap runoff was diverted away from the site to the west. Second, the buried waste transfer line to the trench was excavated and plugged and its pipe trench was damned with clay backfill. These actions were designed to reduce groundwater recharge in the area that might be the source of water to the seep. Third, a series of grout injections was carried out at 5-ft intervals along a perimeter line on the eastern and northern edges of the site. A total of 65,500 gal of lime-fly-ash grout was injected at 303 locations at depths up to 40 ft in an effort to seal relict contaminated strata with probable hydrologic connection to the seep. However, the grout formulation specified in the contract would not set to a detectable compressive strength nor would the grout samples exhibit a reduction in hydraulic conductivity during over a year of observation. Thus, the material specification for the grout was inappropriate for the desired effect of in situ hydrologic isolation. Core sampling at the site revealed that the grout flowed into the soil formation along discrete thin layers. Only three grout layers, with a maximum thickness of 0.25 in., were found in over 90 ft of core from three locations along the grout injection line. Thus, this grouting action would have little potential to influence containment of radionuclides that leach from contaminated strata. 11 refs., 14 figs., 7 tabs

  9. Draft Level 1 Remedial Investigation Work Plan: 316-3 waste disposal trenches

    International Nuclear Information System (INIS)

    1987-09-01

    This work plan describes the work to be performed for the initial level of site characterization for the 316.3 Trenches at the Hanford Site. This initial site characterization effort will include a review of existing environmental contamination data for the 300 Area as well as collection and analysis of environmental samples to better characterize subsurface contamination at the site. 7 refs., 10 figs., 7 tabs

  10. Control and tracking arrangements for solid low-level waste disposals to the UK Drigg disposal site

    International Nuclear Information System (INIS)

    Elgie, K.G.; Grimwood, P.D.

    1993-01-01

    The Drigg disposal site has been the principal disposal site for solid low-level radioactive wastes (LLW) in the United Kingdom since 1959. It is situated on the Cumbrian coast, some six kilometers to the south of the Sellafield nuclear reprocessing site. The Drigg site receives LLW from a wide range of sources including nuclear power generation, nuclear fuel cycle activities, defense activities, isotope manufacture, universities, hospitals, general industry and clean-up of contaminated sites. This LLW has been disposed of in a series of trenches cut into the underlying clay layer of the site, and, since 1988, also into concrete lined vault. The total volume of LLW disposed of at Drigg is at present in the order of 800,000m 3 , with disposals currently approximately 25,000m 3 per year. British Nuclear Fuels plc (BNFL) owns and operates the Drigg disposal site. To meet operational and regulatory requirements, BNFL needs to ensure the acceptability of the disposed waste and be able to track it from its arising point to its specific disposal location. This paper describes the system that has been developed to meet these requirements

  11. LLW Dumpster study: Task 009

    International Nuclear Information System (INIS)

    Frye, J.A.

    1989-08-01

    Over a span of several years, the public has reported visible leakage emanating from ten cubic yard Dumpsters used to transport Low Level Radioactive Wastes (LLW) from LANL generation sites to the disposal site at TA-54, Area G. The purpose of this study was to: Investigate probable causes of leakages, Inspect existing Dumpsters in the fields Propose immediate short-range solutions to the problem, and Propose long-range solutions based on predicted future requirements. Field investigations indicated that LLW is handled carefully and professional at the individual generation sites and again during pick-up delivery, and disposal at TA-54. It was also apparent, however, that Dumpsters not designed for LLW service are used to store this radioactive material for extended time periods while being subjected to the full range of Northern New Mexico weather conditions. All Dumpsters inspected had 1/8 in to 2 in gaps in their closures (loading doors and discharge ramps) through which driving rain or melting snow could easily enter. Seven Dumpsters were located outside secure areas. No cases of actual contamination were discovered, only the appearance of contamination i.e. the dripping of collected rainwater or melting ice and snow from Dumpsters being transported over public roads

  12. Control of water infiltration into near surface LLW disposal units - progress report on field experiments at a Humid Region Site, Beltsville, Maryland

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ridky, R.W.; Schulz, R.K.

    1990-01-01

    Three kinds of waste disposal unit covers or barriers to water infiltration are being investigated. They are: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g. clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained the conductive layer will wick water around the capillary break. Below grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover. Remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier, or perhaps even better, a resistive layer barrier/conductive layer barrier system. This latter system would then give long-term effective protection against water entry to waste and without institutional care. These various concepts are being assessed in six large (70 x 45 x 10 each) lysimeters at Beltsville, Maryland. 6 refs., 21 figs

  13. Shipment of LLW by intercoastal maritime service

    International Nuclear Information System (INIS)

    Barbour, D.A.

    1985-01-01

    Transportation costs are a significant element of total waste disposal costs. In 1982, Nuclear Metals, Inc. (NMI) began a series of tests and investigations to examine the feasibility of using alternative modes for its low-level waste (LLW) shipments. NMI's investigations and experience have identified significant problems in transporting LLW by rail. Intercoastal maritime service, however, has been demonstrated as a safe and cost-effective way of transporting LLW from eastern seaboard generation sites to the repository at Beatty, Nevada. Intuition is an unreliable guide in this area. Waste managers need to periodically assess and compare combined transportation and burial costs for all site options to ensure that disposal operations are conducted in the most rational way

  14. Preliminary design of a biological treatment facility for trench water from a low-level radioactive waste disposal area at West Valley, New York

    Energy Technology Data Exchange (ETDEWEB)

    Rosten, R.; Malkumus, D. [Pacific Nuclear, Inc. (United States); Sonntag, T. [New York State Energy Research and Development Authority, NY (United States); Sundquist, J. [Ecology and Environment, Inc. (United States)

    1993-03-01

    The New York State Energy Research and Development Authority (NYSERDA) owns and manages a State-Licensed Low-Level Radioactive Waste Disposal Area (SDA) at West Valley, New York. Water has migrated into the burial trenches at the SDA and collected there, becoming contaminated with radionuclides and organic compounds. The US Environmental Protection Agency issued an order to NYSERDA to reduce the levels of water in the trenches. A treatability study of the contaminated trench water (leachate) was performed and determined the best available technology to treat the leachate and discharge the effluent. This paper describes the preliminary design of the treatment facility that incorporates the bases developed in the leachate treatability study.

  15. Low-Level Burial Grounds dangerous waste permit application: Request for exemption from lined trench requirements and from land disposal restrictions for residual liquid at 218-E-12B Burial Ground Trench 94

    International Nuclear Information System (INIS)

    1992-10-01

    This document has been prepared and is being submitted to the respective agencies to satisfy three objectives of the US Department of Energy (DOE) Richland Field Office (DOE-RL) concerning Trench 94 of the 218-E-12B Burial Ground. The 218-E-12B Burial Ground is located in the 200 East Area of the Hanford Facility. Figure 1-1 shows the general location of the Hanford Site. The 218-E-12B Burial Ground is one of eight burial grounds included in the Low-Level Burial Grounds (LLBG), a treatment, storage and/or disposal (TSD) unit. Decommissioned, defueled naval submarine reactor compartments (SRCs) contain radioactivity caused by exposure of structural components to neutrons during normal operation of the submarines. After all the alternatives were evaluated in the US Department of the Navy 1984 environmental impact statement (EIS) (USN 1984), land burial of the SRCs was selected as the preferred disposal option. The SRCs currently are sent to Trench 94 of the 218-E-12B Burial Ground. In addition to radioactivity, the SRCs disposed in. The DOE-RL's three objectives in preparing and submitting this document are as follows. Request from Ecology an exemption from dangerous waste landfill liner and leachate collection and removal system (hereinafter referred to as liner/leachate system) requirements for Trench 94 of the 218-E-12B Burial Ground. Petition Ecology to exempt residual liquid in the SRCs from land disposal restrictions. Obtain EPA Region 10 review and comment on the request to Ecology for exemption from liner/leachate system requirements

  16. LLW Forum meeting report

    International Nuclear Information System (INIS)

    1996-01-01

    This report summarizes the Low-Level Radioactive Waste Forum (LLW Forum) meeting on May 29 through May 31, 1996.The LLW Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  17. LLW Forum meeting report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report summarizes the Low-Level Radioactive Waste Forum (LLW Forum) meeting on May 29 through May 31, 1996.The LLW Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  18. DBMS: a tool for managing LLW data

    International Nuclear Information System (INIS)

    Vlajcic, P.

    1984-01-01

    As part of the DOE's National Low-Level Radioactive Waste Management Program, a Data Base Management System (DBMS) has been developed by EG and G Idaho, lead contractor for the national LLW management program, in cooperation with the DOE and the Southern States Energy Board, a regional research group sponsored by 17 states. Basically, DBMS offers states free use of a powerful central computer (located in Idaho) for the storage, processing, and retrieval of LLW data, and the capability to forecast their handling, treatment, transport, and disposal needs

  19. Readiness assessment plan for the Radioactive Mixed Waste Land Disposal Facility (Trench 31)

    International Nuclear Information System (INIS)

    Irons, L.G.

    1994-01-01

    This document provides the Readiness Assessment Plan (RAP) for the Project W-025 (Radioactive Mixed Waste Land Disposal Facility) Readiness Assessment (RA). The RAP documents prerequisites to be met by the operating organization prior to the RA. The RAP is to be implemented by the RA Team identified in the RAP. The RA Team is to verify the facility's compliance with criteria identified in the RAP. The criteria are based upon the open-quotes Core Requirementsclose quotes listed in DOE Order 5480.31, open-quotes Startup and Restart of Nuclear Facilitiesclose quotes

  20. Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Carilli, J.T.

    2006-01-01

    Low-level radioactive waste (LLW) streams which have a clear, defined pathway to disposal are becoming less common as U.S. Department of Energy accelerated cleanup sites enters their closure phase. These commonly disposed LLW waste streams are rapidly being disposed and the LLW inventory awaiting disposal is dwindling. However, more complex waste streams that have no path for disposal are now requiring attention. The U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NSO) Environmental Management Program is charged with the responsibility of carrying out the disposal of onsite and off-site defense-generated and research-related LLW at the Nevada. Test Site (NTS). The NSO and its generator community are constantly pursuing new LLW disposal techniques while meeting the core mission of safe and cost-effective disposal that protects the worker, the public and the environment. From trenches to present-day super-cells, the NTS disposal techniques must change to meet the LLW generator's disposal needs. One of the many ways the NTS is addressing complex waste streams is by designing waste specific pits and trenches. This ensures unusual waste streams with high-activity or large packaging have a disposal path. Another option the NTS offers is disposal of classified low-level radioactive-contaminated material. In order to perform this function, the NTS has a safety plan in place as well as a secure facility. By doing this, the NTS can accept DOE generated classified low-level radioactive-contaminated material that would be equivalent to U.S. Nuclear Regulatory Commission Class B, C, and Greater than Class C waste. In fiscal year 2006, the NTS will be the only federal disposal facility that will be able to dispose mixed low-level radioactive waste (MLLW) streams. This is an activity that is highly anticipated by waste generators. In order for the NTS to accept MLLW, generators will have to meet the stringent requirements of the NTS

  1. Comments on EPA's LLW preproposal

    International Nuclear Information System (INIS)

    Littleton, B.K.; Weinstock, L.

    1995-01-01

    The Environmental Protection Agency (EPA) is currently developing standards for the management, storage, and disposal of Low-Level Radioactive Waste (LLW). The Atomic Energy Act delegated EPA, among other provisions, the authority to establish generally applicable standards for the disposal of radioactive waste to ensure that the public and the environment are adequately protected from potential radiation impacts. As an initial effort to open communications on a standard for LLW, the Agency developed a preproposal draft (Preproposal Draft of 40 CFR Part 193 - 30 Nov 94) and circulated it to interested parties for review and comment. The extended comment period ended April 12, 1995. A summary of the comments received and analyzed to date follows. After all comments have been analyzed, the rule will undergo an Agency clearance process and be sent to the Office of Management and Budget for review. After that review, the formal process of publication of the proposed rule in the Federal Register and the formal public comment period will begin

  2. UK strategy for nuclear industry LLW - 16393

    International Nuclear Information System (INIS)

    Clark, Matthew; Fisher, Joanne

    2009-01-01

    In March 2007 the UK Government and devolved administrations (for Scotland, Wales and Northern Ireland, from here on referred to as 'Government') published their policy for the management of solid low level waste ('the Policy'). The Policy sets out a number of core principles for the management of low level waste (LLW) and charges the Nuclear Decommissioning Authority with developing a UK-wide strategy in the case of LLW from nuclear sites. The UK Nuclear Industry LLW Strategy has been developed within the framework of the principles set out in the policy. A key factor in the development of this strategy has been the strategic partnership the NDA shares with the Low Level Waste Repository near Drigg (LLWR), who now have a role in developing strategy as well as delivering an optimised waste management service at the LLWR. The strategy aims to support continued hazard reduction and decommissioning by ensuring uninterrupted capability and capacity for the management and disposal of LLW in the UK. The continued availability of a disposal route for LLW is considered vital by both the nuclear industry and non-nuclear industry low level waste producers. Given that the UK will generate significantly more low level waste (∼ 3.1 million m 3 ) than there is capacity at the LLWR (∼0.75 million m 3 ), developing alternative effective ways to manage LLW is critical. The waste management hierarchy is central to the strategy, which includes strategic goals at all levels of the hierarchy to improve its application across the industry. (authors)

  3. Closure Report for Corrective Action Unit 404: Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range, Nevada with ROTC 1, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Lynn Kidman

    1998-09-01

    This Closure Report provides the documentation for closure of the Roller Coaster Sewage Lagoons and North Disposal Trench Comective Action Unit (CAU) 404. CAU 404 consists of the Roller Coaster Sewage Lagoons (Corrective Action Site [CAS] TA-03-O01-TA-RC) and the North Disposal Trench (CAS TA-21-001-TA-RC). The site is located on the Tonopah Test Range, approximately 225 kilometers (km) (140 miles [mi]) northwest ofLas Vegas, Nevada. . The sewage lagoons received ~quid sanitary waste horn the Operation Roller Coaster Man Camp in 1963 and debris from subsequent range and construction cleanup activities. The debris and ordnance was subsequently removed and properly dispos~, however, pesticides were detected in soil samples born the bottom of the lagoons above the U,S. Environmental Protection Agency Region IX Prelimimuy Remediation Goals (EPA 1996). . The North Disposal Trench was excavated in 1963. Debris from the man camp and subsequent range and construction cleanup activities was placed in the trench. Investigation results indicated that no constituents of concern were detected in soil samples collected from the trench. Remedial alternative proposed in the Comctive Action Decision Document (CADD) fm the site was “Covering” (DOE, 1997a). The Nevada Division of”Enviromnental Protection (NDEP)-approved Correction Action Plan (CAP) proposed the “Covering” niethodology (1997b). The closure activities were completed in accorhce with the approwil CAP and consisted of baclctllling the sewage lagoons and disposal trench, constructing/planting an engineered/vegetative cover in the area of the sewage lagoons and dikposal trencQ installing a perimeter fence and signs, implementing restrictions on fi~e use, and preparing a Post-Closure Monitoring Plan. “ Since closure activities. for CAU 404 have been completed in accordance with the Nevada Division of Environmental Protection-approved CAP (DOE, 1997b) as documented in this Closure Report, the U.S. Department of

  4. Corrective Action Investigation Plan for Corrective Action Unit 410: Waste Disposal Trenches, Tonopah Test Range, Nevada, Revision 0 (includes ROTCs 1, 2, and 3)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NV

    2002-07-16

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 410 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 410 is located on the Tonopah Test Range (TTR), which is included in the Nevada Test and Training Range (formerly the Nellis Air Force Range) approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of five Corrective Action Sites (CASs): TA-19-002-TAB2, Debris Mound; TA-21-003-TANL, Disposal Trench; TA-21-002-TAAL, Disposal Trench; 09-21-001-TA09, Disposal Trenches; 03-19-001, Waste Disposal Site. This CAU is being investigated because contaminants may be present in concentrations that could potentially pose a threat to human health and/or the environment, and waste may have been disposed of with out appropriate controls. Four out of five of these CASs are the result of weapons testing and disposal activities at the TTR, and they are grouped together for site closure based on the similarity of the sites (waste disposal sites and trenches). The fifth CAS, CAS 03-19-001, is a hydrocarbon spill related to activities in the area. This site is grouped with this CAU because of the location (TTR). Based on historical documentation and process know-ledge, vertical and lateral migration routes are possible for all CASs. Migration of contaminants may have occurred through transport by infiltration of precipitation through surface soil which serves as a driving force for downward migration of contaminants. Land-use scenarios limit future use of these CASs to industrial activities. The suspected contaminants of potential concern which have been identified are volatile organic compounds; semivolatile organic compounds; high explosives; radiological constituents including depleted

  5. Greater confinement disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

    1985-01-01

    Low-level radioactive waste (LLW) includes a broad spectrum of different radionuclide concentrations, half-lives, and hazards. Standard shallow-land burial practice can provide adequate protection of public health and safety for most LLW. A small volume fraction (approx. 1%) containing most of the activity inventory (approx. 90%) requires specific measures known as greater-confinement disposal (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics

  6. Feasibility study on equipment of LLW management business system

    International Nuclear Information System (INIS)

    Shimizu, Takafumi

    2010-01-01

    LLW from university and private company has been kept in their own nuclear facilities in Japan. RANDEC has been studying business system for the treatment and conditioning of LLW before disposal. Reference to proven waste treatment process used in Nuclear Power Plant, it was studied that the appropriate treatment process for the LLW from university and private company. The waste will be collected from the university and private company to a central treatment facility. After operations such as unpacking, classification, compression, incineration and others, the waste will be treated to waste form. Most equipment are adopted by the process technology used in Nuclear Power Plant. But some equipment such as measurement of radio activity and solidification of powder need to be studied for the treatment of LLW from university and private company. (author)

  7. Conceptual design report for Central Waste Disposal Facility

    International Nuclear Information System (INIS)

    1984-01-01

    The permanent facilities are defined, and cost estimates are provided for the disposal of Low-Level Radioactive Wastes (LLW) at the Central Waste Disposal Facility (CWDF). The waste designated for the Central Waste Disposal Facility will be generated by the Y-12 Plant, the Oak Ridge Gaseous Diffusion Plant, and the Oak Ridge National Laboratory. The facility will be operated by ORNL for the Office of Defense Waste and By-Products Management of the Deparment of Energy. The CWDF will be located on the Department of Energy's Oak Ridge Reservation, west of Highway 95 and south of Bear Creek Road. The body of this Conceptual Design Report (CDR) describes the permanent facilities required for the operation of the CWDF. Initial facilities, trenches, and minimal operating equipment will be provided in earlier projects. The disposal of LLW will be by shallow land burial in engineered trenches. DOE Order 5820 was used as the performance standard for the proper disposal of radioactive waste. The permanent facilities are intended for beneficial occupancy during the first quarter of fiscal year 1989. 3 references, 9 figures, 7 tables

  8. Modeling the economics of LLW volume reduction

    International Nuclear Information System (INIS)

    Voth, M.H.; Witzig, W.F.

    1986-01-01

    Generators of low-level (radioactive) waste (LLW) are under pressure to implement volume reduction (VR) programs for political and economic reasons. Political reasons include the appearance of generating less waste or meeting quotas. Economic reasons include avoiding high disposal costs and associated surcharges. Volume reduction results in less total volume over which fixed disposal costs are allocated and therefore higher unit costs for disposal. As numerous small compacts are developed, this often overlooked effect becomes more pronounced. The described model presents two unique significant features. First, a feedback loop considers the impact of VR on disposal rates, and second, it appeals to logic without extensive knowledge of VR technology or computer modeling. The latter feature is especially useful in conveying information to students and nontechnical decision makers, demonstrating the impact of each of a complicated set of variables with reproducible results

  9. Trench mouth

    Science.gov (United States)

    ... gingivae). The term trench mouth comes from World War I, when this infection was common among soldiers " ... mouth include: Emotional stress Poor oral hygiene Poor nutrition Smoking Throat, tooth, or mouth infections Trench mouth ...

  10. Pitfalls on the way towards the acceptance of a disposal site of LLW in a densely populated country. The Belgian case

    International Nuclear Information System (INIS)

    Hooft, E.; Decamps, F.

    2000-01-01

    Until the international moratorium of 1983, Belgium relied on sea disposal for its low-level waste. Since then, ONDRAF/NIRAS, the Belgian waste management agency, has launched studies to look for land-based solutions. These studies, which are still on-going, have gone through various phases. The sometimes harsh reactions in public opinion and the recommendations of independent experts, however, progressively led ONDRAF/NIRAS to question its work methodology. January 16, 1998 was a milestone in Belgian's nuclear waste management. On that day, the Belgian federal government opted for a final, or potentially final, solution for the long-term management of short-lived, low-level radioactive waste, a solution that also had to be progressive, flexible, and reversible. At the same time, the government entrusted new missions to ONDRAF/NIRAS in particular that of developing methods to enable the integration of final repository project proposals at the local level and restricted the number of potential sites for final disposal to the four already existing nuclear sites in Belgium and to possibly interested local districts. The government's decision of January 16, 1998, forced ONDRAF/NIRAS to change its strategy. It set up a new work programme and worked out an innovative methodology. This new methodology aims to generate, at the level of the interested towns and villages, draft projects for a final repository supported by a wide public consensus. (author)

  11. Studies on disposal of low-level radioactive wastes in Turkey

    International Nuclear Information System (INIS)

    Uslu, I.; Fields, D.E.; Yalcintas, M.G.

    1989-08-01

    The Turkish Government is in the process of planning two nuclear reactors in Turkey. Studies have begun for improved control of low level wastes (LLW) in Turkey before establishment of these reactors. In this study, the PRESTO-II (Prediction of Radiation Exposures form Shallow Trench Operations) computer code is used to assess the risk associated with the shallow land disposal of low level waste (LLW) in various sites in Turkey. PRESTO-II is a computer code developed under the United States Environmental Protection Agency, Department of Energy and Nuclear Regulatory Commission funding to evaluate possible health effects from radioactive releases from shallow, radioactive waste disposal trenches and from areas contaminated with operational spillage. A preliminary simulation using the PRESTO-II computer code has been run for the site in Koteyli, Balikesir, Turkey. This example simulation was performed using the same radionuclide data set believed representative of the LLW disposal facility in Barnwell, South Carolina. Site environmental variables were selected to typify credible worst case exposure scenarios. Radionuclide inventories are primarily based on estimated waste composition rather than measured values. 9 refs., 4 figs., 1 tab

  12. Studies involving proposed waste disposal facilities in Turkey

    International Nuclear Information System (INIS)

    Uslu, I.; Fields, D.E.; Yalcintas, M.G.

    1987-01-01

    The Turkish government is in the process of planning two nuclear reactors in Turkey. The Turkish Atomic Energy Authority has been given the task of developing plans for improved control of low-level wastes (LLW) in Turkey. Principal sources of radioactive wastes are hospitals, research institutions, biological research centers, universities, industries, and two research reactors in Turkey. These wastes will be treated in a pilot water treatment facility located in Cekmece Nuclear Research and Training Center, Istanbul. In this temporary waste disposal facility, the wastes will be stored in 200-l concrete containers until the establishment of the permanent waste disposal sites in Turkey in 1990. The PRESTO-II (prediction of radiation effects from shallow trench operations) computer code has been applied for the general probable sites for LLW disposal in Turkey. The model is intended to serve as a non-site-specific screening model for assessing radionuclide transport, ensuring exposure, and health impacts to a static local population for a chosen time period, following the end of the disposal operation. The methodology that this code takes into consideration is versatile and explicitly considers infiltration and percolation of surface water into the trench, leaching of radionuclides, vertical and horizontal transport of radionuclides, and use of this contaminated ground water for farming, irrigation, and ingestion

  13. Post-Closure Inspection Report for Corrective Action Unit 404: Roller Coaster Sewage Lagoons and North Disposal Trench Tonopah Test Range, Nevada, Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2001-06-01

    Post-closure monitoring requirements for the Roller Coaster Sewage Lagoons and North Disposal Trench (Corrective Action Unit [CAW 404]) (Figure 1) are described in Closure Report for Corrective Action Unit 404, Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range, Nevada, report number DOE/NV--187. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on September 11, 1998. Permeability results of soils adjacent to the engineered cover and a request for closure of CAU 404 were transmitted to the NDEP on April 29, 1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on May 18, 1999. Post-closure monitoring at CAU 404 consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 19, 2000, and November 21, 2000. The site inspections were conducted after completion of the revegetation activities (October 30, 1997) and NDEP approval of the CR (May 18, 1999). All site inspections were conducted in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C.

  14. Post-Closure Inspection Report for Corrective Action Unit 404: Roller Coaster Sewage Lagoons and North Disposal Trench Tonopah Test Range, Nevada, Calendar Year 2000; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2001-01-01

    Post-closure monitoring requirements for the Roller Coaster Sewage Lagoons and North Disposal Trench (Corrective Action Unit[CAW 404]) (Figure 1) are described in Closure Report for Corrective Action Unit 404, Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range, Nevada, report number DOE/NV-187. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on September 11, 1998. Permeability results of soils adjacent to the engineered cover and a request for closure of CAU 404 were transmitted to the NDEP on April 29, 1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on May 18, 1999. Post-closure monitoring at CAU 404 consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 19, 2000, and November 21, 2000. The site inspections were conducted after completion of the revegetation activities (October 30, 1997) and NDEP approval of the CR (May 18, 1999). All site inspections were conducted in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C

  15. Discussion on some issues for near surface disposal of L/I LW sandy soil

    International Nuclear Information System (INIS)

    Yu Mingde

    2006-01-01

    It is possible that very low level waste (VLLW) is defined from among LLW and disposed of through a simple/easy engineering method. Enhancing the barrier-function of buffer/backfill material will be favorable in a long-term way for controlling long-lived α-nuclides in near field. Designing the trench cover must suit measures to local conditions and lay stress on the key points. For long-term and efficacious supervision on L/I LW disposal facilities, it is very important to change managing ideologies. (authors)

  16. Request for interim approval to operate Trench 94 of the 218-E-12B Burial Ground as a chemical waste landfill for disposal of polychlorinated biphenyl waste in submarine reactor compartments. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, G.D.

    1994-06-01

    This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of this waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy`s (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS.

  17. Request for interim approval to operate Trench 94 of the 218-E-12B Burial Ground as a chemical waste landfill for disposal of polychlorinated biphenyl waste in submarine reactor compartments

    International Nuclear Information System (INIS)

    Cummins, G.D.

    1994-06-01

    This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of this waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy's (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS

  18. Ensuring robust decisions and deployable solutions in UK LLW management

    International Nuclear Information System (INIS)

    Clark, Matthew

    2014-01-01

    The Nuclear Decommissioning Authority (NDA) is responsible for the decommissioning and site restoration of civil nuclear liabilities in the UK. Our decommissioning programme will last over 100 years and generate approximately 3.8 million m3 of LLW, three quarters of which will be VLLW. As well as decommissioning sites, our estate includes operations, such as power generation at Wylfa and reprocessing and waste management at Sellafield. As a result we have a clear interest in effective and affordable management of low level waste. This is further enhanced by two important aspects: our role in developing and implementing strategy for the management of nuclear industry LLW in the UK and our ownership of the Low Level Waste Repository, a critical part of the UK's radioactive waste management infrastructure. Disposal capacity at LLWR is a precious resource; recognition of this fact has provided effective leverage to changing the way LLW is managed in the UK. In 2010 we published the UK Nuclear Industry LLW Strategy which comprised three main themes: the waste hierarchy; making the best use of existing LLW management assets; and, the need for new fit-for-purpose waste management routes. In order to preserve disposal capacity at LLWR we wanted to increase choice for organisations that manage LLW. Regulation of the LLW management has also had to keep pace with and enable this change. Increasing choice requires an increased focus on making robust, and not always easy, decisions. In the past, 'LLW' was simply consigned for disposal at LLWR, now LLW managers have to make decisions between clearance, exemption, reuse, recycling, incineration and disposal. Arguably, these decisions become more finely balanced at the lower end of the LLW spectrum. In the UK, a number of tools and sources of support are in place to help with this process, including: the National LLW Programme; good practice guidance (industry led) on assessing Best Available Techniques; and a

  19. Implementation of Waste Tracking System for LLW and MLW

    International Nuclear Information System (INIS)

    Won, Y. S.; Lee, K. H.; Kim, H. J.; Lee, K. H.

    2010-01-01

    The real-time Waste Tracking System (WTS) has been implemented for the integrated management of LLW and MLW from the receiving time at the production area till the managing period after the shutdown of disposal site. The relevant information by each process on take-over and receiving plan, preliminary inspection, receiving, transportation, site inspection, disposal and shutdown is over all managed by WTS

  20. The Yami's opposition to the Lanyu LLW storage installation

    International Nuclear Information System (INIS)

    Li, K.K.; Chang, S.Y.

    1993-01-01

    Since 1982, the solidified low-level radioactive wastes (LLW) in Taiwan, regardless of the origins, have been sent to Lanyu for interim storage. Lanyu is a small island located 80 kilometers southeast of Taiwan. Its unique Polynesian cultural characteristics make it an attractive tourist spot. Dissatisfaction of being the commonly neglected powerless minority, in addition to the political claims from the outside environmental activists made the majority of the Lanyu residents oppose the operation of the storage facility. Approximately 80,000 drums of these wastes have been sent to Lanyu. Although the radiological monitoring results demonstrated that the current operation causes negligible impact on the environment. Accounting for the fast changing social and political situations in Taiwan today, without a good public acceptance program for both sides, the continuous operation of the Lanyu LLW storage facility until the year 2002, at which time the LLW disposal facility will be commissioned, could be in limbo

  1. Geohydrological considerations in land disposal of LLW

    International Nuclear Information System (INIS)

    Yeh, G.T.; Tamura, T.

    1981-01-01

    The geohydrological and geochemical factors that affect the transport, transfer, and transformation of the waste in the aquifer system as a result of shallow land burial practices are discussed. They include surface topography and its character, the extent of the aquifer, nearby surface water bodies, groundwater basin divide, watershed boundaries, rainfall rate, infiltration from surface water bodies, potential evapotranspiration, hydraulic conductivity, water capacity, porosity, compressibility of the matrix, dispersivity, hydrolysis, photolysis, oxidation, volatilization, biolysis, precipitation, mineral comosition, and flow dynamics. Depending on the availability of data and the detail of information desired, three levels of analyses may be undertaken. Two examples are used to illustrate these three levels of analyses using hypothetical parameters. The examples are constructed to represent the leaching from wet water body and shallow burials, respectively. The former typifies a class of problems of groundwater contamination from coal-catching basins and uranium mill tailings. The latter represents classical examples of shallow land burials such as coal solid wastes, chemical dumping and sanitary landfill

  2. Greater-confinement disposal

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Schubert, J.P.

    1989-01-01

    Greater-confinement disposal (GCD) is a general term for low-level waste (LLW) disposal technologies that employ natural and/or engineered barriers and provide a degree of confinement greater than that of shallow-land burial (SLB) but possibly less than that of a geologic repository. Thus GCD is associated with lower risk/hazard ratios than SLB. Although any number of disposal technologies might satisfy the definition of GCD, eight have been selected for consideration in this discussion. These technologies include: (1) earth-covered tumuli, (2) concrete structures, both above and below grade, (3) deep trenches, (4) augered shafts, (5) rock cavities, (6) abandoned mines, (7) high-integrity containers, and (8) hydrofracture. Each of these technologies employ several operations that are mature,however, some are at more advanced stages of development and demonstration than others. Each is defined and further described by information on design, advantages and disadvantages, special equipment requirements, and characteristic operations such as construction, waste emplacement, and closure

  3. Building Confidence in LLW Performance Assessments - 13386

    Energy Technology Data Exchange (ETDEWEB)

    Rustick, Joseph H.; Kosson, David S.; Krahn, Steven L.; Clarke, James H. [Vanderbilt University, Department of Civil and Environmental Engineering and Consortium for Risk Evaluation with Stakeholder Participation, Nashville, Tennessee, 37235 (United States)

    2013-07-01

    The performance assessment process and incorporated input assumptions for four active and one planned DOE disposal sites were analyzed using a systems approach. The sites selected were the Savannah River E-Area Slit and Engineered Trenches, Hanford Integrated Disposal Facility, Idaho Radioactive Waste Management Complex, Oak Ridge Environmental Management Waste Management Facility, and Nevada National Security Site Area 5. Each disposal facility evaluation incorporated three overall system components (1) site characteristics (climate, geology, geochemistry, etc.), (2) waste properties (waste form and package), and (3) engineered barrier designs (cover system, liner system). Site conceptual models were also analyzed to identity the main risk drivers and risk insights controlling performance for each disposal facility. (authors)

  4. Building Confidence in LLW Performance Assessments - 13386

    International Nuclear Information System (INIS)

    Rustick, Joseph H.; Kosson, David S.; Krahn, Steven L.; Clarke, James H.

    2013-01-01

    The performance assessment process and incorporated input assumptions for four active and one planned DOE disposal sites were analyzed using a systems approach. The sites selected were the Savannah River E-Area Slit and Engineered Trenches, Hanford Integrated Disposal Facility, Idaho Radioactive Waste Management Complex, Oak Ridge Environmental Management Waste Management Facility, and Nevada National Security Site Area 5. Each disposal facility evaluation incorporated three overall system components (1) site characteristics (climate, geology, geochemistry, etc.), (2) waste properties (waste form and package), and (3) engineered barrier designs (cover system, liner system). Site conceptual models were also analyzed to identity the main risk drivers and risk insights controlling performance for each disposal facility. (authors)

  5. Development of the advanced package system for miscellaneous LLW

    International Nuclear Information System (INIS)

    Miyamoto, K.

    1991-01-01

    Miscellaneous LLW (low-level radioactive miscellaneous solid wastes) such as parts of machines, pieces of piping, HEPA filter, incineration ashes from nuclear power plants will be disposed in shallow land after stuffing into 200 liter steel drums. The package system of these miscellaneous LLW is required to contain such radionuclides as 14 C, 137 Cs and etc. for a few hundred years. The advanced package system for miscellaneous LLW has been developed. This package system is composed of steel drums with resin mortar inner liner and non shrinkage fills with high flowability. Resin mortar liners have stronger water permeability resistance and higher compressive strength than other cement mortars. Strong water permeability resistance of resin mortar liners prevent underground water from infiltration into fills and solid wastes. On the other hand, as the high flowabilities and non shrinkage of this fills give very low gross void fraction of the package system and have strong adsorption ability of radionuclides. In addition, steel drums with resin mortar inner liners have merits in their high density, uniformity and simplicity in manufacturing. Consequently, this package system is promising candidate barrier for the containment of radionuclides from miscellaneous LLW. (J.P.N.)

  6. LLW Forum meeting report

    International Nuclear Information System (INIS)

    1991-01-01

    This document reports the details of the Quarterly Meeting of the Low- Level Radioactive Waste Forum held in San Diego, California during January 23-25, 1991. Topics discussed include: State and Compact Progress Reports; Legal Updates; Update on Technical Assistance; Advanced Notice of Proposed Rulemaking Regarding Surcharge Rebates; Update on TCC Activities; NRC Update; Disposal of Commercial Mixed Waste; Update on EPA Activities; ACNW Working Group on Mixed Waste; National Profile on Mixed Waste; Commercial Perspective on Mixed Waste; Update on DOT Activities; Source Terms; Materials and Waste; Storage: and Waste Acceptance Criteria and Packaging

  7. LLW Forum meeting report, May 7--9, 1997

    International Nuclear Information System (INIS)

    Norris, C.; Brown, H.; Lovinger, T.; Scheele, L.; Shaker, M.A.

    1997-05-01

    The Low-Level Radioactive Waste Forum met in Chicago, Illinois, on may 7--9, 1997. Twenty-three Forum Participants, Alternate Forum Participants, and meeting designees representing 20 compacts and states participated. A report on the meeting is given under the following subtitles: New developments in states and compacts; Upgrading an existing disposal facility; Revisions to DOE Order 5820 re DOE waste management; Conference of radiation control program directors: Recent and upcoming activities; National Conference of State Legislatures' (NCSL) low-level radioactive waste working group: Recent and upcoming activities; Executive session; LLW forum business session; Public involvement and risk communication: Success at West Valley, New York; DOE low-level waste management program; impact of the International Atomic Energy Agency's convention on waste; Panel discussion: The environmental justice concept--Past, present and future; New technologies for processing and disposal of LLRW; High-level and low-level radioactive waste: A dialogue on parallels and intersections; Draft agreement re uniform application of manifesting procedures; Regulatory issues focus; LLW forum October 1997 agenda planning; Resolutions; LLW forum regulatory issues discussion group meets; and Attendance

  8. Phoenix Trenches

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Annotated Version [figure removed for brevity, see original site] Left-eye view of a stereo pair [figure removed for brevity, see original site] Right-eye view of a stereo pair This image is a stereo, panoramic view of various trenches dug by NASA's Phoenix Mars Lander. The images that make up this panorama were taken by Phoenix's Surface Stereo Imager at about 4 p.m., local solar time at the landing site, on the 131st, Martian day, or sol, of the mission (Oct. 7, 2008). In figure 1, the trenches are labeled in orange and other features are labeled in blue. Figures 2 and 3 are the left- and right-eye members of a stereo pair. For scale, the 'Pet Donkey' trench just to the right of center is approximately 38 centimeters (15 inches) long and 31 to 34 centimeters (12 to 13 inches) wide. In addition, the rock in front of it, 'Headless,' is about 11.5 by 8.5 centimeters (4.5 by 3.3 inches), and about 5 centimeters (2 inches) tall. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Bench-scale treatability testing of biological, UV oxidation, distillation, and ion-exchange treatment of trench water from a low-level radioactive waste disposal area at West Valley, New York

    Energy Technology Data Exchange (ETDEWEB)

    Sundquist, J.A.; Gillings, J.C. [Ecology and Environment, Inc. (United States); Sonntag, T.L. [New York State Energy Research and Development Authority (United States); Denault, R.P. [Pacific Nuclear, Inc. (United States)

    1993-03-01

    Ecology and Environment, Inc. (E and E), under subcontract to Pacific Nuclear Services (PNS), conducted for the New York State Energy Research and Development Authority (NYSERDA) treatability tests to support the selection and design of a treatment system for leachate from Trench 14 of the West Valley State-Licensed, Low-Level Radioactive Waste Disposal Area (SDA). In this paper E and E presents and discusses the treatability test results and provides recommendations for the design of the full-scale treatment system.

  10. Disposal of radioactive waste material

    International Nuclear Information System (INIS)

    Cairns, W.J.; Burton, W.R.

    1984-01-01

    A method of disposal of radioactive waste consists in disposing the waste in trenches dredged in the sea bed beneath shallow coastal waters. Advantageously selection of the sites for the trenches is governed by the ability of the trenches naturally to fill with silt after disposal. Furthermore, this natural filling can be supplemented by physical filling of the trenches with a blend of absorber for radionuclides and natural boulders. (author)

  11. Evaluation of shale hosted low-level waste disposal sites in semi-arid environments: Final report

    International Nuclear Information System (INIS)

    Roggenthen, W.M.; Rahn, P.H.; Arthur, R.C.; Miller, J.R.; Bangsund, W.J.; Eberlin, J.

    1985-09-01

    This report covers the findings of a multidisciplinary investigation intended to delineate critical factors and concerns associated with shale hosted, low-level radioactive waste disposal sites located in semiarid environments. The investigations focus primarily upon concerns regarding the hydrology, geochemistry, and meteorology of such an environment. The studies described within this report specifically do not constitute an evaluation of any one particular site nor even a particular class of sites. Rather, it is the intention of the report to present data and insights that would assist private concerns and governmental agencies in the efficient and prudent development of such disposal areas. This report assumes that the hypothetical waste site in question would be developed as a trench type operation similar to that used at Barnwell, South Carolina, with variations upon the techniques used at Beatty Flat, Nevada, and Hanford, Washington. The trench design (Figures 1 and 2) is assumed to be similar to that generic design described in ''Procedures and Technology for Shallow Land Burial, DOE/LLw-13Td, 1983) although it is also assumed that improvements and adaptations will be made upon this basic design to meet the individual needs of a particular site. During the preparation of this report it became apparent that new types of trench design are being studied. Discussions of these trench design proposals are not central to this report. The examples of trench design in Figures 1 and 2 are presented only to give an idea as to the general philosophy of construction of shallow burial facilities

  12. Studies involving proposed waste disposal facilities in Turkey

    International Nuclear Information System (INIS)

    Uslu, I.; Fields, D.E.; Yalcintas, M.G.

    1987-01-01

    Today principal sources of radioactive wastes are hospitals, research institutions, biological research centers, universities, industries and two research reactors in Turkey. These wastes will be treated in a pilot waste treatment facility located in Cekmece Nuclear Research and Training Center, Istanbul. In this temporary waste disposal facility, the wastes will be stored in 200 liter concrete containers until the establishment of the permanent waste disposal sites in Turkey, in 1990. The PRESTO - II (Prediction of Radiation Effects From Shallow Trench Operations) computer code was applied for the general probable sites for LLW disposal in Turkey. The model is non-site specific screening model for assessing radionuclide transport, ensuring exposure, and health impacts to a static local population for a chosen time period, following the end of the disposal operation. The methodology that this codes takes into consideration is versatile and explicitly considers infiltration and percolation of surface water into the trench, leaching of radionuclides, vertical and horizontal transport of radionuclides and use of this contaminated ground water for farming, irrigation, and ingestion

  13. Preliminary fee methodology for recovering GTCC-LLW management costs

    International Nuclear Information System (INIS)

    Clark, L.L.

    1990-06-01

    The US Department of Energy (DOE) is currently planning a fee to recover costs of managing Greater-Than-Class-C Low-Level Waste (GTCC-LLW). A cash flow basis will be used for fee calculations to ensure recovery of all applicable program costs. Positive cash flows are revenues received from waste generators. Negative cash flows are program expenses for storage, transportation, treatment, and disposal of the wastes and for program development, evaluation, and administration. Program balances are the net result of positive and negative cash flows each year. The methodology calculates fees that will recovery all program expenses taking into account cost inflation. 3 refs., 1 tab

  14. Preliminary low-level waste feed definition guidance - LLW pretreatment interface

    International Nuclear Information System (INIS)

    Shade, J.W.; Connor, J.M.; Hendrickson, D.W.; Powell, W.J.; Watrous, R.A.

    1995-02-01

    The document describes limits for key constituents in the LLW feed, and the bases for these limits. The potential variability in the stream is then estimated and compared to the limits. Approaches for accomodating uncertainty in feed inventory, processing strategies, and process design (melter and disposal system) are discussed. Finally, regulatory constraints are briefly addressed

  15. LLW Notes, Volume 12, Number 3

    International Nuclear Information System (INIS)

    Norris, C.; Brown, H.; Colsant, J.; Lovinger, T.; Scheele, L.; Shaker, M.A.

    1997-03-01

    Contents include articles entitled: California DHS sues US Interior Department to compel land transfer; LLW Forum holds winter meeting; LLW Forum waste information working group meets; LLW Forum regulatory issues discussion group meets; Envirocare investigation transferred to feds; Host state TCC meets in Laughlin, Nevada; BLM to require new permit for California site testing; Federal agencies and committees; Pena sworn in as Energy Secretary, Grumbly departs DOE; U.S. Supreme Court tackles property rights issues; GAO to study DOI's actions; Congress scrutinizes FY '98 budget requests; and Senate committee passes high-level waste bill: Clinton threatens to veto

  16. Selection of models to calculate the LLW source term

    International Nuclear Information System (INIS)

    Sullivan, T.M.

    1991-10-01

    Performance assessment of a LLW disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the source term). The focus of this work is to develop a methodology for calculating the source term. In general, the source term is influenced by the radionuclide inventory, the wasteforms and containers used to dispose of the inventory, and the physical processes that lead to release from the facility (fluid flow, container degradation, wasteform leaching, and radionuclide transport). In turn, many of these physical processes are influenced by the design of the disposal facility (e.g., infiltration of water). The complexity of the problem and the absence of appropriate data prevent development of an entirely mechanistic representation of radionuclide release from a disposal facility. Typically, a number of assumptions, based on knowledge of the disposal system, are used to simplify the problem. This document provides a brief overview of disposal practices and reviews existing source term models as background for selecting appropriate models for estimating the source term. The selection rationale and the mathematical details of the models are presented. Finally, guidance is presented for combining the inventory data with appropriate mechanisms describing release from the disposal facility. 44 refs., 6 figs., 1 tab

  17. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was

  18. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  19. LLW notes. Volume 11, No.8

    International Nuclear Information System (INIS)

    1996-12-01

    'LLW Notes' is distributed by Afton Associates, Inc. to Low-Level Radioactive Waste Forum Participants and other state, and compact officials identified by those Participants to receive 'LLW Notes'. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  20. LLW notes. Vol. 11, No. 1

    International Nuclear Information System (INIS)

    1996-02-01

    'LLW Notes' is distributed by Afton Associates, Inc. to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive 'LLW Notes'. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  1. LLW notes. Vol. 11, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    `LLW Notes` is distributed by Afton Associates, Inc. to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive `LLW Notes`. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  2. LLW notes, Vol. 11, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    `LLW Notes` is distributed by Afton Associates, Inc. to Low-Level Radioactive Waste Forum Participants and other state, and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  3. LLW notes, Vol. 11, No. 2

    International Nuclear Information System (INIS)

    1996-03-01

    'LLW Notes' is distributed by Afton Associates, Inc. to Low-Level Radioactive Waste Forum Participants and other state, and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  4. Flow and transport at the Las Cruces trench site: Experiment IIb

    International Nuclear Information System (INIS)

    Vinson, J.; Hills, R.G.; Wierenga, P.J.; Young, M.H.

    1997-07-01

    The US Nuclear Regulatory Commission (NRC) has been directed by Congress in the Low Level Waste Policy Act of 1980 to develop regulatory guidance and assist the individual states and compacts in siting and assessing future low level radioactive waste (LLW) disposal facilities. Three water flow and solute transport experiments were performed as part of a comprehensive field trench study near Las Cruces, New Mexico to test deterministic and stochastic models of vadose zone flow and transport. This report presents partial results from the third experiment (experiment IIb). Experiments IIa and b were conducted on the North side of the trench, on a plot 1.22 m wide by 12 m long, perpendicular to the trench. The area was drip irrigated during two time periods with water containing a variety of tracers. The advance of the water front during the two irrigation episodes was measured with tensiometers and neutron probes. Solute front positions were determined from soil solution sampling through suction samplers and from disturbed sampling. The results from experiment IIb show predominantly downward water movement through the layered unsaturated soil, as evidenced from neutron probe data and gravimetric sampling. Tritium plumes were only half as deep and half as wide as the water plumes at 310 days after the beginning of experiment IIb. Chromium, applied as Cr(VI), moved a readily as, and similar to tritium, but there was a loss of mass due to reduction of Cr(VI) to Cr(III). Chloride and nitrate, initially present at high concentrations in the soil solution, were displaced by the low concentration irrigation water, resulting in chloride and nitrate concentration distributions that looked like negative images of the tritium distributions. The extensive data presented should serve well as a data base for model testing

  5. Flow and transport at the Las Cruces trench site: Experiment IIb

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, J.; Hills, R.G. [New Mexico State Univ., Las Cruces, NM (United States); Wierenga, P.J.; Young, M.H. [Arizona Univ., Tucson, AZ (United States). Dept. of Soil and Water Science

    1997-07-01

    The US Nuclear Regulatory Commission (NRC) has been directed by Congress in the Low Level Waste Policy Act of 1980 to develop regulatory guidance and assist the individual states and compacts in siting and assessing future low level radioactive waste (LLW) disposal facilities. Three water flow and solute transport experiments were performed as part of a comprehensive field trench study near Las Cruces, New Mexico to test deterministic and stochastic models of vadose zone flow and transport. This report presents partial results from the third experiment (experiment IIb). Experiments IIa and b were conducted on the North side of the trench, on a plot 1.22 m wide by 12 m long, perpendicular to the trench. The area was drip irrigated during two time periods with water containing a variety of tracers. The advance of the water front during the two irrigation episodes was measured with tensiometers and neutron probes. Solute front positions were determined from soil solution sampling through suction samplers and from disturbed sampling. The results from experiment IIb show predominantly downward water movement through the layered unsaturated soil, as evidenced from neutron probe data and gravimetric sampling. Tritium plumes were only half as deep and half as wide as the water plumes at 310 days after the beginning of experiment IIb. Chromium, applied as Cr(VI), moved a readily as, and similar to tritium, but there was a loss of mass due to reduction of Cr(VI) to Cr(III). Chloride and nitrate, initially present at high concentrations in the soil solution, were displaced by the low concentration irrigation water, resulting in chloride and nitrate concentration distributions that looked like negative images of the tritium distributions. The extensive data presented should serve well as a data base for model testing.

  6. Greater-than-Class C low-level radioactive waste characterization. Appendix E-2: Mixed GTCC LLW assessment

    International Nuclear Information System (INIS)

    Kirner, N.P.

    1994-09-01

    Mixed greater-than-Class C low-level radioactive waste (mixed GTCC LLW) is waste that combines two characteristics: it is radioactive, and it is hazardous. This report uses information compiled from Greater-Than-Class C Low-Level Radioactive Waste Characterization: Estimated Volumes, Radionuclide Activities, and Other Characteristics (DOE/LLW 1 14, Revision 1), and applies it to the question of how much and what types of mixed GTCC LLW are generated and are likely to require disposal in facilities jointly regulated by the DOE and the NRC. The report describes how to classify a RCRA hazardous waste, and then applies that classification process to the 41 GTCC LLW waste types identified in the DOE/LLW-114 (Revision 1). Of the 41 GTCC LLW categories identified, only six were identified in this study as potentially requiring regulation as hazardous waste under RCRA. These wastes can be combined into the following three groups: fuel-in decontamination resins, organic liquids, and process waste consisting of lead scrap/shielding from a sealed source manufacturer. For the base case, no mixed GTCC LLW is expected from nuclear utilities or sealed source licensees, whereas only 177 ml of mixed GTCC LLW are expected to be produced by other generators through the year 2035. This relatively small volume represents approximately 40% of the base case estimate for GTCC wastes from other generators. For these other generators, volume estimates for mixed GTCC LLW ranged from less than 1 m 3 to 187 m 3 , depending on assumptions and treatments applied to the wastes

  7. An overview of commercial low-level radioactive waste disposal technology

    International Nuclear Information System (INIS)

    Plummer, T.L.; Morreale, B.J.

    1991-01-01

    The primary objective of low-level radioactive (LLW) waste management is to safely dispose of LLW while protecting the health of the public and the quality of the environment. LLW in the United States is generated through both Department of Energy (DOE) and commercial activities. In this paper, waste from commercial activities will be referred to as ''commercial LLW.'' The DOE waste will not be discussed in this paper. Commercial LLW is waste that is generated by Nuclear Regulatory Commission (NRC) designated licensees or Agreement States. Commercial LLW is generated by nuclear power reactors, hospitals, universities, and manufacturers. This paper will give an overview of the current disposal technologies planned by selected States' for disposing of their LLW and the processes by which those selections were made. 3 refs

  8. 'Strategy is a commodity, implementation is an art' - 2 years of implementation of the UK national LLW strategy

    International Nuclear Information System (INIS)

    Cassidy, Helen; Rossiter, David

    2013-01-01

    The Low Level Waste Repository (LLWR) is the primary facility for disposal of Low Level Waste (LLW) in the United Kingdom (UK), serving the UK nuclear industry and a diverse range of other sectors. Management of LLW in the UK historically was dominated by disposal to the LLWR. The value of the LLWR as a national asset was recognised by the 2007 UK Governmental Policy on management of solid LLW. At this time, analysis of the projected future demand for disposal at LLWR against facility capacity was undertaken identifying a credible risk that the capacity of LLWR would be insufficient to meet future demand if existing waste management practices were perpetuated. To mitigate this risk a National Strategy for the management of LLW in the UK was developed by the Nuclear Decommissioning Authority (NDA), partnered with LLW Repository Ltd. (the organisation established in 2008 to manage the LLWR on behalf of NDA). This strategy was published in 2010 and identified three mechanisms for protection of the capacity of LLWR - application of the Waste Hierarchy by waste producers; optimised use of existing assets for LLW management; and opening of new waste treatment and disposal routes to enable diversion of waste away from the LLWR. (authors)

  9. Low-level radioactive waste disposal technologies used outside the United States

    International Nuclear Information System (INIS)

    Templeton, K.J.; Mitchell, S.J.; Molton, P.M.; Leigh, I.W.

    1994-01-01

    Low-level radioactive waste (LLW) disposal technologies are an integral part of the waste management process. In the United States, commercial LLW disposal is the responsibility of the State or groups of States (compact regions). The United States defines LLW as all radioactive waste that is not classified as spent nuclear fuel, high- level radioactive waste, transuranic waste, or by-product material as defined in Section II(e)(2) of the Atomic Energy Act. LLW may contain some long-lived components in very low concentrations. Countries outside the United States, however, may define LLW differently and may use different disposal technologies. This paper outlines the LLW disposal technologies that are planned or being used in Canada, China, Finland, France, Germany, Japan, Sweden, Taiwan, and the United Kingdom (UK)

  10. Greater-than-Class C low-level radioactive waste characterization. Appendix E-3: GTCC LLW assumptions matrix

    International Nuclear Information System (INIS)

    1995-01-01

    This study identifies four categories of GTCC LLW: nuclear utility; sealed sources; DOE-held; and other generators. Within each category, inventory and projection data are modeled in three scenarios: (1) Unpackaged volume--this is the unpackaged volume of waste that would exceed Class C limits if the waste calculation methods in 10 CFR 61.55 were applied to the discrete items before concentration averaging methods were applied to the volume; (2) Not-concentration-averaged (NCA) packaged volume--this is the packaged volume of GTCC LLW assuming that no concentration averaging is allowed; and (3) After-concentration-averaging (ACA) packaged volume--this is the packaged volume of GTCC LLW, which, for regulatory or practical reasons, cannot be disposed of in a LLW disposal facility using allowable concentration averaging practices. Three cases are calculated for each of the volumes described above. These values are defined as the low, base, and high cases. The following tables explain the assumptions used to determine low, base, and high case estimates for each scenario, within each generator category. The appendices referred to in these tables are appendices to Greater-Than-Class C Low-Level Radioactive Waste Characterization: Estimated Volumes, Radionuclide Activities, and Other Characteristics (DOE/LLW-114, Revision 1)

  11. Onsite LLW storage at Cook

    International Nuclear Information System (INIS)

    MacRae, W.T.

    1994-01-01

    The Donald C. Cook nuclear plant has gained much experience through the onsite storage of low-level radioactive waste. Owned and operated by the Indiana Michigan Power Company, which is owned by American Electric Power, the plant is located in Bridgman, Michigan, on the southeast side of Lake Michigan, about 50 miles from Chicago. In November 1990, waste generators in the state of Michigan were denied access to licensed low-level waste disposal sites because of a lack of progress by the state in developing its own disposal site. Because of this lack, wastes from the Cook plant have been stored onsite for three years. This article covers four issues related to the Cook nuclear plant's experience in the low-level waste storage: storage capacity and waste generation rates, waste form and packages, regulatory issues, and the monitoring of the waste

  12. Comparison of low-level waste disposal programs of DOE and selected international countries

    International Nuclear Information System (INIS)

    Meagher, B.G.; Cole, L.T.

    1996-06-01

    The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada's first demonstration LLW disposal facility

  13. Disposal of low-level and mixed low-level radioactive waste during 1990

    International Nuclear Information System (INIS)

    1993-08-01

    Isotopic inventories and other data are presented for low-level radioactive waste (LLW) and mixed LLW disposed (and occasionally stored) during calendar year 1990 at commercial disposal facilities and Department of Energy (DOE) sites. Detailed isotopic information is presented for the three commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. Less information is presented for the Envirocare disposal facility located near Clive, UT, and for LLW stored during 1990 at the West Valley site. DOE disposal information is included for the Savannah River Site (including the saltstone facility), Nevada Test Site, Los Alamos National Laboratory, Idaho National Engineering Laboratory, Hanford Site, Y-12 Site, and Oak Ridge National Laboratory. Summary information is presented about stored DOE LLW. Suggestions are made about improving LLW disposal data

  14. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  15. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  16. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    Austad, S. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Guillen, L. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKnight, C. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ferguson, D. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  17. Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste

    International Nuclear Information System (INIS)

    Porter, C.L.; Widmayer, D.A.

    1995-09-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities

  18. Low-level radioactive waste (LLW) management at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Becker, B.D.; Gertz, C.P.; Clayton, W.A.; Crowe, B.M.

    1998-01-01

    In 1978, the Department of Energy, Nevada Operations Office (DOE/NV), established a managed LLW disposal project at the Nevada Test Site (NTS). Two, sites which were already accepting limited amounts of on-site generated waste for disposal and off-site generated Transuranic Waste for interim storage, were selected to house the disposal facilities. In those early days, these sites, located about 15 miles apart, afforded the DOE/NV the opportunity to use at least two technologies to manage its waste cost effectively. The Area 5 Radioactive Waste Management Site (RWMS) uses engineered shallow-land burial cells to dispose packaged waste while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. The paper describes the technical attributes of both Area 5 and Area 3 facilities, the acceptance process, the disposal processes, and present and future capacities of both sites

  19. Department of Energy low-level radioactive waste disposal concepts

    International Nuclear Information System (INIS)

    Ozaki, C.; Page, L.; Morreale, B.; Owens, C.

    1990-01-01

    The Department of Energy manages its low-level waste (LLW), regulated by DOE Order 5820.2A by using an overall systems approach. This systems approach provides an improved and consistent management system for all DOE LLW waste, from generation to disposal. This paper outlines six basic disposal concepts used in the systems approach, discusses issues associated with each of the concepts, and outlines both present and future disposal concepts used at six DOE sites

  20. Addendum to the Closure Report for Corrective Action Unit 404: Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Lynn Kidman

    2009-02-01

    This document constitutes an addendum to the September 1998, Closure Report for Corrective Action Unit 404: Roller Coaster Lagoons and Trench, Tonopah Test Range, Nevada as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the modification of the UR for CAS TA-03-001-TARC Roller Coaster Lagoons. This UR was established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and was based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This reevaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to modify the UR for CAS TA-03

  1. In-Situ Grouting Treatability Study for the Idaho National Engineering and Environmental Laboratory Subsurface Disposal Area-Transuranic Pits and Trenches

    International Nuclear Information System (INIS)

    Loomis, G. G.; Jessmore, J. J.; Sehn, A. L.; Miller, C. M.

    2002-01-01

    At the Idaho National Engineering and Environmental Laboratory (INEEL), a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) treatability study is being performed to examine the technology of in situ grouting for final in situ disposal of buried mixed transuranic (TRU) waste. At the INEEL, there is over 56,000 cubic meters of waste commingled with a similar amount of soil in a shallow (3-5 m) land burial referred to as Waste Area Group 7-13/14. Since this buried waste has been declared on the National Priorities List under CERCLA, it is being managed as a superfund site. Under CERCLA, options for this waste include capping and continued monitoring, retrieval and ex situ management of the retrieved waste, in situ stabilization by vitrification or grouting, in situ thermal dissorption, or some combination of these options. In situ grouting involves injecting grout at high pressures (400 bars) directly into the waste to create a solid monolith. The in situ grouting process is expected to both stabilize the waste against subsidence and provide containment against migration of waste to the Snake River Plain Aquifer lying 150-200 m below the waste. The treatability study involves bench testing, implementability testing, and field testing. The bench testing was designed to pick three grouts from six candidate grouts for the implementability field testing in full scale which were designed to down-select from those three grouts to one grout for use in a full-scale field demonstration of the technology in a simulated test pit. During the bench testing, grouts were evaluated for durability using American Nuclear Society 16.1 Leach Protocol as well as evaluating the effect on physical parameters such as hydraulic conductivity and compressive strength due to the presence of interferences such as soil, organic sludge, and nitrate salts. During full-scale implementability testing, three grouts were evaluated for groutability and monolith formation

  2. Current status of sea transport of nuclear fuel materials and LLW in Japan

    International Nuclear Information System (INIS)

    Kitagawa, Hiroshi; Akiyama, Hideo

    2000-01-01

    Along with the basic policy of the nuclear fuel cycle of Japan, many fuel cycle facilities have been already constructed in Rokkasho-Mura, Aomori prefecture, such as the uranium enrichment plant, the low level waste disposal center and the receiving pool of the spent nuclear fuels for reprocessing. These facilities belong to the Japan Nuclear Fuel Limited. (JNFL). Domestic sea transport of the spent nuclear fuels (SF) has been carried out since 1977 to the Tokai Reprocessing Plant, and the first sea transport of the SF to the fuel cycle facility in Rokkasho-Mura was done in Oct, 1998 using a new exclusive ship 'Rokuei-Maru'. Sea transport of the low level radioactive wastes (LLW) has been carried out since 1992 to the Rokkasho LLW Disposal Center, and about 130,000 LLW drams were transported from the nuclear power plant sites. These sea transport have demonstrated the safety of the transport of the nuclear fuel cycle materials. It is hoped that the safe sea transport of the nuclear fuel materials will contribute to the more progress of the nuclear fuel cycle activities of Japan. (author)

  3. Strategic environmental assessment for UK LLW management - 16392

    International Nuclear Information System (INIS)

    Craze, Andrew; Clark, Matthew; Davis, Pete

    2009-01-01

    NDA is delivering a Strategic Environmental Assessment (SEA) to underpin the UK Nuclear Industry Low Level Waste Strategy. The purpose of this assessment is embed sustainability issues into our decision making and to fulfill our requirements under the European Union's Strategic Environmental Assessment (SEA) Directive (2004/42/EU) and transposing UK Regulations, and to underpin the development of the strategy. The outputs of the SEA have provided input into particular aspects of the strategy, leading to a more robust and better informed result. Development of options to be assessed under the SEA has looked at a number of factors, including: - what the strategy is aiming to achieve - expectation from stakeholders as to what should be addressed - consideration of tactical approaches to implementation of the strategy in addition to high level strategic issues - links to other projects and programmes (for example the Environmental Safety Case for the Low Level Waste Repository. The SEA aims to provide a robust assessment of the environmental and sustainability impacts of alternative strategies for providing continued capability and capacity for the management and disposal of LLW in the UK. The assessment also considers other, more tactical, issues around implementation of the strategy, for example: issues around the location of LLW management facilities; the environmental impacts of alternative waste treatment options (metal recycling etc); considerations of alternative approaches to the classification of radioactive waste and opportunities that would result. Critical to the development of the SEA has been the involvement of statutory and non-statutory stakeholders, who have informed both the output and the approach taken. (authors)

  4. Cemented materials in the LLW and MLW Spanish disposal

    Directory of Open Access Journals (Sweden)

    Guerrero, A.

    1999-09-01

    Full Text Available BWR and PWR cemented matrices to confine low and medium simulated liquid radioactive wastes have been submitted to the leaching process in de-ionized water at 20ºC and 40ºC, to obtain the medium leachability index (L and the effective diffusion coefficient (De of different ions. Otherwise, it has been studied the associated expansion of the backfilling mortar of the concrete containers of the Spanish repository of these wastes, due to a possible attack of the sulfate ions coming from the cemented matrices.

    Matrices cementicias confinantes tipo BWR y PWR de residuos simulados de baja y media radiactividad se han sometido a procesos de lixiviación en agua desionizada a 20ºC y 40ºC, obteniéndose los índices medios de lixiviación (L y el coeficiente de difusión efectiva (De de algunos iones. Por otra parte, se ha estudiado la expansión asociada a un mortero de relleno constitutivo del depósito de almacenamiento de los residuos, por posible ataque de los iones SO4-2 procedentes de las matrices.

  5. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE

  6. Summary of EPA's risk assessment results from the analysis of alternative methods of low-level waste disposal

    International Nuclear Information System (INIS)

    Bandrowski, M.S.; Hung, C.Y.; Meyer, G.L.; Rogers, V.C.

    1987-01-01

    Evaluation of the potential health risk and individual exposure from a broad number of disposal alternatives is an important part of EPA's program to develop generally applicable environmental standards for the land disposal of low-level radioactive wastes (LLW). The Agency has completed an analysis of the potential population health risks and maximum individual exposures from ten disposal methods under three different hydrogeological and climatic settings. This paper briefly describes the general input and analysis procedures used in the risk assessment for LLW disposal and presents their preliminary results. Some important lessons learned from simulating LLW disposal under a large variety of methods and conditions are identified

  7. LLW Notes: Volume 10, Number 3

    International Nuclear Information System (INIS)

    1995-04-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  8. LLW notes: Volume 10, Number 5

    International Nuclear Information System (INIS)

    1995-07-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  9. LLW notes: Volume 10, Number 6

    International Nuclear Information System (INIS)

    Norris, C.

    1995-09-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  10. LLW Notes: Volume 10, Number 4

    International Nuclear Information System (INIS)

    1995-06-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  11. LLW Notes: Volume 10, Number 7

    International Nuclear Information System (INIS)

    Norris, C.

    1995-10-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  12. LLW notes: Volume 10, Number 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  13. LLW Notes: Volume 10, Number 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  14. LLW Notes: Volume 10, Number 7

    Energy Technology Data Exchange (ETDEWEB)

    Norris, C. [ed.] [Afton Associates, Inc., Washington, DC (United States)

    1995-10-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  15. LLW Notes: Volume 10, Number 8

    International Nuclear Information System (INIS)

    Norris, C.

    1995-01-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  16. LLW notes: Volume 10, Number 6

    Energy Technology Data Exchange (ETDEWEB)

    Norris, C. [ed.] [Afton Associates, Inc., Washington, DC (United States)

    1995-09-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  17. Retrieval of buried depleted uranium from the T-1 trench

    International Nuclear Information System (INIS)

    Burmeister, M.; Castaneda, N.; Hull, C.; Barbour, D.; Quapp, W.J.

    1998-01-01

    The Trench 1 remediation project will be conducted this year to retrieve depleted uranium and other associated materials from a trench at Rocky Flats Environmental Technology Site. The excavated materials will be segregated and stabilized for shipment. The depleted uranium will be treated at an offsite facility which utilizes a novel approach for waste minimization and disposal through utilization of a combination of uranium recycling and volume efficient uranium stabilization

  18. Technical feasibility of retrieval within the UK repository concept for ILW/LLW

    International Nuclear Information System (INIS)

    McCall, A.; McKirdy, B.

    2000-01-01

    Nirex is developing a staged, reversible concept for the disposal of ILW and certain LLW in the UK. Within that concept, the retrievability strategy includes the option of keeping open the repository, for an extended period, after all waste has been emplaced. In examining the feasibility of such an approach, a number of key technical issues have been identified and options for addressing these issues have been established. This paper will describe the issues identified and the development of practical solutions for incorporating retrievability within the Nirex concept. (author)

  19. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site - 8422

    International Nuclear Information System (INIS)

    D Wieland; V Yucel; L Desotell; G Shott; J Wrapp

    2008-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators

  20. Taking the UK's national LLW programme from strategy development to implementation - 59059

    International Nuclear Information System (INIS)

    Rossiter, David; O'Donnell, Rachel

    2012-01-01

    In 2008 UK Nuclear Waste Management Ltd (UKNWM) became the Parent Body Organisation (PBO) at the Low Level Waste Repository (LLWR) in the UK. LLWR is the primary disposal facility for the UK's LLW, supporting a wide range of industries across the nuclear power generation, reprocessing, defence, health care, education, and oil and gas sectors. One of the key tasks following the appointment of the new PBO was to work with the Nuclear Decommissioning Authority (NDA) to develop a national strategy for LLW generated in the UK, predominantly in the NDA estate. The new National Strategy for LLW was required to address the gap between the forecast waste arisings and predicted capacity at LLWR. The National Strategy for LLW Management was published in August 2010 following an 18 month development period. The main focus of the strategy is on three areas: - Application of the waste management hierarchy to extend the life of LLWR and ensure waste is managed in a risk-based, fit-for-purpose manner - Making best use of existing assets such as transport, packaging, treatment and disposal facilities - Opening up new fit-for-purpose waste management routes to divert waste away from LLWR Developing a robust strategy is vital to provide strategic direction to Government, waste producers, regulators, and stakeholders. Once the strategy is developed and approved, the key challenge is then to implement the strategy on a national scale in an efficient and cost-effective manner that delivers maximum value for money to the UK taxpayer. As well as developing the strategy, LLWR has been actively working to develop the enablers to implement the strategy. Since the publication of the strategy in August 2010 LLWR has been re-organised to reflect the shift in focus, from strategy development to implementation and delivery of the strategy. New resources have been brought in with international waste management experience to help integrate delivery with waste producers. This paper covers the

  1. Establishment of new disposal capacity for the Savannah River Plant

    International Nuclear Information System (INIS)

    Albenesius, E.L.; Wilhite, E.L.

    1987-01-01

    Two new low-level waste (LLW) disposal sites for decontaminated salt solidified with cement and fly ash (saltstone) and for conventional solid LLW are planned for SRP in the next several years. An above-ground vault disposal system for saltstone was designed to minimize impact on the environment by controlling permeability and diffusivity of the waste form and concrete liner. The experimental program leading to the engineered disposal system included formulation studies, multiple approaches to measurement of permeability and diffusivity, extensive mathematical modeling, and large-scale lysimeter tests to validate model projections. The overall study is an example of the systems approach to disposal site design to achieve a predetermined performance objective. The same systems approach is being used to develop alternative designs for disposal of conventional LLW at the Savannah River Plant. 14 figures

  2. Radiological performance assessment for the E-Area Vaults Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.; Hunt, P.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1994-04-15

    The E-Area Vaults (EAVs) located on a 200 acre site immediately north of the current LLW burial site at Savannah River Site will provide a new disposal and storage site for solid, low-level, non-hazardous radioactive waste. The EAV Disposal Facility will contain several large concrete vaults divided into cells. Three types of structures will house four designated waste types. The Intermediate Level Non-Tritium Vaults will receive waste radiating greater than 200 mR/h at 5 cm from the outer disposal container. The Intermediate Level Tritium Vaults will receive waste with at least 10 Ci of tritium per package. These two vaults share a similar design, are adjacent, share waste handling equipment, and will be closed as one facility. The second type of structure is the Low Activity Waste Vaults which will receive waste radiating less than 200 mR/h at 5 cm from the outer disposal container and containing less than 10 Ci of tritium per package. The third facility, the Long Lived Waste Storage Building, provides covered, long term storage for waste containing long lived isotopes. Two additional types of disposal are proposed: (1) trench disposal of suspect soil, (2) naval reactor component disposal. To evaluate the long-term performance of the EAVs, site-specific conceptual models were developed to consider: (1) exposure pathways and scenarios of potential importance; (2) potential releases from the facility to the environment; (3) effects of degradation of engineered features; (4) transport in the environment; (5) potential doses received from radionuclides of interest in each vault type.

  3. Radiological performance assessment for the E-Area Vaults Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.; Hunt, P.D.

    1994-01-01

    The E-Area Vaults (EAVs) located on a 200 acre site immediately north of the current LLW burial site at Savannah River Site will provide a new disposal and storage site for solid, low-level, non-hazardous radioactive waste. The EAV Disposal Facility will contain several large concrete vaults divided into cells. Three types of structures will house four designated waste types. The Intermediate Level Non-Tritium Vaults will receive waste radiating greater than 200 mR/h at 5 cm from the outer disposal container. The Intermediate Level Tritium Vaults will receive waste with at least 10 Ci of tritium per package. These two vaults share a similar design, are adjacent, share waste handling equipment, and will be closed as one facility. The second type of structure is the Low Activity Waste Vaults which will receive waste radiating less than 200 mR/h at 5 cm from the outer disposal container and containing less than 10 Ci of tritium per package. The third facility, the Long Lived Waste Storage Building, provides covered, long term storage for waste containing long lived isotopes. Two additional types of disposal are proposed: (1) trench disposal of suspect soil, (2) naval reactor component disposal. To evaluate the long-term performance of the EAVs, site-specific conceptual models were developed to consider: (1) exposure pathways and scenarios of potential importance; (2) potential releases from the facility to the environment; (3) effects of degradation of engineered features; (4) transport in the environment; (5) potential doses received from radionuclides of interest in each vault type

  4. Trench 'bathtubbing' and surface plutonium contamination at a legacy radioactive waste site.

    Science.gov (United States)

    Payne, Timothy E; Harrison, Jennifer J; Hughes, Catherine E; Johansen, Mathew P; Thiruvoth, Sangeeth; Wilsher, Kerry L; Cendón, Dioni I; Hankin, Stuart I; Rowling, Brett; Zawadzki, Atun

    2013-01-01

    Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (~12 Bq/L of (239+240)Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest (239+240)Pu soil activity was 829 Bq/kg in a shallow sample (0-1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the 'bathtub' effect.

  5. Trench ‘Bathtubbing’ and Surface Plutonium Contamination at a Legacy Radioactive Waste Site

    Science.gov (United States)

    2013-01-01

    Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (∼12 Bq/L of 239+240Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest 239+240Pu soil activity was 829 Bq/kg in a shallow sample (0–1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the ‘bathtub’ effect. PMID:24256473

  6. Basic approach to the disposal of low level radioactive waste generated from nuclear reactors containing comparatively high radioactivity

    International Nuclear Information System (INIS)

    Moriyama, Yoshinori

    1998-01-01

    Low level radioactive wastes (LLW) generated from nuclear reactors are classified into three categories: LLW containing comparatively high radioactivity; low level radioactive waste; very low level radioactive waste. Spent control rods, part of ion exchange resin and parts of core internals are examples of LLW containing comparatively high radioactivity. The Advisory Committee of Atomic Energy Commission published the report 'Basic Approach to the Disposal of LLW from Nuclear Reactors Containing Comparatively High Radioactivity' in October 1998. The main points of the proposed concept of disposal are as follows: dispose of underground deep enough not be disturb common land use (e.g. 50 to 100 m deep); dispose of underground where radionuclides migrate very slowly; dispose of with artificial engineered barrier which has the same function as the concrete pit; control human activities such as land use of disposal site for a few hundreds years. (author)

  7. Development of multi-purpose containers for managing LLW/VLLW from D and D

    International Nuclear Information System (INIS)

    Lee, Jae Sol; Park, Jae Ho; Sung, Nak Hoon; Yang, Ge Hyung

    2016-01-01

    Radioactive waste container designs should comply with the requirements for safety (i.e., transportation, storage, disposal) and other criteria such as economics and technology. These criteria are also applicable to the future management of the large amount of LLW and VLLW to arise from decontamination and decommissioning (D and D) of nuclear power plants, which have different features compared to that of wastes from operation and maintenance (O and M). This paper proposes to develop a set of standard containers of multi-purpose usage for transportation, storage and disposal. The concepts of the containers were optimized for management of D and D wastes in consideration of national system for radioactive waste management, in particular the Gyeongju Repository and associated infrastructures. A set of prototype containers were designed and built : a soft bag for VLLW, two metallic containers for VLLW/LLW (a standard IP2 container for sea transport and ISO container for road transport). Safety analyses by simulation and tests of these designs show they are in compliance with the regulatory requirements. A further development of a container with concrete is foreseen for 2016

  8. Development of multi-purpose containers for managing LLW/VLLW from D and D

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sol; Park, Jae Ho; Sung, Nak Hoon; Yang, Ge Hyung [KONES Corporation., Seoul (Korea, Republic of)

    2016-06-15

    Radioactive waste container designs should comply with the requirements for safety (i.e., transportation, storage, disposal) and other criteria such as economics and technology. These criteria are also applicable to the future management of the large amount of LLW and VLLW to arise from decontamination and decommissioning (D and D) of nuclear power plants, which have different features compared to that of wastes from operation and maintenance (O and M). This paper proposes to develop a set of standard containers of multi-purpose usage for transportation, storage and disposal. The concepts of the containers were optimized for management of D and D wastes in consideration of national system for radioactive waste management, in particular the Gyeongju Repository and associated infrastructures. A set of prototype containers were designed and built : a soft bag for VLLW, two metallic containers for VLLW/LLW (a standard IP2 container for sea transport and ISO container for road transport). Safety analyses by simulation and tests of these designs show they are in compliance with the regulatory requirements. A further development of a container with concrete is foreseen for 2016.

  9. Spatial and temporal distribution of risks associated with low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Thompson, P.B.

    1988-01-01

    The major purposes of this dissertation are to examine the economic tradeoffs which arise in the process of LLW disposal and to derive a framework within which the impact of these tradeoffs on LLW disposal policy can be analyzed. There are two distinct stages in the disposal of LLW - the transportation of the waste from sources to disposal sites and the disposal of the waste. The levels of costs and risks associated with these two stages depend on the number and location of disposal sites. Having more disposal sites results in lower transportation costs and risks but also in greater disposal costs and risks. The tradeoff between transportation costs and risks can also be viewed as a tradeoff between present and future risks. Therefore, an alteration in the spatial distribution of LLW disposal sites necessarily implies a change in the temporal distribution of risks. These tradeoffs are examined in this work through the use of a transportation model to which probabilistic radiation exposure constraints are added. Future (disposal) risks are discounted. The number and capacities of LLW disposal sites are varied in order to derive a series of system costs and corresponding expected cancers. This provides policy makers with a cost vs. cancers possibility function

  10. Trench reactor: an overview

    International Nuclear Information System (INIS)

    Spinrad, B.I.; Rohach, A.F.; Razzaque, M.M.; Sankoorikal, J.T.; Schmidt, R.S.; Lofshult, J.; Ramin, T.; Sokmen, N.; Lin, L.C.

    1988-01-01

    Recent fast, sodium-cooled reactor designs reflect new conditions. In nuclear energy these conditions are (a) emphasis on maintainability and operability, (b) design for more transparent safety, and (c) a surplus of uranium and enrichment availability that eases concerns about light water reactor fueling costs. In utility practice the demand is for less capital exposure, short construction time, smaller new unit sizes, and low capital cost. The PRISM, SAFR, and integral fast reactor (IFR) concepts are responses to these conditions. Fast reactors will not soon be deployed commercially, so more radical designs can be considered. The trench reactor is the product of such thinking. Its concepts are intended as contributions to the literature, which may be picked up by one of the existing programs or used in a new experimental project. The trench reactor is a thin-slab, pool-type reactor operated at very low power density and- for sodium-modest temperature. The thin slab is repeated in the sodium tank and the reactor core. The low power density permits a longer than conventional core height and a large-diameter fuel pin. Control is by borated steel slabs that can be lowered between the core and lateral sodium reflector. Shutdown is by semaphore slabs that can be swung into place just outside the control slabs. The paper presents major characteristics of the trench reactor that have been changed since the last report

  11. Scenario sensitivity analyses performed on the PRESTO-EPA LLW risk assessment models

    International Nuclear Information System (INIS)

    Bandrowski, M.S.

    1988-01-01

    The US Environmental Protection Agency (EPA) is currently developing standards for the land disposal of low-level radioactive waste. As part of the standard development, EPA has performed risk assessments using the PRESTO-EPA codes. A program of sensitivity analysis was conducted on the PRESTO-EPA codes, consisting of single parameter sensitivity analysis and scenario sensitivity analysis. The results of the single parameter sensitivity analysis were discussed at the 1987 DOE LLW Management Conference. Specific scenario sensitivity analyses have been completed and evaluated. Scenario assumptions that were analyzed include: site location, disposal method, form of waste, waste volume, analysis time horizon, critical radionuclides, use of buffer zones, and global health effects

  12. 1980 state-by-state assessment of low-level radioactive wastes shipped to commercial disposal sites

    International Nuclear Information System (INIS)

    1982-06-01

    Information is presented on the volumes, curie values, sources, and disposal of low-level radioactive wastes (LLW) in each state. The wastes are segmented into 2 broad categories - institutional/industrial and commercial power reactor wastes. The volumes and curie values were obtained from the commercial site operators. The percentage of LLW disposed of at each of the 3 operating disposal sites located at Barnwell, SC, Beatty, NV, and Richland, WA are included

  13. Performance assessment strategy for low-level waste disposal sites

    International Nuclear Information System (INIS)

    Starmer, R.J.; Deering, L.G.; Weber, M.F.

    1988-01-01

    This paper describes US Nuclear Regulatory Commission (NRC) staff views on predicting the performance of low-level radioactive waste disposal facilities. Under the Atomic Energy Act, as amended, and the Low Level Radioactive Waste Policy Act, as amended, the NRC and Agreement States license land disposal of low-level radioactive waste (LLW) using the requirements in 10 CFR Part 61 or comparable state requirements. The purpose of this paper is to briefly describe regulatory requirements for performance assessment in low-level waste licensing, a strategy for performance assessments to support license applications, and NRC staff licensing evaluation of performance assessments. NRC's current activities in developing a performance assessment methodology will provide an overall systems modeling approach for assessing the performance of LLW disposal facilities. NRC staff will use the methodology to evaluate performance assessments conducted by applicants for LLW disposal facilities. The methodology will be made available to states and other interested parties

  14. Low-level radioactive waste disposal operations at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stanford, A.R.

    1997-01-01

    Los Alamos National Laboratory (LANL) generates Low-Level Radioactive Waste (LLW) from various activities: research and development, sampling and storage of TRU wastes, decommissioning and decontamination of facilities, and from LANL's major role in stockpile stewardship. The Laboratory has its own active LLW disposal facility located at Technical Area 54, Area G. This paper will identify the current operations of the facility and the issues pertaining to operating a disposal facility in today's compliance and cost-effective environment

  15. U.S. policy and current practices for blending low-level radioactive waste for disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, David S.; Kim, Chang Lak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-09-15

    In the near future, many countries, including the Republic of Korea, will face a significant increase in low level radioactive waste (LLW) from nuclear power plant decommissioning. The purpose of this paper is to look at blending as a method for enhancing disposal options for low-level radioactive waste from the decommissioning of nuclear reactors. The 2007 U.S. Nuclear Regulatory Commission strategic assessment of the status of the U.S. LLW program identified the need to move to a risk-informed and performance-based regulatory approach for managing LLW. The strategic assessment identified blending waste of varying radionuclide concentrations as a potential means of enhancing options for LLW disposal. The NRC's position is that concentration averaging or blending can be performed in a way that does not diminish the overall safety of LLW disposal. The revised regulatory requirements for blending LLW are presented in the revised NRC Branch Technical Position for Concentration Averaging and Encapsulation (CA BTP 2015). The changes to the CA BTP that are the most significant for NPP operation, maintenance and decommissioning are reviewed in this paper and a potential application is identified for decommissioning waste in Korea. By far the largest volume of LLW from NPPs will come from decommissioning rather than operation. The large volumes in decommissioning present an opportunity for significant gains in disposal efficiency from blending and concentration averaging. The application of concentration averaging waste from a reactor bio-shield is also presented.

  16. U.S. policy and current practices for blending low-level radioactive waste for disposal

    International Nuclear Information System (INIS)

    Kessel, David S.; Kim, Chang Lak

    2016-01-01

    In the near future, many countries, including the Republic of Korea, will face a significant increase in low level radioactive waste (LLW) from nuclear power plant decommissioning. The purpose of this paper is to look at blending as a method for enhancing disposal options for low-level radioactive waste from the decommissioning of nuclear reactors. The 2007 U.S. Nuclear Regulatory Commission strategic assessment of the status of the U.S. LLW program identified the need to move to a risk-informed and performance-based regulatory approach for managing LLW. The strategic assessment identified blending waste of varying radionuclide concentrations as a potential means of enhancing options for LLW disposal. The NRC's position is that concentration averaging or blending can be performed in a way that does not diminish the overall safety of LLW disposal. The revised regulatory requirements for blending LLW are presented in the revised NRC Branch Technical Position for Concentration Averaging and Encapsulation (CA BTP 2015). The changes to the CA BTP that are the most significant for NPP operation, maintenance and decommissioning are reviewed in this paper and a potential application is identified for decommissioning waste in Korea. By far the largest volume of LLW from NPPs will come from decommissioning rather than operation. The large volumes in decommissioning present an opportunity for significant gains in disposal efficiency from blending and concentration averaging. The application of concentration averaging waste from a reactor bio-shield is also presented

  17. Nuclear waste disposal site

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Sanner, W.S. Jr.; Paladino, J.B.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.; Razor, J.E.

    1988-01-01

    This patent describes a disposal site for the disposal of toxic or radioactive waste, comprising: (a) a trench in the earth having a substantially flat bottom lined with a layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for obstructing any capillary-type flow of ground water to the interior of the trench; (b) a non-rigid, radiation-blocking cap formed from a first layer of alluvium, a second layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for blocking any capillary-type flow of water between the layer of alluvium and the rest of the cap, a layer of water-shedding silt for directing surface water away from the trench, and a layer of rip-rap over the silt layer for protecting the silt layer from erosion and for providing a radiation barrier; (c) a solidly-packed array of abutting modules of uniform size and shape disposed in the trench and under the cap for both encapsulating the wastes from water and for structurally supporting the cap, wherein each module in the array is slidable movable in the vertical direction in order to allow the array of modules to flexibly conform to variations in the shape of the flat trench bottom caused by seismic disturbances and to facilitate the recoverability of the modules; (d) a layer of solid, fluent, coarse, granular materials having a high hydraulic conductivity in the space between the side of the modules and the walls of the trench for obstructing any capillary-type flow of ground water to the interior of the trench; and (e) a drain and wherein the layer of silt is sloped to direct surface water flowing over the cap into the drain

  18. Trenching as an exploratory method

    International Nuclear Information System (INIS)

    Hatheway, A.W.; Leighton, F.B.

    1979-01-01

    The critical nature of siting nuclear power plants has led to increased emphasis on exploratory trenching. Trenching is the most definitive of all subsurface exploratory methods; it permits inspection of a continuous geologic section by both geologists and regulatory authorities and makes possible the preparation of a graphic log that delineates both obvious and subtle geologic features. About one of every two nuclear plant licensing efforts utilizes exploratory trenching. Many geologic hazards, such as ''capable'' faults, can be detected from trench exposures; they may otherwise remain undetected. Trenches must be judiciously located, survey-controlled, excavated safely and adequately shored, logged in detail, and properly diagnosed. Useful techniques of trench logging include thorough cleaning of the trench walls, teamwork between geologist and recorder, logging against a carefully surveyed baseline and vertical reference grid, and panoramic photography.Soils, including paleosols, and glacial and glaciofluvial deposits present some of the most difficult media to log. Trench logs must be thoroughly interpreted and correlated so that they document the geologic conditions governing suitability of the site. Age-determination techniques utilized in exploratory trenching include petrographic analyses, quartz inclusion studies, clay mineralogic analyses, and radiometric methods

  19. Alternative concepts for Low-Level Radioactive Waste Disposal: Conceptual design report

    International Nuclear Information System (INIS)

    1987-06-01

    This conceptual design report is provided by the Department of Energy's Nuclear Energy Low-Level Waste Management Program to assist states and compact regions in developing new low-level radioactive waste (LLW) disposal facilities in accordance with the Low-Level Radioactive Waste Policy Amendment Act of 1985. The report provides conceptual designs and evaluations of six widely considered concepts for LLW disposal. These are shallow land disposal (SLD), intermediate depth disposal (IDD), below-ground vaults (BGV), above-ground vaults (AGV), modular concrete canister disposal (MCCD), earth-mounded concrete bunker (EMCB). 40 refs., 45 figs., 77 tabs

  20. High Density Faraday Cup Array or Other Open Trench Structures and Method of Manufacture Thereof

    Science.gov (United States)

    Gilchrist, Kristin Hedgepath (Inventor); Bower, Christopher A. (Inventor); Stoner, Brian R. (Inventor)

    2014-01-01

    A detector array and method for making the detector array. The detector array includes a substrate including a plurality of trenches formed therein, and a plurality of collectors electrically isolated from each other, formed on the walls of the trenches, and configured to collect charged particles incident on respective ones of the collectors and to output from the collectors signals indicative of charged particle collection. In the detector array, adjacent ones of the plurality of trenches are disposed in a staggered configuration relative to one another. The method forms in a substrate a plurality of trenches across a surface of the substrate such that adjacent ones of the trenches are in a staggered sequence relative to one another, forms in the plurality of trenches a plurality of collectors, and connects a plurality of electrodes respectively to the collectors.

  1. Cleanup Verification Package for the 116-K-2 Effluent Trench

    International Nuclear Information System (INIS)

    Capron, J.M.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 116-K-2 effluent trench, also referred to as the 116-K-2 mile-long trench and the 116-K-2 site. During its period of operation, the 116-K-2 site was used to dispose of cooling water effluent from the 105-KE and 105-KW Reactors by percolation into the soil. This site also received mixed liquid wastes from the 105-KW and 105-KE fuel storage basins, reactor floor drains, and miscellaneous decontamination activities

  2. Geochemical effects on the behavior of LLW radionuclides in soil/groundwater environments

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, K.M.; Sterne, R.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-12-31

    Assessing the migration potential of radionuclides leached from low-level radioactive waste (LLW) and decommissioning sites necessitates information on the effects of sorption and precipitation on the concentrations of dissolved radionuclides. Such an assessment requires that the geochemical processes of aqueous speciation, complexation, oxidation/reduction, and ion exchange be taken into account. The Pacific Northwest National Laboratory (PNNL) is providing technical support to the U.S. Nuclear Regulatory Commission (NRC) for defining the solubility and sorption behavior of radionuclides in soil/ground-water environments associated with engineered cementitious LLW disposal systems and decommissioning sites. Geochemical modeling is being used to predict solubility limits for radionuclides under geochemical conditions associated with these environments. The solubility limits are being used as maximum concentration limits in performance assessment calculations describing the release of contaminants from waste sources. Available data were compiled regarding the sorption potential of radionuclides onto {open_quotes}fresh{close_quotes} cement/concrete where the expected pH of the cement pore waters will equal to or exceed 10. Based on information gleaned from the literature, a list of preferred minimum distribution coefficients (Kd`s) was developed for these radionuclides. The K{sub d} values are specific to the chemical environments associated with the evolution of the compositions of cement/concrete pore waters.

  3. Implementation and responsibility for waste disposal : AEC sets up frameworks

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The Atomic Energy Commission approved the report ''measures for treatment and disposal of radioactive waste'' made by its advisory committee; which clarifies where the legal responsibility lies in relation to the waste treatment and disposal. In principle, the waste producers, i.e. the electric power companies should be responsible for the treatment and disposal of low-level radioactive waste and the Government for regulation of the safety of waste management. Then, in connection with a LLW ultimate storage facility planned in Aomori Prefecture, the waste disposal company may be responsible for safety of the LLW management. The disposal of high-level radioactive waste is the responsibility of the Government, the waste producer being responsible for the cost. Contents are the following: organization and responsibility for treatment and disposal of radioactive waste; concept of disposal of TRU waste. (Mori, K.)

  4. Development of a plan for a national LLW information management system based on data acquired from a uniform manifest

    International Nuclear Information System (INIS)

    Gingerich, R.; Shimer, R.P.

    1986-01-01

    The Western Governors' Association (WGA), with funding from the Department of Energy's (DOE) National Low-Level Radioactive Waste Management Program, has completed an 18-month national project to develop a plan for a national low-level waste (LLW) information management system based on data from a uniform manifest for shipments of LLW. Under the plan, waste generators would fill out a manifest for a shipment just as they do currently, but they would use a nationally standard form. Shortly after a shipment arrives at a disposal facility or a processor, data from the manifest would be entered into the Program's Low-Level Waste Information Management System (LLWIMS). The data would be available via computer to state, compact and federal officials. This paper provides an overview of the plan for implementing and operating a national information management system linked to manifest data. It reports on the progress that has been made toward implementing the system and outlines the work that remains to be done. Finally, the paper examines the crucial role the system will play in the development of an acceptable system for managing the nation's LLW, particularly in the post-1986 transition period

  5. Low-Level Waste (LLW) forum meeting report

    International Nuclear Information System (INIS)

    1995-01-01

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  6. LLW Forum meeting report, January 31--February 3, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The Low-Level Radioactive Waste Forum (LLW) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties. This report details activities of the meeting held January 31-February 3, 1995

  7. LLW Forum meeting report, October 26--27, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties. This report details activities of the meeting held October 26-27, 1994

  8. LLW Notes, vol. 9, no. 1. February/March 1994

    International Nuclear Information System (INIS)

    1994-03-01

    LLW Notes is published ten times each year and is distributed to Low- Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies

  9. LLW Forum meeting report, October 26--27, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties. This report details activities of the meeting held October 26-27, 1994.

  10. Low-Level Waste (LLW) forum meeting report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  11. LLW Forum meeting report, January 31--February 3, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Low-Level Radioactive Waste Forum (LLW) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties. This report details activities of the meeting held January 31-February 3, 1995.

  12. LLW Forum meeting report, February 13--16, 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties. This report details activities at the meeting held February 13-16, 1996

  13. Development of low-level radioactive waste disposal capacity in the United States - progress or stalemate?

    International Nuclear Information System (INIS)

    Devgun, J.S.; Larson, G.S.

    1995-01-01

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The U.S. nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW - industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW - face the same storage and cost uncertainties. This paper will summarize the current status of U.S. low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change

  14. Development of low-level radioactive waste disposal capacity in the United States -- Progress or stalemate?

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1995-01-01

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The US nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW -- industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW -- face the same storage and cost uncertainties. This paper will summarize the current status of US low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change

  15. Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste

    International Nuclear Information System (INIS)

    Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

    1996-03-01

    Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units

  16. Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

    1996-03-01

    Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units.

  17. Overview of low level waste disposal facility costs

    International Nuclear Information System (INIS)

    Saverot, P.M.

    1995-01-01

    Economics and uncertainty go hand-in-hand and it is too soon to have conclusive data on the life cycle costs of a disposal facility. While LLW volumes from are decreasing year after year, the effect of the projected LLW volumes from decommissioning may have a significant impact on the final unit costs. This overview recognizes that countries see LLW disposal costs differently depending on the scale of their programs and on the geographical, political and economic frameworks within which they operate. The reasons for the cost differences arise from a number of factors: differences in designs and in technologies (near surface engineered vault, enhanced shallow land burial, silo type caverns,...), disposal capacities, programmatic and regulatory requirements, organizational, managerial and institutional frameworks, contractual arrangements, etc. Comparison of actual project costs, if done incorrectly, can lead to invalid conclusions and little purpose would be served by so doing since cost variations reflect the reality faced by each country

  18. Operation for Rokkasho Low Level Radioactive Waste Disposal Center

    International Nuclear Information System (INIS)

    Kamizono, Hideki

    2008-01-01

    The Rokkasho Low Level Radioactive Waste (LLW) Disposal Center is located in Oishitai, Rokkasho-mura, Kamikitagun, of Aomori Prefecture. This district is situated in the southern part of Shimohita Peninsula in the northeastern corner of the prefecture, which lies at the northern tip of Honshu, Japan's main island. The Rokkasho LLW Disposal Center deals with only LLW generated by operating of nuclear power plants. The No.1 and No.2 disposal facility are now in operation. The disposal facilities in operation have a total dispose capacity of 80,000m 3 (equivalent to 400,000 drums). Our final business scope is to dispose of radioactive waste corresponding to 600,000 m 3 (equivalent to 3000,000 drums). For No.1 disposal facility, we have been disposing of homogeneous waste, including condensed liquid waste, spent resin, solidified with cement and asphalt, etc. For No.2 disposal facility, we can bury a solid waste solidified with mortar, such as activated metals and plastics, etc. Using an improved construction technology for an artificial barrier, the concrete pits in No.2 disposal facility could be constructed more economical and spacious than that of No.1. Both No.1 and No.2 facility will be able to bury about 200,000 waste packages (drums) each corresponding to 40,000 m 3 . As of March 17, 2008, Approximately 200,00 waste drums summing up No.1 and No.2 disposal facility have been received from Nuclear power plants and buried. (author)

  19. Characterization of sediment in a leaching trench RCRA (Resource Conservation and Recovery Act) site

    International Nuclear Information System (INIS)

    Zimmerman, M.G.; Kossik, C.D.

    1988-01-01

    Hazardous materials potentially were disposed of into a pair of leaching trenches from 1975 until Resource Conservation and Recovery Act (RCRA) regulations were imposed in 1985. These leaching trenches now are used for disposal of nonhazardous process water. The typical effluent (approximately 3 million gal/d) consisted of water with trace quantities of laboratory, maintenance, and fuel fabrication process chemicals. The largest constituent in the waste stream was uranium in low concentrations. This paper describes the project used to analyze and characterize the sediments in and below the leaching trenches. Two phases of sediment sampling were performed. The first phase consisted of taking samples between the bottom of the trenches and groundwater to locate contamination in the deep sediments under the trenches. To accomplish this sampling, a series of wells were drilled, and samples were obtained for every five feet in depth. The second phase consisted of samples taken at three depths in a series of positions along each trench. Sampling was completed to determine contamination levels in the shallow sediments and loose material washed into the trenches from the process sewer system. The project results were that no measurable contamination was found in the deep sediments. Measurable contamination from metals, such as chromium and nickel, was found in the shallow sediments. The primary contaminant in the shallow sediments was uranium. The concentration of contaminants decreased rapidly to near-background levels at shallow depths below the bottoms of the trenches

  20. Initial formulation results for in situ grouting of a waste trench at ORNL Site No. 6

    International Nuclear Information System (INIS)

    Tallent, O.K.; McDaniel, E.W.; Spence, R.D.; Godsey, T.T.

    1987-01-01

    An investigation is being conducted by the Chemical Technology Division to assist the Environmental Sciences Division in developing a grout formulation for use in testing in situ grouting in a waste trench at ORNL Site 6. This final report satisfies the milestone of Subtack 12 entitled, ''Low Level Waste (LLW) Trench Grouting Assessment,'' which was initially issued as RAP-86-7, December 31, 1985. Grouts prepared from dry-solid blends containing Type I Portland cement, ASTM Class C or Class F fly ash, and bentonite, mixed water at ratios of 10 to 15 lb/gal, were evaluated. The grouts prepared with ASTM Class C fly ash exhibited significantly better properties than those prepared with ASTM Class F fly ash. The grouts containing ASTM Class C fly ash satisfy tentative performance criteria for the project. 8 refs., 7 tabs

  1. Design and construction of low level radioactive waste disposal facility at Rokkasho storage center

    International Nuclear Information System (INIS)

    Takahashi, K.; Itoh, H.; Iimura, H.; Shimoda, H.

    1992-01-01

    Japan Nuclear Fuel Industries Co., Inc. (JNFI) which has been established to dispose through burial the low-level radioactive waste (LLW) produced by nuclear power stations over the country is now constructing Rokkasho LLW Storage Center at Rokkasho Village,Aomori Prefecture. At this storage center JNFI plans to bury about 200,000m 3 , of LLW (equivalent to about one million drums each with a 200 liter capacity), and ultimately plans to bury about 600,000m 3 about 3 million drums of LLW. About the construction of the burial facilities for the first-stage LLW equivalent to 200,000 drums (each with a 200-liter capacity) we obtained the government's permit in November, 1990 and set out the construction work from the same month, which has since been promoted favorably. The facilities are scheduled to start operation from December, 1992. This paper gives an overview of at these facilities

  2. Trenching as a exploratory method

    International Nuclear Information System (INIS)

    Hatheway, A.W.; Leighton, F.B.

    1979-01-01

    The critical nature of siting nuclear power plants has led to increased emphasis on exploratory methods; it permits inspection of a continuous geologic section by both geologists and regulatory authorities and makes possible the preparation of a graphic log that delineates both obvious and subtle geologic features. About one of every two nuclear plant licensing efforts utilizes exploratory trenching. Many geologic hazards, such as ''capable'' faults, can be detected from trench exposures; they may otherwise remain undetected. Trenches must be judiciously located, survey-controlled, excavated safetly and adequately shored, logged in detail, and properly diagnosed. Useful techniques of trench logging include thorough cleaning of the trench walls, teamwork between geologist and recorder, logging against a carefully surveyed baseline and vertical reference grid, and panoramic photography. Soils, including paleosols, and glacial and glaciofluvial deposits present some of the most difficult media to log. Trench logs must be thoroughly interpreted and correlated so that they document the geologic conditions governing suitability of the site. Age-determination techniques utilized in exploratory trenching include petrographic analyses, quartz inclusion studies, clay mineralogic analyses, and radiometric methods

  3. ASSESSING EXPOSURE TO THE PUBLIC FROM LOW LEVEL RADIOACTIVE WASTE (LLW) TRANSPORTATION TO THE NEVADA TEST SITE

    International Nuclear Information System (INIS)

    Miller, J.J.; Campbell, S.; Church, B.W.; Shafer, D. S.; Gillespie, D.; Sedano, S.; Cebe, J.J.

    2003-01-01

    The United States (U.S.) Department of Energy (DOE) Nevada Test Site (NTS) is one of two regional sites where low-level radioactive waste (LLW) from approved DOE and U.S. DOD generators across the United States is disposed. In federal fiscal year (FY) 2002, over 57,000 cubic meters of waste was transported to and disposed at the NTS. DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is perceived risk from members of the public about incremental exposure from LLW trucks, especially when ''Main Street'' and the LLW transportation route are the same. To better quantify the exposure to gamma radiation, a stationary monitoring array of four pressurized ion chambers (PICs) have been set up in a pullout just before LLW trucks reach the entrance to the NTS. The PICs are positioned at a distance of one meter from the sides of the truck trailer and at a height appropriate for the design of the trucks that will be used in FY2003 to haul LLW to the NTS. The use of four PICs (two on each side of the truck) is to minimize and to correct for non-uniformity where radiation levels from waste packages vary from side to side, and from front to back in the truck trailer. The PIC array is being calibrated by collecting readings from each PIC exposed to a known 137Cs source that was positioned at different locations on a flatbed stationed in the PIC array, along with taking secondary readings from other known sources. Continuous data collection using the PICs, with and without a truck in the array, is being used to develop background readings. In addition, acoustic sensors are positioned on each side of the PIC array to record when a large object (presumably a truck) enters the array. In FY2003, PIC surveys from as many incoming LLW trucks as possible will be made and survey data

  4. Accelerated cleanup of the 316-5 process trenches at the Hanford Site

    International Nuclear Information System (INIS)

    Henckel, G.C.; Johnson, W.L.

    1991-01-01

    In October, 1990, the US Department of Energy, the US Environmental Protection Agency, and the Washington State Department of Ecology signed an Agreement in Principle to accelerate remedial actions on the Hanford Site. Removal of contaminated sediments from the 300 Area (316-5) Process Trenches was one of the three initial candidate locations identified for the accelerated remediation. The trenches have received small quantities of radioactive and hazardous wastes in large volumes of process water (up to 11,360,000 L/day). The trenches are approximately 300 m west of the Columbia River and 7 m above the water table. The trenches are an active interim permitted disposal facility that may remain active for the next few years. In order to reduce the potential for migration of contaminants from the trench sediments into the groundwater, an expedited response action to remove approximately 2,500 m 2 of soil from the active portion of the trenches is being performed. Field activities were initiated in July 1991 with site preparation. The first trench to be excavated was completed by August 15, 1991. Approximately 2 weeks were needed to begin removal activities in the second trench. The second trench should be completed by October 1, 1991, with the subsequent construction of an interim cover over the consolidated materials completed by December 1991

  5. Accelerated cleanup of the 316-5 Process Trenches at the Hanford Site

    International Nuclear Information System (INIS)

    Henckel, G.C.; Johnson, W.L.

    1991-09-01

    In October, 1990, the US Department of Energy, the US Environmental Protection Agency, and the Washington State Department of Ecology signed an Agreement in Principle to accelerate remedial actions on the Hanford Site. Removal of contaminated sediments from the 300 Area (316-5) Process Trenches was on of the three initial candidate locations identified for the accelerated remediation. The trenches have received small quantities of radioactive and hazardous wastes in large volumes of process water (up to 11,360,000 L/day). The trenches are approximately 300 m west of the Columbia River and 7 m above the water table. The trenches are an active interim permitted disposal facility that may remain active for the next few years. In order to reduce the potential for migration of contaminants from the trench sediments into the groundwater, an expedited response action to remove approximately 2,500 m 2 of soil from the active portion of the trenches is being performed. Field activities were initiated in July 1991 with site preparation. The first trench to be excavated was completed by August 15, 1991. Approximately 2 weeks were needed to begin removal activities in the second trench. The second trench should be completed by October 1, 1991, with the subsequent construction of an interim cover over the consolidated materials completed by December 1991

  6. 'Dodo' and 'Baby Bear' Trenches

    Science.gov (United States)

    2008-01-01

    NASA's Phoenix Mars Lander's Surface Stereo Imager took this image on Sol 11 (June 5, 2008), the eleventh day after landing. It shows the trenches dug by Phoenix's Robotic Arm. The trench on the left is informally called 'Dodo' and was dug as a test. The trench on the right is informally called 'Baby Bear.' The sample dug from Baby Bear will be delivered to the Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA. The Baby Bear trench is 9 centimeters (3.1 inches) wide and 4 centimeters (1.6 inches) deep. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Cleanup Verification Package for the 107-D5 Trench

    International Nuclear Information System (INIS)

    Corpuz, F.M.; Fancher, J.D.; Blumenkranz, D.B.

    1998-03-01

    This document presents the results of remedial action objectives performed at the 107-D5 Sludge Trench, located at the 100-DR-1 Operable Unit in the 100 Area of the Hanford Site in southeastern Washington State. The 107-D5 Sludge Trench is also identified in the Hanford Waste Information Data System as Waste Site 100-D-4 (site code). The selected remedial action was (1) excavation of the site to the extent required to meet specified soil cleanup levels, (2) disposal of contaminated excavation materials at the Environmental Restoration and Disposal Facility at the 200 Area of the Hanford Site, and (3) backfilling the site with clean soil to adjacent grade elevations

  8. Interim safety basis compliance matrix for Trenches 31 and 34

    International Nuclear Information System (INIS)

    Ames, R.R.

    1994-01-01

    The tables provided in this document identify the specific requirements and basis for the administrative controls established in the Westinghouse Hanford Company (WHC) Solid Waste Burial Ground (SWBG) Interim Safety Basis (ISB) for operation of the Project W-025, Mixed Waste Lined Landfill (Trenches 31 and 34). The tables document the necessary controls and implementing procedures to ensure compliance with the requirements of the ISB. These requirements provide a basis for future Unreviewed Safety Questions (USQ) screening of applicable procedure changes, proposed physical modifications, tests, experiments, and occurrences. Table 1 provides the SWBG interim Operational Safety Requirements administrative controls matrix. The specific assumptions and commitments used in the safety analysis documents applicable to disposal of mixed wastes in Trenches 31 and 34 are provided in Table 2. Table 3 is provided to document the potential engineered and administrative mitigating features identified in the Preliminary Hazard Analysis (PHA) for disposal of mixed waste

  9. LLW Notes, Volume 12, Number 7

    International Nuclear Information System (INIS)

    Norris, C.; Brown, H.; Gedden, R.; Lovinger, T.; Scheele, L.; Shaker, M.A.

    1997-09-01

    Contents include articles entitled: House votes 309 to 107 to approve Texas compact; Nebraska governor hosts LLRW meeting; Southeast Compact considers funding proposal; Chem-Nuclear explores options re SC revenue requirements; Legislation sets revenue requirements for Barnwell; TCC meets: Supports CA request for technical assistance; DOE approves part of California's technical assistance request; State legislators discuss LLRW management for OH, IL, NC; Washington governor re Potential New Hanford Role; Federal court enjoins DOE from excluding WCS on new disposal; Appellate court in favor of DOE in surcharge rebates dispute; Hearing set for October in Ward Valley case; court rejects federal motion to dismiss Ward Valley suit; NE sues commission re veto over export authorizations; US Supreme Court dismisses line-item veto challenge; Department of Interior Inspector General investigation requested; USEC privatization plan approved; DOD finalizes LLRW disposal charter; Clinton nominates six DOE appointees; Congress moves FUSRAP to Army Corps of Engineers; Schaefer named interim director of USGS: Nichols leaves EPA: NRC Commissioner Rogers' term expires; NRC: CA ''Well-Quantified'' to license Ward Valley facility; EPA objects to state permit for Louisiana facility; Petitions submitted to EPA oppose Shintech permits; ECOS draft recommendations re Enviro programs; Legislation introduced to prohibit spent fuel shipments to the Goshutes; and HLW legislation ready for floor action

  10. LLW Notes, Volume 12, Number 7

    Energy Technology Data Exchange (ETDEWEB)

    Norris, C.; Brown, H. [eds.; Gedden, R.; Lovinger, T.; Scheele, L.; Shaker, M.A.

    1997-09-01

    Contents include articles entitled: House votes 309 to 107 to approve Texas compact; Nebraska governor hosts LLRW meeting; Southeast Compact considers funding proposal; Chem-Nuclear explores options re SC revenue requirements; Legislation sets revenue requirements for Barnwell; TCC meets: Supports CA request for technical assistance; DOE approves part of California`s technical assistance request; State legislators discuss LLRW management for OH, IL, NC; Washington governor re Potential New Hanford Role; Federal court enjoins DOE from excluding WCS on new disposal; Appellate court in favor of DOE in surcharge rebates dispute; Hearing set for October in Ward Valley case; court rejects federal motion to dismiss Ward Valley suit; NE sues commission re veto over export authorizations; US Supreme Court dismisses line-item veto challenge; Department of Interior Inspector General investigation requested; USEC privatization plan approved; DOD finalizes LLRW disposal charter; Clinton nominates six DOE appointees; Congress moves FUSRAP to Army Corps of Engineers; Schaefer named interim director of USGS: Nichols leaves EPA: NRC Commissioner Rogers` term expires; NRC: CA ``Well-Quantified`` to license Ward Valley facility; EPA objects to state permit for Louisiana facility; Petitions submitted to EPA oppose Shintech permits; ECOS draft recommendations re Enviro programs; Legislation introduced to prohibit spent fuel shipments to the Goshutes; and HLW legislation ready for floor action.

  11. The management and disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ginniff, M.E.; Blair, I.M.

    1986-01-01

    After an introduction on how radioactivity and radiation can cause damage, the three main types of radioactive wastes (high level (HLW), intermediate level (ILW) and low level (LLW)) are defined and the quantities of each produced, and current disposal method mentioned. The Nuclear Industry Radioactive Waste Executive (NIREX) was set up in 1982 to make proposals for the packaging, transportation and disposal of ILW and, if approved, to manage their implementation. NIREX has also taken over some aspects of the LLW disposal programme, and keeps an inventory of the radioactive waste in the country. The NIREX proposals are considered. For ILW this is that ILW should be immersed in a matrix of concrete, then stored in a repository, the design of which is discussed. The transportation of the concrete blocks is also mentioned. Possible sites for a suitable repository are discussed. Efforts are being made to gain public acceptance of these sites. (U.K.)

  12. Hanford's Radioactive Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    McKenney, D.E.

    1995-01-01

    The Radioactive Mixed Waste Disposal Facility, is located in the Hanford Site Low-Level Burial Grounds and is designated as Trench 31 in the 218-W-5 Burial Ground. Trench 31 is a Resource Conservation and Recovery Act compliant landfill and will receive wastes generated from both remediation and waste management activities. On December 30, 1994, Westinghouse Hanford Company declared readiness to operate Trench 31, which is the Hanford Site's (and the Department of Energy complex's) first facility for disposal of low-level radioactive mixed wastes

  13. Social and institutional evaluation report for Greater-Than-Class C Low-Level Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Anderson, T.L.; Lewis, B.E.; Turner, K.H.; Rozelle, M.A.

    1993-10-01

    This report identifies and characterizes social and institutional issues that would be relevant to the siting, licensing, construction, closure, and postclosure of a Greater-Than-Class-C low-level radioactive waste (GTCC LLW) disposal facility. A historical perspective of high-level radioactive waste (HLW) and LLW disposal programs is provided as an overview of radioactive waste disposal and to support the recommendations and conclusions in the report. A characterization of each issue is provided to establish the basis for further evaluations. Where applicable, the regulatory requirements of 10 CFR 60 and 61 are incorporated in the issue characterizations. The issues are used to compare surface, intermediate depth, and deep geologic disposal alternatives. The evaluation establishes that social and institutional issues do not significantly discriminate among the disposal alternatives. Recommendations are provided for methods by which the issues could be considered throughout the lifecycle of a GTCC LLW disposal program

  14. Social and institutional evaluation report for Greater-Than-Class C Low-Level Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.L.; Lewis, B.E.; Turner, K.H.; Rozelle, M.A. [Dames and Moore, Denver, CO (United States)

    1993-10-01

    This report identifies and characterizes social and institutional issues that would be relevant to the siting, licensing, construction, closure, and postclosure of a Greater-Than-Class-C low-level radioactive waste (GTCC LLW) disposal facility. A historical perspective of high-level radioactive waste (HLW) and LLW disposal programs is provided as an overview of radioactive waste disposal and to support the recommendations and conclusions in the report. A characterization of each issue is provided to establish the basis for further evaluations. Where applicable, the regulatory requirements of 10 CFR 60 and 61 are incorporated in the issue characterizations. The issues are used to compare surface, intermediate depth, and deep geologic disposal alternatives. The evaluation establishes that social and institutional issues do not significantly discriminate among the disposal alternatives. Recommendations are provided for methods by which the issues could be considered throughout the lifecycle of a GTCC LLW disposal program.

  15. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Dorries, Alison M.

    2010-01-01

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  16. LLW Notes, volume 9, No. 7. November and December 1994

    International Nuclear Information System (INIS)

    1994-12-01

    LLW Notes is distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum is an association of state and compact representatives appointed by governors and compact commissions, established to facilitate state and compact commission implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies and other interested parties

  17. LLW Notes, vol.9, no. 5. August/September 1994

    International Nuclear Information System (INIS)

    1994-09-01

    LLW Notes is distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum is an association of state and compact representatives appointed by governors and compact commissions, established to facilitate state and compact commission implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies and other interested parties

  18. LLW Notes, vol.9, no. 5. August/September 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    LLW Notes is distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum is an association of state and compact representatives appointed by governors and compact commissions, established to facilitate state and compact commission implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  19. LLW Notes, Volume 9, Number 6. October 1994

    International Nuclear Information System (INIS)

    1994-10-01

    LLW Notes is distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum is an association of state and compact representatives appointed by governors and compact commissions, established to facilitate state and compact commission implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies and other interested parties

  20. WRAP low level waste (LLW) glovebox acceptance test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1998-01-01

    In June 28, 1997, the Low Level Waste (LLW) glovebox was tested using glovebox acceptance test procedure 13031A-85. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, lidder/delidder device and the supercompactor were also conducted. As of November 24, 1997, 2 of the 131 test exceptions that affect the LLW glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test Exceptions are provided as appendices to this report

  1. WRAP low level waste (LLW) glovebox acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Leist, K.J.

    1998-02-17

    In June 28, 1997, the Low Level Waste (LLW) glovebox was tested using glovebox acceptance test procedure 13031A-85. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, lidder/delidder device and the supercompactor were also conducted. As of November 24, 1997, 2 of the 131 test exceptions that affect the LLW glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test Exceptions are provided as appendices to this report.

  2. LLW Notes, volume 9, No. 7. November and December 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    LLW Notes is distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum is an association of state and compact representatives appointed by governors and compact commissions, established to facilitate state and compact commission implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  3. LLW Notes, Volume 9, Number 6. October 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    LLW Notes is distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum is an association of state and compact representatives appointed by governors and compact commissions, established to facilitate state and compact commission implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  4. LLW Notes supplement, Volume 12, Number 2

    International Nuclear Information System (INIS)

    1997-02-01

    Federal criteria for determining whether a project presents an environmental justice concern are currently subject to multiple interpretations. There are no federal statutes or regulations that specifically reference or address environmental justice, and the guidelines that are being developed by the Council on Environmental Quality are currently in draft form. The lack of consistent and clear federal criteria for determining what constitutes an environmental justice impact--and how to determine whether environmental justice issues have been effectively addressed--can create a dilemma for state agencies that wish to include--or have already included--environmental justice, along with legal, economic and technical issues, as a consideration when siting a facility. The following information is therefore provided for those agencies and commissions seeking to site, to license, to construct and to operate a low-level radioactive waste disposal facility. Topics include: National Environmental Justice Advisory Council; NEJAC members; Federal definitions of environmental justice; and EPA's role in federal land transfers. Federal agencies can achieve environmental justice by identifying and addressing--as appropriate--disproportionately high and adverse human health or environmental effects of [federal agency] programs, policies, and activities on minority populations and low-income populations

  5. Release mechanisms from shallow engineered trenches used as repositories for radioactive wastes

    International Nuclear Information System (INIS)

    Locke, J.; Wood, E.

    1987-05-01

    This report has been written for the Department of the Environment as part of their radioactive waste management research programme. The aim has been to identify release mechanisms of radioactivity from fully engineered trenches of the LAND 2 type and, to identify the data needed for their assessment. No direct experimental work has been involved. The report starts with a brief background to UK strategy and outlines a basic disposal system. It gives reviews of existing experience of low level radioactive waste disposal from LAND 1 trenches and of UK experience of toxic waste disposal to provide a practical basis for the next section which covers the implications of identified release mechanisms on the design requirements for an engineered trench. From these design requirements and their interaction with potential site conditions (both saturated and unsaturated zone sites are considered) an assessment of radionuclide release mechanism is made. (author)

  6. Environmental monitoring of subsurface low-level waste disposal facilities at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ashwood, T.L.; Hicks, D.S.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) generates low-level waste (LLW) as part of its research and isotope production activities. This waste is managed in accordance with US Department of Energy (DOE) Order 5820.2A. Solid LLW management includes disposal in above-ground, tumulus-type facilities as well as in various types of subsurface facilities. Since 1986, subsurface disposal has been conducted using various designs employing greater-confinement-disposal (GCD) techniques. The purpose of this paper is to present monitoring results that document the short-term performance of these GCD facilities

  7. Data from studies of previous radioactive waste disposal in Massachusetts Bay

    International Nuclear Information System (INIS)

    Curtis, W.R.; Mardis, H.M.

    1984-12-01

    This report presents the results of studies conducted in Massachusetts Bay during 1981 and 1982. Included are data from: (1) a side scan sonar survey of disposal areas in the Bay that was carried out by the National Oceanic and Atmospheric Administration (NOAA) for EPA; (2) Collections of sediment and biota by NOAA for radiochemical analysis by EPA; (3) collections of marketplace seafood samples by the Food and Drug Administration (FDA) for radioanalysis by both FDA and EPA; and (4) a radiological monitoring survey of LLW disposal areas by EPA to determine whether there should be any concern for public health resulting from previous LLW disposals in the Bay

  8. Potential co-disposal of greater-than-class C low-level radioactive waste with Department of Energy special case waste - greater-than-class C low-level waste management program

    International Nuclear Information System (INIS)

    Allred, W.E.

    1994-09-01

    This document evaluates the feasibility of co-disposing of greater-than-Class C low-level radioactive waste (GTCC LLW) with U.S. Department of Energy (DOE) special case waste (SCW). This document: (1) Discusses and evaluates key issues concerning co-disposal of GTCC LLW with SCW. This includes examining these issues in terms of regulatory concerns, technical feasibility, and economics; (2) Examines advantages and disadvantages of such co-disposal; and (3) Makes recommendations. Research and analysis of the issues presented in this report indicate that it would be technically and economically feasible to co-dispose of GTCC LLW with DOE SCW. However, a dilemma will likely arise in the current division of regulatory responsibilities between the U.S. Nuclear Regulatory Commission and DOE (i.e., current requirement for disposal of GTCC LLW in a facility licensed by the Nuclear Regulatory Commission). DOE SCW is currently not subject to this licensing requirement

  9. A Comprehensive Solution for Managing TRU and LLW From Generation to Final Disposition - 13205

    Energy Technology Data Exchange (ETDEWEB)

    Tozer, Justin C.; Sanchez, Edwina G.; Dorries, Alison M. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States)

    2013-07-01

    A LANL multi-disciplinary team faced the challenge of building and delivering a waste information system capable of managing radioactive, hazardous, and industrial waste from cradle to grave. The result is the Waste Compliance and Tracking System (WCATS) a flexible, adaptive system that has allowed LANL to consolidate its legacy applications into one system, and leverage the advantages of managing all waste types within a single scalable enterprise application. Key functionality required for robust waste operations, include: waste characterization, waste identification, transportation, inventory management, waste processing, and disposal. In order to maintain data quality, field operations such as waste identification, surveillance checklists, wall-to-wall inventory assessments, waste transfers, shipment pickup and receipt, and simple consolidation operations are captured by the operator or technician using mobile computers. Work flow is managed via end-user defined work paths, to ensure that unit operations are performed in the correct order. Regulatory compliance reports and algorithms are provided to support typical U.S. EPA, DOT, NRC, and DOE requirements, including the EPA hazardous waste manifest, NRC LLW manifest, DOE nuclear material at risk, RCRA TSDF inventory rules, and so forth. The WCATS application has allowed LANL to migrate and consolidate its disparate legacy applications. The design and implementation is generalized so that facility owners can customize the user interface, setup facilities and unit operations (i.e., treatment, storage, disposal, characterization, and administrative), define inventory compliance rules, and establish custom work flow requirements. (authors)

  10. A Comprehensive Solution for Managing TRU and LLW From Generation to Final Disposition - 13205

    International Nuclear Information System (INIS)

    Tozer, Justin C.; Sanchez, Edwina G.; Dorries, Alison M.

    2013-01-01

    A LANL multi-disciplinary team faced the challenge of building and delivering a waste information system capable of managing radioactive, hazardous, and industrial waste from cradle to grave. The result is the Waste Compliance and Tracking System (WCATS) a flexible, adaptive system that has allowed LANL to consolidate its legacy applications into one system, and leverage the advantages of managing all waste types within a single scalable enterprise application. Key functionality required for robust waste operations, include: waste characterization, waste identification, transportation, inventory management, waste processing, and disposal. In order to maintain data quality, field operations such as waste identification, surveillance checklists, wall-to-wall inventory assessments, waste transfers, shipment pickup and receipt, and simple consolidation operations are captured by the operator or technician using mobile computers. Work flow is managed via end-user defined work paths, to ensure that unit operations are performed in the correct order. Regulatory compliance reports and algorithms are provided to support typical U.S. EPA, DOT, NRC, and DOE requirements, including the EPA hazardous waste manifest, NRC LLW manifest, DOE nuclear material at risk, RCRA TSDF inventory rules, and so forth. The WCATS application has allowed LANL to migrate and consolidate its disparate legacy applications. The design and implementation is generalized so that facility owners can customize the user interface, setup facilities and unit operations (i.e., treatment, storage, disposal, characterization, and administrative), define inventory compliance rules, and establish custom work flow requirements. (authors)

  11. Initial SVE Well Testing for the A-Area Miscellaneous Rubble Pile (ARP) Trenches Area

    International Nuclear Information System (INIS)

    RIHA, BRIAN

    2004-01-01

    The A-Area Miscellaneous Rubble Pile (ARP) is a 5.9 acre unit located at the southern end of A/M Area at the Savannah River Site (SRS). Disposal activities at ARP began in the early 1950s. The exact dates of operation and material disposed in the unit remain unknown. Within the ARP exists a smaller, approximately 2 acre, sub unit identified as the Trenches Area. The Trenches Area is dominated by a T-shaped trench (approximately 50 feet wide) containing 8 to 12 feet of ash material. This T-shaped trench will be referred to as the ARP Trench. Vegetation has been removed from the Trenches Area and a lower permeability earthen cover now covers the ARP Trench. The ARP active soil vapor extraction (ASVE) remediation system consists of seven extraction wells and twelve monitoring wells that were pushed into the vadose zone of the ARP Trench. The remediation system was designed based on the pre-design study conducted in 2002. The purpose of the initial soil vapor extraction (SVE) well testing was to verify the integrity and functionality of the nineteen wells installed in the ARP Trench. The well integrity was evaluated based on the flow rate, vacuum, and indication that soil gas and not surface air was pulled from the well. Soil gas was defined as gas with levels of carbon dioxide (CO2) above ambient concentrations (400-700 ppmv). Volatile organic compound (VOC) concentrations were measured at each well to determine the initial distribution of the contamination. In addition, the subsurface vacuum distribution was measured around each extraction well as a relative measure of the influence of each well

  12. 300 Area Process Trenches Modified Closure/Postclosure Plan

    International Nuclear Information System (INIS)

    1997-09-01

    This chapter provides a brief summary of the contents of each chapter of this plan for the closure of the 300 Area Process Trenches (300 APT) treatment, storage, and/or disposal unit. It also provides background information for this unit and discusses how its closure will be integrated with the remedial action for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 300- FF-1 Operable Unit. The 300 APT is located within the 300 Area of the Hanford Site. This area contained reactor fuel fabrication facilities and research and development laboratories. The 300 APT was constructed and began operations in 1975 as the 316-5 Process Trenches. Effluent was discharged to the trenches by way of the 300 Area process sewer system, which has been the sole source of effluent for the 300 APT. The 316-5 Process Trenches gained Resource Conservation and Recovery Act of 1976 (RCRA) interim status as the 300 APT TSD unit on November 11, 1985. The unit has been administratively closed to discharges of dangerous waste since 1985

  13. A decision tool for selecting trench cap designs

    Energy Technology Data Exchange (ETDEWEB)

    Paige, G.B.; Stone, J.J.; Lane, L.J. [USDA-ARS, Tucson, AZ (United States)] [and others

    1995-12-31

    A computer based prototype decision support system (PDSS) is being developed to assist the risk manager in selecting an appropriate trench cap design for waste disposal sites. The selection of the {open_quote}best{close_quote} design among feasible alternatives requires consideration of multiple and often conflicting objectives. The methodology used in the selection process consists of: selecting and parameterizing decision variables using data, simulation models, or expert opinion; selecting feasible trench cap design alternatives; ordering the decision variables and ranking the design alternatives. The decision model is based on multi-objective decision theory and uses a unique approach to order the decision variables and rank the design alternatives. Trench cap designs are evaluated based on federal regulations, hydrologic performance, cover stability and cost. Four trench cap designs, which were monitored for a four year period at Hill Air Force Base in Utah, are used to demonstrate the application of the PDSS and evaluate the results of the decision model. The results of the PDSS, using both data and simulations, illustrate the relative advantages of each of the cap designs and which cap is the {open_quotes}best{close_quotes} alternative for a given set of criteria and a particular importance order of those decision criteria.

  14. Progress on management business system of LLW generated from research and industrial nuclear facilities

    International Nuclear Information System (INIS)

    Izumida, Tatsuo

    2014-01-01

    RANDEC has been studying a management business system of LLW (Low Level Waste) generated from research and industrial facilities since 2008. To examine economical problems, the income and expenditure of LLW treatment business was simulated. As a result, raising method of the funds which is required in preparatory stage of LLW treatment business is an obvious issue to carry out as public utility works. (author)

  15. Research oil guidelines for safety review of category 2 waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Safety confirmation items and monitoring items for engineered barriers were compiled, considering the current technical status and monitoring plan for the simulated subsurface disposal and its test facilities. In order to develop the guidelines of the safety review for the disposal of LLW generated from RI facilities and research facilities, technical issues relating toxic substances were surveyed. (author)

  16. Benthic carbon mineralization in hadal trenches

    DEFF Research Database (Denmark)

    Wenzhöfer, F.; Oguri, K.; Middelboe, Mathias

    2016-01-01

    consumption rates and sediment characteristics from the trench axis of two contrasting trench systems in the Pacific Ocean; the Izu-Bonin Trench underlying mesotrophic waters and the Tonga Trench underlying oligotrophic waters. In situ oxygen consumption at the Izu-Bonin Trench axis site (9200 m; 746 +/- 103...... mu mol m(-2) d(-1); n=27) was 3-times higher than at the Tonga Trench axis site (10800 m; 225 +/- 50 pmol m(-2) d(-1); n=7) presumably reflecting the higher surface water productivity in the Northern Pacific. Comparing benthic O-2 consumption rates measured in the central hadal Tonga Trench...... to that of nearby (60 km distance) abyssal settings (6250 m; 92 +/- 44 mu mol m(-2) d(-1); n=16) revealed a 2.5 higher activity at the trench bottom. Onboard investigations on recovered sediment furthermore revealed that the prokaryotic abundance and concentrations of phytopigments followed this overall trend (i...

  17. Benthic carbon mineralization in hadal trenches

    DEFF Research Database (Denmark)

    Wenzhofer, F.; Oguri, K.; Middelboe, M.

    2016-01-01

    Hadal trenches are considered to act as depo-centers for organic material at the trench axis and host unique and elevated biomasses of living organisms as compared to adjacent abyssal plains. To explore the diagenetic activity in hadal trench environments we quantified in situ benthic O-2 consump...

  18. Evaluating Options for Disposal of Low-Level Waste at LANL

    International Nuclear Information System (INIS)

    Hargis, K.M.; French, S.B.; Boyance, J.A.

    2009-01-01

    Los Alamos National Laboratory (LANL) generates a wide range of waste types, including solid low-level radioactive waste (LLW), in conducting its national security mission and other science and technology activities. Although most of LANL's LLW has been disposed on-site, limitations on expansion, stakeholder concerns, and the potential for significant volumes from environmental remediation and decontamination and demolition (D and D) have led LANL to evaluate the feasibility of increasing off-site disposal. It appears that most of the LLW generated at LANL would meet the Waste Acceptance Criteria at the Nevada Test Site or available commercial LLW disposal sites. Some waste is considered to be problematic to transport to off-site disposal even though it could meet the off-site Waste Acceptance Criteria. Cost estimates for off-site disposal are being evaluated for comparison to estimated costs under the current plans for continued on-site disposal. An evaluation of risks associated with both on-site and off-site disposal will also be conducted. (authors)

  19. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  20. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

    2007-01-01

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  1. LLW Forum meeting report, July 20--22, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representative, appointed by governors and compact commissions, established to facilitate state and compact commission implementation of the Low-Level radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. This report details activities of the meeting held July 20-22, 1994

  2. Highly durable and low permeable concrete for LLW facilities

    International Nuclear Information System (INIS)

    Yanagibashi, Kunio; Saito, Toshio; Odagawa, Masaro.

    1997-01-01

    Concrete used for LLW facilities is required to be highly durable. The authors evaluated concrete containing glycol ether derivatives and silica fume as admixtures. Compressive strength, diffusion coefficient of water, depth of accelerated carbonation, drying shrinkage, depth of chlorides penetration and resistance to freezing and thawing were investigated using concrete specimens. Compressive strength, depth of accelerated carbonation, diffusion coefficient of 137 Cs were investigated using mortar specimens before and after irradiation of gamma rays. Results showed that using glycol ether derivatives and silica fume was effective in improving the durability. (author)

  3. Pathway analysis for alternate low-level waste disposal methods

    International Nuclear Information System (INIS)

    Rao, R.R.; Kozak, M.W.; McCord, J.T.; Olague, N.E.

    1992-01-01

    The purpose of this paper is to evaluate a complete set of environmental pathways for disposal options and conditions that the Nuclear Regulatory Commission (NRC) may analyze for a low-level radioactive waste (LLW) license application. The regulations pertaining In the past, shallow-land burial has been used for the disposal of low-level radioactive waste. However, with the advent of the State Compact system of LLW disposal, many alternative technologies may be used. The alternative LLW disposal facilities include below- ground vault, tumulus, above-ground vault, shaft, and mine disposal This paper will form the foundation of an update of the previously developed Sandia National Laboratories (SNL)/NRC LLW performance assessment methodology. Based on the pathway assessment for alternative disposal methods, a determination will be made about whether the current methodology can satisfactorily analyze the pathways and phenomena likely to be important for the full range of potential disposal options. We have attempted to be conservative in keeping pathways in the lists that may usually be of marginal importance. In this way we can build confidence that we have spanned the range of cases likely to be encountered at a real site. Results of the pathway assessment indicate that disposal methods can be categorized in groupings based on their depth of disposal. For the deep disposal options of shaft and mine disposal, the key pathways are identical. The shallow disposal options, such as tumulus, shallow-land, and below-ground vault disposal also may be grouped together from a pathway analysis perspective. Above-ground vault disposal cannot be grouped with any of the other disposal options. The pathway analysis shows a definite trend concerning depth of disposal. The above-ground option has the largest number of significant pathways. As the waste becomes more isolated, the number of significant pathways is reduced. Similar to shallow-land burial, it was found that for all

  4. Review of available options for low level radioactive waste disposal

    International Nuclear Information System (INIS)

    1992-07-01

    The scope of this report includes: descriptions of the options available; identification of important elements in the selection process; discussion and assessment of the relevance of the various elements for the different options; cost data indicating the relative financial importance of different parts of the systems and the general cost level of a disposal facility. An overview of the types of wastes included in low level waste categories and an approach to the LLW management system is presented. A generic description of the disposal options available and the main activities involved in implementing the different options are described. Detailed descriptions and cost information on low level waste disposal facility concepts in a number of Member States are given. Conclusions from the report are summarized. In addition, this report provides a commentary on various aspects of land disposal, based on experience gained by IAEA Member States. The document is intended to complement other related IAEA publications on LLW management and disposal. It also demonstrates that alternatives solutions for the final disposal of LLW are available and can be safely operated but the choice of an appropriate solution must be a matter for national strategy taking into account local conditions. 18 refs, 16 figs, 1 tab

  5. Siting simulation for low-level waste disposal facilities

    International Nuclear Information System (INIS)

    Roop, R.D.; Rope, R.C.

    1985-01-01

    The Mock Site Licensing Demonstration Project has developed the Low-Level Radioactive Waste Siting Simulation, a role-playing exercise designed to facilitate the process of siting and licensing disposal facilities for low-level waste (LLW). This paper describes the development, content, and usefulness of the siting simulation. The simulation can be conducted at a workshop or conference, involves 14 or more participants, and requires about eight hours to complete. The simulation consists of two sessions; in the first, participants negotiate the selection of siting criteria, and in the second, a preferred disposal site is chosen from three candidate sites. The project has sponsored two workshops (in Boston, Massachusetts and Richmond, Virginia) in which the simulation has been conducted for persons concerned with LLW management issues. It is concluded that the simulation can be valuable as a tool for disseminating information about LLW management; a vehicle that can foster communication; and a step toward consensus building and conflict resolution. The DOE National Low-Level Waste Management Program is now making the siting simulation available for use by states, regional compacts, and other organizations involved in development of LLW disposal facilities

  6. WRAP low level waste (LLW) glovebox operational test report

    International Nuclear Information System (INIS)

    Kersten, J.K.

    1998-01-01

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into another 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution's (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation

  7. WRAP low level waste (LLW) glovebox operational test report

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, J.K.

    1998-02-19

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into another 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution`s (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.

  8. Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches. FY 1988 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E. C.; Spalding, B. P.; Lee, S. Y.; Hyder, L. K.

    1989-01-01

    As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

  9. Design and operational considerations of United States commercial nea-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, Sandra M.

    1997-01-01

    Low-level radioactive waste disposal standards and techniques in the United States have evolved significantly since the early 1960's. Six commercial LLW disposal facilities(Barnwell, Richland, Ward Valley, Sierra Blanca, Wake County and Boyd County) operated and proposed between 1962 and 1997. This report summarizes each site's design and operational considerations for near-surface disposal of low-level radioactive waste. These new standards and mitigating efforts at closed facilities (Sheffield, Maxey Flats, Beatty and West Valley) have helped to ensure that the public has been safely protected from LLW. 15 refs

  10. Low-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy waste management programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Goyette, M.L.; Dolak, D.A.

    1996-12-01

    This report provides technical support information for use in analyzing environmental impacts associated with U.S. Department of Energy (DOE) low-level radioactive waste (LLW) management alternatives in the Waste-Management (WM) Programmatic Environmental Impact Statement (PEIS). Waste loads treated and disposed of for each of the LLW alternatives considered in the DOE WM PEIS are presented. Waste loads are presented for DOE Waste Management (WM) wastes, which are generated from routine operations. Radioactivity concentrations and waste quantities for treatment and disposal under the different LLW alternatives are described for WM waste. 76 refs., 14 figs., 42 tabs.

  11. Concept development for saltstone and low level waste disposal

    International Nuclear Information System (INIS)

    Wilhite, E.L.

    1987-03-01

    A low-level alkaline salt solution will be a byproduct in the processing of high-level waste at the Savannah River Plant (SRP). This solution will be incorporated into a cement wasteform, saltstone, and placed in surface vaults. Laboratory and field testing and mathematical modeling have demonstrated the predictability of contaminant release from cement wasteforms. Saltstone disposal in surface vaults will meet drinking water standards in shallow groundwater at the disposal area boundary. Planning for new Low-Level Waste (LLW) disposal could incorporate concepts developed for saltstone disposal

  12. Characteristics of low-level radioactive waste disposed during 1987--1989

    International Nuclear Information System (INIS)

    Roles, G.W.

    1990-12-01

    This report presents the volume, activity, and radionuclide distributions in low-level radioactive waste (LLW) disposed during 1987 through 1989 at the commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. The report has been entirely assembled from descriptions of waste provided in LLW shipment manifests. Individual radionuclide distributions are listed as a function of waste class, of general industry, and of waste stream. In addition, information is presented about disposal of wastes containing chelating agents, about use of solidification media, about the distribution of radiation levels at the surfaces of waste containers, and about the distribution of waste container sizes. Considerably more information is presented about waste disposed at the Richland and Beatty disposal facilities than at the Barnwell disposal facility

  13. Control of water infiltration into near-surface, low-level waste-disposal units in humid regions

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ridky, R.W.; Schulz, R.K.

    1994-01-01

    This study's objective is to assess means for controlling water infiltration through waste-disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters (75 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste-disposal unit covers or barriers to water infiltration are being investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g., clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover, and remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier or, perhaps even better, by a resistive layer barrier/conductive layer barrier system. The latter system would then give long-term effective protection against water entry into waste without institutional care

  14. Surface radiological investigations of Trench 6 and low-level waste Line Leak Site 7.4b at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Uziel, M.S.; Tiner, P.F.; Williams, J.K.

    1991-08-01

    A surface radiological investigation of Trench 6 and low-level radioactive waste (LLW) Line Leak Site 7.4b was conducted in July and August 1989 and January 1990 by the Measurement Applications and Development Group, Oak Ridge National Laboratory. The purposes of this survey were (1) to determine the presence, nature, and extent of surface radiological contamination and (2) to recommend interim corrective action to limit human exposures to radioactivity and minimize the potential for contaminant dispersion. Highest surface gamma levels encountered during the survey (39 mR/h) were found just south of the asphalt covering LLW Line Leak Site 7.4b. Elevated surface gamma levels (measuring 28 to 560 μR/h) extended from this area to a width of 100 ft, westward 250 ft, and beyond the survey boundary. Beta-gamma levels up to 17 mrad/h measured on contact with the trunks of trees growing in the area southwest of Trench 6 suggest that three roots are reaching contamination deep within the ground. Since no gamma activity is associated with the trees or their leaves, the elevated beta levels are probably due to the uptake of residual 90 Sr originating from the documented seepage at the Trench 6/Leak Site 7.4b area. Beta activity present in the leaf litter and surface soil indicate that decaying leaves are depositing measurable contaminants on the ground surface. Recommendations for corrective actions are included. 7 refs., 20 figs., 3 tabs

  15. Experience and improved techniques in radiological environmental monitoring at major DOE low-level waste disposal sites

    International Nuclear Information System (INIS)

    1986-09-01

    A summary of routine radiological environmental surveillance programs conducted at major active US Department of Energy (DOE) solid low-level waste (LLW) disposal sites is provided. The DOE disposal sites at which monitoring programs were reviewed include those located at Hanford, Idaho National Engineering Laboratory (INEL), Nevada Test Site (NTS), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL) and Savannah River Plant (SRP). The review is limited to activities conducted for the purpose of monitoring disposal site performance. Areas of environmental monitoring reviewed include air monitoring for particulates and gases, monitoring of surface water runoff, surface water bodies, ground water, monitoring of surface soils and the vadose zone, and monitoring of ambient penetrating radiation. Routine environmental surveillance is conducted at major LLW disposal sites at various levels of effort for specific environmental media. In summary, all sites implement a routine monitoring program for penetrating radiation. Four sites (INEL, NTS, LANL, and SRP) monitor particulates in air specifically at LLW disposal sites. Hanford monitors particulates at LLW sites in conjunction with monitoring of other site operations. Particulates are monitored on a reservationwide network at ORNL. Gases are monitored specifically at active LLW sites operated at NTS, LANL, and SRP. Ground water is monitored specifically at LLW sites at INEL, LANL, and SRP, in conjunction with other operations at Hanford, and as part of a reservationwide program at NTS and ORNL. Surface water is monitored at INEL, LANL, and SRP LLW sites. Surface soil is sampled and analyzed on a routine basis at INEL and LANL. Routine monitoring of the vadose zone is conducted at the INEL and SRP. Techniques and equipment in use are described and other aspects of environmental monitoring programs, such as quality assurance and data base management, are reviewed

  16. Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    International Nuclear Information System (INIS)

    French, Sean B.; Shuman, Robert

    2012-01-01

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

  17. 40 CFR 265 interim status indicator-evaluation ground-water monitoring plan for the 216-B-63 trench

    International Nuclear Information System (INIS)

    Bjornstad, B.N.; Dudziak, S.

    1989-03-01

    This document outlines a ground-water monitoring plan for the 216-B-63 trench located in the northeast corner of the 200-East Area on the Hanford Site in southeastern Washington State. It has been determined that hazardous materials (corrosives) were disposed of to the trench during past operations. Installation of an interim-status ground-water monitoring system is required to determine whether hazardous chemicals are leaching to the ground water from beneath the trench. This document summarizes the existing data that are available from near the 216-B-63 trench and presents a plan to determine the extent of ground-water contamination, if any, derived from the trench. The plan calls for the installation of four new monitoring wells located near the west end of the trench. These wells will be used to monitor ground-water levels and water quality immediately adjacent to the trench. Two existing RCRA monitoring wells, which are located near the trench and hydraulically upgradient of it, will be used as background wells. 46 refs., 15 figs., 12 tabs

  18. Backfilling of trenches exposed to waves

    DEFF Research Database (Denmark)

    Hjelmager Jensen, Jacob; Fredsøe, Jørgen

    1997-01-01

    This paper treats the numerical prediction of initial and long-term morphology of small pipeline trenches. For this purpose a refined flow and sediment transport description is applied such that the entire mathematical problem is formulated and solved on a curvilinear grid using a k - ε turbulence......-closure. The backfilling process of trenches exposed to either waves or a steady current is of importance in relation to the implementation of pipelines in the marine environment. With respect to the sedimentation of trenches, the non-dimensional Trench-Keulegan-Carpenter number, KC = a/L, where a is the excursion length...

  19. LLW Forum meeting report, April 18--19, 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. LLW Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently- operating low-level radioactive waste facilities. This quarterly meeting was held on April 18-19, 1991

  20. LLW Forum meeting report, April 25--27, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Low-Level radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. LLW Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This quarterly meeting was held April 25-27, 1994 and activities during the first quarter of 1994 are detailed

  1. The application of probabilistic risk assessment to a LLW incinerator

    International Nuclear Information System (INIS)

    Li, K.K.; Huang, F.T.

    1993-01-01

    The 100 Kg/hr low-level radioactive waste (LLW) incinerator and the 1,500 ton supercompactor are two main vehicles in the Taiwan Power Company's Volume Reduction Center. Since the hot test of the incinerator in mid 1990, various problems associated with the original design and operating procedures were encountered. During the early stages of putting an incinerator in service, the modification and fine-tuning of the system would help future reliable operations. The probabilistic risk assessment (PRA) method was introduced to evaluate the interaction between potential system failure and its environmental impact and further help diagnose the system defects initially. The draft Level 1 system analysis was completed and the event and fault trees were constructed. Qualitatively, this approach is useful for preventing the system failure from occurring. However, Levels 2 and 3 analysis can only be done when sufficient data become available in the future

  2. LLW Forum meeting report, April 25--27, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Low-Level radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. LLW Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This quarterly meeting was held April 25-27, 1994 and activities during the first quarter of 1994 are detailed..

  3. LLW Forum meeting report, October 20--22, 1997

    International Nuclear Information System (INIS)

    Norris, C.; Brown, H.; Lovinger, T.; Scheele, L.; Shaker, M.A.

    1997-10-01

    The Low-Level Radioactive Waste Forum met in Annapolis, Maryland, on October 20--22, 1997. Twenty-six Forum Participants, Alternate Forum Participants, and meeting designees representing 22 compacts and states participated. A report on the meeting is given under the following subtitles: New developments in states and compacts; Discussion with NRC Commissioner McGaffigan; Regulatory issues session; Executive session; LLW forum business session; DOE low-level waste management program; Transportation of radioactive waste; Environmental equity: Title VI; Congressional studies on Ward Valley Site; Implementation of DOE's strategy for waste management; Relicensing Envirocare; Draft agreement for uniform application of manifesting procedures; CRCPD report; Panel: Future of low-level radioactive waste management; Agenda planning: February 1998; Resolutions; and Attendance

  4. Concepts and Technologies for Radioactive Waste Disposal in Rock Salt

    Directory of Open Access Journals (Sweden)

    Wernt Brewitz

    2007-01-01

    Full Text Available In Germany, rock salt was selected to host a repository for radioactive waste because of its excellent mechanical properties. During 12 years of practical disposal operation in the Asse mine and 25 years of disposal in the disused former salt mine Morsleben, it was demonstrated that low-level wastes (LLW and intermediate-level wastes (ILW can be safely handled and economically disposed of in salt repositories without a great technical effort. LLW drums were stacked in old mining chambers by loading vehicles or emplaced by means of the dumping technique. Generally, the remaining voids were backfilled by crushed salt or brown coal filter ash. ILW were lowered into inaccessible chambers through a borehole from a loading station above using a remote control.Additionally, an in-situ solidification of liquid LLW was applied in the Morsleben mine. Concepts and techniques for the disposal of heat generating high-level waste (HLW are advanced as well. The feasibility of both borehole and drift disposal concepts have been proved by about 30 years of testing in the Asse mine. Since 1980s, several full-scale in-situ tests were conducted for simulating the borehole emplacement of vitrified HLW canisters and the drift emplacement of spent fuel in Pollux casks. Since 1979, the Gorleben salt dome has been investigated to prove its suitability to host the national final repository for all types of radioactive waste. The “Concept Repository Gorleben” disposal concepts and techniques for LLW and ILW are widely based on the successful test operations performed at Asse. Full-scale experiments including the development and testing of adequate transport and emplacement systems for HLW, however, are still pending. General discussions on the retrievability and the reversibility are going on.

  5. Interim Storage Facility for LLW of Decommissioning Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Amato, S.; Ugolini, D.; Basile, F. [European Commission, Joint Research Centre, Nuclear Decommissioning and Facility Management Unit, TP 800, Via E. Fermi 2749, 21027 Ispra - VA (Italy)

    2009-06-15

    JRC-Ispra has initiated a Decommissioning and Waste Management (D and WM) Programme of all its nuclear facilities. In the frame of this programme, it has been decided to build an interim storage facility to host conditioned low level waste (LLW) that had been produced during the operation of JRC-Ispra nuclear research reactors and laboratories and that will be produced from their decommissioning. This paper presents the main characteristics of the facility. The storage ISFISF has a rectangular shape with uniform height and it is about 128 m long, 41 m wide and 9 m high. The entire surface affected by the facility, including screening area and access roads, is about 27.000 m{sup 2}. It is divided in three sectors, a central one, about 16 m long, for loading/unloading operations and operational services and two lateral sectors, each about 55 m long, for the conditioned LLW storage. Each storage sector is divided by a concrete wall in two transversal compartments. The ISFISF, whose operational lifetime is 50 years, is designed to host the conditioned LLW boxed in UNI CP-5.2 packages, 2,5 m long, 1.65 m wide, and 1,25 m high. The expected nominal inventory of waste is about 2100 packages, while the maximum storage is 2540 packages, thus a considerably large reserve capacity is available. The packages will be piled in stacks of maximum number of five. The LLW is going to be conditioned with a cement matrix. The maximum weight allowed for each package has been fixed at 16.000 kg. The total radioactivity inventory of waste to be hosted in the facility is about 30 TBq (mainly {beta}/{gamma} emitters). In order to satisfy the structural, seismic, and, most of all, radiological requirements, the external walls of the ISFISF are made of pre-fabricated panels, 32 cm thick, consisting of, from inside to outside, 20 cm of reinforced concrete, 7 cm of insulating material, and again 5 cm of reinforced concrete. For the same reason the roof is made with pre-fabricated panels in

  6. Groundwater suppression and diversion structures applied to closed shallow land burial trenches

    International Nuclear Information System (INIS)

    Davis, E.C.; Melroy, L.A.; Huff, D.D.

    1984-01-01

    Shallow depth to groundwater, surface drainage, and subsurface flow during storm events are major environmental concerns of low-level radioactive waste management operations in humid regions. At two waste disposal sites within the Oak Ridge National Laboratory (ORNL), groups of closed trenches have experienced these problems and have been shown to collect and hold intratrench water with seasonal fluctuations ranging from 1 to 2 m. In an attempt to correct these water-related problems, Solid Waste Storage Area Four (SWSA-4) was equipped in September 1975 with asphalt-lined drainage ways designed to prevent reinfiltration of storm drainage from the 13.8 ha upslope catchment. At 49-Trench Area of SWSA-6 the entire 0.44 ha trench area was capped with a bentonite clay cover in 1976. These early attempts at hydrologic isolation have not corrected the water problems. In September 1983, two similarly designed engineered drainage projects were initiated at the disposal sites. The SWSA-4 project was designed to divert surface runoff around the trench area and drain a portion of the shallow subsurface flow which originates upslope of the site. The second project, a passive French drain constructed in SWSA-6, was aimed strictly at suppressing the site water table thus preventing its intersection with the bottoms of disposal trenches. Post-construction monitoring for performance evaluation has shown that the water table in the 49-trench area has been suppressed to a depth >4.9 m below the ground surface over 50% of the site with a maximum drawdown of 4 m at the drains deepest point. The SWSA-4 project evaluation is just being completed and data show that 56 +/- 15% of the Winter-Spring 1984 runoff was diverted around SWSA 4. As a result, a 44% reduction in 90 Sr flux was calculated from observed discharges and a previously established relation between flow rate and 90 Sr concentration

  7. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  8. A Probabilistic Performance Assessment Study of Potential Low-Level Radioactive Waste Disposal Sites in Taiwan

    Science.gov (United States)

    Knowlton, R. G.; Arnold, B. W.; Mattie, P. D.; Kuo, M.; Tien, N.

    2006-12-01

    For several years now, Taiwan has been engaged in a process to select a low-level radioactive waste (LLW) disposal site. Taiwan is generating LLW from operational and decommissioning wastes associated with nuclear power reactors, as well as research, industrial, and medical radioactive wastes. The preliminary selection process has narrowed the search to four potential candidate sites. These sites are to be evaluated in a performance assessment analysis to determine the likelihood of meeting the regulatory criteria for disposal. Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research have been working together to develop the necessary performance assessment methodology and associated computer models to perform these analyses. The methodology utilizes both deterministic (e.g., single run) and probabilistic (e.g., multiple statistical realizations) analyses to achieve the goals. The probabilistic approach provides a means of quantitatively evaluating uncertainty in the model predictions and a more robust basis for performing sensitivity analyses to better understand what is driving the dose predictions from the models. Two types of disposal configurations are under consideration: a shallow land burial concept and a cavern disposal concept. The shallow land burial option includes a protective cover to limit infiltration potential to the waste. Both conceptual designs call for the disposal of 55 gallon waste drums within concrete lined trenches or tunnels, and backfilled with grout. Waste emplaced in the drums may be solidified. Both types of sites are underlain or placed within saturated fractured bedrock material. These factors have influenced the conceptual model development of each site, as well as the selection of the models to employ for the performance assessment analyses. Several existing codes were integrated in order to facilitate a comprehensive performance assessment methodology to evaluate the potential disposal sites. First, a need

  9. Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, S.M.

    1997-10-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country''s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today''s standards. This report summarizes each site''s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US

  10. Defense waste salt disposal at the Savannah River Plant

    International Nuclear Information System (INIS)

    Langton, C.A.; Dukes, M.D.

    1984-01-01

    A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. The disposal process includes emplacing the saltstone in engineered trenches above the water table but below grade at SRP. Design of the waste form and disposal system limits the concentration of salts and radionuclides in the groundwater so that EPA drinking water standards will not be exceeded at the perimeter of the disposal site. 10 references, 4 figures, 3 tables

  11. Challenges in hardening technologies using shallow-trench isolation

    International Nuclear Information System (INIS)

    Shaneyfelt, M.R.; Dodd, P.E.; Draper, B.L.; Flores, R.S.

    1998-02-01

    Challenges related to radiation hardening CMOS technologies with shallow-trench isolation are explored. Results show that trench hardening can be more difficult than simply replacing the trench isolation oxide with a hardened field oxide

  12. Groundwater suppression and surface water diversion structures applied to closed shallow land burial trenches

    International Nuclear Information System (INIS)

    Davis, E.C.; Stansfield, R.G.; Melroy, L.A.; Huff, D.D.

    1984-01-01

    Shallow depth to groundwater, surface drainage, and subsurface flow during storm events are major environmental concerns of low-level radioactive waste management operations in humid regions. At two waste disposal sites within the Oak Ridge National Laboratory (ORNL), groups of closed trenches have experienced these problems and have been shown to collect and hold water with seasonal fluctuations ranging from 1 to 2 m. In an attempt to correct these water-related problems, the older of the two sites [Solid Waste Storage Area Four (SWSA 4)] was equipped in September 1975 with asphalt lined drainage-ways designed to prevent infiltration of storm drainage from a 13.8-ha upslope catchment. At the second site (49-Trench area of SWSA 6), the entire 0.44-ha trench area was capped with a bentonite clay cover in 1976. These attempts have not corrected the water problems. In September 1983, engineered drainage projects were initiated at both the disposal sites. The SWSA 4 project was designed to divert surface runoff and shallow subsurface flow which originates upslope of the site away from the disposal area. The second project, a passive French drain constructed in SWSA 6, was aimed strictly at suppressing the site water table, thus preventing its intersection with the bottoms of disposal trenches. Postconstruction monitoring for performance evaluation has shown that the water table in the 49-Trench area has been suppressed to a depth > 4.9 m below the ground surface over 50% of the site as compared to a depth of only 2.1 m for certain parts of the same area observed during seasonally wet months prior to drain construction. The SWSA 4 project evaluation indicates that 56% of the Winter-Spring 1984 runoff was diverted around SWSA 4 via the drainage system

  13. Engineered barrier durability: An issue for disposal near populated areas

    International Nuclear Information System (INIS)

    Porter, C.L.

    1995-01-01

    Under the current national policy for disposal of low-level radioactive waste (LLW) in the United States of America, each State is required to provide disposal capacity for the LLW generated within its borders. The formation of ''Compacts'' of several States is allowed if approved by Congress. Such forced regionalization of disposal facilities based on State boundaries results in some disposal facilities being sited near populated areas at locations with less than optimum site characteristics from a disposal standpoint. To compensate for this engineered barriers are included in the proposed designs. Portland cement based concrete (PCC), which is the dominant material for disposal vault designs, is degraded via many mechanisms, most of which are related to its permeability. The numerous uncertainties associated with the long-term performance of PCC has lead to many unsuccessful attempts to obtain public acceptance of proposed disposal facilities. These unsuccessful efforts have delayed establishing disposal capacity to the point that a crisis is looming on the horizon. This paper investigates the results of on-going research into the viability of commercially available, impermeable, mass-poured construction materials as an alternative to PCC in LLW disposal vaults. The results from testing and research on two such materials, concrete made from sulfur polymer cement (SPC) and ICOM (an epoxy based concrete) are reported. Material properties and test results include strength parameters, chemical resistance, porosity, permeability, deconability, radiation damage resistance, and biodegradation. The data indicates that with these alternative materials the uncertainties in predicting service life of an engineered barrier can be reduced

  14. The cost of engineered disposal facilities

    International Nuclear Information System (INIS)

    Mallory, C.W.; Razor, J.E.; Mills, D.

    1987-01-01

    An improved disposal trench was designed, constructed and placed into operation at the Maxey Flats Disposal Site during the period April 1985 through July 1986. With the improved trench design, the waste packages are placed in clusters and the surrounding space is filled with gravel and grouted with a sand/cement mixture to form walls and cells that surround the waste package. The walls provide structural support for a poly-ethylene reinforced soil beam which in turn supports a multi-layer protective cap. About 2,700 drums of waste (20,250 CF) were placed into the trench. The total cost of the improved trench was $193,500 and the unit cost was $9.56 per cubic foot not including the placement of the waste. The engineered features of the trench (i.e., sidewall infiltration barrier, grout backfill and the soil beam) cost $82,600 for a unit cost of $4.08 per cubic foot of waste. This is compared to the cost of concrete cannisters used for radioactive waste disposal. On a production basis the cannisters are estimated to cost about $1,260. Depending upon the type waste, the cost of the cannisters will range from $2 to $12 per cubic foot of waste. The slightly higher cost of the concrete cannisters is offset by certain performance advantages

  15. Low-level radioactive waste disposal in the USA - Use of mill tailings impoundments as a new policy option

    International Nuclear Information System (INIS)

    Farrell, C.W.

    2006-01-01

    Disposal of low-level radioactive waste (LLW) in the United States is facing severe and immediate capacity limitations. Seemingly intractable regulatory and jurisdictional conflicts make establishment of new LLW disposal sites effectively impossible. Uranium mill tailings impoundments constructed at conventional uranium open-cast and underground mines could offer approximately 40 to 80+ million tons of disposal capacity for low activity radioactive waste. Such impoundments would provide an enhanced, high level of environmental and health and safety protection for the direct disposal of depleted uranium, special nuclear material, technologically-enhanced, naturally-occurring radioactive material (TENORM) and mixed waste. Many waste streams, such as TENORM and decommissioning rubble, will be high-volume, low activity materials and ideally suited for disposal in such structures. Materials in a given decay chain with a total activity from all radionuclides present of ∼820 Bq/g (2.22 x 10 -08 Ci/g) with no single radionuclide present in an activity greater than ∼104 Bq/g (2,800 pCi/g) should be acceptable for disposal. Materials of this type could be accepted without any site-specific dose modelling, so long as the total activity of the tailings impoundment not exceed its design capacity (generally 82 x 10 07 Bq/metric tonne) (0.020 Ci/short ton) and the cover design requirements to limit radon releases are satisfied. This paper provides background on US LLW disposal regulations, examines LLW disposal options under active consideration by the US Environmental Protection Agency and Department of Energy, develops generic waste acceptance criteria and identifies policy needs for federal and state governments to facilitate use of uranium mill tailings impoundments for LLW disposal. (author)

  16. LLW (Low-Level Waste) Notes, Volume 13, Number 1, February 1998

    International Nuclear Information System (INIS)

    1998-02-01

    LLW Notes is a newsletter distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties. This issue focuses on the following topics: DOI approves Ward Valley permit application; Project evidentiary hearings begin in Texas; and Summary judgment motions in California breach of contract action

  17. LLW (Low-Level Waste) Notes, Volume 13, Number 1, February 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    LLW Notes is a newsletter distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties. This issue focuses on the following topics: DOI approves Ward Valley permit application; Project evidentiary hearings begin in Texas; and Summary judgment motions in California breach of contract action.

  18. The Potential for Criticality Following Disposal of Uranium at Low-Level-Waste Facilities. Containerized Disposal

    International Nuclear Information System (INIS)

    Colten-Bradley, V.A.; Hopper, C.M.; Parks, C.V.; Toran, L.E.

    1999-01-01

    The purpose of this study was to evaluate whether or not fissile uranium in low-level-waste (LLW) facilities can be concentrated by hydrogeochemical processes to permit nuclear criticality. A team of experts in hydrology, geology, geochemistry, soil chemistry, and criticality safety was formed to develop and test some reasonable scenarios for hydrogeochemical increases in concentration of special nuclear material (SNM) and to use these scenarios to aid in evaluating the potential for nuclear criticality. The team's approach was to perform simultaneous hydrogeochemical and nuclear criticality studies to (1) identify some possible scenarios for uranium migration and concentration increase at LLW disposal facilities, (2) model groundwater transport and subsequent concentration increase via precipitation of uranium, and (3) evaluate the potential for nuclear criticality resulting from potential increase in uranium concentration over disposal limits. The analysis of SNM was restricted to 235 U in the present scope of work. The work documented in this report indicates that the potential for a criticality safety concern to arise in an LLW facility is extremely remote, but not impossible. Theoretically, conditions that lead to a potential criticality safety concern might arise. However, study of the hydrogeochemical mechanisms, the associated time frames, and the factors required for an actual criticality event indicate that proper emplacement of the SNM at the site can eliminate practical concerns relative to the occurrence and possible consequences of a criticality event

  19. Gas generation from low-level radioactive waste: Concerns for disposal

    International Nuclear Information System (INIS)

    Siskind, B.

    1992-01-01

    The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H 2 ) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW

  20. Large Item Disposal At The Drigg Low Level Waste Repository, United Kingdom

    International Nuclear Information System (INIS)

    Griffiths, Steve

    2012-01-01

    Currently the UK operates only one repository for low level radioactive waste, the LLWR near Drigg in Cumbria. It is located on the West Cumbrian coast near the village of Drigg. LLWR is designed for the management of solid LLW and has operated as the principal national disposal facility for LLW since 1959. LLWR is managed and operated on behalf of the Nuclear Decommissioning Authority (NDA) by UK Nuclear Waste Management Ltd. (UKNWM), parent body of LLW Repository Ltd. UKNWM is a consortium led by URS, Studsvik and AREVA. Waste is accepted at LLWR based on conditions for acceptance (1). Although there is some history of disposal of non-containerised 'large items' at the Drigg site these are anecdotally described as 'not quite fitting into an ISO container (2)' and enquiries indicate that their disposal was restricted to the legacy times when items were tumble-tipped into open trenches at the site, a practise now long ceased. The feasibility of true single large item disposal at the LLWR presents complex problems arising from the poor suitability of both rail and road infrastructure in UK. LLWR is serviced both by road and rail links. The static weight of large items being taken nominally as up to ∼300 metric tons would not necessarily preclude transportation by rail but the practicalities of this route are limited. The ageing rail infrastructure includes numerous tunnels, bridges and sections of line with overhead electrification. All these would require either careful justification or significant work to ensure the safe transit of large loads. Nuclear facilities in UK are by design in remote locations, not all of which are serviced by rail connections and the rail network itself has evolved to service inter-city transportation rather than heavy freight and as such tends to route through town centres, exacerbating the tunnel, bridge and pantograph concerns already identified. Within only a few miles of the LLWR itself there are requirements to pass both over and

  1. Seepage through a hazardous-waste trench cover

    Science.gov (United States)

    Healy, R.W.

    1989-01-01

    Water movement through a waste-trench cover under natural conditions at a low-level radioactive waste disposal site in northwestern Illinois was studied from July 1982 to June 1984, using tensiometers, a moisture probe, and meteorological instruments. Four methods were used to estimate seepage: the Darcy, zero-flux plane, surface-based water-budget, and groundwater-based water-budget methods. Annual seepage estimates ranged from 48 to 216 mm (5-23% of total precipitation), with most seepage occurring in spring. The Darcy method, although limited in accuracy by uncertainty in hydraulic conductivity, was capable of discretizing seepage in space and time and indicated that seepage varied by almost an order of magnitude across the width of the trench. Lowest seepage rates occurred near the center of the cover, where seepage was gradual. Highest rates occurred along the edge of the cover, where seepage was highly episodic, with 84% of the total there being traced to wetting fronts from 28 individual storms. Limitations of the zero-flux-plane method were severe enough for the method to be judged inappropriate for use in this study.Water movement through a waste-trench cover under natural conditions at a low-level radioactive waste disposal site in northwestern Illinois was studied from July 1982 to June 1984, using tensiometers, a moisture probe, and meteorological instruments. Four methods were used to estimate seepage: the Darcy, zero-flux plane, surface-based water-budget, and groundwater-based water-budget methods. Annual seepage estimates ranged from 48 to 216mm (5-23% of total precipitation), with most seepage occurring in spring. The Darcy method, although limited in accuracy by uncertainty in hydraulic conductivity, was capable of discretizing seepage in space and time and indicated that seepage varied by almost an order of magnitude across the width of the trench. Lowest seepage rates occurred near the center of the cover, where seepage was gradual. Highest

  2. Differential diagnosis of pulmonary emphysema using the CT index: LL%w

    Energy Technology Data Exchange (ETDEWEB)

    Kitahara, Yoshinari; Takamoto, Masahiro; Maruyama, Masao; Tanaka, Yasushi; Ishibashi, Tuneo; Shinoda, Atsushi [Ohmuta National Hospital, Fukuoka (Japan)

    1989-06-01

    We measured the computed tomography (CT) index, LL%w, in 81 patients of chronic obstructive pulmonary disease (COPD) and asthma. In this study we defined LL%w as the mean value of the proportion of the low density area under -950 Hounsfield units in the six lung fields: upper, middle and lower lung fields bilaterally, at deep expiration. To examine the usefulness of LL%w in differentiating pulmomary emphysema (PE) from bronchial asthma (BA) and chronic bronchitis (CB), we excluded the overlapped cases of each disease. Mean value (+- standard deviation) of LL%w in PE was 24.6+-20.2% (n=40), whereas it was 0.5+-0.8% (n=27) in BA and 0.2+-0.3% (n=14) in CB respectively. There were clear statistically differences in the values of LL%w between clinically diagnosed emphysema and others. We considered that the value of LL%w within 1% would be observed nonspecifically, because the frequent existence of low density areas originated in bronchial tangents and/or motion artifacts mainly in the left lower lung field. Thus we judged that cases with over 1% of LL%w had abnormal CT findings. The relationship between clinically diagnosed emphysema and CT abnormality (LL%w > 1%) was significant in the analysis of the four-fold table. The CT sensitivity for diagnosing PE was 100%, the CT specificity was 87.8%, and CT accuracy was 93.8%. When cases of LL%w > 1% were shown in BA or CB, it would be better to consider the existence of complicated emphysema or the presence of air trapping or air spaces of any origin. We compared three groups (A', E', C') selected from groups BA, PE and CB, respectively. The groups consisted of patients showing almost the same mean values of FEV{sub 1.0}/VC(%). The value of the LL%w of E', selected from PE, also showed a significantly higher value than those from BA or CB. (J.P.N).

  3. Differential diagnosis of pulmonary emphysema using the CT index: LL%w

    International Nuclear Information System (INIS)

    Kitahara, Yoshinari; Takamoto, Masahiro; Maruyama, Masao; Tanaka, Yasushi; Ishibashi, Tuneo; Shinoda, Atsushi

    1989-01-01

    We measured the computed tomography (CT) index, LL%w, in 81 patients of chronic obstructive pulmonary disease (COPD) and asthma. In this study we defined LL%w as the mean value of the proportion of the low density area under -950 Hounsfield units in the six lung fields: upper, middle and lower lung fields bilaterally, at deep expiration. To examine the usefulness of LL%w in differentiating pulmomary emphysema (PE) from bronchial asthma (BA) and chronic bronchitis (CB), we excluded the overlapped cases of each disease. Mean value (± standard deviation) of LL%w in PE was 24.6±20.2% (n=40), whereas it was 0.5±0.8% (n=27) in BA and 0.2±0.3% (n=14) in CB respectively. There were clear statistically differences in the values of LL%w between clinically diagnosed emphysema and others. We considered that the value of LL%w within 1% would be observed nonspecifically, because the frequent existence of low density areas originated in bronchial tangents and/or motion artifacts mainly in the left lower lung field. Thus we judged that cases with over 1% of LL%w had abnormal CT findings. The relationship between clinically diagnosed emphysema and CT abnormality (LL%w > 1%) was significant in the analysis of the four-fold table. The CT sensitivity for diagnosing PE was 100%, the CT specificity was 87.8%, and CT accuracy was 93.8%. When cases of LL%w > 1% were shown in BA or CB, it would be better to consider the existence of complicated emphysema or the presence of air trapping or air spaces of any origin. We compared three groups (A', E', C') selected from groups BA, PE and CB, respectively. The groups consisted of patients showing almost the same mean values of FEV 1.0 /VC(%). The value of the LL%w of E', selected from PE, also showed a significantly higher value than those from BA or CB. (J.P.N)

  4. Home Sewage Disposal. Special Circular 212.

    Science.gov (United States)

    Wooding, N. Henry

    This circular provides current information for homeowners who must repair or replace existing on-lot sewage disposal systems. Site requirements, characteristics and preparation are outlined for a variety of alternatives such as elevated sand mounds, sand-lined beds and trenches, and oversized absorption area. Diagrams indicating construction…

  5. Feasibility of co-disposing low-level radioactive waste with uranium mill tailings and/or FUSRAP waste

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    Analysis of the two most critical factors affecting a co-facility, economics and technical feasibility, indicates that neither should pose significant problems and in fact many aspects, particularly in economics, favor a co-facility over specialized disposal facilities. In consideration of costs, the symbiotic nature of co-facility economics should be recognized by the different parties the co-facility would serve. By minimizing the cost burdens of the LLW/UMTRAP disposal site users, a co-facility offers a unique opportunity for the cooperative subsidization of commercial and governmental operations. Likewise, a LLW/active tailings disposal co-facility affords two different sets of commercial users the opportunity to maximize the economic efficiency of each other's disposal operations. The technical requirements for siting a LLW or uranium mill tailings disposal facility are so similar as to appear tailor-made for a co-facility. Where differences are necessary, such as to distinguish between pollution sources in environmental monitoring, LLW and mill tailings are different. Where similarities are useful, such as in siting criteria and disposal operations, LLW and mill tailings are nearly identical. Institutional factors are split in their adaptability to a co-facility. Although public perceptions will range to both extremes, the fact that a significant percentage of the local populace may favor a co-facility serves as added incentive for such an operation. The institutional aspects which could serve as considerable impediments to co-facility development would be concern about liability in the event of site failure and licensing and legal obstacles associated with UMTRAP disposal that did not meet active tailings disposal licensing requirements

  6. Low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Balaz, J.; Chren, O.

    2015-01-01

    The Mochovce National Radwaste Repository is a near surface multi-barrier disposal facility for disposal of processed low and very low level radioactive wastes (radwastes) resulting from the operation and decommissioning of nuclear facilities situated in the territory of the Slovak Republic and from research institutes, laboratories, hospitals and other institutions (institutional RAW) which are in compliance with the acceptance criteria. The basic safety requirement of the Repository is to avoid a radioactive release to the environment during its operation and institutional inspection. This commitment is covered by the protection barrier system. The method of solution designed and implemented at the Repository construction complies with the latest knowledge and practice of the repository developments all over the world and meets requirements for the safe radwaste disposal with minimum environmental consequences. All wastes are solidified and have to meet the acceptance criteria before disposal into the Repository. They are processed and treated at the Bohunice RAW Treatment Centre and Liquid RAW Final Treatment Facility at Mochovce. The disposal facility for low level radwastes consists of two double-rows of reinforced concrete vaults with total capacity 7 200 fibre reinforced concrete containers (FCCs) with RAW. One double-row contains 40 The operation of the Repository was started in year 2001 and after ten years, in 2011 was conducted the periodic assessment of nuclear safety with positive results. Till the end of year 2014 was disposed to the Repository 11 514 m 3 RAW. The analysis of total RAW production from operation and decommissioning of all nuclear installation in SR, which has been carried out in frame of the BIDSF project C9.1, has showed that the total volume estimation of conditioned waste is 108 thousand m 3 of which 45.5 % are low level waste (LLW) and 54,5 % very low level waste (VLLW). On the base of this fact there is the need to build 7

  7. Universal trench design method for a high-voltage SOI trench LDMOS

    Institute of Scientific and Technical Information of China (English)

    Hu Xiarong; Zhang Bo; Luo Xiaorong; Li Zhaoji

    2012-01-01

    The design method for a high-voltage SOl trench LDMOS for various trench permittivities,widths and depths is introduced.A universal method for efficient design is presented for the first time,taking the trade-off between breakdown voltage (BV) and specific on-resistance (Rs,on) into account.The high-k (relative permittivity)dielectric is suitable to fill a shallow and wide trench while the low-k dielectric is suitable to fill a deep and narrow trench.An SOI LDMOS with a vacuum trench in the drift region is also discussed.Simulation results show that the high FOM BV2/Rs,on can be achieved with a trench filled with the low-k dielectric due to its shortened cell-pitch.

  8. LLW Forum summary report, volume 2. No. 2. June 1994

    International Nuclear Information System (INIS)

    1994-06-01

    Information provided for each compact and its host state includes: governing body, member states, compact establishment date, current waste management, regulatory and program responsibility, siting responsibility, other involvement, disposal technology, siting, licensing, development costs, and operational date

  9. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    International Nuclear Information System (INIS)

    Carilli, J.T.; Krenzien, S.K.; Geisinger, R.G.; Gordon, S.J.; Quinn, B.

    2009-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams

  10. Preliminary Disposal Analysis for Selected Accelerator Production of Tritium Waste Streams

    International Nuclear Information System (INIS)

    Ades, M.J.; England, J.L.

    1998-06-01

    A preliminary analysis was performed for two selected Accelerator Production of Tritium (APT) generated mixed and low-level waste streams to determine if one mixed low-level waste (MLLW) stream that includes the Mixed Waste Lead (MWL) can be disposed of at the Nevada Test Site (NTS) and at the Hanford Site and if one low-level radioactive waste (LLW) stream, that includes the Tungsten waste stream (TWS) generated by the Tungsten Neutron Source modules and used in the Target/Blanket cavity vessel, can be disposed of in the LLW Vaults at the Savannah River Plant (SRP). The preliminary disposal analysis that the radionuclide concentrations of the two selected APT waste streams are not in full compliance with the Waste Acceptance Criteria (WAC) and the Performance Assessment (PA) radionuclide limits of the disposal sites considered

  11. The Micro Trench Gas Counter

    International Nuclear Information System (INIS)

    Schmitz, J.

    1991-07-01

    A novel design is presented for a gas avalanche chamber with micro-strip gas readout. While existing gaseous microstrip detectors (Micro-strip Gas Counters, Knife edge chambers) have a minimum anode pitch of the order of 100 μm, the pitch of the discussed Micro Trench Gas Counter goes down to 30-50 μm. This leads to a better position resolution and two track separation, and a higher radiation resistivity. Its efficiency and signal speed are expected to be the same as the Microstrip Gas Counter. The energy resolution of the device is expected to be equal to or better than 10 percent for the 55 Fe peak. Since the anode strip dimensions are larger than those in a MSGC, the device may be not as sensitive to discharges and mechanical damage. In this report production of the device is briefly described, and predictions on its operation are made based on electric field calculations and experience with the Microstrip Gas Counter. The authors restrict themselves to the application in High Energy Physics. (author). 10 refs.; 9 figs

  12. Mariana Trench Bathymetric Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) created a bathymetric digital elevation model (DEM) for the Mariana Trench and adjacent seafloor in the Western...

  13. 300 Area Process Trenches Verification Package

    International Nuclear Information System (INIS)

    Lerch, J.A.

    1998-03-01

    The purpose of this verification package is to document achievement of the remedial action objectives for the 300 Area Process Trenches (300 APT) located within the 300-FF-1 Operable Unit (OU). The 300 APT became active in 1975 as a replacement for the North and South Process Pond system that is also part of the 300-FF-1 OU. The trenches received 300 Area process effluent from the uranium fuel fabrication facilities. Waste from the 300 Area laboratories that was determined to be below discharge limits based on monitoring performed at the 307 retention basin was also released to the trenches. Effluent flowed through the headworks sluice gates, down a concrete apron, and into the trenches. From the beginning of operations in 1975 until 1993, a continuous, composite sampler was located at the headwork structure to analyze process effluent at the point of discharge to the environment

  14. Public Acceptance of Low-Level Waste Disposal Critical to the Nuclear Renaissance

    International Nuclear Information System (INIS)

    Sonny Goldston, W.T.

    2009-01-01

    The disposal of various Low-Level Waste (LLW) forms projected to result from the operation of a pilot or large scale Advanced Fuel Cycle Initiative Programs' (formally known as Global Nuclear Energy Partnership (GNEP)) reprocessing and vitrification plants requires the DOE LLW program and regulatory structure to be utilized in its present form due to the limited availability of Nuclear Regulatory Commission licensed commercial LLW disposal facilities to handle wastes with radionuclide concentrations that are greater than Nuclear Regulatory Commission (NRC) Class A limits. This paper will describe the LLW forms and the regulatory structures and facilities available to dispose of this waste. Then the paper discusses the necessity of an excellent public involvement program to ensure the success of an effective technical solution. All of the decisions associated with the management of these wastes are of interest to the public and successful program implementation would be impossible without including the public up-front in the program formulation. Serious problems can result if program decisions are made without public involvement, and if the public is informed after key decisions are made. This paper will describe the regulatory and public involvement program and their effects on the decisions concerning the disposal of Low-Level Radioactive Waste (LLW) at the Savannah River Site (SRS). An extensive public communications effort resulted in endorsement of changes in disposal practices by the SRS Citizens Advisory Board that was critical to the success of the program. A recommendation will be made to install a public involvement program that is similar to the SRS Citizens Advisory Board in order to ensure the success of the AFCI programs in view of the limited availability to handle the wastes from the program and the public acceptance of change that will be required. (authors)

  15. Diode having trenches in a semiconductor region

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2016-03-22

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  16. Branch technical position for performance assessment of low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Campbell, A.C.; Abramson, L.; Byrne, R.M.

    1994-01-01

    The U.S. Nuclear Regulatory Commission has developed a Draft Branch Technical Position on Performance Assessment of Low-Level Radioactive Waste Disposal Facilities. The draft technical position addresses important issues in performance assessment modeling and provides a framework and technical basis for conducting and evaluating performance assessments in a disposal facility license application. The technical position also addresses specific technical policy issues and augments existing NRC guidance pertaining to LLW performance assessment

  17. Tumulus Disposal Demonstration Project assessment plan for potential worker exposure: Revision 1

    International Nuclear Information System (INIS)

    Styers, D.R.

    1989-03-01

    The purpose of the ''Assessment Plan for Potential Worker Exposure'' is to determine the potential radiological exposures to the workers as they dispose of low-level radioactive wastes (LLW) on the Tumulus Disposal Demonstration Project (TDDP). An evaluation of the work procedures and precautions will be made so as to maintain the exposure levels As Low As Reasonably Achievable (ALARA). 10 refs., 10 figs

  18. Fire hazard analysis of the radioactive mixed waste trenchs

    International Nuclear Information System (INIS)

    McDonald, K.M.

    1995-01-01

    This Fire Hazards Analysis (FHA) is intended to assess comprehensively the risk from fire associated with the disposal of low level radioactive mixed waste in trenches within the lined landfills, provided by Project W-025, designated Trench 31 and 34 of the Burial Ground 218-W-5. Elements within the FHA make recommendations for minimizing risk to workers, the public, and the environment from fire during the course of the operation's activity. Transient flammables and combustibles present that support the operation's activity are considered and included in the analysis. The graded FHA contains the following elements: description of construction, protection of essential safety class equipment, fire protection features, description of fire hazards, life safety considerations, critical process equipment, high value property, damage potential--maximum credible fire loss (MCFL) and maximum possible fire loss (MPFL), fire department/brigade response, recovery potential, potential for a toxic, biological and/or radiation incident due to a fire, emergency planning, security considerations related to fire protection, natural hazards (earthquake, flood, wind) impact on fire safety, and exposure fire potential, including the potential for fire spread between fire areas. Recommendations for limiting risk are made in the text of this report and printed in bold type. All recommendations are repeated in a list in Section 18.0

  19. Effectiveness of a ground-surface polymer membrane covering as a method for limiting infiltration into burial trenches at Maxey Flats, Kentucky

    International Nuclear Information System (INIS)

    Lyverse, M.A.

    1987-01-01

    The Maxey Flats Disposal Site (MFDS) was operated as a shallow land burial site for low-level radioactive wastes for a period of 14 years (1963-1977). In 1977, radionuclides were found to be migrating from a closed disposal trench into an adjacent newly constructed trench. This discovery prompted closure of the site. Over time, deterioration of the shale and clay cover on the trenches had resulted from subsidence due to the collapse of buried metallic containers and the decomposition of various organic wastes within the trenches. This subsidence increased infiltration of water into the trenches as surface water was retained over the waste in potholes and small ponds. Although infiltration rates to the waste increased, seepage rates of leachate out of the bottom and sides of the trenches were very slow due to the low permeability of surrounding native shale soils (average hydraulic conductivity 4 x 10 -3 ft/day). In 1981, a program was implemented to correct deficiencies and stabilize the site. This paper describes the effectiveness of one design method where a low permeable (hydraulic conductivity -9 ft/sec) polyvinylchloride membrane cover (PVC) 0.015 to 0.020 inches thick was placed over the burial trenches. The covers were installed over trenches beginning in the fall of 1981. Each trench is equipped with several sumps for the collection and removal of leachate. Water-level data were collected on sumps from five trenches during the study period May 1978 to October 1984, which spanned a period prior to and after installation of the PVC cover. 3 references, 4 figures, 1 table

  20. Groundwater monitoring plan for the 300 Area process trenches

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, J.W.; Chou, C.J.; Johnson, V.G.

    1995-05-23

    This document describes the groundwater monitoring program for the Hanford Site 300 Area Process Trenches (300 APT). The 300 APT are a Resource Conservation and Recovery Act of 1976 (RCRA) regulated unit. The 300 APT are included in the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit No. WA890008967, and are subject to final-status requirements for groundwater monitoring. This document describes a compliance monitoring program for groundwater in the uppermost aquifer system at the 300 APT. This plan describes the 300 APT monitoring network, constituent list, sampling schedule, statistical methods, and sampling and analysis protocols that will be employed for the 300 APT. This plan will be used to meet groundwater monitoring requirements from the time the 300 APT becomes part of the Permit and through the postclosure care period until certification of final closure.

  1. Equity of commercial low-level radioactive waste disposal fees. Report to Congress

    International Nuclear Information System (INIS)

    1998-02-01

    In the Report accompanying the Fiscal Year 1997 Senate Energy and Water Development Appropriations Bill, the Senate Appropriations Committee directed the Department of Energy (DOE) to prepare a study of the costs of operating a low-level radioactive waste (LLW) disposal facility such as the one at Barnwell, South Carolina, and to determine whether LLW generators are paying equitable disposal fees. The disposal costs of four facilities are reviewed in this report, two operating facilities and two planned facilities. The operating facilities are located at Barnwell, South Carolina, and Richland, Washington. They are operated by Chem-Nuclear, LLC, (Chem-Nuclear), and US Ecology, Inc., (US Ecology), respectively. The planned facilities are expected to be built at Ward Valley, California, and Sierra Blanca, Texas. They will be operated by US Ecology and the State of Texas, respectively. This report found that disposal fees vary significantly among facilities for a variety of reasons. However, the information suggests that at each disposal facility, LLW generators pay equitable disposal fees

  2. Guidelines for radiological performance assessment of DOE low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Case, M.J.; Otis, M.D.

    1988-07-01

    This document provides guidance for conducting radiological performance assessments of Department of Energy (DOE) low-level radioactive waste (LLW) disposal facilities. The guidance is specifically intended to provide the fundamental approach necessary to meet the performance assessment requirements. The document is written for LLW facility operators or other personnel who will manage the performance assessment task. The document is meant to provide guidance for conducting performance assessments in a generally consistent manner at all DOE LLW disposal facilities. The guidance includes a summary of performance objectives to be met by LLW disposal facilities (these objectives are derived from current DOE and other applicable federal regulatory guidelines); specific criteria for an adequate performance assessment and from which a minimum set of required calculations may be determined; recommendations of methods for screening critical components of the analysis system so that these components can be addressed in detail; recommendations for the selection of existing models and the development of site-specific models; recommendations of techniques for comparison of assessment results with performance objectives; and a summary of reporting requirements

  3. Rokkasho low-level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Takahashi, Y.

    1994-01-01

    Japan Nuclear Fuel Limited commenced the operation of the shallow land disposal of low-level radioactive waste from reactor operation, in 1992 at Rokkasho site in Aomori Prefecture. JNFL is private company whose main activities within the responsibility of JNFL are: 1) Disposal of low-level radioactive waste, 2) Uranium enrichment, 3) Reprocessing of spent nuclear fuels, 4) Temporary storage of returned wastes from COGEMA and BNFL by reprocessing contracts, prior to disposal. JNFL selected the site for the disposal of LLW at Rokkasho in Aomori Prefecture, then bought land of 3.4 million m 2 . Among waste spectrum, LLWs from nuclear power plants, from uranium enrichment and from reprocessing are to be managed by JNFL, including dismantling of these facilities, and JNFL has plan to dispose about 600 thousand m 3 of wastes ultimately. On the middle of November 1990 JNFL got the permission of the application for 40 thousand m 3 (equivalent to 200,000 drums each with a 200-liter capacity) of reactor operating wastes which is solidified with cement, bitumen or plastics as a first stage. And after the construction work for about 2 years, the operations started at Dec. 8th, 1992. The Disposal center has already accepted about 24,000 LLW drums as of the end of February, 1994. (author)

  4. Trench angle: a key design factor for a deep trench superjunction MOSFET

    International Nuclear Information System (INIS)

    Kang, Hyemin; Lee, Jaegil; Lee, Kwangwon; Choi, Youngchul

    2015-01-01

    Why is the development of a deep trench superjunction (SJ) MOSFET above 600 V and under 8.0 mohm · cm 2 difficult? A deep trench SJ MOSFET is expected to have a low turn-on resistance because the post thermal process after the epitaxial process, which is normally used in a multi-step epitaxy structure, is unnecessary. When designing a deep trench SJ MOSFET, the trench angle is the most important factor because this determines the breakdown voltage (BV) and BV variations. In this paper, we investigated how the trench angle affects the BV and BV window as a condition of the possible thermal process. By employing a physical concept, ΔCharge, we explained why the maximum BV is decreased and the BV window is increased as the trench angle decreases. Also, we systematically scrutinized the transition of the vertical electric field by varying the trench angle. Furthermore, in a real case, the principle of the trench angle which contributes to the deviation of the charge imbalance and specific resistance of SJ is described. Finally, we discuss the challenge of SJ MOSFET development in the industry. (paper)

  5. Revised ground-water monitoring compliance plan for the 300 area process trenches

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, R.; Aaberg, R.L.; Bates, D.J.; Carlile, J.V.M.; Freshley, M.D.; Liikala, T.L.; Mitchell, P.J.; Olsen, K.B.; Rieger, J.T.

    1988-09-01

    This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.

  6. 'Dodo-Goldilocks' Trench Dug by Phoenix

    Science.gov (United States)

    2008-01-01

    This color image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on the 19th day of the mission, or Sol 19 (June 13, 2008), after the May 25, 2008, landing. This image shows one trench informally called 'Dodo-Goldilocks' after two digs (dug on Sol 18, or June 12, 2008) by Phoenix's Robotic Arm. The trench is 22 centimeters (8.7 inches) wide and 35 centimeters (13.8 inches) long. At its deepest point, the trench is 7 to 8 centimeters (2.7 to 3 inches) deep. White material, possibly ice, is located only at the upper portion of the trench, indicating that it is not continuous throughout the excavated site. According to scientists, the trench might be exposing a ledge, or only a portion of a slab, of the white material. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. 'Dodo-Goldilocks' Trench Elevation Map

    Science.gov (United States)

    2008-01-01

    This color-coded elevation map shows the 'Dodo-Goldilocks' trench dug by the Robotic Arm on NASA's Phoenix Mars Lander. The trench, originally two separate trenches nicknamed 'Dodo' (left) and 'Goldilocks' (right), became one after further digging on the 18th Martian day, or Sol 18, of the mission (June 12, 2008). The trench is 7 to 8 centimeters (2.7 to 3 inches) at its deepest (blue). Because the terrain itself is inclined at a 14-degree angle, the highest areas (pink) are about 20 centimeters (7.8 inches) above the lowest areas. The trench is 22 centimeters (8.7 inches) wide and 35 centimeters (13.8 inches) long. Its deepest portion is closest to the lander. This picture was taken by Phoenix's Surface Stereo Imager on Sol 19 (June 13, 2008). The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Composite analysis E-area vaults and saltstone disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  9. Composite analysis E-area vaults and saltstone disposal facilities

    International Nuclear Information System (INIS)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public

  10. Developing a low-level radioactive waste disposal facility in Connecticut: Update on progress and new directions

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, R.E. [Connecticut Hazardous Waste Management Service, Hartford, CT (United States)

    1993-03-01

    Connecticut is a member of the Northeast Interstate Low-Level Radioactive Waste Management Compact (Northeast LLRW Compact). The other member of the Northeast LLRW Compact is New Jersey. The Northeast Interstate Low-Level Radioactive Waste Commission (Northeast Compact Commission), the Northeast LLRW Compact`s governing body, has designated both Connecticut and New Jersey as host states for disposal facilities. The Northeast Compact Commission has recommended that, for purposes of planning for each state`s facility, the siting agency for the state should use projected volumes and characteristics of the LLW generated in its own state. In 1987 Connecticut enacted legislation that assigns major responsibilities for developing a LLW disposal facility in Connecticut to the Connecticut Hazardous Waste Management Service (CHWMS). The CHWMS is required to: prepare and revise, as necessary, a LLW Management Plan for the state; select a site for a LLW disposal facility; select a disposal technology to be used at the site; select a firm to obtain the necessary approvals for the facility and to develop and operate it; and serve as the custodial agency for the facility. This paper discusses progress in developing a facility.

  11. Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Price, L.

    1994-09-01

    The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE's Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS

  12. Operation and management plan of Rokkasho Low Level Radioactive Waste Disposal Center

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Z.; Tomozawa, T.; Mahara, Y.; Iimura, H. [Japan Nuclear Fuel Ltd., Tokyo (Japan). Radioactive Waste Management Dept.

    1993-12-31

    Japan Nuclear Fuel Limited (JNFL) started the operation of the Rokkasho Low-Level Radioactive Waste Disposal Center in December, 1992. This center is located at Rokkasho Village in Aomori Prefecture. The facility in this center will provide for the disposal of 40,000 m{sup 3} of the low-level radioactive waste (LLW) produced from domestic nuclear power stations. The facility will receive between 5,000 m{sup 3} and 10,000 m{sup 3} of waste every year. Strict and efficient institutional controls, such as the monitoring of the environment and management of the site, is required for about 300 years. This paper provides an outline of the LLW burial operation and management program at the disposal facility. The facility is located 14--19 meters below the ground surface in the hollowed out Takahoko Formation.

  13. Operation and management plan of Rokkasho Low Level Radioactive Waste Disposal Center

    International Nuclear Information System (INIS)

    Nakanishi, Z.; Tomozawa, T.; Mahara, Y.; Iimura, H.

    1993-01-01

    Japan Nuclear Fuel Limited (JNFL) started the operation of the Rokkasho Low-Level Radioactive Waste Disposal Center in December, 1992. This center is located at Rokkasho Village in Aomori Prefecture. The facility in this center will provide for the disposal of 40,000 m 3 of the low-level radioactive waste (LLW) produced from domestic nuclear power stations. The facility will receive between 5,000 m 3 and 10,000 m 3 of waste every year. Strict and efficient institutional controls, such as the monitoring of the environment and management of the site, is required for about 300 years. This paper provides an outline of the LLW burial operation and management program at the disposal facility. The facility is located 14--19 meters below the ground surface in the hollowed out Takahoko Formation

  14. Overview of commercial low-level radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    Smith, P.

    1994-01-01

    Disposal of commercial low-level radioactive waste (LLW) is a critical part of the national infrastructure needed to maintain the health of American businesses, universities, and hospitals. Currently only 19 States (located in the Northwest and Southeast) have access to operating disposal facilities; all other States are storing their LLW until they open new disposal facilities on their own or in concert with other States through regional compact agreements. In response to recommendations from the National Governors Association, Congress assigned the burden for LLW disposal to all States, first in 1980 through Public Law 96-573, the open-quotes Low-level Radioactive Waste Policy Actclose quotes, and again in 1986 through Public Law 99-240, the open-quotes Low-Level Radioactive Waste Policy Amendments Act of 1985close quotes. As directed by Congress, the Department of Energy provides technical assistance to States and compact regions with this task. After almost 14 years, nine compact regions have been ratified by Congress; California, Texas, North Carolina, and Nebraska have submitted license applications; California has issued an operating license; and the number of operating disposal facilities has decreased from three to two

  15. Potential GTCC LLW sealed radiation source recycle initiatives

    International Nuclear Information System (INIS)

    Fischer, D.

    1992-04-01

    This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities

  16. EPA's LLW standards program: Below regulatory concern criteria development

    International Nuclear Information System (INIS)

    Holcomb, W.F.; Gruhlke, J.M.

    1987-01-01

    The Environmental Protection Agency (EPA) is developing generally applicable environmental standards for land disposal of low-level radioactive wastes. These standards will include criteria for determining which wastes have sufficiently low levels of radioactivity to be considered ''Below Regulatory Concern'' (BRC) in regards to their radiation hazard. Risk assessments to support the BRC criteria include an analysis of 18 surrogate radioactive waste streams, generated by nuclear power reactors and other fuel cycle facilities, industrial, medical and educational facilities, and consumers. Deregulated disposal alternatives, such as sanitary landfills, municipal dumps, incinerators and on-site landfills, situated in diverse demographic settings are used in the analysis. A number of waste streams which contributed only small doses or fractions of a health effect over 10,000 years were identified. Disposal of such wastes without consideration of their very low radioactivity could result in significant cost savings to the commercial fuel cycle and government operations as well as to medical, educational, and industrial facilities, and with minimal risk to the public. The concept of BRC wastes appears both feasible and cost effective

  17. Grout testing and characterization for shallow-land burial trenches at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Tallent, O.K.; Sams, T.L.; Tamura, T.; Godsey, T.T.; Francis, C.L.; McDaniel, E.W.

    1986-10-01

    An investigation was conducted to develop grout formulations suitable for in situ stabilization of low-level and transuranic (TRU) waste in shallow-land burial trenches at Idaho National Engineering Laboratory (INEL). The acceptabilities of soil, ordinary particulate, and fine particulate grouts were evaluated based on phase separation, compressive strength, freeze/thaw, penetration resistance, rheological, water permeability, column, and other tests. Soil grouts with soil-to-cement weight ratios from 0.91 to 1.60 were found to be suitable for open trench or drum disposal. Ordinary particulate grouts containing type I,II Portland cement, class C fly ash, bentonite, water, and a fluidizer were formulated to fill large voids within the soil/waste matrix of a closed shallow-land burial trench. Fine particulate grouts containing fine (mean particle size, 9.6 m) cement and water were formulated to fill smaller voids and to establish a grout-soil barrier to prevent water intrusion into the grouted waste trench. Solution, or chemical grouts, were evaluated as possible substitutes for the fine particulate grouts

  18. A dual model approach to ground water recovery trench design

    International Nuclear Information System (INIS)

    Clodfelter, C.L.; Crouch, M.S.

    1992-01-01

    The design of trenches for contaminated ground water recovery must consider several variables. This paper presents a dual-model approach for effectively recovering contaminated ground water migrating toward a trench by advection. The approach involves an analytical model to determine the vertical influence of the trench and a numerical flow model to determine the capture zone within the trench and the surrounding aquifer. The analytical model is utilized by varying trench dimensions and head values to design a trench which meets the remediation criteria. The numerical flow model is utilized to select the type of backfill and location of sumps within the trench. The dual-model approach can be used to design a recovery trench which effectively captures advective migration of contaminants in the vertical and horizontal planes

  19. Health physics challenges during decontamination for safe disposal of low level liquid effluent tank as inactive scrap

    International Nuclear Information System (INIS)

    Akila, R.; Sultan, Bajeer; Sarangapani, R.; Jose, M.T.

    2018-01-01

    The Low-level Liquid waste (LLW) generated during the regeneration of mixed bed column of KAMINI reactor is collected in the SS Delay Tanks located on the western side of RML building. It was proposed to dismantle and dispose the tank as solid waste. The tank weighs about 2 ton. An attempt was made to decontaminate the tank to levels below the exempt quantity so as to qualify it as scrap of unrestricted release. This is first time in IGCAR wherein a material used in a radioactive facility for storing LLW is being released as scrap of unrestricted release and this paper discusses about the same

  20. Waste management system functional requirements for Interim Waste Management Facilities (IWMFs) and technology demonstrations, LLWDDD [Low-Level Disposal Development and Demonstration] Program

    International Nuclear Information System (INIS)

    1988-03-01

    The purpose of this report is to build upon the preceding decisions and body of information to prepare draft system functional requirements for each classification of waste disposal currently proposed for Low-Level Waste Disposal Development Demonstration (LLWDDD) projects. Functional requirements identify specific information and data needs necessary to satisfy engineering design criteria/objectives for Interim Waste Management Facilities. This draft will suppor the alternatives evaluation process and will continue to evolve as strategy is implemented, regulatory limits are established, technical and economic uncertainties are resolved, and waste management plans are being implemented. This document will become the planning basis for the new generation of solid LLW management facilities on new sites on the Reservation. Eighteen (18) general system requirements are identified which are applicable to all four Low-Level Waste (LLW) disposal classifications. Each classification of LLW disposal is individually addressed with respect ot waste characteristics, site considerations, facility operations, facility closure/post-closure, intruder barriers, institutional control, and performance monitoring requirements. Three initial LLW disposal sites have been proposed as locations on the ORR for the first demonstrations

  1. Oak Ridge greater confinement disposal demonstrations

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Clapp, R.B.

    1987-01-01

    Demonstrations are being conducted in association with the disposal of a high activity low-level waste (LLW) stream. The waste stream in question will result from the cement solidification of decanted liquids from the Melton Valley Storage Tanks (MVST). The solid waste will be produced beginning in mid summer 1988. It is anticipated to have significant concentrations of Cs-137 and Sr-90, with smaller amounts of other radionuclides and <100 nCi/gm of TRU. The solid waste forms are expected to have surface dose rates in the 1 to 2 r/hr range. The solid waste will also contain several chemical species at concentrations which are below those of concern, but which may present enhanced corrosion potential for the disposal units. 2 refs., 5 figs

  2. Radiohygienic aspects of the safety analysis of the Puespoekszilagy radioactive waste disposal and treatment facility, Hungary

    International Nuclear Information System (INIS)

    Kerekes, A.; Juhasz, L.; Berci, K.; Ormai, P.

    2001-01-01

    A temporary disposal was established for low level radioactive waste (LLW) at Solymar close to Budapest in 1960. Approx. 900 m 3 LLW was disposed in concrete ring bells on the site until 1975. A new disposal (Radwaste Treatment and Disposal Facility, RWTDF) for low and intermediate radioactive waste (L/ILW) was put into operation at Puespoekszilagy, about 40 km to Budapest in 1976. The site was operated by the Metropolitan Institute of National Public Health and Medical Officer Service until 1997, when according to the new Hungarian Act on Atomic Energy the Public Agency for Radioactive Waste Management was established to perform the tasks connected to radwaste management and decommissioning of nuclear installations. The Solymar facility was dismantled and the radioactive waste transported to Puespoekszilagy. The RWTDF is situated on the ridge of a hill in a clay formation with conductivity from 10 -8 to 10 -6 cm.s -1 ; the groundwater depth is 17-20 m from the bottom of the disposal units. The waste is deposited in near surface disposal units (trenches, cells, and wells) with engineered barriers. Up to now about 4900 m 3 of solid and solidified waste has been emplaced and 2 trenches of about 3000 m 3 has been temporary sealed. More than 80% of the disposed waste is of low level. Approx. 700 TBq is the total activity of the radwaste including long-lived and alpha emitting radionuclides with the activity of the order of magnitude of 10 TBq. As the safety analysis was performed in a simple way in 1970's during the commissioning of the facility a comprehensive safety analysis was prescribed to get the license for the operation of the storage units extended at the end of 1980's. ETV-EROETERV Ltd. has won the tender for the safety analysis and the NRIRR was involved in the biosphere characterisation of the region and in the dose estimations for different accidental scenarios as well. The biosphere characterisation included the following categories: meteorology

  3. 300 Area Process Trenches Closure Plan

    International Nuclear Information System (INIS)

    Luke, S.N.

    1994-01-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the US Department of Energy, Richland Operations Office and has served as co-operator of the 300 Area Process Trenches, the waste management unit addressed in this closure plan. For the purposes of the Resource Conservation and Recovery Act, Westinghouse Hanford Company is identified as ''co-operator.'' The 300 Area Process Trenches Closure Plan (Revision 0) consists of a Resource Conservation and Recovery Act Part A Dangerous Waste Permit Application, Form 3 and a Resource Conservation and Recovery Act Closure Plan. An explanation of the Part A Permit Application, Form 3 submitted with this document is provided at the beginning of the Part A Section. The closure plan consists of nine chapters and six appendices. The 300 Area Process Trenches received dangerous waste discharges from research and development laboratories in the 300 Area and from fuels fabrication processes. This waste consisted of state-only toxic (WT02), corrosive (D002), chromium (D007), spent halogenated solvents (F001, F002, and F003), and spent nonhalogented solvent (F005). Accurate records are unavailable concerning the amount of dangerous waste discharged to the trenches. The estimated annual quantity of waste (item IV.B) reflects the total quantity of both regulated and nonregulated waste water that was discharged to the unit

  4. Color View 'Dodo' and 'Baby Bear' Trenches

    Science.gov (United States)

    2008-01-01

    NASA's Phoenix Mars Lander's Surface Stereo Imager took this image on Sol 14 (June 8, 2008), the 14th Martian day after landing. It shows two trenches dug by Phoenix's Robotic Arm. Soil from the right trench, informally called 'Baby Bear,' was delivered to Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA, on Sol 12 (June 6). The following several sols included repeated attempts to shake the screen over TEGA's oven number 4 to get fine soil particles through the screen and into the oven for analysis. The trench on the left is informally called 'Dodo' and was dug as a test. Each of the trenches is about 9 centimeters (3 inches) wide. This view is presented in approximately true color by combining separate exposures taken through different filters of the Surface Stereo Imager. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. A case of bilateral trench foot.

    Science.gov (United States)

    Parsons, S L; Leach, I H; Charnley, R M

    1993-12-01

    A case of severe bilateral trench foot is presented in a patient who lived rough for 3 weeks without removing his boots. Non-operative management yielded no clinical improvement and bilateral below-knee amputation was necessary. Histology revealed subcutaneous and muscle necrosis with secondary arterial thrombosis.

  6. Trench capacitor and method for producing the same

    NARCIS (Netherlands)

    2009-01-01

    A method of fabricating a trench capacitor, and a trench capacitor fabricated thereby, are disclosed. The method involves the use of a vacuum impregnation process for a sol-gel film, to facilitate effective deposition of high- permittivity materials within a trench in a semiconductor substrate, to

  7. Changes in soil hydraulic properties caused by construction of a simulated waste trench at the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Shakofsky, S.

    1995-03-01

    In order to assess the effect of filled waste disposal trenches on transport-governing soil properties, comparisons were made between profiles of undisturbed soil and disturbed soil in a simulated waste trench. The changes in soil properties induced by the construction of a simulated waste trench were measured near the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL) in the semiarid southeast region of Idaho. The soil samples were collected, using a hydraulically-driven sampler to minimize sample disruption, from both a simulated waste trench and an undisturbed area nearby. Results show that the undisturbed profile has distinct layers whose properties differ significantly, whereas the soil profile in the simulated waste trench is, by comparison, homogeneous. Porosity was increased in the disturbed cores, and, correspondingly, saturated hydraulic conductivities were on average three times higher. With higher soil-moisture contents (greater than 0.32), unsaturated hydraulic conductivities for the undisturbed cores were typically greater than those for the disturbed cores. With lower moisture contents, most of the disturbed cores had greater hydraulic conductivities. The observed differences in hydraulic conductivities are interpreted and discussed as changes in the soil pore geometry

  8. Co-disposal of mixed waste materials

    International Nuclear Information System (INIS)

    Phillips, S.J.; Alexander, R.G.; Crane, P.J.; England, J.L.; Kemp, C.J.; Stewart, W.E.

    1993-08-01

    Co-disposal of process waste streams with hazardous and radioactive materials in landfills results in large, use-efficiencies waste minimization and considerable cost savings. Wasterock, produced from nuclear and chemical process waste streams, is segregated, treated, tested to ensure regulatory compliance, and then is placed in mixed waste landfills, burial trenches, or existing environmental restoration sites. Large geotechnical unit operations are used to pretreat, stabilize, transport, and emplace wasterock into landfill or equivalent subsurface structures. Prototype system components currently are being developed for demonstration of co-disposal

  9. Application of an infiltration evaluation methodology to a hypothetical low-level waste disposal facility

    International Nuclear Information System (INIS)

    Meyer, P.D.

    1993-12-01

    This report provides an analysis of infiltration and percolation at a hypothetical low-level waste (LLW) disposal facility was carried out. The analysis was intended to illustrate general issues of concern in assessing the performance of LLW disposal facilities. Among the processes considered in the analysis were precipitation, runoff, information, evaporation, transpiration, and redistribution. The hypothetical facility was located in a humid environment characterized by frequent and often intense precipitation events. The facility consisted of a series of concrete vaults topped by a multilayer cover. Cover features included a sloping soil surface to promote runoff, plant growth to minimize erosion and promote transportation, a sloping clay layer, and a sloping capillary barrier. The analysis within the root zone was carried out using a one-dimensional, transient simulation of water flow. Below the root zone, the analysis was primarily two-dimensional and steady-state

  10. WRAP low level waste restricted waste management (LLW RWM) glovebox acceptance test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1997-01-01

    On April 22, 1997, the Low Level Waste Restricted Waste Management (LLW RWM) glovebox was tested using acceptance test procedure 13027A-87. Mr. Robert L. Warmenhoven served as test director, Mr. Kendrick Leist acted as test operator and test witness, and Michael Lane provided miscellaneous software support. The primary focus of the glovebox acceptance test was to examine glovebox control system interlocks, operator Interface Unit (OIU) menus, alarms, and messages. Basic drum port and lift table control sequences were demonstrated. OIU menus, messages, and alarm sequences were examined, with few exceptions noted. Barcode testing was bypassed, due to the lack of installed equipment as well as the switch from basic reliance on fixed bar code readers to the enhanced use of portable bar code readers. Bar code testing was completed during performance of the LLW RWM OTP. Mechanical and control deficiencies were documented as Test Exceptions during performance of this Acceptance Test. These items are attached as Appendix A to this report

  11. Test Plan: Phase 1, Hanford LLW melter tests, GTS Duratek, Inc

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-01-01

    This document provides a test plan for the conduct of vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384215] is GTS Duratek, Inc., Columbia, Maryland. The GTS Duratek project manager for this work is J. Ruller. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a DuraMelter trademark vitrification system

  12. Concept and Idea-Project for Yugoslav Low and Intermediate level Radioactive Waste Materials Final Disposal Facility

    International Nuclear Information System (INIS)

    Peric, A.

    1997-01-01

    Encapsulation of rad waste in a mortar matrix and displacement of such solidified waste forms into the shallow land burial system, engineered trench system type is suggested concept for the final disposal of low and intermediate level rad waste. The mortar-rad waste mixtures are cured in containers of either concrete or metal for an appropriate period of time, after which solidified rad waste-mortar monoliths are then placed in the engineered trench system, parallelepiped honeycomb structure. Trench consists of vertical barrier-walls, bottom barrier-floors, surface barrier-caps and permeable-reactive walls. Surroundings of the trench consists of buffer barrier materials, mainly clay. Each segment of the trench is equipped with the independent drainage system, as a part of the main drainage. Encapsulation of each filled trench honeycomb segment is performed with concrete cap. Completed trench is covered with impermeable plastic foil and soil leaner, preferably clay. Paper presents an overview of the final disposal facility engineered trench system type. Advantages in comparison with other types of final disposal system are given. (author)

  13. Design for the second phase Rokkasho LLW burial facility

    International Nuclear Information System (INIS)

    Kumata, Tadamasa

    1997-01-01

    Rokkasho Low Level radioactive Waste management center of Japan Nuclear Fuel Limited (hereafter called JNFL) has been operating for five years and about 90,000 (200 liter) drums have already been buried. Currently, JNFL is planning the 2nd phase of the burial program. The basic design of the new facility has been completed and applied for license additionally. Wastes buried in the 2nd phase facility are mainly dry active wastes from nuclear power plants. Inflammable wastes except for plastics are incinerated before they are disposed, because organic materials can generate gas and their degraded materials affect the distribution coefficients of the radionuclides. Most of the aluminum wastes which can generate hydrogen gas by corrosion are also removed from the waste. The 2nd phase facility accepts metal, plastics and non-flammable wastes. These are solidified with mortar in the 200 liter drums at the power plants. The radioactive inventory of the 2nd phase facility is considered to be as much as that of the 1st phase facility. (author)

  14. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    International Nuclear Information System (INIS)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H.; Serne, R.J.; Cantrell, K.J.

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied

  15. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H. [Westinghouse Hanford Co., Richland, WA (United States); Serne, R.J.; Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.

  16. DSEM, Radioactive Waste Disposal Site Economic Model

    International Nuclear Information System (INIS)

    Smith, P.R.

    2005-01-01

    1 - Description of program or function: The Disposal Site Economic Model calculates the average generator price, or average price per cubic foot charged by a disposal facility to a waste generator, one measure of comparing the economic attractiveness of different waste disposal site and disposal technology combinations. The generator price is calculated to recover all costs necessary to develop, construct, operate, close, and care for a site through the end of the institutional care period and to provide the necessary financial returns to the site developer and lender (when used). Six alternative disposal technologies, based on either private or public financing, can be considered - shallow land disposal, intermediate depth disposal, above or below ground vaults, modular concrete canister disposal, and earth mounded concrete bunkers - based on either private or public development. 2 - Method of solution: The economic models incorporate default cost data from the Conceptual Design Report (DOE/LLW-60T, June 1987), a study by Rodgers Associates Engineering Corporation. Because all costs are in constant 1986 dollars, the figures must be modified to account for inflation. Interest during construction is either capitalized for the private developer or rolled into the loan for the public developer. All capital costs during construction are depreciated over the operation life of the site using straight-line depreciation for the private sector. 3 - Restrictions on the complexity of the problem: Maxima of - 100 years post-operating period, 30 years operating period, 15 years pre-operating period. The model should be used with caution outside the range of 1.8 to 10.5 million cubic feet of total volume. Depreciation is not recognized with public development

  17. Disposal safety

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    International consensus does not seem to be necessary or appropriate for many of the issues concerned with the safety of nuclear waste disposal. International interaction on the technical aspects of disposal has been extensive, and this interaction has contributed greatly to development of a consensus technical infrastructure for disposal. This infrastructure provides a common and firm base for regulatory, political, and social actions in each nation

  18. Waste disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure

  19. Assessment of concentration limit for the safe disposal of very low level wastes

    International Nuclear Information System (INIS)

    Nam, Yun Seog

    2008-02-01

    The large amounts of radionuclides are generated from the decommissioning of nuclear facilities (included the nuclear power plant). Because of this, countries or agencies using the nuclear power are one of considering issues for the effective disposal. Among decommissioning wastes, wastes have no or very limited radioactivity are disposed of in conventional landfill or recycled thought approval from regulatory control. And wastes like LILW (Low and Intermediate Level Wastes) or HLW (High Level Wastes) are sent the repository or the interim storage facilities. In order to solve the space problem of the LILW repository and reduce disposal costs, some LLW which are relatively lower than other LLW are classified as VLLW (Very Low Level Wastes). IAEA is added to the VLLW category of the radioactive waste classification and some countries are operating a VLLW disposal facility or will be operating. In this study, the VLLW acceptance criteria of each radionuclide are derived by considering the inadvertent human intrusion scenario applying to a study on the near-surface disposal (LILW). The effect of important parameter, especially, waste isolation period, dilution factor and food consumption rate, is considered. It is concluded that the concentration limits of radionuclides considering in this study are evaluated approximately between 1 and 100 Bq/g. These values are similar to the case of France and Spain and the IAEA's predicted values. Based on this study, acceptance criteria of VLLW disposal facilities are suggested. And this study is contributed to the public relations for the safety of the VLLW disposal facility

  20. Benchmarking Exercises To Validate The Updated ELLWF GoldSim Slit Trench Model

    International Nuclear Information System (INIS)

    Taylor, G. A.; Hiergesell, R. A.

    2013-01-01

    The Savannah River National Laboratory (SRNL) results of the 2008 Performance Assessment (PA) (WSRC, 2008) sensitivity/uncertainty analyses conducted for the trenches located in the EArea LowLevel Waste Facility (ELLWF) were subject to review by the United States Department of Energy (U.S. DOE) Low-Level Waste Disposal Facility Federal Review Group (LFRG) (LFRG, 2008). LFRG comments were generally approving of the use of probabilistic modeling in GoldSim to support the quantitative sensitivity analysis. A recommendation was made, however, that the probabilistic models be revised and updated to bolster their defensibility. SRS committed to addressing those comments and, in response, contracted with Neptune and Company to rewrite the three GoldSim models. The initial portion of this work, development of Slit Trench (ST), Engineered Trench (ET) and Components-in-Grout (CIG) trench GoldSim models, has been completed. The work described in this report utilizes these revised models to test and evaluate the results against the 2008 PORFLOW model results. This was accomplished by first performing a rigorous code-to-code comparison of the PORFLOW and GoldSim codes and then performing a deterministic comparison of the two-dimensional (2D) unsaturated zone and three-dimensional (3D) saturated zone PORFLOW Slit Trench models against results from the one-dimensional (1D) GoldSim Slit Trench model. The results of the code-to-code comparison indicate that when the mechanisms of radioactive decay, partitioning of contaminants between solid and fluid, implementation of specific boundary conditions and the imposition of solubility controls were all tested using identical flow fields, that GoldSim and PORFLOW produce nearly identical results. It is also noted that GoldSim has an advantage over PORFLOW in that it simulates all radionuclides simultaneously - thus avoiding a potential problem as demonstrated in the Case Study (see Section 2.6). Hence, it was concluded that the follow

  1. Benchmarking Exercises To Validate The Updated ELLWF GoldSim Slit Trench Model

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G. A.; Hiergesell, R. A.

    2013-11-12

    The Savannah River National Laboratory (SRNL) results of the 2008 Performance Assessment (PA) (WSRC, 2008) sensitivity/uncertainty analyses conducted for the trenches located in the EArea LowLevel Waste Facility (ELLWF) were subject to review by the United States Department of Energy (U.S. DOE) Low-Level Waste Disposal Facility Federal Review Group (LFRG) (LFRG, 2008). LFRG comments were generally approving of the use of probabilistic modeling in GoldSim to support the quantitative sensitivity analysis. A recommendation was made, however, that the probabilistic models be revised and updated to bolster their defensibility. SRS committed to addressing those comments and, in response, contracted with Neptune and Company to rewrite the three GoldSim models. The initial portion of this work, development of Slit Trench (ST), Engineered Trench (ET) and Components-in-Grout (CIG) trench GoldSim models, has been completed. The work described in this report utilizes these revised models to test and evaluate the results against the 2008 PORFLOW model results. This was accomplished by first performing a rigorous code-to-code comparison of the PORFLOW and GoldSim codes and then performing a deterministic comparison of the two-dimensional (2D) unsaturated zone and three-dimensional (3D) saturated zone PORFLOW Slit Trench models against results from the one-dimensional (1D) GoldSim Slit Trench model. The results of the code-to-code comparison indicate that when the mechanisms of radioactive decay, partitioning of contaminants between solid and fluid, implementation of specific boundary conditions and the imposition of solubility controls were all tested using identical flow fields, that GoldSim and PORFLOW produce nearly identical results. It is also noted that GoldSim has an advantage over PORFLOW in that it simulates all radionuclides simultaneously - thus avoiding a potential problem as demonstrated in the Case Study (see Section 2.6). Hence, it was concluded that the follow

  2. Evaluation of isotope migration: land burial. Water chemistry at commercially operated low-level radioactive waste disposal sites. Progress report No. 6, July--September 1977. [Maxey Flats, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, P.; Weiss, A. J.; Francis, A. J.

    1978-04-01

    A survey of the Maxey Flats, Kentucky, low-level radioactive waste disposal site was conducted to obtain an overview of the radioactivity in the trench waters for the purpose of selecting specific trenches for comprehensive study. Water samples collected from trenches and wells were analyzed for specific conductance, pH, temperature, dissolved organic carbon, tritium, gross alpha, gross beta, and gamma radioactivities. The results indicate that there are large differences in the composition of trench waters at the site. Several trenches, that represent extreme and average values of the major parameters measured, have been tentatively selected for further study. 10 fig, 6 tables.

  3. Current practices for maintaining occupational exposures ALARA at low-level waste disposal sites

    International Nuclear Information System (INIS)

    Hadlock, D.E.; Herrington, W.N.; Hooker, C.D.; Murphy, D.W.; Gilchrist, R.L.

    1983-12-01

    The United States Nuclear Regulatory Commission contracted with Pacific Northwest Laboratory (PNL) to provide technical assistance in establishing operational guidelines, with respect to radiation control programs and methods of minimizing occupational radiation exposure, at Low-Level Waste (LLW) disposal sites. The PNL, through site visits, evaluated operations at LLW disposal sites to determine the adequacy of current practices in maintaining occupational exposures as low as is reasonably achievable (ALARA). The data sought included the specifics of: ALARA programs, training programs, external exposure control, internal exposure control, respiratory protection, surveillance, radioactive waste management, facilities and equipment, and external dose analysis. The results of the study indicated the following: The Radiation Protection and ALARA programs at the three commercial LLW disposal sites were observed to be adequate in scope and content compared to similar programs at other types of nuclear facilities. However, it should be noted that there were many areas that could be improved upon to help ensure the health and safety of occupationally exposed individuals

  4. Industry petition for rulemaking on the disposal of below-regulatory-concern wastes

    International Nuclear Information System (INIS)

    Tipton, T.E.

    1989-01-01

    The Nuclear Management and Resources Council, Inc., in conjunction with the Edison Electric Institute, plans to submit a petition for rulemaking entitled Petition for Rulemaking Regarding Disposal of Below Regulatory Concern Wastes from commercial Nuclear Power Plants to the U.S. Nuclear Regulatory Commission (NRC). This petition for rulemaking, which is being filed pursuant to 10CFR2.802 and 10CFR2, Appendix B of the Code of Federal Regulations, requests the NRC to promulgate a rule authorizing the treatment and disposal of low-level radioactive wastes (LLW) determined to be below regulatory concern (BRC) in other than licensed LLW disposal facilities. The proposed rule will apply only to LLW generated at commercial nuclear power plants. The petition is based on detailed scientific and technical data derived through an extensive research program conducted by the Electric Power Research Institute, Inc. It addresses the 14 decision criteria that the NRC will employ in judging whether to grant the petition. The petition also provides an environmental assessment and finding of no significant impact and regulatory analysis. The purpose of the environmental assessment is to discuss alternatives, consequences, and impacts analyzed to support the recommendation of the proposed rule. The regulatory analysis addresses the need for and consequences of the proposed regulatory action as it relates to the protection of public health and safety

  5. Current practices for maintaining occupational exposures ALARA at low-level waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Hadlock, D.E.; Herrington, W.N.; Hooker, C.D.; Murphy, D.W.; Gilchrist, R.L.

    1983-12-01

    The United States Nuclear Regulatory Commission contracted with Pacific Northwest Laboratory (PNL) to provide technical assistance in establishing operational guidelines, with respect to radiation control programs and methods of minimizing occupational radiation exposure, at Low-Level Waste (LLW) disposal sites. The PNL, through site visits, evaluated operations at LLW disposal sites to determine the adequacy of current practices in maintaining occupational exposures as low as is reasonably achievable (ALARA). The data sought included the specifics of: ALARA programs, training programs, external exposure control, internal exposure control, respiratory protection, surveillance, radioactive waste management, facilities and equipment, and external dose analysis. The results of the study indicated the following: The Radiation Protection and ALARA programs at the three commercial LLW disposal sites were observed to be adequate in scope and content compared to similar programs at other types of nuclear facilities. However, it should be noted that there were many areas that could be improved upon to help ensure the health and safety of occupationally exposed individuals.

  6. Insights gained from NRC research investigations at the Maxey Flats LLW SLB facility

    International Nuclear Information System (INIS)

    O'Donnell, E.

    1983-01-01

    The NRC funded program of research at Maxey Flats was done to assist an Agreement State in assessing the performance of the site. That program has yielded both site specific insights and generic insights which are likely to be useful in licensing future sites. They are as follows: Site Specific Insights: (1) The principal pathway of water entry into burial trenches at Maxey Flats is through the trench caps. (2) Sampling of vegetation, soils, and streams adjoining the site indicates that the small but measureable amounts of radionuclides found offsite were from surface runoff or the site evaporator. (3) There is limited onsite subsurface movement of radionuclides where open fractures intersect burial trenches. Generic Insights: (1) Tritium in the plant transpiration stream appears useful for mapping trench boundaries. (2) Trees offer a promising means of monitoring subsurface radionuclide movement in fractured rocks of low permeability. (3) Complexing with EDTA appears to be a potentially important mechanism that increases mobility of such radionuclides as Co-60, Pu-238, Am-241, and Sr-90. (4) Changes in soil solution chemistry encountered as leachate moves from trenches generally reduce the solubility of migrating radionuclides. (5) Agronomic management techniques appear promising as a means to control deep water percolation through waste burial trench caps. 18 references

  7. Licensing procedures for Low-Level Waste disposal facilities

    International Nuclear Information System (INIS)

    Roop, R.D.; Van Dyke, J.W.

    1985-09-01

    This report describes the procedures applicable to siting and licensing of disposal facilities for low-level radioactive wastes. Primary emphasis is placed on those procedures which are required by regulations, but to the extent possible, non-mandatory activities which will facilitate siting and licensing are also considered. The report provides an overview of how the procedural and technical requirements for a low-level waste (LLW) disposal facility (as defined by the Nuclear Regulatory Commission's Rules 10 CFR Parts 2, 51, and 61) may be integrated with activities to reduce and resolve conflict generated by the proposed siting of a facility. General procedures are described for site screening and selection, site characterization, site evaluation, and preparation of the license application; specific procedures for several individual states are discussed. The report also examines the steps involved in the formal licensing process, including docketing and initial processing, preparation of an environmental impact statement, technical review, hearings, and decisions. It is concluded that development of effective communication between parties in conflict and the utilization of techniques to manage and resolve conflicts represent perhaps the most significant challenge for the people involved in LLW disposal in the next decade. 18 refs., 6 figs

  8. Licensing procedures for Low-Level Waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Roop, R.D.; Van Dyke, J.W.

    1985-09-01

    This report describes the procedures applicable to siting and licensing of disposal facilities for low-level radioactive wastes. Primary emphasis is placed on those procedures which are required by regulations, but to the extent possible, non-mandatory activities which will facilitate siting and licensing are also considered. The report provides an overview of how the procedural and technical requirements for a low-level waste (LLW) disposal facility (as defined by the Nuclear Regulatory Commission's Rules 10 CFR Parts 2, 51, and 61) may be integrated with activities to reduce and resolve conflict generated by the proposed siting of a facility. General procedures are described for site screening and selection, site characterization, site evaluation, and preparation of the license application; specific procedures for several individual states are discussed. The report also examines the steps involved in the formal licensing process, including docketing and initial processing, preparation of an environmental impact statement, technical review, hearings, and decisions. It is concluded that development of effective communication between parties in conflict and the utilization of techniques to manage and resolve conflicts represent perhaps the most significant challenge for the people involved in LLW disposal in the next decade. 18 refs., 6 figs.

  9. Probabilistic assessment of the radiological consequences of radioactive waste disposal

    International Nuclear Information System (INIS)

    Smith, C.F.; Cohen, J.J.

    1989-01-01

    Conventional methods for prediction of radiological dose consequence of low level radioactive waste (LLW) disposal generally involve application of deterministic calculational modeling. Since the selection of parametric input values for such analyses is made on a conservative ('worst case') basis, the results can be subject to criticism as being unrealistically high. To address this problem, a method for probabilistic assessment has been developed in which input parameters are expressed as probability distribution functions. An example calculation is presented for the impacts from migration of Carbon-14 to a close-in well. (author). 4 refs.; 1 tab

  10. SWSA [Solid Waste Storage Area] 6 tumulus disposal demonstration

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Clapp, R.B.

    1987-01-01

    A facility to demonstrate the above-grade disposal of solid low-level radioactive wastes (LLW) is being constructed in the Solid Waste Storage Area 6 (SWSA 6) at the Oak Ridge National Laboratory (ORNL). The demonstration facility will utilize the ''Tumulus'' technology, which basically involves sealing the waste in concrete vaults, placing the vaults on a grade level concrete pad, and covering the pad with a soil cover after vault placement is complete. Loading of the demonstration unit is scheduled to begin in June, and will continue one to one and a half years until the 28,000 ft 3 capacity is exhausted

  11. Low level tank waste disposal study

    Energy Technology Data Exchange (ETDEWEB)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  12. Low level tank waste disposal study

    International Nuclear Information System (INIS)

    Mullally, J.A.

    1994-01-01

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site

  13. Field evaluation of two shallow land burial trench cap designs for long-term stabilization and closure of waste repositories at Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Nyhan, J.; Drennon, B.; Hakonson, T.

    1989-02-01

    The results from several field experiments on methods to control soil erosion, biointrusion, and water infiltration were used to design and test a burial site cover which improves the ability of the disposal site to isolate the wastes. The performance of the improved cover design in managing water and biota at the disposal site was compared with a more conventional design widely used in the industry. The conventional trench cover design consists of 15 cm of sandy loam topsoil over 75 cm of sandy silt backfill, whereas the improved trench cover design consists of 75 cm of topsoil over a minimum of 25 cm of gravel and 90 cm of river cobble. Each plot was lined with an impermeable liner to allow for mass balance calculation of water dynamics and contains hydrologic tracer ions (iodide and bromide) to demonstrate movement of water through the various zones of the trench cap. Cesium was emplaced beneath the trench cap to indicate root penetration through the trench cap, observed by sampling plant samples collected on the plots and assaying them for cesium. The field data are summarized and discussed in terms of its usefulness for waste management decisions. 67 refs., 44 figs., 4 tabs

  14. Remedial action planning for Trench 1

    International Nuclear Information System (INIS)

    Primrose, A.; Sproles, W.; Burmeister, M.; Wagner, R.; Law, J.; Greengard, T.; Castaneda, N.

    1998-01-01

    The accelerated action to remove the depleted uranium chips and associated soils and wastes from Trench 1 at the Rocky Flats Environmental Technology Site (RFETS) will begin in June 1998. To ensure that the remedial action is conducted safely, a rigorous and disciplined planning process was followed that incorporates the principles of Integrated Safety Management and Enhanced Work Planning. Critical to the success of the planning was early involvement of project staff (salaried and hourly) and associated technical support groups and disciplines. Feedback was and will continue to be solicited, and lessons learned incorporated to ensure the safe remediation of this site

  15. Process hazards review of the 904-A trench

    International Nuclear Information System (INIS)

    Snyder, D.E.

    1988-01-01

    The 904-A trench is an enclosed underground concrete containment for high level and low level radioactive waste lines between the main Laboratory Building 773-A and waste storage and shipping Building 776-A. The waste generated in laboratories and other facilities in 773-A flows by gravity into the high level and low level drain lines, which proceed from 773-A through the 904-A trench. The trench ends at 776-2A, where the underground was handling tanks for both high level and low level liquids are located. The trench serves to contain any leaks originating in the drain lines. The trench is sloped downward toward the Building 776-2A pipe gallery. Any liquid collected from the sump can be pumped automatically to a waste tank sampled. The review of the 904-A trench system included a study of the trench and piping itself, as well as a study of the high level and low level drain lines from the laboratories to the trench. The present review emphasized on examination of the hazards involved in chemical reactions in the drain lines, misuse of the drains, and criticality. The following items were examined: Process Hazards Review of the Liquid Waste Collection System, Nuclear Criticality Review of the High Level Drain System, Improvements in the 904-A Trench System, Operating Procedures, and Unusual Incidents

  16. Review of hydrodynamic and transport models and data collected near the mid-Atlantic low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Onishi, Y.; Hibler, L.F.; Sherwood, C.R.

    1987-08-01

    The objectives of this study were to (1) briefly review and evaluate available simulation models that may be used to predict the distribution of low-level radioactive waste (LLW) from the 2800-m and 3800-m Low Level Radioactive Disposal Sites in the Mid-Atlantic Continental Slope and Rise on a regional (a few hundred kilometers square) scale, (2) identify pertinent physical, biological, and geological oceanographic data in or near those LLW disposal sites, and (3) determine minimum data requirements for regional modeling. With suitable model modifications such as turbulence closure, enhanced sediment transport, radionuclide transport, and/or curvilinear coordinate system setup, the FLESCOT model, the FLOWER model, and Blumberg's model would be appropriate candidates for regional radionuclide modeling to predict the transport and dispersion of LLW disposed in the 2800-m and 3800-m sites. Although the RMA10 model does not incorporate a turbulence closure scheme, this model, with some modifications, is also an appropriate candidate for regional radionuclide modeling. FLESCOT is currently the only one that solves distributions of flow, turbulence, salinity, water temperature, sediments, dissolved contaminants, and sediment-sorbed contaminants. Thus, the FLESCOT model is recommended to be applied to the 2800-m and 3800-m sites to predict the transport and accumulation of LLW on a regional scale

  17. Evaluation of a prototype decision support system for selecting trench cap designs

    International Nuclear Information System (INIS)

    Paige, G.B.; Stone, J.J.; Lane, L.J.

    1996-01-01

    A computer-based prototype decision support system (PDSS) to assist the risk manager in selecting an appropriate trench cap design for waste disposal sites is evaluated. The selection of the open-quotes bestclose quotes design among feasible alternatives requires consideration of multiple and often conflicting objectives. The methodology used in the selection process consists of. selecting and parameterizing decision variables, using data, simulation models, or expert opinion; selecting feasible trench cap design alternatives; ordering the decision variables and ranking the design alternatives. The simulation models incorporated in the PDSS are the Hydrologic Evaluation of Landfill Performance (HELP) model which is used to simulate the trench cap water balance and the Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS) erosion component that is used to simulate trench cap erosion. The decision model is based on multi-objective decision theory and uses a unique approach to order the decision variables and rank the design alternatives. The PDSS is evaluated using the Hill Air Force Base landfill cover demonstration project. The water balance and surface erosion of four alternative landfill cover designs were monitored for a 4-yr period. Two of the cover designs were used to calibrate and test the simulation models. The results of the PDSS, using both data from all four designs and long-term simulations from two of the designs, illustrate the relative advantages of each of the cover designs and which cover is the open-quotes bestclose quotes alternative for a given set of criteria and a particular importance order of those decision criteria. 22 refs., 6 figs., 4 tabs

  18. The Legal and Policy Framework for Waste Disposition - Legal and policy framework for low level waste treatment and disposal

    International Nuclear Information System (INIS)

    Leech, Jonathan

    2014-01-01

    UK policy and strategy for the management of LLW has changed significantly in recent years, not least through development and implementation of the 'UK Strategy for the Management of Solid Low Level Radioactive Waste from the Nuclear Industry' as part of the UK Nuclear Decommissioning Authority's mission. This has influenced all aspects of LLW management in the UK, including metals recycling and VLLW disposal. The paper will outline the legal context for these changes in the UK and highlight how international conventions and legal frameworks have influenced these developments. In particular, the paper will look at the following important influences on choices for recycling and disposal of LLW and VLLW. - The Paris and Brussels Conventions on third party liabilities for nuclear damage; - on-going work to implement the 2004 Protocols to those conventions, including the impact on disposal sites and proposals to exclude VLLW disposal sites from liabilities regimes; - The Revised Waste Framework Directive and Waste Hierarchy; - Relevant European pollution prevention and control legislation and Best Available Techniques. (author)

  19. Burial trench dynamic compaction demonstration at a humid site

    International Nuclear Information System (INIS)

    Spalding, B.P.

    1985-01-01

    This task has the objective of determining the degree of consolidation which can be achieved by dynamic compaction of a closed burial trench within a cohesive soil formation. A seven-year-old burial trench in Solid Waste Storage Area (SWSA) 6 of Oak Ridge National Laboratory (ORNL) was selected for this demonstration. This 251 m 3 trench contained about 80 Ci of mixed radionuclides, mostly 90 Sr, in 25 m 3 of waste consisting of contaminated equipment, dry solids, and demolition debris. Prior to compaction, a total trench void space of 79 m 3 was measured by pumping the trench full of water with corrections for seepage. Additional pre-compaction characterization included trench cap bulk density (1.68 kg/L), trench cap permeability (3 x 10 -7 m/s), and subsurface waste/backfill hydraulic conductivity (>0.01 m/s). Compaction was achieved by repeatedly dropping a 4-ton steel-reinforced concrete cylinder from heights of 4 to 8 m using the whipline of a 70-ton crane. The average trench ground surface was depressed 0.79 m, with some sections over 2 m, yielding a surveyed volumetric depression which totaled to 64% of the measured trench void space. Trench cap (0 to 60 cm) bulk density and permeability were not affected by compaction indicating that the consolidation was largely subsurface. Neither surface nor airborne radioactive contamination were observed during repeated monitoring during the demonstration. Dynamic compaction was shown to be an excellent and inexpensive (i.e., about $20/m 2 ) method to collapse trench void space, thereby hastening subsidence and stabilizing the land surface. 15 refs., 10 figs., 3 tabs

  20. Assessment of microbial processes on gas production at radioactive low-level waste disposal sites

    International Nuclear Information System (INIS)

    Weiss, A.J.; Tate, R.L. III; Colombo, P.

    1982-05-01

    Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches

  1. Geotechnical, geological, and selected radionuclide retention characteristics of the radioactive waste disposal site near the Farallon Islands

    Science.gov (United States)

    Booth, J.S.; Winters, W.J.; Poppe, L.J.; Neiheisel, J.; Dyer, R.S.

    1989-01-01

    A geotechnical and geological investigation of the Farallon Islands low-level radioactive waste (LLW) disposal area was conducted to qualitatively assess the host sediments' relative effectiveness as a barrier to radionuclide migration, to estimate the portion of the barrier that is in contact with the waste packages at the three primary disposal sites, and to provide a basic physical description of the sediments. Box cores recovered from within the general disposal area at depths of 500, 1000, and 1500 m were subcored to provide samples (~30 cm in length) for detailed descriptions, textural and mineralogical analyses, and a suite of geotechnical tests (index property, CRS consolidation, and CIU triaxial compression). -from Authors

  2. THE BC CRIBS & TRENCHES GEOPHYSICAL CHARACTERIZATION PROJECT ONE STEP FORWARD IN HANFORDS CLEANUP PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    BENECKE, MN.W.

    2006-02-22

    A geophysical characterization project was conducted at the BC Cribs and Trenches Area, located south of 200 East at the Hanford Site. The area consists of 26 waste disposal trenches and cribs, which received approximately 30 million gallons of liquid waste from the uranium recovery process and the ferrocyanide processes associated with wastes generated by reprocessing nuclear fuel. Waste discharges to BC Cribs contributed perhaps the largest liquid fraction of contaminants to the ground in the 200 Areas. The site also includes possibly the largest inventory of Tc-99 ever disposed to the soil at Hanford with an estimated quantity of 400 Ci. Other waste constituents included high volumes of nitrate and U-238. The geophysical characterization at the 50 acre site primarily included high resolution resistivity (HRR). The resistivity technique is a non-invasive method by which electrical resistivity data are collected along linear transects, and data are presented as continuous profiles of subsurface electrical properties. The transects ranged in size from about 400-700 meters and provided information down to depths of 60 meters. The site was characterized by a network of 51 HRR lines with a total of approximately 19.7 line kilometers of data collected parallel and perpendicular to the trenches and cribs. The data were compiled to form a three-dimensional representation of low resistivity values. Low resistivity, or high conductivity, is indicative of high ionic strength soil and porewater resulting from the migration of nitrate and other inorganic constituents through the vadose zone. High spatial density soil data from a single borehole, that included coincident nitrate concentrations, electrical conductivity, and Tc-99, were used to transform the electrical resistivity data into a nitrate plume. The plume was shown to extend laterally beyond the original boundaries of the waste site and, in one area, to depths that exceeded the characterization strategy. It is

  3. THE BC CRIBS and TRENCHES GEOPHYSICAL CHARACTERIZATION PROJECT: ONE STEP FORWARD IN HANFORD'S CLEANUP PROCESS

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2005-01-01

    A geophysical characterization project was conducted at the BC Cribs and Trenches Area, located south of 200 East at the Hanford Site. The area consists of 26 waste disposal trenches and cribs, which received approximately 30 million gallons of liquid waste from the uranium recovery process and the ferrocyanide processes associated with wastes generated by reprocessing nuclear fuel. Waste discharges to BC Cribs contributed perhaps the largest liquid fraction of contaminants to the ground in the 200 Areas. The site also includes possibly the largest inventory of Tc-99 ever disposed to the soil at Hanford with an estimated quantity of 400 Ci. Other waste constituents included high volumes of nitrate and U-238. The geophysical characterization at the 50-acre site primarily included high resolution resistivity (HRR). The resistivity technique is a non-invasive method by which electrical resistivity data are collected along linear transects, and data are presented as continuous profiles of subsurface electrical properties. The transects ranged in size from about 400-700 meters and provided information down to depths of 60 meters. The site was characterized by a network of 51 HRR lines with a total of approximately 19.7 line kilometers of data collected parallel and perpendicular to the trenches and cribs. The data were compiled to form a three-dimensional representation of low resistivity values. Low resistivity, or high conductivity, is indicative of high ionic strength soil and porewater resulting from the migration of nitrate and other inorganic constituents through the vadose zone. High spatial density soil data from a single borehole, that included coincident nitrate concentrations, electrical conductivity. and Tc-99, were used to transform the electrical resistivity data into a nitrate plume. The plume was shown to extend laterally beyond the original boundaries of the waste site and, in one area, to depths that exceeded the characterization strategy

  4. Review of corrective measures to stabilize subsidence in shallow-land burial trenches

    International Nuclear Information System (INIS)

    Roop, R.D.; Staub, W.P.; Hunsaker, D.B. Jr.; Ketelle, R.H.; Lee, D.W.; Pin, F.G.; Witten, A.J.

    1983-05-01

    Shallow-land burial of low-level radioactive wastes is frequently followed by subsidence: the slumping, cave-in, or depression of the trench's surface. This report describes and evaluates the measures proposed for correcting subsidence, including roller compaction, grouting, explosives, surcharging, falling mass, pile driving, in situ incineration, and accelerated decomposition. Subsidence, which has occurred at all the major waste disposal sites, has two major causes: filling of packing voids (spaces between waste containers) and filling of interior voids (spaces within containers). Four additional mechanisms also contribute to subsidence: collapse of trench walls, chemical and biological degradation, soil consolidation, and shrink and swell phenomena. Corrective measures for subsidence are evaluated on three criteria: effectiveness, applicability, and cost. The evaluation indicates that one method, falling mass, is considered to be effective, widely applicable, and relatively low in cost, suggesting that this would be the most generally useful technique and would yield the greatest payoff from further development and field trials. There are many uncertainties associated with the cost and effectiveness of corrective measures which can best be resolved by experimental field demonstrations. Site-specific analyses for each disposal area are recommended, to determine which techniques are appropriate and to evaluate the overall desirability of applying corrective measures

  5. Interpretation of vadose zone monitoring system data near Engineered Trench 1

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Whiteside, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-12

    The E-Area Vadose Zone Monitoring System (VZMS) includes lysimeter sampling points at many locations alongside and angling beneath the Engineered Trench #1 (ET1) disposal unit footprint. The sampling points for ET1 were selected for this study because collectively they showed consistently higher tritium (H-3) concentrations than lysimeters associated with other trench units. The VZMS tritium dataset for ET1 from 2001 through 2015 comprises concentrations at or near background levels at approximately half of locations through time, concentrations up to about 600 pCi/mL at a few locations, and concentrations at two locations that have exceeded 1000 pCi/mL. The highest three values through 2015 were 6472 pCi/mL in 2014 and 4533 pCi/mL in 2013 at location VL-17, and 3152 pCi/mL in 2007 at location VL-15. As a point of reference, the drinking water standard for tritium and a DOE Order 435.1 performance objective in the saturated zone at the distant 100-meter facility perimeter is 20 pCi/mL. The purpose of this study is to assess whether these elevated concentrations are indicative of a general trend that could challenge 2008 E-Area Performance Assessment (PA) conclusions, or are isolated perturbations that when considered in the context of an entire disposal unit would support PA conclusions.

  6. FUNDING ALTERNATIVES FOR LOW-LEVEL WASTE DISPOSAL

    International Nuclear Information System (INIS)

    Becker, Bruce D.; Carilli, Jhon

    2003-01-01

    For 13 years, low-level waste (LLW) generator fees and disposal volumes for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Radioactive Waste Management Sites (RWMSs) had been on a veritable roller coaster ride. As forecast volumes and disposal volumes fluctuated wildly, generator fees were difficult to determine and implement. Fiscal Year (FY) 2000 forecast projections were so low, the very existence of disposal operations at the Nevada Test Site (NTS) were threatened. Providing the DOE Complex with a viable, cost-effective disposal option, while assuring the disposal site a stable source of funding, became the driving force behind the development of the Waste Generator Access Fee at the NTS. On September 26, 2000, NNSA/NV (after seeking input from DOE/Headquarters [HQ]), granted permission to Bechtel Nevada (BN) to implement the Access Fee for FY 2001 as a two-year Pilot Program. In FY 2001 (the first year the Access Fee was implemented), the NTS Disposal Operations experienced a 90 percent increase in waste receipts from the previous year and a 33 percent reduction in disposal fee charged to the waste generators. Waste receipts for FY 2002 were projected to be 63 percent higher than FY 2001 and 15 percent lower in cost. Forecast data for the outyears are just as promising. This paper describes the development, implementation, and ultimate success of this fee strategy

  7. Scattering and extinction from high-aspect-ratio trenches

    DEFF Research Database (Denmark)

    Roberts, Alexander Sylvester; Søndergaard, Thomas; Chirumamilla, Manohar

    2015-01-01

    We construct a semi-analytical model describing the scattering, extinction and absorption properties of a high aspect-ratio trench in a metallic film. We find that these trenches act as highly efficient scatterers of free waves. In the perfect conductor limit, which for many metals is approached...

  8. Slurry walls and slurry trenches - construction quality control

    International Nuclear Information System (INIS)

    Poletto, R.J.; Good, D.R.

    1997-01-01

    Slurry (panel) walls and slurry trenches have become conventional methods for construction of deep underground structures, interceptor trenches and hydraulic (cutoff) barriers. More recently polymers mixed with water are used to stabilize the excavation instead of bentonite slurry. Slurry walls are typically excavated in short panel segments, 2 to 7 m (7 to 23 ft) long, and backfilled with structural materials; whereas slurry trenches are fairly continuous excavations with concurrent backfilling of blended soils, or cement-bentonite mixtures. Slurry trench techniques have also been used to construct interceptor trenches. Currently no national standards exist for the design and/or construction of slurry walls/trenches. Government agencies, private consultants, contractors and trade groups have published specifications for construction of slurry walls/trenches. These specifications vary in complexity and quality of standards. Some place excessive emphasis on the preparation and control of bentonite or polymer slurry used for excavation, with insufficient emphasis placed on quality control of bottom cleaning, tremie concrete, backfill placement or requirements for the finished product. This has led to numerous quality problems, particularly with regard to identification of key depths, bottom sediments and proper backfill placement. This paper will discuss the inspection of slurry wall/trench construction process, identifying those areas which require special scrutiny. New approaches to inspection of slurry stabilized excavations are discussed

  9. Vertically distinct microbial communities in the Mariana and Kermadec trenches

    Science.gov (United States)

    Donaldson, Sierra; Osuntokun, Oladayo; Xia, Qing; Nelson, Alex; Blanton, Jessica; Allen, Eric E.; Church, Matthew J.; Bartlett, Douglas H.

    2018-01-01

    Hadal trenches, oceanic locations deeper than 6,000 m, are thought to have distinct microbial communities compared to those at shallower depths due to high hydrostatic pressures, topographical funneling of organic matter, and biogeographical isolation. Here we evaluate the hypothesis that hadal trenches contain unique microbial biodiversity through analyses of the communities present in the bottom waters of the Kermadec and Mariana trenches. Estimates of microbial protein production indicate active populations under in situ hydrostatic pressures and increasing adaptation to pressure with depth. Depth, trench of collection, and size fraction are important drivers of microbial community structure. Many putative hadal bathytypes, such as members related to the Marinimicrobia, Rhodobacteraceae, Rhodospirilliceae, and Aquibacter, are similar to members identified in other trenches. Most of the differences between the two trench microbiomes consists of taxa belonging to the Gammaproteobacteria whose distributions extend throughout the water column. Growth and survival estimates of representative isolates of these taxa under deep-sea conditions suggest that some members may descend from shallower depths and exist as a potentially inactive fraction of the hadal zone. We conclude that the distinct pelagic communities residing in these two trenches, and perhaps by extension other trenches, reflect both cosmopolitan hadal bathytypes and ubiquitous genera found throughout the water column. PMID:29621268

  10. Performance assessment for a hypothetical low-level waste disposal facility

    International Nuclear Information System (INIS)

    Smith, C.S.; Rohe, M.J.; Ritter, P.D.

    1997-01-01

    Disposing of low-level waste (LLW) is a concern for many states throughout the United States. A common disposal method is below-grade concrete vaults. Performance assessment analyses make predictions of contaminant release, transport, ingestion, inhalation, or other routes of exposure, and the resulting doses for various disposal methods such as the below-grade concrete vaults. Numerous assumptions are required to simplify the processes associated with the disposal facility to make predictions feasible. In general, these assumptions are made conservatively so as to underestimate the performance of the facility. The objective of this report is to describe the methodology used in conducting a performance assessment for a hypothetical waste facility located in the northeastern United States using real data as much as possible. This report consists of the following: (a) a description of the disposal facility and site, (b) methods used to analyze performance of the facility, (c) the results of the analysis, and (d) the conclusions of this study

  11. Performance assessment for a hypothetical low-level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.S.; Rohe, M.J.; Ritter, P.D. [and others

    1997-01-01

    Disposing of low-level waste (LLW) is a concern for many states throughout the United States. A common disposal method is below-grade concrete vaults. Performance assessment analyses make predictions of contaminant release, transport, ingestion, inhalation, or other routes of exposure, and the resulting doses for various disposal methods such as the below-grade concrete vaults. Numerous assumptions are required to simplify the processes associated with the disposal facility to make predictions feasible. In general, these assumptions are made conservatively so as to underestimate the performance of the facility. The objective of this report is to describe the methodology used in conducting a performance assessment for a hypothetical waste facility located in the northeastern United States using real data as much as possible. This report consists of the following: (a) a description of the disposal facility and site, (b) methods used to analyze performance of the facility, (c) the results of the analysis, and (d) the conclusions of this study.

  12. Research and development of treatment techniques for LLW from decommissioning: Decontamination and volume reduction techniques

    International Nuclear Information System (INIS)

    Hirabayashi, T.; Kameo, Y.; Nakashio, N.

    2001-01-01

    For the purpose of reducing the amount and/or volume of low-level radioactive waste (LLW) arising from decommissioning of nuclear reactor, the Japan Atomic Energy Research Institute (JAERI) has been developing four decontamination techniques. They are: (a) Gas-carrying abrasive method, (b) In-situ remote electropolishing method for pipe system before dismantling, (c) Bead reaction - thermal shock method, and (d) Laser induced chemical method for components after dismantling. JAERI in developing techniques are also carrying out melting tests of metal and non-metal. Melting was confirmed to be effective in reducing the volume, homogenizing, and furthermore stabilizing non-metallic wastes. (author)

  13. Suggested state requirements and criteria for a low-level radioactive waste disposal site regulatory program

    International Nuclear Information System (INIS)

    Ratliff, R.A.; Dornsife, B.; Autry, V.; Gronemyer, L.; Vaden, J.; Cashman, T.

    1985-08-01

    Description of criteria and procedure is presented for a state to follow in the development of a program to regulate a LLW disposal site. This would include identifying those portions of the NRC regulations that should be matters of compatibility, identifying the various expertise and disciplines that will be necessary to effectively regulate a disposal site, identifying the resources necessary for conducting a confirmatory monitoring program, and providing suggestions in other areas which, based on experiences, would result in a more effective regulatory program

  14. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Cluchet, J.; Roger, B.

    1975-10-01

    After mentioning the importance of the problem of the disposal of wastes produced in the electro-nuclear industry, a short reminder on a few laws of radioactivity (nature and energy of radiations, half-life) and on some basic dosimetry is given. The conditioning and storage procedures are then indicated for solid wastes. The more active fractions of liquid wastes are incorporated into blocks of glass, whereas the less active are first concentrated by chemical treatments or by evaporation. The concentrates are then embedded into concrete, asphalt or resins. Storage is done according to the nature of each type of wastes: on a hard-surfaced area or inside concrete-lined trenches for the lowest radioactivity, in pits for the others. Transuranium elements with very long half-lives are buried in very deep natural cavities which can shelter them for centuries. From the investigations conducted so far and from the experience already gained, it can be concluded that safe solutions are within our reach [fr

  15. Joint US Geological Survey, US Nuclear Regulatory Commission workshop on research related to low-level radioactive waste disposal, May 4-6, 1993, National Center, Reston, Virginia; Proceedings

    Science.gov (United States)

    Stevens, Peter R.; Nicholson, Thomas J.

    1996-01-01

    This report contains papers presented at the "Joint U.S. Geological Survey (USGS) and U.S. Nuclear Regulatory Commission (NRC) Technical Workshop on Research Related to Low-Level Radioactive Waste (LLW) Disposal" that was held at the USGS National Center Auditorium, Reston, Virginia, May 4-6, 1993. The objective of the workshop was to provide a forum for exchange of information, ideas, and technology in the geosciences dealing with LLW disposal. This workshop was the first joint activity under the Memorandum of Understanding between the USGS and NRC's Office of Nuclear Regulatory Research signed in April 1992.Participants included invited speakers from the USGS, NRC technical contractors (U.S. Department of Energy (DOE) National Laboratories and universities) and NRC staff for presentation of research study results related to LLW disposal. Also in attendance were scientists from the DOE, DOE National Laboratories, the U.S. Environmental Protection Agency, State developmental and regulatory agencies involved in LLW disposal facility siting and licensing, Atomic Energy Canada Limited (AECL), private industry, Agricultural Research Service, universities, USGS and NRC.

  16. Trial coring in LLRW trenches at Chalk River

    International Nuclear Information System (INIS)

    Donders, R.E.; Killey, R.W.D.; Franklin, K.J.; Strobel, G.S.

    1996-11-01

    As part of a program to better characterize the low-hazard radioactive waste managed by AECL at Chalk River Laboratories, coring techniques in waste trenches are being assessed. Trial coring has demonstrated that sampling in waste regions is possible, and that boreholes can be placed through the waste trenches. Such coring provides a valuable information-gathering technique. Information available from trench coring includes: trench cover depth, waste region depth, waste compaction level, and detailed stratigraphic data; soil moisture content and facility drainage performance; borehole gamma logs that indicate radiation levels in the region of the borehole; biochemical conditions in the waste regions, vadose zone, and groundwater; site specific information relevant to contaminant migration modelling or remedial actions; information on contaminant releases and inventories. Boreholes through the trenches can also provide a means for early detection of potential contaminant releases. (author). 4 refs., 4 tabs., 4 figs

  17. Waste disposal

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste, as a unavoidable remnant from the use of radioactive substances and nuclear technology. It is potentially hazardous to health and must therefore be managed to protect humans and the environment. The main bulk of radioactive waste must be permanently disposed in engineered repositories. Appropriate safety standards for repository design and construction are required along with the development and implementation of appropriate technologies for the design, construction, operation and closure of the waste disposal systems. As backend of the fuel cycle, resolving the issue of waste disposal is often considered as a prerequisite to the (further) development of nuclear energy programmes. Waste disposal is therefore an essential part of the waste management strategy that contributes largely to build confidence and helps decision-making when appropriately managed. The International Atomic Energy Agency provides assistance to Member States to enable safe and secure disposal of RW related to the development of national RWM strategies, including planning and long-term project management, the organisation of international peer-reviews for research and demonstration programmes, the improvement of the long-term safety of existing Near Surface Disposal facilities including capacity extension, the selection of potential candidate sites for different waste types and disposal options, the characterisation of potential host formations for waste facilities and the conduct of preliminary safety assessment, the establishment and transfer of suitable technologies for the management of RW, the development of technological solutions for some specific waste, the building of confidence through training courses, scientific visits and fellowships, the provision of training, expertise, software or hardware, and laboratory equipment, and the assessment of waste management costs and the provision of advice on cost minimisation aspects

  18. French surface disposal experience. The disposal of large waste

    International Nuclear Information System (INIS)

    Dutzer, Michel; Lecoq, Pascal; Duret, Franck; Mandoki, Robert

    2006-01-01

    delivered at the end of June 2005 and the 55 vessel heads should be disposed by 2013. The safety approach of the facility was adapted to take into account the disposal of such large waste. This methodology and the disposal technique can be generalised to receive large waste from decommissioning activities for which cutting works and conditioning in standard packages would not be relevant. For instance this option is investigated for steam generators and could be helpful to manage waste from the important decommissioning program that is starting up in France in particular for the first generation power reactors. This decommissioning program also motivated the implementation of a facility for the disposal very low level waste, in agreement with French regulation for the management of waste in nuclear facilities. It is located in Morvilliers village, close to Centre de l'Aube facility. Disposal is performed in trenches in clay that are protected from rainwater by removable roofs. Standard packages were developed even if handling techniques are more 'rustic' due to very low dose rate. First deliveries were done in October 2003. Since start up large waste, as concrete blocks or heat exchangers, have been disposed. For very heavy waste, the interest of dedicated disposal cells is investigated. (authors)

  19. Radioactive waste disposal implications of extending Part IIA of the Environmental Protection Act to cover radioactively contaminated land.

    Science.gov (United States)

    Nancarrow, D J; White, M M

    2004-03-01

    A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950,000 m3). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological

  20. Radioactive waste disposal implications of extending Part IIA of the Environmental Protection Act to cover radioactively contaminated land

    International Nuclear Information System (INIS)

    Nancarrow, D J; White, M M

    2004-01-01

    A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950 000 m 3 ). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological

  1. Impact of revised 10 CFR 20 on existing performance assessment computer codes used for LLW disposal facilities

    International Nuclear Information System (INIS)

    Leonard, P.R.; Seitz, R.R.

    1992-04-01

    The US Nuclear Regulatory Commission (NRC) recently announced a revision to Chapter 10 of the Code of Federal Regulations, Part 20 (10 CFR 20) ''Standards for Protection Against Radiation,'' which incorporates recommendations contained in Publications 26 and 30 of the International Commission on Radiological Protection (ICRP), issued in 1977 and 1979, respectively. The revision to 10 CFR 20 was also developed in parallel with Presidential Guidance on occupational radiation protection published in the Federal Register. Thus, this study concludes that the issuance of the revised 10 CFR 20 will not affect calculations using the computer codes considered in this report. In general, the computer codes and EPA and DOE guidance on which computer codes are based were developed in a manner consistent with the guidance provided in ICRP 26/30, well before the revision of 10 CFR 20

  2. Frost seen on Snow White Trench

    Science.gov (United States)

    2008-01-01

    The Surface Stereo Imager (SSI) on NASA's Phoenix Mars Lander took this shadow-enhanced false color image of the 'Snow White' trench, on the eastern end of Phoenix's digging area. The image was taken on Sol 144, or the 144th day of the mission, Oct. 20, 2008. Temperatures measured on Sol 151, the last day weather data were received, showed overnight lows of minus128 Fahrenheit (minus 89 Celsius) and day time highs in the minus 50 F (minus 46 C) range. The last communication from the spacecraft came on Nov. 2, 2008. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. The politics of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kemp, R.

    1992-01-01

    Plans for radioactive waste disposal have been among the most controversial of all environmental policies, provoking vociferous public opposition in a number of countries. This book looks at the problem from an international perspective, and shows how proposed solutions have to be politically and environmentally, as well as technologically acceptable. In the book the technical and political agenda behind low and intermediate level radioactive waste disposal in the UK, Western Europe, Scandinavia and North America is examined. The technical issues and the industrial proposals and analyses and factors which have been crucial in affecting relative levels of public acceptability are set out. Why Britain has lagged behind countries such as Sweden and France in establishing Low Level Waste (LLW) and Intermediate Level Waste (ILW) sites, the strength of the 'not in my backyard' syndrome in Britain, and comparisons of Britain's decision-making process with the innovative and open pattern followed in the US and Canada are examined. An important insight into the problems facing Nirex, Britain's radioactive waste disposal company, which is seeking to establish an underground waste site at Sellafield in Cumbria is given. (author)

  4. A Novel and Cost Effective Approach to the Decommissioning and Decontamination of Legacy Glove Boxes - Minimizing TRU Waste and Maximizing LLW Waste - 13634

    Energy Technology Data Exchange (ETDEWEB)

    Pancake, Daniel; Rock, Cynthia M.; Creed, Richard [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Donohoue, Tom; Martin, E. Ray; Mason, John A. [ANTECH Corporation 9050 Marshall Court, Westminster, CO, 80031 (United States); Norton, Christopher J.; Crosby, Daniel [Environmental Alternatives, Inc., 149 Emerald Street, Suite R, Keene, NH 03431 (United States); Nachtman, Thomas J. [InstaCote, Inc., 160 C. Lavoy Road, Erie, MI, 48133 (United States)

    2013-07-01

    This paper describes the process of decommissioning two gloveboxes at the Argonne National Laboratory (ANL) that were employed for work with plutonium and other radioactive materials. The decommissioning process involved an initial phase of clearing tools and materials from the glove boxes and disconnecting them from the laboratory infrastructure. The removed materials, assessed as Transuranic (TRU) waste, were packaged into 55 gallon (200 litre) drums and prepared for ultimate disposal at the Waste Isolation Pilot Plant (WIPP) at Carlsbad New Mexico. The boxes were then sampled to determine the radioactive contents by means of smears that were counted with alpha and beta detectors to determine the residual surface contamination, especially in terms of alpha particle emitters that are an indicator of TRU activity. Paint chip samples were also collected and sent for laboratory analysis in order to ascertain the radioactive contamination contributing to the TRU activity as a fixed contamination. The investigations predicted that it may be feasible to reduce the residual surface contamination and render the glovebox structure low level waste (LLW) for disposal. In order to reduce the TRU activity a comprehensive decontamination process was initiated using chemical compounds that are particularly effective for lifting and dissolving radionuclides that adhere to the inner surfaces of the gloveboxes. The result of the decontamination process was a reduction in the TRU surface activity on the inner surfaces of the gloveboxes by four orders of magnitude in terms of disintegrations per unit area (DPA). The next phase of the process involved a comprehensive assay of the gloveboxes using a combination of passive neutron and gamma ray scintillation detectors and a shielded and collimated high purity Germanium (HPGe) gamma ray detector. The HPGe detector was used to obtain gamma ray spectra for a variety of measurement positions within the glovebox. The spectra were used to

  5. A Novel and Cost Effective Approach to the Decommissioning and Decontamination of Legacy Glove Boxes - Minimizing TRU Waste and Maximizing LLW Waste - 13634

    International Nuclear Information System (INIS)

    Pancake, Daniel; Rock, Cynthia M.; Creed, Richard; Donohoue, Tom; Martin, E. Ray; Mason, John A.; Norton, Christopher J.; Crosby, Daniel; Nachtman, Thomas J.

    2013-01-01

    This paper describes the process of decommissioning two gloveboxes at the Argonne National Laboratory (ANL) that were employed for work with plutonium and other radioactive materials. The decommissioning process involved an initial phase of clearing tools and materials from the glove boxes and disconnecting them from the laboratory infrastructure. The removed materials, assessed as Transuranic (TRU) waste, were packaged into 55 gallon (200 litre) drums and prepared for ultimate disposal at the Waste Isolation Pilot Plant (WIPP) at Carlsbad New Mexico. The boxes were then sampled to determine the radioactive contents by means of smears that were counted with alpha and beta detectors to determine the residual surface contamination, especially in terms of alpha particle emitters that are an indicator of TRU activity. Paint chip samples were also collected and sent for laboratory analysis in order to ascertain the radioactive contamination contributing to the TRU activity as a fixed contamination. The investigations predicted that it may be feasible to reduce the residual surface contamination and render the glovebox structure low level waste (LLW) for disposal. In order to reduce the TRU activity a comprehensive decontamination process was initiated using chemical compounds that are particularly effective for lifting and dissolving radionuclides that adhere to the inner surfaces of the gloveboxes. The result of the decontamination process was a reduction in the TRU surface activity on the inner surfaces of the gloveboxes by four orders of magnitude in terms of disintegrations per unit area (DPA). The next phase of the process involved a comprehensive assay of the gloveboxes using a combination of passive neutron and gamma ray scintillation detectors and a shielded and collimated high purity Germanium (HPGe) gamma ray detector. The HPGe detector was used to obtain gamma ray spectra for a variety of measurement positions within the glovebox. The spectra were used to

  6. Planning for greater confinement disposal

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Luner, C.; Meshkov, N.K.; Trevorrow, L.E.; Yu, C.

    1985-01-01

    A report that provides guidance for planning for greater-confinement disposal (GCD) of low-level radioactive waste is being prepared. The report addresses procedures for selecting a GCD technology and provides information for implementing these procedures. The focus is on GCD; planning aspects common to GCD and shallow-land burial are covered by reference. Planning procedure topics covered include regulatory requirements, waste characterization, benefit-cost-risk assessment and pathway analysis methodologies, determination of need, waste-acceptance criteria, performance objectives, and comparative assessment of attributes that support these objectives. The major technologies covered include augered shafts, deep trenches, engineered structures, hydrofracture, improved waste forms, and high-integrity containers. Descriptive information is provided, and attributes that are relevant for risk assessment and operational requirements are given. 10 refs., 3 figs., 2 tabs

  7. Evaluation factors for verification and validation of low-level waste disposal site models

    International Nuclear Information System (INIS)

    Moran, M.S.; Mezga, L.J.

    1982-01-01

    The purpose of this paper is to identify general evaluation factors to be used to verify and validate LLW disposal site performance models in order to assess their site-specific applicability and to determine their accuracy and sensitivity. It is intended that the information contained in this paper be employed by model users involved with LLW site performance model verification and validation. It should not be construed as providing protocols, but rather as providing a framework for the preparation of specific protocols or procedures. A brief description of each evaluation factor is provided. The factors have been categorized according to recommended use during either the model verification or the model validation process. The general responsibilities of the developer and user are provided. In many cases it is difficult to separate the responsibilities of the developer and user, but the user is ultimately accountable for both verification and validation processes. 4 refs

  8. Waste Disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; B-Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    This contribution describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 1997 in three topical areas are reported on: performance assessments, waste forms/packages and near-and far field studies

  9. Greater Confinement Disposal Program at the Savannah River Plant

    International Nuclear Information System (INIS)

    Towler, O.A.; Cook, J.R.; Peterson, D.L.

    1983-01-01

    Plans for improved LLW disposal at the Savannah River Plant include Greater Confinement Disposal (GCD) for the higher activity fractions of this waste. GCD practices will include waste segregation, packaging, emplacement below the root zone, and stabilizing the emplacement with cement. Statistical review of SRP burial records showed that about 95% of the radioactivity is associated with only 5% of the waste volume. Trigger values determined in this study were compared with actual burials in 1982 to determine what GCD facilities would be needed for a demonstration to begin in Fall 1983. Facilities selected include 8-feet-diameter x 30-feet-deep boreholes to contain reactor scrap, tritiated waste, and selected wastes from offsite

  10. Oak Ridge low-level waste disposal facility designs

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Jones, L.S.

    1991-01-01

    The strategic planning process that culuminates in the identification, selection, construction, and ultimate operation of treatment, storage, and disposal facilities for all types of low-level waste (LLW) generated on the Oak Ridge Reservation (ORR) was conducted under the Low-Level Waste Disposal Development and Demonstration (LLWDDD) Program. This program considered management of various concentrations of short half-life radionuclides generated principally at Oak Ridge National Laboratory (ORNL) and long half-life radionuclides (principally uranium) generated at the Oak Ridge Y-12 Plant and the Oak Ridge K-25 Plant. The LLWDDD Program is still ongoing and involves four phases: (1) alternative identification and evaluation, (2) technology demonstration, (3) limited operational implementation, and (4) full operational implementation. This document provides a discussion of these phases

  11. STRENGTHENING OF TRENCH COVER PLATES FOR SWITCHGEAR BUILDING

    International Nuclear Information System (INIS)

    M.S. RUBEN

    2000-01-01

    The objective of this calculation is to strengthen the existing trench cover plates of the Electrical Switchgear Building (BLDG 5010) of the Exploratory Studies Facility. A remodeling effort will change the portion of the facility that has the trenches for electrical cables to a craft/shop area. The users of the building will be using a forklift in this area (Clark CGP 30 forklift with a capacity of 3 tons). The trench covers require strengthening to support the wheel loads from the forklift. The output of this calculation will be sketches revising the floor plate details of DWG YMP-025-1-7007-ST103,2. (Details 4 and 5)

  12. First Dodo Trench with White Layer Visible in Dig Area

    Science.gov (United States)

    2008-01-01

    These color images were taken by NASA's Phoenix Mars Lander's Stereo Surface Imager on the ninth Martian day of the mission, or Sol 9 (June 3, 2008). The images of the trench shows a white layer that has been uncovered by the Robotic Arm (RA) scoop and is now visible in the wall of the trench. This trench was the first one dug by the RA to understand the Martian soil and plan the digging strategy. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. An oxide filled extended trench gate super junction MOSFET structure

    International Nuclear Information System (INIS)

    Cai-Lin, Wang; Jun, Sun

    2009-01-01

    This paper proposes an oxide filled extended trench gate super junction (SJ) MOSFET structure to meet the need of higher frequency power switches application. Compared with the conventional trench gate SJ MOSFET, new structure has the smaller input and output capacitances, and the remarkable improvements in the breakdown voltage, on-resistance and switching speed. Furthermore, the SJ in the new structure can be realized by the existing trench etching and shallow angle implantation, which offers more freedom to SJ MOSFET device design and fabrication. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Valsala, T.P., E-mail: tpvalsala@yahoo.co.in [Waste Management Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Roy, S.C. [PREFRE Division, Bhabha Atomic Research Centre, Tarapur 401 502 (India); Shah, J.G. [Back End Technology Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Gabriel, J.; Raj, Kanwar [Waste Management Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Venugopal, V. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay 400 085 (India)

    2009-07-30

    The volumes of low level waste (LLW) generated during the operation of nuclear reactor are very high and require a concentration step before suitable matrix fixation. The volume reduction (concentration) is achieved either by co-precipitating technique or by the use of highly selective sorbents and ion exchange materials. The present study details the preparation of cobalt ferrocyanide impregnated into anion exchange resin and its evaluation with respect to removal of Cs in LLW streams both in column mode and batch mode operations. The Kd values of the prepared exchanger materials were found to be very good in actual reactor LLW solutions also. It was observed that the exchanger performed very well in the pH range of 3-9. A batch size of 6 g l{sup -1} of the exchanger was enough to give satisfactory decontamination for Cs in actual reactor LLW streams. The lab scale and pilot plant scale performance of the exchanger material in both batch mode and column mode operations was very good.

  15. Underground disposal of UK heat-generating wastes: repository design considerations

    International Nuclear Information System (INIS)

    Steadman, J.A.

    1993-12-01

    The report discusses the likely differences in design between a deep repository for disposal of UK heat-generating radioactive wastes and that of the planned Nirex ILW/LLW repository at Sellafield, based on a review of international published information. The main differences arise from the greater heat and radiation outputs of the waste, and in the case of intact PWR spent fuel elements, the greater length and weight of the disposal packages. Published cost estimates for other OECD countries for disposal of heat-generating wastes are considerably lower than that for the UK, partly because in most cases they are for co-disposal with a larger quantity of ILW. (author)

  16. 300 Area Process Trenches Postclosure Plan

    International Nuclear Information System (INIS)

    Badden, J.W.

    1998-05-01

    The 300 Area Process Trenches (300 APT) certified closure under a modified closure option and in compliance with Condition II.K.3 oft he Hartford Facility Dangerous Waste Permit (Penit) (Ecology 1994). Modified closure has been determined to be the appropriate closure option for this unit due to groundwater that remains contaminated from past operations at the 300 APT. Corrective actions required for dangerous waste constituents remaining in groundwater will occur pursuant to the 300 APT Resource Conservation and Recovery Act (RCRA) Final Status Facility Ground Water Monitoring Plan, the Hanford Site Wide Dangerous Waste Permit, and in conjunction with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial actions at the 300-FF-5 Groundwater Operable Unit (OU) pursuant to the Record of Decision (ROD) (EPA 1996). This postclosure plan identifies the modified closure actions required at the unit under postclosure care. It contains a description of the unit, past closure actions, and postclosure care requirements subject to compliance under the Permit (condition II.K.3)

  17. Neglecting safety precautions may lead to trenching fatalities.

    Science.gov (United States)

    Deatherage, J Harold; Furches, Lisa K; Radcliffe, Mike; Schriver, William R; Wagner, John P

    2004-06-01

    Trench collapses ranked as the seventh leading cause of the possible twenty-nine causes of OSHA-inspected fatal construction events during the period 1991-2001. This study aims to examine why these fatalities occurred. Forty-four case files from OSHA inspections of fatal trench collapses were reviewed. Improper protection of the excavation site where work was taking place was the leading fatality cause. Several organizational or physical conditions were present at many fatal sites; the most frequent was that no training had been provided for trenching. Presence of a competent, diligent person at the site would have prohibited most fatalities. The top cited violation was lack of protection, that is, benching, shoring, sloping, trench boxes, etc. (29 CFR 1926.652 (a) (1)). Copyright 2004 Wiley-Liss, Inc.

  18. Corrective action investigation plan: Cactus Spring Waste Trenches. Revision 2

    International Nuclear Information System (INIS)

    1997-02-01

    This Correction Action Investigation Plan (CAIP) contains environmental sample collection objectives and logic for the CAU No. 426, which includes the Cactus Spring Waste Trenches, CAS No. RG-08-001-RG-CS. The Cactus Spring Waste Trenches are located at the Tonopah Test Range (TTR) which is part of the Nellis Air Force Range, approximately 255 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air. The purpose of this investigation is to generate sufficient data to establish the types of waste buried in the trenches, identify the presence and nature of contamination, determine the vertical extent of contaminant migration below the Cactus Spring Waste Trenches, and determine the appropriate course of action for the site. The potential courses of action for the site are clean closure, closure in place (with or without remediation), or no further action

  19. Use of a Shielded High Resolution Gamma Spectrometry System to Segregate LLW from Contact Handleable ILW Containing Plutonium - 13046

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Rosemary; Wilkins, Colin [Canberra UK Ltd, Unit 1 B528.1, Harwell Science Campus, Oxfordshire OX11 0DF (United Kingdom); Chard, Patrick [Canberra UK Ltd, Forss Business and Technology park, Thurso, Caithness KW14 7UZ (United Kingdom); Jaederstroem, Henrik; LeBlanc, Paul; Mowry, Rick [Canberra Industries, Inc., 800 Research Parkway, Meriden, Connecticut, 06450 (United States); MacDonald, Sanders; Gunn, William [Dounreay Site Restoration Limited, Dounreay, Thurso, Caithness, KW14 7TZ (United Kingdom)

    2013-07-01

    Dounreay Site Restoration Limited (DSRL) have a number of drums of solid waste that may contain Plutonium Contaminated Material. These are currently categorised as Contact Handleable Intermediate Level Waste (CHILW). A significant fraction of these drums potentially contain waste that is in the Low Level Waste (LLW) category. A Canberra Q2 shielded high resolution gamma spectrometry system is being used to quantify the total activity of drums that are potentially in the LLW category in order to segregate those that do contain LLW from CHILW drums and thus to minimise the total volume of waste in the higher category. Am-241 is being used as an indicator of the presence of plutonium in the waste from its strong 59.54 keV gamma-ray; a knowledge of the different waste streams from which the material originates allows a pessimistic waste 'fingerprint' to be used in order to determine an upper limit to the activities of the weak and non-gamma-emitting plutonium and associated radionuclides. This paper describes the main features of the high resolution gamma spectrometry system being used by DSRL to perform the segregation of CHILW and LLW and how it was configured and calibrated using the Canberra In-Situ Object Counting System (ISOCS). It also describes how potential LLW drums are selected for assay and how the system uses the existing waste stream fingerprint information to determine a reliable upper limit for the total activity present in each measured drum. Results from the initial on-site commissioning trials and the first measurements of waste drums using the new monitor are presented. (authors)

  20. Sustainable sanitary landfills for neglected small cities in developing countries: The semi-mechanized trench method from Villanueva, Honduras

    Energy Technology Data Exchange (ETDEWEB)

    Oakley, Stewart M., E-mail: soakley@csuchico.edu [Department of Civil Engineering, Chico State University, California State University, Chico, CA 95929 (United States); Jimenez, Ramon, E-mail: rjimenez1958@yahoo.com [Public Works, Municipality of Villanueva, Cortes (Honduras)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Open dumping is the most common form of waste disposal in neglected small cities. Black-Right-Pointing-Pointer Semi-mechanized landfills can be a sustainable option for small cities. Black-Right-Pointing-Pointer We present the theory of design and operation of semi-mechanized landfills. Black-Right-Pointing-Pointer Villanueva, Honduras has operated its semi-mechanized landfill for 15 years. Black-Right-Pointing-Pointer The cost of operation is US$4.60/ton with a land requirement of 0.2m{sup 2}/person-year. - Abstract: Open dumping is the most common practice for the disposal of urban solid wastes in the least developed regions of Africa, Asia and Latin America. Sanitary landfill design and operation has traditionally focused on large cities, but cities with fewer than 50,000 in population can comprise from 6% to 45% of a given country's total population. These thousands of small cities cannot afford to operate a sanitary landfill in the way it is proposed for large cities, where heavy equipment is used to spread and compact the waste in daily cells, and then to excavate, transport and apply daily cover, and leachate is managed with collection and treatment systems. This paper presents an alternative approach for small cities, known as the semi-mechanized trench method, which was developed in Villanueva, Honduras. In the semi-mechanized trench method a hydraulic excavator is used for 1-3 days to dig a trench that will last at least a month before it is filled with waste. Trucks can easily unload their wastes into the trench, and the wastes compact naturally due to semi-aerobic biodegradation, after which the trenches are refilled and covered. The exposed surface area is minimal since only the top surface of the wastes is exposed, the remainder being covered by the sides and bottom of the trench. The surplus material from trench excavation can be valorized for use as engineering fill onsite or off. The landfill in

  1. Sustainable sanitary landfills for neglected small cities in developing countries: The semi-mechanized trench method from Villanueva, Honduras

    International Nuclear Information System (INIS)

    Oakley, Stewart M.; Jimenez, Ramón

    2012-01-01

    Highlights: ► Open dumping is the most common form of waste disposal in neglected small cities. ► Semi-mechanized landfills can be a sustainable option for small cities. ► We present the theory of design and operation of semi-mechanized landfills. ► Villanueva, Honduras has operated its semi-mechanized landfill for 15 years. ► The cost of operation is US$4.60/ton with a land requirement of 0.2m 2 /person-year. - Abstract: Open dumping is the most common practice for the disposal of urban solid wastes in the least developed regions of Africa, Asia and Latin America. Sanitary landfill design and operation has traditionally focused on large cities, but cities with fewer than 50,000 in population can comprise from 6% to 45% of a given country’s total population. These thousands of small cities cannot afford to operate a sanitary landfill in the way it is proposed for large cities, where heavy equipment is used to spread and compact the waste in daily cells, and then to excavate, transport and apply daily cover, and leachate is managed with collection and treatment systems. This paper presents an alternative approach for small cities, known as the semi-mechanized trench method, which was developed in Villanueva, Honduras. In the semi-mechanized trench method a hydraulic excavator is used for 1–3 days to dig a trench that will last at least a month before it is filled with waste. Trucks can easily unload their wastes into the trench, and the wastes compact naturally due to semi-aerobic biodegradation, after which the trenches are refilled and covered. The exposed surface area is minimal since only the top surface of the wastes is exposed, the remainder being covered by the sides and bottom of the trench. The surplus material from trench excavation can be valorized for use as engineering fill onsite or off. The landfill in Villanueva has operated for 15 years, using a total land area of approximately 11 ha for a population that grew from 23,000 to 48

  2. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  3. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  4. T-Rex system for operation in TRU, LLW, and hazardous zones

    International Nuclear Information System (INIS)

    Kline, H.M.; Andreychek, T.P.; Beeson, B.K.

    1993-01-01

    There are a large number of sites around the world containing TRU (transuranic) waste, low level waste (LLW), and hazardous areas that require teleoperated, heavy lift manipulators with long reach and high precision to handle the materials stored there. Teleoperation of the equipment is required to reduce the risk to operating personnel to as-low-as-reasonably-achievable (ALARA) levels. The Transuranic Storage Area Remote Excavator system (T-Rex) is designed to fill this requirement at low cost through the integration of a production front shovel excavator with a control system, local and remote operator control stations, a closed-circuit television system (CCTV), multiple end effectors and a quick-change system. This paper describes the conversion of an off-the-shelf excavator with a hydraulic control system, the integration of an onboard remote control system, vision system, and the design of a remote control station

  5. Advanced methods for incineration of solid, burnable LLW and melting for recycling of scrap metals

    International Nuclear Information System (INIS)

    Krause, G.; Lorenzen, J.; Lindberg, M.; Olsson, L.; Wirendal, B.

    2003-01-01

    Radioactive contaminated waste is a great cost factor for nuclear power plants and other nuclear industry. On the deregulated electricity market the price on produced kWh is an important competition tool. Therefore the waste minimisation and volume reduction has given highest priority by many power producers in the process to achieve savings and hence low production cost. Studsvik RadWaste AB in Nykoeping, Sweden, is a company specialised in volume reduction of LLW, as solid combustible waste and as scrap metal for melting and recycling. The treatment facility in Sweden offers this kind of services - together with segmentation and decontamination when necessary - for several customers from Europe, Japan and USA. In addition to these treatment services a whole spectrum of services like transportation, measurement and safeguard, site assistance, industrial cleaning and decontamination in connection with demolition at site is offered from the Studsvik company. (orig.)

  6. A radiochemical study of sedimentation onto the Japan Trench floor

    International Nuclear Information System (INIS)

    Yamada, M.; Kitaoka, H.; Tsunogai, S.

    1983-01-01

    Box cores were taken from the Japan Trench (water depth, 8260 m) and two neighboring shallower stations (water depth, 2970 and 4310 m) and analyzed for uranium isotopes, thorium isotopes, 210 Pb, CaCO 3 , Fe, Mn, Al, and Cu. The 230 Th: 232 Th activity ratios in the top layer (0 to 1 cm) were 12 to 15 at the three stations, indicating no appreciable addition of 230 Th during descent through the water column below 4 km depth. There are no significant differences in the concentrations of 238 U, 232 Th, and 230 Th on a carbonate-free basis at the three stations. The 230 Th: 232 Th activity ratios of the Japan Trench sediments in the upper 30 cm are nearly constant with depth, indicating rapid sedimentation or active vertical mixing of the sediments. The mixing depth of the Japan Trench sediments is estimated to be 7 cm from the vertical distribution of excess 210 Pb. The maximum concentration of 210 Pb in the Japan Trench sediment is at 2- to 3-cm depth. The results suggest that sediment deposited on the shallower slope of the trench slides down and accumulates on the trench floor. (author)

  7. Morning Frost in Trench Dug by Phoenix, Sol 113

    Science.gov (United States)

    2008-01-01

    This image from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows morning frost inside the 'Snow White' trench dug by the lander, in addition to subsurface ice exposed by use of a rasp on the floor of the trench. The camera took this image at about 9 a.m. local solar time during the 113th Martian day of the mission (Sept. 18, 2008). Bright material near and below the four-by-four set of rasp holes in the upper half of the image is water-ice exposed by rasping and scraping in the trench earlier the same morning. Other bright material especially around the edges of the trench, is frost. Earlier in the mission, when the sun stayed above the horizon all night, morning frost was not evident in the trench. This image is presented in approximately true color. The trench is 4 to 5 centimeters (about 2 inches) deep, about 23 centimeters (9 inches) wide. Phoenix landed on a Martian arctic plain on May 25, 2008. The mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  8. Control of water infiltration into near surface low-level waste disposal units. Final report on field experiments at a humid region site, Beltsville, Maryland

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1997-09-01

    This study''s objective was to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work was carried out in large-scale lysimeters 21.34 m x 13.72 m x 3.05 m (70 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration were investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management

  9. Facility status and progress of the INEL's WERF MLLW and LLW incinerator

    International Nuclear Information System (INIS)

    Conley, D.; Corrigan, S.

    1996-01-01

    The Idaho National Engineering Laboratory's (INEL) Waste Experimental Reduction Facility (WERF) incinerator began processing beta/gamma- emitting low-level waste (LLW) in September 1984. A Resource Conservation and Recovery Act (RCRA) trial burn for the WERF incinerator was conducted in 1986, and in 1989 WERF began processing (hazardous and low-level radioactive) waste known as mixed low-level waste (MLLW). On February 14, 1991 WERF operations were suspended to improve operating procedures and configuration management. On July 12, 1995, WERF initiated incineration of LLW; and on September 20, 1995 WERF resumed its primary mission of incinerating MLLW. MLLW incineration is proceeding under RCRA interim status. State of Idaho issuance of the Part B permit is one of the State's highest permitting priorities. The State of Idaho's Division of Environmental Quality is reviewing the permit application along with a revised trial burn plan that was also submitted with the application. The trial burn has been proposed to be performed in 1996 to demonstrate compliance with the current incinerator guidance. This paper describes the experiences and problems associated with WERF's operations, incineration of MLLW, and the RCRA Part B Permit Application. Some of the challenges that have been overcome include waste characterization, waste repackaging, repackaged waste storage, and implementation of RCRA interim status requirements. A number of challenges remain. They include revision of the RCRA Part B Permit Application and the Trial Burn Plan in response to comments from the state permit application reviewers as well as facility and equipment upgrades required to meet RCRA Permitted Status

  10. Nonradiological groundwater quality at low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Goode, D.J.

    1986-04-01

    The NRC is investigating appropriate regulatory options for disposal of low-level radioactive waste containing nonradiological hazardous constituents, as defined by EPA regulations. Standard EPA/RCRA procedures to determine hazardous organics, metals, indicator parameters, and general water quality are applied to samples from groundwater monitoring wells at two commercial low-level radioactive waste disposal sites. At the Sheffield, IL site (nonoperating), several typical organic solvents are identified in elevated concentrations in onsite wells and in an offsite area exhibiting elevated tritium concentrations. At the Barnwell, SC site (operating), only very low concentrations of three organics are found in wells adjacent to disposal units. Hydrocarbons associated with petroleum products are detected at both sites. Hazardous constituents associated with previosuly identified major LLW mixed waste streams, toluene, xylene, chromium, and lead, are at or below detection limits or at background levels in all samples. Review of previously collected data also supports the conclusion that organic solvents are the primary nonradiological contaminants associated with LLW disposal

  11. Eco-trench: a novel trench solution based on reusing excavated material and a finishing layer of expansive concrete

    International Nuclear Information System (INIS)

    Blanco, A.; Pujadas, R.; Fernández, C.; Cavalaro, S.H.P.; Aguado, A.

    2017-01-01

    Installing utility pipelines generates a significant amount of trench arisings, which are usually transported to landfills instead of being reused as backfill material. This practice generates CO2 emissions and wastes raw materials. This paper presents a more sustainable solution, an eco-trench, which is based on re-using trench arisings as backfill and adding a top layer of expansive concrete to improve the eco-trench’s structural performance. The technical feasibility of the eco-trench was evaluated through a finite element model, which identified the degree of expansion in concrete required to avoid failure or subside the stresses caused by traffic. The potential expansion of concrete was measured under confined conditions in the laboratory by means of a novel test developed for this purpose. The results showed that adding calcium oxide generates the required internal stress. The results were then confirmed in a pilot experience. [es

  12. Eco-trench: a novel trench solution based on reusing excavated material and a finishing layer of expansive concrete

    Directory of Open Access Journals (Sweden)

    A. Blanco

    2017-09-01

    Full Text Available Installing utility pipelines generates a significant amount of trench arisings, which are usually transported to landfills instead of being reused as backfill material. This practice generates CO2 emissions and wastes raw materials. This paper presents a more sustainable solution, an eco-trench, which is based on re-using trench arisings as backfill and adding a top layer of expansive concrete to improve the eco-trench’s structural performance. The technical feasibility of the eco-trench was evaluated through a finite element model, which identified the degree of expansion in concrete required to avoid failure or subside the stresses caused by traffic. The potential expansion of concrete was measured under confined conditions in the laboratory by means of a novel test developed for this purpose. The results showed that adding calcium oxide generates the required internal stress. The results were then confirmed in a pilot experience.

  13. Trench Safety–Using a Qualitative Approach to Understand Barriers and Develop Strategies to Improve Trenching Practices

    Science.gov (United States)

    FLYNN, MICHAEL A.; SAMPSON, JULIE M.

    2015-01-01

    Despite efforts to ensure workplace safety and health, injuries and fatalities related to trenching and excavation remain alarmingly high in the construction industry. Because properly installed trenching protective systems can potentially reduce the significant number of trenching fatalities, there is clearly a need to identify the barriers to the use of these systems and to develop strategies to ensure these systems are utilized consistently. The current study reports on the results of focus groups with construction workers and safety management personnel to better understand these barriers and to identify solutions. The results suggest several factors, from poor planning to pressures from experienced workers and supervisors, which present barriers to safe trenching practices. Based on the results, it is recommended that safety trainings incorporate unique messages for new workers, experienced workers and management in an effort to motivate each group to work safely as well as provide them with solutions to overcome the identified barriers. PMID:26550006

  14. Some interactive factors affecting trench-cover integrity on low-level waste sites

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Lane, L.J.; Steger, J.G.; DePoorter, G.L.

    1982-01-01

    This paper describes important mechanisms by which radionuclide can be transported from low-level waste disposal sites into biological pathways, discuss interactions of abiotic and biotic processes, and recommends environmental characteristics that should be measured to design sites that minimize this transport. Past experience at shallow land burial sites for low-level radioactive wastes suggest that occurrences of waste exposure and radionuclide transport are often related to inadequate trench cover designs. Meeting performance standards at low-level waste sites can only be achieved by recognizing that physical, chemical, and biological processes operating on and in a trench cover profile are highly interactive. Failure to do so can lead to improper design criteria and subsequent remedial action procedures that can adversely affect site stability. Based upon field experiments and computer modeling, recommendations are made on site characteristics that require measurement in order to design systems that reduce surface runoff and erosion, manage soil moisture and biota in the cover profile to maximize evapotranspiration and minimize percolation, and place bounds on the intrusion potential of plants and animals into the waste material. Major unresolved problems include developing probabilistic approaches that include climatic variability, improved knowledge of soil-water-plant-erosion relationships, development of practical vegetation establishment and maintenance procedures, prediction and quantification of site potential and plant succession, and understanding the interaction of processes occurring on and in the cover profile with deeper subsurface processes

  15. Ocean disposal of radioactive waste: Status report

    International Nuclear Information System (INIS)

    Calmet, D.P.

    1989-01-01

    For hundreds of years, the seas have been used as a place to dispose of wastes resulting from human activities and although no high level radioactive waste (HLW) has been disposed of into the sea, variable amounts of packaged low level radioactive waste (LLW) have been dumped at more than 50 sites in the northern part of the Atlantic and Pacific oceans. So far, samples of sea water, sediments and deep sea organisms collected on the various sites have not shown any excess in the levels of radionuclides above those due to nuclear weapons fallout except on certain occasions where caesium and plutonium were detected at higher levels in samples taken close to packages at the dumping site. Since 1957, the date of its first meeting to design methodologies to assess the safety of ''radioactive waste disposal into the sea'', the IAEA has provided guidance and recommendations for ensuring that disposal of radioactive wastes into the sea will not result in unacceptable hazards to human health and marine organisms, damage to amenities or interference with other legitimate uses of the sea. Since the Convention for the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (referred to as the London Dumping Convention) came into force in 1975, the dumping of waste has been regulated on a global scale. The London Dumping Convention entrusted IAEA with specific responsibilities for the definition of high level radioactive wastes unsuitable for dumping at sea, and for making recommendations to national authorities for issuing special permits for ocean dumping of low level radioactive wastes. This paper presents a status report of immersion operations of low-level radioactive waste and the current studies the IAEA is undertaking on behalf of the LDC

  16. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    International Nuclear Information System (INIS)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-01-01

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10 5 m 3 of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10 14 Bq total activity) of long-lived radionuclides, principally 99 Tc (t 1/2 = 2.1 x 10 5 ), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  17. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  18. Fee structures for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Baird, R.D.; Rogers, V.C.

    1988-01-01

    Some compacts and states require that the fee system at their new low-level waste (LLW) disposal facility be based on the volume and radioactive hazard of the wastes. The fee structure discussed in this paper includes many potential fee elements that could be used to recover the costs of disposal and at the same time influence the volume and nature of waste that arrives at the disposal facility. It includes a base fee which accounts for some of the underlying administrative costs of disposal, and a broad range of charges related to certain parameters of the waste, such as volume, radioactivity, etc. It also includes credits, such as credits for waste with short-lived radionuclides or superior waste forms. The fee structure presented should contain elements of interest to all states and compacts. While no single disposal facility is likely to incorporate all of the elements discussed here in its fee structure, the paper presents a fairly exhaustive list of factors worth considering

  19. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal site

    Science.gov (United States)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W.

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas:Estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge);Analyzing the hydrologic performance of engineered components of a facility;Evaluating the application of models to the prediction of facility performance; andEstimating the uncertainty in predicted facility performance.An estimate of recharge at a LLW site is important since recharge is a principal factor in controlling the release of contaminants via the groundwater pathway. The most common methods for estimating recharge are discussed in Chapter 2. Many factors affect recharge; the natural recharge at an undisturbed site is not necessarily representative either of the recharge that will occur after the site has been disturbed or of the flow of water into a disposal facility at the site. Factors affecting recharge are discussed in Chapter 2.At many sites engineered components are required for a LLW facility to meet performance requirements. Chapter 3 discusses the use of engineered barriers to control the flow of water in a LLW facility, with a particular emphasis on cover systems. Design options and the potential performance and degradation mechanisms of engineered components are also discussed.Water flow in a LLW disposal facility must be evaluated before construction of the facility. In addition, hydrologic performance must be predicted over a very long time frame. For these reasons, the hydrologic evaluation relies on the use of predictive modeling. In Chapter 4, the evaluation of unsaturated water flow modeling is discussed. A checklist of items is presented to guide the evaluation

  20. Calculations of the radiological impact of disposal of unit activity of selected radionuclides for use in waste management system studies

    International Nuclear Information System (INIS)

    Smith, G.M.

    1985-03-01

    The purpose of the work described is to provide estimates of the radiological impact following disposal of unit activity via each of several options, including shallow burial, engineered trench disposal, disposal in a geologic repository and disposal on the deep ocean bed. Results are presented for a range of important representative radionuclides. No single option is clearly the best from the radiological point of view. However, in conjunction with waste inventory data the results may be used to provide a preliminary view of the relative radiological merits of the various disposal options. (author)

  1. Response of Microbial Community Function to Fluctuating Geochemical Conditions within a Legacy Radioactive Waste Trench Environment.

    Science.gov (United States)

    Vázquez-Campos, Xabier; Kinsela, Andrew S; Bligh, Mark W; Harrison, Jennifer J; Payne, Timothy E; Waite, T David

    2017-09-01

    During the 1960s, small quantities of radioactive materials were codisposed with chemical waste at the Little Forest Legacy Site (Sydney, Australia) in 3-meter-deep, unlined trenches. Chemical and microbial analyses, including functional and taxonomic information derived from shotgun metagenomics, were collected across a 6-week period immediately after a prolonged rainfall event to assess the impact of changing water levels upon the microbial ecology and contaminant mobility. Collectively, results demonstrated that oxygen-laden rainwater rapidly altered the redox balance in the trench water, strongly impacting microbial functioning as well as the radiochemistry. Two contaminants of concern, plutonium and americium, were shown to transition from solid-iron-associated species immediately after the initial rainwater pulse to progressively more soluble moieties as reducing conditions were enhanced. Functional metagenomics revealed the potentially important role that the taxonomically diverse microbial community played in this transition. In particular, aerobes dominated in the first day, followed by an increase of facultative anaerobes/denitrifiers at day 4. Toward the mid-end of the sampling period, the functional and taxonomic profiles depicted an anaerobic community distinguished by a higher representation of dissimilatory sulfate reduction and methanogenesis pathways. Our results have important implications to similar near-surface environmental systems in which redox cycling occurs. IMPORTANCE The role of chemical and microbiological factors in mediating the biogeochemistry of groundwaters from trenches used to dispose of radioactive materials during the 1960s is examined in this study. Specifically, chemical and microbial analyses, including functional and taxonomic information derived from shotgun metagenomics, were collected across a 6-week period immediately after a prolonged rainfall event to assess how changing water levels influence microbial ecology and

  2. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    International Nuclear Information System (INIS)

    Mohamed, Yasser T.

    2013-01-01

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  3. Alternate Methods of Effluent Disposal for On-Lot Home Sewage Systems. Special Circular 214.

    Science.gov (United States)

    Wooding, N. Henry

    This circular provides current information for homeowners who must repair or replace existing on-lot sewage disposal systems. Several alternatives such as elevated sand mounds, sand-lined beds and trenches and oversized absorption areas are discussed. Site characteristics and preparation are outlined. Each alternative is accompanied by a diagram…

  4. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W.

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated

  5. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.

  6. Planning and consultation procedures for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Kemp, R.

    1989-03-01

    This Report is the result of a year-long study funded by UK Nirex Ltd. between 1986 and 1987. The central purpose was to learn from overseas experience of planning and public consultation procedures associated with the establishment of low-level radioactive waste (LLW) disposal sites. The most recent information on LLW developments in the United States, Canada, France, Holland, Switzerland, Sweden, and West Germany was sought, particularly in regard to: (1) the efficacy of public consultation and negotiation procedures, focusing in particular on the perceived problems, successes and areas for improvement; (2) the key aspects bearing on the public acceptability of LLW proposals; and (3) the form and effect of any compensation mechanisms in operation. The greatest success overseas appears to be linked to some combination of the following elements: authority and clarity in the exposition of the direction of radioactive waste management policy, backed up by authoritative and independent analysis; the early involvement of local authority (county council/regional authority) organisations in the site selection process; careful attention to the potential contribution of authoritative independent advisory groups on both technical and procedural/site selection matters; the development and nurturing of local liaison committees to establish good communications at the local level; careful consideration of means of devolving some power to local authority level for safety reassurance, for example, in relation to site inspections and safety monitoring; the development of an incremental, openly negotiated approach to compensation. (author)

  7. Libraries as Trenches: Resistance, Militancy and Politics

    Directory of Open Access Journals (Sweden)

    Edgardo Civallero

    2017-02-01

    Full Text Available This essay considers how libraries and librarians resist and mobilize by sharpening the mind and strengthening solidarity, withstanding adverse conditions and providing shelter, and allowing for new community paths to be traveled despite the neoliberal insistence that there is no alternative. Militancy and commitment on the part of librarians are both discussed in terms of reading, literacy, identity, learning, training, and a form of leisure linked to culture.Everyday engagement in community-level activities and problem-solving by libraries goes hand-in-hand with supporting values such as justice, equality, solidarity, pluralism, freedom, equity, and respect. Trenches are used as a metaphor for libraries because the resistance work and struggle of librarians create spaces where certain fires are kept burning to inspire people sitting around them, and where resistance, planning, building, and counteracting are all possible. Cet essai prend en compte comment les bibliothèques et les bibliothécaires résistent et se mobilisent en façonnant l’esprit, en renforçant la solidarité, en résistant à des conditions défavorables et en fournissant des abris, et en permettant de prendre de nouveaux sentiers communautaires malgré l’insistance néolibérale qu’il n’y pas de solution de rechange. Le militantisme et l’engagement de la part des bibliothécaires sont tous deux examinés en fonction de la lecture, la littératie, l’identité, l’apprentissage, la formation et une forme de loisir liée à la culture. L’engagement quotidien dans les activités de la communauté et la résolution de problème des bibliothèques vont main dans la main avec le soutien des valeurs tels la justice, l’égalité, la solidarité, le pluralisme, la liberté, l’équité et le respect. La métaphore de la tranchée peut être employée pour les bibliothèques, car leur travail de résistance et les défis qu’ont les bibliothécaires à créer des

  8. Greater confinement disposal program at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.; Towler, O.A.; Peterson, D.L.; Johnson, G.M.; Helton, B.D.

    1984-01-01

    The first facility to demonstrate Greater Confinement Disposal (GCD) in a humid environment in the United States has been built and is operating at the Savannah River Plant. GCD practices of waste segregation, packaging, emplacement below the root zone, and waste stabilization are being used in the demonstration. Activity concentrations to select wastes for GCD are based on a study of SRP burial records, and are equal to or less than those for Class B waste in 10CFR61. The first disposal units to be constructed are 9-foot diameter, thirty-foot deep boreholes which will be used to dispose of wastes from production reactors, tritiated wastes, and selected wastes from off-site. In 1984 an engineered GCD trench will be constructed for disposal of boxed wastes and large bulky items. 2 figures, 1 table

  9. Design and construction of a deep slurry trench barrier

    International Nuclear Information System (INIS)

    Deming, P.W.

    1997-01-01

    A 24 m (80 ft) deep slurry trench surrounding a former chromium manufacturing facility on the Patapsco River in Baltimore, Maryland was constructed in 1995 to contain groundwater and site Soils, and to reduce the volume of groundwater extracted to maintain an inward gradient. In 1992, an embankment made of crushed stone was constructed in the Patapsco River to make land for barrier construction outboard of the bulkheads, and to protect the barrier. Stability of the slurry-supported trench excavation in the embankment required construction from an elevated work platform. An extended reach backhoe was used to excavate the deep slurry trench and to clean the trench bottom. Soil-Bentonite backfill was prepared at a central mixing area and transported by truck to the perimeter barrier. A synthetic membrane was inserted partially into the backfill for connection to a multimedia cap, and for redundancy and erosion control in the tidal zone. Hydraulic testing of the aquitard contained by the barrier demonstrated excellent performance of the barrier and bottom closure. Detailed definition of subsurface conditions and the closure stratum was necessary for the design and successful construction of the barrier, and is recommended for comparable slurry trench construction projects

  10. Novel vertical silicon photodiodes based on salicided polysilicon trenched contacts

    International Nuclear Information System (INIS)

    Kaminski, Yelena; Shauly, Eitan; Paz, Yaron

    2015-01-01

    The classical concept of silicon photodiodes comprises of a planar design characterized by heavily doped emitters. Such geometry has low collection efficiency of the photons absorbed close to the surface. An alternative, promising, approach is to use a vertical design. Nevertheless, realization of such design is technologically challenged, hence hardly explored. Herein, a novel type of silicon photodiodes, based on salicided polysilicon trenched contacts, is presented. These contacts can be prepared up to 10 μm in depth, without showing any leakage current associated with the increase in the contact area. Consequently, the trenched photodiodes revealed better performance than no-trench photodiodes. A simple two dimensional model was developed, allowing to estimate the conditions under which a vertical design has the potential to have better performance than that of a planar design. At large, the deeper the trench is, the better is the vertical design relative to the planar (up to 10 μm for silicon). The vertical design is more advantageous for materials characterized by short diffusion lengths of the carriers. Salicided polysilicon trenched contacts open new opportunities for the design of solar cells and image sensors. For example, these contacts may passivate high contact area buried contacts, by virtue of the conformity of polysilicon interlayer, thus lowering the via resistance induced recombination enhancement effect

  11. Novel vertical silicon photodiodes based on salicided polysilicon trenched contacts

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Yelena [Department of Chemical Engineering, Technion, Haifa (Israel); TowerJazz Ltd. Migdal Haemek (Israel); Shauly, Eitan [TowerJazz Ltd. Migdal Haemek (Israel); Paz, Yaron, E-mail: paz@tx.technion.ac.il [Department of Chemical Engineering, Technion, Haifa (Israel)

    2015-12-07

    The classical concept of silicon photodiodes comprises of a planar design characterized by heavily doped emitters. Such geometry has low collection efficiency of the photons absorbed close to the surface. An alternative, promising, approach is to use a vertical design. Nevertheless, realization of such design is technologically challenged, hence hardly explored. Herein, a novel type of silicon photodiodes, based on salicided polysilicon trenched contacts, is presented. These contacts can be prepared up to 10 μm in depth, without showing any leakage current associated with the increase in the contact area. Consequently, the trenched photodiodes revealed better performance than no-trench photodiodes. A simple two dimensional model was developed, allowing to estimate the conditions under which a vertical design has the potential to have better performance than that of a planar design. At large, the deeper the trench is, the better is the vertical design relative to the planar (up to 10 μm for silicon). The vertical design is more advantageous for materials characterized by short diffusion lengths of the carriers. Salicided polysilicon trenched contacts open new opportunities for the design of solar cells and image sensors. For example, these contacts may passivate high contact area buried contacts, by virtue of the conformity of polysilicon interlayer, thus lowering the via resistance induced recombination enhancement effect.

  12. Expedited response action proposal for 316-5 process trenches

    International Nuclear Information System (INIS)

    1991-07-01

    A summary of the evaluation of remedial alternatives for the 300 Area Process Trench sediment removal at Hanford is presented. Based on the preliminary technology screening, screening factors, and selection criteria the preferred alternative for the 300 Area Process Trench is to remove and interim stabilize the sediments within the fenced area of the process trenches. This alternative involves proven technologies that are applied easily at this mixed waste site. This alternative removes and isolates contaminated sediments from the active portion of the trenches allowing continued used of the trenches until an inspection and treatment facility is constructed. The alternative does not incorporate any materials or actions that preclude consideration of a technology for final remediation of the operable unit. The estimated initial and annual costs would enable this alternative to be implemented under the guidelines for an EPA- funded ERA ($2 million). Implementation of the alternative can be accomplished with trained personnel using familiar procedures to provide a safe operation that accomplishes the objective for removing a potential source of contamination, thereby reducing potential environmental threat to groundwater. 18 refs., 5 figs., 9 tabs

  13. The medical response to trench nephritis in World War One.

    Science.gov (United States)

    Atenstaedt, R L

    2006-08-01

    Around the 90-year anniversary of the Battle of the Somme, it is important to remember the international effort that went into responding to the new diseases, which appeared during the First World War, such as trench nephritis. This condition arose among soldiers in spring 1915, characterized by breathlessness, swelling of the face or legs, headache, sore throat, and the presence of albumin and renal casts in urine. It was speedily investigated by the military-medical authorities. There was debate over whether it was new condition or streptococcal nephritis, and the experts agreed that it was a new condition. The major etiologies proposed were infection, exposure, and diet (including poisons). Research pointed to the origin of the disease as being infective rather than toxic, but no definite cause was discovered. A number of labels were given to the disease, including war nephritis. However, trench nephritis was the one used most widely. Trench nephritis was a serious problem for the Allies, leading to 35 000 casualties in the British and 2000 in the American forces. There were also hundreds of deaths. The condition was treated in line with pre-war regimens designed for acute nephritis. No significant preventative methods were implemented for trench nephritis, as there was no consensus regarding causation. The medical response to trench nephritis was largely ineffective, with medical commentators recognizing that there had been a lack of medical progress.

  14. Leaching studies of low-level waste as input to radiological assessment at the Drigg disposal site, Cumbria

    International Nuclear Information System (INIS)

    Poulton, J.; Rushbrook, P.E.

    1989-01-01

    Over the period of operation of the low-level waste disposal site at Drigg in Cumbria, several radiological assessments have been carried out. This paper discusses data requirements for such an assessment and in particular describes a project to measure the leaching behaviour of wastes. This project, jointly set up by the staff of BNFL and Environmental Safety Centre at Harwell, began in 1985. The objectives were to determine the processes operating within the waste disposal trenches at Drigg and conditions affecting them. The paper describes the installation and operation of the first of a series of lysimeters designed to simulate conditions in current trenches. (author)

  15. Proceedings of the establishment conference of Professional Committee on Waste Underground Disposal of Chinese Society for Rock Mechanics and Engineering and the first academic seminar

    International Nuclear Information System (INIS)

    2006-07-01

    Approved by the China Association for Science and Technology, Chinese Society for Rock Mechanics and Engineering newly established 'Professional Committee on Waste Underground Disposal'. The committee will organise the national and international academic exchange, and provide advice on discipline development, sustainable industrial development, environmental protection, etc.. This is the establishing conference of the professional committee, as well as the first academic seminar. The following topics on waste underground disposal are discussed: the theory, practice and exploration, project examples, new technologies and new methods. The contents include: waste disposal technology in the new century, the geological disposal of high level radioactive waste, LLW and ILW underground waste disposal, urban and industrial waste underground disposal, and etc.

  16. 78 FR 75913 - Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site...

    Science.gov (United States)

    2013-12-13

    ... site, including the disposal of Hanford's low-level radioactive waste (LLW) and mixed low-level... would be processed for disposal in Low- Level Radioactive Waste Burial Grounds (LLBGs) Trenches 31 and... treating radioactive waste from 177 underground storage tanks (149 Single-Shell Tanks [SSTs] and 28 Double...

  17. Advanced technology for disposal of low-level radioactive/waste

    International Nuclear Information System (INIS)

    Anderson, R.T.

    1990-01-01

    New Low-Level Radioactive Waste (LLW) sites will be opened in this decade. These sites will replace the existing sites, and will be developed for waste generated at both commercial and governmental facilities. The design and operation of these facilities will include additional engineered provisions to further minimize the probability for any radioactive material release for upwards of 500 years following site closure. Chem-Nuclear Systems, Inc. (CNSI) has been selected by several state waste compacts to design, construct and operate new LLW disposal sites. These new sites will be located in Illinois, North Carolina and Pennsylvania. They will receive waste generated at commercial sites (power utilities, commercial processors, hospitals, etc.), with volumes ranging from 200,000 to 550,000 cubic feet per year. As currently planned, these facilities will be operational for from 20 to 50 years. The basis of the new designs is multiple engineered barriers which augments the natural features of the site and the solid form of the waste as shipped by the generator. The design concept is referred to as the Triple Safe concept, since it is composed of three distinct engineered barriers. This design has been adapted from disposal technology developed in France. This paper discusses aspects of the Triple Safe technology which CNSI is now developing for the new LLW sites. The designs, while not absolutely identical at each site, do have many common features. The author believes that these are representative of disposal technology to be used in the US in the 1990's and beyond. The current projection is that these sites will become operational in the 1993-97 time period

  18. Evaluation and design of drained low-level radioactive disposal sites. Final report

    International Nuclear Information System (INIS)

    Eichholz, G.G.

    1984-12-01

    Low-level disposal in shallow trenches has been the subject of much critical assessment in recent years. Historically most trenches have been located in fairly permeable settings and any liquid waste stored has migrated at rates limited mainly by hydraulic effects and the ion exchange capacity of underlying soil minerals. Attempts to minimize such seepage by choosing sites in very impermeable settings lead to overflow and surface runoff, whenever the trench cap is breached by subsidence or erosion. The work described in this report was directed to an optimum compromise situation where less reliance is placed on cap permanence, any ground seepage is directed and controlled, and the amount of waste leaching that would occur is minimized by keeping the soil surrounding the waste at only residual moisture levels at all times. Measurements have been conducted to determine these residual levels for some representative soils, to estimate the impact on waste migration of mainly unsaturated flow conditions, and to generate a conceptual design of a disposal facility which would provide adequate drainage to keep the waste from being exposed to continuous leaching by standing water. An attempt has also been made to quantify the reduced source terms under such periodic, unsaturated flow conditions, but those tests have not been conclusive to date. For low-permeability soils the waste should be placed about 1 ft. above the saturated layer formed by suction forces immediately above the gravel layer. Since most disposal sites, even in humid regions of the United States, are exposed only to intermittent rainfall and as most trench designs incorporate some gravel base for drainage, the results of this project have broader applications in assessing actual migration conditions in shallow trench disposal sites. Similar considerations may also apply to disposal of hazardous wastes

  19. Development of new low level radioactive waste disposal sites: A progress report

    International Nuclear Information System (INIS)

    Anderson, Robert T.; Antonucci, George J.; Ryan, Michael T.

    1992-01-01

    The status of the development of three new low level radioactive waste disposal facilities for the Central Midwest (Illinois), Southeastern (North Carolina) and Appalachian (Pennsylvania) compacts is presented. These three sites will dispose of about 50-65 percent of the commercial low-level waste (LLW) generated in the U.S. annually. Chem-Nuclear, as developer and proposed operator of all three sites has used a common approach to site development. This approach has been based on their twenty-plus years of operating experience and a standard technical approach. The technology employed is an above-grade, multiple engineered barrier design. The paper also contrasts actual progress at each site with a generalized project schedule. Areas of schedule delays are noted along with the steps being taken to accelerate schedule. Finally, we note that continued progress and timely start-up of operations of these new sites is critical on a national basis. This is due to the possibility of near-term closure of the existing LLW disposal sites. (author)

  20. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    Energy Technology Data Exchange (ETDEWEB)

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.; Novgrod, R.L.

    1994-08-01

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected.

  1. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    International Nuclear Information System (INIS)

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.; Novgrod, R.L.

    1994-08-01

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected

  2. Low Level Waste Disposal Geological Studies At Inshas Site. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Al-Gamal, S A; Emara, A S [National Center for Nuclear Safety and Radiation Control, Nasr City, Atomic Energy Authority, Cairo (Egypt); Shehata, M G [Petroleum Research Institute, Nasr City, Al-Zohour District, Cairo (Egypt)

    1996-03-01

    The general potential of some selected layers such as the Miocene sediments and the Oligocene basalts is evaluated for the disposal of low level waste, (LLW). In this work, it is aimed to quantify the effect of some key parameters that are though to influence the migration of radionuclides in these layers. Homogeneity-isotopy and engineering properties of selected potential layers at Inshas were examined. Land form stability and collapsible soil were studied. Basaltic lava flows of Oligocene age were thoroughly investigated using petrographic and petrologic techniques and its suitability as a potential host rock for a waste repository is evaluated. 8 figs., 2 tabs.

  3. Quality assurance guidance for low-level radioactive waste disposal facility: Final report

    International Nuclear Information System (INIS)

    Pittiglio, C.L. Jr.

    1989-01-01

    This document provides guidance to an applicant on meeting the quality control (QC) requirements for a low-level waste (LLW) disposal facility. The QC requirements are the basis for developing of a quality assurance (QA) program and for the guidance provided herein. The criteria are basic to any QA program. The document specifically establishes QA guidance for the design, construction, and operation of those structures, systems, components, as well as, for site characterization activities necessary to meet the performance objectives and to limit exposure to our release of radioactivity. 7 refs

  4. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    International Nuclear Information System (INIS)

    Duncan, David

    2011-01-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  5. The impact of new technology on compact disposal costs

    International Nuclear Information System (INIS)

    Arrowsmith, H.W.; Zidow, T.M.

    1989-01-01

    The cost of disposal of low-level waste (LLW) has increased dramatically since the 1960s. In the '60s waste was put into the ground for a fee of less than $1/ft 3 in truck-size quantities. Fees for the same burial services today begin in the $30/ft 3 range and increase rapidly from that level. Although the user fees associated with compacts will clearly exceed $100/ft 3 , improved operating techniques by the generators will reduce the amount of waste produced. Current estimates suggest this reduction will drive the per-cubic-foot cost of disposal over the $200 mark. Technology is the only solution to this predicament. While costs already incurred will contribute to the fixed portion of the base user fees, the means to minimize the variable portion of the fees in now at hand. This variable portion results from on-site processing costs, waste form stability enhancements, and ongoing disposal unit construction. Technology exists to minimize volume through ultra compaction and selective incineration, greatly reducing the ongoing disposal unit construction requirements. Vitrification of incinerator residue provides waste form stability far in excess of that provided by concrete overpacks. As overpacks represent the second largest material cost at an engineered barrier facility, the potential for cost savings is substantial

  6. Lessons Learned Report for the radioactive mixed waste land disposal facility (Trench 31, Project W-025)

    International Nuclear Information System (INIS)

    Irons, L.G.

    1995-01-01

    This report presents the lessons learned from a project that involved modification to the existing burial grounds at the Hanford Reservation. This project has been focused on the development and operation of a Resource Conservation and Recovery Act compliant landfill which will accept low-level radioactive wastes that have been placed in proper containers

  7. Durability test of geomembrane liners presumed to avail near surface disposal facilities for low-level waste generated from research, industrial and medical facilities

    International Nuclear Information System (INIS)

    Nakata, Hisakazu; Amazawa, Hiroya; Sakai, Akihiro; Kurosawa, Ryohei; Sakamoto, Yoshiaki; Kanno, Naohiro; Kashima, Takahiro

    2014-02-01

    The Low-level Radioactive Waste Disposal Project Center will construct near surface disposal facilities for radioactive wastes from research, industrial and medical facilities. The disposal facilities consist of “concrete pit type” for low-level radioactive wastes and “trench type” for very low level radioactive wastes. As for the trench type disposal facility, two kinds of facility designs are on projects – one for a normal trench type disposal facility without any of engineered barriers and the other for a trench type disposal facility with geomembrane liners that could prevent from causing environmental effects of non radioactive toxic materials contained in the waste packages. The disposal facility should be designed taking basic properties of durability on geomembrane liners into account, for it is exposed to natural environment on a long-term basis. This study examined mechanical strength and permeability properties to assess the durability on the basis of an indoor accelerated exposure experiment targeting the liner materials presumed to avail the conceptual design so far. Its results will be used for the basic and detailed design henceforth by confirming the empirical degradation characteristic with the progress of the exposure time. (author)

  8. Russian low-level waste disposal program

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, L. [L. Lehman and Associates, Inc., Burnsville, MN (United States)

    1993-03-01

    The strategy for disposal of low-level radioactive waste in Russia differs from that employed in the US. In Russia, there are separate authorities and facilities for wastes generated by nuclear power plants, defense wastes, and hospital/small generator/research wastes. The reactor wastes and the defense wastes are generally processed onsite and disposed of either onsite, or nearby. Treating these waste streams utilizes such volume reduction techniques as compaction and incineration. The Russians also employ methods such as bitumenization, cementation, and vitrification for waste treatment before burial. Shallow land trench burial is the most commonly used technique. Hospital and research waste is centrally regulated by the Moscow Council of Deputies. Plans are made in cooperation with the Ministry of Atomic Energy. Currently the former Soviet Union has a network of low-level disposal sites located near large cities. Fifteen disposal sites are located in the Federal Republic of Russia, six are in the Ukraine, and one is located in each of the remaining 13 republics. Like the US, each republic is in charge of management of the facilities within their borders. The sites are all similarly designed, being modeled after the RADON site near Moscow.

  9. T-Rex system for operation in TRU, LLW, and hazardous zones

    International Nuclear Information System (INIS)

    Kline, H.M.; Andreycheck, T.P.; Beeson, B.K.

    1995-01-01

    T-Rex stands for Transuranic Storage Area Remote Excavator that is dedicated to the retrieval of above ground waste containers and overburden at the Radioactive Waste Management Complex (RWMC) located at the Idaho National Engineering Laboratory. There are a number of sites around the world containing (transuranic) (TRU), low level (LLW), and hazardous wastes that requires teleoperated, heavy lift manipulators with long reach and high precision to handle the materials stored there. Remote operation of equipment will reduce the risk to personnel to as-low-as-reasonably-achievable (ALARA) levels. The T-Rex is designed to fulfill this requirement at relatively low cost through the integration of a production front shovel excavator with a control system, local and remote operator control stations, a closed-circuit television system (CCTV), and multiple end effectors with quick changeout capability. This paper describes the conversion of an off-the-shelf excavator to a machine utilizing a modified hydraulic system, an integrated onboard remote control system, CCTV system, collision avoidance system, and a remote control station

  10. Effect of surface roughness of trench sidewalls on electrical properties in 4H-SiC trench MOSFETs

    Science.gov (United States)

    Kutsuki, Katsuhiro; Murakami, Yuki; Watanabe, Yukihiko; Onishi, Toru; Yamamoto, Kensaku; Fujiwara, Hirokazu; Ito, Takahiro

    2018-04-01

    The effects of the surface roughness of trench sidewalls on electrical properties have been investigated in 4H-SiC trench MOSFETs. The surface roughness of trench sidewalls was well controlled and evaluated by atomic force microscopy. The effective channel mobility at each measurement temperature was analyzed on the basis of the mobility model including optical phonon scattering. The results revealed that surface roughness scattering had a small contribution to channel mobility, and at the arithmetic average roughness in the range of 0.4-1.4 nm, there was no correlation between the experimental surface roughness and the surface roughness scattering mobility. On the other hand, the characteristics of the gate leakage current and constant current stress time-dependent dielectric breakdown tests demonstrated that surface morphology had great impact on the long-term reliability of gate oxides.

  11. Ocean Disposal Site Monitoring

    Science.gov (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  12. Waste disposal: preliminary studies

    International Nuclear Information System (INIS)

    Carvalho, J.F. de.

    1983-01-01

    The problem of high level radioactive waste disposal is analyzed, suggesting an alternative for the final waste disposal from irradiated fuel elements. A methodology for determining the temperature field around an underground disposal facility is presented. (E.G.) [pt

  13. Institutional considerations for near-surface land disposal

    International Nuclear Information System (INIS)

    Gustafson, P.F.

    1989-01-01

    This chapter discusses the federal and state responsibilities for low level radioactive waste and the laws and policies that have been enacted to define those responsibilities. Historical perspective is given on the intent by both Congress and the Atomic Energy Commission to keep all nuclear activity other than regulating and licensing in the private sector. The Low Level Waste Policy Act of 1980 and the 1985 Amendments are described along with the ramifications for states. Individual state approaches and regional compacts for LLW management are examined and the following general issues common to all endeavors are considered: Public involvement, Management plans, Economic viability, Site selection criteria, Site acceptance incentives, Disposal technology, Selection of site operator, and Site ownership. Finally, licensing and other regulatory responsibilities; site closure, long-term ownership, and fiscal responsibility; unresolved issues; and flaws in the present compact alignments are discussed

  14. Characterization of organics in leachates from low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Francis, A.J.; Iden, C.R.; Nine, B.; Chang, C.

    1979-01-01

    Low-level radioactive wastes generated by the nuclear industry, universities, research institutions, and hospitals are disposed of in shallow-land trenches and pits. In 1962 the first commercial disposal site was opened in Beatty, Nevada. Since then, the industry has grown to include three private companies operating six disposal areas located in sparsely populated areas: at Maxey Flats (Morehead), Kentucky; Beatty, Nevada; Sheffield, Illinois; Barnwell, South Carolina; West Valley, New York; and Richland, Washington. Although the facilities are operated by private industry, they are located on public land and are subject to federal and state regulation. Although inventories of the radioactive materials buried in the disposal sites are available, no specific records are kept on the kinds and quantities of organic wastes buried. In general, the organic wastes consist of contaminated paper, packing materials, clothing, plastics, ion-exchange resins, scintillation vials, solvents, chemicals, decontamination fluids, carcasses of experimental animals, and solidification agents. Radionuclides such as 14 C, 3 H, 90 Sr, 134 137 Cs, 60 Co, 241 Am, and 238 239 240 Pu have been identified in leachate samples collected from several trenches at Maxey Flats and West Valley. The purpose of this report is to identify some of the organic compounds present in high concentrations in trench leachates at the disposal sites in order to begin to evaluate their effect on radionuclide mobilization and contamination of the environment

  15. Advocacy for Kids: A View from the Residential Trenches.

    Science.gov (United States)

    Parsons, Jon R.

    1995-01-01

    Presents the concept of advocacy in the trenches, wherein residential care staff intercede with and for dysfunctional families, dysfunctional children, and the bureaucracy. This advocacy emphasizes individualized treatment and case-by-case networking, focusing not on broad causes but on what is in the best interest of each child. (ET)

  16. Monitored Retrievable Storage conceptual system study: cask-in-trench

    International Nuclear Information System (INIS)

    1983-11-01

    This report provides a description of the Cask-in-Trench Storage Concept which meets a specified set of requirements; an estimate of the costs of construction, operation and decommissioning of the concept; the costs required to expand the facility throughput and storage capability; and the life cycle costs of the facility. 22 figures, 34 tables

  17. Convective mixing by internal waves in the Puerto Rico Trench

    NARCIS (Netherlands)

    van Haren, H.; Gostiaux, L.

    2016-01-01

    A2.4 km long deep-sea mooringwas deployed for 14 months in the Puerto Rico Trench, the deepestpart of the Atlantic Ocean. Below its top buoyancy package, the mooring line held a 200 m long stringof high-resolution temperature sensors and a current meter. Over the instrumented range between6,004 and

  18. EARTHSAWtm IN-SITU CONTAINMENT OF PITS AND TRENCHES

    International Nuclear Information System (INIS)

    Ernest E. Carter, P.E.

    2002-01-01

    EarthSaw(trademark) is a proposed technology for construction of uniform high quality barriers under and around pits and trenches containing buried radioactive waste without excavating or disturbing the waste. The method works by digging a deep vertical trench around the perimeter of a site, filling that trench with high specific gravity grout sealant, and then cutting a horizontal bottom pathway at the base of the trench with a simple cable saw mechanism. The severed block of earth becomes buoyant in the grout and floats on a thick layer of grout, which then cures into an impermeable barrier. The ''Interim Report on task 1 and 2'' which is incorporated into this report as appendix A, provided theoretical derivations, field validation of formulas, a detailed quantitative engineering description of the technique, engineering drawings of the hardware, and a computer model of how the process would perform in a wide variety of soil conditions common to DOE waste burial sites. The accomplishments of task 1 and 2 are also summarized herein Task 3 work product provides a comprehensive field test plan in Appendix B and a health and safety plan in Appendix C and proposal for a field-scale demonstration of the EarthSaw barrier technology. The final report on the subcontracted stress analysis is provided in Appendix D. A copy of the unified computer model is provided as individual non-functional images of each sheet of the spreadsheet and separately as a Microsoft Excel 2000 file

  19. A Generic Water Balance Model for a Trench Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Choi, Hee Joo

    2016-01-01

    To quantify the exposure dose rates from the nuclide release and transport through the various pathways possible in the near- and far-fields of the LILW repository system, various scenarios are to be conveniently simulated in a straightforward manner and extensively with this GoldSim model, as similarly developed for other various types of repositories in previous studies. Through this study, a result from four scenario cases, each of which is or is not associated with water balance, are compared to each other to see what happens in different cases in which an overflow over a trench rooftop, stochastic rainfall on the trench cover, and an unsaturated flow scheme under the trench bottom are combined. The other two latter elements vary periodically owing to stochastic behavior of the time series data for the past rain-fall records. This program is ready for a total system performance assessment and is able to deterministically and probabilistically evaluate the nuclide release from a repository and farther transport into the geosphere and biosphere under various scenarios that can occur after a failure of waste packages with associated uncertainty. An illustration conducted through a study with a new water balance scheme shows the possibility of a stochastic evaluation associated with the stochastic behavior and various pathways that happen around the trench repository.

  20. A Generic Water Balance Model for a Trench Repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Choi, Hee Joo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    To quantify the exposure dose rates from the nuclide release and transport through the various pathways possible in the near- and far-fields of the LILW repository system, various scenarios are to be conveniently simulated in a straightforward manner and extensively with this GoldSim model, as similarly developed for other various types of repositories in previous studies. Through this study, a result from four scenario cases, each of which is or is not associated with water balance, are compared to each other to see what happens in different cases in which an overflow over a trench rooftop, stochastic rainfall on the trench cover, and an unsaturated flow scheme under the trench bottom are combined. The other two latter elements vary periodically owing to stochastic behavior of the time series data for the past rain-fall records. This program is ready for a total system performance assessment and is able to deterministically and probabilistically evaluate the nuclide release from a repository and farther transport into the geosphere and biosphere under various scenarios that can occur after a failure of waste packages with associated uncertainty. An illustration conducted through a study with a new water balance scheme shows the possibility of a stochastic evaluation associated with the stochastic behavior and various pathways that happen around the trench repository.

  1. Trench infiltration for managed aquifer recharge to permeable bedrock

    Science.gov (United States)

    Heilweil, V.M.; Watt, D.E.

    2011-01-01

    Managed aquifer recharge to permeable bedrock is increasingly being utilized to enhance resources and maintain sustainable groundwater development practices. One such target is the Navajo Sandstone, an extensive regional aquifer located throughout the Colorado Plateau of the western United States. Spreading-basin and bank-filtration projects along the sandstone outcrop's western edge in southwestern Utah have recently been implemented to meet growth-related water demands. This paper reports on a new cost-effective surface-infiltration technique utilizing trenches for enhancing managed aquifer recharge to permeable bedrock. A 48-day infiltration trench experiment on outcropping Navajo Sandstone was conducted to evaluate this alternative surface-spreading artificial recharge method. Final infiltration rates through the bottom of the trench were about 0.5 m/day. These infiltration rates were an order of magnitude higher than rates from a previous surface-spreading experiment at the same site. The higher rates were likely caused by a combination of factors including the removal of lower permeability soil and surficial caliche deposits, access to open vertical sandstone fractures, a reduction in physical clogging associated with silt and biofilm layers, minimizing viscosity effects by maintaining isothermal conditions, minimizing chemical clogging caused by carbonate mineral precipitation associated with algal photosynthesis, and diminished gas clogging associated with trapped air and biogenic gases. This pilot study illustrates the viability of trench infiltration for enhancing surface spreading of managed aquifer recharge to permeable bedrock. ?? 2010.

  2. EARTHSAWtm IN-SITU CONTAINMENT OF PITS AND TRENCHES

    Energy Technology Data Exchange (ETDEWEB)

    Ernest E. Carter, P.E.

    2002-09-20

    EarthSaw{trademark} is a proposed technology for construction of uniform high quality barriers under and around pits and trenches containing buried radioactive waste without excavating or disturbing the waste. The method works by digging a deep vertical trench around the perimeter of a site, filling that trench with high specific gravity grout sealant, and then cutting a horizontal bottom pathway at the base of the trench with a simple cable saw mechanism. The severed block of earth becomes buoyant in the grout and floats on a thick layer of grout, which then cures into an impermeable barrier. The ''Interim Report on task 1 and 2'' which is incorporated into this report as appendix A, provided theoretical derivations, field validation of formulas, a detailed quantitative engineering description of the technique, engineering drawings of the hardware, and a computer model of how the process would perform in a wide variety of soil conditions common to DOE waste burial sites. The accomplishments of task 1 and 2 are also summarized herein Task 3 work product provides a comprehensive field test plan in Appendix B and a health and safety plan in Appendix C and proposal for a field-scale demonstration of the EarthSaw barrier technology. The final report on the subcontracted stress analysis is provided in Appendix D. A copy of the unified computer model is provided as individual non-functional images of each sheet of the spreadsheet and separately as a Microsoft Excel 2000 file.

  3. Field and laboratory investigations on pavement backfilling material for micro-trenching in cold regions

    OpenAIRE

    Leila Hashemian; Mohammad Rezaei; Alireza Bayat

    2017-01-01

    Micro-trenching is an innovative utility installation method that involves creating a narrow trench to place cable or conduit in the road pavement. Compared to other installation methods, micro-trenching provides minimal disturbance to the community and surrounding environment. Despite the advantages of micro-trenching, it is not widely accepted by municipalities because of its potential to damage the existing pavement. Quality of backfilling is an important factor in long-term sustainability...

  4. Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

    1995-03-01

    In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site

  5. Geohydrologic problems at low-level radioactive waste disposal sites in the United States of America

    International Nuclear Information System (INIS)

    Fischer, J.N.; Robertson, J.B.

    1984-01-01

    Several commercial and US Department of Energy low-level radioactive waste disposal sites in the USA have not adequately contained the waste products. Studies of these sites indicate a number of causes for the problems, including water accumulation in filled trenches, breaches of trench cap integrity, erosion, high water table, hydrogeological complexity, flooding, complex leachate chemistry, and rapid radionuclide migration in groundwater. These problems can be avoided through the application of practical, comprehensive, and common sense earth-science guidelines discussed in this paper. (author)

  6. The potential for criticality following disposal of uranium at low-level waste facilities: Uranium blended with soil

    International Nuclear Information System (INIS)

    Toran, L.E.; Hopper, C.M.; Naney, M.T.

    1997-06-01

    The purpose of this study was to evaluate whether or not fissile uranium in low-level-waste (LLW) facilities can be concentrated by hydrogeochemical processes to permit nuclear criticality. A team of experts in hydrology, geology, geochemistry, soil chemistry, and criticality safety was formed to develop achievable scenarios for hydrogeochemical increases in concentration of special nuclear material (SNM), and to use these scenarios to aid in evaluating the potential for nuclear criticality. The team's approach was to perform simultaneous hydrogeochemical and nuclear criticality studies to (1) identify some achievable scenarios for uranium migration and concentration increase at LLW disposal facilities, (2) model groundwater transport and subsequent concentration increase via sorption or precipitation of uranium, and (3) evaluate the potential for nuclear criticality resulting from potential increases in uranium concentration over disposal limits. The analysis of SNM was restricted to 235 U in the present scope of work. The outcome of the work indicates that criticality is possible given established regulatory limits on SNM disposal. However, a review based on actual disposal records of an existing site operation indicates that the potential for criticality is not a concern under current burial practices

  7. The potential for criticality following disposal of uranium at low-level waste facilities: Uranium blended with soil

    Energy Technology Data Exchange (ETDEWEB)

    Toran, L.E.; Hopper, C.M.; Naney, M.T. [and others

    1997-06-01

    The purpose of this study was to evaluate whether or not fissile uranium in low-level-waste (LLW) facilities can be concentrated by hydrogeochemical processes to permit nuclear criticality. A team of experts in hydrology, geology, geochemistry, soil chemistry, and criticality safety was formed to develop achievable scenarios for hydrogeochemical increases in concentration of special nuclear material (SNM), and to use these scenarios to aid in evaluating the potential for nuclear criticality. The team`s approach was to perform simultaneous hydrogeochemical and nuclear criticality studies to (1) identify some achievable scenarios for uranium migration and concentration increase at LLW disposal facilities, (2) model groundwater transport and subsequent concentration increase via sorption or precipitation of uranium, and (3) evaluate the potential for nuclear criticality resulting from potential increases in uranium concentration over disposal limits. The analysis of SNM was restricted to {sup 235}U in the present scope of work. The outcome of the work indicates that criticality is possible given established regulatory limits on SNM disposal. However, a review based on actual disposal records of an existing site operation indicates that the potential for criticality is not a concern under current burial practices.

  8. Chemical Characteristics of Seawater and Sediment in the Yap Trench

    Science.gov (United States)

    Ding, H.; Sun, C.; Yang, G.

    2017-12-01

    In June 2016, seawater samples at sediment-seawater interface and sediment samples were collected by the he Jiaolong, China's manned submersible, at four sampling sites located in the Yap Trench. Seawater samples from different depths of the trench were also collected by CTD. Chemical parameters, including pH, alkanility, concentrations of dissolved inorganic carbon, dissolved and total organic carbon, methane, dimethylsulfoniopropionate, nutrients, carbohydrates, and amino acids were analyzed in the seawater samples. Concentrations of total organic carbon, six constant elements and nine trace elements were determined in the sediment samples. All the vertical profiles of the chemical parameters in the seawater have unique characteristics. Our resluts also showed that the carbonate compensation depth (CCD) was between 4500 m and 5000 m in the trench. The hadal sediment at 6500 m depth under the CCD line was siliceous ooze favored for the burial of orgaic carbon, attributed to accumulation of surface sediment by gravity flow. The abyssal sediment at the 4500 m depth was calcareous ooze. Various microfossils, such as discoasters and diatoms, were identified in different sediment layers of the sediment samples.Based on the ratios of Fe/Al and Ti/Al, and the correlation between different elements, the sediment in the Yap Trench were derived from biogenic, terrestrial, volcanic and autogenic sources. The ratios of Ni/Co and V/Cr showed that the deposition environment of the trench should be oxidative, arributed to inflow of the Antractic bottom oxygen-rich seawater.The high concentraiont of Ca in the sediment from the station 371-Yap-S02 below 4 cm depth indicated that there was no large-scale volcanic eruption in the research area and the volcanic materials in the sediment might orginated from the Mariana Volcanic Arc, and the Carolyn Ridge has been slowly sinking on the east side of the trench due to plate subduction. This study is the first systematic study of

  9. Ultra-low specific on-resistance SOI double-gate trench-type MOSFET

    International Nuclear Information System (INIS)

    Lei Tianfei; Luo Xiaorong; Ge Rui; Chen Xi; Wang Yuangang; Yao Guoliang; Jiang Yongheng; Zhang Bo; Li Zhaoji

    2011-01-01

    An ultra-low specific on-resistance (R on,sp ) silicon-on-insulator (SOI) double-gate trench-type MOSFET (DG trench MOSFET) is proposed. The MOSFET features double gates and an oxide trench: the oxide trench is in the drift region, one trench gate is inset in the oxide trench and one trench gate is extended into the buried oxide. Firstly, the double gates reduce R on,sp by forming dual conduction channels. Secondly, the oxide trench not only folds the drift region, but also modulates the electric field, thereby reducing device pitch and increasing the breakdown voltage (BV). ABV of 93 V and a R on,sp of 51.8 mΩ·mm 2 is obtained for a DG trench MOSFET with a 3 μm half-cell pitch. Compared with a single-gate SOI MOSFET (SG MOSFET) and a single-gate SOI MOSFET with an oxide trench (SG trench MOSFET), the R on,sp of the DG trench MOSFET decreases by 63.3% and 33.8% at the same BV, respectively. (semiconductor devices)

  10. Design and operational experience of low level radioactive waste disposal in the United Kingdom

    International Nuclear Information System (INIS)

    Grimwood, P. D.

    1997-01-01

    Low level radioactive wastes have been disposed of at the Drigg near-surface disposal site for over 30 years. These are carried out under a disposal authorization granted by the UK Environment Agency. This is augmented by a three tier comprehensive system of waste controls developed by BNFL involving wasteform specification, consignor and waste stream qualification and waste consignment verification. Until 1988 wastes were disposed of into trench facilities. However, based on a series of integrated optioneering studies, new arrangements have since been brought into operation. Central to these is a wasteform specification based principally on high force compaction of wastes, grouting within 20 m 3 steel overpack containers to essentially eliminate associated voidage and subsequent disposal in concrete lined vaults. These arrangements ensure efficient utilisation of the Drigg site capacity and a cost-effective disposal concept which meets both national and international standards. (author). 7 figs

  11. Estimation of doses to individuals from radionuclides disposed of in Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Fields, D.E.; Boegly, W.J. Jr.; Huff, D.D.

    1986-01-01

    A simple methodology has been applied to estimate maximum possible doses to individuals from exposure to radionuclides released from Solid Waste Storage Area No. 6. This is the only operating shallow-land disposal site for radioactive waste at the Oak Ridge National Laboratory. The methodology is based upon simple, conservative assumptions. A data base of radionuclides disposed of in trenches and auger holes was prepared, and several radionuclide transport and ingestion scenarios were considered. The results of these simulations demonstrate the potential for adverse health effects associated with this waste disposal area, and support the need for further calculations using more complete and realistic assumptions

  12. A survey of possible microbiological effects within shallow land disposal sites designed to accept intermediate-level radioactive wastes

    International Nuclear Information System (INIS)

    Rushbrook, P.E.

    1985-01-01

    A literature survey was conducted to assess the current knowledge on microbial activity that may occur within a shallow intermediate-level waste disposal trench. Relatively little published information exists that is directly based on intermediate radioactive wasteforms, but relevant work was identified from other scientific fields. The likely environmental conditions within a disposal trench and their influence on microbial activity are considered. Also discussed are specific microbiological effects on waste packagings, backfill materials and concrete structures. Overall, it is unlikely that there will be extensive activity within the trenches and little evidence exists to suggest microbiologically-enhanced radionuclide migration,. The quantitative effect of microbial action is not possible to ascertain from the literature, but the general impression is that it will be low. Physical or chemical degradation processes are likely to predominate over those of a microbiological nature. Areas where further research would be valuable are also recommended. (author)

  13. Caustic Recycling Pilot Unit to Separate Sodium from LLW at Hanford Site - 12279

    Energy Technology Data Exchange (ETDEWEB)

    Pendleton, Justin; Bhavaraju, Sai; Priday, George; Desai, Aditya; Duffey, Kean; Balagopal, Shekar [Ceramatec Inc., Salt Lake City, UT 84119 (United States)

    2012-07-01

    As part of the Department of Energy (DOE) sponsored Advanced Remediation Technologies initiative, a scheme was developed to combine Continuous Sludge Leaching (CSL), Near-Tank Cesium Removal (NTCR), and Caustic Recycling Unit (CRU) using Ceramatec technology, into a single system known as the Pilot Near-Tank Treatment System (PNTTS). The Cesium (Cs) decontaminated effluent from the NTCR process will be sent to the caustic recycle process for recovery of the caustic which will be reused in another cycle of caustic leaching in the CSL process. Such an integrated mobile technology demonstration will give DOE the option to insert this process for sodium management at various sites in Hanford, and will minimize the addition of further sodium into the waste tanks. This allows for recycling of the caustic used to remove aluminum during sludge washing as a pretreatment step in the vitrification of radioactive waste which will decrease the Low Level Waste (LLW) volume by as much as 39%. The CRU pilot process was designed to recycle sodium in the form of pure sodium hydroxide. The basis for the design of the 1/4 scale pilot caustic recycling unit was to demonstrate the efficient operation of a larger scale system to recycle caustic from the NTCR effluent stream from the Parsons process. The CRU was designed to process 0.28 liter/minute of NTCR effluent, and generate 10 M concentration of 'usable' sodium hydroxide. The proposed process operates at 40 deg. C to provide additional aluminum solubility and then recover the sodium hydroxide to the point where the aluminum is saturated at 40 deg. C. A system was developed to safely separate and vent the gases generated during operation of the CRU with the production of 10 M sodium hydroxide. Caustic was produced at a rate between 1.9 to 9.3 kg/hr. The CRU was located inside an ISO container to allow for moving of the unit close to tank locations to process the LLW stream. Actual tests were conducted with the NTCR effluent

  14. In situ grouting of low-level burial trenches with a cement-based grout

    International Nuclear Information System (INIS)

    Francis, C.W.; Spalding, B.P.

    1991-01-01

    A restoration technology being evaluated for use in the closure of one of the low-level radwaste burial grounds at Oak Ridge National Laboratory (ORNL) is trench stabilization using a cement-based grout. To demonstrate the applicability and effectiveness of this technology, two interconnecting trenches in Solid Waste Storage Area 6 (SWSA 6) were selected as candidates for in situ grouting with a particulate grout. The primary objective was to demonstrate the increased trench stability and decreased potential for leachate migration following in situ injection of a particulate grout into the waste trenches. Stability against trench subsidence is a critical issue. After grouting, soil-penetration tests disclosed that stability had been improved greatly. For example, refusal (defined as > 100 blows to penetrate 1 ft) was encountered in 17 of the 22 tests conducted within the trench area. Mean refusal depths for the two trenches were 3.5 and 2.6 m. Stability of the trench was significantly better than pregrout conditions, and at depths > 2.4 m, the stability was very near that observed in the native soil formation outside the trench. Tests within the trench showed lower stability within this range probably because of the presence of intermediate-sized soil voids (formed during backfilling) that were too small to be penetrated and filled by the conventional cement grout formulation. Hydraulic conductivity within the trench remained very high (>0.1 cm/s) and significantly greater than outside the trench. Postgrout air pressurization tests also revealed a large degree of intervoid linkage within and between the two trenches. To effectively reduce hydraulic conductivity and to develop stability within the upper level of the trench, injection of a clay/microfine cement grout into the upper level of the grouted trench is planned

  15. Source term development for tritium at the Sheffield disposal site

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Barletta, R.E.; Smalley, J.F.; Kempf, C.R.; Davis, R.E.

    1984-01-01

    The Sheffield low-level radioactive waste disposal site, which ceased operation in 1978, has been the focus of modeling efforts by the NRC for the purpose of predicting long-term site behavior. To provide the NRC with the information required for its modeling effort, a study to define the source term for tritium in eight trenches at the Sheffield site has been undertaken. Tritium is of special interest since significant concentrations of the isotope have been found in groundwater samples taken at the site and at locations outside the site boundary. Previous estimates of tritium site inventory at Sheffield are in wide disagreement. In this study, the tritium inventory in the eight trenches was estimated by reviewing the radioactive shipping records (RSRs) for waste buried in these trenches. It has been found that the tritium shipped for burial at the site was probably higher than previously estimated. In the eight trenches surveyed, which amount to roughly one half the total volume and activity buried at Sheffield, approximately 2350 Ci of tritium from non-fuel cycle sources were identified. The review of RSRs also formed the basis for obtaining waste package descriptions and for contacting large waste generators to obtain more detailed information regarding these waste packages. As a result of this review and the selected generator contacts, the non-fuel cycle tritium waste was categorized. The tritium releases from each of these waste categories were modeled. The results of this modeling effort are presented for each of the eight trenches selected. 3 references, 2 figures

  16. Subproject L-045H 300 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    1991-06-01

    The study focuses on the project schedule for Project L-045H, 300 Area Treated Effluent Disposal Facility. The 300 Area Treated Effluent Disposal Facility is a Department of Energy subproject of the Hanford Environmental Compliance Project. The study scope is limited to validation of the project schedule only. The primary purpose of the study is to find ways and means to accelerate the completion of the project, thereby hastening environmental compliance of the 300 Area of the Hanford site. The ''300 Area'' has been utilized extensively as a laboratory area, with a diverse array of laboratory facilities installed and operational. The 300 Area Process Sewer, located in the 300 Area on the Hanford Site, collects waste water from approximately 62 sources. This waste water is discharged into two 1500 feet long percolation trenches. Current environmental statutes and policies dictate that this practice be discontinued at the earliest possible date in favor of treatment and disposal practices that satisfy applicable regulations

  17. Deep geological radioactive waste disposal in Germany: Lessons learned and future perspectives

    International Nuclear Information System (INIS)

    Lempert, J.P.; Biurrun, E.

    2001-01-01

    As far back as in the seventies a fully developed, integrated concept for closing the nuclear fuel cycle was agreed upon in Germany between the Federal Government of that time and the electricity utilities. In the twenty years elapsed since then it was further developed as necessary to permanently fit the state of the art of science and technology. For management of spent fuel, the concept currently considers two equivalent alternatives: direct disposal of the spent fuel or reprocessing the fuel and recycling in thermal reactors. Interim storage of spent fuel and vitrified high level waste (HLW) to allow for decay heat generation to decrease to a convenient level is carried out in centralized installations. Radioactive waste disposal in pursuant to German regulations for all kinds of waste is to be carried out exclusively in deep geologic repositories. At present in the country, there are three centralized interim storage facilities for spent fuel, one of them can also accept vitrified HLW. Several facilities are in use for low level waste (LLW) and intermediate level waste (ILW) storage at power plants and other locations. A pilot conditioning facility for encapsulating spent fuel and/or HLW for final disposal is now ready to be commissioned. Substantial progress has been achieved in realization of HLW disposal, including demonstration of all the needed technology and fabrication of a significant part of the equipment. With regard to deep geologic disposal of LLW and ILW, Germany has worldwide unique experience. The Asse salt mine was used as an experimental repository for some 10 years in the late sixties and seventies. After serving since then as an underground research facility, it is now being backfilled and sealed. The Morsleben deep geologic repository was in operation for more than 25 years until September 1998. (author)

  18. Use of engineered soils and other site modifications for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-08-01

    The U.S. Nuclear Regulatory Commission requires that low-level radioactive waste (LLW) disposal facilities be designed to minimize contact between waste and infiltrating water through the use of site design features. The purpose of this investigation is to identify engineered barriers and evaluate their ability to enhance the long-term performance of an LLW disposal facility. Previously used barriers such as concrete overpacks, vaults, backfill, and engineered soil covers, are evaluated as well as state-of-the-art barriers, including an engineered sorptive soil layer underlying a facility and an advanced design soil cover incorporating a double-capillary layer. The purpose of this investigation is also to provide information in incorporating or excluding specific engineered barriers as part of new disposal facility designs. Evaluations are performed using performance assessment modeling techniques. A generic reference disposal facility design is used as a baseline for comparing the improvements in long-term performance offered by designs incorporating engineered barriers in generic and humid environments. These evaluations simulate water infiltration through the facility, waste leaching, radionuclide transport through the facility, and decay and ingrowth. They also calculate a maximum (peak annual) dose for each disposal system design. A relative dose reduction factor is calculated for each design evaluated. The results of this investigation are presented for concrete overpacks, concrete vaults, sorptive backfill, sorptive engineered soil underlying the facility, and sloped engineered soil covers using a single-capillary barrier and a double-capillary barrier. Designs using combinations of barriers are also evaluated. These designs include a vault plus overpacks, sorptive backfill plus overpacks, and overpack with vault plus sorptive backfill, underlying sorptive soil, and engineered soil cover

  19. Geochemical investigations at Maxey Flats radioactive waste disposal site

    International Nuclear Information System (INIS)

    Dayal, R.; Pietrzak, R.F.; Clinton, J.

    1984-09-01

    As part of the NRC efforts to develop a data base on source term characteristics for low level wastes, Brookhaven National Laboratory (BNL) has produced and analyzed a large amount of data on trench leachate chemistry at existing shallow land burial sites. In this report, we present the results of our investigations at the Maxey Flats, Kentucky disposal site. In particular, data on trench leachate chemistry are reviewed and discussed in terms of mechanisms and processes controlling the composition of trench solutes. Particular emphasis is placed on identifying both intra- and extra-trench factors and processes contributing to source term characteristics, modifications, and uncertainties. BNL research on the Maxey Flats disposal site has provided important information not only on the source term characteristics and the factors contributing to uncertainties in the source term but also some generic insights into such geochemical processes and controls as the mechanics of leachate formation, microbial degradation and development of anoxia, organic complexation and radionuclide mobility, redox inversion and modification of the source term, solubility constraints on solute chemistry, mineral authigenesis, corrosion products and radionuclide scavenging, and the role of organic complexants in geochemical partitioning of radionuclides. A knowledge of such processes and controls affecting the geochemical cycling of radionuclides as well as an understanding of the important factors that contribute to variability and uncertainties in the source term is essential for evaluating the performance of waste package and the site, making valid predictions of release for dose calculations, and for planning site performance monitoring as well as remedial actions. 43 references, 47 figures, 30 tables

  20. Chemical mechanisms of /sup 60/Co transport in ground water from intermediate-level liquid waste trench 7: progress report for period ending June 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Means, J.L.; Crerar, D.A.; Duguid, J.O.

    1976-11-01

    A seep approximately 50 meters east of trench 7 within the ORNL restricted area contains /sup 60/Co in concentrations of 10/sup 4/ to 10/sup 6/ dpm/g in the soil and 10/sup 3/ dpm/ml in the water. Traces of /sup 125/Sb and various transuranics have also been detected in the soil. However, because the volume of water discharge from the seep is small, the total radionuclide contribution from the trench 7 area to White Oak Creek and the Clinch River is insignificant. The /sup 60/Co is transported in the ground-water from the trench to the seep as organic complexes and is absorbed by manganese oxides and to a lesser extent by iron sesquioxides in the shale and soil. In the absence of these organic complexing agents, /sup 60/Co mobilization would be negligible because the sediment absorption capacity for inorganic forms of /sup 60/Co is extremely high. The primary objective of this study has been to investigate /sup 60/Co transport and absorption mechanisms as observed in the study area. Because the organic complexing characteristics of transition metals and transuranics are similar, the mechanisms of /sup 60/Co transport determined in this study may also apply to plutonium and other alpha-emitters. Also the experimental and analytical methods employed in this study apply to the identification of other migrating radionuclide complexes from other disposal trenches and pits at ORNL. The increased knowledge of transport and adsorption mechanisms will provide insight into methods of controlling the movement of radionuclides from these and future disposal areas.