WorldWideScience

Sample records for llw disposal sites

  1. Guidance for closure of existing DOE LLW disposal sites

    International Nuclear Information System (INIS)

    Blanchfield, L.

    1987-01-01

    During FY 1986, a closure guidance document was developed. The purpose of this document is to provide guidance in support of DOE Order 5820.2 to site operating contractors for the stabilization and closure of existing low-level waste (LLW) shallow land disposal sites at US Department of Energy (DOE) facilities. Guidance is provided to aid operators in placing existing LLW sites in a closed conditions, i.e., a condition in which a nonoperational site meets postclosure performance requirements and can be shown, within a high degree of confidence, to perform as anticipated in the future, under the most cost-effective maintenance approach. Guidance is based on the philosophy that closure should be planned and performed using a systems approach. Plans for FY 1987 call for revision of the document to incorporate more information on closure of LLW sites also containing radioactive mixed waste and/or transuranic waste. 4 references, 3 figures, 2 tables

  2. Lessons learned from international siting experiences of LLW Disposal facilities

    International Nuclear Information System (INIS)

    McCabe, G.H.

    1990-01-01

    This paper reports that the United States can gain insight into successfully siting low-level radioactive waste (LLW) disposal facilities by studying the process in other nations. Siting experiences in France and Sweden are compared to experiences in the United States. Three factors appear to making siting of LLW disposal facilities easier in France and Sweden than in the United States. First, the level of public trust in the government and the entities responsible for siting, developing, and operating a LLW disposal facility is much greater in France and Sweden than in the United States. Second, France and Sweden are much more dependent on nuclear power than is the United States. Third, French and Swedish citizens do not have the same access to the siting process (i.e., legal means to intervene) as do U.S. citizens. To compensate for these three factors, public officials responsible for siting a facility may need to better listen to the concerns of public interest groups and citizen advisory committees and amend their siting process accordingly and better share power and control with the public. If these two techniques are implemented earnestly by the states, siting efforts may be increasingly more successful in the United States

  3. California LLW disposal site development update: Ahead of milestone schedule

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.

    1987-01-01

    US Ecology has been designated by the State of California to locate, develop and operate a low-level radioactive waste disposal facility. In early 1986, the firm identified eighteen desert basins in southeastern California for siting consideration. Three candidate sites were selected for detailed field characterization work in February, 1987. A preferred site for licensing purposes will be identified in early 1988. California is currently ahead of the siting milestone schedule mandated by the Low-Level Radioactive Waste Policy Amendments Act. It is likely that a license application will be filed before the 1990 milestone date. This paper describes the process undertaken by US Ecology to identify three candidates sites for characterization, and the public involvement program supporting this decision. Future activities leading to final site development are also described

  4. Northwest disposal site for LLW and ILW in China radioactive impact assessment

    International Nuclear Information System (INIS)

    Wei Kuizi; He Chunying; Lu Baozhen; Li Tingjun

    1993-01-01

    This paper describes the studies and main conclusions in site selection, design, and radioactive impact assessment of the Northwest Disposal Site of China for intermediate- and low-level radioactive wastes. At the end of the paper, further works are proposed

  5. Approaches to LLW disposal site selection and current progress of host states

    International Nuclear Information System (INIS)

    Walsh, J.J.; Kerr, T.A.

    1990-11-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 and under the guidance of 10 CFR 61, States have begun entering into compacts to establish and operate regional disposal facilities for low-level radioactive waste. The progress a state makes in implementing a process to identify a specific location for a disposal site is one indication of the level of a state's commitment to meeting its responsibilities under Federal law and interstate compact agreements. During the past few years, several States have been engaged in site selection processes. The purpose of this report is to summarize the site selection approaches of some of the Host States (California, Michigan, Nebraska, New York, North Carolina, Texas, and Illinois), and their progress to date. An additional purpose of the report is to discern whether the Host States's site selection processes were heavily influenced by any common factors. One factor each state held in common was that political and public processes exerted a powerful influence on the site selection process at virtually every stage. 1 ref

  6. Review on waste inventory, waste characteristics and candidate site for LLW disposal in Thailand

    International Nuclear Information System (INIS)

    Yamkate, P.; Sriyotha, P.; Punnachaiya, M.; Danladkaew, K.

    1997-01-01

    It is a worldwide practice that radioactive waste has to be kept under control to be ensured of low potential impact on man and his environment. In Thailand, the OAEP is responsible for all radioactive waste management activities, both operation and the competent authority. The radioactive waste in Thailand consists of low level wastes from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. A plan for central disposal site has been set up. The near surface disposal method is chosen for this aspect because of its simple, inexpensive and adequate safe and very well know process. 8 refs., 6 tabs

  7. LLW disposal, 1996 and beyond, an industry perspective

    International Nuclear Information System (INIS)

    Genoa, P.H.

    1996-01-01

    In this article the author reviews what has been done in the past 15 years in terms of opening sites for disposal of low-level radioactive wastes, and what seems to be on the horizon. He reviews process timelines, timelines from regional efforts, and timelines for LLW facilities. The author also looks at what types of changes have been made in the generation, control, and volume of LLW. He examines the pressures which have driven these changes, both from society and from cost control economics. The author tries to look at what government, waste generators, and the waste management industry should do to make progress toward adequate solutions to address the LLW disposal problems

  8. How a developing country is facing LLW disposal problem

    International Nuclear Information System (INIS)

    Huang, C.C.; Shao, Y.T.; Tsai, C.M.

    1993-01-01

    Taiwan is a small island which measures about 36,000 square kilometers with over 70% mountainous area. Today over 90% of low-level radioactive waste (LLW) is produced from six nuclear power units operated by the Taiwan Power Company (Taipower or TPC). The rest of the country's LLW is produced from medical, agricultural, industrial, educational and research programs. Due to the fact that over 90% of Taiwan's LLW is produced by Taipower, Taipower was designated by the Government to dispose of LLW for entire country. This paper will focus on the planning and implementation of the first phase. Through area screening and potential site evaluation, candidate sites will be selected based on currently available information and sites investigation. At the same time, the disposal methods will be evaluated in terms of safety, cost, and Taiwan's generic conditions of climate, geology, and topography. The conceptual design of the disposal method(s) will then be developed. Also, during site investigation, preliminary designs will be made

  9. Development of LLW and VLLW disposal business cost estimation system

    International Nuclear Information System (INIS)

    Koibuchi, Hiroko; Ishiguro, Hideharu; Matsuda, Kenji

    2004-01-01

    In order to undertake the LLW and VLLW disposal business, various examinations are carried out in RANDEC. Since it is important in undertaking this business to secure funds, a disposal cost must be calculated by way of trial. However, at present, there are many unknown factors such as the amount of wastes, a disposal schedule, the location of a disposal site, and so on, and the cost cannot be determined. Meanwhile, the cost depends on complicated relations among these factors. Then, a 'LLW and VLLW disposal business cost estimation system' has been developed to calculate the disposal cost easily. This system can calculate an annual balance of payments by using a construction and operation cost of disposal facilities, considering economic parameters of tax, inflation rate, interest rate and so on. And the system can calculate internal reserves to assign to next-stage upkeep of the disposal facilities after the disposal operation. A model of disposal site was designed based on assumption of some preconditions and a study was carried out to make a trial calculation by using the system. Moreover, it will be required to reduce construction cost by rationalizing the facility and to make flat an annual business spending by examining the business schedule. (author)

  10. Economic analysis of alternative LLW disposal methods

    International Nuclear Information System (INIS)

    Foutes, C.E.

    1987-01-01

    The Environmental Protection Agency (EPA) has evaluated the costs and benefits of alternative disposal technologies as part of its program to develop generally applicable environmental standards for the land disposal of low-level radioactive waste (LLW). Costs, population health effects and Critical Population Group (CPG) exposures resulting from alternative waste treatment and disposal methods were developed and input into the analysis. The cost-effectiveness analysis took into account a number of waste streams, hydrogeologic and climatic region settings, and waste treatment and disposal methods. Total costs of each level of a standard included costs for packaging, processing, transportation, and burial of waste. Benefits are defined in terms of reductions in the general population health risk (expected fatal cancers and genetic effects) evaluated over 10,000 years. A cost-effectiveness ratio, was calculated for each alternative standard. This paper describes the alternatives considered and preliminary results of the cost-effectiveness analysis

  11. The cost of LLW disposal - Is it sound economics?

    International Nuclear Information System (INIS)

    Stelluto, Janis D.

    1992-01-01

    Low-level radioactive waste (LLW) management is a growth industry. Since 1980, when the LLW Policy Act was passed, regional and state LLW bureaucracies have grown, and LLW services and consulting businesses have prospered. Most states and federal agencies have LLW programs with increased regulation of LLW management. Costs of all these programs have soared as facilities for LLW disposal are proposed in sixteen, or more, locations in the country. LLW management costs have also increased as licensees implement comprehensive programs for volume reduction and waste form stabilization. Yet, the total cost of LLW management service is borne by nearly the same universe of payers as in 1980: taxpayers and radioactive materials licensees. Those costs are, in turn, passed on through taxes and consumer costs. Ultimately, everybody pays. Despite this investment, the LLW situation is adrift. New facilities have not been built, and existing facilities are closing or limiting access. LLW management has not advanced to a respected field of engineering and science. Nor does it include exceptional benefit and opportunity to host communities. A new focus is needed to allow an economically sound solution to emerge, one where the supply of LLW management and disposal fits the demand for service. (author)

  12. The Evolution of Low-Level Radioactive Waste (LLW) Disposal Practices at the Savannah River Site Coupled with Vigorous Stakeholder Interaction

    International Nuclear Information System (INIS)

    Goldston, W. T.; Wilhite, E. L.; Cook, J. R.; Sauls, V. W.

    2002-01-01

    Low-level radioactive waste (LLW) disposal practices at SRS evolved from trench disposal with little long-term performance basis to disposal in robust concrete vaults, again without modeling long-term performance. Now, based on an assessment of long-term performance of various waste forms and methods of disposal, the LLW disposal program allows for a ''smorgasbord'' of various disposal techniques and waste forms, all modeled to ensure long-term performance is understood. New disposal techniques include components-in-grout, compaction/volume reduction prior to disposal, and trench disposal of extremely low activity waste. Additionally, factoring partition coefficient (Kd) measurements based on waste forms has been factored into performance models. This paper will trace the development of the different disposal methods, and the extensive public communications effort that resulted in endorsement of the changes by the SRS Citizens Advisory Board

  13. Economic analysis of alternative LLW disposal methods

    International Nuclear Information System (INIS)

    Foutes, C.E.; Queenan, C.J. III

    1987-01-01

    The Environmental Protection Agency (EPA) has evaluated the costs and benefits of alternative disposal technologies as part of its program to develop generally applicable environmental standards for the land disposal of low-level radioactive waste (LLW). Costs, population health effects and Critical Population Group (CPG) exposures resulting from alternative waste treatment and disposal methods were evaluated both in absolute terms and also relative to a base case (current practice). Incremental costs of the standard included costs for packaging, processing, transportation, and burial of waste. Benefits are defined in terms of reductions in the general population health risk (expected fatal cancers and genetic effects) evaluated over 10,000 years. A cost-effectiveness ratio, defined as the incremental cost per avoided health effect, was calculated for each alternative standard. The cost-effectiveness analysis took into account a number of waste streams, hydrogeologic and climatic region settings, and waste treatment and disposal methods. This paper describes the alternatives considered and preliminary results of the cost-effectiveness analysis. 15 references, 7 figures, 3 tables

  14. Control of water infiltration into near surface LLW disposal units. Progress report on field experiments at a humid region site, Beltsville, Maryland: Volume 7

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1994-12-01

    The project objective is to assess means for controlling waste infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large scale lysimeters (70 ft x 45 ft x 10 ft) at Beltsville, MD and results of the assessment are applicable to disposal of LLW, uranium mill tailings, hazardous waste, and sanitary landfills. Three concepts are under investigation: (1) resistive layer barrier, (2) conductive layer barrier, and bioengineering water management. The resistive layer barrier consists of compacted earth (clay). The conductive layer barrier is a special case of the capillary barrier and it requires a flow layer (e.g. fine sandy loam) over a capillary break. As long as unsaturated conditions are maintained water is conducted by the flow layer to below the waste. This barrier is most efficient at low flow rates and is thus best placed below a resistive layer barrier. Such a combination of the resistive layer over the conductive layer barrier promises to be highly effective provided there is no appreciable subsidence. Bioengineering water management is a surface cover that is designed to accommodate subsidence. It consists of impermeable panels which enhance run-off and limit infiltration. Vegetation is planted in narrow openings between panels to transpire water from below the panels. This system has successfully dewatered two lysimeters thus demonstrating that this procedure could be used for remedial action (drying out) existing water-logged disposal sites at low cost

  15. Trends of radioactive waste management policy and disposal of LLW/ILW in the UK

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    2003-01-01

    In 1997, the UK program for the deep disposal of radioactive waste was stopped with the refusal by the Secretary of State for the Environment to allow Nuclear Industry Radioactive Waste Executive, Ltd. (Nirex) to go ahead with its plans for an underground Rock Characterization Facility (RCF) at Sellafield, seen as the precursor of an underground repository for LLW/ILW. Department of Environment, Food and Rural Affairs (DEFRA) and the Developed Administrations published a white paper 'Managing Radioactive Waste Safety' Proposal for developing a policy for managing solid radioactive waste in the UK on 12 September 2001. The paper set out five-stage program of action for reaching decisions until 2007. It suggests their view can be sought via opinion polls, the Internet, workshops, citizens, juries, consensus conferences, stakeholder, local authority and community groups and research panels. With the exception of a disposal facility associated with the operation of the Dounreay site on the north coast of Scotland, essentially all LLW in the UK is disposed of at the Drigg site, near Sellafield. The site has been in operation since 1959. Until 1988, disposals were solely in trenches, cut into the glacial tills underlying the site. In 1988, an engineered concrete vault was brought into operation and is currently in use. Drigg only has a finite capacity in the currently area and may be full by about 2050, hence new arrangements will have to examine. This report describes the trends of radioactive waste management policy and disposal of LLW/ILW in the UK. These include: NDA(Nuclear Decommissioning Authority) organization plan, Feb. 2003; Encapsulation of LLW/ILW and safe store for ILW; Summary of LLW repository at the Drigg site; Nirex concept for underground storage/disposal of LLW/ILW. This information and new approach of the safe management of radioactive waste in the UK will prove helpful to the planning for future management and disposal of LLW in Japan. (author)

  16. Developing a LLW disposal facility in California

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.; Hanrahan, T.P.

    1988-01-01

    US Ecology has been designated by the State of California to site and operate a low-level radioactive waste disposal facility. The firm identified three sites for detailed characterization work in February, 1987. Ecological and archaeological studies and related environmental assessments were undertaken to obtain land use permits from the Bureau of Land Management, which holds title to the sites. Geophysics investigations, exploratory borings, well drilling and weather station installation followed. Local Committees were established for each site to assist US Ecology in evaluating socio-economic impacts, and Native Americans were consulted regarding cultural resources. The project's Citizens Advisory Committee assisted in evaluating the three candidate sites. US Ecology systematically integrated citizen involvement into the technical studies leading to selection of the two site finalists. This approach furthered two objectives. Community leaders and the public received accurate information on the nature of low-level radioactive waste and the environmental conditions appropriate for its disposal

  17. Modeling the Hydrogeochemical Transport of Radionuclides through Engineered Barriers System in the Proposed LLW Disposal Site of Taiwan - 12082

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen-Sheng [Hydrotech Research Institute, National Taiwan University, Taipei, Taiwan (China); Liu, Chen-Wuing; Tsao, Jui-Hsuan [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan (China); Li, Ming-Hsu [Institute of Hydrological and Oceanic Sciences, National Central University, Jhongli, Taiwan (China)

    2012-07-01

    A proposed site for final disposal of low-level radioactive waste located in Daren Township of Taitung County along the southeastern coast has been on the selected list in Taiwan. The geology of the Daren site consists of argillite and meta-sedimentary rocks. A mined cavern design with a tunnel system of 500 m below the surface is proposed. Concrete is used as the main confinement material for the engineered barrier. To investigate the hydrogeochemical transport of radionuclides through engineered barriers system, HYDROGEOCHEM5.0 model was applied to simulate the complex chemical interactions among radionuclides, the cement minerals of the concrete, groundwater flow, and transport in the proposed site. The simulation results showed that the engineered barriers system with the side ditch efficiently drained the ground water and lowered the concentration of the concrete degradation induced species (e.g., hydrogen ion, sulfate, and chloride). The velocity of groundwater observed at side ditch gradually decreased with time due to the fouling of pore space by the mineral formation of ettringite and thaumasite. The short half-life of Co-60, Sr-90 and Cs-137 significantly reduced the concentrations, whereas the long half-life of I-129(1.57x10{sup 7} years) and Am-241(432 years) remain stable concentrations at the interface of waste canister and concrete barrier after 300 years. The mineral saturation index (SI) was much less than zero due to the low aqueous concentration of radionuclide, so that the precipitation formation of Co-60, Sr-90, I-129, Cs-137 and Am-241 related minerals were not found. The effect of adsorption/desorption (i.e., surface complexation model) could be a crucial geochemical mechanism for the modeling of liquid-solid phase behavior of radionuclide in geochemically dynamic environments. Moreover, the development of advanced numerical models that are coupled with hydrogeochemical transport and dose assessment of radionuclide is required in the future

  18. Models and criteria for LLW disposal performance

    International Nuclear Information System (INIS)

    Smith, C.F.; Cohen, J.J.

    1980-12-01

    A primary objective of the Low Level Waste (LLW) Management Program is to assure that public health is protected. Predictive modeling, to some extent, will play a role in meeting this objective. This paper considers the requirements and limitations of predictive modeling in providing useful inputs to waste mangement decision making. In addition, criteria development needs and the relation between criteria and models are discussed

  19. Models and criteria for LLW disposal performance

    International Nuclear Information System (INIS)

    Smith, C.F.; Cohen, J.J.

    1980-01-01

    A primary objective of the Low Level Waste (LLW) Management Program is to assure that public health is protected. Predictive modeling, to some extent, will play a role in meeting this objective. This paper considers the requirements and limitations of predictive modeling in providing useful inputs to waste management decision making. In addition, criteria development needs and the relation between criteria and models are discussed

  20. Managing commercial low-level radioactive waste beyond 1992: Transportation planning for a LLW disposal facility

    International Nuclear Information System (INIS)

    Quinn, G.J.

    1992-01-01

    This technical bulletin presents information on the many activities and issues related to transportation of low-level radioactive waste (LLW) to allow interested States to investigate further those subjects for which proactive preparation will facilitate the development and operation of a LLW disposal facility. The activities related to transportation for a LLW disposal facility are discussed under the following headings: safety; legislation, regulations, and implementation guidance; operations-related transport (LLW and non-LLW traffic); construction traffic; economics; and public involvement

  1. Control of water infiltration into near surface LLW disposal units

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1992-10-01

    The project objective is to assess means for controlling waste infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large scale lysimeters (70inch x 45inch x lOinch) at Beltsville, MD and results of the assessment are applicable to disposal of LLW, uranium mill tailings, hazardous waste, and sanitary landfills. Three concepts are under investigation: (1) resistive layer barrier, (2) conductive layer barrier, and bioengineering water management. The resistive layer barrier consists of compacted earth (clay). The conductive layer barrier is a special case of the capillary barrier and it requires a flow layer (e.g. fine sandy loam) over a capillary break. As long as unsaturated conditions am maintained water is conducted by the flow layer to below the waste. This barrier is most efficient at low flow rates and is thus best placed below a resistive layer barrier. Such a combination of the resistive layer over the conductive layer barrier promises to be highly effective provided there is no appreciable subsidence. Bioengineering water management is a surface cover that is designed to accommodate subsidence. It consists of impermeable panels which enhance run-off and limit infiltration. Vegetation is planted in narrow openings between panels to transpire water from below the panels. TWs system has successfully dewatered two lysimeters thus demonstrating that this procedure could be used for remedial action (''drying out'') existing water-logged disposal sites at low cost

  2. Economy may be harmed by lack of LLW disposal

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A study released by Organizations United for Responsible Low-Level Radioactive Waste Solutions warns that the substantial benefits of using radioactive materials are threatened by the lack of a low-level waste (LLW) disposal facility. The main point of the study is the threat to the American economy posed by insufficient facilities for disposal of the 1.7 billion ft 3 of LLW produced by the use of radioactive materials every year only 34.8 percent of which comes from nuclear power plants. open-quotes Thirty years of experience have provided the technical knowledge to design waste disposal facilities that protect the public and environment. But an impending lack of adequate disposal facilities jeopardizes our continued use of radioactive materials,close quotes according to the study

  3. Control of water infiltration into near surface LLW disposal units. Progress report on field experiments at a humid region site, Beltsville, Maryland: Volume 8

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.

    1995-04-01

    This study's objective is to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters 21.34 m x 13.72 m x 3.05 m (75 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration are being investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g., clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover, and remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier or, perhaps even better, by a resistive layer barrier/conductive layer barrier system. The latter system would then give long-term effective protection against water entry into waste without institutional care

  4. Control of water infiltration into near surface LLW disposal units: Progress report on field experiments at a humid region site, Beltsville, Maryland

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.

    1996-08-01

    This study's objective is to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters 21.34 m x 13.72 m x 3.05 m (70 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration are being investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g., clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover, and remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier or, perhaps even better, by a resistive layer barrier/conductive layer barrier system. The latter system would then give long-term effective protection against water entry into waste without institutional care

  5. Control of water infiltration into near surface LLW disposal units-progress report on field experiments at a humid region site, Beltsville, Maryland

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ridky, R.W.; Schulz, R.K.

    1994-01-01

    The study's objective is to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters (75'x45'x10') at Beltsville, MD, and results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration are being investigated. They are: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover. Remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier, or perhaps even better, a resistive layer barrier/conductive layer barrier system. This latter system would then give long-term effective protection against water entry into waste and without institutional care

  6. Generation and release of radioactive gases in LLW disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yim, M.S. [Harvard School Public Health, Boston, MA (United States); Simonson, S.A. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-02-01

    The atmospheric release of radioactive gases from a generic engineered LLW disposal facility and its radiological impacts were examined. To quantify the generation of radioactive gases, detailed characterization of source inventory for carbon-14, tritium, iodine-129, krypton-85, and radon-222, was performed in terms of their activity concentrations; their distribution within different waste classes, waste forms and containers; and their subsequent availability for release in volatile or gaseous form. The generation of gases was investigated for the processes of microbial activity, radiolysis, and corrosion of waste containers and metallic components in wastes. The release of radionuclides within these gases to the atmosphere was analyzed under the influence of atmospheric pressure changes.

  7. Control of water infiltration into near surface LLW disposal units - Progress report on field experiments at a humid region site, Beltsville, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    O' Donnell, Edward [U.S. Nuclear Regulatory Commission, Washington, DC (United States); Ridky, Robert W [University of Maryland, College Park, MD (United States); Schulz, Robert K [University of California, Berkeley, CA (United States)

    1992-07-01

    The study's objective is to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters (75x45x10') at Beltsville, MD, and results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration are being investigated. They are: 1) resistive layer barrier, 2) conductive layer barrier, and 3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g., clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover. Remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier, or perhaps even better, a resistive layer barrier/conductive layer barrier system. This latter system would then give long-term effective protection against water entry into waste and without institutional care. As mentioned in the preceding paragraph, a bioengineering management cover might well be the cover of choice during tho active subsidence phase of a waste disposal unit. Some maintenance is required during that period. Final

  8. Control of water infiltration into near surface LLW disposal units - Progress report on field experiments at a humid region site, Beltsville, Maryland

    International Nuclear Information System (INIS)

    O'Donnell, Edward; Ridky, Robert W.; Schulz, Robert K.

    1992-01-01

    The study's objective is to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters (75x45x10') at Beltsville, MD, and results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration are being investigated. They are: 1) resistive layer barrier, 2) conductive layer barrier, and 3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g., clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover. Remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier, or perhaps even better, a resistive layer barrier/conductive layer barrier system. This latter system would then give long-term effective protection against water entry into waste and without institutional care. As mentioned in the preceding paragraph, a bioengineering management cover might well be the cover of choice during tho active subsidence phase of a waste disposal unit. Some maintenance is required during that period. Final

  9. Final Design Report for the RH LLW Disposal Facility (RDF) Project, Revision 3

    International Nuclear Information System (INIS)

    Austad, Stephanie Lee

    2015-01-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  10. Updated Strategic Assessment of the U.S. NRC Low-Level Radioactive Waste (LLW) Program and the new WCS Commercial Disposal Facility for LLW

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, David S.; Kim, Chang-Lak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-05-15

    The purpose of this paper is to review the updated NRC low level radioactive waste regulatory strategy and also present an update on a significant change in the LLW disposal landscape in the U.S., the opening of a new commercial disposal facility, the Texas Compact Waste Facility (CWF) in Andrews, Texas. Operational since spring of 2012, the CWF is owned and licensed by the state of Texas and operated by Waste Control Specialists LLC (WCS). The WCS facility in western Andrews County is the only commercial facility in the United States licensed to dispose of Class A, B and C LLW in the U.S. in the past 40 years. Based on the observation that other suitable sites have been identified such as the Clive, Utah site that meet (almost) all of these criteria it would appear that the first and last factors in our list are the most problematic and it will require a change in the public acceptance and the political posture of states to help solve the national issue of safe and cost-effective LLW disposal.

  11. LLW disposal wasteform preparation in the UK: the role of high force compaction

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L. F.; Fearnley, I. G. [British Nuclear Fuels Ltd., Sellafield (United Kingdom)

    1991-07-01

    British Nuclear Fuels plc (BNFL) owns and operates the principal UK solid low level radioactive waste (LLW) disposal site. The site is located at Drigg in West Cumbria some 6 km to the south east of BNFL's Sellafield reprocessing complex. Sellafield is the major UK generator of LLW, accounting for about 85% of estimated future arisings of raw (untreated, unpackaged) waste. Non-Sellafield consignors to the Drigg site include other BNFL production establishments, nuclear power stations, sites of UKAEA, Ministry of Defence facilities, hospitals, universities, radioisotope production sites and various other industrial organisations. In September 1987, BNFL announced a major upgrade of operations at the Drigg site aimed at improving management practices, the efficiency of space utilisation and enhancing the visual impact of disposal operations. During 1989 a review of plans for compaction and containerisation of Sellafield waste identified that residual voidage in ISO freight containers could be significant even after the introduction of compaction. Subsequent studies which examined a range of compaction and packaging options concluded that the preferred scheme centred on the use of high force compaction (HFC) of compactable waste, and grouting to take up readily accessible voidage in the wasteform. The paper describes the emergence of high force compaction as the preferred scheme for wasteform preparation and subsequent benefits against the background of the overall development of Low Level Waste disposal operations at Drigg.

  12. LLW disposal wasteform preparation in the UK: the role of high force compaction

    International Nuclear Information System (INIS)

    Johnson, L. F.; Fearnley, I. G.

    1991-01-01

    British Nuclear Fuels plc (BNFL) owns and operates the principal UK solid low level radioactive waste (LLW) disposal site. The site is located at Drigg in West Cumbria some 6 km to the south east of BNFL's Sellafield reprocessing complex. Sellafield is the major UK generator of LLW, accounting for about 85% of estimated future arisings of raw (untreated, unpackaged) waste. Non-Sellafield consignors to the Drigg site include other BNFL production establishments, nuclear power stations, sites of UKAEA, Ministry of Defence facilities, hospitals, universities, radioisotope production sites and various other industrial organisations. In September 1987, BNFL announced a major upgrade of operations at the Drigg site aimed at improving management practices, the efficiency of space utilisation and enhancing the visual impact of disposal operations. During 1989 a review of plans for compaction and containerisation of Sellafield waste identified that residual voidage in ISO freight containers could be significant even after the introduction of compaction. Subsequent studies which examined a range of compaction and packaging options concluded that the preferred scheme centred on the use of high force compaction (HFC) of compactable waste, and grouting to take up readily accessible voidage in the wasteform. The paper describes the emergence of high force compaction as the preferred scheme for wasteform preparation and subsequent benefits against the background of the overall development of Low Level Waste disposal operations at Drigg

  13. Assessment of Reusing 14-Ton, Thin-Wall, Depleted UF6 Cylinders as LLW Disposal Containers

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Poole, A.B.; Shelton, J.H.

    2000-01-01

    Approximately 700,000 MT of DUF 6 is stored, or will be produced under a current agreement with the USEC, at the Paducah site in Kentucky, Portsmouth site in Ohio, and ETTP site in Tennessee. On July 21, 1998, the 105th Congress approved Public Law 105-204, which directed that facilities be built at the Kentucky and Ohio sites to convert DUF 6 to a stable form for disposition. On July 6, 1999, the Department of Energy (DOE) issued the ''Final Plan for the Conversion of Depleted Uranium Hexafluoride as Required by Public Law 105-204'', in which DOE committed to develop a ''Depleted Uranium Hexafluoride Materials Use Roadmap''. On September 1,2000, DOE issued the ''Draft Depleted Uranium Hexafluoride Materials Use Roadmap'' (Roadmap), which provides alternate paths for the long-term storage, beneficial use, and eventual disposition of each product form and material that will result from the DUF 6 conversion activity. One of the paths being considered for DUF 6 cylinders is to reuse the empty cylinders as containers to transport and dispose of LLW, including the converted DU. The Roadmap provides results of the many alternate uses and disposal paths for conversion products and the empty DUF 6 storage cylinders. As a part of the Roadmap, evaluations were conducted of cost savings, technical maturity, barriers to implementation, and other impacts. Results of these evaluations indicate that using the DUF 6 j storage cylinders as LLW disposal containers could provide moderate cost savings due to the avoided cost of purchasing LLW packages and the avoided cost of disposing of the cylinders. No significant technical or institutional .issues were identified that.would make using cylinders as LLW packages less effective than other disposition paths. Over 58,000 cylinders have been used, or will be used, to store DUF 6 . Over 5 1,000 of those cylinders are 14TTW cylinders with a nominal wall thickness of 5/16-m (0.79 cm). These- 14TTW cylinders, which have a nominal diameter

  14. Pitfalls on the way towards the acceptance of a disposal site of LLW in a densely populated country. The Belgian case

    International Nuclear Information System (INIS)

    Hooft, E.; Decamps, F.

    2000-01-01

    Until the international moratorium of 1983, Belgium relied on sea disposal for its low-level waste. Since then, ONDRAF/NIRAS, the Belgian waste management agency, has launched studies to look for land-based solutions. These studies, which are still on-going, have gone through various phases. The sometimes harsh reactions in public opinion and the recommendations of independent experts, however, progressively led ONDRAF/NIRAS to question its work methodology. January 16, 1998 was a milestone in Belgian's nuclear waste management. On that day, the Belgian federal government opted for a final, or potentially final, solution for the long-term management of short-lived, low-level radioactive waste, a solution that also had to be progressive, flexible, and reversible. At the same time, the government entrusted new missions to ONDRAF/NIRAS in particular that of developing methods to enable the integration of final repository project proposals at the local level and restricted the number of potential sites for final disposal to the four already existing nuclear sites in Belgium and to possibly interested local districts. The government's decision of January 16, 1998, forced ONDRAF/NIRAS to change its strategy. It set up a new work programme and worked out an innovative methodology. This new methodology aims to generate, at the level of the interested towns and villages, draft projects for a final repository supported by a wide public consensus. (author)

  15. Low-level radioactive waste (LLW) management at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Becker, B.D.; Gertz, C.P.; Clayton, W.A.; Crowe, B.M.

    1998-01-01

    In 1978, the Department of Energy, Nevada Operations Office (DOE/NV), established a managed LLW disposal project at the Nevada Test Site (NTS). Two, sites which were already accepting limited amounts of on-site generated waste for disposal and off-site generated Transuranic Waste for interim storage, were selected to house the disposal facilities. In those early days, these sites, located about 15 miles apart, afforded the DOE/NV the opportunity to use at least two technologies to manage its waste cost effectively. The Area 5 Radioactive Waste Management Site (RWMS) uses engineered shallow-land burial cells to dispose packaged waste while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. The paper describes the technical attributes of both Area 5 and Area 3 facilities, the acceptance process, the disposal processes, and present and future capacities of both sites

  16. LLW/Il conditioning for transportation, storage and disposal

    International Nuclear Information System (INIS)

    Pech, R.; Chevalier, Ph.

    2000-01-01

    In France, Sogefibre (Cogema subsidiary) has developed original containers adapted to the conditioning of LLW and ILW and assuring integrity of the waste form over long period of time. These containers have been designed according to the following criteria, derived from Andra's requirement for the surface disposal: Mechanical strength, resistance to microcracking, Radioactive containment and long life: 300 years minimum. Choice of formulation for the concrete as well as selection of raw materials have been optimised in this objective. Sizes and shapes of Fiber Reinforced Concrete Containers (FRCC) have been developed in relation with handling means of Cogema La Hague facilities for automatized operations. Experience gained after nearly 10 years and 40000 FRCC produced shows that choices have been right and properties of FRCC effectively useful. The paper also recalls mechanical and containment properties and the durability assessment recently updated thanks to results of computer modelling. Degradation phenomenon of the Blended Ternary Cement (clinker, slag, ash) used in FRCC is described and the model presented. (authors)

  17. The establishment of computer codes for radiological assessment on LLW final disposal in Taiwan

    International Nuclear Information System (INIS)

    Yang, C.C.; Chen, H.T.; Shih, C.L.; Yeh, C.S.; Tsai, C.M.

    1988-01-01

    For final shallow land disposal of Low Level Waste (LLW) in Taiwan, an effort was initiated to establish the evaluation codes for the needs of environmental impact analysis. The objective of the computer code is to set up generic radiological standards for future evaluation on 10 CFR Part 61 Licensing Requirements for Land Disposal of Radioactive Wastes. In determining long-term influences resulting from radiological impacts of LLW at disposal sites there are at least three quantifiable impact measures selected for calculation: dose to members of the public (individual and population), occupational exposures and costs. The computer codes are from INTRUDE, INVERSI and INVERSW of NUREG-0782, OPTIONR and GRWATRR of NUREG-0945. They are both installed in FACOM-M200 and IBM PC/AT systems of Institute of Nuclear Energy Research (INER). The systematic analysis of the computer codes depends not only on the data bases supported by NUREG/CR-1759 - Data Base for Radioactive Waste Management, Volume 3, Impact Analysis Methodology Report but also the information collected from the different exposure scenarios and pathways. The sensitivity study is also performed to assure the long-term stability and security for needs of determining performance objectives

  18. Control of water infiltration into near surface LLW disposal units - progress report on field experiments at a Humid Region Site, Beltsville, Maryland

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ridky, R.W.; Schulz, R.K.

    1990-01-01

    Three kinds of waste disposal unit covers or barriers to water infiltration are being investigated. They are: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g. clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained the conductive layer will wick water around the capillary break. Below grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover. Remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier, or perhaps even better, a resistive layer barrier/conductive layer barrier system. This latter system would then give long-term effective protection against water entry to waste and without institutional care. These various concepts are being assessed in six large (70 x 45 x 10 each) lysimeters at Beltsville, Maryland. 6 refs., 21 figs

  19. Performance assessment review for DOE LLW disposal facilities

    International Nuclear Information System (INIS)

    Wilhite, Elmer L.

    1992-01-01

    assessments. These lessons are shared among the various US DOE sites to improve the process of evaluating low-level waste disposal sites for long-term performance. (author)

  20. Study of physical resistance of the disposal facility for accidental artificial event in LLW disposal facility

    International Nuclear Information System (INIS)

    Ogawa, Suihei; Irie, Masaaki; Uchida, Masahiro

    2013-11-01

    This report refer to results of examine what follows for structural stability evaluation for the LLW disposal facility in depth over general human activity in underground. Study of physically resistance on the facility for accidental artificial event, namely tunneling an operation facing the disposal facility in future. Physically resistance to excavation of tunneling etc. in disposal facility is studied based on supposing of Tunnel Boring Machine as an excavator, paying attention to reinforcement bar in concrete and steel plate of waste package, as feature of strength in these material differs from rock strength. And it is examined not only resistibility on excavation but also about hard situations of excavation in tunneling works, and namely give thorough consideration to critical quantity of cutting to reinforcement bar and steel plate that could keep resistibility on excavation based on tunneling velocity and limits time furthermore. It requests necessity of evaluation in consider with metal corrosion that status alteration on disposal facility is considered with on timescale. Period of keep on the physically resistance is estimated by velocity of metal corrosion consequently. The physically resistance is kept until metal corrosion reach remaining its material, giving a limits of the physically resistance on inside of facility. Main point of physically resistance in the report will be made the good use of a practice to physically resistance evaluation of in safety assessment. (author)

  1. Some considerations in the evaluation of concrete as a structural material for alternative LLW disposal technologies

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Siskind, B.; Bowerman, B.S.; Piciulo, P.L.

    1987-01-01

    The objective of this study was to develop information needed to evaluate the long-term performance of concrete and reinforced concrete as a structural material for alternative LLW disposal methods. The capability to carry out such an evaluation is required for licensing a site which employs one of these alternative methods. The basis for achieving the study objective was the review and analysis of the literature on concrete and its properties, particularly its durability. In carrying out this program characteristics of concrete useful in evaluating its performance and factors that can affect its performance were identified. The factors are both intrinsic, i.e., associated with composition of the concrete (and thus controllable), and extrinsic, i.e., due to external environmental forces such as climatic conditions and aggressive chemicals in the soil. The testing of concrete, using both accelerated tests and long-term non-accelerated tests, is discussed with special reference to its application to modeling of long-term performance prediction. On the basis of the study's results, conditions for acceptance are recommended as an aid in the licensing of disposal sites which make use of alternative methods

  2. Overview of EPA's environmental standards for the land disposal of LLW and NARM waste - 1988

    International Nuclear Information System (INIS)

    Gruhlke, J.M.; Galpin, F.L.; Holcomb, W.F.

    1988-01-01

    The Environmental Protection Agency program to develop proposed generally applicable environmental standards for land disposal of low-level radioactive waste (LLW) and certain naturally occurring and accelerator-produced radioactive wastes has been completed. The elements of the proposed standards include the following: (a) exposure limits for predisposal management and storage operations, (b) criteria for other regulatory agencies to follow in specifying wastes that are below regulatory concern; (c) postdisposal exposure limits, (d) groundwater protection requirements, and (e) qualitative implementation requirements. In addition to covering those radioactive wastes subject to the Atomic Energy Act, the Agency also intends to propose a standard to require the disposal of high concentration, naturally occurring and accelerator-produced radioactive materials wastes exceeding 2 nCi/g, excluding a few consumer items, in regulated LLW disposal facilities

  3. Development of DUST: A computer code that calculates release rates from a LLW disposal unit

    International Nuclear Information System (INIS)

    Sullivan, T.M.

    1992-01-01

    Performance assessment of a Low-Level Waste (LLW) disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the disposal unit source term). The major physical processes that influence the source term are water flow, container degradation, waste form leaching, and radionuclide transport. A computer code, DUST (Disposal Unit Source Term) has been developed which incorporates these processes in a unified manner. The DUST code improves upon existing codes as it has the capability to model multiple container failure times, multiple waste form release properties, and radionuclide specific transport properties. Verification studies performed on the code are discussed

  4. Iodine-129 Dose in LLW Disposal Facility Performance Assessments

    International Nuclear Information System (INIS)

    Wilhite, E.L.

    1999-01-01

    Iodine-129 has the lowest Performance Assessment derived inventory limit in SRS disposal facilities. Because iodine is concentrated in the body to one organ, the thyroid, it has been thought that dilution with stable iodine would reduce the dose effects of 129I.Examination of the dose model used to establish the Dose conversion factor for 129I shows that, at the levels considered in performance assessments of low-level waste disposal facilities, the calculated 129I dose already accounts for ingestion of stable iodine. At higher than normal iodine ingestion rates, the uptake of iodine by the thyroid itself decrease, which effectively cancels out the isotopic dilution effect

  5. Incremental Risks of Transporting NARM to the LLW Disposal Facility at Hanford

    International Nuclear Information System (INIS)

    Weiner, R.F.

    1999-01-01

    This study models the incremental radiological risk of transporting NARM to the Hanford commercial LLW facility, both for incident-free transportation and for possible transportation accidents, compared with the radiological risk of transporting LLW to that facility. Transportation routes are modeled using HIGHWAY 3.1 and risks are modeled using RADTRAN 4. Both annual population doses and risks, and annual average individual doses and risks are reported. Three routes to the Hanford site were modeled from Albany, OR, from Coeur d'Alene, ID (called the Spokane route), and from Seattle, WA. Conservative estimates are used in the RADTRAN inputs, and RADTRAN itself is conservative

  6. Ocean Disposal Site Monitoring

    Science.gov (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  7. Control of water infiltration into near surface LLW disposal units

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ridky, R.W.; Schulz, R.K.

    1989-01-01

    Water infiltration to buried waste is the prime problem of concern in designing waste disposal units for the humid areas. Conventional compacted clay layers (resistance layer barriers) have been subject to failure by subsidence and by permeability increases brought about by plant roots. A clay barrier with a rock cover sans plants is being investigated. Also a combination of a resistive layer overlying a conductive layer is being investigated. Laboratory studies indicate that this approach can be very effective and field evaluations are underway. However, it must be noted that subsidence will negate the effectiveness of any buried layer barriers. A surface barrier (bioengineering management) has been valuated in the field and found to be very effective in preventing water entry into waste disposal units. This surface barrier is easily repairable if damaged by subsidence and could be the system of choice under active subsidence conditions

  8. LLW simmers as states scramble

    International Nuclear Information System (INIS)

    Malloy, M.

    1994-01-01

    Low-level radioactive waste disposal could be reaching a crisis point as states and private industry scramble to come up with permitted disposal facilities. Although not as notorious as high-level radioactive waste, the disposal of low-level radioactive wastes (LLW) is becoming more of concern -- some say nearing a crisis -- nationwide, because of the limited number of storage sites available. Most states have formed into groups called compacts, in which they jointly set up storage and disposal sites for their LLW. Most of the overall universe of LLW is generated and handled by the US Department of Energy. The remainder is produced and dealt with commercially. Commercial sources account for about one million cubic feet of LLW annually. LLW is defined as anything that is not the more potent, spent high-level nuclear fuel waste or radioactive waste from transuranic processes. Ninety to ninety-five percent of LLW is trash. The rest is either short-lived, or in a third category of both long- and short-lived LLW. That third category, while small, can still account for a high amount of curies of radioactivity

  9. Mechanisms of long-term concrete degradation in LLW disposal facilities

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1987-01-01

    Most low-level waste (LLW) disposal alternatives, except shallow land burial and improved shallow land burial, involve the use of concrete as an extra barrier for containment. Because concrete is a porous-type material, its moisture retention and transport properties can be characterized with parameters that are also used to characterize the geohydrologic properties of soils. Several processes can occur with the concrete to degrade it and to increase both the movement of water and contaminants through the disposal facility. The effect of these processes must be quantified in designing and estimating the long-term performance of disposal facilities. Modeling the long-term performance of LLW disposal technologies involves, first, estimating the degradation rate of the concrete in a particular facility configuration and environmental setting; second, calculating the water flow through the facility as a function of time; third, calculating the contaminant leaching usually by diffusion or dissolution mechanisms, and then coupling the facility water and contaminant outflow to a hydrogeological and environmental uptake model for environmental releases or doses

  10. A process for establishing a financial assurance plan for LLW disposal facilities

    International Nuclear Information System (INIS)

    Smith, P.

    1993-04-01

    This document describes a process by which an effective financial assurance program can be developed for new low-level radioactive waste (LLW) disposal facilities. The report identifies examples of activities that might cause financial losses and the types of losses they might create, discusses mechanisms that could be used to quantify and ensure against the various types of potential losses identified and describes a decision process to formulate a financial assurance program that takes into account the characteristics of both the potential losses and available mechanisms. A sample application of the concepts described in the report is provided

  11. A process for establishing a financial assurance plan for LLW disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [EG and G Idaho, Inc., Idaho Falls, ID (United States). National Low-Level Waste Management Program

    1993-04-01

    This document describes a process by which an effective financial assurance program can be developed for new low-level radioactive waste (LLW) disposal facilities. The report identifies examples of activities that might cause financial losses and the types of losses they might create, discusses mechanisms that could be used to quantify and ensure against the various types of potential losses identified and describes a decision process to formulate a financial assurance program that takes into account the characteristics of both the potential losses and available mechanisms. A sample application of the concepts described in the report is provided.

  12. Integration of U.S. Department of Energy (DOE) contractor installations for the purpose of optimizing treatment, storage, and disposal of low-level radioactive waste (LLW)

    International Nuclear Information System (INIS)

    Lucas, M.; Gnoose, J.; Coony, M.; Martin, E.; Piscitella, R.

    1998-02-01

    The US Department of Energy (DOE) manages a multibillion dollar environmental management (EM) program. In June 1996, the Assistant Secretary of Energy for EM issued a memorandum with guidance and a vision for a ten year planning process for the EM Program. The purpose of this process, which became known as the Accelerated Cleanup: Focus on 2006, is to make step changes within the DOE complex regarding the approach for making meaningful environmental cleanup progress. To augment the process, Assistant Secretary requested the site contractors to engage in an effort to identify and evaluate integration alternatives for EM waste stream treatment, storage, and disposal (TSD) that would parallel the 2006 Plan. In October 1996, ten DOE contractor installations began the task of identifying alternative opportunities for low level radioactive waste (LLW). Cost effective, efficient solutions were necessary to meet all requirements associated with storing, characterizing, treating, packaging, transporting, and disposing of LLW while protecting the workers' health and safety, and minimizing impacts to the environment. To develop these solutions, a systems engineering approach was used to establish the baseline requirements, to develop alternatives, and to evaluate the alternatives. Key assumptions were that unique disposal capabilities exist within the DOE that must be maintained; private sector disposal capability for some LLW may not continue to exist into the foreseeable future; and decisions made by the LLW Team must be made on a system or complex wide basis to fully realize the potential cost and schedule benefits. This integration effort promoted more accurate waste volume estimates and forecasts; enhanced recognition of existing treatment, storage, and disposal capabilities and capacities; and improved identification of cost savings across the complex

  13. Unreviewed Disposal Question: A Discipline Process to Manage Change in LLW Disposal

    International Nuclear Information System (INIS)

    Goldston, W.T.

    2000-01-01

    The Department of Energy's waste management Order, DOE O 435.1, requires that low--level waste disposal facilities develop and maintain a radiological performance assessment to ensure that disposal operations are within a performance envelope defined by performance objectives for long-term protection of the public and the environment. The Order also requires that a radiological composite analysis be developed and maintained to ensure that the disposal facility, in combination with other sources of radioactive material that may remain when all DOE activities have ceased, will not compromise future radiological protection of the public and the environment. The Order further requires that a Disposal Authorization Statement (DAS) be obtained from DOE Headquarters and that the disposal facility be operated within the performance assessment, composite analysis, and DAS. Maintenance of the performance assessment and composite analysis includes conducting test, research, and monitoring activities to increase confidence in the results of the analyses. It also includes updating the analyses as changes are proposed in the disposal operations, or other information requiring an update, becomes available. Personnel at the Savannah River Site have developed and implemented an innovative process for reviewing proposed or discovered changes in low-level radioactive waste disposal operations. The process is a graded approach to determine, in a disciplined manner, whether changes are within the existing performance envelope, as defined by the performance assessment, composite analysis, and DAS, or whether additional analysis is required to authorize the change. This process is called the Unreviewed Disposal Question (UDQ) process. It has been developed to be analogous to the Unreviewed Safety Question (UDQ) process that has been in use within DOE for many years. This is the first formalized system implemented in the DOE complex to examine low-level waste disposal changes the way the

  14. DOE LLW classification rationale

    International Nuclear Information System (INIS)

    Flores, A.Y.

    1991-01-01

    This report was about the rationale which the US Department of Energy had with low-level radioactive waste (LLW) classification. It is based on the Nuclear Regulatory Commission's classification system. DOE site operators met to review the qualifications and characteristics of the classification systems. They evaluated performance objectives, developed waste classification tables, and compiled dose limits on the waste. A goal of the LLW classification system was to allow each disposal site the freedom to develop limits to radionuclide inventories and concentrations according to its own site-specific characteristics. This goal was achieved with the adoption of a performance objectives system based on a performance assessment, with site-specific environmental conditions and engineered disposal systems

  15. Siting simulation for low-level waste disposal facilities

    International Nuclear Information System (INIS)

    Roop, R.D.; Rope, R.C.

    1985-01-01

    The Mock Site Licensing Demonstration Project has developed the Low-Level Radioactive Waste Siting Simulation, a role-playing exercise designed to facilitate the process of siting and licensing disposal facilities for low-level waste (LLW). This paper describes the development, content, and usefulness of the siting simulation. The simulation can be conducted at a workshop or conference, involves 14 or more participants, and requires about eight hours to complete. The simulation consists of two sessions; in the first, participants negotiate the selection of siting criteria, and in the second, a preferred disposal site is chosen from three candidate sites. The project has sponsored two workshops (in Boston, Massachusetts and Richmond, Virginia) in which the simulation has been conducted for persons concerned with LLW management issues. It is concluded that the simulation can be valuable as a tool for disseminating information about LLW management; a vehicle that can foster communication; and a step toward consensus building and conflict resolution. The DOE National Low-Level Waste Management Program is now making the siting simulation available for use by states, regional compacts, and other organizations involved in development of LLW disposal facilities

  16. Restraint effect of water infiltration by soil cover types of LLW disposal facility

    International Nuclear Information System (INIS)

    Park, S. M.; Lee, E. Y.; Lee, C. K.; Kim, C. L.

    2002-01-01

    Since soil cover for LLW disposal vault shows quite different restraint effect of water infiltration depending on its type, four different types of soil cover were studied and simulated using HELP code. Simulation result showed that Profile B1 is the most effective type in restraint of water infiltration to the disposal vault. Profile B1 is totally 6m thick and composed of silt, gravelly sand, pea gravel, sand and clayey soil mixed with bentonite 20%. Profile B1 also includes artificial layers, such as asphalt and geomembrane layers. This profile is designed conceptually by NETEC for the soil cover of the near surface disposal facility of the low-level radioactive waste. For comparison, 3 types of different profile were tested. One profile includes bentonite mixed layer only as water barrier layer, or one as same as profile B1 but without geomembrane layer or one without asphalt layer respectively. The simulation using HELP code showed that the water balance in profile B1 was effectively controlled

  17. Control and tracking arrangements for solid low-level waste disposals to the UK Drigg disposal site

    International Nuclear Information System (INIS)

    Elgie, K.G.; Grimwood, P.D.

    1993-01-01

    The Drigg disposal site has been the principal disposal site for solid low-level radioactive wastes (LLW) in the United Kingdom since 1959. It is situated on the Cumbrian coast, some six kilometers to the south of the Sellafield nuclear reprocessing site. The Drigg site receives LLW from a wide range of sources including nuclear power generation, nuclear fuel cycle activities, defense activities, isotope manufacture, universities, hospitals, general industry and clean-up of contaminated sites. This LLW has been disposed of in a series of trenches cut into the underlying clay layer of the site, and, since 1988, also into concrete lined vault. The total volume of LLW disposed of at Drigg is at present in the order of 800,000m 3 , with disposals currently approximately 25,000m 3 per year. British Nuclear Fuels plc (BNFL) owns and operates the Drigg disposal site. To meet operational and regulatory requirements, BNFL needs to ensure the acceptability of the disposed waste and be able to track it from its arising point to its specific disposal location. This paper describes the system that has been developed to meet these requirements

  18. ASSESSING EXPOSURE TO THE PUBLIC FROM LOW LEVEL RADIOACTIVE WASTE (LLW) TRANSPORTATION TO THE NEVADA TEST SITE

    International Nuclear Information System (INIS)

    Miller, J.J.; Campbell, S.; Church, B.W.; Shafer, D. S.; Gillespie, D.; Sedano, S.; Cebe, J.J.

    2003-01-01

    The United States (U.S.) Department of Energy (DOE) Nevada Test Site (NTS) is one of two regional sites where low-level radioactive waste (LLW) from approved DOE and U.S. DOD generators across the United States is disposed. In federal fiscal year (FY) 2002, over 57,000 cubic meters of waste was transported to and disposed at the NTS. DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is perceived risk from members of the public about incremental exposure from LLW trucks, especially when ''Main Street'' and the LLW transportation route are the same. To better quantify the exposure to gamma radiation, a stationary monitoring array of four pressurized ion chambers (PICs) have been set up in a pullout just before LLW trucks reach the entrance to the NTS. The PICs are positioned at a distance of one meter from the sides of the truck trailer and at a height appropriate for the design of the trucks that will be used in FY2003 to haul LLW to the NTS. The use of four PICs (two on each side of the truck) is to minimize and to correct for non-uniformity where radiation levels from waste packages vary from side to side, and from front to back in the truck trailer. The PIC array is being calibrated by collecting readings from each PIC exposed to a known 137Cs source that was positioned at different locations on a flatbed stationed in the PIC array, along with taking secondary readings from other known sources. Continuous data collection using the PICs, with and without a truck in the array, is being used to develop background readings. In addition, acoustic sensors are positioned on each side of the PIC array to record when a large object (presumably a truck) enters the array. In FY2003, PIC surveys from as many incoming LLW trucks as possible will be made and survey data

  19. 1980 state-by-state assessment of low-level radioactive wastes shipped to commercial disposal sites

    International Nuclear Information System (INIS)

    1982-06-01

    Information is presented on the volumes, curie values, sources, and disposal of low-level radioactive wastes (LLW) in each state. The wastes are segmented into 2 broad categories - institutional/industrial and commercial power reactor wastes. The volumes and curie values were obtained from the commercial site operators. The percentage of LLW disposed of at each of the 3 operating disposal sites located at Barnwell, SC, Beatty, NV, and Richland, WA are included

  20. Control of water infiltration into near surface LLW disposal units: Task report, A discussion

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1988-03-01

    The principal pathway for water entry into LLW disposal units in the humid eastern United States is through their covers. Two types of sub-surface features that may be constructed to enhance run-off (surface or sub-surface run-off) and thus reduce percolation are the resistive layer barrier, and the conductive layer barrier. The resistive layer barrier is the compacted soil or compacted clay layer and depends on compaction of permeable porous material to obtain low flow rates. The conductive layer barrier is a special case of the capillary barrier. Use is made of the capillary barrier phenomenon not only to increase the moisture content above an interface but to divert water away from the waste. During such diversion the water is at all times at negative capillary potential or under tension in the flow layer. A very effective barrier system might be constructed by placing a resistive barrier over a conductive barrier. Such a system must fail if appreciable subsidence takes place. An alternate procedure called bioengineering management utilizes engineered features at the surface (as opposed to the subsurface) to ensure adequate run-off. The engineered features are combined with stressed vegetation, that is, vegetation in an overdraft condition, to control deep percolation. (59 refs., 10 figs.)

  1. Evaluation of Proposed New LLW Disposal Activity: Disposal of Aqueous PUREX Waste Stream in the Saltstone Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2003-01-01

    The Aqueous PUREX waste stream from Tanks 33 and 35, which have been blended in Tank 34, has been identified for possible processing through the Saltstone Processing Facility for disposal in the Saltstone Disposal Facility

  2. Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Carilli, J.T.

    2006-01-01

    Low-level radioactive waste (LLW) streams which have a clear, defined pathway to disposal are becoming less common as U.S. Department of Energy accelerated cleanup sites enters their closure phase. These commonly disposed LLW waste streams are rapidly being disposed and the LLW inventory awaiting disposal is dwindling. However, more complex waste streams that have no path for disposal are now requiring attention. The U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NSO) Environmental Management Program is charged with the responsibility of carrying out the disposal of onsite and off-site defense-generated and research-related LLW at the Nevada. Test Site (NTS). The NSO and its generator community are constantly pursuing new LLW disposal techniques while meeting the core mission of safe and cost-effective disposal that protects the worker, the public and the environment. From trenches to present-day super-cells, the NTS disposal techniques must change to meet the LLW generator's disposal needs. One of the many ways the NTS is addressing complex waste streams is by designing waste specific pits and trenches. This ensures unusual waste streams with high-activity or large packaging have a disposal path. Another option the NTS offers is disposal of classified low-level radioactive-contaminated material. In order to perform this function, the NTS has a safety plan in place as well as a secure facility. By doing this, the NTS can accept DOE generated classified low-level radioactive-contaminated material that would be equivalent to U.S. Nuclear Regulatory Commission Class B, C, and Greater than Class C waste. In fiscal year 2006, the NTS will be the only federal disposal facility that will be able to dispose mixed low-level radioactive waste (MLLW) streams. This is an activity that is highly anticipated by waste generators. In order for the NTS to accept MLLW, generators will have to meet the stringent requirements of the NTS

  3. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Dorries, Alison M.

    2010-01-01

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  4. DSEM, Radioactive Waste Disposal Site Economic Model

    International Nuclear Information System (INIS)

    Smith, P.R.

    2005-01-01

    1 - Description of program or function: The Disposal Site Economic Model calculates the average generator price, or average price per cubic foot charged by a disposal facility to a waste generator, one measure of comparing the economic attractiveness of different waste disposal site and disposal technology combinations. The generator price is calculated to recover all costs necessary to develop, construct, operate, close, and care for a site through the end of the institutional care period and to provide the necessary financial returns to the site developer and lender (when used). Six alternative disposal technologies, based on either private or public financing, can be considered - shallow land disposal, intermediate depth disposal, above or below ground vaults, modular concrete canister disposal, and earth mounded concrete bunkers - based on either private or public development. 2 - Method of solution: The economic models incorporate default cost data from the Conceptual Design Report (DOE/LLW-60T, June 1987), a study by Rodgers Associates Engineering Corporation. Because all costs are in constant 1986 dollars, the figures must be modified to account for inflation. Interest during construction is either capitalized for the private developer or rolled into the loan for the public developer. All capital costs during construction are depreciated over the operation life of the site using straight-line depreciation for the private sector. 3 - Restrictions on the complexity of the problem: Maxima of - 100 years post-operating period, 30 years operating period, 15 years pre-operating period. The model should be used with caution outside the range of 1.8 to 10.5 million cubic feet of total volume. Depreciation is not recognized with public development

  5. Implementation of a geological disposal facility (GDF) in the UK by the NDA Radioactive Waste Management Directorate (RWMD): the potential for interaction between the co-located ILW/LLW and HLW/SF components of a GDF - 16306

    International Nuclear Information System (INIS)

    Towler, George; Hicks, Tim; Watson, Sarah; Norris, Simon

    2009-01-01

    In June 2008 the UK government published a 'White Paper' as part of the 'Managing Radioactive Waste Safety' (MRWS) programme to provide a framework for managing higher activity radioactive wastes in the long-term through geological disposal. The White Paper identifies that there are benefits to disposing all of the UK's higher activity wastes (Low and Intermediate Level Waste (LLW and ILW), High Level Waste (HLW), Spent Fuel (SF), Uranium (U) and Plutonium (Pu)) at the same site, and this is currently the preferred option. It also notes that research will be required to support the detailed design and safety assessment in relation to any potentially detrimental interactions between the different modules. Different disposal system designs and associated Engineered Barrier Systems (EBS) will be required for these different waste types, i.e. ILW/LLW and HLW/SF. If declared as waste U would be disposed as ILW and Pu as HLW/SF. The Geological Disposal Facility (GDF) would therefore comprise two co-located modules (respectively for ILW/LLW and HLW/SF). This paper presents an overview of a study undertaken to assess the implications of co-location by identifying the key Thermo-Hydro-Mechanical-Chemical (THMC) interactions that might occur during both the operational and post-closure phases, and their consequences for GDF design, performance and safety. The MRWS programme is currently seeking expressions of interest from communities to host a GDF. Therefore, the study was required to consider a wide range of potential GDF host rocks and consistent, conceptual disposal system designs. Two example disposal concepts (i.e. combinations of host rock, GDF design including wasteform and layout, etc.) were carried forward for detailed assessment and a third for qualitative analysis. Dimensional and 1D analyses were used to identify the key interactions, and 3D models were used to investigate selected interactions in more detail. The results of this study show that it is possible

  6. Development of high integrity, maximum durability concrete structures for LLW disposal facilities

    International Nuclear Information System (INIS)

    Taylor, W.P.

    1992-01-01

    A number of disposal facilities for Low-Level Radioactive Wastes have been planned for the Savannah River Site. Design has been completed for disposal vaults for several waste classifications and construction is nearly complete or well underway on some facilities. Specific design criteria varies somewhat for each waste classification. All disposal units have been designed as below-grade concrete vaults, although the majority will be above ground for many years before being encapsulated with earth at final closure. Some classes of vaults have a minimum required service life of 100 years. All vaults utilize a unique blend of cement, blast furnace slag and pozzolan. The design synthesizes the properties of the concrete mix with carefully planned design details and construction methodologies to (1) eliminate uncontrolled cracking; (2) minimize leakage potential; and (3) maximize durability. The first of these vaults will become operational in 1992. 9 refs

  7. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  8. Experience and improved techniques in radiological environmental monitoring at major DOE low-level waste disposal sites

    International Nuclear Information System (INIS)

    1986-09-01

    A summary of routine radiological environmental surveillance programs conducted at major active US Department of Energy (DOE) solid low-level waste (LLW) disposal sites is provided. The DOE disposal sites at which monitoring programs were reviewed include those located at Hanford, Idaho National Engineering Laboratory (INEL), Nevada Test Site (NTS), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL) and Savannah River Plant (SRP). The review is limited to activities conducted for the purpose of monitoring disposal site performance. Areas of environmental monitoring reviewed include air monitoring for particulates and gases, monitoring of surface water runoff, surface water bodies, ground water, monitoring of surface soils and the vadose zone, and monitoring of ambient penetrating radiation. Routine environmental surveillance is conducted at major LLW disposal sites at various levels of effort for specific environmental media. In summary, all sites implement a routine monitoring program for penetrating radiation. Four sites (INEL, NTS, LANL, and SRP) monitor particulates in air specifically at LLW disposal sites. Hanford monitors particulates at LLW sites in conjunction with monitoring of other site operations. Particulates are monitored on a reservationwide network at ORNL. Gases are monitored specifically at active LLW sites operated at NTS, LANL, and SRP. Ground water is monitored specifically at LLW sites at INEL, LANL, and SRP, in conjunction with other operations at Hanford, and as part of a reservationwide program at NTS and ORNL. Surface water is monitored at INEL, LANL, and SRP LLW sites. Surface soil is sampled and analyzed on a routine basis at INEL and LANL. Routine monitoring of the vadose zone is conducted at the INEL and SRP. Techniques and equipment in use are described and other aspects of environmental monitoring programs, such as quality assurance and data base management, are reviewed

  9. Shipment of LLW by intercoastal maritime service

    International Nuclear Information System (INIS)

    Barbour, D.A.

    1985-01-01

    Transportation costs are a significant element of total waste disposal costs. In 1982, Nuclear Metals, Inc. (NMI) began a series of tests and investigations to examine the feasibility of using alternative modes for its low-level waste (LLW) shipments. NMI's investigations and experience have identified significant problems in transporting LLW by rail. Intercoastal maritime service, however, has been demonstrated as a safe and cost-effective way of transporting LLW from eastern seaboard generation sites to the repository at Beatty, Nevada. Intuition is an unreliable guide in this area. Waste managers need to periodically assess and compare combined transportation and burial costs for all site options to ensure that disposal operations are conducted in the most rational way

  10. Derivation of upper bound concentration of LLW for land disposal in Taiwan

    International Nuclear Information System (INIS)

    Chang, F.D.; Liou, C.T.; Su, M.F.; Tsai, S.C.

    1989-01-01

    The upper bound concentrations of radionuclides in the low level waste to be disposed in Taiwan are investigated based on a proposed reference site with all of the scenarios and exposure pathways reflecting the local conditions and environmental characteristics. The analysis reveals that most of the upper bound concentrations are determined from the scenario of intruder-agriculture. It can also be found that the Transuranic radionuclides and those with long half-lives are the dominant radionuclides which result in major radiological impact to the environment in this intruder-agriculture scenario

  11. Nuclear waste disposal site

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Sanner, W.S. Jr.; Paladino, J.B.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.; Razor, J.E.

    1988-01-01

    This patent describes a disposal site for the disposal of toxic or radioactive waste, comprising: (a) a trench in the earth having a substantially flat bottom lined with a layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for obstructing any capillary-type flow of ground water to the interior of the trench; (b) a non-rigid, radiation-blocking cap formed from a first layer of alluvium, a second layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for blocking any capillary-type flow of water between the layer of alluvium and the rest of the cap, a layer of water-shedding silt for directing surface water away from the trench, and a layer of rip-rap over the silt layer for protecting the silt layer from erosion and for providing a radiation barrier; (c) a solidly-packed array of abutting modules of uniform size and shape disposed in the trench and under the cap for both encapsulating the wastes from water and for structurally supporting the cap, wherein each module in the array is slidable movable in the vertical direction in order to allow the array of modules to flexibly conform to variations in the shape of the flat trench bottom caused by seismic disturbances and to facilitate the recoverability of the modules; (d) a layer of solid, fluent, coarse, granular materials having a high hydraulic conductivity in the space between the side of the modules and the walls of the trench for obstructing any capillary-type flow of ground water to the interior of the trench; and (e) a drain and wherein the layer of silt is sloped to direct surface water flowing over the cap into the drain

  12. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    International Nuclear Information System (INIS)

    Carilli, J.T.; Krenzien, S.K.; Geisinger, R.G.; Gordon, S.J.; Quinn, B.

    2009-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams

  13. LLW Dumpster study: Task 009

    International Nuclear Information System (INIS)

    Frye, J.A.

    1989-08-01

    Over a span of several years, the public has reported visible leakage emanating from ten cubic yard Dumpsters used to transport Low Level Radioactive Wastes (LLW) from LANL generation sites to the disposal site at TA-54, Area G. The purpose of this study was to: Investigate probable causes of leakages, Inspect existing Dumpsters in the fields Propose immediate short-range solutions to the problem, and Propose long-range solutions based on predicted future requirements. Field investigations indicated that LLW is handled carefully and professional at the individual generation sites and again during pick-up delivery, and disposal at TA-54. It was also apparent, however, that Dumpsters not designed for LLW service are used to store this radioactive material for extended time periods while being subjected to the full range of Northern New Mexico weather conditions. All Dumpsters inspected had 1/8 in to 2 in gaps in their closures (loading doors and discharge ramps) through which driving rain or melting snow could easily enter. Seven Dumpsters were located outside secure areas. No cases of actual contamination were discovered, only the appearance of contamination i.e. the dripping of collected rainwater or melting ice and snow from Dumpsters being transported over public roads

  14. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was

  15. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  16. Materials and degradation modes in an alternative LLW [low-level waste] disposal facility

    International Nuclear Information System (INIS)

    Cowgill, M.G.; MacKenzie, D.R.

    1989-01-01

    The materials used in the construction of alternative low-level waste disposal facilities will be subject to interaction with both the internal and the external environments associated with the facilities and unless precautions are taken, may degrade, leading to structural failure. This paper reviews the characteristics of both environments with respect to three alternative disposal concepts, then assesses how reaction with them might affect the properties of the materials, which include concrete, steel-reinforced concrete, structural steel, and various protective coatings and membranes. It identifies and evaluates the probability of reactions occurring which might lead to degradation of the materials and so compromise the structure. The probability of failure (interpreted relative to the ability of the structure to restrict ingress and egress of water) is assessed for each material and precautionary measures, intended to maximize the durability of the facility, are reviewed. 19 refs., 2 tabs

  17. Disposal Site Information Management System

    International Nuclear Information System (INIS)

    Larson, R.A.; Jouse, C.A.; Esparza, V.

    1986-01-01

    An information management system for low-level waste shipped for disposal has been developed for the Nuclear Regulatory Commission (NRC). The Disposal Site Information Management System (DSIMS) was developed to provide a user friendly computerized system, accessible through NRC on a nationwide network, for persons needing information to facilitate management decisions. This system has been developed on NOMAD VP/CSS, and the data obtained from the operators of commercial disposal sites are transferred to DSIMS semiannually. Capabilities are provided in DSIMS to allow the user to select and sort data for use in analysis and reporting low-level waste. The system also provides means for describing sources and quantities of low-level waste exceeding the limits of NRC 10 CFR Part 61 Class C. Information contained in DSIMS is intended to aid in future waste projections and economic analysis for new disposal sites

  18. UK strategy for nuclear industry LLW - 16393

    International Nuclear Information System (INIS)

    Clark, Matthew; Fisher, Joanne

    2009-01-01

    In March 2007 the UK Government and devolved administrations (for Scotland, Wales and Northern Ireland, from here on referred to as 'Government') published their policy for the management of solid low level waste ('the Policy'). The Policy sets out a number of core principles for the management of low level waste (LLW) and charges the Nuclear Decommissioning Authority with developing a UK-wide strategy in the case of LLW from nuclear sites. The UK Nuclear Industry LLW Strategy has been developed within the framework of the principles set out in the policy. A key factor in the development of this strategy has been the strategic partnership the NDA shares with the Low Level Waste Repository near Drigg (LLWR), who now have a role in developing strategy as well as delivering an optimised waste management service at the LLWR. The strategy aims to support continued hazard reduction and decommissioning by ensuring uninterrupted capability and capacity for the management and disposal of LLW in the UK. The continued availability of a disposal route for LLW is considered vital by both the nuclear industry and non-nuclear industry low level waste producers. Given that the UK will generate significantly more low level waste (∼ 3.1 million m 3 ) than there is capacity at the LLWR (∼0.75 million m 3 ), developing alternative effective ways to manage LLW is critical. The waste management hierarchy is central to the strategy, which includes strategic goals at all levels of the hierarchy to improve its application across the industry. (authors)

  19. Guidelines for radiological performance assessment of DOE low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Case, M.J.; Otis, M.D.

    1988-07-01

    This document provides guidance for conducting radiological performance assessments of Department of Energy (DOE) low-level radioactive waste (LLW) disposal facilities. The guidance is specifically intended to provide the fundamental approach necessary to meet the performance assessment requirements. The document is written for LLW facility operators or other personnel who will manage the performance assessment task. The document is meant to provide guidance for conducting performance assessments in a generally consistent manner at all DOE LLW disposal facilities. The guidance includes a summary of performance objectives to be met by LLW disposal facilities (these objectives are derived from current DOE and other applicable federal regulatory guidelines); specific criteria for an adequate performance assessment and from which a minimum set of required calculations may be determined; recommendations of methods for screening critical components of the analysis system so that these components can be addressed in detail; recommendations for the selection of existing models and the development of site-specific models; recommendations of techniques for comparison of assessment results with performance objectives; and a summary of reporting requirements

  20. Control of water infiltration into near surface LLW [low-level radioactive waste] disposal units

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.O.

    1990-12-01

    Three kinds of waste disposal unit covers a barriers to water infiltration are being investigated. They are: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g. clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained the conductive layer will wick water around the capillary break. Below grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover. Remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier, or perhaps even better, a resistive layer barrier/conductive layer barrier system. This latter system would then give long-term effective protection against water entry to waste and without institutional care. These various concepts are being assessed in six large (70ft x 45ft x 10ft each) lysimeters at Beltsville, Maryland. 6 refs., 20 figs.,

  1. Performance assessment strategy for low-level waste disposal sites

    International Nuclear Information System (INIS)

    Starmer, R.J.; Deering, L.G.; Weber, M.F.

    1988-01-01

    This paper describes US Nuclear Regulatory Commission (NRC) staff views on predicting the performance of low-level radioactive waste disposal facilities. Under the Atomic Energy Act, as amended, and the Low Level Radioactive Waste Policy Act, as amended, the NRC and Agreement States license land disposal of low-level radioactive waste (LLW) using the requirements in 10 CFR Part 61 or comparable state requirements. The purpose of this paper is to briefly describe regulatory requirements for performance assessment in low-level waste licensing, a strategy for performance assessments to support license applications, and NRC staff licensing evaluation of performance assessments. NRC's current activities in developing a performance assessment methodology will provide an overall systems modeling approach for assessing the performance of LLW disposal facilities. NRC staff will use the methodology to evaluate performance assessments conducted by applicants for LLW disposal facilities. The methodology will be made available to states and other interested parties

  2. Site selection handbook: Workshop on site selection for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1987-10-01

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) requires the Department of Energy (DOE) to provide technical assistance to ''...those compact regions, host States and nonmember States determined by the Secretary to require assistance.'' Technical assistance has been defined to include, but not be limited to, ''technical guidelines for site selection.'' This site selection workshop was developed to assist States and Compacts in developing new low-level radioactive waste (LLW) disposal sites in accordance with the requirements of the LLRWPAA. The workshop comprises a series of lectures, discussion topics, and exercises, supported by this Site Selection Workshop Handbook, designed to examine various aspects of a comprehensive site selection program. It is not an exhaustive treatment of all aspects of site selection, nor is it prescriptive. The workshop focuses on the major elements of site selection and the tools that can be used to implement the site selection program

  3. Implementation of Waste Tracking System for LLW and MLW

    International Nuclear Information System (INIS)

    Won, Y. S.; Lee, K. H.; Kim, H. J.; Lee, K. H.

    2010-01-01

    The real-time Waste Tracking System (WTS) has been implemented for the integrated management of LLW and MLW from the receiving time at the production area till the managing period after the shutdown of disposal site. The relevant information by each process on take-over and receiving plan, preliminary inspection, receiving, transportation, site inspection, disposal and shutdown is over all managed by WTS

  4. Caustic Recycling Pilot Unit to Separate Sodium from LLW at Hanford Site - 12279

    Energy Technology Data Exchange (ETDEWEB)

    Pendleton, Justin; Bhavaraju, Sai; Priday, George; Desai, Aditya; Duffey, Kean; Balagopal, Shekar [Ceramatec Inc., Salt Lake City, UT 84119 (United States)

    2012-07-01

    As part of the Department of Energy (DOE) sponsored Advanced Remediation Technologies initiative, a scheme was developed to combine Continuous Sludge Leaching (CSL), Near-Tank Cesium Removal (NTCR), and Caustic Recycling Unit (CRU) using Ceramatec technology, into a single system known as the Pilot Near-Tank Treatment System (PNTTS). The Cesium (Cs) decontaminated effluent from the NTCR process will be sent to the caustic recycle process for recovery of the caustic which will be reused in another cycle of caustic leaching in the CSL process. Such an integrated mobile technology demonstration will give DOE the option to insert this process for sodium management at various sites in Hanford, and will minimize the addition of further sodium into the waste tanks. This allows for recycling of the caustic used to remove aluminum during sludge washing as a pretreatment step in the vitrification of radioactive waste which will decrease the Low Level Waste (LLW) volume by as much as 39%. The CRU pilot process was designed to recycle sodium in the form of pure sodium hydroxide. The basis for the design of the 1/4 scale pilot caustic recycling unit was to demonstrate the efficient operation of a larger scale system to recycle caustic from the NTCR effluent stream from the Parsons process. The CRU was designed to process 0.28 liter/minute of NTCR effluent, and generate 10 M concentration of 'usable' sodium hydroxide. The proposed process operates at 40 deg. C to provide additional aluminum solubility and then recover the sodium hydroxide to the point where the aluminum is saturated at 40 deg. C. A system was developed to safely separate and vent the gases generated during operation of the CRU with the production of 10 M sodium hydroxide. Caustic was produced at a rate between 1.9 to 9.3 kg/hr. The CRU was located inside an ISO container to allow for moving of the unit close to tank locations to process the LLW stream. Actual tests were conducted with the NTCR effluent

  5. Current practices for maintaining occupational exposures ALARA at low-level waste disposal sites

    International Nuclear Information System (INIS)

    Hadlock, D.E.; Herrington, W.N.; Hooker, C.D.; Murphy, D.W.; Gilchrist, R.L.

    1983-12-01

    The United States Nuclear Regulatory Commission contracted with Pacific Northwest Laboratory (PNL) to provide technical assistance in establishing operational guidelines, with respect to radiation control programs and methods of minimizing occupational radiation exposure, at Low-Level Waste (LLW) disposal sites. The PNL, through site visits, evaluated operations at LLW disposal sites to determine the adequacy of current practices in maintaining occupational exposures as low as is reasonably achievable (ALARA). The data sought included the specifics of: ALARA programs, training programs, external exposure control, internal exposure control, respiratory protection, surveillance, radioactive waste management, facilities and equipment, and external dose analysis. The results of the study indicated the following: The Radiation Protection and ALARA programs at the three commercial LLW disposal sites were observed to be adequate in scope and content compared to similar programs at other types of nuclear facilities. However, it should be noted that there were many areas that could be improved upon to help ensure the health and safety of occupationally exposed individuals

  6. Current practices for maintaining occupational exposures ALARA at low-level waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Hadlock, D.E.; Herrington, W.N.; Hooker, C.D.; Murphy, D.W.; Gilchrist, R.L.

    1983-12-01

    The United States Nuclear Regulatory Commission contracted with Pacific Northwest Laboratory (PNL) to provide technical assistance in establishing operational guidelines, with respect to radiation control programs and methods of minimizing occupational radiation exposure, at Low-Level Waste (LLW) disposal sites. The PNL, through site visits, evaluated operations at LLW disposal sites to determine the adequacy of current practices in maintaining occupational exposures as low as is reasonably achievable (ALARA). The data sought included the specifics of: ALARA programs, training programs, external exposure control, internal exposure control, respiratory protection, surveillance, radioactive waste management, facilities and equipment, and external dose analysis. The results of the study indicated the following: The Radiation Protection and ALARA programs at the three commercial LLW disposal sites were observed to be adequate in scope and content compared to similar programs at other types of nuclear facilities. However, it should be noted that there were many areas that could be improved upon to help ensure the health and safety of occupationally exposed individuals.

  7. Siting of geological disposal facilities

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials in industrial applications, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. The Radioactive Waste Safety Standards (RADWASS) programme is the IAEA's contribution to establishing and promoting the basic safety philosophy for radioactive waste management and the steps necessary to ensure its implementation. This Safety Guide defines the process to be used and guidelines to be considered in selecting sites for deep geological disposal of radioactive wastes. It reflects the collective experience of eleven Member States having programmes to dispose of spent fuel, high level and long lived radioactive waste. In addition to the technical factors important to site performance, the Safety Guide also addresses the social, economic and environmental factors to be considered in site selection. 3 refs

  8. LLW and ILW disposal

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Summaries from the Nuclear Energy Agency of the OECD of the main programmes for low and intermediate level waste repositories in countries with the firmest timetables for their development are given in the form of a table and notes. An IAEA overview of low and intermediate level waste management practice in 26 countries is also tabulated. (author)

  9. Disposal project for LLW and VLLW generated from research facilities in Japan: A feasibility study for the near surface disposal of VLLW that includes uranium

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Hasegawa, M.; Sakamoto, Y.; Nakatani, T.

    2016-01-01

    Conclusion and future work: • JAEA plans trench disposal of U-bearing waste with less than 100 Bq/g. • Two safety measures of trench disposal of U-bearing waste have been discussed taking into account increasing radioactivity over a long period of time. 1. First is to carry out dose assessment of site use scenario by using a conservatively stylized condition. 2. Second is to control the average concentration of U in the trench facilities based on the concept of the existing exposure situation. • We are continuously developing the method for safety measures of near surface disposal of VLLW including U-bearing waste.

  10. Suggested state requirements and criteria for a low-level radioactive waste disposal site regulatory program

    International Nuclear Information System (INIS)

    Ratliff, R.A.; Dornsife, B.; Autry, V.; Gronemyer, L.; Vaden, J.; Cashman, T.

    1985-08-01

    Description of criteria and procedure is presented for a state to follow in the development of a program to regulate a LLW disposal site. This would include identifying those portions of the NRC regulations that should be matters of compatibility, identifying the various expertise and disciplines that will be necessary to effectively regulate a disposal site, identifying the resources necessary for conducting a confirmatory monitoring program, and providing suggestions in other areas which, based on experiences, would result in a more effective regulatory program

  11. Packaging LLW and ILW

    International Nuclear Information System (INIS)

    Flowers, R.H.; Owen, R.G.

    1991-01-01

    Low level waste (LLW) accounts for 70-80% by volume of all radioactive wastes produced by the nuclear industry. It has low specific activity, negligible actinide content and requires little, if any, shielding to protect workers. Volume reduction for LLW of high volume but low density may be achieved by incineration and compaction as appropriate, before packaging for disposal by near surface burial. Intermediate level waste (ILW) is treated and packed to convert it into a stable form to minimize any release of activity and make handling easier. The matrix chosen for immobilization, usually cement, polymers or bitumen, depends on the nature of the waste and the acceptance criteria of the disposal facility. The special case of LLW and ILW which will arise from reactor decommissioning is discussed. Packaging methods adopted by individual countries are reviewed. The range of costs involved for packaging ILW is indicated. There is no international consensus on the performance required from packaged waste to ensure its suitability both for interim storage and final disposal. (UK)

  12. Disposal of low-level and mixed low-level radioactive waste during 1990

    International Nuclear Information System (INIS)

    1993-08-01

    Isotopic inventories and other data are presented for low-level radioactive waste (LLW) and mixed LLW disposed (and occasionally stored) during calendar year 1990 at commercial disposal facilities and Department of Energy (DOE) sites. Detailed isotopic information is presented for the three commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. Less information is presented for the Envirocare disposal facility located near Clive, UT, and for LLW stored during 1990 at the West Valley site. DOE disposal information is included for the Savannah River Site (including the saltstone facility), Nevada Test Site, Los Alamos National Laboratory, Idaho National Engineering Laboratory, Hanford Site, Y-12 Site, and Oak Ridge National Laboratory. Summary information is presented about stored DOE LLW. Suggestions are made about improving LLW disposal data

  13. Evaluation factors for verification and validation of low-level waste disposal site models

    International Nuclear Information System (INIS)

    Moran, M.S.; Mezga, L.J.

    1982-01-01

    The purpose of this paper is to identify general evaluation factors to be used to verify and validate LLW disposal site performance models in order to assess their site-specific applicability and to determine their accuracy and sensitivity. It is intended that the information contained in this paper be employed by model users involved with LLW site performance model verification and validation. It should not be construed as providing protocols, but rather as providing a framework for the preparation of specific protocols or procedures. A brief description of each evaluation factor is provided. The factors have been categorized according to recommended use during either the model verification or the model validation process. The general responsibilities of the developer and user are provided. In many cases it is difficult to separate the responsibilities of the developer and user, but the user is ultimately accountable for both verification and validation processes. 4 refs

  14. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    International Nuclear Information System (INIS)

    Mohamed, Yasser T.

    2013-01-01

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  15. Ensuring robust decisions and deployable solutions in UK LLW management

    International Nuclear Information System (INIS)

    Clark, Matthew

    2014-01-01

    The Nuclear Decommissioning Authority (NDA) is responsible for the decommissioning and site restoration of civil nuclear liabilities in the UK. Our decommissioning programme will last over 100 years and generate approximately 3.8 million m3 of LLW, three quarters of which will be VLLW. As well as decommissioning sites, our estate includes operations, such as power generation at Wylfa and reprocessing and waste management at Sellafield. As a result we have a clear interest in effective and affordable management of low level waste. This is further enhanced by two important aspects: our role in developing and implementing strategy for the management of nuclear industry LLW in the UK and our ownership of the Low Level Waste Repository, a critical part of the UK's radioactive waste management infrastructure. Disposal capacity at LLWR is a precious resource; recognition of this fact has provided effective leverage to changing the way LLW is managed in the UK. In 2010 we published the UK Nuclear Industry LLW Strategy which comprised three main themes: the waste hierarchy; making the best use of existing LLW management assets; and, the need for new fit-for-purpose waste management routes. In order to preserve disposal capacity at LLWR we wanted to increase choice for organisations that manage LLW. Regulation of the LLW management has also had to keep pace with and enable this change. Increasing choice requires an increased focus on making robust, and not always easy, decisions. In the past, 'LLW' was simply consigned for disposal at LLWR, now LLW managers have to make decisions between clearance, exemption, reuse, recycling, incineration and disposal. Arguably, these decisions become more finely balanced at the lower end of the LLW spectrum. In the UK, a number of tools and sources of support are in place to help with this process, including: the National LLW Programme; good practice guidance (industry led) on assessing Best Available Techniques; and a

  16. Nonradiological groundwater quality at low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Goode, D.J.

    1986-04-01

    The NRC is investigating appropriate regulatory options for disposal of low-level radioactive waste containing nonradiological hazardous constituents, as defined by EPA regulations. Standard EPA/RCRA procedures to determine hazardous organics, metals, indicator parameters, and general water quality are applied to samples from groundwater monitoring wells at two commercial low-level radioactive waste disposal sites. At the Sheffield, IL site (nonoperating), several typical organic solvents are identified in elevated concentrations in onsite wells and in an offsite area exhibiting elevated tritium concentrations. At the Barnwell, SC site (operating), only very low concentrations of three organics are found in wells adjacent to disposal units. Hydrocarbons associated with petroleum products are detected at both sites. Hazardous constituents associated with previosuly identified major LLW mixed waste streams, toluene, xylene, chromium, and lead, are at or below detection limits or at background levels in all samples. Review of previously collected data also supports the conclusion that organic solvents are the primary nonradiological contaminants associated with LLW disposal

  17. Development of new low level radioactive waste disposal sites: A progress report

    International Nuclear Information System (INIS)

    Anderson, Robert T.; Antonucci, George J.; Ryan, Michael T.

    1992-01-01

    The status of the development of three new low level radioactive waste disposal facilities for the Central Midwest (Illinois), Southeastern (North Carolina) and Appalachian (Pennsylvania) compacts is presented. These three sites will dispose of about 50-65 percent of the commercial low-level waste (LLW) generated in the U.S. annually. Chem-Nuclear, as developer and proposed operator of all three sites has used a common approach to site development. This approach has been based on their twenty-plus years of operating experience and a standard technical approach. The technology employed is an above-grade, multiple engineered barrier design. The paper also contrasts actual progress at each site with a generalized project schedule. Areas of schedule delays are noted along with the steps being taken to accelerate schedule. Finally, we note that continued progress and timely start-up of operations of these new sites is critical on a national basis. This is due to the possibility of near-term closure of the existing LLW disposal sites. (author)

  18. Geohydrology of industrial waste disposal site

    International Nuclear Information System (INIS)

    Gaynor, R.K.

    1984-01-01

    An existing desert site for hazardous chemical and low-level radioactive waste disposal is evaluated for suitability. This site is characterized using geologic, geohydrologic, geochemical, and other considerations. Design and operation of the disposal facility is considered. Site characteristics are also evaluated with respect to new and proposed regulatory requirements under the Resource Conservation and Recovery Act (1976) regulations, 40 CFR Part 264, and the ''Licensing Requirements for Landfill Disposal of Radioactive Waste,'' 10 CRF Part 61. The advantages and disadvantages of siting new disposal facilities in similar desert areas are reviewed and contrasted to siting in humid locations

  19. Mixed waste disposal facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dickman, P.T.; Kendall, E.W.

    1987-01-01

    In 1984, a law suit brought against DOE resulted in the requirement that DOE be subject to regulation by the state and US Environmental Protection Agency (EPA) for all hazardous wastes, including mixed wastes. Therefore, all DOE facilities generating, storing, treating, or disposing of mixed wastes will be regulated under the Resource Conservation and Recovery Act (RCTA). In FY 1985, DOE Headquarters requested DOE low-level waste (LLW) sites to apply for a RCRA Part B Permit to operate radioactive mixed waste facilities. An application for the Nevada Test Site (NTS) was prepared and submitted to the EPA, Region IX in November 1985 for review and approval. At that time, the state of Nevada had not yet received authorization for hazardous wastes nor had they applied for regulatory authority for mixed wastes. In October 1986, DOE Nevada Operations Office was informed by the Rocky Flats Plant that some past waste shipments to NTS contained trace quantities of hazardous substances. Under Colorado law, these wastes are defined as mixed. A DOE Headquarters task force was convened by the Under Secretary to investigate the situation. The task force concluded that DOE has a high priority need to develop a permitted mixed waste site and that DOE Nevada Operations Office should develop a fast track project to obtain this site and all necessary permits. The status and issues to be resolved on the permit for a mixed waste site are discussed

  20. Geotechnical, geological, and selected radionuclide retention characteristics of the radioactive waste disposal site near the Farallon Islands

    Science.gov (United States)

    Booth, J.S.; Winters, W.J.; Poppe, L.J.; Neiheisel, J.; Dyer, R.S.

    1989-01-01

    A geotechnical and geological investigation of the Farallon Islands low-level radioactive waste (LLW) disposal area was conducted to qualitatively assess the host sediments' relative effectiveness as a barrier to radionuclide migration, to estimate the portion of the barrier that is in contact with the waste packages at the three primary disposal sites, and to provide a basic physical description of the sediments. Box cores recovered from within the general disposal area at depths of 500, 1000, and 1500 m were subcored to provide samples (~30 cm in length) for detailed descriptions, textural and mineralogical analyses, and a suite of geotechnical tests (index property, CRS consolidation, and CIU triaxial compression). -from Authors

  1. Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste

    International Nuclear Information System (INIS)

    Porter, C.L.; Widmayer, D.A.

    1995-09-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities

  2. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles (mi)) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan

  3. Review of hydrodynamic and transport models and data collected near the mid-Atlantic low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Onishi, Y.; Hibler, L.F.; Sherwood, C.R.

    1987-08-01

    The objectives of this study were to (1) briefly review and evaluate available simulation models that may be used to predict the distribution of low-level radioactive waste (LLW) from the 2800-m and 3800-m Low Level Radioactive Disposal Sites in the Mid-Atlantic Continental Slope and Rise on a regional (a few hundred kilometers square) scale, (2) identify pertinent physical, biological, and geological oceanographic data in or near those LLW disposal sites, and (3) determine minimum data requirements for regional modeling. With suitable model modifications such as turbulence closure, enhanced sediment transport, radionuclide transport, and/or curvilinear coordinate system setup, the FLESCOT model, the FLOWER model, and Blumberg's model would be appropriate candidates for regional radionuclide modeling to predict the transport and dispersion of LLW disposed in the 2800-m and 3800-m sites. Although the RMA10 model does not incorporate a turbulence closure scheme, this model, with some modifications, is also an appropriate candidate for regional radionuclide modeling. FLESCOT is currently the only one that solves distributions of flow, turbulence, salinity, water temperature, sediments, dissolved contaminants, and sediment-sorbed contaminants. Thus, the FLESCOT model is recommended to be applied to the 2800-m and 3800-m sites to predict the transport and accumulation of LLW on a regional scale

  4. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal site

    Science.gov (United States)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W.

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas:Estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge);Analyzing the hydrologic performance of engineered components of a facility;Evaluating the application of models to the prediction of facility performance; andEstimating the uncertainty in predicted facility performance.An estimate of recharge at a LLW site is important since recharge is a principal factor in controlling the release of contaminants via the groundwater pathway. The most common methods for estimating recharge are discussed in Chapter 2. Many factors affect recharge; the natural recharge at an undisturbed site is not necessarily representative either of the recharge that will occur after the site has been disturbed or of the flow of water into a disposal facility at the site. Factors affecting recharge are discussed in Chapter 2.At many sites engineered components are required for a LLW facility to meet performance requirements. Chapter 3 discusses the use of engineered barriers to control the flow of water in a LLW facility, with a particular emphasis on cover systems. Design options and the potential performance and degradation mechanisms of engineered components are also discussed.Water flow in a LLW disposal facility must be evaluated before construction of the facility. In addition, hydrologic performance must be predicted over a very long time frame. For these reasons, the hydrologic evaluation relies on the use of predictive modeling. In Chapter 4, the evaluation of unsaturated water flow modeling is discussed. A checklist of items is presented to guide the evaluation

  5. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W.

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated

  6. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.

  7. Department of Energy low-level radioactive waste disposal concepts

    International Nuclear Information System (INIS)

    Ozaki, C.; Page, L.; Morreale, B.; Owens, C.

    1990-01-01

    The Department of Energy manages its low-level waste (LLW), regulated by DOE Order 5820.2A by using an overall systems approach. This systems approach provides an improved and consistent management system for all DOE LLW waste, from generation to disposal. This paper outlines six basic disposal concepts used in the systems approach, discusses issues associated with each of the concepts, and outlines both present and future disposal concepts used at six DOE sites

  8. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  9. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    International Nuclear Information System (INIS)

    NNSA/NSO Waste Management Project

    2008-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal

  10. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Science.gov (United States)

    2010-01-01

    ... DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.52 Land disposal... wastes by placing in disposal units which are sufficiently separated from disposal units for the other... between any buried waste and the disposal site boundary and beneath the disposed waste. The buffer zone...

  11. Cost effectiveness of below-threshold waste disposal at DOE sites

    International Nuclear Information System (INIS)

    Wickham, L.E.; Smith, C.F.; Cohen, J.J.

    1986-01-01

    Previous study has indicated the feasibility of establishing a threshold of concentration below which certain low-level (radioactive wastes) (LLW) could be safely handled and disposed of by conventional means such as landfills. Such below-threshold wastes have been synonymously termed de minimis or below regulatory concern (BRC) and can be deemed appropriate for management according to their nonradiological characteristics. The objective of this study was to determine the cost effectiveness for management and disposal of below-threshold waste at certain US Department of Energy sites. The sites selected for this study were the Idaho National Engineering Laboratory and Savannah River Laboratory. Cost-benefit analysis was used to determine the impacts, benefits, and potential cost advantages of establishing and implementing a threshold limit

  12. Hazardous waste disposal sites: Report 2

    International Nuclear Information System (INIS)

    1979-12-01

    Arkansas, like virtually every other state, is faced with a deluge of hazardous waste. There is a critical need for increased hazardous waste disposal capacity to insure continued industrial development. Additionally, perpetual maintenance of closed hazardous waste disposal sites is essential for the protection of the environment and human health. Brief descriptions of legislative and regulatory action in six other states are provided in this report. A report prepared for the New York State Environmental Facilities Corp. outlines three broad approaches states may take in dealing with their hazardous waste disposal problems. These are described. State assistance in siting and post-closure maintenance, with private ownership of site and facility, appears to be the most advantageous option

  13. Evaluation of Proposed New LLW Disposal Activity Disposal of Compacted Job Control Waste, Non-compactible, Non-incinerable Waste, And Other Wasteforms In Slit Trenches

    International Nuclear Information System (INIS)

    WILHITE, ELMER L.

    2000-01-01

    The effect of trench disposal of low-level wasteforms that were not analyzed in the original performance assessment for the E-Area low-level waste facility, but were analyzed in the revised performance assessment is evaluated. This evaluation was conducted to provide a bridge from the current waste acceptance criteria, which are based on the original performance assessment, to those that will be developed from the revised performance assessment. The conclusion of the evaluation is that any waste except for materials that would retain radionuclides more strongly than soil that meets the radionuclide concentration of package limits for trench burial based on the revised performance assessment, and presented in Table 1 of this document, is suitable for trench disposal; provided that, for cellulosic material the current 40 percent restriction is retained. Table 2 of this document lists materials acceptable for trench disposal

  14. Use of engineered soils and other site modifications for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-08-01

    The U.S. Nuclear Regulatory Commission requires that low-level radioactive waste (LLW) disposal facilities be designed to minimize contact between waste and infiltrating water through the use of site design features. The purpose of this investigation is to identify engineered barriers and evaluate their ability to enhance the long-term performance of an LLW disposal facility. Previously used barriers such as concrete overpacks, vaults, backfill, and engineered soil covers, are evaluated as well as state-of-the-art barriers, including an engineered sorptive soil layer underlying a facility and an advanced design soil cover incorporating a double-capillary layer. The purpose of this investigation is also to provide information in incorporating or excluding specific engineered barriers as part of new disposal facility designs. Evaluations are performed using performance assessment modeling techniques. A generic reference disposal facility design is used as a baseline for comparing the improvements in long-term performance offered by designs incorporating engineered barriers in generic and humid environments. These evaluations simulate water infiltration through the facility, waste leaching, radionuclide transport through the facility, and decay and ingrowth. They also calculate a maximum (peak annual) dose for each disposal system design. A relative dose reduction factor is calculated for each design evaluated. The results of this investigation are presented for concrete overpacks, concrete vaults, sorptive backfill, sorptive engineered soil underlying the facility, and sloped engineered soil covers using a single-capillary barrier and a double-capillary barrier. Designs using combinations of barriers are also evaluated. These designs include a vault plus overpacks, sorptive backfill plus overpacks, and overpack with vault plus sorptive backfill, underlying sorptive soil, and engineered soil cover

  15. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is

  16. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is

  17. LLW Notes, Volume 12, Number 3

    International Nuclear Information System (INIS)

    Norris, C.; Brown, H.; Colsant, J.; Lovinger, T.; Scheele, L.; Shaker, M.A.

    1997-03-01

    Contents include articles entitled: California DHS sues US Interior Department to compel land transfer; LLW Forum holds winter meeting; LLW Forum waste information working group meets; LLW Forum regulatory issues discussion group meets; Envirocare investigation transferred to feds; Host state TCC meets in Laughlin, Nevada; BLM to require new permit for California site testing; Federal agencies and committees; Pena sworn in as Energy Secretary, Grumbly departs DOE; U.S. Supreme Court tackles property rights issues; GAO to study DOI's actions; Congress scrutinizes FY '98 budget requests; and Senate committee passes high-level waste bill: Clinton threatens to veto

  18. Cost effectiveness of below-threshold waste disposal at DOE sites

    International Nuclear Information System (INIS)

    Smith, C.F.; Cohen, J.J.

    1987-01-01

    A minimal health and environmental risk, limitations on disposal capacity, and the relatively high costs of low level waste (LLW) disposal are basic driving forces that lead to consideration of less restrictive disposal of wastes with very low levels of radiological contamination. The term threshold limit describes radioactive wastes that have sufficiently low-levels of radiological content to be managed according to their nonradiological properties. Given the efforts described elsewhere to provide guidance on the definition of below threshold (BT) doses and concentration levels, the purpose of this study was to quantify the resultant quantities, costs and cost effectiveness of BT disposal. For purposes of consistency with the previous demonstrations of the application of the threshold concept, available data for waste streams at the Idaho National Engineering Laboratory (INEL) and the Savannah River Plant (SRP) sites were collected and analyzed with regard to volumes, radionuclide concentrations, and disposal costs. From this information, quantities of BT waste, potential cost savings and cost effectiveness values were estimated. 1 reference, 5 tables

  19. Spatial and temporal distribution of risks associated with low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Thompson, P.B.

    1988-01-01

    The major purposes of this dissertation are to examine the economic tradeoffs which arise in the process of LLW disposal and to derive a framework within which the impact of these tradeoffs on LLW disposal policy can be analyzed. There are two distinct stages in the disposal of LLW - the transportation of the waste from sources to disposal sites and the disposal of the waste. The levels of costs and risks associated with these two stages depend on the number and location of disposal sites. Having more disposal sites results in lower transportation costs and risks but also in greater disposal costs and risks. The tradeoff between transportation costs and risks can also be viewed as a tradeoff between present and future risks. Therefore, an alteration in the spatial distribution of LLW disposal sites necessarily implies a change in the temporal distribution of risks. These tradeoffs are examined in this work through the use of a transportation model to which probabilistic radiation exposure constraints are added. Future (disposal) risks are discounted. The number and capacities of LLW disposal sites are varied in order to derive a series of system costs and corresponding expected cancers. This provides policy makers with a cost vs. cancers possibility function

  20. Radionuclide migration in ground water at a low-level waste disposal site: a comparison of predicted radionuclide transport modeling versus field observations

    International Nuclear Information System (INIS)

    Bergeron, M.P.; Robertson, D.E.; Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.

    1987-01-01

    At the Chalk River Nuclear Laboratories (CRNL), in Ontario, Canada, a number of LLW shallow-land burial facilities have existed for 25-30 years. These facilities are useful for testing the concept of site modelability. In 1984, CRNL and the Pacific Northwest Laboratory (PNL) established a cooperative research program to examine two disposal sites having plumes of slightly contaminated ground water for study. This report addresses the LLW Nitrate Disposal Pit site, which received liquid wastes containing approximately 1000-1500 curies of mixed fission products during 1953-54. The objective of this study is to test the regulatory requirement that a site be modeled and to use the Nitrate Disposal Pit site as a field site for testing the reliability of models in predicting radionuclide movement in ground water. The study plan was to approach this site as though it were to be licensed under the requirements of 10 CFR 61. Under the assumption that little was known about this site, a characterization plan was prepared describing the geologic, hydrologic, and geochemical information needed to assess site performance. After completion of the plan, site data generated by CRNL were selected to fill the plan data requirements. This paper describes the site hydrogeology, modeling of ground water flow, the comparison of observed and predicted radionuclide movement, and summarizes the conclusions and recommendations. 3 references, 10 figures

  1. Humboldt Open Ocean Disposal Site (HOODS) Survey Work 2014

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Humboldt Open Ocean Disposal Site (HOODS) is a dredged material disposal site located 3 nautical miles (nm) offshore of Humboldt Bay in Northern California....

  2. Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

    1995-03-01

    In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site

  3. Disposal of Hanford site tank wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1993-09-01

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 x 10 5 m 3 of solid and liquid wastes. Wastes in the SSTs contain about 5.7 x 10 18 Bq (170 MCi) of various radionuclides including 90 Sr, 99 Tc, 137 Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 x 10 4 m 3 of liquid (mainly) and solid wastes; approximately 4 x 10 18 Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes

  4. Basic approach to the disposal of low level radioactive waste generated from nuclear reactors containing comparatively high radioactivity

    International Nuclear Information System (INIS)

    Moriyama, Yoshinori

    1998-01-01

    Low level radioactive wastes (LLW) generated from nuclear reactors are classified into three categories: LLW containing comparatively high radioactivity; low level radioactive waste; very low level radioactive waste. Spent control rods, part of ion exchange resin and parts of core internals are examples of LLW containing comparatively high radioactivity. The Advisory Committee of Atomic Energy Commission published the report 'Basic Approach to the Disposal of LLW from Nuclear Reactors Containing Comparatively High Radioactivity' in October 1998. The main points of the proposed concept of disposal are as follows: dispose of underground deep enough not be disturb common land use (e.g. 50 to 100 m deep); dispose of underground where radionuclides migrate very slowly; dispose of with artificial engineered barrier which has the same function as the concrete pit; control human activities such as land use of disposal site for a few hundreds years. (author)

  5. LLW Forum meeting report

    International Nuclear Information System (INIS)

    1996-01-01

    This report summarizes the Low-Level Radioactive Waste Forum (LLW Forum) meeting on May 29 through May 31, 1996.The LLW Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  6. LLW Forum meeting report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report summarizes the Low-Level Radioactive Waste Forum (LLW Forum) meeting on May 29 through May 31, 1996.The LLW Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  7. DBMS: a tool for managing LLW data

    International Nuclear Information System (INIS)

    Vlajcic, P.

    1984-01-01

    As part of the DOE's National Low-Level Radioactive Waste Management Program, a Data Base Management System (DBMS) has been developed by EG and G Idaho, lead contractor for the national LLW management program, in cooperation with the DOE and the Southern States Energy Board, a regional research group sponsored by 17 states. Basically, DBMS offers states free use of a powerful central computer (located in Idaho) for the storage, processing, and retrieval of LLW data, and the capability to forecast their handling, treatment, transport, and disposal needs

  8. Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste

    International Nuclear Information System (INIS)

    Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

    1996-03-01

    Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units

  9. Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

    1996-03-01

    Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units.

  10. Comments on EPA's LLW preproposal

    International Nuclear Information System (INIS)

    Littleton, B.K.; Weinstock, L.

    1995-01-01

    The Environmental Protection Agency (EPA) is currently developing standards for the management, storage, and disposal of Low-Level Radioactive Waste (LLW). The Atomic Energy Act delegated EPA, among other provisions, the authority to establish generally applicable standards for the disposal of radioactive waste to ensure that the public and the environment are adequately protected from potential radiation impacts. As an initial effort to open communications on a standard for LLW, the Agency developed a preproposal draft (Preproposal Draft of 40 CFR Part 193 - 30 Nov 94) and circulated it to interested parties for review and comment. The extended comment period ended April 12, 1995. A summary of the comments received and analyzed to date follows. After all comments have been analyzed, the rule will undergo an Agency clearance process and be sent to the Office of Management and Budget for review. After that review, the formal process of publication of the proposed rule in the Federal Register and the formal public comment period will begin

  11. Establishment of new disposal capacity for the Savannah River Plant

    International Nuclear Information System (INIS)

    Albenesius, E.L.; Wilhite, E.L.

    1987-01-01

    Two new low-level waste (LLW) disposal sites for decontaminated salt solidified with cement and fly ash (saltstone) and for conventional solid LLW are planned for SRP in the next several years. An above-ground vault disposal system for saltstone was designed to minimize impact on the environment by controlling permeability and diffusivity of the waste form and concrete liner. The experimental program leading to the engineered disposal system included formulation studies, multiple approaches to measurement of permeability and diffusivity, extensive mathematical modeling, and large-scale lysimeter tests to validate model projections. The overall study is an example of the systems approach to disposal site design to achieve a predetermined performance objective. The same systems approach is being used to develop alternative designs for disposal of conventional LLW at the Savannah River Plant. 14 figures

  12. Siting of near surface disposal facilities

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials in industrial applications, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. The Radioactive Waste Safety Standards (RADWASS) programme is the IAEA's contribution to establishing and promoting, in a coherent and comprehensive manner, the basic safety philosophy for radioactive waste management and the steps necessary to ensure its implementation. The Safety Standards are supplemented by a number of Safety Guides and Safety Practices. This Safety Guide defines the site selection process and criteria for identifying suitable near surface disposal facilities for low and intermediate level solid wastes. Management of the siting process and data needed to apply the criteria are also specified. 4 refs

  13. Meeting performance objectives for Low-Level Radioactive Disposal Waste Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Taylor, G.E.

    1992-01-01

    A new Low-Level Radioactive Waste (LLW) disposal facility at the Savannah River Site is presently being constructed. The facility was designed to meet specific performance objectives (derived from DOE Order 5820.2A and proposed EPA Regulation 40CFR 193) in the disposal of containerized Class A and B wastes. The disposal units have been designed as below-grade concrete vaults. These vaults will be constructed using uniquely designed blast furnace slag + fly as concrete mix, surrounded by a highly permeable drainage layer, and covered with an engineered clay cap to provide the necessary environmental isolation of the waste form to meet the stated performance objectives. The concrete mix used in this facility, is the first such application in the United States. These vaults become operational in September 1992 and will become the first active facility of its kind, several years ahead of those planned in the commercial theater. This paper will discuss the selection of the performance objectives and conceptual design

  14. Licensing plan for UMTRA project disposal sites

    International Nuclear Information System (INIS)

    1993-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office developed a plan to define UMTRA Project licensing program objectives and establish a process enabling the DOE to document completion of remedial actions in compliance with 40 CFR 1 92 and the requirements of the NRC general license. This document supersedes the January 1987 Project Licensing Plan (DOE, 1987). The plan summarizes the legislative and regulatory basis for licensing, identifies participating agencies and their roles and responsibilities, defines key activities and milestones in the licensing process, and details the coordination of these activities. This plan provides an overview of the UMTRA Project from the end of remedial actions through the NRC's acceptance of a disposal site under the general license. The licensing process integrates large phases of the UMTRA Project. Other programmatic UMTRA Project documents listed in Section 6.0 provide supporting information

  15. Radionuclides at the Hudson Canyon disposal site

    International Nuclear Information System (INIS)

    Schell, W.R.; Nevissi, A.E.

    1983-01-01

    A sampling and analytical program was initiated in June 1978 to measure radionuclides in water, sediments, and biota collected at the deepwater (4000 m) radioactive waste disposal site at the mouth of the Hudson Canyon 350km off New York Harbor in the western Atlantic Ocean. Plutonium, americium, cesium, strontium, and uranium series isotopes were measured in selected samples; the /sup 210/Pb data were used to give sedimentation and mixing rates in the upper sediment layers. The results showed that /sup 137/Cs, /sup 239,240/Pu, and /sup 238/Pu were found at low concentrations in the skin, viscera, and stomach contents for some of the fish collected. Significant concentrations of /sup 241/Am were found in tissues of the common rattail Coryphaenoides (Macrouridae) collected at the disposal site, suggesting a local source for this radionuclide and biological accumulation. The edible muscle of this fish contained less than 2.6 x 10/sup -5/ Bq g/sup -1/ (dry wt) of /sup 239,240/Pu. Radionuclides measured in sediment-core profiles showed that mixing occurred to depths of 16 cm and that variable sedimentation or mixing rates, or both, exist at 4000 m deep. Radionuclide deposition near the canisters was not found to be significantly higher than the expected fallout levels at 4000 m deep. At the mouth of the Hudson Canyon variable sedimentation and mixing rates were found using the natural unsupported /sup 210/Pb tracer values; these variable rates were attributed to sediment transport by the currents and to bioturbation

  16. Evaluation and Quantification of Uncertainty in the Modeling of Contaminant Transport and Exposure Assessment at a Radioactive Waste Disposal Site

    Science.gov (United States)

    Tauxe, J.; Black, P.; Carilli, J.; Catlett, K.; Crowe, B.; Hooten, M.; Rawlinson, S.; Schuh, A.; Stockton, T.; Yucel, V.

    2002-12-01

    The disposal of low-level radioactive waste (LLW) in the United States (U.S.) is a highly regulated undertaking. The U.S. Department of Energy (DOE), itself a large generator of such wastes, requires a substantial amount of analysis and assessment before permitting disposal of LLW at its facilities. One of the requirements that must be met in assessing the performance of a disposal site and technology is that a Performance Assessment (PA) demonstrate "reasonable expectation" that certain performance objectives, such as dose to a hypothetical future receptor, not be exceeded. The phrase "reasonable expectation" implies recognition of uncertainty in the assessment process. In order for this uncertainty to be quantified and communicated to decision makers, the PA computer model must accept probabilistic (uncertain) input (parameter values) and produce results which reflect that uncertainty as it is propagated through the model calculations. The GoldSim modeling software was selected for the task due to its unique facility with both probabilistic analysis and radioactive contaminant transport. Probabilistic model parameters range from water content and other physical properties of alluvium to the activity of radionuclides disposed to the amount of time a future resident might be expected to spend tending a garden. Although these parameters govern processes which are defined in isolation as rather simple differential equations, the complex interaction of couple processes makes for a highly nonlinear system with often unanticipated results. The decision maker has the difficult job of evaluating the uncertainty of modeling results in the context of granting permission for LLW disposal. This job also involves the evaluation of alternatives, such as the selection of disposal technologies. Various scenarios can be evaluated in the model, so that the effects of, for example, using a thicker soil cap over the waste cell can be assessed. This ability to evaluate mitigation

  17. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site - 8422

    International Nuclear Information System (INIS)

    D Wieland; V Yucel; L Desotell; G Shott; J Wrapp

    2008-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators

  18. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  19. Development of low-level radioactive waste disposal capacity in the United States - progress or stalemate?

    International Nuclear Information System (INIS)

    Devgun, J.S.; Larson, G.S.

    1995-01-01

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The U.S. nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW - industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW - face the same storage and cost uncertainties. This paper will summarize the current status of U.S. low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change

  20. Development of low-level radioactive waste disposal capacity in the United States -- Progress or stalemate?

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1995-01-01

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The US nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW -- industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW -- face the same storage and cost uncertainties. This paper will summarize the current status of US low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change

  1. A Probabilistic Performance Assessment Study of Potential Low-Level Radioactive Waste Disposal Sites in Taiwan

    Science.gov (United States)

    Knowlton, R. G.; Arnold, B. W.; Mattie, P. D.; Kuo, M.; Tien, N.

    2006-12-01

    For several years now, Taiwan has been engaged in a process to select a low-level radioactive waste (LLW) disposal site. Taiwan is generating LLW from operational and decommissioning wastes associated with nuclear power reactors, as well as research, industrial, and medical radioactive wastes. The preliminary selection process has narrowed the search to four potential candidate sites. These sites are to be evaluated in a performance assessment analysis to determine the likelihood of meeting the regulatory criteria for disposal. Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research have been working together to develop the necessary performance assessment methodology and associated computer models to perform these analyses. The methodology utilizes both deterministic (e.g., single run) and probabilistic (e.g., multiple statistical realizations) analyses to achieve the goals. The probabilistic approach provides a means of quantitatively evaluating uncertainty in the model predictions and a more robust basis for performing sensitivity analyses to better understand what is driving the dose predictions from the models. Two types of disposal configurations are under consideration: a shallow land burial concept and a cavern disposal concept. The shallow land burial option includes a protective cover to limit infiltration potential to the waste. Both conceptual designs call for the disposal of 55 gallon waste drums within concrete lined trenches or tunnels, and backfilled with grout. Waste emplaced in the drums may be solidified. Both types of sites are underlain or placed within saturated fractured bedrock material. These factors have influenced the conceptual model development of each site, as well as the selection of the models to employ for the performance assessment analyses. Several existing codes were integrated in order to facilitate a comprehensive performance assessment methodology to evaluate the potential disposal sites. First, a need

  2. Site Characterization Of Borehole Disposal Facility (BOSS)

    International Nuclear Information System (INIS)

    Kamarudin Samuding; Mohd Abd Wahab Yusof; Mohd Muzamil; Nazran Harun; Nurul Fairuz Diyana Bahrudin; Ismail, C. Mohamad; Kalam

    2014-01-01

    Site characterization study is one of the major components in assessing the potential site for borehole disposal facility. The main objectives of this study are to obtain the geology, geomorphology, hydrogeology and geochemistry information in order to understand the regional geological setting, its past evolution and likely future natural evolution over the assessment time frame. This study was focused on the geological information, borehole log and hydrogeological information. Geological information involve general geology, lineament, topography, structure geology, geological terrain. Whereas Borehole log information consists of lithology, soil and rock formation, gamma logging data and physical properties of soil and rock. Hydrogeological information was emphasized on the groundwater flow, physical parameter as well as geochemical data. Geological mapping shows the study area is underlain by metamorphic rock of the Kenny Hill Formation. Lithologically, it composed of psammitic schist of sandstone origin and phyllite. Based on the borehole log profile, the study area is covered by thick layer of residual soil and estimated not less than 10 m. Those foliated rocks tend to break or split along the foliation planes. The foliation or schistosity may also serve as conduit for groundwater migration. Main structural geology features in the study area trend predominantly in North to Northeast directions. Major fault, the UKM Fault trends in NE-SW direction about 0.5 km located to the east of the proposed borehole site. The groundwater flow direction is influenced by the structure and bedding of the rock formation. Whereas the groundwater flow velocity in the borehole ranges 2.15 - 5.24 x 10 -4 m/ sec. All the data that are obtained in this study is used to support the Safety Assessment and Safety Case report. (author)

  3. 40 CFR 228.9 - Disposal site monitoring.

    Science.gov (United States)

    2010-07-01

    ... Section 228.9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE MANAGEMENT OF DISPOSAL SITES FOR OCEAN DUMPING § 228.9 Disposal site monitoring. (a) The... following components: (1) Trend assessment surveys conducted at intervals frequent enough to assess the...

  4. Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    2000-01-01

    A vitrification process was developed and successfully implemented by the US Department of Energy's (DOE) Savannah River Site (SRS) and at the West Valley Nuclear Services (WVNS) to convert high-level liquid nuclear wastes (HLLW) to a solid borosilicate glass for safe long term geologic disposal. Over the last decade, SRS has successfully completed two additional vitrification projects to safely dispose of mixed low level wastes (MLLW) (radioactive and hazardous) at the SRS and at the Oak Ridge Reservation (ORR). The SRS, in conjunction with other laboratories, has also demonstrated that vitrification can be used to dispose of a wide variety of MLLW and low-level wastes (LLW) at the SRS, at ORR, at the Los Alamos National Laboratory (LANL), at Rocky Flats (RF), at the Fernald Environmental Management Project (FEMP), and at the Hanford Waste Vitrification Project (HWVP). The SRS, in conjunction with the Electric Power Research Institute and the National Atomic Energy Commission of Argentina (CNEA), have demonstrated that vitrification can also be used to safely dispose of ion-exchange (IEX) resins and sludges from commercial nuclear reactors. In addition, the SRS has successfully demonstrated that numerous wastes declared hazardous by the US Environmental Protection Agency (EPA) can be vitrified, e.g. mining industry wastes, contaminated harbor sludges, asbestos containing material (ACM), Pb-paint on army tanks and bridges. Once these EPA hazardous wastes are vitrified, the waste glass is rendered non-hazardous allowing these materials to be recycled as glassphalt (glass impregnated asphalt for roads and runways), roofing shingles, glasscrete (glass used as aggregate in concrete), or other uses. Glass is also being used as a medium to transport SRS americium (Am) and curium (Cm) to the Oak Ridge Reservation (ORR) for recycle in the ORR medical source program and use in smoke detectors at an estimated value of $1.5 billion to the general public

  5. Evaluating Options for Disposal of Low-Level Waste at LANL

    International Nuclear Information System (INIS)

    Hargis, K.M.; French, S.B.; Boyance, J.A.

    2009-01-01

    Los Alamos National Laboratory (LANL) generates a wide range of waste types, including solid low-level radioactive waste (LLW), in conducting its national security mission and other science and technology activities. Although most of LANL's LLW has been disposed on-site, limitations on expansion, stakeholder concerns, and the potential for significant volumes from environmental remediation and decontamination and demolition (D and D) have led LANL to evaluate the feasibility of increasing off-site disposal. It appears that most of the LLW generated at LANL would meet the Waste Acceptance Criteria at the Nevada Test Site or available commercial LLW disposal sites. Some waste is considered to be problematic to transport to off-site disposal even though it could meet the off-site Waste Acceptance Criteria. Cost estimates for off-site disposal are being evaluated for comparison to estimated costs under the current plans for continued on-site disposal. An evaluation of risks associated with both on-site and off-site disposal will also be conducted. (authors)

  6. Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Price, L.

    1994-09-01

    The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE's Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS

  7. Feasibility study on equipment of LLW management business system

    International Nuclear Information System (INIS)

    Shimizu, Takafumi

    2010-01-01

    LLW from university and private company has been kept in their own nuclear facilities in Japan. RANDEC has been studying business system for the treatment and conditioning of LLW before disposal. Reference to proven waste treatment process used in Nuclear Power Plant, it was studied that the appropriate treatment process for the LLW from university and private company. The waste will be collected from the university and private company to a central treatment facility. After operations such as unpacking, classification, compression, incineration and others, the waste will be treated to waste form. Most equipment are adopted by the process technology used in Nuclear Power Plant. But some equipment such as measurement of radio activity and solidification of powder need to be studied for the treatment of LLW from university and private company. (author)

  8. Current status of sea transport of nuclear fuel materials and LLW in Japan

    International Nuclear Information System (INIS)

    Kitagawa, Hiroshi; Akiyama, Hideo

    2000-01-01

    Along with the basic policy of the nuclear fuel cycle of Japan, many fuel cycle facilities have been already constructed in Rokkasho-Mura, Aomori prefecture, such as the uranium enrichment plant, the low level waste disposal center and the receiving pool of the spent nuclear fuels for reprocessing. These facilities belong to the Japan Nuclear Fuel Limited. (JNFL). Domestic sea transport of the spent nuclear fuels (SF) has been carried out since 1977 to the Tokai Reprocessing Plant, and the first sea transport of the SF to the fuel cycle facility in Rokkasho-Mura was done in Oct, 1998 using a new exclusive ship 'Rokuei-Maru'. Sea transport of the low level radioactive wastes (LLW) has been carried out since 1992 to the Rokkasho LLW Disposal Center, and about 130,000 LLW drams were transported from the nuclear power plant sites. These sea transport have demonstrated the safety of the transport of the nuclear fuel cycle materials. It is hoped that the safe sea transport of the nuclear fuel materials will contribute to the more progress of the nuclear fuel cycle activities of Japan. (author)

  9. On-site disposal as a decommissioning strategy

    International Nuclear Information System (INIS)

    1999-11-01

    On-site disposal is not a novel decommissioning strategy in the history of the nuclear industry. Several projects based on this strategy have been implemented. Moreover, a number of studies and proposals have explored variations within the strategy, ranging from in situ disposal of entire facilities or portions thereof to disposal within the site boundary of major components such as the reactor pressure vessel or steam generators. Regardless of these initiatives, and despite a significant potential for dose, radioactive waste and cost reduction, on-site disposal has often been disregarded as a viable decommissioning strategy, generally as the result of environmental and other public concerns. Little attention has been given to on-site disposal in previous IAEA publications in the field of decommissioning. The objective of this report is to establish an awareness of technical factors that may or may not favour the adoption of on-site disposal as a decommissioning strategy. In addition, this report presents an overview of relevant national experiences, studies and proposals. The expected end result is to show that, subject to safety and environmental protection assessment, on-site disposal can be a viable decommissioning option and should be taken into consideration in decision making

  10. Disposal facilities for radioactive waste - legislative requirements for siting

    International Nuclear Information System (INIS)

    Markova-Mihaylova, Radosveta

    2015-01-01

    The specifics of radioactive waste, namely the content of radionuclides require the implementation of measures to protect human health and the environment against the hazards arising from ionizing radiation, including disposal of waste in appropriate facilities. The legislative requirements for siting of such facilities, and classification of radioactive waste, as well as the disposal methods, are presented in this publication

  11. Basic principles and criteria on radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Dlouhy, Z.; Kropikova, S.

    1980-01-01

    The basic principles are stated of radiation protection of the workers at radioactive waste disposal facilities, which must be observed in the choice of radioactive waste disposal sites. The emergency programme, the operating regulations and the safety report are specified. Workplace safety regulations are cited. (author)

  12. Final environmental assessment for off-site transportation of low-level waste from four California sites under the management of the U.S. Department of Energy Oakland Operations Office

    International Nuclear Information System (INIS)

    1997-10-01

    The Department of Energy Oakland Operations Office (DOE/OAK) manages sites within California that generate Low Level Waste (LLW) in the course or routine site operations. It is the preference of the DOE to dispose of LLW at federally owned and DOE-operated disposal facilities; however, in some circumstances DOE Headquarters has determined that disposal at commercial facilities is appropriate, as long as the facility meets all regulatory requirements for the acceptance and disposal of LLW, including the passage of a DOE audit to determine the adequacy of the disposal site. The DOE would like to ship LLW from four DOE/OAK sites in California which generate LLW, to NRC-licensed commercial nuclear waste disposal facilities such as Envirocare in Clive, Utah and Chem Nuclear in Barnwell, South Carolina. Transportation impacts for shipment of LLW and MLLW from DOE Oakland sites to other DOE sites was included in the impacts identified in the Department's Waste Management Programmatic Environmental Impact Statement (WM-PEIS), published in May, 1997, and determined to be low. The low impacts for shipment to commercial sites identified herein is consistent with the WM-PEIS results

  13. Low-level waste disposal site selection demonstration

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1984-01-01

    This paper discusses the results of recent studies undertaken at EPRI related to low-level waste disposal technology. The initial work provided an overview of the state of the art including an assessment of its influence upon transportation costs and waste form requirements. The paper discusses work done on the overall system design aspects and computer modeling of disposal site performance characteristics. The results of this analysis are presented and provide a relative ranking of the importance of disposal parameters. This allows trade-off evaluations to be made of factors important in the design of a shallow land burial facility. To help minimize the impact of a shortage of low-level radioactive waste disposal sites, EPRI is closely observing the development of bellweather projects for developing new sites. The purpose of this activity is to provide information about lessons learned in those projects in order to expedite the development of additional disposal facilities. This paper describes most of the major stems in selecting a low-level radioactive waste disposal site in Texas. It shows how the Texas Low-Level Radioactive Waste Disposal Authority started with a wide range of potential siting areas in Texas and narrowed its attention down to a few preferred sites. The parameters used to discriminate between large areas of Texas and, eventually, 50 candidate disposal sites are described, along with the steps in the process. The Texas process is compared to those described in DOE and EPRI handbooks on site selection and to pertinent NRC requirements. The paper also describes how an inventory of low-level waste specific to Texas was developed and applied in preliminary performance assessments of two candidate sites. Finally, generic closure requirements and closure operations for low-level waste facilities in arid regions are given

  14. Radioactive waste disposal: Recommendations for a repository site selection

    International Nuclear Information System (INIS)

    Cadelli, N.; Orlowski, S.

    1992-01-01

    This report is a guidebook on recommendations for site selection of radioactive waste repository, based on a consensus in european community. This report describes particularly selection criteria and recommendations for radioactive waste disposal in underground or ground repositories. 14 refs

  15. Evaluation of shale hosted low-level waste disposal sites in semi-arid environments: Final report

    International Nuclear Information System (INIS)

    Roggenthen, W.M.; Rahn, P.H.; Arthur, R.C.; Miller, J.R.; Bangsund, W.J.; Eberlin, J.

    1985-09-01

    This report covers the findings of a multidisciplinary investigation intended to delineate critical factors and concerns associated with shale hosted, low-level radioactive waste disposal sites located in semiarid environments. The investigations focus primarily upon concerns regarding the hydrology, geochemistry, and meteorology of such an environment. The studies described within this report specifically do not constitute an evaluation of any one particular site nor even a particular class of sites. Rather, it is the intention of the report to present data and insights that would assist private concerns and governmental agencies in the efficient and prudent development of such disposal areas. This report assumes that the hypothetical waste site in question would be developed as a trench type operation similar to that used at Barnwell, South Carolina, with variations upon the techniques used at Beatty Flat, Nevada, and Hanford, Washington. The trench design (Figures 1 and 2) is assumed to be similar to that generic design described in ''Procedures and Technology for Shallow Land Burial, DOE/LLw-13Td, 1983) although it is also assumed that improvements and adaptations will be made upon this basic design to meet the individual needs of a particular site. During the preparation of this report it became apparent that new types of trench design are being studied. Discussions of these trench design proposals are not central to this report. The examples of trench design in Figures 1 and 2 are presented only to give an idea as to the general philosophy of construction of shallow burial facilities

  16. Social and institutional evaluation report for Greater-Than-Class C Low-Level Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Anderson, T.L.; Lewis, B.E.; Turner, K.H.; Rozelle, M.A.

    1993-10-01

    This report identifies and characterizes social and institutional issues that would be relevant to the siting, licensing, construction, closure, and postclosure of a Greater-Than-Class-C low-level radioactive waste (GTCC LLW) disposal facility. A historical perspective of high-level radioactive waste (HLW) and LLW disposal programs is provided as an overview of radioactive waste disposal and to support the recommendations and conclusions in the report. A characterization of each issue is provided to establish the basis for further evaluations. Where applicable, the regulatory requirements of 10 CFR 60 and 61 are incorporated in the issue characterizations. The issues are used to compare surface, intermediate depth, and deep geologic disposal alternatives. The evaluation establishes that social and institutional issues do not significantly discriminate among the disposal alternatives. Recommendations are provided for methods by which the issues could be considered throughout the lifecycle of a GTCC LLW disposal program

  17. Social and institutional evaluation report for Greater-Than-Class C Low-Level Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.L.; Lewis, B.E.; Turner, K.H.; Rozelle, M.A. [Dames and Moore, Denver, CO (United States)

    1993-10-01

    This report identifies and characterizes social and institutional issues that would be relevant to the siting, licensing, construction, closure, and postclosure of a Greater-Than-Class-C low-level radioactive waste (GTCC LLW) disposal facility. A historical perspective of high-level radioactive waste (HLW) and LLW disposal programs is provided as an overview of radioactive waste disposal and to support the recommendations and conclusions in the report. A characterization of each issue is provided to establish the basis for further evaluations. Where applicable, the regulatory requirements of 10 CFR 60 and 61 are incorporated in the issue characterizations. The issues are used to compare surface, intermediate depth, and deep geologic disposal alternatives. The evaluation establishes that social and institutional issues do not significantly discriminate among the disposal alternatives. Recommendations are provided for methods by which the issues could be considered throughout the lifecycle of a GTCC LLW disposal program.

  18. Modeling the economics of LLW volume reduction

    International Nuclear Information System (INIS)

    Voth, M.H.; Witzig, W.F.

    1986-01-01

    Generators of low-level (radioactive) waste (LLW) are under pressure to implement volume reduction (VR) programs for political and economic reasons. Political reasons include the appearance of generating less waste or meeting quotas. Economic reasons include avoiding high disposal costs and associated surcharges. Volume reduction results in less total volume over which fixed disposal costs are allocated and therefore higher unit costs for disposal. As numerous small compacts are developed, this often overlooked effect becomes more pronounced. The described model presents two unique significant features. First, a feedback loop considers the impact of VR on disposal rates, and second, it appeals to logic without extensive knowledge of VR technology or computer modeling. The latter feature is especially useful in conveying information to students and nontechnical decision makers, demonstrating the impact of each of a complicated set of variables with reproducible results

  19. Site evaluation for disposal facilities in salt

    International Nuclear Information System (INIS)

    Brewitz, W.

    1982-01-01

    Although the various geoscientific investigations are not finished yet, the results so far show that the Konrad mine has some outstanding geological features as required for a safe disposal of radioactive wastes. The iron ore formation is extremely dry. Seepage water is no threat to the waste disposal operation and the repository itself. The construction of stable underground storage rooms which are sufficiently seized in volume is possible. Galleries containing wastes in drums or contaminated components can be refilled and sealed efficiently as well as the rest of the mine including the two shafts. Thereafter the geological containment with its favourable structure and ideal petrology will be an effective barrier against the contamination of the biosphere. As investigated this applies in particular to the low-active wastes with their specific nuclide inventory and the short decay time. (orig.)

  20. Rooting depths of plants on low-level waste disposal sites

    International Nuclear Information System (INIS)

    Foxx, T.S.; Tierney, G.D.; Williams, J.M.

    1984-11-01

    In 1981-1982 an extensive bibliographic study was done to reference rooting depths of native plants in the United States. The data base presently contains 1034 different rooting citations with approximately 12,000 data elements. For this report, data were analyzed for rooting depths related to species found on low-level waste (LLW) sites at Los Alamos National Laboratory. Average rooting depth and rooting frequencies were determined and related to present LLW maintenance. The data base was searched for information on rooting depths of 53 species found on LLW sites at Los Alamos National Laboratory. The study indicates 12 out of 13 grasses found on LLW sites root below 91 cm. June grass [Koeleria cristata (L.) Pers.] (76 cm) was the shallowest rooting grass and side-oats grama [Bouteloua curtipendula (Michx.) Torr.] was the deepest rooting grass (396 cm). Forbs were more variable in rooting depths. Indian paintbrush (Castelleja spp.) (30 cm) was the shallowest rooting forb and alfalfa (Medicago sativa L.) was the deepest (>3900 cm). Trees and shrubs commonly rooted below 457 cm. The shallowest rooting tree was elm (Ulmus pumila L.) (127 cm) and the deepest was one-seed juniper [Juniperus monosperma (Engelm) Sarg.] (>6000 cm). Apache plume [Fallugia paradoxa (D. Don) Endl.] rooted to 140 cm, whereas fourwing saltbush [Atriplex canecens (Pursh) Nutt.] rooted to 762 cm

  1. Land suitability maps for waste disposal siting

    International Nuclear Information System (INIS)

    Hrasna, M.

    1996-01-01

    The suitability of geoenvironment for waste disposal depends mainly on its stability and on the danger of groundwater pollution. Besides them, on the land suitability maps for the given purpose also those factors of the factors of the geoenvironment and the landscape should be taken into account, which enable another way of the land use, such as mineral resources, water resources, fertile soils, nature reserves, etc. On the base of the relevant factors influence evaluation - suitable, moderately suitable and unsuitable territorial units are delimited on the maps. The different way of various scale maps compilation is applied, taken into account their different representing feasibilities. (authors)

  2. The Finnish final disposal programme proceeds to the site selection

    International Nuclear Information System (INIS)

    Seppaelae, T.

    1999-01-01

    Research for the selection of the final disposal site has been carried out already since the beginning of 1980's. Field studies were started in 1987: In the recent years, studied sites have included Olkiluoto in Eurajoki, Haestholmen in Loviisa, Romuvaara in Kuhmo and Kivetty in Aeaenekoski. Based on 40 years operation of four power plant units, the estimate for the accumulation of spent fuel to be disposed of in Finland is 2,600 tU. A 'Decision in Principle' is needed from the Finnish government to select the final disposal site, Posiva submitted the application for a policy decision in May 1999. The intended site of the facility is Olkiluoto which produces most of the spent fuel in Finland: A disposal would minimise the need of transports. In a poll among the inhabitants of Eurajoki, 60 per cent approved the final disposal facility. After a positive decision of the government, Posiva will construct an underground research facility in Olkiluoto. The construction of the final disposal facility will take place in the 2010's, the facility should be operational in 2020. (orig.) [de

  3. Siting of a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Alvarado, R.A.

    1983-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority was established by the 67th Legislature to assure safe and effective disposal of the state's low-level radioactive waste. The Authority operates under provisions of the Texas Low-Level Radioactive Waste Disposal Authority Act, VACS 4590f-1. In Texas, low-level radioactive waste is defined as any radioactive material that has a half-life of 35 years or less or that has less than 10 nanocuries per gram of transuranics, and may include radioactive material not excluded by this definition with a half-life or more than 35 years if special disposal criteria are established. Prior to beginning the siting study, the Authority developed both exclusionary and inclusionary criteria. Major requirements of the siting guidelines are that the site shall be located such that it will not interfere with: (1) existing or near-future industrial use, (2) sensitive environmental and ecological areas, and (3) existing and projected population growth. Therefore, the site should be located away from currently known recoverable mineral, energy and water resources, population centers, and areas of projected growth. This would reduce the potential for inadvertent intruders, increasing the likelihood for stability of the disposal site after closure. The identification of potential sites for disposal of low-level radioactive waste involves a phased progression from statewide screening to site-specific exploration, using a set of exclusionary and preferential criteria to guide the process. This methodology applied the criteria in a sequential manner to focus the analysis on progressively smaller and more favorable areas. The study was divided into three phases: (1) statewide screening; (2) site identification; and (3) preliminary site characterization

  4. Low-level radioactive waste facility siting in the Rocky Mountain compact region

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    The puprose of the Rocky Mountain Low-Level Radioactive Waste Compact is to develop a regional management system for low-level waste (LLW) generated in the six states eligible for membership: Arizona, Colorado, Nevada, New Mexico, Utah and Wyoming. Under the terms of the compact, any party state generating at least 20% of the region's waste becomes responsible for hosting a regional LLW management facility. However, the compact prescribes no system which the host state must follow to develop a facility, but rather calls on the state to fulfill its responsibility through reliance on its own laws and regulations. Few of the Rocky Mountain compact states have legislation dealing specifically with LLW facility siting. Authority for LLW facility siting is usually obtained from radiation control statutes and solid or hazardous waste statutes. A state-by-state analysis of the siting authorities of each of the Rock Mountain compact states as they pertain to LLW disposal facility siting is presented. Siting authority for LLW disposal facilities in the Rocky Mountain compact region runs from no authority, as in Wyoming, to general statutory authority for which regulations would have to be promulgated, as in Arizona and Nevada, to more detailed siting laws, as in Colorado and New Mexico. Barring an amendment to, or different interpretation of, the Utah Hazardous Waste Facility Siting Act, none of the Rocky Mountain States' LLW facility siting authorities preempt local veto authorities

  5. Low-level radioactive waste disposal at a humid site

    International Nuclear Information System (INIS)

    Lee, D.W.

    1987-03-01

    Waste management in humid environments poses a continuing challenge because of the potential contamination of groundwater in the long term. Short-term needs for waste disposal, regulatory uncertainty, and unique site and waste characteristics have led to the development of a site-specific waste classification and management system proposed for the Oak Ridge Reservation. The overlying principle of protection of public health and safety is used to define waste classes compatible with generated waste types, disposal sites and technologies, and treatment technologies. 1 fig., 1 tab

  6. Waste classification and methods applied to specific disposal sites

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1979-01-01

    An adequate definition of the classes of radioactive wastes is necessary to regulating the disposal of radioactive wastes. A classification system is proposed in which wastes are classified according to characteristics relating to their disposal. Several specific sites are analyzed with the methodology in order to gain insights into the classification of radioactive wastes. Also presented is the analysis of ocean dumping as it applies to waste classification. 5 refs

  7. Selection of radioactive waste disposal site considering natural processes

    International Nuclear Information System (INIS)

    Nakamura, H.

    1991-01-01

    To dispose the radioactive waste, it is necessary to consider the transfer of material in natural environment. The points of consideration are 1) Long residence time of water 2) Independence of biosphere from the compartment containing the disposal site in the natural hydrologic cycle 3) Dilution with the natural inactive isotope or the same group of elements. Isotope dilution for 129 I and 14 C can be expected by proper selection of the site. 241 Am and 239 Pu will be homogenized into soil or sediment with insoluble elements such as iron and aluminium. For 237 Np and 99 Tc anionic condition is important for the selection. From the point of view of hydrologic cycle, anoxic dead water zone avoiding beneath mountain area is preferable for the disposal site. (author)

  8. The management and disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ginniff, M.E.; Blair, I.M.

    1986-01-01

    After an introduction on how radioactivity and radiation can cause damage, the three main types of radioactive wastes (high level (HLW), intermediate level (ILW) and low level (LLW)) are defined and the quantities of each produced, and current disposal method mentioned. The Nuclear Industry Radioactive Waste Executive (NIREX) was set up in 1982 to make proposals for the packaging, transportation and disposal of ILW and, if approved, to manage their implementation. NIREX has also taken over some aspects of the LLW disposal programme, and keeps an inventory of the radioactive waste in the country. The NIREX proposals are considered. For ILW this is that ILW should be immersed in a matrix of concrete, then stored in a repository, the design of which is discussed. The transportation of the concrete blocks is also mentioned. Possible sites for a suitable repository are discussed. Efforts are being made to gain public acceptance of these sites. (U.K.)

  9. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action

  10. Radionuclide limits for vault disposal at the Savannah River Site

    International Nuclear Information System (INIS)

    Cook, James R.

    1992-01-01

    The Savannah River Site is developing a facility called the E-Area Vaults which will serve as the new radioactive waste disposal facility beginning early in 1992. The facility will employ engineered below-grade concrete vaults for disposal and above grade storage for certain long-lived mobile radionuclides. This report documents the determination of interim upper limits for radionuclide inventories and concentrations which should be allowed in the disposal structures. The work presented here will aid in the development of both waste acceptance criteria and operating limits for the E-Area Vaults. Disposal limits for forty isotopes which comprise the SRS waste streams were determined. The limits are based on total facility and vault inventories for those radionuclides which impact groundwater) and on waste package concentrations for those radionuclides which could affect intruders. (author)

  11. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

    2007-01-01

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  12. The disposal of Canada's nuclear fuel waste: site screening and site evaluation technology

    International Nuclear Information System (INIS)

    Davison, C.C.; Brown, A.; Everitt, R.A.; Gascoyne, M.; Kozak, E.T.; Lodha, G.S.; Martin, C.D.; Soonawala, N.M.; Stevenson, D.R.; Thorne, G.A.; Whitaker, S.H.

    1994-06-01

    The concept for the disposal of Canada's nuclear fuel waste is to dispose of the waste in an underground vault, nominally at 500 m to 1000 m depth, at a suitable site in plutonic rock of the Canadian Shield. The feasibility of this concept and assessments of its impact on the environment and human health, will be documented by AECL in an Environmental Impact Statement (EIS). This report is one of nine primary references for the EIS. It describes the approach and methods that would be used during the siting stage of the disposal project to identify a preferred candidate disposal site and to confirm its suitability for constructing a disposal facility. The siting stage is divided into two distinct but closely related substages, site screening and site evaluation. Site screening would mainly involve reconnaissance investigations of siting regions of the Shield to identify potential candidate areas where suitable vault locations are likely to exist. Site screening would identify a small number of candidate areas where further detailed investigations were warranted. Site evaluation would involve progressively more detailed surface and subsurface investigations of the candidate areas to first identify potentially suitable vault locations within the candidate areas, and then characterize these potential disposal sites to identify the preferred candidate location for constructing the disposal vault. Site evaluation would conclude with the construction of exploratory shafts and tunnels at the preferred vault location, and underground characterization would be done to confirm the suitability of the preferred candidate site. An integrated program of geological, geophysical, hydrogeological, geochemical and geomechanical investigations would be implemented to obtain the geoscience information needed to assess the suitability of the candidate siting areas and candidate sites for locating a disposal vault. The candidate siting areas and candidate disposal vault sites would be

  13. The Yami's opposition to the Lanyu LLW storage installation

    International Nuclear Information System (INIS)

    Li, K.K.; Chang, S.Y.

    1993-01-01

    Since 1982, the solidified low-level radioactive wastes (LLW) in Taiwan, regardless of the origins, have been sent to Lanyu for interim storage. Lanyu is a small island located 80 kilometers southeast of Taiwan. Its unique Polynesian cultural characteristics make it an attractive tourist spot. Dissatisfaction of being the commonly neglected powerless minority, in addition to the political claims from the outside environmental activists made the majority of the Lanyu residents oppose the operation of the storage facility. Approximately 80,000 drums of these wastes have been sent to Lanyu. Although the radiological monitoring results demonstrated that the current operation causes negligible impact on the environment. Accounting for the fast changing social and political situations in Taiwan today, without a good public acceptance program for both sides, the continuous operation of the Lanyu LLW storage facility until the year 2002, at which time the LLW disposal facility will be commissioned, could be in limbo

  14. Final disposal of spent nuclear fuel - basis for site selection

    International Nuclear Information System (INIS)

    Anttila, P.

    1995-05-01

    International organizations, e.g. IAEA, have published several recommendations and guides for the safe disposal of radioactive waste. There are three major groups of issues affecting the site selection process, i.e. geological, environmental and socioeconomic. The first step of the site selection process is an inventory of potential host rock formations. After that, potential study areas are screened to identify sites for detailed investigations, prior to geological conditions and overall suitability for the safe disposal. This kind of stepwise site selection procedure has been used in Finland and in Sweden. A similar approach has been proposed in Canada, too. In accordance with the amendment to the Nuclear Energy Act, that entered into force in the beginning of 1995, Imatran Voima Oy has to make preparations for the final disposal of spent fuel in the Finnish bedrock. Relating to the possible site selection, the following geological factors, as internationally recommended and used in the Nordic countries, should be taken into account: topography, stability of bedrock, brokenness and fracturing of bedrock, size of bedrock block, rock type, predictability and natural resources. The bedrock of the Loviisa NPP site is a part of the Vyborg rapakivi massif. As a whole the rapakivi granite area forms a potential target area, although other rock types or areas cannot be excluded from possible site selection studies. (25 refs., 7 figs.)

  15. Design and operational considerations of United States commercial nea-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, Sandra M.

    1997-01-01

    Low-level radioactive waste disposal standards and techniques in the United States have evolved significantly since the early 1960's. Six commercial LLW disposal facilities(Barnwell, Richland, Ward Valley, Sierra Blanca, Wake County and Boyd County) operated and proposed between 1962 and 1997. This report summarizes each site's design and operational considerations for near-surface disposal of low-level radioactive waste. These new standards and mitigating efforts at closed facilities (Sheffield, Maxey Flats, Beatty and West Valley) have helped to ensure that the public has been safely protected from LLW. 15 refs

  16. Finnish HLW disposal programme : site selection in 2000

    International Nuclear Information System (INIS)

    Ryhsnen, Veijo

    1997-01-01

    This paper covers the technical concepts for final disposal in the Finnish geological conditions, the approach for site selection and implementation, the safety assessments and development of criteria, the environmental impact assessment, the licensing stages and acceptance, and the financial provisions, the project organization in 1997 - 2000. 2 refs., 9 figs

  17. Finnish HLW disposal programme : site selection in 2000

    Energy Technology Data Exchange (ETDEWEB)

    Ryhsnen, Veijo [Posiva Oy, Helsinki (Finland)

    1997-12-31

    This paper covers the technical concepts for final disposal in the Finnish geological conditions, the approach for site selection and implementation, the safety assessments and development of criteria, the environmental impact assessment, the licensing stages and acceptance, and the financial provisions, the project organization in 1997 - 2000. 2 refs., 9 figs.

  18. Considerations for alternative low-level radioactive disposal sites

    International Nuclear Information System (INIS)

    Beck, J.M.

    1986-01-01

    In the immediate future, there is a need for low-level radioactive disposal sites to accommodate wastes that would otherwise be placed at a later date in permanent, government sanctioned ''compact'' sites. Until these ''compact'' sites become operational, a potential, relatively low-cost alternative exists in the numerous inactive uranium processing sites that are likewise proposed for remedial action removal or stabilization operations. This paper addressed disposal from the aspects of engineering design, economics and liability of participating parties. Many uranium (and by-product) processing facilities in the western states now stand idle due to current economic conditions within the industry. Many more were previously deactivated for various reasons. All must be dealt with under the UMTRA Program Guidelines with regard to removal, reclamation or other remedial action activities. With cooperative efforts, some of these sites would appear to be suitable for disposal of small volume, low-level radioactive wastes that presently render urban properties valueless in terms of real estate and aesthetic values. Likely sites would appear to be those slated for in-place stabilization and reclamation, particularly where the urban property material has a lower level of radioactivity than the disposal site material. The resultant impacts for site stabilization and reclamation would be solely in the areas of increased material volumes (generally requiring a minimal increase in engineering design complexity) and liability. Clearly, liability will be the overriding factor in such an approach. With the complex hierarchy of regulatory agencies involved and the private sector, what appears to be a relative simple and economic approach may have extreme difficulty in achieving reality

  19. Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, S.M.

    1997-10-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country''s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today''s standards. This report summarizes each site''s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US

  20. Low Level Waste Disposal Geological Studies At Inshas Site. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Al-Gamal, S A; Emara, A S [National Center for Nuclear Safety and Radiation Control, Nasr City, Atomic Energy Authority, Cairo (Egypt); Shehata, M G [Petroleum Research Institute, Nasr City, Al-Zohour District, Cairo (Egypt)

    1996-03-01

    The general potential of some selected layers such as the Miocene sediments and the Oligocene basalts is evaluated for the disposal of low level waste, (LLW). In this work, it is aimed to quantify the effect of some key parameters that are though to influence the migration of radionuclides in these layers. Homogeneity-isotopy and engineering properties of selected potential layers at Inshas were examined. Land form stability and collapsible soil were studied. Basaltic lava flows of Oligocene age were thoroughly investigated using petrographic and petrologic techniques and its suitability as a potential host rock for a waste repository is evaluated. 8 figs., 2 tabs.

  1. Techniques for site investigations for underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1985-01-01

    The report provides a more detailed description of the capabilities and applications of the various earth science investigation techniques outlined in the IAEA Technical Reports Series Nos. 177, 215 and 216. These methods are generally appropriate during at least one of the stages of the assessment or selection of a site for any type of waste disposal facility, in shallow ground or in deep geological formations. This report is addressed to technical authorities responsible for or involved in planning, approving, executing and reviewing national waste disposal programmes. It may also help administrative authorities in this field to select appropriate techniques for obtaining the majority of the required information at minimum cost

  2. Disposal of the radioactive contaminated soils from the NPP site

    International Nuclear Information System (INIS)

    Matusek, I.; Plsko, J.; Sajtlava, M.; Hulla, J.; Kovacs, T.

    2004-01-01

    Disposal of contaminated soils at site of NPP is one of the most important task within the frame of research and development tasks of the NPP decommissioning. The works within this field can be seen in several areas. Considered soil activity monitoring, observation of its geo-technical and geo-chemical parameters, volume balance, research of the radio nuclides behaviour in the soil and simulation of their influence on the surrounding environment with special emphasis on underground water, project studies and construction of the disposal facility for contaminated soils. This work presents overview of gained results in the mentioned areas of the research and development. (author)

  3. Geotechnical site assessment for underground radioactive waste disposal in rock

    International Nuclear Information System (INIS)

    Hudson, J.A.

    1986-05-01

    This report contains a state-of-the-art review of the geotechnical assessment of Land 3 and Land 4 repository sites (at 100 - 300 m depth in rock) for intermediate level radioactive waste disposal. The principles established are also valid for the disposal of low and high level waste in rock. The text summarizes the results of 21 DoE research contract reports, firstly 'in series' by providing a technical review of each report and then 'in parallel' by considering the current state of knowledge in the context of the subjects in an interaction matrix framework. 1214 references are cited. It is concluded that four further research projects are required for site assessment procedures to be developed or confirmed. These are coupled modelling, mechanical properties, water flow and establishment of 2 phase site assessment procedures. (author)

  4. Financing a new low-level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Dressen, A.L.; Serie, P.J.; McGarvey, R.S.; Lemmon, R.A.

    1982-01-01

    No new commercial low-level radioactive waste disposal site has been licensed in the past decade. During the time, inflation has wreaked havoc on the costs for the labor, equipment, and buildings that will be necessary to develop and operate new sites. The regulatory environment has become much more complex with enactment of the National Environmental Policy Act (NEPA) and the recent issuance by the Nuclear Regulatory Commission (NRC) of a draft set of comprehensive regulations for land disposal of low-level waste (10 CFR Part 61). Finally, the licensing process itself has become much lengthier as both the site developers and regulators respond to the public's desire to be more involved in decisions that may affect their lives

  5. Geohydrological considerations in land disposal of LLW

    International Nuclear Information System (INIS)

    Yeh, G.T.; Tamura, T.

    1981-01-01

    The geohydrological and geochemical factors that affect the transport, transfer, and transformation of the waste in the aquifer system as a result of shallow land burial practices are discussed. They include surface topography and its character, the extent of the aquifer, nearby surface water bodies, groundwater basin divide, watershed boundaries, rainfall rate, infiltration from surface water bodies, potential evapotranspiration, hydraulic conductivity, water capacity, porosity, compressibility of the matrix, dispersivity, hydrolysis, photolysis, oxidation, volatilization, biolysis, precipitation, mineral comosition, and flow dynamics. Depending on the availability of data and the detail of information desired, three levels of analyses may be undertaken. Two examples are used to illustrate these three levels of analyses using hypothetical parameters. The examples are constructed to represent the leaching from wet water body and shallow burials, respectively. The former typifies a class of problems of groundwater contamination from coal-catching basins and uranium mill tailings. The latter represents classical examples of shallow land burials such as coal solid wastes, chemical dumping and sanitary landfill

  6. Voluntary cleanup of the Ames chemical disposal site

    International Nuclear Information System (INIS)

    Taboas, A.L.; Freeman, R.; Peterson, J.

    2003-01-01

    The U.S. Department of Energy completed a voluntary removal action at the Ames chemical disposal site, a site associated with the early days of the Manhattan Project. It contained chemical and low-level radioactive wastes from development of the technology to extract uranium from uranium oxide. The process included the preparation of a Remedial Investigation, Feasibility Study, Baseline Risk Assessment, and, ultimately, issuance of a Record of Decision. Various stakeholder groups were involved, including members of the regulatory community, the general public, and the landowner, Iowa State University. The site was restored and returned to the landowner for unrestricted use.

  7. Maxey Flats low-level waste disposal site closure activities

    International Nuclear Information System (INIS)

    Haight, C.P.; Mills, D.; Razor, J.E.

    1987-01-01

    The Maxey Flats Radioactive Waste Disposal Facility in Fleming County, Kentucky is in the process of being closed. The facility opened for commercial business in the spring of 1963 and received approximately 4.75 million cubic feet of radioactive waste by the time it was closed in December of 1977. During fourteen years of operation approximately 2.5 million curies of by-product material, 240,000 kilograms of source material, and 430 kilograms of special nuclear material were disposed. The Commonwealth purchased the lease hold estate and rights in May 1978 from the operating company. This action was taken to stabilize the facility and prepare it for closure consisting of passive care and monitoring. To prepare the site for closure, a number of remedial activities had to be performed. The remediation activities implemented have included erosion control, surface drainage modifications, installation of a temporary plastic surface cover, leachate removal, analysis, treatment and evaporation, US DOE funded evaporator concentrates solidification project and their on-site disposal in an improved disposal trench with enhanced cover for use in a humid environment situated in a fractured geology, performance evaluation of a grout injection demonstration, USGS subsurface geologic investigation, development of conceptual closure designs, and finally being added to the US EPA National Priority List for remediation and closure under Superfund. 13 references, 3 figures

  8. Revegetation of flue gas desulfurization sludge pond disposal sites

    International Nuclear Information System (INIS)

    Artiola, J.F.

    1994-12-01

    A comprehensive search of published literature was conducted to summarize research undertaken to date on revegetation of flue gas desulfurization (FGD) waste disposal ponds. A review of the physical and chemical properties of FGD sludges and wastes with similar characteristics is also included in order to determine the advantages and limitations of FGD sludge for plant growth. No specific guidelines have been developed for the revegetation of FGD sludge disposal sites. Survey studies showed that the wide-ranging composition of FGD wastes was determined primarily by the sulfur dioxide and other flue gas scrubbing processes used at powerplants. Sulfate rich (>90%CaSO 4 ) FGD sludges are physically and chemically more stable, and thus more amenable to revegetation. Because of lack of macronutrients and extremely limited microbial activity, FBD sludge ponds presented a poor plant growth environment without amendment. Studies showed the natural process of inoculation of the FGD sludge with soil microbes that promote plant growth be can after disposal but proceeded slowly. Revegetation studies reviewed showed that FGD sludges amended with soils supported a wider variety of plant species better and longer than abandoned FGD ponds. Two major types of plants have been successful in revegetation of FGD waste ponds and similar wastes: salt-tolerant plants and aquatic plants. A comprehensive list of plant species with potential for regetation of FGD sludge disposal pond sites is presented along with successful revegetation techniques

  9. Intermodal transportation of low-level radioactive waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    1998-09-01

    The Nevada Test Site (NTS) presently serves as a disposal site for low-level radioactive waste (LLW) generated by DOE-approved generators. The environmental impacts resulting from the disposal of LLW at the NTS are discussed in the Final Environmental Impact Statement (EIS) for the Nevada Test Site Off-Site Locations in the State of Nevada (NTS EIS). During the formal NTS EIS scoping period, it became clear that transportation of LLW was an issue that required attention. Therefore, the Nevada Transportation Protocol Working Group (TPWG) was formed in 1995 to identify, prioritize, and understand local issues and concerns associated with the transportation of LLW to the NTS. Currently, generators of LLW ship their waste to the NTS by legal-weight truck. In 1995, the TPWG suggested the DOE could reduce transportation costs and enhance public safety by using rail transportation. The DOE announced, in October 1996, that they would study the potential for intermodal transportation of LLW to the NTS, by transferring the LLW containers from rail cars to trucks for movements to the NTS. The TPWG and DOE/NV prepared the NTS Intermodal Transportation Facility Site and Routing Evaluation Study to present basic data and analyses on alternative rail-to-truck transfer sites and related truck routes for LLW shipments to the NTS. This Environmental Assessment (EA) identifies the potential environmental impacts and transportation risks of using new intermodal transfer sites and truck routes or continuing current operations to accomplish the objectives of minimizing radiological risk, enhancing safety, and reducing cost. DOE/NV will use the results of the assessment to decide whether or not to encourage the LLW generators and their transportation contractors to change their current operations to accomplish these objectives

  10. 1994 Characterization report for the state approved land disposal site

    International Nuclear Information System (INIS)

    Swanson, L.C.

    1994-01-01

    This report summarizes the results of characterization activities at the proposed state-approved land disposal site (SALDS); it updates the original characterization report with studies completed since the first characterization report. The initial characterization report discusses studies from two characterization boreholes, 699-48-77A and 699-48-77B. This revision includes data from implementation of the Groundwater Monitoring Plan and the Aquifer Test Plan. The primary sources of data are two down-gradient groundwater monitoring wells, 699-48-77C and 699-48-77D, and aquifer testing of three zones in well 699-48-77C. The SALDS is located on the Hanford Site, approximately 183 m north of the 200 West Area on the north side of the 200 Areas Plateau. The SALDS is an infiltration basin proposed for disposal of treated effluents from the 200 Areas of Hanford

  11. Scenario sensitivity analyses performed on the PRESTO-EPA LLW risk assessment models

    International Nuclear Information System (INIS)

    Bandrowski, M.S.

    1988-01-01

    The US Environmental Protection Agency (EPA) is currently developing standards for the land disposal of low-level radioactive waste. As part of the standard development, EPA has performed risk assessments using the PRESTO-EPA codes. A program of sensitivity analysis was conducted on the PRESTO-EPA codes, consisting of single parameter sensitivity analysis and scenario sensitivity analysis. The results of the single parameter sensitivity analysis were discussed at the 1987 DOE LLW Management Conference. Specific scenario sensitivity analyses have been completed and evaluated. Scenario assumptions that were analyzed include: site location, disposal method, form of waste, waste volume, analysis time horizon, critical radionuclides, use of buffer zones, and global health effects

  12. Technical Assessment Of Selection Of A Waste Disposal Site

    International Nuclear Information System (INIS)

    Lee, Bong Hun

    1992-04-01

    This book gives overall descriptions of technical assessment of selection of a waste disposal site, which deals with standard of selection on incinerator of city waste, the method over assessment of selection of incinerator in city waste, prerequisite of technical assessment for selection of incinerator, waste incinerator and related equipment such as form, structure, quality of material, ventilation device, plumbing system and electrical installation, and total plan like plan of construction and a measure taken against environmental pollution.

  13. Update on the Federal Facilities Compliance Act disposal workgroup disposal site evaluation - what has worked and what has not

    International Nuclear Information System (INIS)

    Case, J.T.; Waters, R.D.

    1995-01-01

    The Department of Energy (DOE) has been developing a planning process for mixed low-level waste (MLLW) disposal in conjunction with the affected states for over two years and has screened the potential disposal sites from 49 to 15. A radiological performance evaluation was conducted on these fifteen sites to further identify their strengths and weaknesses for disposal of MLLW. Technical analyses are on-going. The disposal evaluation process has sufficiently satisfied the affected states' concerns to the point that disposal has not been a major issue in the consent order process for site treatment plans. Additionally, a large amount of technical and institutional information on several DOE sites has been summarized. The relative technical capabilities of the remaining fifteen sites have been demonstrated, and the benefits of waste form and disposal facility performance have been quantified. However, the final disposal configuration has not yet been determined. Additionally, the MLLW disposal planning efforts will need to integrate more closely with the low-level waste disposal activities before a final MLLW disposal configuration can be determined. Recent Environmental Protection Agency efforts related to the definition of hazardous wastes may also affect the process

  14. Assessment of candidate sites for disposal of treated effluents at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Davis, J.D.

    1992-01-01

    A rigidly defined evaluation process was used to recommend a preferred location to dispose of treated effluents from facilities in the 200 Areas of the US Department of Energy's Hanford Site in Washington State. First, siting constraints were defined based on functional design considerations and siting guidelines. Then, criteria for selecting a preferred site from among several candidates were identified and their relative importance defined. Finally, the weighted criteria were applied and a site was selected for detailed characterization by subsurface investigations

  15. Methods for estimating on-site ambient air concentrations at disposal sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1987-01-01

    Currently, Gaussian type dispersion modeling and point source approximation are combined to estimate the ambient air concentrations of pollutants dispersed downwind of an areawide emission source, using the approach of virtual point source approximation. This Gaussian dispersion modeling becomes less accurate as the receptor comes closer to the source, and becomes inapplicable for the estimation of on-site ambient air concentrations at disposal sites. Partial differential equations are solved with appropriate boundary conditions for use in estimating the on-site concentrations in the ambient air impacted by emissions from an area source such as land disposal sites. Two variations of solution techniques are presented, and their predictions are compared

  16. Protective barrier systems for final disposal of Hanford Waste Sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Hartley, J.N.

    1986-01-01

    A protecting barrier system is being developed for potential application in the final disposal of defense wastes at the Hanford Site. The functional requirements for the protective barrier are control of water infiltration, wind erosion, and plant and animal intrusion into the waste zone. The barrier must also be able to function without maintenance for the required time period (up to 10,000 yr). This paper summarizes the progress made and future plans in this effort to design and test protective barriers at the Hanford Site

  17. Environmental monitoring considerations for low-level waste disposal sites

    International Nuclear Information System (INIS)

    Sedlet, J.

    1982-01-01

    All waste disposal sites are required to monitor the environment. The proposed NRC licensing rule, 10 CFR Part 61, requires that such monitoring be conducted before, during, and after a site is operated. An adequate monitoring program consists of measuring concentrations of radionuclides, chemically-toxic substances, and leachate indicators in environmental media and of evaluating specific physical properties of the site. In addition, the composition of the buried waste must be known. Methods for obtaining this information are discussed and monitoring programs are presented for the preoperational, operational, and postclosure phases of a disposal site. Environmental monitoring is considered in a broad context, since it includes monitoring burial trenches onsite, as well as surveillance in the offsite environment. Postclosure monitoring programs will be strongly influenced by the operational monitoring results. In some respects, this phase will be easier since the migration pathways should be well known and the number of radionuclides of concern reduced by radioactive decay. The results of the environmental monitoring program will be vital to successful site operation. These results should be used to determine if operational changes are needed and to predict future environmental impacts

  18. Pyramiding tumuli waste disposal site and method of construction thereof

    Science.gov (United States)

    Golden, Martin P.

    1989-01-01

    An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

  19. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  20. Analyses of soils at commercial radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1983-01-01

    Brookhaven National Laboratory, in order to provide technical assistance to the NRC, has measured a number of physical and chemical characteristics of soils from three commercial low-level radioactive waste disposal sites. Samples were collected from an area adjacent to the disposal site at Sheffield, IL, and from two operating sites: one at Barnwell, SC, and the other near Richland, WA. The soil samples, which were analyzed from each site, were believed to include soil which was representative of that in contact with buried waste forms. Results of field measurements of earth resistivity and of soil pH will be presented. Additionally, the results of laboratory measurements of resistivity, moisture content, pH, exchange acidity and the soluble ion content of the soils will be discussed. The soluble ion content of the soils was determined by analysis of aqueous extracts of saturated soil pastes. The concentrations of the following ions were determined: Ca 2+ , Mg 2+ , K + , Na + , HCO 3 - , CO 3 2- , SO 4 2- , Cl - , S 2-

  1. Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-08-05

    The NTS is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. NNSA/NSO is the federal lands management authority for the NTS and NSTec is the Management & Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The U10C Disposal Site is located in the northwest corner of Area 9 at the NTS (Figure 1) and is located in a subsidence crater created by two underground nuclear events, one in October 1962 and another in April 1964. The disposal site opened in 1971 for the disposal of rubbish, refuse, pathological waste, asbestos-containing material, and industrial solid waste. A Notice of Intent form to operate the disposal site as a Class II site was submitted to the state of Nevada on January 26, 1994, and was acknowledged in a letter to the DOE on February 8, 1994. It operated as a state of Nevada Class II Solid Waste Disposal Site (SWDS) until it closed on October 5, 1995, for retrofit as a Class III SWDS. The retrofit consisted of the installation of a minimum four-foot compacted soil layer to segregate the different waste types and function as a liner to inhibit leachate and water flow into the lower waste zone. Five neutron monitoring tubes were installed in this layer to monitor possible leachate production and water activity. Upon acceptance of the installed barrier and approval of an Operating Plan by NDEP/BFF, the site reopened in January 1996 as a Class III SWDS for the disposal of industrial solid waste and other inert waste.

  2. 78 FR 75913 - Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site...

    Science.gov (United States)

    2013-12-13

    ... site, including the disposal of Hanford's low-level radioactive waste (LLW) and mixed low-level... would be processed for disposal in Low- Level Radioactive Waste Burial Grounds (LLBGs) Trenches 31 and... treating radioactive waste from 177 underground storage tanks (149 Single-Shell Tanks [SSTs] and 28 Double...

  3. Development of the advanced package system for miscellaneous LLW

    International Nuclear Information System (INIS)

    Miyamoto, K.

    1991-01-01

    Miscellaneous LLW (low-level radioactive miscellaneous solid wastes) such as parts of machines, pieces of piping, HEPA filter, incineration ashes from nuclear power plants will be disposed in shallow land after stuffing into 200 liter steel drums. The package system of these miscellaneous LLW is required to contain such radionuclides as 14 C, 137 Cs and etc. for a few hundred years. The advanced package system for miscellaneous LLW has been developed. This package system is composed of steel drums with resin mortar inner liner and non shrinkage fills with high flowability. Resin mortar liners have stronger water permeability resistance and higher compressive strength than other cement mortars. Strong water permeability resistance of resin mortar liners prevent underground water from infiltration into fills and solid wastes. On the other hand, as the high flowabilities and non shrinkage of this fills give very low gross void fraction of the package system and have strong adsorption ability of radionuclides. In addition, steel drums with resin mortar inner liners have merits in their high density, uniformity and simplicity in manufacturing. Consequently, this package system is promising candidate barrier for the containment of radionuclides from miscellaneous LLW. (J.P.N.)

  4. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    PM Daling; SB Ross; BM Biwer

    1999-01-01

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal

  5. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    PM Daling; SB Ross; BM Biwer

    1999-12-17

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal

  6. Feasibility of co-disposing low-level radioactive waste with uranium mill tailings and/or FUSRAP waste

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    Analysis of the two most critical factors affecting a co-facility, economics and technical feasibility, indicates that neither should pose significant problems and in fact many aspects, particularly in economics, favor a co-facility over specialized disposal facilities. In consideration of costs, the symbiotic nature of co-facility economics should be recognized by the different parties the co-facility would serve. By minimizing the cost burdens of the LLW/UMTRAP disposal site users, a co-facility offers a unique opportunity for the cooperative subsidization of commercial and governmental operations. Likewise, a LLW/active tailings disposal co-facility affords two different sets of commercial users the opportunity to maximize the economic efficiency of each other's disposal operations. The technical requirements for siting a LLW or uranium mill tailings disposal facility are so similar as to appear tailor-made for a co-facility. Where differences are necessary, such as to distinguish between pollution sources in environmental monitoring, LLW and mill tailings are different. Where similarities are useful, such as in siting criteria and disposal operations, LLW and mill tailings are nearly identical. Institutional factors are split in their adaptability to a co-facility. Although public perceptions will range to both extremes, the fact that a significant percentage of the local populace may favor a co-facility serves as added incentive for such an operation. The institutional aspects which could serve as considerable impediments to co-facility development would be concern about liability in the event of site failure and licensing and legal obstacles associated with UMTRAP disposal that did not meet active tailings disposal licensing requirements

  7. LLW Forum meeting report

    International Nuclear Information System (INIS)

    1991-01-01

    This document reports the details of the Quarterly Meeting of the Low- Level Radioactive Waste Forum held in San Diego, California during January 23-25, 1991. Topics discussed include: State and Compact Progress Reports; Legal Updates; Update on Technical Assistance; Advanced Notice of Proposed Rulemaking Regarding Surcharge Rebates; Update on TCC Activities; NRC Update; Disposal of Commercial Mixed Waste; Update on EPA Activities; ACNW Working Group on Mixed Waste; National Profile on Mixed Waste; Commercial Perspective on Mixed Waste; Update on DOT Activities; Source Terms; Materials and Waste; Storage: and Waste Acceptance Criteria and Packaging

  8. Development of a comprehensive management site evaluation methodology

    International Nuclear Information System (INIS)

    Rodgers, J.C.; Onishi, Y.

    1981-01-01

    The Nuclear Regulatory Commission is in the process of preparing regulations that will define the necessary conditions for adequate disposal of low-level waste (LLW) by confinement in an LLW disposal facility. These proposed regulations form the context in which the motivation for the joint Los Alamos National Laboratory Battelle Pacific Northwest Laboratory program to develop a site-specific, LLW site evaluation methodology is discussed. The overall effort is divided into three development areas: land-use evaluation, environmental transport modelling, and long term scenario development including long-range climatology projections. At the present time four steps are envisioned in the application of the methodology to a site: site land use suitability assessment, land use-ecosystem interaction, contaminant transport simulation, and sensitivity analysis. Each of these steps is discussed in the paper. 12 refs

  9. Preliminary Disposal Analysis for Selected Accelerator Production of Tritium Waste Streams

    International Nuclear Information System (INIS)

    Ades, M.J.; England, J.L.

    1998-06-01

    A preliminary analysis was performed for two selected Accelerator Production of Tritium (APT) generated mixed and low-level waste streams to determine if one mixed low-level waste (MLLW) stream that includes the Mixed Waste Lead (MWL) can be disposed of at the Nevada Test Site (NTS) and at the Hanford Site and if one low-level radioactive waste (LLW) stream, that includes the Tungsten waste stream (TWS) generated by the Tungsten Neutron Source modules and used in the Target/Blanket cavity vessel, can be disposed of in the LLW Vaults at the Savannah River Plant (SRP). The preliminary disposal analysis that the radionuclide concentrations of the two selected APT waste streams are not in full compliance with the Waste Acceptance Criteria (WAC) and the Performance Assessment (PA) radionuclide limits of the disposal sites considered

  10. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    International Nuclear Information System (INIS)

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal. These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs

  11. Disposal of Draeger Tubes at Savannah River Site

    International Nuclear Information System (INIS)

    Malik, N.P.

    2000-01-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located in Aiken, South Carolina that is operated by the Westinghouse Savannah River Company (WSRC). At SRS Draeger tubes are used to identify the amount and type of a particular chemical constituent in the atmosphere. Draeger tubes rely on a chemical reaction to identify the nature and type of a particular chemical constituent in the atmosphere. Disposal practices for these tubes were identified by performing a hazardous waste evaluation per the Resource Conservation and Recovery Act (RCRA). Additional investigations were conducted to provide guidance for their safe handling, storage and disposal. A list of Draeger tubes commonly used at SRS was first evaluated to determine if they contained any material that could render them as a RCRA hazardous waste. Disposal techniques for Draeger tubes that contained any of the toxic contaminants listed in South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79. 261.24 (b) and/or contained an acid in the liquid form were addressed

  12. Onsite LLW storage at Cook

    International Nuclear Information System (INIS)

    MacRae, W.T.

    1994-01-01

    The Donald C. Cook nuclear plant has gained much experience through the onsite storage of low-level radioactive waste. Owned and operated by the Indiana Michigan Power Company, which is owned by American Electric Power, the plant is located in Bridgman, Michigan, on the southeast side of Lake Michigan, about 50 miles from Chicago. In November 1990, waste generators in the state of Michigan were denied access to licensed low-level waste disposal sites because of a lack of progress by the state in developing its own disposal site. Because of this lack, wastes from the Cook plant have been stored onsite for three years. This article covers four issues related to the Cook nuclear plant's experience in the low-level waste storage: storage capacity and waste generation rates, waste form and packages, regulatory issues, and the monitoring of the waste

  13. Geochemical effects on the behavior of LLW radionuclides in soil/groundwater environments

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, K.M.; Sterne, R.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-12-31

    Assessing the migration potential of radionuclides leached from low-level radioactive waste (LLW) and decommissioning sites necessitates information on the effects of sorption and precipitation on the concentrations of dissolved radionuclides. Such an assessment requires that the geochemical processes of aqueous speciation, complexation, oxidation/reduction, and ion exchange be taken into account. The Pacific Northwest National Laboratory (PNNL) is providing technical support to the U.S. Nuclear Regulatory Commission (NRC) for defining the solubility and sorption behavior of radionuclides in soil/ground-water environments associated with engineered cementitious LLW disposal systems and decommissioning sites. Geochemical modeling is being used to predict solubility limits for radionuclides under geochemical conditions associated with these environments. The solubility limits are being used as maximum concentration limits in performance assessment calculations describing the release of contaminants from waste sources. Available data were compiled regarding the sorption potential of radionuclides onto {open_quotes}fresh{close_quotes} cement/concrete where the expected pH of the cement pore waters will equal to or exceed 10. Based on information gleaned from the literature, a list of preferred minimum distribution coefficients (Kd`s) was developed for these radionuclides. The K{sub d} values are specific to the chemical environments associated with the evolution of the compositions of cement/concrete pore waters.

  14. Geochemical investigations at Maxey Flats radioactive waste disposal site

    International Nuclear Information System (INIS)

    Dayal, R.; Pietrzak, R.F.; Clinton, J.

    1984-09-01

    As part of the NRC efforts to develop a data base on source term characteristics for low level wastes, Brookhaven National Laboratory (BNL) has produced and analyzed a large amount of data on trench leachate chemistry at existing shallow land burial sites. In this report, we present the results of our investigations at the Maxey Flats, Kentucky disposal site. In particular, data on trench leachate chemistry are reviewed and discussed in terms of mechanisms and processes controlling the composition of trench solutes. Particular emphasis is placed on identifying both intra- and extra-trench factors and processes contributing to source term characteristics, modifications, and uncertainties. BNL research on the Maxey Flats disposal site has provided important information not only on the source term characteristics and the factors contributing to uncertainties in the source term but also some generic insights into such geochemical processes and controls as the mechanics of leachate formation, microbial degradation and development of anoxia, organic complexation and radionuclide mobility, redox inversion and modification of the source term, solubility constraints on solute chemistry, mineral authigenesis, corrosion products and radionuclide scavenging, and the role of organic complexants in geochemical partitioning of radionuclides. A knowledge of such processes and controls affecting the geochemical cycling of radionuclides as well as an understanding of the important factors that contribute to variability and uncertainties in the source term is essential for evaluating the performance of waste package and the site, making valid predictions of release for dose calculations, and for planning site performance monitoring as well as remedial actions. 43 references, 47 figures, 30 tables

  15. Low-level radioactive waste disposal in the USA - Use of mill tailings impoundments as a new policy option

    International Nuclear Information System (INIS)

    Farrell, C.W.

    2006-01-01

    Disposal of low-level radioactive waste (LLW) in the United States is facing severe and immediate capacity limitations. Seemingly intractable regulatory and jurisdictional conflicts make establishment of new LLW disposal sites effectively impossible. Uranium mill tailings impoundments constructed at conventional uranium open-cast and underground mines could offer approximately 40 to 80+ million tons of disposal capacity for low activity radioactive waste. Such impoundments would provide an enhanced, high level of environmental and health and safety protection for the direct disposal of depleted uranium, special nuclear material, technologically-enhanced, naturally-occurring radioactive material (TENORM) and mixed waste. Many waste streams, such as TENORM and decommissioning rubble, will be high-volume, low activity materials and ideally suited for disposal in such structures. Materials in a given decay chain with a total activity from all radionuclides present of ∼820 Bq/g (2.22 x 10 -08 Ci/g) with no single radionuclide present in an activity greater than ∼104 Bq/g (2,800 pCi/g) should be acceptable for disposal. Materials of this type could be accepted without any site-specific dose modelling, so long as the total activity of the tailings impoundment not exceed its design capacity (generally 82 x 10 07 Bq/metric tonne) (0.020 Ci/short ton) and the cover design requirements to limit radon releases are satisfied. This paper provides background on US LLW disposal regulations, examines LLW disposal options under active consideration by the US Environmental Protection Agency and Department of Energy, develops generic waste acceptance criteria and identifies policy needs for federal and state governments to facilitate use of uranium mill tailings impoundments for LLW disposal. (author)

  16. 75 FR 54497 - Ocean Dumping; Guam Ocean Dredged Material Disposal Site Designation

    Science.gov (United States)

    2010-09-08

    .... SUMMARY: The EPA is designating the Guam Deep Ocean Disposal Site (G- DODS) as a permanent ocean dredged... administration of ocean disposal permits; (2) development and maintenance of a site monitoring program; (3... include: (1) Regulating quantities and types of material to be disposed, including the time, rates, and...

  17. Distribution of sewage indicated by Clostridium perfringens at a deep-water disposal site after cessation of sewage disposal.

    OpenAIRE

    Hill, R T; Straube, W L; Palmisano, A C; Gibson, S L; Colwell, R R

    1996-01-01

    Clostridium perfringens, a marker of domestic sewage contamination, was enumerated in sediment samples obtained from the vicinity of the 106-Mile Site 1 month and 1 year after cessation of sewage disposal at this site. C. perfringens counts in sediments collected at the disposal site and from stations 26 nautical miles (ca. 48 km) and 50 nautical miles (ca. 92 km) to the southwest of the site were, in general, more than 10-fold higher than counts from an uncontaminated reference site. C. perf...

  18. Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    2007-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future

  19. LLW Forum meeting report, May 7--9, 1997

    International Nuclear Information System (INIS)

    Norris, C.; Brown, H.; Lovinger, T.; Scheele, L.; Shaker, M.A.

    1997-05-01

    The Low-Level Radioactive Waste Forum met in Chicago, Illinois, on may 7--9, 1997. Twenty-three Forum Participants, Alternate Forum Participants, and meeting designees representing 20 compacts and states participated. A report on the meeting is given under the following subtitles: New developments in states and compacts; Upgrading an existing disposal facility; Revisions to DOE Order 5820 re DOE waste management; Conference of radiation control program directors: Recent and upcoming activities; National Conference of State Legislatures' (NCSL) low-level radioactive waste working group: Recent and upcoming activities; Executive session; LLW forum business session; Public involvement and risk communication: Success at West Valley, New York; DOE low-level waste management program; impact of the International Atomic Energy Agency's convention on waste; Panel discussion: The environmental justice concept--Past, present and future; New technologies for processing and disposal of LLRW; High-level and low-level radioactive waste: A dialogue on parallels and intersections; Draft agreement re uniform application of manifesting procedures; Regulatory issues focus; LLW forum October 1997 agenda planning; Resolutions; LLW forum regulatory issues discussion group meets; and Attendance

  20. Alternatives to land disposal of solid radioactive mixed wastes on the Hanford Site

    International Nuclear Information System (INIS)

    Jacobsen, P.H.

    1992-03-01

    This report is a detailed description of the generation and management of land disposal restricted mixed waste generated, treated, and stored at the Hanford Site. This report discusses the land disposal restricted waste (mixed waste) managed at the Hanford Site by point of generation and current storage locations. The waste is separated into groups on the future treatment of the waste before disposal. This grouping resulted in the definition of 16 groups or streams of land disposal restricted waste

  1. Source term development for tritium at the Sheffield disposal site

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Barletta, R.E.; Smalley, J.F.; Kempf, C.R.; Davis, R.E.

    1984-01-01

    The Sheffield low-level radioactive waste disposal site, which ceased operation in 1978, has been the focus of modeling efforts by the NRC for the purpose of predicting long-term site behavior. To provide the NRC with the information required for its modeling effort, a study to define the source term for tritium in eight trenches at the Sheffield site has been undertaken. Tritium is of special interest since significant concentrations of the isotope have been found in groundwater samples taken at the site and at locations outside the site boundary. Previous estimates of tritium site inventory at Sheffield are in wide disagreement. In this study, the tritium inventory in the eight trenches was estimated by reviewing the radioactive shipping records (RSRs) for waste buried in these trenches. It has been found that the tritium shipped for burial at the site was probably higher than previously estimated. In the eight trenches surveyed, which amount to roughly one half the total volume and activity buried at Sheffield, approximately 2350 Ci of tritium from non-fuel cycle sources were identified. The review of RSRs also formed the basis for obtaining waste package descriptions and for contacting large waste generators to obtain more detailed information regarding these waste packages. As a result of this review and the selected generator contacts, the non-fuel cycle tritium waste was categorized. The tritium releases from each of these waste categories were modeled. The results of this modeling effort are presented for each of the eight trenches selected. 3 references, 2 figures

  2. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  3. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report

  4. Pathway analysis for alternate low-level waste disposal methods

    International Nuclear Information System (INIS)

    Rao, R.R.; Kozak, M.W.; McCord, J.T.; Olague, N.E.

    1992-01-01

    The purpose of this paper is to evaluate a complete set of environmental pathways for disposal options and conditions that the Nuclear Regulatory Commission (NRC) may analyze for a low-level radioactive waste (LLW) license application. The regulations pertaining In the past, shallow-land burial has been used for the disposal of low-level radioactive waste. However, with the advent of the State Compact system of LLW disposal, many alternative technologies may be used. The alternative LLW disposal facilities include below- ground vault, tumulus, above-ground vault, shaft, and mine disposal This paper will form the foundation of an update of the previously developed Sandia National Laboratories (SNL)/NRC LLW performance assessment methodology. Based on the pathway assessment for alternative disposal methods, a determination will be made about whether the current methodology can satisfactorily analyze the pathways and phenomena likely to be important for the full range of potential disposal options. We have attempted to be conservative in keeping pathways in the lists that may usually be of marginal importance. In this way we can build confidence that we have spanned the range of cases likely to be encountered at a real site. Results of the pathway assessment indicate that disposal methods can be categorized in groupings based on their depth of disposal. For the deep disposal options of shaft and mine disposal, the key pathways are identical. The shallow disposal options, such as tumulus, shallow-land, and below-ground vault disposal also may be grouped together from a pathway analysis perspective. Above-ground vault disposal cannot be grouped with any of the other disposal options. The pathway analysis shows a definite trend concerning depth of disposal. The above-ground option has the largest number of significant pathways. As the waste becomes more isolated, the number of significant pathways is reduced. Similar to shallow-land burial, it was found that for all

  5. Conflicts concerning sites for waste treatment and waste disposal plants

    International Nuclear Information System (INIS)

    Werbeck, N.

    1993-01-01

    The erection of waste treatment and waste disposal flants increasingly meets with the disapproval of local residents. This is due to three factors: Firstly, the erection and operation of waste treatment plants is assumed to necessarily entail harmful effects and risks, which may be true or may not. Secondly, these disadvantages are in part considered to be non-compensable. Thirdly, waste treatment plants have a large catchment area, which means that more people enjoy their benefits than have to suffer their disadvantages. If residents in the vicinity of such plants are not compensated for damage sustained or harmed in ways that cannot be compensated for it becomes a rational stance for them, while not objecting to waste treatment and waste disposal plants in principle to object to their being in their own neighbourhood. The book comprehensively describes the subject area from an economic angle. The causes are analysed in detail and an action strategy is pointed, out, which can help to reduce acceptance problems. The individual chapters deal with emissions, risk potentials, optimization calculus considering individual firms or persons and groups of two or more firms or persons, private-economy approaches for the solving of site selection conflicts, collective decision-making. (orig./HSCH) [de

  6. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-03-31

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by

  7. Greater confinement disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

    1985-01-01

    Low-level radioactive waste (LLW) includes a broad spectrum of different radionuclide concentrations, half-lives, and hazards. Standard shallow-land burial practice can provide adequate protection of public health and safety for most LLW. A small volume fraction (approx. 1%) containing most of the activity inventory (approx. 90%) requires specific measures known as greater-confinement disposal (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics

  8. Site investigations for the disposal of spent fuel - investigation program

    International Nuclear Information System (INIS)

    Aeikaes, Timo

    1985-11-01

    The Industrial Power Company Ltd (TVO) is making preparations for the final disposal of spent nuclear fuel into the Finnish bedrock. The revised site investigation program for the years 1986-2010 is presented in this report. The objectives and activities in the near future are described in more detail. The main objectives and frame programs for the investigations in the more distant future are described. The program planning of these investigations are being developed in the preceding site investigations. The investigations for the site selection are divided into four phases: 1983-1985 selection of the investigation areas, preparations for the field investigations, drilling and investigations in a deep test borehole; 1986-1992 preliminary site investigations in 5-10 investigation areas; 1993-2000 detailed site investigations in 2-3 investigation areas. Site selection in the year 2000; 2001-2010 complementary investigations on the selected site. The first investigation phase will be carried out as planned. In this phase a 1001 m deep test borehole was drilled at Lavia in western Finland. With the investigations in the borehole and related development work, preparations were made for the future field investigations. The equipment and investigation methods are being developed during the site investigations. The equipment for taking groundwater samples and the unit for hydraulic testing have been developed. In the future the emphasis in the work will be in developing equipment for monitoring of the hydraulic head and measuring the volumetric flow. In groundwater sampling the present procedure can be improved by adding the test for the in-situ measurements. The results of the field investigations will be stored and processed in a centralized data base. The data base will transmit the results for the interpretation and then the interpreted results transmitted for model calculations and reporting. The cost estimate for the investigations in 1986-2010 is 110-125 million

  9. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility: Volume 1. Revision 1

    International Nuclear Information System (INIS)

    Weekes, D.C.; Ford, B.H.; Jaeger, G.K.

    1996-09-01

    This site characterization report provides the results of the field data collection activities for the Environmental Restoration Disposal Facility site. Information gathered on the geology, hydrology, ecology, chemistry, and cultural resources of the area is presented. The Environmental Restoration Disposal Facility is located at the Hanford Site in Richland, Washington

  10. Trench design and construction techniques for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Tucker, P.G.

    1983-02-01

    This document provides information on trench design and construction techniques which can be used in the disposal of LLW by shallow land burial. It covers practices currently in use not only in the LLW disposal field, but also methods and materials being used in areas of hazardous and municipal waste disposal which are compatible with the performance objectives of 10 CFR Part 61. The complexity of a disposal site and its potential problems dictate the use of site-specific characteristics when designing a LLW disposal trench. This report presents the LLW disposal trench as consisting of various elements or unit processes. The term unit processes is used as it more fully relays the impact of the designer's choice of methods and materials. When choosing a material to fulfill the function of a certain trench element, the designer is also stipulating a portion of his operational procedure which must be compatible with the disposal operation as a whole. Information is provided on the properties, selection, and installation of various materials such as bentonite, soil-cement, polymeric materials, asphaltic materials, and geotechnical fabrics. This is not intended to outline step-by-step procedures. Basically, three time frames are addressed with respect to construction techniques; preoperational, operational, and postoperational. Within each of these time frames there are certain construction techniques which can be employed by the designer to enhance the overall ease of construction and ultimate success of the disposal facility. Among the techniques presented are precontouring the disposal area, alignment of the trench axis, sloping the trench bottom, incremental excavation, and surface water (runoff) management

  11. Developing a low-level radioactive waste disposal facility in Connecticut: Update on progress and new directions

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, R.E. [Connecticut Hazardous Waste Management Service, Hartford, CT (United States)

    1993-03-01

    Connecticut is a member of the Northeast Interstate Low-Level Radioactive Waste Management Compact (Northeast LLRW Compact). The other member of the Northeast LLRW Compact is New Jersey. The Northeast Interstate Low-Level Radioactive Waste Commission (Northeast Compact Commission), the Northeast LLRW Compact`s governing body, has designated both Connecticut and New Jersey as host states for disposal facilities. The Northeast Compact Commission has recommended that, for purposes of planning for each state`s facility, the siting agency for the state should use projected volumes and characteristics of the LLW generated in its own state. In 1987 Connecticut enacted legislation that assigns major responsibilities for developing a LLW disposal facility in Connecticut to the Connecticut Hazardous Waste Management Service (CHWMS). The CHWMS is required to: prepare and revise, as necessary, a LLW Management Plan for the state; select a site for a LLW disposal facility; select a disposal technology to be used at the site; select a firm to obtain the necessary approvals for the facility and to develop and operate it; and serve as the custodial agency for the facility. This paper discusses progress in developing a facility.

  12. Distribution of sewage indicated by Clostridium perfringens at a deep-water disposal site after cessation of sewage disposal.

    Science.gov (United States)

    Hill, R T; Straube, W L; Palmisano, A C; Gibson, S L; Colwell, R R

    1996-05-01

    Clostridium perfringens, a marker of domestic sewage contamination, was enumerated in sediment samples obtained from the vicinity of the 106-Mile Site 1 month and 1 year after cessation of sewage disposal at this site. C. perfringens counts in sediments collected at the disposal site and from stations 26 nautical miles (ca. 48 km) and 50 nautical miles (ca. 92 km) to the southwest of the site were, in general, more than 10-fold higher than counts from an uncontaminated reference site. C. perfringens counts at the disposal site were not significantly different between 1992 and 1993, suggesting that sewage sludge had remained in the benthic environment at this site. At stations where C. perfringens counts were elevated (i.e., stations other than the reference station), counts were generally higher in the top 1 cm and decreased down to 5 cm. In some cases, C. perfringens counts in the bottom 4 or 5 cm showed a trend of higher counts in 1993 than in 1992, suggesting bioturbation. We conclude that widespread sludge contamination of the benthic environment has persisted for at least 1 year after cessation of ocean sewage disposal at the 106-Mile Site.

  13. Site characterization quality assurance for the California LLRW Disposal Site Project

    International Nuclear Information System (INIS)

    Hanrahan, T.P.; Ench, J.E.; Serlin, C.L.; Bennett, C.B.

    1988-01-01

    In December of 1985 US Ecology was chosen as the license designee for the State of California's low-level radioactive waste disposal facility. In early 1987, three candidate sites were selected for characterization studies in preparation for identifying the preferred site. The geotechnical characterization activities along with studies of the ecological and archaeological attributes, as well as assessments of the socio-economic impacts and cultural resources all provide input towards selection of the proposed site. These technical studies in conjunction with comments from local citizen committees and other interested parties are used as a basis for determining the proposed site for which full site characterization as required by California licensing requirements are undertaken. The purpose of this paper is to present an overview of the program for Quality Assurance and Quality Control for the site characterization activities on the California LLRW Disposal Site Project. The focus is on three major perspectives: The composite QA Program and two of the primary characterization activities, the geotechnical and the meteorological investigations

  14. Waste management system functional requirements for Interim Waste Management Facilities (IWMFs) and technology demonstrations, LLWDDD [Low-Level Disposal Development and Demonstration] Program

    International Nuclear Information System (INIS)

    1988-03-01

    The purpose of this report is to build upon the preceding decisions and body of information to prepare draft system functional requirements for each classification of waste disposal currently proposed for Low-Level Waste Disposal Development Demonstration (LLWDDD) projects. Functional requirements identify specific information and data needs necessary to satisfy engineering design criteria/objectives for Interim Waste Management Facilities. This draft will suppor the alternatives evaluation process and will continue to evolve as strategy is implemented, regulatory limits are established, technical and economic uncertainties are resolved, and waste management plans are being implemented. This document will become the planning basis for the new generation of solid LLW management facilities on new sites on the Reservation. Eighteen (18) general system requirements are identified which are applicable to all four Low-Level Waste (LLW) disposal classifications. Each classification of LLW disposal is individually addressed with respect ot waste characteristics, site considerations, facility operations, facility closure/post-closure, intruder barriers, institutional control, and performance monitoring requirements. Three initial LLW disposal sites have been proposed as locations on the ORR for the first demonstrations

  15. Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)

    International Nuclear Information System (INIS)

    Arnold, P.

    2012-01-01

    This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams

  16. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grant Evenson

    2006-01-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139

  17. Engineered barrier durability: An issue for disposal near populated areas

    International Nuclear Information System (INIS)

    Porter, C.L.

    1995-01-01

    Under the current national policy for disposal of low-level radioactive waste (LLW) in the United States of America, each State is required to provide disposal capacity for the LLW generated within its borders. The formation of ''Compacts'' of several States is allowed if approved by Congress. Such forced regionalization of disposal facilities based on State boundaries results in some disposal facilities being sited near populated areas at locations with less than optimum site characteristics from a disposal standpoint. To compensate for this engineered barriers are included in the proposed designs. Portland cement based concrete (PCC), which is the dominant material for disposal vault designs, is degraded via many mechanisms, most of which are related to its permeability. The numerous uncertainties associated with the long-term performance of PCC has lead to many unsuccessful attempts to obtain public acceptance of proposed disposal facilities. These unsuccessful efforts have delayed establishing disposal capacity to the point that a crisis is looming on the horizon. This paper investigates the results of on-going research into the viability of commercially available, impermeable, mass-poured construction materials as an alternative to PCC in LLW disposal vaults. The results from testing and research on two such materials, concrete made from sulfur polymer cement (SPC) and ICOM (an epoxy based concrete) are reported. Material properties and test results include strength parameters, chemical resistance, porosity, permeability, deconability, radiation damage resistance, and biodegradation. The data indicates that with these alternative materials the uncertainties in predicting service life of an engineered barrier can be reduced

  18. Draft Site Management and Monitoring Plan for Corpus Christi Maintenance and New Work Ocean Dredged Material Disposal Site

    Science.gov (United States)

    USEPA Region 6 and the US Army Corps of Engineers submit for public comment the Draft Site Management and Monitoring Plan for Corpus Christi Maintenance and New Work Ocean Dredged Material Disposal Site

  19. Groundwater hydrology study of the Ames Chemical Disposal Site

    International Nuclear Information System (INIS)

    Stickel, T.

    1996-01-01

    The Ames Laboratory Chemical Disposal Site is located in northwestern Ames, Iowa west of Squaw Creek. From 1957 to 1966, Ames Laboratory conducted research to develop processes to separate uranium and thorium from nuclear power fuel and to separate yttrium from neutron shielding sources. The wastes from these processes, which contained both hazardous and radiological components, were placed into nine burial pits. Metal drums, plywood boxes, and steel pails were used to store the wastes. Uranium was also burned on the ground surface of the site. Monitoring wells were placed around the waste burial pits. Groundwater testing in 1993 revealed elevated levels of Uranium 234, Uranium 238, beta and alpha radiation. The north side of the burial pit had elevated levels of volatile organic compounds. Samples in the East Ravine showed no volatile organics; however, they did contain elevated levels of radionuclides. These analytical results seem to indicate that the groundwater from the burial pit is flowing down hill and causing contamination in the East Ravine. Although there are many avenues for the contamination to spread, the focus of this project is to understand the hydrogeology of the East Ravine and to determine the path of groundwater flow down the East Ravine. The groundwater flow data along with other existing information will be used to assess the threat of chemical migration down the East Ravine and eventually off-site. The primary objectives of the project were as follows: define the geology of the East Ravine; conduct slug tests to determine the hydraulic conductivity of both oxidized and unoxidized till; develop a three-dimensional mathematical model using ModIME and MODFLOW to simulate groundwater flow in the East Ravine

  20. Siting process for disposal site of low level radiactive waste in Thailand

    International Nuclear Information System (INIS)

    Yamkate, P.; Sriyotha, P.; Thiengtrongjit, S.; Sriyotha, K.

    1992-01-01

    The radioactive waste in Thailand is composed of low level waste from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. In addition, the high activity of sealed radiation sources i.e. Cs-137 Co-60 and Ra-226 are also accumulated. Since the volume of treated waste has been gradually increased, the general needs for a repository become apparent. The near surface disposal method has been chosen for this aspect. The feasibility study on the underground disposal site has been done since 1982. The site selection criteria have been established, consisting of the rejection criteria, the technical performance criteria and the economic criteria. About 50 locations have been picked for consideration and 5 candidate sites have been selected and subsequent investigated. After thoroughly investigation, a definite location in Ratchburi Province, about 180 kilometers southwest of Bangkok, has been selected as the most suitable place for the near surface disposal of radioactive waste in Thailand

  1. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting

  2. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    International Nuclear Information System (INIS)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H.; Serne, R.J.; Cantrell, K.J.

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied

  3. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H. [Westinghouse Hanford Co., Richland, WA (United States); Serne, R.J.; Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.

  4. The Blue Ribbon Commission and siting radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Pescatore, C.

    2010-01-01

    On 21 September 2010, the NEA Secretariat was invited to address the Blue Ribbon Commission on America's Nuclear Future. This paper is a summary of the remarks made. The successful siting of radioactive waste disposal facilities implies creating the conditions for continued ownership of the facility over time. Acceptance of the facility at a single point in time is not good enough. Continued ownership implies the creation of conscious, constructive and durable relationships between the (most affected) communities and the waste management facility. Being comfortable about the technical safety of the facility requires a degree of familiarity and control . Having peace of mind about the safety of the facility requires trust in the waste management system and its actors as well as some control over the decision making. Regulators are especially important players who need to be visible in the community. The ideal site selection process should be step- wise, combining procedures for excluding sites that do not meet pre-identified criteria with those for identifying sites where nearby and more distant residents are willing to discuss acceptance of the facility. The regional authorities are just as important as the local authorities. Before approaching a potential siting region or community, there should be clear results of national (and state) debates establishing the role of nuclear power in the energy mix, as well as information on the magnitude of the ensuing waste commitment and its management end-points, and the allocation of the financial and legal responsibilities until the closure of the project. Once the waste inventories and type of facilities have been decided upon, there should be agreement that all significant changes will require a new decision-making process. Any proposed project has a much better chance to move forward positively if the affected populations can participate in its definition, including, at the appropriate time, its technical details. A

  5. Long-term surveillance plan for the Gunnison, Colorado disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  6. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  7. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  8. Long-term surveillance plan for the Gunnison, Colorado disposal site

    International Nuclear Information System (INIS)

    1996-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  9. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    International Nuclear Information System (INIS)

    1997-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  10. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    International Nuclear Information System (INIS)

    1996-05-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  11. Building Confidence in LLW Performance Assessments - 13386

    Energy Technology Data Exchange (ETDEWEB)

    Rustick, Joseph H.; Kosson, David S.; Krahn, Steven L.; Clarke, James H. [Vanderbilt University, Department of Civil and Environmental Engineering and Consortium for Risk Evaluation with Stakeholder Participation, Nashville, Tennessee, 37235 (United States)

    2013-07-01

    The performance assessment process and incorporated input assumptions for four active and one planned DOE disposal sites were analyzed using a systems approach. The sites selected were the Savannah River E-Area Slit and Engineered Trenches, Hanford Integrated Disposal Facility, Idaho Radioactive Waste Management Complex, Oak Ridge Environmental Management Waste Management Facility, and Nevada National Security Site Area 5. Each disposal facility evaluation incorporated three overall system components (1) site characteristics (climate, geology, geochemistry, etc.), (2) waste properties (waste form and package), and (3) engineered barrier designs (cover system, liner system). Site conceptual models were also analyzed to identity the main risk drivers and risk insights controlling performance for each disposal facility. (authors)

  12. Building Confidence in LLW Performance Assessments - 13386

    International Nuclear Information System (INIS)

    Rustick, Joseph H.; Kosson, David S.; Krahn, Steven L.; Clarke, James H.

    2013-01-01

    The performance assessment process and incorporated input assumptions for four active and one planned DOE disposal sites were analyzed using a systems approach. The sites selected were the Savannah River E-Area Slit and Engineered Trenches, Hanford Integrated Disposal Facility, Idaho Radioactive Waste Management Complex, Oak Ridge Environmental Management Waste Management Facility, and Nevada National Security Site Area 5. Each disposal facility evaluation incorporated three overall system components (1) site characteristics (climate, geology, geochemistry, etc.), (2) waste properties (waste form and package), and (3) engineered barrier designs (cover system, liner system). Site conceptual models were also analyzed to identity the main risk drivers and risk insights controlling performance for each disposal facility. (authors)

  13. Hanford Site waste treatment/storage/disposal integration

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    1999-01-01

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps

  14. Hanford Site Treated Effluent Disposal Facility process flow sheet

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1993-04-01

    This report presents a novel method of using precipitation, destruction and recycle factors to prepare a process flow sheet. The 300 Area Treated Effluent Disposal Facility (TEDF) will treat process sewer waste water from the 300 Area of the Hanford Site, located near Richland, Washington, and discharge a permittable effluent flow into the Columbia River. When completed and operating, the TEDF effluent water flow will meet or exceed water quality standards for the 300 Area process sewer effluents. A preliminary safety analysis document (PSAD), a preconstruction requirement, needed a process flow sheet detailing the concentrations of radionuclides, inorganics and organics throughout the process, including the effluents, and providing estimates of stream flow quantities, activities, composition, and properties (i.e. temperature, pressure, specific gravity, pH and heat transfer rates). As the facility begins to operate, data from process samples can be used to provide better estimates of the factors, the factors can be entered into the flow sheet and the flow sheet will estimate more accurate steady state concentrations for the components. This report shows how the factors were developed and how they were used in developing a flow sheet to estimate component concentrations for the process flows. The report concludes with how TEDF sample data can improve the ability of the flow sheet to accurately predict concentrations of components in the process

  15. Subseabed disposal: systematic application of the site qualification plan

    International Nuclear Information System (INIS)

    Shephard, L.E.; Damuth, J.E.; Hayes, D.B.; Heath, G.R.; Laine, E.P.; Leinen, M.; Tucholke, B.E.

    1982-01-01

    Two criteria, geologic stability and barrier effectiveness, form the basis of the Subseabed Disposal Program's site qualification plan to evaluate the ocean basins and identify those regions having characteristics most favorable for containment of radioactive waste. Stability criteria are used to define those regions least likely to be disturbed by tectonic forces or oceanographic changes during the lifetime of a waste repository. Barrier criteria define those lithologies most likely to form an effective barrier to the release of radionuclides. Two north Pacific regions and three north Atlantic regions (PAC I and II and ATL I, II, and III, respectively) have thus far been selected for further investigation based on the site qualification plan. The PAC I region, centered on the Shatsky Rise in the northwest Pacific, has been subdivided into areas and locations on the basis of an exhaustive review of data available in the archives of national and international agencies and institutions. Results from three locations surveyed and sampled within the PAC I region (VEMA cruise 36-12) suggest some variability in seismic reflector character and lithology, attributable partially to the effects of the North Pacific current. PAC II, located northeast of Hawaii, represents a generic study region characteristic of the Pacific pelagic, abyssal hill environment. Seismic reflection surveys and sampling indicate uniform sediment properties and processes, both laterally and vertically, within the PAC II region. Initial investigation of Regions ATL I, II, and III, located within the distal Nares abyssal plain, the distal Sohm abyssal plain, and the Cape Verde region, respectively, suggests certain smaller areas within these regions warrant more detailed study

  16. Trace metal contamination of water at a solid waste disposal site at ...

    African Journals Online (AJOL)

    , and close to, a solid waste disposal site at Kariba, Zimbabwe, and in water flowing from the area during 1996 and 1997. Soil samples were collected from the surface inside the disposal site and at distances of 3m, 25m and 50m (from the ...

  17. Economics model for new low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    1983-12-01

    This report describes LLWECON, an interactive computer mode for evaluating financial factors involved in low-level radioactive waste disposal. The logic by which LLWECON calculates the final generator price (price per cubic foot the disposal site operator charges waste generators) is detailed. Required user input and hypothetical examples, covering sites with different capacities, and both public and private-sector development, are included

  18. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Science.gov (United States)

    2010-07-01

    ... Insecticide, Fungicide and Rodenticide Act (7 U.S.C. 136 et seq.); (vi) Sludge from a waste treatment plant... leased by the operator; and (iii) the solid waste disposal site lacks road, rail, or adequate water... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites in...

  19. In situ radiological characterization to support a test excavation at a liquid waste disposal site

    International Nuclear Information System (INIS)

    Keele, B.D.; Bauer, R.G.; Blewett, G.R.; Troyer, G.L.

    1994-05-01

    An in situ radiological detection system was developed to support a small test excavation at a liquid waste disposal site at the Hanford Site in Richland, Washington. Instrumentation, calibration and comparisons to samples are discussed

  20. Site selection and design basis of the National Disposal Facility for LILW. Geological and engineering barriers

    International Nuclear Information System (INIS)

    Boyanov, S.

    2010-01-01

    Content of the presentation: Site selection; Characteristics of the “Radiana” site (location, geological structure, physical and mechanical properties, hydro-geological conditions); Design basis of the Disposal Facility; Migration analysis; Safety assessment approach

  1. Preliminary fee methodology for recovering GTCC-LLW management costs

    International Nuclear Information System (INIS)

    Clark, L.L.

    1990-06-01

    The US Department of Energy (DOE) is currently planning a fee to recover costs of managing Greater-Than-Class-C Low-Level Waste (GTCC-LLW). A cash flow basis will be used for fee calculations to ensure recovery of all applicable program costs. Positive cash flows are revenues received from waste generators. Negative cash flows are program expenses for storage, transportation, treatment, and disposal of the wastes and for program development, evaluation, and administration. Program balances are the net result of positive and negative cash flows each year. The methodology calculates fees that will recovery all program expenses taking into account cost inflation. 3 refs., 1 tab

  2. Preliminary low-level waste feed definition guidance - LLW pretreatment interface

    International Nuclear Information System (INIS)

    Shade, J.W.; Connor, J.M.; Hendrickson, D.W.; Powell, W.J.; Watrous, R.A.

    1995-02-01

    The document describes limits for key constituents in the LLW feed, and the bases for these limits. The potential variability in the stream is then estimated and compared to the limits. Approaches for accomodating uncertainty in feed inventory, processing strategies, and process design (melter and disposal system) are discussed. Finally, regulatory constraints are briefly addressed

  3. Analyses of soils at commercial radioactive-waste-disposal sites

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1982-01-01

    Brookhaven National Laboratory, in order to provide technical assistance to the NRC, has measured a number of physical and chemical characteristics of soils from two currently operating commercial radioactive waste disposal sites; one at Barnwell, SC, and the other near Richland, WA. Soil samples believed to be representative of the soil that will contact the buried waste were collected and analyzed. Earth resistivities (field measurements), from both sites, supply information to identify variations in subsurface material. Barnwell soil resistivities (laboratory measurements) range from 3.6 x 10 5 ohm-cm to 8.9 x 10 4 ohm-cm. Soil resistivities of the Hanford sample vary from 3.0 x 10 5 ohm-cm to 6.6 x 10 3 ohm-cm. The Barnwell and Hanford soil pH ranges from 4.8 to 5.4 and from 4.0 to 7.2 respectively. The pH of a 1:2 mixture of soil to 0.01 M CaCl 2 resulted in a pH for the Barnwell samples of 3.9 +- 0.1 and for the Hanford samples of 7.4 +- 0.2. These values are comparable to the pH measurements of the water extract of the soils used for the analyses of soluble ion content of the soils. The exchange acidity of the soils was found to be approximately 7 mg-eq per 100 g of dry soil for clay material from Barnwell, whereas the Hanford soils showed an alkaline reaction. Aqueous extracts of saturated pastes were used to determine the concentrations of the following ions: Ca 2+ , Mg 2+ , K + , Na + , HCO 3 - , SO 4 /sup =/, and Cl - . The sulfide content of each of the soils was measured in a 1:2.5 mixture of soil to an antioxidant buffer solution. The concentrations of soluble ions found in the soils from both sites are consistent with the high resistivities

  4. Long-term surveillance plan for the Maybell, Colorado Disposal Site

    International Nuclear Information System (INIS)

    1997-09-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE's determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  5. Long-term surveillance plan for the South Clive Disposal Site, Clive, Utah

    International Nuclear Information System (INIS)

    1996-03-01

    This long-term surveillance plan (LTSP) describes the US Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CRF Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the South Clive disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the South Clive site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the South Clive disposal site performs as designed. The program's primary activity is site inspections to identify threats to disposal cell integrity

  6. Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1997-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney disposal site. The site is in Mesa County near Grand Junction, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects public health and safety and the environment. Before each disposal site may be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Cheney disposal site. The general license becomes effective when the NRC concurs with the DOE's determination that remedial action is complete and the NRC formally accepts this plan. This document describes the long-term surveillance program the DOE will implement to ensure that the Cheney disposal site performs as designed. The program is based on site inspections to identify potential threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  7. Public Acceptance of Low-Level Waste Disposal Critical to the Nuclear Renaissance

    International Nuclear Information System (INIS)

    Sonny Goldston, W.T.

    2009-01-01

    The disposal of various Low-Level Waste (LLW) forms projected to result from the operation of a pilot or large scale Advanced Fuel Cycle Initiative Programs' (formally known as Global Nuclear Energy Partnership (GNEP)) reprocessing and vitrification plants requires the DOE LLW program and regulatory structure to be utilized in its present form due to the limited availability of Nuclear Regulatory Commission licensed commercial LLW disposal facilities to handle wastes with radionuclide concentrations that are greater than Nuclear Regulatory Commission (NRC) Class A limits. This paper will describe the LLW forms and the regulatory structures and facilities available to dispose of this waste. Then the paper discusses the necessity of an excellent public involvement program to ensure the success of an effective technical solution. All of the decisions associated with the management of these wastes are of interest to the public and successful program implementation would be impossible without including the public up-front in the program formulation. Serious problems can result if program decisions are made without public involvement, and if the public is informed after key decisions are made. This paper will describe the regulatory and public involvement program and their effects on the decisions concerning the disposal of Low-Level Radioactive Waste (LLW) at the Savannah River Site (SRS). An extensive public communications effort resulted in endorsement of changes in disposal practices by the SRS Citizens Advisory Board that was critical to the success of the program. A recommendation will be made to install a public involvement program that is similar to the SRS Citizens Advisory Board in order to ensure the success of the AFCI programs in view of the limited availability to handle the wastes from the program and the public acceptance of change that will be required. (authors)

  8. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  9. Preparation of Radwaste Disposal Site in Jawa Island and Its Surrounding Areas

    International Nuclear Information System (INIS)

    Budi Setiawan; Teddy Sumantry; Heru Sriwahyuni; Hendra A Pratama; Nurul Efri E; Achmad Sjarmufni; Pratomo Budiman; Dadang Suganda; Soegeng Waluyo; Ari Pudyo; Dewi Susilowati; Marwoto

    2008-01-01

    The task continuation and national needs indicate the important of starting for radioactive waste disposal preparation. As the IAEA procedures for the first step are to accomplished the conceptual and planning stage of radwaste disposal siting in Jawa island. Within the plan, the Milestone, the site important factors, the potential host rock, the possible areas, the aims and the investigation programs have been defined. From the procedures which are followed hopefully in the end of the activities, suitable site(s) to be able selected for radioactive waste disposal facility in near future. (author)

  10. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1997-06-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Mexican Hat disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  11. Long-term surveillance plan for the South Clive disposal site Clive, Utah

    International Nuclear Information System (INIS)

    1997-09-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. This LSTP describes the long-term surveillance program the DOE will implement to ensure the South Clive disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  12. Long-term surveillance plan for the Estes Gulch disposal site near Rifle, Colorado

    International Nuclear Information System (INIS)

    1997-07-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Estes Gulch disposal site near Rifle, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Estes Gulch disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  13. Interim long-term surveillance plan for the Cheney disposal site near, Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1997-08-01

    This interim long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site in Mesa County near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  14. Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1997-07-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney Disposal Site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  15. Control of water infiltration into near surface low-level waste disposal units. Final report on field experiments at a humid region site, Beltsville, Maryland

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1997-09-01

    This study''s objective was to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work was carried out in large-scale lysimeters 21.34 m x 13.72 m x 3.05 m (70 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration were investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management

  16. Dungeness crab survey for the Southwest Ocean Disposal Site off Grays Harbor, Washington, June 1990

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, B.J.; Pearson, W.H. (Battelle/Marine Sciences Lab., Sequim, WA (United States))

    1991-09-01

    As part of the Grays Harbor Navigation Improvement Project, the Seattle District of the US Army Corps of Engineers has begun active use of the Southwest Ocean Disposal Site off Grays Harbor, Washington. This survey was to verify that the location of the area of high crab density observed during site selection surveys has not shifted into the Southeast Ocean Disposal Site. In June 1990, mean densities of juvenile Dungeness crab were 146 crab/ha within the disposal site and 609 crab/ha outside ad north of the disposal site. At nearshore locations outside the disposal site, juvenile crab density was 3275 crab/ha. Despite the low overall abundance, the spatial distribution of crab was such that the high crab densities in 1990 have remained outside the Southwest Ocean Disposal Site. The survey data have confirmed the appropriateness of the initial selection of the disposal site boundaries and indicated no need to move to the second monitoring tier. 8 refs., 9 figs., 2 tabs.

  17. Selection of models to calculate the LLW source term

    International Nuclear Information System (INIS)

    Sullivan, T.M.

    1991-10-01

    Performance assessment of a LLW disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the source term). The focus of this work is to develop a methodology for calculating the source term. In general, the source term is influenced by the radionuclide inventory, the wasteforms and containers used to dispose of the inventory, and the physical processes that lead to release from the facility (fluid flow, container degradation, wasteform leaching, and radionuclide transport). In turn, many of these physical processes are influenced by the design of the disposal facility (e.g., infiltration of water). The complexity of the problem and the absence of appropriate data prevent development of an entirely mechanistic representation of radionuclide release from a disposal facility. Typically, a number of assumptions, based on knowledge of the disposal system, are used to simplify the problem. This document provides a brief overview of disposal practices and reviews existing source term models as background for selecting appropriate models for estimating the source term. The selection rationale and the mathematical details of the models are presented. Finally, guidance is presented for combining the inventory data with appropriate mechanisms describing release from the disposal facility. 44 refs., 6 figs., 1 tab

  18. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Smith, T.P.; Jaffe, M.

    1984-09-01

    In discussing the use of compensation and incentives in siting low-level radioactive waste disposal facilities, chapters are devoted to: compensation and incentives in disposal facility siting (definitions and effects of compensation and incentives and siting decisions involving the use of compensation and incentives); the impacts of regional and state low-level radioactive waste facilities; the legal framework of compensation; and recommendations regarding the use of compensation

  19. Data Validation Package May 2016 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site, September 2016

    International Nuclear Information System (INIS)

    Johnson, Dick; Tsosie, Bernadette

    2016-01-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location 16(SG).

  20. Data Validation Package May 2016 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site, September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dick [Navarro Nevada Environmental Services (NNES), Las Vegas, NV (United States); Tsosie, Bernadette [US Department of Energy, Washington, DC (United States)

    2016-09-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location 16(SG).

  1. Long-term surveillance plan for the Gunnison, Colorado disposal site. Revision 2

    International Nuclear Information System (INIS)

    1997-02-01

    This long-term surveillance plan (LTSP) describes the US Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance

  2. Design and operation of a low-level solid-waste disposal site at Los Alamos

    International Nuclear Information System (INIS)

    Balo, K.A.; Wilson, N.E.; Warren, J.L.

    1982-01-01

    Since the mid-1940's, approximately 185000 m 3 of low-level and transuranic radioactive solid waste, generated in operations at the Los Alamos National Laboratory, have been disposed of by on-site shallow land burial. Procedures and facilities have been designed and evaluated in the areas of waste acceptance, treatment and storage, disposal, traffic control, and support systems. The methodologies assuring the proper management and disposal of radioactive solid waste are summarized

  3. The AMES Laboratory chemical disposal site removal action: Source removal, processing, and disposal

    International Nuclear Information System (INIS)

    Shirley, R.S.

    1996-01-01

    The Ames Laboratory has historically supported the U.S. Department of Energy (USDOE) and its predecessor agencies by providing research into the purification and manufacturing of high purity uranium, thorium, and yttrium metals. Much of this work was accomplished in the late 1950s and early 1960s prior to the legislation of strict rules and regulations covering the disposal of radioactive and chemical wastes. As a result, approximately 800 cubic meters of low-level radioactive wastes, chemical wastes, and contaminated debris were disposed in nine near surface cells located in a 0.75 hectare plot of land owned by Iowa State University in Ames, Iowa. Under a national contract with the U.S. Army Corps of Engineers (USACE), OHM Remediation Services Corp (OHM) was tasked with providing turnkey environmental services to remove, process, package, transport, and coordinate the disposal of the waste materials and contaminated environmental media

  4. The Ames Laboratory Chemical Disposal Site removal action: Source removal, processing, and disposal

    International Nuclear Information System (INIS)

    Shirley, R.S.

    1995-01-01

    The Ames Laboratory has historically supported the US Department of Energy (USDOE) and its predecessor agencies by providing research into the purification and manufacturing of high purity uranium, thorium, and yttrium metals. Much of this work was accomplished in the late 1950s and early 1960s prior to the legislation of strict rules and regulations covering the disposal of radioactive and chemical wastes. As a result, approximately 800 cubic meters of low-level radioactive wastes, mixed wastes, and contaminated debris were disposed in nine near surface cells located in a 0.75 hectare plot of land owned by Iowa State University in Ames, Iowa. Under a national contract with the US Army Corps of Engineers (USACE), OHM Remediation Services Corp. (OHM) was tasked with providing turnkey environmental services to remove, process, package, transport, and coordinate the disposal of the waste materials and contaminated environmental media

  5. Framework for DOE mixed low-level waste disposal: Site fact sheets

    Energy Technology Data Exchange (ETDEWEB)

    Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

    1994-11-01

    The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

  6. LLW notes. Volume 11, No.8

    International Nuclear Information System (INIS)

    1996-12-01

    'LLW Notes' is distributed by Afton Associates, Inc. to Low-Level Radioactive Waste Forum Participants and other state, and compact officials identified by those Participants to receive 'LLW Notes'. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  7. LLW notes. Vol. 11, No. 1

    International Nuclear Information System (INIS)

    1996-02-01

    'LLW Notes' is distributed by Afton Associates, Inc. to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive 'LLW Notes'. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  8. LLW notes. Vol. 11, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    `LLW Notes` is distributed by Afton Associates, Inc. to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive `LLW Notes`. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  9. LLW notes, Vol. 11, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    `LLW Notes` is distributed by Afton Associates, Inc. to Low-Level Radioactive Waste Forum Participants and other state, and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  10. LLW notes, Vol. 11, No. 2

    International Nuclear Information System (INIS)

    1996-03-01

    'LLW Notes' is distributed by Afton Associates, Inc. to Low-Level Radioactive Waste Forum Participants and other state, and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  11. Long-term surveillance plan for the Mexican Hat disposal site, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1996-01-01

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSPC documents the land ownership interests and details how the long-term care of the disposal site will be accomplished

  12. Assumption and program of the earlier stage construction of L/ILW disposal site

    International Nuclear Information System (INIS)

    Li Xuequn; Chen Shi; Li Xinbang

    1993-01-01

    The authors analysed the production and treatment of low- and intermediate-level radwastes (L/ILW) in China. Some problems and situation in this field are introduced. Over the past ten years, preliminary efforts have been made by CNNC (China National Nuclear Corporation) in policy, law and rules, developing program, management system, siting, engineering techniques, and safety assessment for radwaste disposal. The investment of the earlier stage work of L/ILW disposal site construction is estimated, the program and assumption to disposal site construction of the L/ILW are reviewed

  13. Operation and management plan of Rokkasho Low Level Radioactive Waste Disposal Center

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Z.; Tomozawa, T.; Mahara, Y.; Iimura, H. [Japan Nuclear Fuel Ltd., Tokyo (Japan). Radioactive Waste Management Dept.

    1993-12-31

    Japan Nuclear Fuel Limited (JNFL) started the operation of the Rokkasho Low-Level Radioactive Waste Disposal Center in December, 1992. This center is located at Rokkasho Village in Aomori Prefecture. The facility in this center will provide for the disposal of 40,000 m{sup 3} of the low-level radioactive waste (LLW) produced from domestic nuclear power stations. The facility will receive between 5,000 m{sup 3} and 10,000 m{sup 3} of waste every year. Strict and efficient institutional controls, such as the monitoring of the environment and management of the site, is required for about 300 years. This paper provides an outline of the LLW burial operation and management program at the disposal facility. The facility is located 14--19 meters below the ground surface in the hollowed out Takahoko Formation.

  14. Operation and management plan of Rokkasho Low Level Radioactive Waste Disposal Center

    International Nuclear Information System (INIS)

    Nakanishi, Z.; Tomozawa, T.; Mahara, Y.; Iimura, H.

    1993-01-01

    Japan Nuclear Fuel Limited (JNFL) started the operation of the Rokkasho Low-Level Radioactive Waste Disposal Center in December, 1992. This center is located at Rokkasho Village in Aomori Prefecture. The facility in this center will provide for the disposal of 40,000 m 3 of the low-level radioactive waste (LLW) produced from domestic nuclear power stations. The facility will receive between 5,000 m 3 and 10,000 m 3 of waste every year. Strict and efficient institutional controls, such as the monitoring of the environment and management of the site, is required for about 300 years. This paper provides an outline of the LLW burial operation and management program at the disposal facility. The facility is located 14--19 meters below the ground surface in the hollowed out Takahoko Formation

  15. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This long-term surveillance plan (LTSP) for the Durango, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Durango (Bodo Canyon) disposal site, which will be referred to as the disposal site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). RRMs include tailings and other uranium ore processing wastes still at the site, which the DOE determines to be radioactive. This LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992).

  16. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado

    International Nuclear Information System (INIS)

    1994-03-01

    This long-term surveillance plan (LTSP) for the Durango, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Durango (Bodo Canyon) disposal site, which will be referred to as the disposal site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). RRMs include tailings and other uranium ore processing wastes still at the site, which the DOE determines to be radioactive. This LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992)

  17. Mitigation action plan for remedial action at the Uranium Mill Tailing Sites and Disposal Site, Rifle, Colorado

    International Nuclear Information System (INIS)

    1992-07-01

    The Estes Gulch disposal site is approximately 10 kilometers (6 miles) north of the town of Rifle, off State Highway 13 on Federal land administered by the Bureau of Land Management. The Department of Energy (DOE) will transport the residual radioactive materials (RRM) by truck to the Estes Gulch disposal site via State Highway 13 and place it in a partially below-grade disposal cell. The RRM will be covered by an earthen radon barrier, frost protection layers, and a rock erosion protection layer. A toe ditch and other features will also be constructed to control erosion at the disposal site. After removal of the RRM and disposal at the Estes Gulch site, the disturbed areas at all three sites will be backfilled with clean soils, contoured to facilitate surface drainage, and revegetated. Wetlands areas destroyed at the former Rifle processing sites will be compensated for by the incorporation of now wetlands into the revegetation plan at the New Rifle site. The UMTRA Project Office, supported by the Remedial Action Contractor (RAC) and the Technical Assistance Contractor (TAC), oversees the implementation of the MAP. The RAC executes mitigation measures in the field. The TAC provides monitoring of the mitigation actions in cases where mitigation measures are associated with design features. Site closeout and inspection compliance will be documented in the site completion report

  18. The disposal of solid radioactive wastes to land sites in the UK

    International Nuclear Information System (INIS)

    Ginniff, M.E.; Phillipson, D.L.

    1984-01-01

    Solid radioactive waste management by land disposal, using a strategy laid down by the government, is discussed. Waste disposal at Drigg, and the proposals for the two preferred sites at Elstow (shallow burial) and Billingham (deep burial) are outlined. Nuclear Industry Radioactive Waste Executive (NIREX); safety; public acceptance; and the role of the private sector; are also described. (U.K.)

  19. Developments in support of low level waste disposal at BNFL's Drigg Site

    International Nuclear Information System (INIS)

    Johnson, L.F.

    1988-01-01

    The continued upgrading of low-level waste pretreatment and disposal practices related to the United Kingdom Drigg disposal site is described, noting the need to take into account operational safety, long term post-closure safety, regulatory and public acceptance factors

  20. Identification of sites for the low-level waste disposal development and demonstration program

    International Nuclear Information System (INIS)

    Ketelle, R.H.; Lee, D.W.

    1988-04-01

    This report presents the results of site selection studies for potential low-level radioactive waste disposal sites on the Oak Ridge Reservation (ORR). Summaries of the site selection procedures used and results of previous site selection studies on the ORR are included. This report includes recommendations of sites for demonstration of shallow land burial using engineered trench designs and demonstration of above-grade disposal using design concepts similar to those used in tumulus disposal. The site selection study, like its predecessor (ORNL/TM-9717, Use of DOE Site Selection Criteria for Screening Low-Level Waste Disposal Sites on the Oak Ridge Reservation), involved application of exclusionary site screening criteria to the region of interest to eliminate unacceptable areas from consideration. Also like the previous study, the region of interest for this study was limited to the Oak Ridge Department of Energy Reservation. Reconnaissance-level environmental data were used in the study, and field inspections of candidate sites were made to verify the available reconnaissance data. Five candidate sites, all underlain by Knox dolomite residuum and bedrock, were identified for possible development of shallow land burial facilities. Of the five candidate sites, the West Chestnut site was judged to be best suited for deployment of the shallow land burial technology. Three candidate sites, all underlain by the Conasauga Group in Bear Creek Valley, were identified for possible development of above-grade disposal technologies. Of the three sites identified, the Central Bear Creek Valley site lying between State Route 95 and Gum Hollow Road was ranked most favorable for deployment of the above-grade disposal technology

  1. Rokkasho low-level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Takahashi, Y.

    1994-01-01

    Japan Nuclear Fuel Limited commenced the operation of the shallow land disposal of low-level radioactive waste from reactor operation, in 1992 at Rokkasho site in Aomori Prefecture. JNFL is private company whose main activities within the responsibility of JNFL are: 1) Disposal of low-level radioactive waste, 2) Uranium enrichment, 3) Reprocessing of spent nuclear fuels, 4) Temporary storage of returned wastes from COGEMA and BNFL by reprocessing contracts, prior to disposal. JNFL selected the site for the disposal of LLW at Rokkasho in Aomori Prefecture, then bought land of 3.4 million m 2 . Among waste spectrum, LLWs from nuclear power plants, from uranium enrichment and from reprocessing are to be managed by JNFL, including dismantling of these facilities, and JNFL has plan to dispose about 600 thousand m 3 of wastes ultimately. On the middle of November 1990 JNFL got the permission of the application for 40 thousand m 3 (equivalent to 200,000 drums each with a 200-liter capacity) of reactor operating wastes which is solidified with cement, bitumen or plastics as a first stage. And after the construction work for about 2 years, the operations started at Dec. 8th, 1992. The Disposal center has already accepted about 24,000 LLW drums as of the end of February, 1994. (author)

  2. The Potential for Criticality Following Disposal of Uranium at Low-Level-Waste Facilities. Containerized Disposal

    International Nuclear Information System (INIS)

    Colten-Bradley, V.A.; Hopper, C.M.; Parks, C.V.; Toran, L.E.

    1999-01-01

    The purpose of this study was to evaluate whether or not fissile uranium in low-level-waste (LLW) facilities can be concentrated by hydrogeochemical processes to permit nuclear criticality. A team of experts in hydrology, geology, geochemistry, soil chemistry, and criticality safety was formed to develop and test some reasonable scenarios for hydrogeochemical increases in concentration of special nuclear material (SNM) and to use these scenarios to aid in evaluating the potential for nuclear criticality. The team's approach was to perform simultaneous hydrogeochemical and nuclear criticality studies to (1) identify some possible scenarios for uranium migration and concentration increase at LLW disposal facilities, (2) model groundwater transport and subsequent concentration increase via precipitation of uranium, and (3) evaluate the potential for nuclear criticality resulting from potential increase in uranium concentration over disposal limits. The analysis of SNM was restricted to 235 U in the present scope of work. The work documented in this report indicates that the potential for a criticality safety concern to arise in an LLW facility is extremely remote, but not impossible. Theoretically, conditions that lead to a potential criticality safety concern might arise. However, study of the hydrogeochemical mechanisms, the associated time frames, and the factors required for an actual criticality event indicate that proper emplacement of the SNM at the site can eliminate practical concerns relative to the occurrence and possible consequences of a criticality event

  3. Greater-than-Class C low-level radioactive waste characterization. Appendix E-2: Mixed GTCC LLW assessment

    International Nuclear Information System (INIS)

    Kirner, N.P.

    1994-09-01

    Mixed greater-than-Class C low-level radioactive waste (mixed GTCC LLW) is waste that combines two characteristics: it is radioactive, and it is hazardous. This report uses information compiled from Greater-Than-Class C Low-Level Radioactive Waste Characterization: Estimated Volumes, Radionuclide Activities, and Other Characteristics (DOE/LLW 1 14, Revision 1), and applies it to the question of how much and what types of mixed GTCC LLW are generated and are likely to require disposal in facilities jointly regulated by the DOE and the NRC. The report describes how to classify a RCRA hazardous waste, and then applies that classification process to the 41 GTCC LLW waste types identified in the DOE/LLW-114 (Revision 1). Of the 41 GTCC LLW categories identified, only six were identified in this study as potentially requiring regulation as hazardous waste under RCRA. These wastes can be combined into the following three groups: fuel-in decontamination resins, organic liquids, and process waste consisting of lead scrap/shielding from a sealed source manufacturer. For the base case, no mixed GTCC LLW is expected from nuclear utilities or sealed source licensees, whereas only 177 ml of mixed GTCC LLW are expected to be produced by other generators through the year 2035. This relatively small volume represents approximately 40% of the base case estimate for GTCC wastes from other generators. For these other generators, volume estimates for mixed GTCC LLW ranged from less than 1 m 3 to 187 m 3 , depending on assumptions and treatments applied to the wastes

  4. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...

  5. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1997-05-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Mexican Hat disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the disposal site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Mexican Hat disposal site performs as designed. The program is based on two distinct types of activities: (1) site inspections to identify potential threats to disposal cell integrity, and (2) monitoring of selected seeps to observe changes in flow rates and water quality. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03. 18 refs., 6 figs., 1 tab

  6. Siting Criteria for Low and Intermediate Level Radioactive Waste Disposal in Egypt (Proposal approach)

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2012-01-01

    The objective of radioactive waste disposal is to isolate waste from the surrounding media so that it does not result in undue radiation exposure to humans and the environment. The required degree of isolation can be obtained by implementing various disposal methods and suitable criteria. Near surface disposal method has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The site selection process for low-level and intermediate level radioactive waste disposal facility addressed a wide range of public health, safety, environmental, social and economic factors. Establishing site criteria is the first step in the sitting process to identify a site that is capable of protecting public health, safety and the environment. This paper is concerning a proposal approach for the primary criteria for near surface disposal facility that could be applicable in Egypt.

  7. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  8. Selection of low-level radioactive waste disposal sites using screening models versus more complex methodologies

    International Nuclear Information System (INIS)

    Uslu, I.; Fields, D.E.

    1993-01-01

    The task of choosing a waste-disposal site from a set of candidate sites requires an approach capable of objectively handling many environmental variables for each site. Several computer methodologies have been developed to assist in the process of choosing a site for the disposal of low-level radioactive waste; however, most of these models are costly to apply, in terms of computer resources and the time and effort required by professional modelers, geologists, and waste-disposal experts. The authors describe how the relatively simple DRASTIC methodology (a standardized system for evaluating groundwater pollution potential using hydrogeologic settings) may be used for open-quotes pre-screeningclose quotes of sites to determine which subset of candidate sites is worthy of more detailed screening. Results of site comparisons made with DRASTIC are compared with results obtained using PRESTO-II methodology, which is representative of the more complex release-transport-human exposure methodologies. 6 refs., 1 fig., 1 tab

  9. Water Resources Research Program. Abatement of malodors at diked, dredged-material disposal sites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, W.; Dravnieks, A.; Zussman, R.; Goltz, R.

    1976-06-01

    Samples of malodorous air and dredged material were collected at diked disposal sites at the following locations: Buffalo, NY; Milwaukee, WI; Mobile, AL; York Harbor, ME; Houston, TX; Detroit, MI; and Anacortes, WA; during the period July--October, 1975. Odorous compounds in the air samples were identified by gas chromatography/mass spectrometry, while the detection threshold, intensity, and character of the various odors were determined by experienced panelists using a dynamic, forced-choice-triangle olfactometer. Although significant problems with malodors were not observed beyond the disposal-area dikes during site visits, noteworthy odor episodes had occurred at some sites. An odor-abatement strategy is presented for handling the expected range of odor conditions at dredged-material disposal sites. Its aim is to reduce to an acceptable level the intensity of malodors in an affected community. The main steps in the strategy cover selection of the disposal site, site preparation, odor characterization of sediments to be dredged, malodor abatement during dredging and disposal operations, malodor abatement after filling of the disposal site, and the handling of malodor complaints.

  10. Geographic factors related to site suitability of low-level waste disposal

    International Nuclear Information System (INIS)

    Zittel, H.E.

    1981-01-01

    A number of factors related to the site suitability of low-level waste disposal sites are discussed. The factors are a combination of those which might be considered environmental and those dealing with site criteria. Among the factors covered are: possible population criteria, alternative site selection, transportation criteria and community involvement considerations. All these factors are discussed in a manner based on the premise that the technology exists to carry out low-level waste disposal in a manner such that public health and safety can be insured. The conclusion of the discussion is that problems encountered in siting low-level waste facilities will be largely societal and political in nature

  11. Geographic factors related to site suitability of low-level waste disposal

    Science.gov (United States)

    Zittel, H. E.

    Factors related to the site suitability of low level waste disposal sites are discussed including those which might be considered environmental and those dealing with site criteria. Possible population criteria, alternative site selection, transportation criteria, and community involvement are considered. All these factors are based on the premise that the technology exists to carry out low level waste disposal in a manner such that public health and safety can be insured. It is concluded that problems encountered in siting low level waste facilities are largely societal and political in nature.

  12. Experience in selection and characterization of sites for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    1997-12-01

    An important matter in the development of a geological repository for disposal radioactive waste is the selection of a site that has characteristics that are favorable for isolation. A number of Member States have had national programmes under way for several decades to investigate sites to gather the geological information needed to design and construct a safe repository. The purpose of this report is to document this experience and to summarize what has been learned about the site selection and investigation process. It is hoped it will be of interest to scientists and engineers working in national disposal programmes by providing them information and key references regarding the disposal programmes in other countries. It may also be of interest to members of the public and to decision makers wanting an overview of the worldwide status of programmes to select and characterize geological disposal sites for radioactive waste

  13. Technologies for in situ immobilization and isolation of radioactive wastes at disposal and contaminated sites

    International Nuclear Information System (INIS)

    1997-11-01

    This report describes technologies that have been developed worldwide and the experiences applied to both waste disposal and contaminated sites. The term immobilization covers both solidification and embedding of wastes

  14. An overview of commercial low-level radioactive waste disposal technology

    International Nuclear Information System (INIS)

    Plummer, T.L.; Morreale, B.J.

    1991-01-01

    The primary objective of low-level radioactive (LLW) waste management is to safely dispose of LLW while protecting the health of the public and the quality of the environment. LLW in the United States is generated through both Department of Energy (DOE) and commercial activities. In this paper, waste from commercial activities will be referred to as ''commercial LLW.'' The DOE waste will not be discussed in this paper. Commercial LLW is waste that is generated by Nuclear Regulatory Commission (NRC) designated licensees or Agreement States. Commercial LLW is generated by nuclear power reactors, hospitals, universities, and manufacturers. This paper will give an overview of the current disposal technologies planned by selected States' for disposing of their LLW and the processes by which those selections were made. 3 refs

  15. Long-term surveillance plan for the Collins Ranch Disposal Site, Lakeview, Oregon

    International Nuclear Information System (INIS)

    1993-12-01

    This long-term surveillance plan (LTSP) for the Lakeview, Oregon, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lakeview (Collins Ranch) disposal cell, which will be referred to as the Collins Ranch disposal cell throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and details how the long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  16. Long-term surveillance plan for the Shiprock disposal site, Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1993-12-01

    The long-term surveillance plan (LTSP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Shiprock disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. This Shiprock, New Mexico, LTSP documents whether the land and interests are owned by the US or an Indian tribe and describes in detail the long-term care program through the UMTRA Project Office

  17. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    International Nuclear Information System (INIS)

    2013-01-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

  18. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-11-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

  19. Preliminary site investigation for LL and IL radwaste disposal for Qinshan NPP

    International Nuclear Information System (INIS)

    Huang Yawen; Chen Zhangru

    1993-01-01

    With the purpose of selecting a disposal site for the low- and intermediate-level radwastes arising from Qinshan NPP, site investigations were carried out in several districts of Zhejiang Province. Investigation objectives included the circumstances of geology, hydrogeology, environmental ecology, and social economy. On the basis of collected data, five possible sites were recommended for policy-making reference and further investigation

  20. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the U.S. Department of Energy`s (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials.

  1. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    International Nuclear Information System (INIS)

    1995-11-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the US Department of Energy's (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials

  2. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    International Nuclear Information System (INIS)

    1996-07-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the U.S. Department of Energy's (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials

  3. Using Geographic Information Systems to Determine Site Suitability for a Low-Level Radioactive Waste Storage Facility.

    Science.gov (United States)

    Wilson, Charles A; Matthews, Kennith; Pulsipher, Allan; Wang, Wei-Hsung

    2016-02-01

    Radioactive waste is an inevitable product of using radioactive material in education and research activities, medical applications, energy generation, and weapons production. Low-level radioactive waste (LLW) makes up a majority of the radioactive waste produced in the United States. In 2010, over two million cubic feet of LLW were shipped to disposal sites. Despite efforts from several states and compacts as well as from private industry, the options for proper disposal of LLW remain limited. New methods for quickly identifying potential storage locations could alleviate current challenges and eventually provide additional sites and allow for adequate regional disposal of LLW. Furthermore, these methods need to be designed so that they are easily communicated to the public. A Geographic Information Systems (GIS) based method was developed to determine suitability of potential LLW disposal (or storage) sites. Criteria and other parameters of suitability were based on the Code of Federal Regulation (CFR) requirements as well as supporting literature and reports. The resultant method was used to assess areas suitable for further evaluation as prospective disposal sites in Louisiana. Criteria were derived from the 10 minimum requirements in 10 CFR Part 61.50, the Nuclear Regulatory Commission's Regulatory Guide 0902, and studies at existing disposal sites. A suitability formula was developed permitting the use of weighting factors and normalization of all criteria. Data were compiled into GIS data sets and analyzed on a cell grid of approximately 14,000 cells (covering 181,300 square kilometers) using the suitability formula. Requirements were analyzed for each cell using multiple criteria/sub-criteria as well as surrogates for unavailable datasets. Additional criteria were also added when appropriate. The method designed in this project proved to be sufficient for initial screening tests in determining the most suitable areas for prospective disposal (or storage

  4. Use of DOE site selection criteria for screening low-level waste disposal sites on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Lee, D.W.; Ketelle, R.H.; Stinton, L.H.

    1983-09-01

    The proposed Department of Energy (DOE) site selection criteria were applied to the Oak Ridge Reservation, and the application was evaluated to determine the criteria's usefulness in the selection of a low-level waste disposal site. The application of the criteria required the development of a methodology to provide a framework for evaluation. The methodology is composed of site screening and site characterization stages. The site screening stage relies on reconnaissance data to identify a preferred site capable of satisfying the site selection criteria. The site characterization stage relies on a detailed site investigation to determine site acceptability. The site selection criteria were applied to the DOE Oak Ridge Reservation through the site screening stage. Results of this application were similar to those of a previous siting study on the Oak Ridge Reservation. The DOE site selection criteria when coupled with the methodology that was developed were easily applied and would be adaptable to any region of interest

  5. DOE site performance assessment activities

    International Nuclear Information System (INIS)

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions

  6. Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas

    International Nuclear Information System (INIS)

    1995-06-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Falls City disposal site, Falls City, Texas, describes the surveillance activities for the disposal site. DOE will carry out these activities to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  7. Long-term Surveillance Plan for the Falls City Disposal Site, Falls City, Texas. Revision 1

    International Nuclear Information System (INIS)

    1995-08-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Falls City disposal site, Falls City, Texas, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  8. Stabilization and isolation of low-level liquid waste disposal sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Gilbert, T.W.

    1987-01-01

    Rockwell Hanford Operations is developing and testing equipment for stabilization and isolation of low-level radioactive liquid waste disposal sites. Stabilization and isolation are accomplished by a dynamic consolidation and particulate grout injection system. System equipment components include: a mobile grout plant for transport, mixing, and pumping of particulate grout; a vibratory hammer/extractor for consolidation of waste, backfill, and for emplacement of the injector; dynamic consolidation/injector probe for introducing grout into fill material; and an open-void surface injector that uses surface or subsurface mechanical or pneumatic packers and displacement gas filtration for introducing grout into disposal structure access piping. Treatment of a liquid-waste disposal site yields a physically stable, cementitious monolith. Additional testing and modification of this equipment for other applications to liquid waste disposal sites is in progress

  9. Mock Site Licensing Demonstration Project. Final report

    International Nuclear Information System (INIS)

    Roop, R.D.

    1986-06-01

    The Mock Site Licensing Demonstration Project developed the Low-Level Radioactive Waste Siting Simulation, a role-playing exercise designed to facilitate the process of siting and licensing disposal facilities for low-level waste (LLW). This report describes the development, contant, and usefulness of the siting simulation. The simulation was designed by Harvard University's Program on Negotiation; it can be conducted at a workshop or conference, involves 14 or more participants, and requires about eight hours to complete. The simulation consists of two sessions. In the first, participants negotiate the selection of siting criteria, and in the second, a preferred site for a facility is chosen from three candidate sites. The project sponsored two workshops (in Boston, Massachusetts and Richmond, Virginia) in which the simulation was conducted for persons involved in planning for LLW. It is concluded that the siting simulation can be useful in three ways: (1) as a tool for information dissemination, (2) as a vehicle that can foste communication among parties in conflict, and (3) as a step toward consensus building and conflict resolution. The DOE National Low-Level Waste Management Program is now making the siting simulation available for use by states, regional compacts, and other organizations involved in development of LLW disposal facilities

  10. Composite analysis E-area vaults and saltstone disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  11. Composite analysis E-area vaults and saltstone disposal facilities

    International Nuclear Information System (INIS)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public

  12. Low-level radioactive waste management at the Nevada Test Site - Current status

    International Nuclear Information System (INIS)

    Becker, B.D.; Crowe, B.M.; Gertz, C.P.; Clayton, W.A.

    1999-01-01

    The performance objectives of the Department of Energy's Low-Level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the US. Situated at the southern end of the Great Basin, 800 feet above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity wastes, classified materials, and high-specific-activity special case wastes. Twenty miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMS's since 1961 and 1968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations

  13. Waste Management at the Nevada Test Site Fiscal Year 2001 Current Status

    International Nuclear Information System (INIS)

    Becker, B.D.; Clayton, W.A.; Crowe, B.M.

    2002-01-01

    The performance objectives of the U. S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Low-level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the United States. Situated at the southern end of the Great Basin, 244 meters (800 feet) above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity waste, classified radioactive material, and high-specific-activity special case waste. Fifteen miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMSs since 1961 and 1 968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations

  14. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27 (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at http://www.lm.doe.gov/.

  15. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    International Nuclear Information System (INIS)

    1996-05-01

    This long-term surveillance plan (LTSP) describes the US Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment.For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP

  16. Long-term surveillance plan for the Rifle, Colorado, Disposal site

    International Nuclear Information System (INIS)

    1996-09-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Estes Gulch disposal site in Garfield County, Colorado. The U.S. Environmental Protection Agency (EPA) has developed regulations for the issuance of a general license by the U.S. Nuclear Regulatory Commission (NRC) for the custody and long-term care of UMTRA Project disposal Sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites, will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Estes Gulch disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Estes Gulch site and the NRC formally accepts this LTSP

  17. Pulp fiction - The volunteer concept (or how not to site additional LLRW disposal capacity)

    International Nuclear Information System (INIS)

    Burton, D.A.

    1995-01-01

    Experiences of compacts and of individual states throughout the nation indicate that low-level radioactive waste disposal siting processes, based from the beginning upon the volunteer concept are fraught with problems. Most apparent among these problems is that the volunteer concept does not lead to scientifically and technically based siting endeavors. Ten years have passed since the Amendments Act of 1985, and no compact or state has been - successful in providing for new LLRW disposal capacity. That failure can be traced in part to the reliance upon the volunteer concept in siting attempts. If success is to be achieved, the future direction for LLRW management must focus on three areas: first, a comprehensive evaluation of all LLRW management options, including reduction of waste generated and on-site storage; secondly, a comprehensive evaluation of the current as well as projected waste stream, to determine the amount of disposal capacity actually needed; and, finally, sound scientifically and technically based siting processes

  18. Pulp fiction - The volunteer concept (or how not to site additional LLRW disposal capacity)

    Energy Technology Data Exchange (ETDEWEB)

    Burton, D.A. [Heartland Operation to Protect the Environment, Inc., Auburn, NE (United States)

    1995-12-31

    Experiences of compacts and of individual states throughout the nation indicate that low-level radioactive waste disposal siting processes, based from the beginning upon the volunteer concept are fraught with problems. Most apparent among these problems is that the volunteer concept does not lead to scientifically and technically based siting endeavors. Ten years have passed since the Amendments Act of 1985, and no compact or state has been - successful in providing for new LLRW disposal capacity. That failure can be traced in part to the reliance upon the volunteer concept in siting attempts. If success is to be achieved, the future direction for LLRW management must focus on three areas: first, a comprehensive evaluation of all LLRW management options, including reduction of waste generated and on-site storage; secondly, a comprehensive evaluation of the current as well as projected waste stream, to determine the amount of disposal capacity actually needed; and, finally, sound scientifically and technically based siting processes.

  19. Radioactive waste disposal sites: Two successful closures at Tinker Air Force Base

    International Nuclear Information System (INIS)

    McKenzie, G.; Mohatt, J.V.; Kowall, S.J.; Jarvis, M.F.

    1993-06-01

    This article describes remediation and closure of two radioactive waste disposal sites at Tinker Air Force Base, Oklahoma, making them exemption regulatory control. The approach consisted of careful exhumation and assessment of soils in sites expected to be contaminated based on historical documentation, word of mouth, and geophysical surveys; removal of buried objects that had gamma radiation exposure levels above background; and confirmation that the soil containing residual radium-226 was below an activity level equal to no more than a 10 mrem/yr annual dose equivalent. In addition, 4464 kg of chemically contaminated excavated soils were removed for disposal. After remediation, the sites met standards for unrestricted use. These sites were two of the first three Air Force radioactive disposal sites to be closed and were the first to be closed under Draft NUREG/CR-5512

  20. 'Strategy is a commodity, implementation is an art' - 2 years of implementation of the UK national LLW strategy

    International Nuclear Information System (INIS)

    Cassidy, Helen; Rossiter, David

    2013-01-01

    The Low Level Waste Repository (LLWR) is the primary facility for disposal of Low Level Waste (LLW) in the United Kingdom (UK), serving the UK nuclear industry and a diverse range of other sectors. Management of LLW in the UK historically was dominated by disposal to the LLWR. The value of the LLWR as a national asset was recognised by the 2007 UK Governmental Policy on management of solid LLW. At this time, analysis of the projected future demand for disposal at LLWR against facility capacity was undertaken identifying a credible risk that the capacity of LLWR would be insufficient to meet future demand if existing waste management practices were perpetuated. To mitigate this risk a National Strategy for the management of LLW in the UK was developed by the Nuclear Decommissioning Authority (NDA), partnered with LLW Repository Ltd. (the organisation established in 2008 to manage the LLWR on behalf of NDA). This strategy was published in 2010 and identified three mechanisms for protection of the capacity of LLWR - application of the Waste Hierarchy by waste producers; optimised use of existing assets for LLW management; and opening of new waste treatment and disposal routes to enable diversion of waste away from the LLWR. (authors)

  1. Site safety requirements for high level waste disposal

    International Nuclear Information System (INIS)

    Chen Weiming; Wang Ju

    2006-01-01

    This paper outlines the content, status and trend of site safety requirements of International Atomic Energy Agency, America, France, Sweden, Finland and Japan. Site safety requirements are usually represented as advantageous vis-a-vis disadvantagous conditions, and potential advantage vis-a-vis disadvantage conditions, respectively in aspects of geohydrology, geochemistry, lithology, climate and human intrusion etc. Study framework and steps of site safety requirements for China are discussed under the view of systems science. (authors)

  2. The role of geology in the evaluation of waste disposal sites

    International Nuclear Information System (INIS)

    Ogunsanwo, O.; Mands, E.

    1999-01-01

    The construction of waste disposal sites demonstrates the awareness of the need to protect the environment against pollution. The site are constructed on foundations of soils and rocks. Photo geological studies, geophysical investigations and geological field mapping are indispensable in the selection of suitable sites. Most of the construction materials (in the case of landfills) are of geologic origin and their suitability can only be ascertained after some geological assessments. Furthermore, the hydrogeological conditions within the adjoining terrains and the flow of leachates from and within the wastes must be monitored so as to prevent pollution (radiation, in the case of radioactive wastes, can be monitored with the aid of geochemistry). Several models/systems are available for the hydrogeological/geochemical evaluation of waste disposal sites. The selection of the site and the construction materials as well as the hydrogeological/ /geochemical studies are very critical as the performance of the disposal site depends solely on these aspects. These aspects are basically within the realms of geology. It is thus obvious that geology plays a leading role in the evaluation of waste disposal sites right from the site selection stage until the site is done with

  3. Licensing procedures for Low-Level Waste disposal facilities

    International Nuclear Information System (INIS)

    Roop, R.D.; Van Dyke, J.W.

    1985-09-01

    This report describes the procedures applicable to siting and licensing of disposal facilities for low-level radioactive wastes. Primary emphasis is placed on those procedures which are required by regulations, but to the extent possible, non-mandatory activities which will facilitate siting and licensing are also considered. The report provides an overview of how the procedural and technical requirements for a low-level waste (LLW) disposal facility (as defined by the Nuclear Regulatory Commission's Rules 10 CFR Parts 2, 51, and 61) may be integrated with activities to reduce and resolve conflict generated by the proposed siting of a facility. General procedures are described for site screening and selection, site characterization, site evaluation, and preparation of the license application; specific procedures for several individual states are discussed. The report also examines the steps involved in the formal licensing process, including docketing and initial processing, preparation of an environmental impact statement, technical review, hearings, and decisions. It is concluded that development of effective communication between parties in conflict and the utilization of techniques to manage and resolve conflicts represent perhaps the most significant challenge for the people involved in LLW disposal in the next decade. 18 refs., 6 figs

  4. Licensing procedures for Low-Level Waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Roop, R.D.; Van Dyke, J.W.

    1985-09-01

    This report describes the procedures applicable to siting and licensing of disposal facilities for low-level radioactive wastes. Primary emphasis is placed on those procedures which are required by regulations, but to the extent possible, non-mandatory activities which will facilitate siting and licensing are also considered. The report provides an overview of how the procedural and technical requirements for a low-level waste (LLW) disposal facility (as defined by the Nuclear Regulatory Commission's Rules 10 CFR Parts 2, 51, and 61) may be integrated with activities to reduce and resolve conflict generated by the proposed siting of a facility. General procedures are described for site screening and selection, site characterization, site evaluation, and preparation of the license application; specific procedures for several individual states are discussed. The report also examines the steps involved in the formal licensing process, including docketing and initial processing, preparation of an environmental impact statement, technical review, hearings, and decisions. It is concluded that development of effective communication between parties in conflict and the utilization of techniques to manage and resolve conflicts represent perhaps the most significant challenge for the people involved in LLW disposal in the next decade. 18 refs., 6 figs.

  5. Siting a low-level radioactive waste disposal facility in California

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.

    1991-01-01

    US Ecology is the State of California's designee to site, develop and operate a low-level radioactive waste disposal facility. In March 1988, a site in the Ward Valley of California's Mojave Desert was chosen for development. Strong local community support has been expressed for the site. US Ecology anticipates licensing and constructing a facility to receive waste by early 1991. This schedule places California well ahead of the siting milestones identified in Federal law. (author) 1 fig., 2 refs

  6. The application of assessment principles to an operational low level waste disposal site in England

    International Nuclear Information System (INIS)

    McHugh, J.O.; Newstead, S.; Weedon, C.J.

    1988-01-01

    This paper reviews the current assessment principles utilized in England and discusses their application to the Drigg low-level Radioactive Waste Disposal Site. The Drigg Site was established in 1959 and the assessment principles were published in 1985; therefore, although the Drigg Site has operated successfully, the application of the assessment principles has caused changes in operations and the establishment of further site research by the Department of the Environment

  7. Long-term surveillance plan for the Green River, Utah disposal site. Revision 2

    International Nuclear Information System (INIS)

    1998-07-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out

  8. Long-term surveillance plan for the Collins Ranch disposal site, Lakeview, Oregon

    International Nuclear Information System (INIS)

    1994-08-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Collins Ranch disposal site, Lakeview, Oregon, describes the surveillance activities for the disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  9. Long-term surveillance plan for the Green River, Utah, disposal site

    International Nuclear Information System (INIS)

    1997-06-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  10. Long-term surveillance plan for the Shiprock Disposal site, Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1994-09-01

    The long-term surveillance plan (LTSP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Shiprock disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents the land ownership interests and details how the long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  11. Long-term surveillance plan for the Green River, Utah disposal site. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  12. The transport implications of siting policies for the disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    James, I.A.

    1986-01-01

    This report has been produced to be complementary to the previously issued report ''The Transport Implications of Regional Policies for The Disposal of Intermediate Level Radioactive Wastes''. The same combinations of disposal facilities have been used so that direct comparison with intermediate waste results can be made. Low level wastes and short-lived intermediate level wastes for near-surface disposal are assumed to share a common infrastructure on the rail system and hence a methodology of separating total costs between these two waste types has been derived. Two transport modes, road and rail have been analysed. Hybrid transport, a combination of road and rail systems, has not been examined since no site is considered to produce sufficient waste to justify a dedicated rail service. Sellafield, has not been included in this examination since it is assumed to be served by its own disposal site at Drigg. (author)

  13. Studies on disposal of low-level radioactive wastes in Turkey

    International Nuclear Information System (INIS)

    Uslu, I.; Fields, D.E.; Yalcintas, M.G.

    1989-08-01

    The Turkish Government is in the process of planning two nuclear reactors in Turkey. Studies have begun for improved control of low level wastes (LLW) in Turkey before establishment of these reactors. In this study, the PRESTO-II (Prediction of Radiation Exposures form Shallow Trench Operations) computer code is used to assess the risk associated with the shallow land disposal of low level waste (LLW) in various sites in Turkey. PRESTO-II is a computer code developed under the United States Environmental Protection Agency, Department of Energy and Nuclear Regulatory Commission funding to evaluate possible health effects from radioactive releases from shallow, radioactive waste disposal trenches and from areas contaminated with operational spillage. A preliminary simulation using the PRESTO-II computer code has been run for the site in Koteyli, Balikesir, Turkey. This example simulation was performed using the same radionuclide data set believed representative of the LLW disposal facility in Barnwell, South Carolina. Site environmental variables were selected to typify credible worst case exposure scenarios. Radionuclide inventories are primarily based on estimated waste composition rather than measured values. 9 refs., 4 figs., 1 tab

  14. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    Science.gov (United States)

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  15. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1985-04-01

    This report assumes that local opposition is a critical issue in siting low-level radioactive waste disposal facilities. Although it recognizes the importance of local health and safety concerns, this report only addresses the economic issues facing local officials in the siting process. Finding ways to overcome local opposition through economic compensation and incentives is a basic step in the waste facility siting process. The report argues that the use of these compensation and incentive mechanisms can help achieve greater local acceptance of waste facilities and also help ease the economic burdens that many communities bear when they agree to host a low-level waste disposal facility. The growing national need for low-level radioactive waste disposal facilities requires that state and local planning agencies develop creative new procedures for siting facilities, procedures that are sensitive to local perceptions and effects

  16. Low-level radioactive waste disposal technologies used outside the United States

    International Nuclear Information System (INIS)

    Templeton, K.J.; Mitchell, S.J.; Molton, P.M.; Leigh, I.W.

    1994-01-01

    Low-level radioactive waste (LLW) disposal technologies are an integral part of the waste management process. In the United States, commercial LLW disposal is the responsibility of the State or groups of States (compact regions). The United States defines LLW as all radioactive waste that is not classified as spent nuclear fuel, high- level radioactive waste, transuranic waste, or by-product material as defined in Section II(e)(2) of the Atomic Energy Act. LLW may contain some long-lived components in very low concentrations. Countries outside the United States, however, may define LLW differently and may use different disposal technologies. This paper outlines the LLW disposal technologies that are planned or being used in Canada, China, Finland, France, Germany, Japan, Sweden, Taiwan, and the United Kingdom (UK)

  17. Introduction to Envirocare of Utah's low activity radioactive waste disposal site located at Clive, Utah

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Envirocare of Utah was licensed by the state of Utah on February 2, 1988, to become fully operational to receive low-activity radioactive waste at its disposal site near Clive, Utah. This paper discusses the organization of the firm, political support, acceptable materials, benefits of the operation, site characteristics, construction, health physics program, and environmental program

  18. Site Management and Monitoring Plan (SMMP) for the Mouth of Columbia River- Deep and Shallow Water Ocean Dredged Material Disposal Sites, OR/WA

    Science.gov (United States)

    This SMMP is intended to provide management and monitoring strategies for disposal in the Mouth of Columbia River- Deep and Shallow Ocean Dredged Material Disposal Sites on the border of Oregon and Washington.

  19. Studies involving proposed waste disposal facilities in Turkey

    International Nuclear Information System (INIS)

    Uslu, I.; Fields, D.E.; Yalcintas, M.G.

    1987-01-01

    The Turkish government is in the process of planning two nuclear reactors in Turkey. The Turkish Atomic Energy Authority has been given the task of developing plans for improved control of low-level wastes (LLW) in Turkey. Principal sources of radioactive wastes are hospitals, research institutions, biological research centers, universities, industries, and two research reactors in Turkey. These wastes will be treated in a pilot water treatment facility located in Cekmece Nuclear Research and Training Center, Istanbul. In this temporary waste disposal facility, the wastes will be stored in 200-l concrete containers until the establishment of the permanent waste disposal sites in Turkey in 1990. The PRESTO-II (prediction of radiation effects from shallow trench operations) computer code has been applied for the general probable sites for LLW disposal in Turkey. The model is intended to serve as a non-site-specific screening model for assessing radionuclide transport, ensuring exposure, and health impacts to a static local population for a chosen time period, following the end of the disposal operation. The methodology that this code takes into consideration is versatile and explicitly considers infiltration and percolation of surface water into the trench, leaching of radionuclides, vertical and horizontal transport of radionuclides, and use of this contaminated ground water for farming, irrigation, and ingestion

  20. Development of closure criteria for inactive radioactive waste disposal sites at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1989-01-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, specifies that cleanup of inactive waste disposal sites at Department of Energy (DOE) facilities shall at least attain legally applicable or relevant and appropriate requirements (ARARs) for cleanup or control of environmental contamination. This paper discusses potential ARARs for cleanup of inactive radioactive waste disposal sites and proposes a set of closure criteria for such sites at Oak Ridge National Laboratory (ORNL). The most important potential ARARs include Federal standards for radiation protection of the public, radioactivity in drinking water, and near-surface land disposal of radioactive wastes. On the basis of these standards, we propose that cleanup and closure of inactive radioactive waste disposal sites at ORNL shall achieve (1) limits on annual effective dose equivalent for off-site individuals and inadvertent intruders that conform to the DOE's performance objectives for new low-level waste disposal facilities and (2) to the extent reasonably achievable, limits on radionuclide concentrations in ground water and surface waters in accordance with Federal drinking water standards and ground-water protection requirements

  1. IMPACT OF THE JAKUŠEVEC-PRUDINEC WASTE DISPOSAL SITE ON GROUNDWATER QUALITY

    Directory of Open Access Journals (Sweden)

    Zoran Nakić

    2007-12-01

    Full Text Available The main goal of the research shown in this paper is to investigate the cause and effect relation of the Jakuševec-Prudinec waste disposal site and the groundwater pollution. The recovery of the Jakuševec-Prudinec waste disposal site by the end of 2003 did not have any significant impact on the pollution reduction in groundwater. Very high values of the pollution index defined in the area southeastern from the waste disposal site show spreading of the pollution toward Mičevec village. The analysis of the hydrogeochemical characteristics showed that in the waste disposal site area the local geochemical anomalies of the partial CO2 pressure exist, indicating that the intensive carbonate dissolution processes and HCO3- enrichment dominate in this area. Near the border of the waste disposal site groundwater with high ammonium ion (NH4+ and chloride ion (Cl- dominates. The high concentrations of the heavy metals and very strong geochemical bonds determined from the correlation coefficients show that in the reductive aquifer conditions heavy metals strongly release (the paper is published in Croatian.

  2. System for the hydrogeologic analysis of uranium mill waste disposal sites

    International Nuclear Information System (INIS)

    Osiensky, J.L.

    1983-01-01

    Most of the uranium mill wastes generated before 1977 are stored in unlined tailings ponds. Seepage from some of these ponds has been of sufficient severity that the US Nuclear Regulatory Commission (NRC) has required the installation of withdrawal wells to remove the contaminated groundwater. Uranium mill waste disposal facilities typically are located in complex hydrogeologic environments. This research was initiated in 1980 to analyze hydrogeologic data collected at seven disposal sites in the US that have experienced problems with groundwater contamination. The characteristics of seepage migration are site specific and are controlled by the hydrogeologic environment in the vicinity of each tailings pond. Careful monitoring of most seepage plumes was not initiated until approximately 1977. These efforts were accelerated as a consequence of the uranium Mill Tailings Act of 1979. Some of the data collected at uranium mill waste disposal sites in the past are incomplete and some were collected by methods that are outdated. Data frequently were collected in sequences which disrupted the continuity of the hydrogeologic analysis and decreased the effectiveness of the data collection programs. Evaluation of data collection programs for seven uranium mill waste disposal sites in the US has led to the development and presentation herein of a system for the hydrogeologic analysis of disposal sites

  3. Development of closure criteria for inactive radioactive waste-disposal sites at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) specifies that the U.S. Department of Energy shall comply with the procedural and substantive requirements of CERCLA regarding cleanup of inactive waste-disposal sites. Remedial actions require a level of control for hazardous substances that at least attains legally applicable or relevant and appropriate requirements (ARAR). This requirement may be waived if compliance with ARAR results in greater risk to human health and the environment than alternatives or is technically impractical. It will review potential ARAR for cleanup of inactive radioactive waste-disposal sites and propose a set of closure criteria for such sites at Oak Ridge National Laboratory. Important potential ARAR include federal standards for radiation protection of the public, radioactivity in drinking water, and near-surface land disposal of radioactive wastes. Proposed criteria for cleanup of inactive radioactive waste-disposal sites are: (1) a limit of 0.25 mSv on annual effective dose equivalent for offsite individuals; (2) limits of 1 mSv for continuous exposures and 5 mSv for occasional exposures on annual effective dose equivalent for inadvertent intruders, following loss of institutional controls over disposal sites; and (3) limits on concentrations of radionuclides in potable ground and surface waters in accordance with federal drinking-water standards, to the extent reasonably achievable

  4. Long-term surveillance plan for the Lowman, Idaho, disposal site

    International Nuclear Information System (INIS)

    1993-09-01

    The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This preliminary final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992)

  5. Operational safety analysis of the Olkiluoto disposal site

    International Nuclear Information System (INIS)

    Rossi, J.; Suolanen, V.

    2013-11-01

    Radiation doses for workers of the facilities, for inhabitants in the environment and for terrestrial ecosystem possibly caused by the encapsulation and disposal facilities to be built at Olkiluoto during its operation were considered in the study. First the normal encapsulation process is described and then possible incident and accident cases associated to that are identified for this assessment. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Radioactive releases and radiation doses are evaluated as a consequence of normal operation and some essential incident and accident cases. Release through the ventilation stack is assumed to be filtered (activated when necessary) both in normal operation and in hypothetical abnormal fault and accident cases. In addition the results for unfiltered releases are also presented e.g. for the emergency planning. During about 30 operation years of our four nuclear power plant units there have been found 58 fuel pins failures. Roughly estimating there has been one fuel leakage per year in a facility (includes two units). Based on this and adopting a conservative approach, it is estimated that one fuel pin per year could leak in normal operation during encapsulation process. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling space and to some degree to the atmosphere through the ventilation stack equipped with redundant filters. The most exposed group of inhabitants is conservatively assumed to live at the distance of 200 meters from the encapsulation and disposal plant and it will receive the largest doses in most dispersion conditions. The dose value to a member of the most exposed group was calculated on the basis of the weather data in such a way that greater dose than obtained here is caused only in 0.5 percent of dispersion conditions. The

  6. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types

  7. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-11-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Act on (UMTRA) Project Bodo Canyon disposal site at Durango, Colorado, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal call continues to function as designed This LTSP was prepared as a requirement for DOE acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) from processing uranium ore. This LTSP documents that the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a). Following the introduction, contents of this report include the following: site final condition; site drawings and photographs; permanent site surveillance features; ground water monitoring; annual site inspections; unscheduled inspections; custodial maintenance; corrective action; record keeping and reporting requirements; emergency notification and reporting; quality assurance; personal health and safety; list of contributions; and references

  8. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Act on (UMTRA) Project Bodo Canyon disposal site at Durango, Colorado, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal call continues to function as designed This LTSP was prepared as a requirement for DOE acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) from processing uranium ore. This LTSP documents that the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a). Following the introduction, contents of this report include the following: site final condition; site drawings and photographs; permanent site surveillance features; ground water monitoring; annual site inspections; unscheduled inspections; custodial maintenance; corrective action; record keeping and reporting requirements; emergency notification and reporting; quality assurance; personal health and safety; list of contributions; and references.

  9. A data base for low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Daum, M.L.; Moskowitz, P.D.

    1989-07-01

    A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs

  10. Greater-than-Class C low-level radioactive waste characterization. Appendix E-3: GTCC LLW assumptions matrix

    International Nuclear Information System (INIS)

    1995-01-01

    This study identifies four categories of GTCC LLW: nuclear utility; sealed sources; DOE-held; and other generators. Within each category, inventory and projection data are modeled in three scenarios: (1) Unpackaged volume--this is the unpackaged volume of waste that would exceed Class C limits if the waste calculation methods in 10 CFR 61.55 were applied to the discrete items before concentration averaging methods were applied to the volume; (2) Not-concentration-averaged (NCA) packaged volume--this is the packaged volume of GTCC LLW assuming that no concentration averaging is allowed; and (3) After-concentration-averaging (ACA) packaged volume--this is the packaged volume of GTCC LLW, which, for regulatory or practical reasons, cannot be disposed of in a LLW disposal facility using allowable concentration averaging practices. Three cases are calculated for each of the volumes described above. These values are defined as the low, base, and high cases. The following tables explain the assumptions used to determine low, base, and high case estimates for each scenario, within each generator category. The appendices referred to in these tables are appendices to Greater-Than-Class C Low-Level Radioactive Waste Characterization: Estimated Volumes, Radionuclide Activities, and Other Characteristics (DOE/LLW-114, Revision 1)

  11. Comparison of low-level waste disposal programs of DOE and selected international countries

    International Nuclear Information System (INIS)

    Meagher, B.G.; Cole, L.T.

    1996-06-01

    The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada's first demonstration LLW disposal facility

  12. NWTS program criteria for mined geologic disposal of nuclear wasite: site performance criteria

    International Nuclear Information System (INIS)

    1981-02-01

    This report states ten criteria governing the suitability of sites for mined geologic disposal of high-level radioactive waste. The Department of Energy will use these criteria in its search for sites and will reevaluate their use when the Nuclear Regulatory Commission issues radioactive waste repository rules. These criteria encompass site geometry, geohydrology, geochemistry, geologic characteristics, tectonic environment, human intrusion, surface characteristics, environment, and potential socioeconomic impacts. The contents of this document include background discussion, site performance criteria, and appendices. The background section describes the waste disposal system, the application of the site criteria, and applicable criteria from NWTS-33(1) - Program Objectives, Functional Requirements and System Performance Criteria. Appendix A, entitled Comparison with Other Siting Criteria compares the NWTS criteria with those recommended by other agencies. Appendix B contains DOE responses to public comments received on the January 1980 draft of this document. Appendix C is a glossary

  13. Long-term surveillance plan for the Mexican Hat Disposal Site, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1996-02-01

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSP (based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program), documents the land ownership interests and details how the long-term care of the disposal site will be accomplished

  14. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  15. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  16. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    Austad, S. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Guillen, L. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKnight, C. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ferguson, D. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  17. Site qualification plan for the Subseabed Disposal Program

    International Nuclear Information System (INIS)

    Laine, E.P.; Anderson, D.R.; Hollister, C.D.

    1983-01-01

    In our evolving study to identify and examine sites in subseabed geological formations for use as repositories for high-level nuclear wastes, two primary criteria guide all phases of this work: the stability and barrier criteria of the site. The stability criterion defines areas of the seabed not likely to be disturbed by tectonic forces and oceanographic changes during the lifetime of a waste repository. The barrier criterion defines those subseabed geological formations most likely to form an effective barrier to the release of radionuclides. Because of the large area of the oceans, a phased approach has been adopted so that successively smaller areas of the seafloor can be studied in ever greater detail. The first phase, which is complete, has identified the abyssal clay deposits that are remote from tectonic boundaries and continental margins as being the regions (<10/sup 6/ km/sup 2/) on the seafloor within which acceptable sites might be most readily identified. The second phase involves downgrading less desirable areas within these regions using archived seismic reflection profiling, sediment cores, and oceanographic data. This winnowing process identifies locations about one degree square (≤10/sup 4/ km/sup 2/) for more detailed field studies during the first part of the third phase. From these locations candidate sites will be chosen, based on detailed geological and geophysical surveying. The second part of the third phase will involve detailed monitoring of the candidate sites to determine long-term baseline conditions. After monitoring is underway, a pilot repository will be established, using waste canisters

  18. Secrets of successful siting legislation for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Pasternak, A.D.

    1988-01-01

    California's users of radioactive materials, working together through the California Radioactive Materials Management Forum (Cal Rad), have played a role in fostering development of our state's low-level radioactive waste disposal facility. One of Cal Rad's contributions was to develop and sponsor California's siting legislation in 1983. In this paper, the elements of the state's LLRW siting law, California Senate Bill 342 (Chapter 1177, Statutes a 1983), and their relationship to a successful siting program are described

  19. Study of a waste disposal site and it's groundwater contamination ...

    African Journals Online (AJOL)

    The choice of an old borrow pit at Avu village in the outskirts of Owerri Urban as the permanent dump for wastes from Owerri Urban is evaluated in terms of the hydrogeology of the site. The depth to the groundwater table or the vadose zone is 9 – 9.5m; the texture of the soils shows fine attenuative materials that can inhibit ...

  20. Public participation and regional development at a nuclear waste disposal site

    International Nuclear Information System (INIS)

    Ipsen, D.

    2005-01-01

    The propositions brought forward in this article try to implement sociological aspects into the search for nuclear waste disposal sites based on two theses: Firstly without the willingness of public participation in the search and inspection processes the success of the process is severly put into question in a democratic state. Secondly the potential disposal site must not block the further economic development of the region. These two theses lead to socio-economic criteria for consideration or debarment, to a concept of active and intensive participation, and to considerations about long-term regional development. (orig.)

  1. Selected hydrologic data from a wastewater spray disposal site on Hilton Head Island, South Carolina

    Science.gov (United States)

    Speiran, G.K.; Belval, D.L.

    1985-01-01

    This study presents data collected during a study of the effects on the water table aquifer from wastewater application at rates of up to 5 inches per week on a wastewater spray disposal site on Hilton Head Island, South Carolina. The study was conducted from April 1982 through December 1983. The disposal site covers approximately 14 acres. Water level and water quality data from organic, inorganic, and nutrient analyses from the water table aquifer to a depth of 30 ft and similar water quality data from the wastewater treatment plant are included. (USGS)

  2. The Legal and Policy Framework for Waste Disposition - Legal and policy framework for low level waste treatment and disposal

    International Nuclear Information System (INIS)

    Leech, Jonathan

    2014-01-01

    UK policy and strategy for the management of LLW has changed significantly in recent years, not least through development and implementation of the 'UK Strategy for the Management of Solid Low Level Radioactive Waste from the Nuclear Industry' as part of the UK Nuclear Decommissioning Authority's mission. This has influenced all aspects of LLW management in the UK, including metals recycling and VLLW disposal. The paper will outline the legal context for these changes in the UK and highlight how international conventions and legal frameworks have influenced these developments. In particular, the paper will look at the following important influences on choices for recycling and disposal of LLW and VLLW. - The Paris and Brussels Conventions on third party liabilities for nuclear damage; - on-going work to implement the 2004 Protocols to those conventions, including the impact on disposal sites and proposals to exclude VLLW disposal sites from liabilities regimes; - The Revised Waste Framework Directive and Waste Hierarchy; - Relevant European pollution prevention and control legislation and Best Available Techniques. (author)

  3. A Study on Site Selecting for National Project including High Level Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kilyoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many national projects are stopped since sites for the projects are not determined. The sites selections are hold by NIMBY for unpleasant facilities or by PYMFY for preferable facilities among local governments. The followings are the typical ones; NIMBY projects: high level radioactive waste disposal, THAAD, Nuclear power plant(NPP), etc. PIMFY projects: South-east new airport, KTX station, Research center for NPP decommission, etc. The site selection for high level radioactive waste disposal is more difficult problem, and thus government did not decide and postpone to a dead end street. Since it seems that there is no solution for site selection for high level radioactive waste disposal due to NIMBY among local governments, a solution method is proposed in this paper. To decide a high level radioactive waste disposal, the first step is to invite a bid by suggesting a package deal including PIMFY projects such as Research Center for NPP decommission. Maybe potential host local governments are asked to submit sealed bids indicating the minimum compensation sum that they would accept the high level radioactive waste disposal site. If there are more than one local government put in a bid, then decide an adequate site by considering both the accumulated PESS point and technical evaluation results. By considering how fairly preferable national projects and unpleasant national projects are distributed among local government, sites selection for NIMBY or PIMFY facilities is suggested. For NIMBY national projects, risk, cost benefit analysis is useful and required since it generates cost value to be used in the PESS. For many cases, the suggested method may be not adequate. However, similar one should be prepared, and be basis to decide sites for NIMBY or PIMFY national projects.

  4. Lessons Learned from the On-Site Disposal Facility at Fernald Closure Project

    International Nuclear Information System (INIS)

    Kumthekar, U.A.; Chiou, J.D.

    2006-01-01

    The On-Site Disposal Facility (OSDF) at the U.S. Department of Energy's (DOE) Fernald Closure Project near Cincinnati, Ohio is an engineered above-grade waste disposal facility being constructed to permanently store low level radioactive waste (LLRW) and treated mixed LLRW generated during Decommissioning and Demolition (D and D) and soil remediation performed in order to achieve the final land use goal at the site. The OSDF is engineered to store 2.93 million cubic yards of waste derived from the remediation activities. The OSDF is intended to isolate its LLRW from the environment for at least 200 years and for up to 1,000 years to the extent practicable and achievable. Construction of the OSDF started in 1997 and waste placement activities will complete by the middle of April 2006 with the final cover (cap) placement over the last open cell by the end of Spring 2006. An on-site disposal alternative is considered critical to the success of many large-scale DOE remediation projects throughout the United States. However, for various reasons this cost effective alternative is not readily available in many cases. Over the last ten years Fluor Fernald Inc. has cumulated many valuable lessons learned through the complex engineering, construction, operation, and closure processes of the OSDF. Also in the last several years representatives from other DOE sites, State agencies, as well as foreign government agencies have visited the Fernald site to look for proven experiences and practices, which may be adapted for their sites. This paper present a summary of the major issues and lessons leaned at the Fernald site related to engineering, construction, operation, and closure processes for the disposal of remediation waste. The purpose of this paper is to share lessons learned and to benefit other projects considering or operating similar on-site disposal facilities from our successful experiences. (authors)

  5. Preparation of Potentially Site Candidate of Radioactive Waste Disposal in Java Island and Its Surrounding Areas

    International Nuclear Information System (INIS)

    Budi Setiawan

    2008-01-01

    Introduction plan of NPP in Indonesia raised public attentions specially for its radwaste management and its disposal activity. In the next 5 year (2007-2011) will be provided some sites for radwaste disposal, both for near surface disposal and geological disposal systems with suitable and safely based on the IAEA standard. To find out a save and suitable location, field investigation programme is needed. Prior entering into investigation programme, preliminary activities are necessary to be arranged such as secondary data collecting: identification of host rock, interest areas, objectives and investigation programmes. Through desktop study with limited references hopefully information of some areas in Java Island with widely enough, thick and exposed into surface of clay deposit indication could be obtained. Objective of the activity is to prepare important supporting data before actualize as a field survey programme. Results showed that secondary data such as rock identification, interest areas, objectives and investigation programmes are found out. (author)

  6. Status and advice of the low and intermediate level radioactive waste disposal sites in China

    International Nuclear Information System (INIS)

    Teng Keyan; Lu Caixia

    2012-01-01

    With the rapid development of nuclear power industry in China, as well as the decommissioning of the nuclear facilities, and the process of radioactive waste management, a mount of the low and intermediate level radioactive solid wastes will increase rapidly. How to dispose the low and intermediate level radioactive solid wastes, that not only related to Chinese nuclear energy and nuclear technology with sustainable development, but also related to the public health, environment safety. According to Chinese « long-term development plan of nuclear power (2005- 2020) », when construct the nuclear power, should simultaneous consider the sites that dispose the low and intermediate level radioactive waste, In order to adapt to the needs that dispose the increasing low and intermediate level radioactive waste with development of nuclear power. In the future, all countries are facing the enormous challenge of nuclear waste disposal. (authors)

  7. Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2002-01-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, in accordance with the Federal Facility Agreement and Consent Order. This CAU is located in Areas 3 and 20 of the Nevada Test Site (NTS) approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 356 consists of seven Corrective Action Sites (CASs): 03-04-01, Area 3 Change House Septic System; 03-09-01, Mud Pit Spill Over; 03-09-03, Mud Pit; 03-09-04, Mud Pit; 03-09-05, Mud Pit; 20-16-01, Landfill; and 20-22-21, Drums. This CR identifies and rationalizes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's (NNSA/NV's) recommendation that no further corrective action and closure in place is deemed necessary for CAU 356. This recommendation is based on the results of field investigation/closure activities conducted November 20, 2001, through January 3, 2002, and March 11 to 14, 2002. These activities were conducted in accordance with the Streamlined Approach for Environmental Restoration Plan (SAFER) for CAU 356. For CASs 03-09-01, 03-09-03, 20-16-01, and 22-20-21, analytes detected in soil during the corrective action investigation were evaluated against Preliminary Action Levels (PALs) and it was determined that no Contaminants of Concern (COCs) were present. Therefore, no further action is necessary for the soil at these CASs. For CASs 03-04-01, 03-09-04, and 03-09-05, analytes detected in soil during the corrective action investigation were evaluated against PALs and identifies total petroleum hydrocarbons (TPHs) and radionuclides (i.e., americium-241 and/or plutonium 239/240) as COCs. The nature, extent, and concentration of the TPH and radionuclide COCs were bounded by sampling and shown to be relatively immobile. Therefore, closure in place is recommended for these CASs in CAU 356. Further, use restrictions are not required at this CAU beyond the NTS use restrictions identified in

  8. Joint US Geological Survey, US Nuclear Regulatory Commission workshop on research related to low-level radioactive waste disposal, May 4-6, 1993, National Center, Reston, Virginia; Proceedings

    Science.gov (United States)

    Stevens, Peter R.; Nicholson, Thomas J.

    1996-01-01

    This report contains papers presented at the "Joint U.S. Geological Survey (USGS) and U.S. Nuclear Regulatory Commission (NRC) Technical Workshop on Research Related to Low-Level Radioactive Waste (LLW) Disposal" that was held at the USGS National Center Auditorium, Reston, Virginia, May 4-6, 1993. The objective of the workshop was to provide a forum for exchange of information, ideas, and technology in the geosciences dealing with LLW disposal. This workshop was the first joint activity under the Memorandum of Understanding between the USGS and NRC's Office of Nuclear Regulatory Research signed in April 1992.Participants included invited speakers from the USGS, NRC technical contractors (U.S. Department of Energy (DOE) National Laboratories and universities) and NRC staff for presentation of research study results related to LLW disposal. Also in attendance were scientists from the DOE, DOE National Laboratories, the U.S. Environmental Protection Agency, State developmental and regulatory agencies involved in LLW disposal facility siting and licensing, Atomic Energy Canada Limited (AECL), private industry, Agricultural Research Service, universities, USGS and NRC.

  9. The influence of disposal capacity on the course of site remediation

    International Nuclear Information System (INIS)

    Eng, J.

    1999-01-01

    The availability of, or more accurately the lack of, disposal capacity has altered the course of decontamination and decommissioning of radioactively contaminated sites. Political sensitivities in the 1970s caused a congressional restructuring of the disposal system in the United States. At the same time, the 1970s saw a movement towards reexamining many previously decontaminated facilities with a new emphasis on environmental protection. A reexamination of accessibility to disposal capacity began in the 1980s because the three states with disposal facilities wanted to restrict use of their facilities and create new capacity in other states. The passage of the federal Low-Level Radioactive Waste Policy Act and Amendments Act permitted states to form compacts to restrict use of disposal facilities in their region. The Amendments Act also permitted the collection of surcharges that ultimately increased the cost of disposal by 300% within a decade. Radioactive facilities that were reevaluated include radium facilities of the first decades of the Twentieth Century, government and private facilities that took part in atomic weapon development during the World War II era, and older facilities licensed under the Atomic Energy Act in the latter half of the century. The reevaluations resulted in modern day conclusions that further remedial actions may be needed. The solution appeared straightforward: removal of the radiological contamination that is in excess of current day environmental standards. The large volumes of slightly contaminated debris and the limited, costly disposal capacity have created a need for alternatives to excavation and removal. Some of the techniques have created opportunities such as specialized disposal sites (e.g., Envirocare), reuse of contaminated metals, more aggressive decontamination processes, and recycling (e.g., mill reprocessing). (author)

  10. Guidance for implementing the long-term surveillance program for UMTRA Project Title I Disposal Sites

    International Nuclear Information System (INIS)

    1996-02-01

    This guidance document has two purposes: it provides guidance for writing site-specific long-term surveillance plans (LTSP) and it describes site surveillance, monitoring, and long-term care techniques for Title I disposal sites of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.). Long-term care includes monitoring, maintenance, and emergency measures needed to protect public health and safety and the environment after remedial action is completed. This document applies to the UMTRCA-designated Title I disposal sites. The requirements for long-term care of the Title I sites and the contents of the LTSPs are provided in U.S. Nuclear Regulatory Commission (NRC) regulations (10 CFR Section 40.27) provided in Attachment 1

  11. Natural radioactivity of airbone particulates in coal-ash disposal sites

    International Nuclear Information System (INIS)

    Fukushima, Masanori; Tsukamoto, Masaki

    1984-01-01

    An investigation was made on the actual concentrations of U, Th and Po in air-borne dust and soil around coal power stations, to study the effect of coal-ash disposal site on natural radioactivity of environmental samples. Samples were collected at a coal-ash disposal and its reference places. The results obtained are summaried as follows; (1) Concentrations of U, Th and Po in air-borne dust at the disposal place was nealy equal to those at the reference place. (2) Origin of those α-emitting elements in the dust was successfully deduced, on the basis of correlating concentrations of Sc and Cl elements in the dust. (3) It was inferred that elements of both U and Po in the dust at disposal site came from soil by about 80% and artificial origin such as exhausted gas by remainder. Almost all Th element were from soil. It was therefore concluded that effect of disposal site on radioactivity concentrations of dusts was negligible. (author)

  12. Site-selection studies for final disposal of spent fuel in Finland

    International Nuclear Information System (INIS)

    Vuorela, P.; Aeikaes, T.

    1984-02-01

    In the management of waste by the Industrial Power Company Ltd. (TVO) preparations are being made for the final disposal of unprocessed spent fuel into the Finnish bedrock. The site selection program will advance in three phases. The final disposal site must be made at the latest by the end of the year 2000, in accordance with a decision laid down by the Finnish Government. In the first phase, 1983-85, the main object is to find homogeneous stable bedrock blocks surrounded by fracture zones located at a safe distance from the planned disposal area. The work usually starts with a regional structural analysis of mosaics of Landsat-1 winter and summer imagery. Next an assortment of different maps, which cover the whole country, is used. Technical methods for geological and hydrogeological site investigations are being developed during the very first phase of the studies, and a borehole 1000 meters deep will be made in southwestern Finland. Studies for the final disposal of spent fuel or high-level reprocessing waste have been made since 1974 in Finland. General suitability studies of the bedrock have been going on since 1977. The present results indicate that suitable investigation areas for the final disposal of highly active waste can be found in Finland

  13. Characterization of organics in leachates from low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Francis, A.J.; Iden, C.R.; Nine, B.; Chang, C.

    1979-01-01

    Low-level radioactive wastes generated by the nuclear industry, universities, research institutions, and hospitals are disposed of in shallow-land trenches and pits. In 1962 the first commercial disposal site was opened in Beatty, Nevada. Since then, the industry has grown to include three private companies operating six disposal areas located in sparsely populated areas: at Maxey Flats (Morehead), Kentucky; Beatty, Nevada; Sheffield, Illinois; Barnwell, South Carolina; West Valley, New York; and Richland, Washington. Although the facilities are operated by private industry, they are located on public land and are subject to federal and state regulation. Although inventories of the radioactive materials buried in the disposal sites are available, no specific records are kept on the kinds and quantities of organic wastes buried. In general, the organic wastes consist of contaminated paper, packing materials, clothing, plastics, ion-exchange resins, scintillation vials, solvents, chemicals, decontamination fluids, carcasses of experimental animals, and solidification agents. Radionuclides such as 14 C, 3 H, 90 Sr, 134 137 Cs, 60 Co, 241 Am, and 238 239 240 Pu have been identified in leachate samples collected from several trenches at Maxey Flats and West Valley. The purpose of this report is to identify some of the organic compounds present in high concentrations in trench leachates at the disposal sites in order to begin to evaluate their effect on radionuclide mobilization and contamination of the environment

  14. Preparing, Loading and Shipping Irradiated Metals in Canisters Classified as Remote-Handled (RH) Low-Level Waste (LLW) From Oak Ridge National Laboratory (ORNL) to the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    McClelland, B.C.; Moore, T.D.

    2006-01-01

    Irradiated metals, classified as remote-handled low-level waste generated at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, were containerised in various sized canisters for long-term storage. The legacy waste canisters were placed in below-grade wells located at the 7827 Facility until a pathway for final disposal at the Nevada Test Site (NTS) could be identified and approved. Once the pathway was approved, WESKEM, LLC was selected by Bechtel Jacobs Company, LLC to prepare, load, and ship these canisters from ORNL to the NTS. This paper details some of the technical challenges encountered during the retrieval process and solutions implemented to ensure the waste was safely and efficiently over-packed and shipped for final disposal. The technical challenges detailed in this paper include: 1) how to best perform canister/lanyard pre-lift inspections since some canisters had not been moved in ∼10 years, so deterioration was a concern; 2) replacing or removing damaged canister lanyards; 3) correcting a mis-cut waste canister lanyard resulting in a shielded overpack lid not seating properly; 4) retrieving a stuck canister; and 5) developing a path forward after an overstrained lanyard failed causing a well shield plug to fall and come in contact with a waste canister. Several of these methods can serve as positive lessons learned for other projects encountering similar situations. (authors)

  15. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal

  16. COMPLETION OF THE TRANSURANIC GREATER CONFINEMENT DISPOSAL BOREHOLE PERFORMANCE ASSESSMENT FOR THE NEVADA TEST SITE

    International Nuclear Information System (INIS)

    Colarusso, Angela; Crowe, Bruce; Cochran, John R.

    2003-01-01

    Classified transuranic material that cannot be shipped to the Waste Isolation Pilot Plant in New Mexico is stored in Greater Confinement Disposal boreholes in the Area 5 Radioactive Waste Management Site on the Nevada Test Site. A performance assessment was completed for the transuranic inventory in the boreholes and submitted to the Transuranic Waste Disposal Federal Review Group. The performance assessment was prepared by Sandia National Laboratories on behalf of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office using an iterative methodology that assessed radiological releases from the intermediate depth disposal configuration against the regulatory requirements of the 1985 version of 40 CFR 191 of the U.S. Environmental Protection Agency. The transuranic materials are stored at 21 to 37 m depth (70 to 120 ft) in large diameter boreholes constructed in the unsaturated alluvial deposits of Frenchman Flat. Hydrologic processes that affect long- term isolation of the radionuclides are dominated by extremely slow upward rates of liquid/vapor advection and diffusion; there is no downward pathway under current climatic conditions and there is no recharge to groundwater under future ''glacial'' climatic conditions. A Federal Review Team appointed by the Transuranic Waste Disposal Federal Review Group reviewed the Greater Confinement Disposal performance assessment and found that the site met the majority of the regulatory criteria of the 1985 and portions of the 1993 versions of 40 CFR 191. A number of technical and procedural issues required development of supplemental information that was incorporated into a final revision of the performance assessment. These issues include inclusion of radiological releases into the complementary cumulative distribution function for the containment requirements associated with drill cuttings from inadvertent human intrusion, verification of mathematical models used in the performance

  17. Research in the selection of very low level radioactive waste disposal site in southwest China

    International Nuclear Information System (INIS)

    Tuo, Xianguo; Long, Qiong; Zhong, Hongmei; Xu, Zhengqi; Mu, Keliang; Gao, Lan

    2008-01-01

    The ultimate goal of Chinese Radioactive Nuclear Waste Management and Disposal Security is that must use proper and optimized ways to manage radioactive waste and make sure human beings and the environment either at the present or in the future can be free from any unacceptable risks. According to the goal, this paper presents an overview of comprehensive site characterization work that comprises investigations of physical geography, climatology, geology and hydrogeology, as well as geological hazard on two candidate Very Low Level Radioactive Waste (VLLW) disposal sites (Site 1 and Site 2) which are both located in the south west of China. The results showed that there are many similarities in the regional extent of the two sites, but many distinct differences are found in terrain and topographic features, granule stratum, hydraulic gradient, and so on. On the whole, the two alternative sites are in line with the requirements for very low level radioactive waste disposal, and Site 1 is superior to Site 2. (author)

  18. Application of GIS in siting disposal repository for high level radioactive waste

    International Nuclear Information System (INIS)

    Zhong Xia; Wang Ju; Huang Shutao

    2010-01-01

    High level radioactive waste geo-disposal is directly related to environment protection and Sustainable Utilization of nuclear energy. To ensure both success and long-term safe disposal of the high level-radioactive waste, finding suitable sites is an important step in the research. Meanwhile, siting and evaluation the geo-disposal repository for high level-radioactive waste need a wide range of relevant information, including geology and geophysical surveys data, geochemistry data and other geoscience data in the field. At the same time, some of the data has its spatial property. Geographic information system (GIS) have a role to play in all geographic and spatial aspects of the development and management of the siting disposal repository. GIS has greatly enhanced our ability to store, analyze and communicate accounts of the information. This study was conducted to compare the more suitable sites for the repository using GIS -based on the data which belongs to the preselected area in BeiShan, Gansu Province, China. First, the data of the pre-selected site is captured by GIS and stored in the geoscience database. Then, according to the relevant guide line in the field, the analysis models based on GIS are build. There are some thematic layers of the sites character grouped into two basic type, namely social factors(town, traffic and nuclear plant) and natural factors (water, land and animals and plants).In the paper, a series of GIS models was developed to compare the pre-selected areas in order to make optimal decision. This study shows that with appropriate and enough information GIS used in modeling is a powerful tool for site selection for disposal repository. (authors)

  19. CHARACTERIZATION OF BENTONITE FOR ENGINEERED BARRIER SYSTEMS IN RADIOACTIVE WASTE DISPOSAL SITES

    Directory of Open Access Journals (Sweden)

    Dubravko Domitrović

    2012-07-01

    Full Text Available Engineered barrier systems are used in radioactive waste disposal sites in order to provide better protection of humans and the environment from the potential hazards associated with the radioactive waste disposal. The engineered barrier systems usually contain cement or clay (bentonite because of their isolation properties and long term performance. Quality control tests of clays are the same for all engineering barrier systems. Differences may arise in the required criteria to be met due for different application. Prescribed clay properties depend also on the type of host rocks. This article presents radioactive waste management based on best international practice. Standard quality control procedures for bentonite used as a sealing barrier in radioactive waste disposal sites are described as some personal experiences and results of the index tests (free swelling index, water adsorption capacity, plasticity limits and hydraulic permeability of bentonite (the paper is published in Croatian.

  20. Institutional aspects of siting nuclear waste disposal facilities in the United States

    International Nuclear Information System (INIS)

    Stewart, J.C.; Prichard, W.C.

    1987-01-01

    This paper has dealt with the institutional issues associated with disposal of nuclear waste in the US. The authors believe that these institutional problems must be resolved, no matter how technologically well suited a site may be for disposal, before site selection may take place. The authors have also pointed out that the geography of the US, with its large arid regions of very low population density, contributes to the institutional acceptability of nuclear waste disposal. Economic factors, especially in sparsely populated areas where the uranium mining and milling industry has caused operation, also weigh on the acceptability of nuclear waste to local communities. This acceptability will be highest where there are existing nuclear facilities and/or facilities which are closed - thus creating unemployment especially where alternative economic opportunities are few

  1. Savannah River Site - Salt-stone Disposal Facility Performance Assessment Update

    International Nuclear Information System (INIS)

    Newman, J.L.

    2009-01-01

    The Savannah River Site (SRS) Salt-stone Facility is currently in the midst of a Performance Assessment revision to estimate the effect on human health and the environment of adding new disposal units to the current Salt-stone Disposal Facility (SDF). These disposal units continue the ability to safely process the salt component of the radioactive liquid waste stored in the underground storage tanks at SRS, and is a crucial prerequisite for completion of the overall SRS waste disposition plan. Removal and disposal of low activity salt waste from the SRS liquid waste system is required in order to empty tanks for future tank waste processing and closure operations. The Salt-stone Production Facility (SPF) solidifies a low-activity salt stream into a grout matrix, known as salt-stone, suitable for disposal at the SDF. The ability to dispose of the low-activity salt stream in the SDF required a waste determination pursuant to Section 3116 of the Ronald Reagan National Defense Authorization Act of 2005 and was approved in January 2006. One of the requirements of Section 3116 of the NDAA is to demonstrate compliance with the performance objectives set out in Subpart C of Part 61 of Title 10, Code of Federal Regulations. The PA is the document that is used to ensure ongoing compliance. (authors)

  2. Tritium migration from a low-level radioactive-waste disposal site near Chicago, Illinois

    Science.gov (United States)

    Nicholas, J.R.; Healy, R.W.

    1988-01-01

    This paper describes the results of a study to determine the geologic and hydrologic factors that control migration of tritium from a closed, low-level radioactive-waste disposal site. The disposal site, which operated from 1943 to mid1949, contains waste generated by research activities at the world's first nuclear reactors. Tritium has migrated horizontally at least 1,300 feet northward in glacial drift and more than 650 feet in the underlying dolomite. Thin, gently sloping sand layers in an otherwise clayey glacial drift are major conduits for ground-water flow and tritium migration in a perched zone beneath the disposal site. Tritium concentrations in the drift beneath the disposal site exceed 100,000 nanocuries per liter. Regional horizontal joints in the dolomite are enlarged by solution and are the major conduits for ground-water flow and tritium migration in the dolomite. A weathered zone at the top of the dolomite also is a pathway for tritium migration. The maximum measured tritium concentration in the dolomite is 29.4 nanocuries per liter. Fluctuations of tritium concentration in the dolomite are the result of dilution by seasonal recharge from the drift.

  3. Criteria and technical concept for demonstrating greater confinement disposal of radioactive wastes at Arid Western Sites

    International Nuclear Information System (INIS)

    Hunter, P.H.

    1981-01-01

    This report summarizes the work of two documents; the Criteria for Greater Confinement of Radioactive Wastes at Arid Western Sites, NVO-234, March 1981, (within this report, referred to as the GCDF Criteria Document); and the Draft Technical Concept for a Test of Greater Confinement Disposal of Radioactive Waste in Unsaturated Media at the Nevada Test Site, FBDU-343-004, June 1981, (referred within this report as the Technical Concept for the GCDF). For the past two years, Ford, Bacon and Davis has been performing technical services for the Department of Energy at the Nevada Test Site in development of defense low-level waste management concepts, including the greater confinement disposal concept with particular application to arid sites. The investigations have included the development of Criteria for Greater Confinement Disposal, NVO-234, which we published in May of this year; then the draft for the technical concept for greater confinement disposal, published in June; leading up to the point where we are now. The final technical concept and design specifications should be published imminently. The document is prerequisite to the actual construction and implementation of the demonstration facility this fiscal year

  4. 1996 Hanford site report on land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1996-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

  5. Modeling of a sedimentary rock alternative for the siting of the radioactive waste disposal system

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.

    2007-01-01

    Here are described the main concepts, the approximations, and all those simulation aspects that characterize the modeling performed using the unsaturated saturated approach for porous media. The objective of this work is to obtain a generic description of a sedimentary rock soil as an alternative site for the low and intermediate level radioactive waste disposal system. (author) [es

  6. 1996 Hanford site report on land disposal restrictions for mixed waste

    International Nuclear Information System (INIS)

    Black, D.G.

    1996-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site

  7. A sensitivity analysis of hazardous waste disposal site climatic and soil design parameters using HELP3

    International Nuclear Information System (INIS)

    Adelman, D.D.; Stansbury, J.

    1997-01-01

    The Resource Conservation and Recovery Act (RCRA) Subtitle C, Comprehensive Environmental Response, Compensation, And Liability Act (CERCLA), and subsequent amendments have formed a comprehensive framework to deal with hazardous wastes on the national level. Key to this waste management is guidance on design (e.g., cover and bottom leachate control systems) of hazardous waste landfills. The objective of this research was to investigate the sensitivity of leachate volume at hazardous waste disposal sites to climatic, soil cover, and vegetative cover (Leaf Area Index) conditions. The computer model HELP3 which has the capability to simulate double bottom liner systems as called for in hazardous waste disposal sites was used in the analysis. HELP3 was used to model 54 combinations of climatic conditions, disposal site soil surface curve numbers, and leaf area index values to investigate how sensitive disposal site leachate volume was to these three variables. Results showed that leachate volume from the bottom double liner system was not sensitive to these parameters. However, the cover liner system leachate volume was quite sensitive to climatic conditions and less sensitive to Leaf Area Index and curve number values. Since humid locations had considerably more cover liner system leachate volume than and locations, different design standards may be appropriate for humid conditions than for and conditions

  8. Environmental radiation monitoring around waste are disposal site in Tottori prefecture for fiscal year 2003

    International Nuclear Information System (INIS)

    2004-04-01

    This document is the compilation of environment monitoring around waste uranium are disposal site, near Ningyo-toge mine in Tottori prefecture. This result have been to reported to Okayama and Tottori prefectures. The objects for monitoring were river water, river sediments, paddy field sediments, air, rice, vegetables and fruits. (J.P.N.)

  9. Environmental radiation monitoring around waste are disposal site in Tottori prefecture for fiscal year 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-04-01

    This document is the compilation of environment monitoring around waste uranium are disposal site, near Ningyo-toge mine in Tottori prefecture. This result have been to reported to Okayama and Tottori prefectures. The objects for monitoring were river water, drinking water, river sediments, paddy field sediments, air, rice, vegetables, and fruits. (author)

  10. QA in the characterization of a low-level waste disposal site

    International Nuclear Information System (INIS)

    Jacobi, L.R. Jr.

    1989-01-01

    This paper discusses the implementation of the quality assurance program for the site characterization phase of the Texas low-level radioactive waste disposal facility. The author's thought on implementation of a program with a comparison to the California plan are presented

  11. Environmental radiation monitoring around waste ore disposal site in Tottori prefecture: fiscal year 1999

    International Nuclear Information System (INIS)

    2000-03-01

    This document is the compilation of environmental monitoring around waste uranium ore disposal site, near Ningyo-toge mine in Tottori prefecture. The results have been reported to Okayama and Tottori prefectures. The objects for monitoring were river water, drinking water, river sediments, paddy field sediments, air, rice, vegetables, and fruits. (A. Yamamoto)

  12. Climate change research methods and its significance in the study of choosing candidate site in nuclear waste disposal sites

    International Nuclear Information System (INIS)

    Zhao Yong; Zhang Zhanshi

    2008-01-01

    A high-level nuclear waste is the inevitable product accompanies the development of the nuclear power station. How to dispose it properly has become focused by all over the world. Some of the important progresses have been achieved in the fields of site setting, performance assessment and underground laboratory recently. Palaeoclimate patter and the tendency of climate change are very important aspects for the site setting This paper discussed some of the important progresses on the disposal of unclear wastes, the influence of the climate change on the site setting and main methods such as lake sediments, marine sediment, loess, ancient soil and ice core deal with palaeoclimate and palaeo environment study. (authors)

  13. Preoperational baseline and site characterization report for the Environmental Restoration Disposal Facility. Volume 2, Revision 2

    International Nuclear Information System (INIS)

    Weekes, D.C.; Lindsey, K.A.; Ford, B.H.; Jaeger, G.K.

    1996-12-01

    This document is Volume 2 in a two-volume series that comprise the site characterization report, the Preoperational Baseline and Site Characterization Report for the Environmental Restoration Disposal Facility. Volume 1 contains data interpretation and information supporting the conclusions in the main text. This document presents original data in support of Volume 1 of the report. The following types of data are presented: well construction reports; borehole logs; borehole geophysical data; well development and pump installation; survey reports; preoperational baseline chemical data and aquifer test data. Five groundwater monitoring wells, six deep characterization boreholes, and two shallow characterization boreholes were drilled at the Environmental Restoration Disposal Facility (ERDF) site to directly investigate site-specific hydrogeologic conditions

  14. Advanced technology for disposal of low-level radioactive/waste

    International Nuclear Information System (INIS)

    Anderson, R.T.

    1990-01-01

    New Low-Level Radioactive Waste (LLW) sites will be opened in this decade. These sites will replace the existing sites, and will be developed for waste generated at both commercial and governmental facilities. The design and operation of these facilities will include additional engineered provisions to further minimize the probability for any radioactive material release for upwards of 500 years following site closure. Chem-Nuclear Systems, Inc. (CNSI) has been selected by several state waste compacts to design, construct and operate new LLW disposal sites. These new sites will be located in Illinois, North Carolina and Pennsylvania. They will receive waste generated at commercial sites (power utilities, commercial processors, hospitals, etc.), with volumes ranging from 200,000 to 550,000 cubic feet per year. As currently planned, these facilities will be operational for from 20 to 50 years. The basis of the new designs is multiple engineered barriers which augments the natural features of the site and the solid form of the waste as shipped by the generator. The design concept is referred to as the Triple Safe concept, since it is composed of three distinct engineered barriers. This design has been adapted from disposal technology developed in France. This paper discusses aspects of the Triple Safe technology which CNSI is now developing for the new LLW sites. The designs, while not absolutely identical at each site, do have many common features. The author believes that these are representative of disposal technology to be used in the US in the 1990's and beyond. The current projection is that these sites will become operational in the 1993-97 time period

  15. Evaluation of the Acceptability of Potential Depleted Uranium Hexafluoride Conversion Products at the Envirocare Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.

    2001-01-11

    The purpose of this report is to review and document the capability of potential products of depleted UF{sub 6} conversion to meet the current waste acceptance criteria and other regulatory requirements for disposal at the facility in Clive, Utah, owned by Envirocare of Utah, Inc. The investigation was conducted by identifying issues potentially related to disposal of depleted uranium (DU) products at Envirocare and conducting an initial analysis of them. Discussions were then held with representatives of Envirocare, the state of Utah (which is a NRC Agreement State and, thus, is the cognizant regulatory authority for Envirocare), and DOE Oak Ridge Operations. Provisional issue resolution was then established based on the analysis and discussions and documented in a draft report. The draft report was then reviewed by those providing information and revisions were made, which resulted in this document. Issues that were examined for resolution were (1) license receipt limits for U isotopes; (2) DU product classification as Class A waste; (3) use of non-DOE disposal sites for disposal of DOE material; (4) historical NRC views; (5) definition of chemical reactivity; (6) presence of mobile radionuclides; and (7) National Environmental Policy Act coverage of disposal. The conclusion of this analysis is that an amendment to the Envirocare license issued on October 5, 2000, has reduced the uncertainties regarding disposal of the DU product at Envirocare to the point that they are now comparable with uncertainties associated with the disposal of the DU product at the Nevada Test Site that were discussed in an earlier report.

  16. Application of GIS in site selection for nuclear waste disposal facility

    International Nuclear Information System (INIS)

    Sheng, G.; Luginaah, I.N.; Sorrell, J.

    1996-01-01

    Whether designing a new facility or investigating, potential contaminant migration at an existing site, proper characterization of the subsurface conditions and their interaction with surface features is critical to the process. The Atomic Energy Control Board, states in its regulatory document R-104 that, open-quotes For the long-term management of radioactive wastes, the preferred approach is disposal, a permanent method of management in which there is no intention of retrieval and which, ideally uses techniques and designs that do not rely for their success on long-term institutional control beyond a reasonable period of timeclose quotes. Thus although storage is safe, eventually disposal is necessary to avoid long-term reliance on continuing care and attention, such as monitoring and maintenance. In Canada, the concept being proposed by Atomic Energy of Canada Limited (AECL) involves disposal in deep underground repositories in intrusive igneous rock. The aim of this concept as a disposal method is to build multiple barriers that would protect humans and the natural environment from contaminants in the radioactive waste. The multiple barriers include the geosphere, which consists of the rock, any sediments overlying the rock, and the groundwater. Nevertheless, immediate, as well as long-term, consequences, including, risk involved with technological systems and the inherent uncertainty of any forecast, make the prediction and analysis tasks of increasing importance. This uncertainty in the area of nuclear waste disposal is leading to growing concerns about nuclear waste site selection

  17. Site characterization field manual for near surface geologic disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    McCray, J.G.; Nowatzki, E.A.

    1985-01-01

    This field manual has been developed to aid states and regions to do a detailed characterization of a proposed near-surface low-level waste disposal site. The field manual is directed at planners, staff personnel and experts in one discipline to acquaint them with the requirements of other disciplines involved in site characterization. While it can provide a good review, it is not designed to tell experts how to do their job within their own discipline

  18. Development and assessment of closure technology for liquid-waste disposal sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Relyea, J.F.; Seitz, R.R.; Cammann, J.W.

    1990-01-01

    Discharge of low-level liquid wastes into soils was practiced previously at the Hanford Site. Technologies for long-term confinement of subsurface contaminants are needed. Additionally, methods are needed to assess the effectiveness of confinement technologies in remediating potentially diverse environmental conditions. Recently developed site remediation systems and assessment methods for in situ stabilization and isolation of radioactive and other contaminants within and below low-level liquid-waste disposal structures are summarized

  19. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    Energy Technology Data Exchange (ETDEWEB)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D. [U.S. Nuclear Regulatory Commission (United States)

    2013-07-01

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in

  20. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    International Nuclear Information System (INIS)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D.

    2013-01-01

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South

  1. Multiattribute utility analysis of alternative sites for the disposal of nuclear waste

    International Nuclear Information System (INIS)

    Merkhofer, M.W.; Keeney, R.L.

    1987-01-01

    Five potential sites nominated for the Nation's first geologic repository for disposing of nuclear waste are evaluated using multiattribute utility analysis. The analysis was designed to aid the Department of Energy in its selection of 3 sites for characterization, a detailed data-gathering process that will involve the construction of exploratory shafts for underground testing and that may cost as much as $1 billion per site. The analysis produced insights into the relative advantages and disadvantages of the nominated sites and clarified current uncertainties regarding repository performance

  2. Identification of scenarios in the safety assessment of a deep geological site for radioactive waste disposal

    International Nuclear Information System (INIS)

    Escalier des Orres, P.; Devillers, C.; Cernes, A.

    1990-01-01

    The selection and qualification procedure of a site for radioactive wastes disposal in a deep geologic formation, has begun in France in the early eighties. The public authorities, on ANDRA's proposal, has preselected in 1987 four sites, each of them corresponding to a type of geologic formations (granite, clay, salt and shale). Within two years, one of these sites will be chosen for the location of an underground laboratory. The safety analysis for the site's qualification uses evolution scenarios of the repository and its environment, chosen according to a deterministic method. With an appropriate detail level, are defined a reference scenario and scenario with random events. 4 refs., 1 tab [fr

  3. Comparative approaches to siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Newberry, W.F.

    1994-07-01

    This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection

  4. Small mammal populations at hazardous waste disposal sites near Houston, Texas, USA

    Science.gov (United States)

    Robbins, C.S.

    1990-01-01

    Small mammals were trapped, tagged and recaptured in 0?45 ha plots at six hazardous industrial waste disposal sites to determine if populations, body mass and age structures were different from paired control site plots. Low numbers of six species of small mammals were captured on industrial waste sites or control sites. Only populations of hispid cotton rats at industrial waste sites and control sites were large enough for comparisons. Overall population numbers, age structure, and body mass of adult male and female cotton rats were similar at industrial waste sites and control sites. Populations of small mammals (particularly hispid cotton rats) may not suffice as indicators of environments with hazardous industrial waste contamination.

  5. Should high-level nuclear waste be disposed of at geographically dispersed sites?

    International Nuclear Information System (INIS)

    Bassett, G.W. Jr.

    1992-01-01

    Consideration of the technical feasibility of Yucca Mountain in Nevada as the site for a high-level nuclear waste repository has led to an intense debate regarding the economic, social, and political impacts of the repository. Impediments to the siting process mean that the nuclear waste problem is being resolved by adhering to the status quo, in which nuclear waste is stored at scattered sites near major population centers. To assess the merits of alternative siting strategies--including both the permanent repository and the status quo- we consider the variables that would be included in a model designed to select (1) the optimal number of disposal facilities, (2) the types of facilities (e.g., permanent repository or monitored retrievable facility), and (3) the geographic location of storage sites. The objective function in the model is an all-inclusive measure of social cost. The intent of the exercise is not to demonstrate the superiority of any single disposal strategy; uncertainties preclude a conclusive proof of optimality for any of the disposal options. Instead, we want to assess the sensitivity of a variety of proposed solutions to variations in the physical, economic, political, and social variables that influence a siting strategy

  6. Development of a geoscience database for preselecting China's high level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Li Jun; Fan Ai; Huang Shutao; Wang Ju

    1998-01-01

    Taking the development of a geoscience database for China's high level waste disposal sites: Yumen Town, Gansu Province, northwest of China, as an example, the author introduces in detail the application of Geographical Information System (GIS) to high level waste disposal and analyses its application prospect in other fields. The development of GIS provides brand-new thinking for administrators and technicians at all levels. At the same time, the author also introduces the administration of maps and materials by using Geographical Information System

  7. Low level radioactive waste disposal/treatment technology overview: Savannah River site

    International Nuclear Information System (INIS)

    Sturm, H.F. Jr.

    1987-01-01

    The Savannah River Site will begin operation of several low-level waste disposal/treatment facilities during the next five years, including a new low-level solid waste disposal facility, a low-level liquid effluent treatment facility, and a low-level liquid waste solidification process. Closure of a radioactive hazardous waste burial ground will also be completed. Technical efforts directed toward waste volume reduction include compaction, incineration, waste avoidance, and clean waste segregation. This paper summarizes new technology being developed and implemented. 11 refs., 1 fig

  8. Development of a geoscience database for preselecting China's high level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Li Jun; Fan Ai; Huang Shutao; Wang Ju

    2004-01-01

    Taking the development of a geoscience database for China's high level waste disposal sites: Yumen Town, Guansu province, northwest of China, as an example, this paper introduces in detail the application of Geographical Information System (GIS) to high level waste disposal and analyses its application prospect in other fields. The development of GIS provides brand-new thinking for administrators and technicians at all levels. At the same time, this paper also introduces the administration of maps and materials by using Geographical Information System. (author)

  9. Trench water chemistry at commercially operated low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Pietrzak, R.F.; Dayal, R.; Kinsley, M.T.; Clinton, J.; Czyscinski, K.S.; Weiss, A.J.

    1982-01-01

    Water samples from the disposal trenches of two low-level radioactive-waste-disposal sites were analyzed for their inorganic, organic, and radionuclide contents. Since oxidation of the trench waters can occur during their movement along the groundwater flow path, experiments were performed to measure the chemical and physical changes that occur in these waters upon oxidation. Low concentrations of chelating agents, shown to exist in trench waters, may be responsible for keeping radionuclides, particularly 60 Co, in solution. 4 figures, 5 tables

  10. The principles of design of a shallow disposal site for low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Holmes, R.E.

    1985-01-01

    This paper addresses the principles of design of a shallow disposal site for low and intermediate level radioactive wastes. The objective of the author is to review the need for shallow land disposal facilities in the UK and to propose design principles which will protect the public and operatives from excessive risk. It is not the intent of the author to present a detailed design of facility which will meet the design standards proposed although such a design is feasible and within the scope of currently available technology. The principles and standards proposed in this paper are not necessarily those of PPC Consultant Services Ltd. or NEI Waste Technologies Ltd. (author)

  11. A study for the safety evaluation of geological disposal of TRU waste and influence on disposal site design by change of amount of TRU waste (Joint research)

    International Nuclear Information System (INIS)

    Hasegawa, Makoto; Kondo, Hitoshi; Takahashi, Kuniaki; Funabashi, Hideaki; Kawatsuma, Shinji; Kamei, Gento; Hirano, Fumio; Mihara, Morihiro; Ueda, Hiroyoshi; Ohi, Takao; Hyodo, Hideaki

    2011-02-01

    In the safety evaluation of the geological disposal of the TRU waste, it is extremely important to share the information with the Research and development organization (JAEA: that is also the waste generator) by the waste disposal entrepreneur (NUMO). In 2009, NUMO and JAEA set up a technical commission to investigate the reasonable TRU waste disposal following a cooperation agreement between these two organizations. In this report, the calculation result of radionuclide transport for a TRU waste geological disposal system was described, by using the Tiger code and the GoldSim code at identical terms. Tiger code is developed to calculate a more realistic performance assessment by JAEA. On the other hand, GoldSim code is the general simulation software that is used for the computation modeling of NUMO TRU disposal site. Comparing the calculation result, a big difference was not seen. Therefore, the reliability of both codes was able to be confirmed. Moreover, the influence on the disposal site design (Capacity: 19,000m 3 ) was examined when 10% of the amount of TRU waste increased. As a result, it was confirmed that the influence of the site design was very little based on the concept of the Second Progress Report on Research and Development for TRU Waste Disposal in Japan. (author)

  12. OPTIMAL ALLOCATION OF LANDFILL DISPOSAL SITE: A FUZZY MULTI-CRITERIA APPROACH

    Directory of Open Access Journals (Sweden)

    Ajit P. Singh, A. K. Vidyarthi

    2008-01-01

    Full Text Available The arbitrary disposal through land-fill sites and also the unscientific management of solid wastes generated by domestic, commercial and industrial activities leading to serious problems of health, sanitation and environmental degradation in India demand an immediate proper solid waste disposal planning otherwise it may cause a serious problem, especially in small and medium-sized cities/towns if proper steps are not initiated now. The present paper aims to develop decision support systems to allocate the best landfill disposal site among the given alternative sites for Vidya Vihar, Pilani, Rajasthan, India. The technique is applied to determine the overall strategy for planning of solid waste disposal and management, while taking into account its environmental impact, as well as economical, technical and sustainable development issues. The model effectively reflects dynamic, interactive, and uncertain characteristics of the solid waste management system and provides decision-makers with a decision tool to make a better decision while choosing a municipal solid waste management strategy.

  13. Importance of geologic characterization of potential low-level radioactive waste disposal sites

    Science.gov (United States)

    Weibel, C.P.; Berg, R.C.

    1991-01-01

    Using the example of the Geff Alternative Site in Wayne County, Illinois, for the disposal of low-level radioactive waste, this paper demonstrates, from a policy and public opinion perspective, the importance of accurately determining site stratigraphy. Complete and accurate characterization of geologic materials and determination of site stratigraphy at potential low-level waste disposal sites provides the frame-work for subsequent hydrologic and geochemical investigations. Proper geologic characterization is critical to determine the long-term site stability and the extent of interactions of groundwater between the site and its surroundings. Failure to adequately characterize site stratigraphy can lead to the incorrect evaluation of the geology of a site, which in turn may result in a lack of public confidence. A potential problem of lack of public confidence was alleviated as a result of the resolution and proper definition of the Geff Alternative Site stratigraphy. The integrity of the investigation was not questioned and public perception was not compromised. ?? 1991 Springer-Verlag New York Inc.

  14. 40 CFR 61.151 - Standard for inactive waste disposal sites for asbestos mills and manufacturing and fabricating...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standard for inactive waste disposal sites for asbestos mills and manufacturing and fabricating operations. 61.151 Section 61.151 Protection... inactive waste disposal sites for asbestos mills and manufacturing and fabricating operations. Each owner...

  15. Strategic environmental assessment for UK LLW management - 16392

    International Nuclear Information System (INIS)

    Craze, Andrew; Clark, Matthew; Davis, Pete

    2009-01-01

    NDA is delivering a Strategic Environmental Assessment (SEA) to underpin the UK Nuclear Industry Low Level Waste Strategy. The purpose of this assessment is embed sustainability issues into our decision making and to fulfill our requirements under the European Union's Strategic Environmental Assessment (SEA) Directive (2004/42/EU) and transposing UK Regulations, and to underpin the development of the strategy. The outputs of the SEA have provided input into particular aspects of the strategy, leading to a more robust and better informed result. Development of options to be assessed under the SEA has looked at a number of factors, including: - what the strategy is aiming to achieve - expectation from stakeholders as to what should be addressed - consideration of tactical approaches to implementation of the strategy in addition to high level strategic issues - links to other projects and programmes (for example the Environmental Safety Case for the Low Level Waste Repository. The SEA aims to provide a robust assessment of the environmental and sustainability impacts of alternative strategies for providing continued capability and capacity for the management and disposal of LLW in the UK. The assessment also considers other, more tactical, issues around implementation of the strategy, for example: issues around the location of LLW management facilities; the environmental impacts of alternative waste treatment options (metal recycling etc); considerations of alternative approaches to the classification of radioactive waste and opportunities that would result. Critical to the development of the SEA has been the involvement of statutory and non-statutory stakeholders, who have informed both the output and the approach taken. (authors)

  16. Safety assessment of hypothetical near surface disposal at Serpong site: far-field modeling

    International Nuclear Information System (INIS)

    Lubis, E.; D Mallants; G Volckraert

    2001-01-01

    The far field modeling of radionuclide disposed at Serpong site was carried out based on the hydrogeological data. The simulation of radionuclide in the groundwater was calculated by the PORFLOW computer code. The groundwater simulation was done for 2 cases. In the first case the conductivity of soil layer at Serpong site contains of two layers and in the second case just contains of one layer. The results of the first case, indicated that the flow calculations show that depending on the location of the disposal site, radionuclides that are released from the repository may either show up in the nearby Cisalak creek or in Cisadane river. The results of the second case indicated that the local flow system exist. This means that all radionuclides that migrate out of the repository will appear in the Cisalak creek. The transport time for radionuclides with a low retardation factor in lateric clay soil is around 10 years for a travel of 200 m distance

  17. Status of the Texas low-level radioactive waste disposal site - construction sequencing and staffing patterns

    International Nuclear Information System (INIS)

    Jacobi, L.R. Jr.

    1996-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority, an agency of the State of Texas, has been attempting to develop a site for the disposal of low-level radioactive waste in Texas for more than fourteen years. Since 1991, the agency has been evaluating a site near Sierra Blanca, in far west Texas. Site characterization was completed in 1992, and a license application was filed that year. Construction plans were completed in 1993. In April 1996, the licensing agency, the Texas Natural Resource Conservation Commission, completed its review and proposed to issue a license. The administrative hearings on the proposed license should be completed by July 1997. The Authority is prepared to begin construction and operations as soon as a final license can be issued

  18. Pathways to man for radionuclides released from disposal sites on land

    International Nuclear Information System (INIS)

    Hill, M.D.

    1986-01-01

    To predict the potential radiological impact on man of the disposal of radioactive wastes it is necessary to identify all the events and processes that could cause releases of radionuclides into the environment, to estimate their probabilities of occurrence and to calculate their consequences, for both individuals and populations. This paper briefly reviews the types of releases that have to be considered for land disposal sites and describes the mathematical models used to calculate rates of transport of radionuclides through the environment and doses to man. The difficulties involved in predicting environmental conditions in the far future are discussed, in the light of the ways in which the results of consequence calculations will be used. Assessments of land disposal of long-lived and highly radioactive wastes are briefly reviewed, with the aim of identifying the most important radionuclides and exposure pathways, and the areas where the models and their databases require improvement. (author)

  19. Classified Component Disposal at the Nevada National Security Site (NNSS) - 13454

    Energy Technology Data Exchange (ETDEWEB)

    Poling, Jeanne; Arnold, Pat [National Security Technologies, LLC (NSTec), P.O. Box 98521, Las Vegas, NV 89193-8521 (United States); Saad, Max [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); DiSanza, Frank [E. Frank DiSanza Consulting, 2250 Alanhurst Drive, Henderson, NV 89052 (United States); Cabble, Kevin [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, P.O. Box 98518, Las Vegas, NV 89193-8518 (United States)

    2013-07-01

    The Nevada National Security Site (NNSS) has added the capability needed for the safe, secure disposal of non-nuclear classified components that have been declared excess to national security requirements. The NNSS has worked with U.S. Department of Energy, National Nuclear Security Administration senior leadership to gain formal approval for permanent burial of classified matter at the NNSS in the Area 5 Radioactive Waste Management Complex owned by the U.S. Department of Energy. Additionally, by working with state regulators, the NNSS added the capability to dispose non-radioactive hazardous and non-hazardous classified components. The NNSS successfully piloted the new disposal pathway with the receipt of classified materials from the Kansas City Plant in March 2012. (authors)

  20. Classified Component Disposal at the Nevada National Security Site (NNSS) - 13454

    International Nuclear Information System (INIS)

    Poling, Jeanne; Arnold, Pat; Saad, Max; DiSanza, Frank; Cabble, Kevin

    2013-01-01

    The Nevada National Security Site (NNSS) has added the capability needed for the safe, secure disposal of non-nuclear classified components that have been declared excess to national security requirements. The NNSS has worked with U.S. Department of Energy, National Nuclear Security Administration senior leadership to gain formal approval for permanent burial of classified matter at the NNSS in the Area 5 Radioactive Waste Management Complex owned by the U.S. Department of Energy. Additionally, by working with state regulators, the NNSS added the capability to dispose non-radioactive hazardous and non-hazardous classified components. The NNSS successfully piloted the new disposal pathway with the receipt of classified materials from the Kansas City Plant in March 2012. (authors)

  1. Preliminary evaluation of the use of the greater confinement disposal concept for the disposal of Fernald 11e(2) byproduct material at the Nevada Test Site

    International Nuclear Information System (INIS)

    Cochran, J.R.; Brown, T.J.; Stockman, H.W.; Gallegos, D.P.; Conrad, S.H.; Price, L.L.

    1997-09-01

    This report documents a preliminary evaluation of the ability of the greater confinement disposal boreholes at the Nevada Test Site to provide long-term isolation of radionuclides from the disposal of vitrified byproduct material. The byproduct material is essentially concentrated residue from processing uranium ore that contains a complex mixture of radionuclides, many of which are long-lived and present in concentrations greater than 100,000 picoCuries per gram. This material has been stored in three silos at the fernald Environmental Management Project since the early 1950s and will be vitrified into 6,000 yd 3 (4,580 m 3 ) of glass gems prior to disposal. This report documents Sandia National Laboratories' preliminary evaluation for disposal of the byproduct material and includes: the selection of quantitative performance objectives; a conceptual model of the disposal system and the waste; results of the modeling; identified issues, and activities necessary to complete a full performance assessment

  2. Remediation and assessment of the national radioactive waste storage and disposal site in Tajikistan - 59110

    International Nuclear Information System (INIS)

    Buriev, Nazirzhon T.; Abdushukurov, Dzhamshed A.; Vandergraaf, Tjalle T.

    2012-01-01

    The National Radioactive Waste Storage and Disposal Site was established in 1959 in the Faizabad region approximately 50 km east of the capital, Dushanbe. The site is located on the southern flank of the Fan Mountains facing the Gissar Valley in a sparsely populated agricultural area, with the nearest villages located a few km from the site. The site was initially designed to accept a wide range of contaminated materials, including obsolete smoke detectors, sealed radioactive sources, waste from medical institutions, and radioactive liquids. Between 1962 and 1976, 363 tonnes and 1146 litres of material, contaminated with a range of radionuclides were shipped to the site. Between 1972 - 1980 and 1985 - 1991, ∼4.8 x 10 14 and 2 x 10 13 Bq, respectively, were shipped to the site. An additional 7 x 10 14 Bq was shipped to the site in 1996. Partly as a result of the dissolution of the former Soviet Union, the disposal site had fallen into disrepair and currently presents both an environmental hazard and a potential for the proliferation of radionuclides that could potentially be used for illicit purposes. Remediation of the disposal site was started in 2005. New security fences were erected and a new superstructure over an in-ground storage site constructed. A central alarm monitoring and observation station has been constructed and is now operational. The geology, flora, and fauna of the region have been documented. Radiation surveys of the buildings and the storage and disposal sites have been carried out. Samples of soil, surface water and vegetation have been taken and analyzed by gamma spectrometry. Results show a slight extent of contamination of soils near the filling ports of the underground liquid storage container where a Cs-137 concentration of 2.3 x 104 Bq/kg was obtained. Similar values were obtained for Ra- 226. Radiation fields of the in-ground storage site were generally 3 . Most of the activity appears to be associated with the sediments in the tank

  3. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  4. 1982 State-by-state assessment of low-level radioactive wastes shipped to commercial disposal sites

    International Nuclear Information System (INIS)

    1983-12-01

    This report uses the volume of low-level waste reported as received at each commercial disposal site as the national baseline figure. A volume of 75,891 cubic meters of radioactive waste containing 413,898 curies of activity was reported disposed at the commercial sites in 1982. The distribution of these waste volumes by disposal site is presented in Table 1. Table 2 summarizes estimated volumes by generator categories. The total volume and curie values tabulated for each state were obtained directly from the commercial disposal site operators. The total is the sum of the volume and radioactivity by disposal site for each state. Summary information on commercial nuclear power plant wastes was obtained from semiannual waste reports submitted to the NRC in accordance with the NRC Regulatory Guide 1.21. Data reported for the calendar year 1982 were used for this report where available. When report data were not available, reactor information was obtained directly from the utility

  5. Geological factors of disposal site selection for low-and intermediate-level solid radwastes in China

    International Nuclear Information System (INIS)

    Chen Zhangru

    1993-01-01

    For disposal of low- and intermediate-level solid radioactive wastes, shallow-ground disposal can provide adequate isolation of waste from human for a fairly long period of time. The objective of disposal site selection is to ensure that the natural properties of the site together with the engineered barrier site shall provide adequate isolation of radionuclides from the human beings and environment, so the whole disposal system can keep the radiological impact within an acceptable level. Since the early 1980's, complying with the national standards and the expert's conception as well as the related IAEA Criteria, geological selection of disposal sites for low-and intermediate-level solid radwastes has been carried out in East China, South China, Northwest China and Southwest China separately. Finally, 5 candidate sites were recommended to the CNNC

  6. Using performance assessment for radioactive waste disposal decision making -- implementation of the methodology into the third performance assessment iteration of the Greater Confinement Disposal site

    International Nuclear Information System (INIS)

    Gallegos, D.P.; Conrad, S.H.; Baer, T.A.

    1993-01-01

    The US Department of Energy is responsible for the disposal of a variety of radioactive wastes. Some of these wastes are prohibited from shallow land burial and also do not meet the waste acceptance criteria for proposed waste repositories at the Waste Isolation Pilot Plant (WIPP) and Yucca Mountain. These have been termed ''special-case'' waste and require an alternative disposal method. From 1984 to 1989, the Department of Energy disposed of a small quantity of special-case transuranic wastes at the Greater Confinement Disposal (GCD) site at the Nevada Test Site. In this paper, an iterative performance assessment is demonstrated as a useful decision making tool in the overall compliance assessment process for waste disposal. The GCD site has been used as the real-site implementation and test of the performance assessment approach. Through the first two performance assessment iterations for the GCD site, and the transition into the third, we demonstrate how the performance assessment methodology uses probabilistic risk concepts to guide affective decisions about site characterization activities and how it can be used as a powerful tool in bringing compliance decisions to closure

  7. Cemented materials in the LLW and MLW Spanish disposal

    Directory of Open Access Journals (Sweden)

    Guerrero, A.

    1999-09-01

    Full Text Available BWR and PWR cemented matrices to confine low and medium simulated liquid radioactive wastes have been submitted to the leaching process in de-ionized water at 20ºC and 40ºC, to obtain the medium leachability index (L and the effective diffusion coefficient (De of different ions. Otherwise, it has been studied the associated expansion of the backfilling mortar of the concrete containers of the Spanish repository of these wastes, due to a possible attack of the sulfate ions coming from the cemented matrices.

    Matrices cementicias confinantes tipo BWR y PWR de residuos simulados de baja y media radiactividad se han sometido a procesos de lixiviación en agua desionizada a 20ºC y 40ºC, obteniéndose los índices medios de lixiviación (L y el coeficiente de difusión efectiva (De de algunos iones. Por otra parte, se ha estudiado la expansión asociada a un mortero de relleno constitutivo del depósito de almacenamiento de los residuos, por posible ataque de los iones SO4-2 procedentes de las matrices.

  8. Site selection experience for a new low-level radioactive waste storage/disposal facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Towler, O.A.; Cook, J.R.; Helton, B.D.

    1985-10-01

    Preliminary performance criteria and site selection guides specific to the Savannah River Plant, were developed for a new low-level radioactive waste storage/disposal facility. These site selection guides were applied to seventeen potential sites identified at SRP. The potential site were ranked based on how well they met a set of characteristics considered important in site selection for a low-level radioactive waste disposal facility. The characteristics were given a weighting factor representing its relative importance in meeting site performance criteria. A candidate site was selected and will be the subject of a site characterization program

  9. The 1986 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites

    International Nuclear Information System (INIS)

    1987-12-01

    The data are grouped and presented by compact regions. The data include activity and volume by waste classes, generator type, and disposal site. The report uses the volume of low-level waste reported as received at each commercial disposal site as the national baseline figure. A volume of 1,804,998 cubic feet (51,113 cubic meters) of radioactive waste containing 233,726 curies of activity was reported disposed at the commercial sites in 1986. The total volume and curie values tabulated for each state were obtained directly from the commercial disposal site operators. The total is the sum of the volume and radioactivity reported by Chem Nuclear Systems, Inc., and US Ecology for each state. Sixty-three percent of low-level waste volumes disposed at commercial sites was assigned to the state of origin. These volumes represent those disposed at Beatty and Barnwell disposal sites. Thirty-seven percent, or 665,066 cubic feet (18,831 cubic meters), of the waste disposed in the US in 1986 went to the Richland site. 8 refs., 75 figs., 4 tabs

  10. Test program for closure activities at a mixed waste disposal site at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.; Harley, J.P. Jr.

    1988-01-01

    A 58-acre site at the Savannah River Plant which was used for disposal of low-level radioactive waste and quantities of the hazardous materials lead, cadmium, scintillation fluid, and oil will be the first large waste site at the Savannah River Plant to be permanently closed. The actions leading to closure of the facility will include surface stabilization and capping of the site. Test programs have been conducted to evaluate the effectiveness of dynamic compaction as a stabilization technique and the feasibility of using locally derived clay as a capping material

  11. The general situation of clay site for high-level waste geological disposal repository

    International Nuclear Information System (INIS)

    Wang Changxuan; Liu Xiaodong; Liu Pinghui

    2008-01-01

    Host medium is vitally important for safety of high-level radiaoactive waste (HLW) geological disposal. Clay, as host media of geological repository of HLW, has received greater attention for its inherent advantages. This paper summarizes IAEA and OECD/NEA's some safety guides on site selection and briefly introduces the process of the site selection, their studies and the characteristics of the clay formations in Switz-erland, France and Belgian. Based on these analyses, some suggestions are made to China's HLW repository clay site selection. (authors)

  12. Siting history and current construction status of disposal facility for low and intermediate level radioactive waste in Korea

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Kikuchi, Saburo; Maruyama, Masakatsu

    2008-01-01

    Korean government decided disposal site for low and intermediate level radioactive waste (LILW), which is located at coastal area near the Wolsong nuclear power plants in Gyeong-Ju city in December. 2005, based on the result of votes of residents in four candidate sites. Since then, Korea Hydro and Nuclear Power Co., Ltd (KHNP), which is the management company of the LILW disposal facility, has carried out the preparation for construction of disposal facility and its licensing process. At the first phase, 100 thousand drums in 200 liter are planned to be disposed of in the rock cavern type disposal facility located at the depth from 80m to 130m below the sea level, and finally 800 thousand drums in 200 liter are planned to be disposed of in the site. This report shows the history of siting for the LILW disposal, the outline of design of disposal facility and current status of its construction, based on the information which was obtained mainly during our visit to the disposal site in Korea. (author)

  13. Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Frank G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Phifer, Mark A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-22

    The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to an intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal inventory

  14. LLW Forum summary report, volume 2. No. 2. June 1994

    International Nuclear Information System (INIS)

    1994-06-01

    Information provided for each compact and its host state includes: governing body, member states, compact establishment date, current waste management, regulatory and program responsibility, siting responsibility, other involvement, disposal technology, siting, licensing, development costs, and operational date

  15. Evaluation and design of drained low-level radioactive disposal sites. Final report

    International Nuclear Information System (INIS)

    Eichholz, G.G.

    1984-12-01

    Low-level disposal in shallow trenches has been the subject of much critical assessment in recent years. Historically most trenches have been located in fairly permeable settings and any liquid waste stored has migrated at rates limited mainly by hydraulic effects and the ion exchange capacity of underlying soil minerals. Attempts to minimize such seepage by choosing sites in very impermeable settings lead to overflow and surface runoff, whenever the trench cap is breached by subsidence or erosion. The work described in this report was directed to an optimum compromise situation where less reliance is placed on cap permanence, any ground seepage is directed and controlled, and the amount of waste leaching that would occur is minimized by keeping the soil surrounding the waste at only residual moisture levels at all times. Measurements have been conducted to determine these residual levels for some representative soils, to estimate the impact on waste migration of mainly unsaturated flow conditions, and to generate a conceptual design of a disposal facility which would provide adequate drainage to keep the waste from being exposed to continuous leaching by standing water. An attempt has also been made to quantify the reduced source terms under such periodic, unsaturated flow conditions, but those tests have not been conclusive to date. For low-permeability soils the waste should be placed about 1 ft. above the saturated layer formed by suction forces immediately above the gravel layer. Since most disposal sites, even in humid regions of the United States, are exposed only to intermittent rainfall and as most trench designs incorporate some gravel base for drainage, the results of this project have broader applications in assessing actual migration conditions in shallow trench disposal sites. Similar considerations may also apply to disposal of hazardous wastes

  16. Low-level waste disposal site performance assessment with the RQ/PQ methodology. Final report

    International Nuclear Information System (INIS)

    Rogers, V.C.; Grant, M.W.; Sutherland, A.A.

    1982-12-01

    A methodology called RQ/PQ (retention quotient/performance quotient) has been developed for relating the potential hazard of radioactive waste to the natural and man-made barriers provided by a disposal facility. The methodology utilizes a systems approach to quantify the safety of low-level waste disposed in a near-surface facility. The main advantages of the RQ/PQ methodology are its simplicity of analysis and clarity of presentation while still allowing a comprehensive set of nuclides and pathways to be treated. Site performance and facility designs for low-level waste disposal can be easily investigated with relatively few parameters needed to define the problem. Application of the methodology has revealed that the key factor affecting the safety of low-level waste disposal in near surface facilities is the potential for intrusion events. Food, inhalation and well water pathways dominate in the analysis of such events. While the food and inhalation pathways are not strongly site-dependent, the well water pathway is. Finally, burial at depths of 5 m or more was shown to reduce the impacts from intrusion events

  17. Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The need for ground water monitoring at the Falls City disposal site was evaluated in accordance with NRC regulations and guidelines established by the DOE in Guidance for Implementing the Long-term Surveillance Program for UMTRA Project Title 1 Disposal Sites (DOE, 1996). Based on evaluation of site characterization data, it has been determined that a program to monitor ground water for demonstration of disposal cell performance based on a set of concentration limits is not appropriate because ground water in the uppermost aquifer is of limited use, and a narrative supplemental standard has been applied to the site that does not include numerical concentration limits or a point of compliance. The limited use designation is based on the fact that ground water in the uppermost aquifer is not currently or potentially a source of drinking water in the area because it contains widespread ambient contamination that cannot be cleaned up using methods reasonably employed by public water supply systems. Background ground water quality varies by orders of magnitude since the aquifer is in an area of redistribution of uranium mineralization derived from ore bodies. The DOE plans to perform post-closure ground water monitoring in the uppermost aquifer as a best management practice (BMP) as requested by the state of Texas.

  18. Data Validation Package - July 2016 Groundwater Sampling at the Gunnison, Colorado, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Campbell, Sam [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-10-25

    Groundwater sampling at the Gunnison, Colorado, Disposal Site is conducted every 5 years to monitor disposal cell performance. During this event, samples were collected from eight monitoring wells as specified in the 1997 Long-Term Surveillance Plan for the Gunnison, Colorado, Disposal Site. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0723. Water levels were measured at all monitoring wells that were sampled and seven additional wells. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that require additional action or follow-up.

  19. Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas. Revision 2

    International Nuclear Information System (INIS)

    1996-11-01

    The need for ground water monitoring at the Falls City disposal site was evaluated in accordance with NRC regulations and guidelines established by the DOE in Guidance for Implementing the Long-term Surveillance Program for UMTRA Project Title 1 Disposal Sites (DOE, 1996). Based on evaluation of site characterization data, it has been determined that a program to monitor ground water for demonstration of disposal cell performance based on a set of concentration limits is not appropriate because ground water in the uppermost aquifer is of limited use, and a narrative supplemental standard has been applied to the site that does not include numerical concentration limits or a point of compliance. The limited use designation is based on the fact that ground water in the uppermost aquifer is not currently or potentially a source of drinking water in the area because it contains widespread ambient contamination that cannot be cleaned up using methods reasonably employed by public water supply systems. Background ground water quality varies by orders of magnitude since the aquifer is in an area of redistribution of uranium mineralization derived from ore bodies. The DOE plans to perform post-closure ground water monitoring in the uppermost aquifer as a best management practice (BMP) as requested by the state of Texas

  20. Potential for effects of land contamination on human health. 2. The case of waste disposal sites.

    Science.gov (United States)

    Kah, Melanie; Levy, Len; Brown, Colin

    2012-01-01

    This review of the epidemiological literature shows that evidence for negative impacts of land contaminated by waste disposal on human health is limited. However, the potential for health impacts cannot be dismissed. The link between residence close to hazardous waste disposal sites and heightened levels of stress and anxiety is relatively well established. However, studies on self-reported outcomes generally suffer from interpretational problems, as subjective symptoms may be due to increased perception and recall. Several recent multiple-site studies support a plausible linkage between residence near waste disposal sites and reproductive effects (including congenital anomalies and low birth weight). There is some conflict in the literature investigating links between land contamination and cancers; the evidence for and against a link is equally balanced and is insufficient to make causal inferences. These are difficult to establish because of lack of data on individual exposures, and other socioeconomic and lifestyle factors that may confound a relationship with area of residence. There is no consistently occurring risk for any specific tumor across multiple studies on sites expected to contain similar contaminants. Further insights on health effects of land contamination are likely to be gained from studies that consider exposure pathways and biomarkers of exposure and effect, similar to those deployed with some success in investigating impacts of cadmium on human health.

  1. The siting dilemma: Low-level radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    English, M.R.

    1991-01-01

    The 1980 Low-Level Radioactive Waste Policy Act ushered in a new era in low-level waste disposal; one with vastly increased state responsibilities. By a 1985 amendment, states were given until January 1993 to fulfill their mandate. In this dissertation, their progress is reviewed. The focus then turns to one particularly intractable problem: that of finding technically and socially acceptable sites for new disposal facilities. Many lament the difficulty of siting facilities that are intended to benefit the public at large but are often locally unwanted. Many label local opposition as purely self-interested; as simply a function of the NIMBY (Not In My Backyard) syndrome. Here, it is argued that epithets such as NIMBY are unhelpful. Instead, to lay the groundwork for widely acceptable solutions to siting conflicts, deeper understanding is needed of differing values on issues concerning authority, trust, risk, and justice. This dissertation provides a theoretical and practical analysis of those issues as they pertain to siting low-level waste disposal facilities and, by extension, other locally unwanted facilities

  2. Safeguards for final disposal of spent nuclear fuel. Methods and technologies for the Olkiluoto site

    International Nuclear Information System (INIS)

    Okko, O.

    2003-05-01

    The final disposal of the nuclear material shall introduce new safeguards concerns which have not been addressed previously in IAEA safeguards approaches for spent fuel. The encapsulation plant to be built at the site will be the final opportunity for verification of spent fuel assemblies prior to their transfer to the geological repository. Moreover, additional safety and safeguards measures are considered for the underground repository. Integrated safeguards verification systems will also concentrate on environmental monitoring to observe unannounced activities related to possible diversion schemes at the repository site. The final disposal of spent nuclear fuel in geological formation will begin in Finland within 10 years. After the geological site investigations and according to legal decision made in 2001, the final repository of the spent nuclear fuel shall be located at the Olkiluoto site in Eurajoki. The next phase of site investigations contains the construction of an underground facility, called ONKALO, for rock characterisation purposes. The excavation of the ONKALO is scheduled to start in 2004. Later on, the ONKALO may form a part of the final repository. The plans to construct the underground facility for nuclear material signify that the first safeguards measures, e.g. baseline mapping of the site area, need to take prior to the excavation phase. In order to support the development and implementation of the regulatory control of the final disposal programme, STUK established an independent expert group, LOSKA. The group should support the STUK in the development of the technical safeguards requirements, in the implementation of the safeguards and in the evaluation of the plans of the facility operator. This publication includes four background reports produced by this group. The first of these 'NDA verification of spent fuel, monitoring of disposal canisters, interaction of the safeguards and safety issues in the final disposal' describes the new

  3. Performance assessment for a hypothetical low-level waste disposal facility

    International Nuclear Information System (INIS)

    Smith, C.S.; Rohe, M.J.; Ritter, P.D.

    1997-01-01

    Disposing of low-level waste (LLW) is a concern for many states throughout the United States. A common disposal method is below-grade concrete vaults. Performance assessment analyses make predictions of contaminant release, transport, ingestion, inhalation, or other routes of exposure, and the resulting doses for various disposal methods such as the below-grade concrete vaults. Numerous assumptions are required to simplify the processes associated with the disposal facility to make predictions feasible. In general, these assumptions are made conservatively so as to underestimate the performance of the facility. The objective of this report is to describe the methodology used in conducting a performance assessment for a hypothetical waste facility located in the northeastern United States using real data as much as possible. This report consists of the following: (a) a description of the disposal facility and site, (b) methods used to analyze performance of the facility, (c) the results of the analysis, and (d) the conclusions of this study

  4. Performance assessment for a hypothetical low-level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.S.; Rohe, M.J.; Ritter, P.D. [and others

    1997-01-01

    Disposing of low-level waste (LLW) is a concern for many states throughout the United States. A common disposal method is below-grade concrete vaults. Performance assessment analyses make predictions of contaminant release, transport, ingestion, inhalation, or other routes of exposure, and the resulting doses for various disposal methods such as the below-grade concrete vaults. Numerous assumptions are required to simplify the processes associated with the disposal facility to make predictions feasible. In general, these assumptions are made conservatively so as to underestimate the performance of the facility. The objective of this report is to describe the methodology used in conducting a performance assessment for a hypothetical waste facility located in the northeastern United States using real data as much as possible. This report consists of the following: (a) a description of the disposal facility and site, (b) methods used to analyze performance of the facility, (c) the results of the analysis, and (d) the conclusions of this study.

  5. The Changing Adventures of Mixed Low-Level Waste Disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    2007-01-01

    After a 15-year hiatus, the United States Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO) began accepting DOE off-site generated mixed low-level radioactive waste (MLLW) for disposal at the Nevada Test Site (NTS) in December 2005. This action was predicated on the acceptance by the Nevada Division of Environmental Protection (NDEP) of a waste analysis plan (WAP). The NNSA/NSO agreed to limit mixed waste disposal to 20,000 cubic meters (approximately 706,000 cubic feet) and close the facility by December 2010 or sooner, if the volume limit is reached. The WAP and implementing procedures were developed based on Hanford?s system of verification to the extent possible so the two regional disposal sites could have similar processes. Since the NNSA/NSO does not have a breaching facility to allow the opening of boxes at the site, verification of the waste occurs by visual inspection at the generator/treatment facility or by Real-Time-Radiography (RTR) at the NTS. This system allows the NTS to effectively, efficiently, and compliantly accept MLLW for disposal. The WAP, NTS Waste Acceptance Criteria, and procedures have been revised based on learning experiences. These changes include: RTR expectations; visual inspection techniques; tamper-indicating device selection; void space requirements; and chemical screening concerns. The NNSA/NSO, NDEP, and the generators have been working together throughout the debugging of the verification processes. Additionally, the NNSA/NSO will continue to refine the MLLW acceptance processes and strive for continual improvement of the program

  6. Contamination by perfluorinated compounds in water near waste recycling and disposal sites in Vietnam.

    Science.gov (United States)

    Kim, Joon-Woo; Tue, Nguyen Minh; Isobe, Tomohiko; Misaki, Kentaro; Takahashi, Shin; Viet, Pham Hung; Tanabe, Shinsuke

    2013-04-01

    There are very few reports on the contamination by perfluorinated chemicals (PFCs) in the environment of developing countries, especially regarding their emission from waste recycling and disposal sites. This is the first study on the occurrence of a wide range of PFCs (17 compounds) in ambient water in Vietnam, including samples collected from a municipal dumping site (MD), an e-waste recycling site (ER), a battery recycling site (BR) and a rural control site. The highest PFC concentration was found in a leachate sample from MD (360 ng/L). The PFC concentrations in ER and BR (mean, 57 and 16 ng/L, respectively) were also significantly higher than those detected in the rural control site (mean, 9.4 ng/L), suggesting that municipal solid waste and waste electrical and electronic equipment are potential contamination sources of PFCs in Vietnam. In general, the most abundant PFCs were perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUDA; waste materials.

  7. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  8. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    S. C. Khamankar

    2000-01-01

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  9. Sulfur transformations related to revegetation of flue gas desulfurization sludge disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Barlas, S.A.; Artiola, J.F.; Salo, L.F.; Goodrich-Mahoney, J.W. [University of Arizona, Tucson, AZ (United States). Dept. of Soil, Water and Environmental Sciences

    1999-10-01

    This study investigated factors controlling redox conditions in flue gas desulfurization (FGD) sludge and identified ways to minimize the production of phytotoxic reduced sulfur species at FGD sludge disposal sites. The oxidation of reduced FGD sludge (Eh-385 mV) appears to be a two-step process mostly controlled by water content. Eighty percent of total sulfide in reduced sludge was oxidized within 20 h of exposure to air with constant water evaporation. When organic carbon (OC) was added to saturated oxidized sludge, the Eh dropped exponentially. Sulfate reduction began at an Eh of about -75 mV and reached a maximum at -265 to -320 mV. Water content, degree of mixing, concentration of OC, and temperature control the rate and extent of reduction of FGD sludge. This suggests that water saturation and OC inputs to revegetated disposal sites should be controlled, especially during warm temperatures, to prevent production of phytotoxic levels of sulfides.

  10. FUNDING ALTERNATIVES FOR LOW-LEVEL WASTE DISPOSAL

    International Nuclear Information System (INIS)

    Becker, Bruce D.; Carilli, Jhon

    2003-01-01

    For 13 years, low-level waste (LLW) generator fees and disposal volumes for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Radioactive Waste Management Sites (RWMSs) had been on a veritable roller coaster ride. As forecast volumes and disposal volumes fluctuated wildly, generator fees were difficult to determine and implement. Fiscal Year (FY) 2000 forecast projections were so low, the very existence of disposal operations at the Nevada Test Site (NTS) were threatened. Providing the DOE Complex with a viable, cost-effective disposal option, while assuring the disposal site a stable source of funding, became the driving force behind the development of the Waste Generator Access Fee at the NTS. On September 26, 2000, NNSA/NV (after seeking input from DOE/Headquarters [HQ]), granted permission to Bechtel Nevada (BN) to implement the Access Fee for FY 2001 as a two-year Pilot Program. In FY 2001 (the first year the Access Fee was implemented), the NTS Disposal Operations experienced a 90 percent increase in waste receipts from the previous year and a 33 percent reduction in disposal fee charged to the waste generators. Waste receipts for FY 2002 were projected to be 63 percent higher than FY 2001 and 15 percent lower in cost. Forecast data for the outyears are just as promising. This paper describes the development, implementation, and ultimate success of this fee strategy

  11. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE

  12. Characteristics of special-case wastes potentially destined for disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Price, L.L.; Duran, F.A.

    1994-09-01

    The U.S. Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. It may be possible to dispose of some of the DOE's special-case waste using greater confinement disposal techniques at the Nevada Test Site (NTS). The DOE asked Sandia National Laboratories to investigate this possibility by performing system configuration analyses. The first step in performing system configuration analyses is to estimate the characteristics of special-case waste that might be destined for disposal at the NTS. The objective of this report is to characterize this special-case waste based upon information available in the literature. No waste was sampled and analyzed specifically for this report. The waste compositions given are not highly detailed, consisting of grains and curies of specific radionuclides per cubic meter. However, such vague waste characterization is adequate for the purposes of the system configuration task. In some previous work done on this subject, Kudera et al. [1990] identified nine categories of special-case radioactive waste and estimated volumes and activities for these categories. It would have been difficult to develop waste compositions based on the categories proposed by Kudera et al. [1990], so we created five groups of waste on which to base the waste compositions. These groups are (1) transuranic waste, (2) fission product waste, (3) activation product waste, (4) mobile/volatile waste, and (5) sealed sources. The radionuclides within a given group share common characteristics (e.g., alpha-emitters, heat generators), and we believe that these groups adequately represent the DOE's special-case waste potentially destined for greater confinement disposal at the NTS

  13. Principles of geological substantiation for toxic waste disposal facilities sites selection

    International Nuclear Information System (INIS)

    Khrushchov, D. P.; Matorin, Eu. M.; Shekhunova, S. B.

    2002-01-01

    Industrial, domestic and military activities result in accumulation of toxic and hazardous waste. Disposal of these waste comprises two main approaches: technological processing (utilization and destruction) and landfill. According to concepts and programs of advanced countries technological solutions are preferable, but in fact over 70 % of waste are buried in storages, prevailingly of near surface type. The target of this paper is to present principles of geological substantiation of sites selection for toxic and hazardous waste isolation facilities location. (author)

  14. Public Participation and Regional Development at a Nuclear Waste Disposal Site

    International Nuclear Information System (INIS)

    Ipsen, Detlev

    2003-01-01

    One of the conditions for citizens to actively participate in the search for a final repository for radioactive waste is public involvement and the preparation of perspectives for a long-term development of those regions which are geologically eligible for a nuclear waste disposal site. Regional development is an integral part of public participation and ranking second, after safety factors, as the essential field of interest for the local residents of a region chosen for a potential disposal site. Therefore, this presentation will start with the discussion of those considerations referring to theoretical and empirical principles of public participation in long-long-term and high-risk projects. In a second step, the principles of public participation will be outlined. Afterwards, I will focus on the significance of the region as living space for people before I put up for discussion a few thoughts on regional development. The question why the public should be involved actively and intensively in the search for a permanent disposal site, can be answered easily. So far all attempts, not only in Germany, but in most countries where the search for a disposal site is on, have failed due to resistance by the civilian population. Behind this pragmatic reasoning, however, there is a complex societal process which should be understood in order to be able to classify the individual elements of 'active and intensive participation'. In the last decades, a rather informal and situational form of democratic decision making and realization of interests has evolved alongside of the representative and formalized democracy. On one side, the institutionalized and formalized democratic structure is at work: the system of parliaments and government, of independent jurisdiction and mediatory organizations such as trade unions, associations and lobbyists who communicate their specific interests to the decision-making process

  15. Assessment of microbial processes on gas production at radioactive low-level waste disposal sites

    International Nuclear Information System (INIS)

    Weiss, A.J.; Tate, R.L. III; Colombo, P.

    1982-05-01

    Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches

  16. From NIMBY to YIMBY: How generators can support siting LLRW disposal facilities

    International Nuclear Information System (INIS)

    Hoffman, J.P.

    1995-01-01

    The most frequently head complaint about siting low-level radioactive waste disposal facilities is the NIMBY (Not In My Back Yard) syndrome. The producers or generators of this waste can help move public opinion form NIMBY to YIMBY (YES exclamation point In MY Back Yard exclamation point). Generators of low-level radioactive waste often believe it is the responsibility of other organizations to site disposal facilities for the waste, and that their role is to assure the technical aspects of the facility, such as acceptability criteria for the various waste forms, are clearly defined. In reality, generators, using a properly designed and effectively implemented communications plan, can be the most effective advocates for siting a facility. The communications plan must include the following elements: an objective focusing on the importance of generators becoming vocal and active; clearly defined and crafted key messages; specifically defined and targeted audiences for those messages; and speaker training which includes how to communicate with hostile or concerned audiences about a subject they perceive as very risky. Generators must develop coalitions with other groups and form a grassroots support organization. Finally, opportunities must be developed to deliver these messages using a variety of means. Written materials should be distributed often to keep the need for disposal capability in the public's mind. Can we get from NIMBY to YIMBY? It is difficult, but doable--especially with support from the people who make the waste in the first place

  17. Dimensionality of heavy metal distribution in waste disposal sites using nonlinear dynamics

    International Nuclear Information System (INIS)

    Modis, Kostas; Komnitsas, Kostas

    2008-01-01

    Mapping of heavy metal contamination in mining and waste disposal sites usually relies on geostatistical approaches and linear stochastic dynamics. The present paper aims to identify, using the Grassberger-Procaccia correlation dimension (CD) algorithm, the existence of a nonlinear deterministic and chaotic dynamic behaviour in the spatial pattern of arsenic, manganese and zinc concentration in a Russian coal waste disposal site. The analysis carried out yielded embedding dimension values ranging between 7 and 8 suggesting thus from a chaotic dynamic perspective that arsenic, manganese and zinc concentration in space is a medium dimensional problem for the regionalized scale considered in this study. This alternative nonlinear dynamics approach may complement conventional geostatistical studies and may be also used for the estimation of risk and the subsequent screening and selection of a feasible remediation scheme in wider mining and waste disposal sites. Finally, the synergistic effect of this study may be further elaborated if additional factors including among others presence of hot spots, density and depth of sampling, mineralogy of wastes and sensitivity of analytical techniques are taken into account

  18. Application of the Integrated Site and Environment Data Management System for LILW Disposal Site

    International Nuclear Information System (INIS)

    Lee, Ji Hoon; Lee, Eun Yong; Kim, Chang Lak

    2007-01-01

    During the last five years, Site Information and Total Environmental data management System(SITES) has been developed. SITES is an integrated program for overall data acquisition, environmental monitoring, and safety analysis. SITES is composed of three main modules, such as site database system (SECURE), safety assessment system (SAINT) and environmental monitoring system (SUDAL). In general, for the safe management of radioactive waste repository, the information of site environment should be collected and managed systematically from the initial site survey. For this, SECURE module manages its data for the site characterization, environmental information, and radioactive environmental information etc. The purpose of SAINT module is to apply and analyze the data from SECURE. SUDAL is developed for environmental monitoring of the radioactive waste repository. Separately, it is ready to open to the public for offering partial information

  19. Site selection procedure for high level radioactive waste disposal in Bulgaria

    International Nuclear Information System (INIS)

    Evstatiev, D.; Vachev, B.

    1993-01-01

    A combined site selection approach is implemented. Bulgaria's territory has been classified in three categories, presented on a 1:500000 scale map. The number of suitable sites has been reduced to 20 using the method of successive screening. The formulated site selection problem is a typical discrete multi-criteria decision making problem under uncertainty. A 5-level procedure using Expert Choice Rating and relative models is created. It is a part of a common procedure for evaluation and choice of variants for high level radwaste disposal construction. On this basis 7-8 more preferable sites are demonstrated. A new knowledge and information about the relative importance of the criteria and their subsets, about the level of criteria uncertainty and the reliability are gained. It is very useful for planning and managing of the next final stages of the site selection procedure. 7 figs., 8 refs., 4 suppls. (author)

  20. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D ampersand D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D ampersand D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS

  1. Geomorphic assessment of uranium mill tailings disposal sites. Summary report of the workshop by the panel of geomorphologists

    International Nuclear Information System (INIS)

    Schumm, S.A.; Costa, J.E.; Toy, T.; Knox, J.; Warner, R.; Scott, J.

    1982-01-01

    The following report of the panel of geomorphologists is a summary of the principal findings of the geomorphological Workshop with respect to its three objectives: 1) examination of geomorphic controls on site stability, 2) demonstration of the application of the principles of geomorphology to the siting (and design) of stable tailings disposal containment systems, 3) development (in outline) of a procedure for the evaluation of long-term stability of tailing disposal sites

  2. Selection of a Site for a Near-Surface Disposal Facility: A Joint Report on Characterization of Sites

    International Nuclear Information System (INIS)

    Motiejunas, S.; Cernakauskas, P.

    2005-01-01

    Report describes general and safety-relevant environmental conditions of investigated sites and provides an overview of information concerning wastes to be disposed of. Safety relevant design aspects are given in the Project Report on Reference Design for a Near-Surface Disposal Facility for Low-and Intermediate-Level Short-Lived Radioactive Waste in Lithuania. This Report summarizes results of investigations performed during 2003-2005 by a number of researchers and evaluated by RATA. The work was performed by the Institute of Geology and Geography, the Lithuanian Energy Institute, Vilnius University, the Institute of Chemistry, UAB Grota, the Lithuanian Geological Survey, Swedish consultants from Geodevelopment, SKB and SKI-ICP, and generalized by RATA

  3. Site investigations for final disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Aeikaes, T.; Laine, T.

    1982-12-01

    Research concerning disposal of high-level nuclear waste of the Industrial Power Company Ltd has focused on deep underground disposal in Finnish precambrian bedrock. The present target is to have a repository for high-level waste in operation by 2020. Selection of the repository site is based on site investigations. In addition to geosciences, selection of appropriate site includes many branches of studies; engineering, safety analysis, ecology, transport, demography etc. The investigations required for site selection for high-level waste have been arranged in a sequence of four phases. The aim of the phases is that investigations become more and more detailed as the selection process continues. Phase I of the investigations is the characterization of potential areas. This comprises establishment of criteria for site selection and identification of areas that meet selection criteria. Objective of these studies is to determine areas for phase II field investigations. The studies are largely made by reviewing existing data and remote-sensing techniques. Phase II field investigations will be undertaken between 1986-1992. The number of potential candidates for repository site is reduced to few preferred areas by preceeding generic study. The site selection process culminates in phase III in site confirmation studies carried out at 2...3 most suitable sites during 1992-2010. This is then followed by phase IV, which comprises very detailed investigations at the selected site. An alternative for these investigations is to undertake them by using pilot shaft and drifts. Active development is taking place in all phases concerning investigation methods, criteria, parameters, data processing and modelling. The applicability of the various investigation methods and techniques is tested in a deep borehole in phase I. The co-operation with countries with similar geological conditions makes it possible to compare results obtained by different techniques

  4. Summary of EPA's risk assessment results from the analysis of alternative methods of low-level waste disposal

    International Nuclear Information System (INIS)

    Bandrowski, M.S.; Hung, C.Y.; Meyer, G.L.; Rogers, V.C.

    1987-01-01

    Evaluation of the potential health risk and individual exposure from a broad number of disposal alternatives is an important part of EPA's program to develop generally applicable environmental standards for the land disposal of low-level radioactive wastes (LLW). The Agency has completed an analysis of the potential population health risks and maximum individual exposures from ten disposal methods under three different hydrogeological and climatic settings. This paper briefly describes the general input and analysis procedures used in the risk assessment for LLW disposal and presents their preliminary results. Some important lessons learned from simulating LLW disposal under a large variety of methods and conditions are identified

  5. LLW Forum meeting report, October 20--22, 1997

    International Nuclear Information System (INIS)

    Norris, C.; Brown, H.; Lovinger, T.; Scheele, L.; Shaker, M.A.

    1997-10-01

    The Low-Level Radioactive Waste Forum met in Annapolis, Maryland, on October 20--22, 1997. Twenty-six Forum Participants, Alternate Forum Participants, and meeting designees representing 22 compacts and states participated. A report on the meeting is given under the following subtitles: New developments in states and compacts; Discussion with NRC Commissioner McGaffigan; Regulatory issues session; Executive session; LLW forum business session; DOE low-level waste management program; Transportation of radioactive waste; Environmental equity: Title VI; Congressional studies on Ward Valley Site; Implementation of DOE's strategy for waste management; Relicensing Envirocare; Draft agreement for uniform application of manifesting procedures; CRCPD report; Panel: Future of low-level radioactive waste management; Agenda planning: February 1998; Resolutions; and Attendance

  6. Siting low-level radioactive waste disposal facilities: The public policy dilemma

    International Nuclear Information System (INIS)

    English, M.R.

    1993-01-01

    The book's focus is on one overwhelming problems facing the compacts and states: figuring out where low-level waste disposal sites should be located. The author discusses the central issues underlying this dilemma - authority, trust, risk, justice - and the roles each plays in determining whether the siting processes are regarded as legitimate. The structure of the book provides a mix of narrative, fact and philosophy and adds to the body of well researched information saying that is is not only right but more efficient to develop and implement a just process

  7. Geohydrologic problems at low-level radioactive waste disposal sites in the United States of America

    International Nuclear Information System (INIS)

    Fischer, J.N.; Robertson, J.B.

    1984-01-01

    Several commercial and US Department of Energy low-level radioactive waste disposal sites in the USA have not adequately contained the waste products. Studies of these sites indicate a number of causes for the problems, including water accumulation in filled trenches, breaches of trench cap integrity, erosion, high water table, hydrogeological complexity, flooding, complex leachate chemistry, and rapid radionuclide migration in groundwater. These problems can be avoided through the application of practical, comprehensive, and common sense earth-science guidelines discussed in this paper. (author)

  8. Radiological audit of remedial action activities at the processing site, transfer site, and Cheney disposal site Grand Junction, Colorado: Audit date, August 9--11, 1993

    International Nuclear Information System (INIS)

    1993-08-01

    The Uranium Mill Tailing Remedial Action (UMTRA) Project's Technical Assistance Contractor (TAC) performed a radiological audit of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site, transfer site, and Cheney disposal site in Grand Junction, Colorado. Jim Hylko and Bill James of the TAC conducted this audit August 9 through 11, 1993. Bob Cornish and Frank Bosiljevec represented the US Department of Energy (DOE). This report presents one programmatic finding, eleven site-specific observations, one good practice, and four programmatic observations

  9. LLW Notes: Volume 10, Number 3

    International Nuclear Information System (INIS)

    1995-04-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  10. LLW notes: Volume 10, Number 5

    International Nuclear Information System (INIS)

    1995-07-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  11. LLW notes: Volume 10, Number 6

    International Nuclear Information System (INIS)

    Norris, C.

    1995-09-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  12. LLW Notes: Volume 10, Number 4

    International Nuclear Information System (INIS)

    1995-06-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  13. LLW Notes: Volume 10, Number 7

    International Nuclear Information System (INIS)

    Norris, C.

    1995-10-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  14. LLW notes: Volume 10, Number 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  15. LLW Notes: Volume 10, Number 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  16. LLW Notes: Volume 10, Number 7

    Energy Technology Data Exchange (ETDEWEB)

    Norris, C. [ed.] [Afton Associates, Inc., Washington, DC (United States)

    1995-10-01

    The Low-Level Radioactive Waste Forum is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  17. LLW Notes: Volume 10, Number 8

    International Nuclear Information System (INIS)

    Norris, C.

    1995-01-01

    The Low-Level Radioactive Waste Forum is an association of state and