WorldWideScience

Sample records for liver cell pathology

  1. Cancer Stem Cells in Primary Liver Cancers: Pathological Concepts and Imaging Findings

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Ijin [Department of Radiology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Kim, Haeryoung [Department of Pathology, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of); Lee, Jeong Min [Department of Radiology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of)

    2015-11-01

    There is accumulating evidence that cancer stem cells (CSCs) play an integral role in the initiation of hepatocarcinogenesis and the maintaining of tumor growth. Liver CSCs derived from hepatic stem/progenitor cells have the potential to differentiate into either hepatocytes or cholangiocytes. Primary liver cancers originating from CSCs constitute a heterogeneous histopathologic spectrum, including hepatocellular carcinoma, combined hepatocellular-cholangiocarcinoma, and intrahepatic cholangiocarcinoma with various radiologic manifestations. In this article, we reviewed the recent concepts of CSCs in the development of primary liver cancers, focusing on their pathological and radiological findings. Awareness of the pathological concepts and imaging findings of primary liver cancers with features of CSCs is critical for accurate diagnosis, prediction of outcome, and appropriate treatment options for patients.

  2. Cancer Stem Cells in Primary Liver Cancers: Pathological Concepts and Imaging Findings

    International Nuclear Information System (INIS)

    Joo, Ijin; Kim, Haeryoung; Lee, Jeong Min

    2015-01-01

    There is accumulating evidence that cancer stem cells (CSCs) play an integral role in the initiation of hepatocarcinogenesis and the maintaining of tumor growth. Liver CSCs derived from hepatic stem/progenitor cells have the potential to differentiate into either hepatocytes or cholangiocytes. Primary liver cancers originating from CSCs constitute a heterogeneous histopathologic spectrum, including hepatocellular carcinoma, combined hepatocellular-cholangiocarcinoma, and intrahepatic cholangiocarcinoma with various radiologic manifestations. In this article, we reviewed the recent concepts of CSCs in the development of primary liver cancers, focusing on their pathological and radiological findings. Awareness of the pathological concepts and imaging findings of primary liver cancers with features of CSCs is critical for accurate diagnosis, prediction of outcome, and appropriate treatment options for patients

  3. Follicular helper T cells promote liver pathology in mice during Schistosoma japonicum infection.

    Directory of Open Access Journals (Sweden)

    Xiaojun Chen

    2014-05-01

    Full Text Available Following Schistosoma japonicum (S. japonicum infection, granulomatous responses are induced by parasite eggs trapped in host organs, particular in the liver, during the acute stage of disease. While excessive liver granulomatous responses can lead to more severe fibrosis and circulatory impairment in chronically infected host. However, the exact mechanism of hepatic granuloma formation has remained obscure. In this study, we for the first time showed that follicular helper T (Tfh cells are recruited to the liver to upregulate hepatic granuloma formation and liver injury in S. japonicum-infected mice, and identified a novel function of macrophages in Tfh cell induction. In addition, our results showed that the generation of Tfh cells driven by macrophages is dependent on cell-cell contact and the level of inducible costimulator ligand (ICOSL on macrophages which is regulated by CD40-CD40L signaling. Our findings uncovered a previously unappreciated role for Tfh cells in liver pathology caused by S. japonicum infection in mice.

  4. Long-term pathological and immunohistochemical features in the liver after intraoperative whole-liver irradiation in rats

    International Nuclear Information System (INIS)

    Imaeda, Masumi; Yoshida, Yukari; Ohkubo, Yu; Musha, Atsushi; Komachi, Mayumi; Nakano, Takashi; Ishikawa, Hitoshi; Takahashi, Takeo; Nakazato, Yoichi

    2014-01-01

    Radiation therapy (RT) has become particularly important recently for treatment of liver tumors, but there are few experimental investigations pertaining to radiation-induced liver injuries over long-term follow-up periods. Thus, the present study examined pathological liver features over a 10-month period using an intraoperative whole-liver irradiation model. Liver function tests were performed in blood samples, whereas cell death, cell proliferation, and fibrotic changes were evaluated pathologically in liver tissues, which were collected from irradiated rats 24 h, 1, 2, 4 and 40 weeks following administration of single irradiation doses of 0 (control), 15 or 30 Gy. The impaired liver function, increased hepatocyte number, and decreased apoptotic cell proportion observed in the 15 Gy group, but not the 30 Gy group, returned to control group levels after 40 weeks; however, the Ki-67 indexes in the 15 Gy group were still higher than those in the control group after 40 weeks. Azan staining showed a fibrotic pattern in the irradiated liver in the 30 Gy group only, but the expression levels of alpha smooth muscle actin (α-SMA) and transforming growth factor-beta 1 (TGF-β1) in both the 15 and 30 Gy groups were significantly higher than those in the control group (P < 0.05). There were differences in the pathological features of the irradiated livers between the 15 Gy and 30 Gy groups, but TGF-β1 and α-SMA expression patterns supported the gradual progression of radiation-induced liver fibrosis in both groups. These findings will be useful in the future development of protective drugs for radiation-induced liver injury. (author)

  5. Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Gentric, Géraldine; Maillet, Vanessa; Paradis, Valérie; Couton, Dominique; L'Hermitte, Antoine; Panasyuk, Ganna; Fromenty, Bernard; Celton-Morizur, Séverine; Desdouets, Chantal

    2015-03-02

    Polyploidization is one of the most dramatic changes that can occur in the genome. In the liver, physiological polyploidization events occur during both liver development and throughout adult life. Here, we determined that a pathological polyploidization takes place in nonalcoholic fatty liver disease (NAFLD), a widespread hepatic metabolic disorder that is believed to be a risk factor for hepatocellular carcinoma (HCC). In murine models of NAFLD, the parenchyma of fatty livers displayed alterations of the polyploidization process, including the presence of a large proportion of highly polyploid mononuclear cells, which are rarely observed in normal hepatic parenchyma. Biopsies from patients with nonalcoholic steatohepatitis (NASH) revealed the presence of alterations in hepatocyte ploidy compared with tissue from control individuals. Hepatocytes from NAFLD mice revealed that progression through the S/G2 phases of the cell cycle was inefficient. This alteration was associated with activation of a G2/M DNA damage checkpoint, which prevented activation of the cyclin B1/CDK1 complex. Furthermore, we determined that oxidative stress promotes the appearance of highly polyploid cells, and antioxidant-treated NAFLD hepatocytes resumed normal cell division and returned to a physiological state of polyploidy. Collectively, these findings indicate that oxidative stress promotes pathological polyploidization and suggest that this is an early event in NAFLD that may contribute to HCC development.

  6. Liver tumors, correlation of computed tomography (CT) and pathology

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Atsushi; Niibe, Hideo; Mitsuhashi, Norio

    1984-09-01

    Computed tomographic and pathologic correlation was studied in 12 autopsied cases with 11 cases of metastatic liver tumors and 1 case of hepatocellular carcinoma. Despite of proliferative patterns of the tumors, nodular low attenuations on CT showed scattered nodular lesions and geographic low attenuations on CT showed groups of multiple small nodular lesions, macroscopically. Abnormal areas of low attenuation were generally diminished by drip infusion contrast enhancement, which was more significant on tumors of infiltrative proliferation. Tumors of infiltrative proliferation revealed little degeneration of surrounding liver cells and abnormal areas of low attenuation were more distinct before contrast enhancement. Tumors of expansive proliferation revealed obvious degeneration of surrounding liver cells and a case having about 200 layers of degenerated liver cells revealed more distinct after contrast enhancement. The central lower density areas in abnormal areas of low attenuation on CT coincided with liquefactive necroses with scanty capillary. vessels and fibrotic changes, histopathologically. But coagulative necroses without decrease of surrouding blood flows were not visualized on CT. CT could not demonstrate the liquefactive necroses in more small nodules than 2 cm in diameter. (J.P.N.).

  7. Surgical requirements for radiological diagnostics of liver pathologies

    International Nuclear Information System (INIS)

    Gruenberger, T.

    2004-01-01

    Radiology is an essential preoperative tool for a liver surgeon to plan extent of resection and potential difficulties during liver surgery. Primary goal in defining liver pathologies is a careful patients' history, a clinical evaluation and reviewing at least one radiological film one could acquire. Don't rely on written reports that may direct you in a useless track. This overview tries to address the essential radiological requests of a surgeon in defining liver tumors ethiology and best optional treatment. Major advances in radiologic diagnostics led to an improvement in the adequate staging of a given liver pathology. Therefore we are nowadays able to inform our patients about possible treatment options without leaving a big gap to possible intra-operative findings which may alter the therapy. Surgical exploration to define therapeutic strategies becomes fundamental only in a minority of patients with unclear preoperative imaging studies. Interdisciplinary groups should define future strategies in a patient with a given liver pathology. Specialisation has defined the hepatobiliary surgeon which should be consulted in case of a liver or biliary tumor to guide possible therapeutic treatment options. (orig.) [de

  8. Natural Killer cells and liver fibrosis

    Directory of Open Access Journals (Sweden)

    Frank eFasbender

    2016-01-01

    Full Text Available In the 40 years since the discovery of Natural Killer (NK cells it has been well established that these innate lymphocytes are important for early and effective immune responses against transformed cells and infections with different pathogens. In addition to these classical functions of NK cells, we now know that they are part of a larger family of innate lymphoid cells and that they can even mediate memory-like responses. Additionally, tissue resident NK cells with distinct phenotypical and functional characteristics have been identified. Here we focus on the phenotype of different NK cell subpopulations that can be found in the liver and summarize the current knowledge about the functional role of these cells with a special emphasis on liver fibrosis. NK cell cytotoxicity can contribute to liver damage in different forms of liver disease. However, NK cells can limit liver fibrosis by killing hepatic stellate cell-derived myofibroblasts, which play a key role in this pathogenic process. Therefore, liver NK cells need to be tightly regulated in order to balance these beneficial and pathological effects.

  9. NKT cell subsets as key participants in liver physiology and pathology.

    Science.gov (United States)

    Bandyopadhyay, Keya; Marrero, Idania; Kumar, Vipin

    2016-05-01

    Natural killer T (NKT) cells are innate-like lymphocytes that generally recognize lipid antigens and are enriched in microvascular compartments of the liver. NKT cells can be activated by self- or microbial-lipid antigens and by signaling through toll-like receptors. Following activation, NKT cells rapidly secrete pro-inflammatory or anti-inflammatory cytokines and chemokines, and thereby determine the milieu for subsequent immunity or tolerance. It is becoming clear that two different subsets of NKT cells-type I and type II-have different modes of antigen recognition and have opposing roles in inflammatory liver diseases. Here we focus mainly on the roles of both NKT cell subsets in the maintenance of immune tolerance and inflammatory diseases in liver. Furthermore, how the differential activation of type I and type II NKT cells influences other innate cells and adaptive immune cells to result in important consequences for tissue integrity is discussed. It is crucial that better reagents, including CD1d tetramers, be used in clinical studies to define the roles of NKT cells in liver diseases in patients.

  10. NKT cell subsets as key participants in liver physiology and pathology

    Science.gov (United States)

    Bandyopadhyay, Keya; Marrero, Idania; Kumar, Vipin

    2016-01-01

    Natural killer T (NKT) cells are innate-like lymphocytes that generally recognize lipid antigens and are enriched in microvascular compartments of the liver. NKT cells can be activated by self- or microbial-lipid antigens and by signaling through toll-like receptors. Following activation, NKT cells rapidly secrete pro-inflammatory or anti-inflammatory cytokines and chemokines, and thereby determine the milieu for subsequent immunity or tolerance. It is becoming clear that two different subsets of NKT cells—type I and type II—have different modes of antigen recognition and have opposing roles in inflammatory liver diseases. Here we focus mainly on the roles of both NKT cell subsets in the maintenance of immune tolerance and inflammatory diseases in liver. Furthermore, how the differential activation of type I and type II NKT cells influences other innate cells and adaptive immune cells to result in important consequences for tissue integrity is discussed. It is crucial that better reagents, including CD1d tetramers, be used in clinical studies to define the roles of NKT cells in liver diseases in patients. PMID:26972772

  11. Polyploidization of liver cells.

    Science.gov (United States)

    Celton-Morizur, Séverine; Desdouets, Chantal

    2010-01-01

    Eukaryotic organisms usually contain a diploid complement of chromosomes. However, there are a number of exceptions. Organisms containing an increase in DNA content by whole number multiples of the entire set of chromosomes are defined as polyploid. Cells that contain more than two sets of chromosomes were first observed in plants about a century ago and it is now recognized that polyploidy cells form in many eukaryotes under a wide variety of circumstance. Although it is less common in mammals, some tissues, including the liver, show a high percentage of polyploid cells. Thus, during postnatal growth, the liver parenchyma undergoes dramatic changes characterized by gradual polyploidization during which hepatocytes of several ploidy classes emerge as a result of modified cell-division cycles. This process generates the successive appearance of tetraploid and octoploid cell classes with one or two nuclei (mononucleated or binucleated). Liver cells polyploidy is generally considered to indicate terminal differentiation and senescence and to lead both to the progressive loss of cell pluripotency and a markedly decreased replication capacity. In adults, liver polyploidization is differentially regulated upon loss of liver mass and liver damage. Interestingly, partial hepatectomy induces marked cell proliferation followed by an increase in liver ploidy. In contrast, during hepatocarcinoma (HCC), growth shifts to a nonpolyploidizing pattern and expansion of the diploid hepatocytes population is observed in neoplastic nodules. Here we review the current state of understanding about how polyploidization is regulated during normal and pathological liver growth and detail by which mechanisms hepatocytes become polyploid.

  12. Pathological Lesions and Inducible Nitric Oxide Synthase Expressions in the Liver of Mice Experimentally Infected with Clonorchis sinensis.

    Science.gov (United States)

    Yang, Qing-Li; Shen, Ji-Qing; Xue, Yan; Cheng, Xiao-Bing; Jiang, Zhi-Hua; Yang, Yi-Chao; Chen, Ying-Dan; Zhou, Xiao-Nong

    2015-12-01

    The nitric oxide (NO) formation and intrinsic nitrosation may be involved in the possible mechanisms of liver fluke-associated carcinogenesis. We still do not know much about the responses of inducible NO synthase (iNOS) induced by Clonorchis sinensis infection. This study was conducted to explore the pathological lesions and iNOS expressions in the liver of mice with different infection intensity levels of C. sinensis. Extensive periductal inflammatory cell infiltration, bile duct hyperplasia, and fibrosis were commonly observed during the infection. The different pathological responses in liver tissues strongly correlated with the infection intensity of C. sinensis. Massive acute spotty necrosis occurred in the liver parenchyma after a severe infection. The iNOS activity in liver tissues increased, and iNOS-expressing cells with morphological differences were observed after a moderate or severe infection. The iNOS-expressing cells in liver tissues had multiple origins.

  13. Comparison of Macroscopic Pathology Measurements With Magnetic Resonance Imaging and Assessment of Microscopic Pathology Extension for Colorectal Liver Metastases

    International Nuclear Information System (INIS)

    Méndez Romero, Alejandra; Verheij, Joanne; Dwarkasing, Roy S.; Seppenwoolde, Yvette; Redekop, William K.; Zondervan, Pieter E.; Nowak, Peter J.C.M.; Ijzermans, Jan N.M.; Levendag, Peter C.; Heijmen, Ben J.M.; Verhoef, Cornelis

    2012-01-01

    Purpose: To compare pathology macroscopic tumor dimensions with magnetic resonance imaging (MRI) measurements and to establish the microscopic tumor extension of colorectal liver metastases. Methods and Materials: In a prospective pilot study we included patients with colorectal liver metastases planned for surgery and eligible for MRI. A liver MRI was performed within 48 hours before surgery. Directly after surgery, an MRI of the specimen was acquired to measure the degree of tumor shrinkage. The specimen was fixed in formalin for 48 hours, and another MRI was performed to assess the specimen/tumor shrinkage. All MRI sequences were imported into our radiotherapy treatment planning system, where the tumor and the specimen were delineated. For the macroscopic pathology analyses, photographs of the sliced specimens were used to delineate and reconstruct the tumor and the specimen volumes. Microscopic pathology analyses were conducted to assess the infiltration depth of tumor cell nests. Results: Between February 2009 and January 2010 we included 13 patients for analysis with 21 colorectal liver metastases. Specimen and tumor shrinkage after resection and fixation was negligible. The best tumor volume correlations between MRI and pathology were found for T1-weighted (w) echo gradient sequence (r s = 0.99, slope = 1.06), and the T2-w fast spin echo (FSE) single-shot sequence (r s = 0.99, slope = 1.08), followed by the T2-w FSE fat saturation sequence (r s = 0.99, slope = 1.23), and the T1-w gadolinium-enhanced sequence (r s = 0.98, slope = 1.24). We observed 39 tumor cell nests beyond the tumor border in 12 metastases. Microscopic extension was found between 0.2 and 10 mm from the main tumor, with 90% of the cases within 6 mm. Conclusions: MRI tumor dimensions showed a good agreement with the macroscopic pathology suggesting that MRI can be used for accurate tumor delineation. However, microscopic extensions found beyond the tumor border indicate that caution is needed

  14. Pathological assessment of liver fibrosis regression

    Directory of Open Access Journals (Sweden)

    WANG Bingqiong

    2017-03-01

    Full Text Available Hepatic fibrosis is the common pathological outcome of chronic hepatic diseases. An accurate assessment of fibrosis degree provides an important reference for a definite diagnosis of diseases, treatment decision-making, treatment outcome monitoring, and prognostic evaluation. At present, many clinical studies have proven that regression of hepatic fibrosis and early-stage liver cirrhosis can be achieved by effective treatment, and a correct evaluation of fibrosis regression has become a hot topic in clinical research. Liver biopsy has long been regarded as the gold standard for the assessment of hepatic fibrosis, and thus it plays an important role in the evaluation of fibrosis regression. This article reviews the clinical application of current pathological staging systems in the evaluation of fibrosis regression from the perspectives of semi-quantitative scoring system, quantitative approach, and qualitative approach, in order to propose a better pathological evaluation system for the assessment of fibrosis regression.

  15. Comparison of MRI of liver cancer (preoperative and resected liver specimen) and pathological feature

    International Nuclear Information System (INIS)

    Tanaka, Toshihiko

    1990-01-01

    Twenty-one nodules of hepatocellular carcinoma (HCC) and eighteen nodules of liver metastasis, which were confirmed pathologically, were investigated by MRI before operation and MRI of resected liver specimen. Pre-operative MRI pointed out all HCCs and seventeen metastases. STIR method was most useful for detection of HCCs. T2WI and STIR method were most useful for detection of liver metastases. Pre-operative MRI also revealed 93% of capsule formation, 29% of septal formation, 75% of fatty metamorphosis of HCC and 75% of necrosis of liver metastasis, and post-operative MRI of resected specimens revealed 100% of capsule formation, 71% of septal formation, 75% of fatty metamorphosis of HCC and 88% of necrosis of liver metastasis. T1WI showed a high intensity halo surrounding metastasis. This characteristic peripheral halo was seen in 22% of metastases. These findings corresponded to pathological feature of liver cancer. MRI was thought to be useful diagnostic modality of liver cancer. (author)

  16. The emerging role of mast cells in liver disease.

    Science.gov (United States)

    Jarido, Veronica; Kennedy, Lindsey; Hargrove, Laura; Demieville, Jennifer; Thomson, Joanne; Stephenson, Kristen; Francis, Heather

    2017-08-01

    The depth of our knowledge regarding mast cells has widened exponentially in the last 20 years. Once thought to be only important for allergy-mediated events, mast cells are now recognized to be important regulators of a number of pathological processes. The revelation that mast cells can influence organs, tissues, and cells has increased interest in mast cell research during liver disease. The purpose of this review is to refresh the reader's knowledge of the development, type, and location of mast cells and to review recent work that demonstrates the role of hepatic mast cells during diseased states. This review focuses primarily on liver diseases and mast cells during autoimmune disease, hepatitis, fatty liver disease, liver cancer, and aging in the liver. Overall, these studies demonstrate the potential role of mast cells in disease progression.

  17. TYPICAL FORMS OF LIVER PATHOLOGY IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Peter F. Litvitskiy

    2018-01-01

    Full Text Available This lecture for the system of postgraduate medical education analyzes causes, types, key links of pathogenesis, and manifestations of the main typical forms of liver pathologyliver failure, hepatic coma, jaundice, cholemia, acholia, cholelithiasis, and their complications in children. To control the retention of the lecture material, case problems and multiple-choice tests are given.

  18. Radiofrequency ablation of rabbit liver. Correlation between dual CT findings and pathological findings

    International Nuclear Information System (INIS)

    Tsuda, Masashi; Rikimaru, Yuya; Saito, Haruo; Ishibashi, Tadashi; Takahashi, Shyoki; Miyachi, Hideo; Yamada, Syogo

    2002-01-01

    The purpose of this study was to present the time-related imaging findings and correlative pathologic findings of radiofrequency pulse-irradiated regions of the liver. Radiofrequency (RF) ablation was performed in 22 rabbit livers with 15-gauge RF probes inserted percutaneously. Regions were imaged with dual-phase CT at 3 days (n=6), 2 weeks (n=6), 4 weeks (n=6), and 12 weeks (n=4) after RF ablation. At 3 days, the regions showed a two-zone structure on plain CT and peripheral enhancement. The regions presented a three-zone structure on pathological study. Hepatocytes appeared as acidophilic bodies, and nuclei were pyknotic at the inner necrotic zone. The middle whitish zone showed enlarged sinusoids. The marginal zone was a regenerative band. At 2 weeks, the two-zone structure was obscured on unenhanced CT. The region showed a two-zone structure on pathological study. At the inner zone, acidophilic degeneration had progressed, however, cell structure remained. The marginal zone showed fibrous tissue bundles. At 12 weeks, the region was obscured on plain CT. Nuclei and cell structures had disappeared almost completely at the inner zone. Collagen fiber had replaced the marginal zone. Zone structural CT findings reflect the pathological findings and time-related changes after RF ablation. Peripheral enhancement in the arterial phase reflects the granulation tissue layer, and its time-related decrease reflects replacement by fibrous tissue. (author)

  19. Hepatocytes polyploidization and cell cycle control in liver physiopathology.

    Science.gov (United States)

    Gentric, Géraldine; Desdouets, Chantal; Celton-Morizur, Séverine

    2012-01-01

    Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of "diploid-polyploid conversion" during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at the suckling-weaning transition, cytokinesis failure events induce the genesis of binucleated tetraploid liver cells. Insulin signalling, through regulation of the PI3K/Akt signalling pathway, is essential in the establishment of liver tetraploidization by controlling cytoskeletal organisation and consequently mitosis progression. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence, and both lead to a progressive loss of cell pluripotency associated to a markedly decreased replication capacity. Although adult liver is a quiescent organ, it retains a capacity to proliferate and to modulate its ploidy in response to various stimuli or aggression (partial hepatectomy, metabolic overload (i.e., high copper and iron hepatic levels), oxidative stress, toxic insult, and chronic hepatitis etc.). Here we review the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth.

  20. Hepatocytes Polyploidization and Cell Cycle Control in Liver Physiopathology

    Directory of Open Access Journals (Sweden)

    Géraldine Gentric

    2012-01-01

    Full Text Available Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of “diploid-polyploid conversion” during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at the suckling-weaning transition, cytokinesis failure events induce the genesis of binucleated tetraploid liver cells. Insulin signalling, through regulation of the PI3K/Akt signalling pathway, is essential in the establishment of liver tetraploidization by controlling cytoskeletal organisation and consequently mitosis progression. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence, and both lead to a progressive loss of cell pluripotency associated to a markedly decreased replication capacity. Although adult liver is a quiescent organ, it retains a capacity to proliferate and to modulate its ploidy in response to various stimuli or aggression (partial hepatectomy, metabolic overload (i.e., high copper and iron hepatic levels, oxidative stress, toxic insult, and chronic hepatitis etc.. Here we review the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth.

  1. Oligoclonal CD8+ T-cell expansion in patients with chronic hepatitis C is associated with liver pathology and poor response to interferon-alpha therapy.

    Science.gov (United States)

    Manfras, Burkhard J; Weidenbach, Hans; Beckh, Karl-Heinz; Kern, Peter; Möller, Peter; Adler, Guido; Mertens, Thomas; Boehm, Bernhard O

    2004-05-01

    The role of CD8(+) T lymphocytes in chronic hepatitis C virus (HCV) infection and in liver injury with subsequent development of fibrosis and cirrhosis is poorly understood. To address this question, we performed a follow-up study including 27 chronically HCV-infected individuals. We determined clonality and phenotypes of circulating CD8(+) T cells employing TCRBV spectratyping. Antigen specificity was tested by rMHC-peptide tetramer staining and stimulation with recombinant HCV antigens. In addition, T-cell clonality and phenotypes were followed during the variable clinical response of interferon- (IFN) alpha treatment. We could demonstrate that CD8(+) T-cell expansions were significantly associated with liver fibrosis and cirrhosis. Likewise, increased oligoclonality of circulating CD8(+) T cells in chronic HCV infection was identified as an indicator for poor clinical response to IFN-alpha therapy. Moreover, we also found that IFN-alpha therapy enhanced the differentiation of CD8(+) T cells towards a late differentiation phenotype (CD28(-) CD57(+)). In cases of virus elimination the disappearance of expanded terminally differentiated CD8(+) cells was observed. Thus, this study identifies an association of clonal expansions of circulating CD8(+) T cells with liver pathology and provides a possible explanation for the fact that response to IFN-alpha therapy diminishes with the duration of infection.

  2. A template for a clinico-pathological audit of medical liver biopsies.

    Science.gov (United States)

    Colling, Richard; Fryer, Eve; Cobbold, Jeremy; Collier, Jane; Collantes, Elena; Wang, Lai Mun; Hubscher, Stefan; Wyatt, Judith; Fleming, Kenneth

    2015-11-01

    With changing indications for performing medical liver biopsies, we aimed to develop a tool to allow pathologists to evaluate the current usefulness, value and impact of their medical liver biopsy service. We designed and piloted a questionnaire-based clinico-pathological audit for medical liver biopsies. The audit tool was simple to implement and provided useful information about our service. Hepatologists felt that 96% of reports were clinically useful. 56% of biopsies confirmed clinical diagnoses, 46% helped differentiate between diagnoses and 42% were able to exclude possible diagnoses. 74% resulted in a change of management and 27% of liver biopsies resulted in a diagnosis which was not clinically suspected. We demonstrate the usefulness of an audit tool in providing evidence of the value of the liver pathology service in a large UK regional centre. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Change of liver echogenicity in chronic renal failure: Correlation with serologic test and pathologic findings

    International Nuclear Information System (INIS)

    Eun, Hyo Won; Cho, Kyoung Sik; Kim, Jeong Kon; Kim, Jung Hoon

    2002-01-01

    To correlate serologic test and pathologic findings with change of hepatic parenchymal echogenicity on ultrasound (US) in patients with chronic renal failure. From January 1995 to April 2000, among eight hundred eighty four patients with kidney transplantation due to chronic renal failure, sixty seven patients who underwent US-guided liver biopsy were selected. Change of liver echogenicity on US was analyzed, and this change was compared with serologic test and pathologic findings. Among sixty seven patients, pathologic findings of thirty four patients with the normal liver echogenicity on US revealed normal in 15 patients (44%), viral hepatitis in 18 (53%), and liver cirrhosis in one patient (3%). Meanwhile, twenty seven patients with chronic liver disease on US were pathologically confirmed as normal in 13 patients (48%), viral hepatitis in 11 (40%), liver cirrhosis in four patients (11%); six patients with cirrhotic change on US, liver cirrhosis in four patients (67%) and viral hepatitis on two patients (33%). Serologic test of thirty four patients with the normal liver echogenicity on US showed positive HBs Ag in 17 patients (50%), positive anti-HCV Ab in 11 (32%), positive in both HBs Ag and anti-HCV Ab in one (3%), and normal result in five patients (15%). In patients with chronic renal failure, it is nor enough to determine the presence of liver disease only based on change of echogenicity on US. A careful correlation with serologic test and, if needed, pathologic confirmation are recommended for the accurate preoperative evaluation of the liver.

  4. Pathological changes in turkeys liver associated with Histomoniasis in Duhok City,Kurdistan Region, Iraq

    Directory of Open Access Journals (Sweden)

    M.A. Abdullah

    2014-06-01

    Full Text Available Histomoniasis were detected and described among naturally affected of twenty three young Turkeys poult compared with the adults. Sample for study were collected from different areas of Duhok city in Kurdistan region/Iraq. Giemsa stain where used for identification of parasite from specimens of liver and cecum samples, then specimen, where fixed in 10% neutral buffered formalin for routine histopathological study. The affected birds showed clinical signs of lethargic, drooping of head and wings with progressive emaciation and a clear distinctive signs in live ones, and appearance of continuous yellowish diarrhea. Pathologically there is an enlargement and discoloration of the liver associated with appearance of white to yellow multifocal nodules in the surface of the liver. While the result of histolpathological changes showed severs inflammatory reaction around necrotic tissues with degenerative and necrotic changes of the liver cells.

  5. Macrophages and dendritic cells emerge in the liver during intestinal inflammation and predispose the liver to inflammation.

    Directory of Open Access Journals (Sweden)

    Yohei Mikami

    Full Text Available The liver is a physiological site of immune tolerance, the breakdown of which induces immunity. Liver antigen-presenting cells may be involved in both immune tolerance and activation. Although inflammatory diseases of the liver are frequently associated with inflammatory bowel diseases, the underlying immunological mechanisms remain to be elucidated. Here we report two murine models of inflammatory bowel disease: RAG-2(-/- mice adoptively transferred with CD4(+CD45RB(high T cells; and IL-10(-/- mice, accompanied by the infiltration of mononuclear cells in the liver. Notably, CD11b(-CD11c(lowPDCA-1(+ plasmacytoid dendritic cells (DCs abundantly residing in the liver of normal wild-type mice disappeared in colitic CD4(+CD45RB(high T cell-transferred RAG-2(-/- mice and IL-10(-/- mice in parallel with the emergence of macrophages (Mφs and conventional DCs (cDCs. Furthermore, liver Mφ/cDCs emerging during intestinal inflammation not only promote the proliferation of naïve CD4(+ T cells, but also instruct them to differentiate into IFN-γ-producing Th1 cells in vitro. The emergence of pathological Mφ/cDCs in the liver also occurred in a model of acute dextran sulfate sodium (DSS-induced colitis under specific pathogen-free conditions, but was canceled in germ-free conditions. Last, the Mφ/cDCs that emerged in acute DSS colitis significantly exacerbated Fas-mediated hepatitis. Collectively, intestinal inflammation skews the composition of antigen-presenting cells in the liver through signaling from commensal bacteria and predisposes the liver to inflammation.

  6. Crosstalk between type II NKT cells and T cells leads to spontaneous chronic inflammatory liver disease.

    Science.gov (United States)

    Weng, Xiufang; He, Ying; Visvabharathy, Lavanya; Liao, Chia-Min; Tan, Xiaosheng; Balakumar, Arjun; Wang, Chyung-Ru

    2017-10-01

    Natural killer T (NKT) cells are CD1d-restricted innate-like T cells that modulate innate and adaptive immune responses. Unlike the well-characterized invariant/type I NKT cells, type II NKT cells with a diverse T cell receptor repertoire are poorly understood. This study defines the pathogenic role of type II NKT cells in the etiology of chronic liver inflammation. Transgenic mice with the Lck promoter directing CD1d overexpression on T cells in Jα18 wild-type (Lck-CD1dTgJα18 + ; type I NKT cell sufficient) and Jα18-deficient (Lck-CD1dTgJα18 o , type I NKT cell deficient) mice were analyzed for liver pathology and crosstalk between type II NKT cells and conventional T cells. CD1d expression on T cells in peripheral blood samples and liver sections from autoimmune hepatitis patients and healthy individuals were also examined. Lck-CD1dTgJα18 o and Lck-CD1dTgJα18 + mice developed similar degrees of liver pathology resembling chronic autoimmune hepatitis in humans. Increased CD1d expression on T cells promoted the activation of type II NKT cells and other T cells. This resulted in T h 1-skewing and impaired T h 2 cytokine production in type II NKT cells. Dysfunction of type II NKT cells was accompanied by conventional T cell activation and pro-inflammatory cytokine production, leading to a hepatic T/B lymphocyte infiltration, elevated autoantibodies and hepatic injury in Lck-CD1dTg mice. A similar mechanism could be extended to humans as CD1d expression is upregulated on activated human T cells and increased presence of CD1d-expressing T cells was observed in autoimmune hepatitis patients. Our data reveals enhanced crosstalk between type II NKT cells and conventional T cells, leading to a T h 1-skewed inflammatory milieu, and consequently, to the development of chronic autoimmune liver disease. Lay summary: CD1d overexpression on T cells enhances crosstalk between type II NKT cells and T cells, resulting in their aberrant activation and leading to the

  7. Stem Cell Pathology.

    Science.gov (United States)

    Fu, Dah-Jiun; Miller, Andrew D; Southard, Teresa L; Flesken-Nikitin, Andrea; Ellenson, Lora H; Nikitin, Alexander Yu

    2018-01-24

    Rapid advances in stem cell biology and regenerative medicine have opened new opportunities for better understanding disease pathogenesis and the development of new diagnostic, prognostic, and treatment approaches. Many stem cell niches are well defined anatomically, thereby allowing their routine pathological evaluation during disease initiation and progression. Evaluation of the consequences of genetic manipulations in stem cells and investigation of the roles of stem cells in regenerative medicine and pathogenesis of various diseases such as cancer require significant expertise in pathology for accurate interpretation of novel findings. Therefore, there is an urgent need for developing stem cell pathology as a discipline to facilitate stem cell research and regenerative medicine. This review provides examples of anatomically defined niches suitable for evaluation by diagnostic pathologists, describes neoplastic lesions associated with them, and discusses further directions of stem cell pathology.

  8. Involvement of Pro-Inflammatory Macrophages in Liver Pathology of Pirital Virus-Infected Syrian Hamsters

    Directory of Open Access Journals (Sweden)

    Corey L. Campbell

    2018-05-01

    Full Text Available New World arenaviruses cause fatal hemorrhagic disease in South America. Pirital virus (PIRV, a mammarenavirus hosted by Alston’s cotton rat (Sigmodon alstoni, causes a disease in Syrian golden hamsters (Mesocricetus auratus (biosafety level-3, BSL-3 that has many pathologic similarities to the South American hemorrhagic fevers (BSL-4 and, thus, is considered among the best small-animal models for human arenavirus disease. Here, we extend in greater detail previously described clinical and pathological findings in Syrian hamsters and provide evidence for a pro-inflammatory macrophage response during PIRV infection. The liver was the principal target organ of the disease, and signs of Kupffer cell involvement were identified in mortally infected hamster histopathology data. Differential expression analysis of liver mRNA revealed signatures of the pro-inflammatory response, hematologic dysregulation, interferon pathway and other host response pathways, including 17 key transcripts that were also reported in two non-human primate (NHP arenavirus liver-infection models, representing both Old and New World mammarenavirus infections. Although antigen presentation may differ among rodent and NHP species, key hemostatic and innate immune-response components showed expression parallels. Signatures of pro-inflammatory macrophage involvement in PIRV-infected livers included enrichment of Ifng, Nfkb2, Stat1, Irf1, Klf6, Il1b, Cxcl10, and Cxcl11 transcripts. Together, these data indicate that pro-inflammatory macrophage M1 responses likely contribute to the pathogenesis of acute PIRV infection.

  9. T cells infiltrate the liver and kill hepatocytes in HLA-B(∗)57:01-associated floxacillin-induced liver injury.

    Science.gov (United States)

    Wuillemin, Natascha; Terracciano, Luigi; Beltraminelli, Helmut; Schlapbach, Christoph; Fontana, Stefano; Krähenbühl, Stephan; Pichler, Werner J; Yerly, Daniel

    2014-06-01

    Drug-induced liver injury is a major safety issue. It can cause severe disease and is a common cause of the withdrawal of drugs from the pharmaceutical market. Recent studies have identified the HLA-B(∗)57:01 allele as a risk factor for floxacillin (FLUX)-induced liver injury and have suggested a role for cytotoxic CD8(+) T cells in the pathomechanism of liver injury caused by FLUX. This study aimed to confirm the importance of FLUX-reacting cytotoxic lymphocytes in the pathomechanism of liver injury and to dissect the involved mechanisms of cytotoxicity. IHC staining of a liver biopsy from a patient with FLUX-induced liver injury revealed periportal inflammation and the infiltration of cytotoxic CD3(+) CD8(+) lymphocytes into the liver. The infiltration of cytotoxic lymphocytes into the liver of a patient with FLUX-induced liver injury demonstrates the importance of FLUX-reacting T cells in the underlying pathomechanism. Cytotoxicity of FLUX-reacting T cells from 10 HLA-B(∗)57:01(+) healthy donors toward autologous target cells and HLA-B(∗)57:01-transduced hepatocytes was analyzed in vitro. Cytotoxicity of FLUX-reacting T cells was concentration dependent and required concentrations in the range of peak serum levels after FLUX administration. Killing of target cells was mediated by different cytotoxic mechanisms. Our findings emphasize the role of the adaptive immune system and especially of activated drug-reacting T cells in human leukocyte antigen-associated, drug-induced liver injury. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Gal-3 regulates the capacity of dendritic cells to promote NKT-cell-induced liver injury.

    Science.gov (United States)

    Volarevic, Vladislav; Markovic, Bojana Simovic; Bojic, Sanja; Stojanovic, Maja; Nilsson, Ulf; Leffler, Hakon; Besra, Gurdyal S; Arsenijevic, Nebojsa; Paunovic, Verica; Trajkovic, Vladimir; Lukic, Miodrag L

    2015-02-01

    Galectin-3 (Gal-3), an endogenous lectin, exhibits pro- and anti-inflammatory effects in various disease conditions. In order to explore the role of Gal-3 in NKT-cell-dependent pathology, we induced hepatitis in C57BL/6 WT and Gal-3-deficient mice by using specific ligand for NKT cells: α-galactosylceramide, glycolipid Ag presented by CD1d. The injection of α-galactosylceramide significantly enhanced expression of Gal-3 in liver NKT and dendritic cells (DCs). Genetic deletion or selective inhibition of Gal-3 (induced by Gal-3-inhibitor TD139) abrogated the susceptibility to NKT-cell-dependent hepatitis. Blood levels of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-12) and their production by liver DCs and NKT cells were also downregulated. Genetic deletion or selective inhibition of Gal-3 alleviated influx of inflammatory CD11c(+) CD11b(+) DCs in the liver and favored tolerogenic phenotype and IL-10 production of liver NKT and DCs. Deletion of Gal-3 attenuated the capacity of DCs to support liver damage in the passive transfer experiments and to produce pro-inflammatory cytokines in vitro. Gal-3-deficient DCs failed to optimally stimulate production of pro-inflammatory cytokines in NKT cells, in vitro and in vivo. In conclusion, Gal-3 regulates the capacity of DCs to support NKT-cell-mediated liver injury, playing an important pro-inflammatory role in acute liver injury. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Pathological Roles of Interleukin-22 in the Development of Recurrent Hepatitis C after Liver Transplantation.

    Directory of Open Access Journals (Sweden)

    Yinjie Gao

    Full Text Available The aim of this study was to longitudinally evaluate and analyze the role of interleukin-22-producing CD4 positive cells (IL-22 in the pathogenesis of Hepatitis C Virus recurrence after Orthotopic Liver Transplantation (HCV-OLT.15 HCV-OLT, 15 age- and gender- matched non-HCV post-OLT (OLT and 15 hepatitis C virus infected (HCV patients were enrolled into our study from the liver transplantation and research center at Beijing 302 Hospital. We determined the frequencies of IL-22 using flow cytometry and expression of IL-22 mRNA using PCR in peripheral blood and liver tissue. We also divided HCV-OLT patients into rapid fibrosis progression (RFP and slow fibrosis progression (SFP, examined IL-22 cells and analyzed the correlations between IL-22 frequencies and liver injury, fibrosis and clinical parameters. Moreover, we investigated the role of IL-22 in Human Hepatic Stellate Cells (HSCs.The levels of serum IL-22, frequencies of IL-22 producing cells in peripheral blood mononuclear cells, and expression of IL-22 mRNA and protein in the liver in the HCV-OLT group were significantly higher than that in the HCV and OLT groups. Furthermore, eight (53.3% patients developed RFP after two years; another three patients were diagnosed liver cirrhosis. The frequencies of IL-22 were much higher in RFP compared with SFP, while no significant difference existed between OLT and SFP. Intrahepatic IL-22 positive cells were located in fibrotic areas and significantly correlated with α-smooth muscle actin (α-SMA and fibrosis staging scores, not with grading scores and HCRVNA. In vitro, IL-22 administration prevented HSCs apoptosis, promoted HSCs proliferation and activation, up-regulated the expression of HSC-sourced growth factors including α-SMA, TGF-β and TIMP-1, and increased the production of liver fibrosis markers including laminin, hyaluronic acid and collagen type IV.Peripheral and intrahepatic IL-22 is up-regulated and plays a pathological role in

  12. Pathological Roles of Interleukin-22 in the Development of Recurrent Hepatitis C after Liver Transplantation

    Science.gov (United States)

    Li, Jin; Cheung, Eddie; Li, Hanwei; Zhao, Jingmin; Liu, Hongling; Liu, Zhenwen; Zhang, Min

    2016-01-01

    Objective The aim of this study was to longitudinally evaluate and analyze the role of interleukin-22-producing CD4 positive cells (IL-22) in the pathogenesis of Hepatitis C Virus recurrence after Orthotopic Liver Transplantation (HCV-OLT). Methods 15 HCV-OLT, 15 age- and gender- matched non-HCV post-OLT (OLT) and 15 hepatitis C virus infected (HCV) patients were enrolled into our study from the liver transplantation and research center at Beijing 302 Hospital. We determined the frequencies of IL-22 using flow cytometry and expression of IL-22 mRNA using PCR in peripheral blood and liver tissue. We also divided HCV-OLT patients into rapid fibrosis progression (RFP) and slow fibrosis progression (SFP), examined IL-22 cells and analyzed the correlations between IL-22 frequencies and liver injury, fibrosis and clinical parameters. Moreover, we investigated the role of IL-22 in Human Hepatic Stellate Cells (HSCs). Results The levels of serum IL-22, frequencies of IL-22 producing cells in peripheral blood mononuclear cells, and expression of IL-22 mRNA and protein in the liver in the HCV-OLT group were significantly higher than that in the HCV and OLT groups. Furthermore, eight (53.3%) patients developed RFP after two years; another three patients were diagnosed liver cirrhosis. The frequencies of IL-22 were much higher in RFP compared with SFP, while no significant difference existed between OLT and SFP. Intrahepatic IL-22 positive cells were located in fibrotic areas and significantly correlated with α-smooth muscle actin (α-SMA) and fibrosis staging scores, not with grading scores and HCRVNA. In vitro, IL-22 administration prevented HSCs apoptosis, promoted HSCs proliferation and activation, up-regulated the expression of HSC-sourced growth factors including α-SMA, TGF-β and TIMP-1, and increased the production of liver fibrosis markers including laminin, hyaluronic acid and collagen type IV. Conclusion Peripheral and intrahepatic IL-22 is up-regulated and plays

  13. Pathological effects of anabolic steroid (Sustanon® on liver of male rats

    Directory of Open Access Journals (Sweden)

    E.R. Al-Kennany

    2014-06-01

    Full Text Available The present pathological study on the male rats aims to investigate the effects on liver tissue induced by repeated administration of three doses of sustanon for four periods. The experiment was done on the 100 adult male rats randomly divided into five groups 20 rats in each group. The first group is considered as a negative control treated with diet and water only. The second group is considered a positive control treated weekly for 60 days with sesame oil intramuscularly while groups III, IV and V treated with diluted sustanon in 5, 10 and 20 mg/kg body weight intramuscularly weekly for 60 days respectively. Blood was collected in a period 15, 30 and 60 days after treatment for measurements liver function tests ALT (alanine aminotransferase and AST (aspartate aminotransferas enzymes. Then the animals were dissected to take samples in a period 15, 30 and 60 days after treatment for histopathological examination, then 5 rats were lefted in each group in the diet and water for 30 days after last treatment for examination the above mentioned parameters. The results revealed the presence of significantly increasing of liver enzyme activation represented by ALT and AST at level P<0.05 compared with control groups. The value of these levels were higher in group V in a day 60 after treatment and its continue to increase even after stopping treatment and remained on diet and water only for 30 days. Pathologically, all treated groups with sustanon revealed gross and histopathological changes in liver tissue, there were enlargement and congestion gross. Histopathologically, the liver sections elucidate cellular swelling, vacuolar degeneration in the cytoplasm of hepatocytes in addition to fatty change and programmed cell death in all groups during a period 15, 30 and 60 days these changes continue even after stopping the treatment for 30 days but portal fibrosis has been observed.It has been concluded from this study that sustanon in concentration 5, 10

  14. The Role of Dendritic Cells in Fibrosis Progression in Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Paloma Almeda-Valdes

    2015-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is the most frequent cause of chronic liver disease. NAFLD encompasses a wide range of pathologies, from simple steatosis to steatosis with inflammation to fibrosis. The pathogenesis of NAFLD progression has not been completely elucidated, and different liver cells could be implicated. This review focuses on the current evidence of the role of liver dendritic cells (DCs in the progression from NAFLD to fibrosis. Liver DCs are a heterogeneous population of hepatic antigen-presenting cells; their main function is to induce T-cell mediated immunity by antigen processing and presentation to T cells. During the steady state liver DCs are immature and tolerogenic. However, in an environment of chronic inflammation, DCs are transformed to potent inducers of immune responses. There is evidence about the role of DC in liver fibrosis, but it is not clearly understood. Interestingly, there might be a link between lipid metabolism and DC function, suggesting that immunogenic DCs are associated with liver lipid storage, representing a possible pathophysiological mechanism in NAFLD development. A better understanding of the interaction between inflammatory pathways and the different cell types and the effect on the progression of NAFLD is of great relevance.

  15. Acute Liver Injury Is Independent of B Cells or Immunoglobulin M.

    Directory of Open Access Journals (Sweden)

    James A Richards

    Full Text Available Acute liver injury is a clinically important pathology and results in the release of Danger Associated Molecular Patterns, which initiate an immune response. Withdrawal of the injurious agent and curtailing any pathogenic secondary immune response may allow spontaneous resolution of injury. The role B cells and Immunoglobulin M (IgM play in acute liver injury is largely unknown and it was proposed that B cells and/or IgM would play a significant role in its pathogenesis.Tissue from 3 models of experimental liver injury (ischemia-reperfusion injury, concanavalin A hepatitis and paracetamol-induced liver injury and patients transplanted following paracetamol overdose were stained for evidence of IgM deposition. Mice deficient in B cells (and IgM were used to dissect out the role B cells and/or IgM played in the development or resolution of injury. Serum transfer into mice lacking IgM was used to establish the role IgM plays in injury.Significant deposition of IgM was seen in the explanted livers of patients transplanted following paracetamol overdose as well as in 3 experimental models of acute liver injury (ischemia-reperfusion injury, concanavalin A hepatitis and paracetamol-induced liver injury. Serum transfer into IgM-deficient mice failed to reconstitute injury (p = 0.66, despite successful engraftment of IgM. Mice deficient in both T and B cells (RAG1-/- mice (p<0.001, but not B cell deficient (μMT mice (p = 0.93, were significantly protected from injury. Further interrogation with T cell deficient (CD3εKO mice confirmed that the T cell component is a key mediator of sterile liver injury. Mice deficient in B cells and IgM mice did not have a significant delay in resolution following acute liver injury.IgM deposition appears to be common feature of both human and murine sterile liver injury. However, neither IgM nor B cells, play a significant role in the development of or resolution from acute liver injury. T cells appear to be key

  16. Pediatric liver neoplasms: a radiologic-pathologic correlation

    International Nuclear Information System (INIS)

    Helmberger, T.K.; Reiser, M.F.; Ros, P.R.; Mergo, P.J.; Tomczak, R.

    1999-01-01

    Only 1-2 % of all pediatric tumors occur in the liver. Two thirds of these tumors are malignant and almost all of the tumors cause clinical symptoms due to their mass effects. Besides the poor prognosis in most of the malignant tumors, for further treatment the origin and nature of the neoplasm has to be known. Due to the mostly unimpeded growth into the peritoneal cavity, the origin of the tumors is primarily often unclear and can non-invasively only be determined by advanced imaging techniques. The display of the macro- and microhistological key features of primary pediatric liver neoplasms, including hepatoblastoma (HB), infantile hemangioendothelioma (IHE), mesenchymal hamartoma (MH), undifferentiated (embryonal) sarcoma (UES), and hepatocellular carcinoma (HCC), together with their imaging representation by ultrasound, computed tomography, and magnetic resonance imaging, may deepen the understanding of the underlying pathology and its imaging appearance. Furthermore, in many cases sufficient information may be provided not only to differentiate benign from malignant tumors, but also to guide for adequate treatment. (orig.)

  17. Liver Cell Culture Devices

    NARCIS (Netherlands)

    Andria, B.; Bracco, A.; Cirino, G.; Chamuleau, R. A. F. M.

    2010-01-01

    In the last 15 years many different liver cell culture devices, consisting of functional liver cells and artificial materials, have been developed. They have been devised for numerous different applications, such as temporary organ replacement (a bridge to liver transplantation or native liver

  18. Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells

    International Nuclear Information System (INIS)

    Chen Yixing; Zeng Zhaochong; Sun Jing; Huang Yan; Zhang Zhenyu; Zeng Haiying

    2015-01-01

    Current management of radiation-induced liver injury is limited. Sinusoidal endothelial cell (SEC) apoptosis and inflammation are considered to be initiating events in hepatic damage. We hypothesized that mesenchymal stem cells (MSCs) possess anti-apoptotic and anti-inflammatory actions during hepatic irradiation, acting via paracrine mechanisms. This study aims to examine whether MSC-derived bioactive components are protective against radiation-induced liver injury in rats. MSC-conditioned medium (MSC-CM) was generated from rat bone marrow–derived MSCs. The effect of MSC-CM on the viability of irradiated SECs was examined by flow cytometric analysis. Activation of the Akt and ERK pathways was analyzed by western blot. MSC-CM was also delivered to Sprague–Dawley rats immediately before receiving liver irradiation, followed by testing for pathological features, changes in serum hyaluronic acid, ALT, and inflammatory cytokine levels, and liver cell apoptosis. MSC-CM enhanced the viability of irradiated SECs in vitro and induced Akt and ERK phosphorylation in these cells. Infusion of MSC-CM immediately before liver irradiation provided a significant anti-apoptotic effect on SECs and improved the histopathological features of injury in the irradiated liver. MSC-CM also reduced the secretion and expression of inflammatory cytokines and increased the expression of anti-inflammatory cytokines. MSC-derived bioactive components could be a novel therapeutic approach for treating radiation-induced liver injury. (author)

  19. Radiofrequency ablation of rabbit liver in vivo: effect of the Pringle maneuver on pathologic changes in liver surrounding the ablation zone

    International Nuclear Information System (INIS)

    Kim, Seung Kwon; Lim, Hyo K; Ryu, Jeong Ah

    2004-01-01

    We wished to evaluate the effect of the Pringle maneuver (occlusion of both the hepatic artery and portal vein) on the pathologic changes in the hepatic vessels, bile ducts and liver parenchyma surrounding the ablation zone in rabbit livers. Radiofrequency (RF) ablation zones were created in the livers of 24 rabbits in vivo by using a 50-W, 480-kHz monopolar RF generator and a 15-gauge expandable electrode with four sharp prongs for 7 mins. The tips of the electrodes were placed in the liver parenchyma near the porta hepatis with the distal 1 cm of their prongs deployed. Radiofrequency ablation was performed in the groups with (n=12 rabbits) and without (n=12 rabbits) the Pringle maneuver. Three animals of each group were sacrificed immediately, three days (the acute phase), seven days (the early subacute phase) and two weeks (the late subacute phase) after RF ablation. The ablation zones were excised and serial pathologic changes in the hepatic vessels, bile ducts and liver parenchyma surrounding the ablation zone were evaluated. With the Pringle maneuver, portal vein thrombosis was found in three cases (in the immediate [n=2] and acute phase [n=1]), bile duct dilatation adjacent to the ablation zone was found in one case (in the late subacute phase [n=1]), infarction adjacent to the ablation zone was found in three cases (in the early subacute [n=2] and late subacute [n=1] phases). None of the above changes was found in the livers ablated without the Pringle maneuver. On the microscopic findings, centrilobular congestion, sinusoidal congestion, sinusoidal platelet and neutrophilic adhesion, and hepatocyte vacuolar and ballooning changes in liver ablated with Pringle maneuver showed more significant changes than in those livers ablated without the Pringle maneuver (ρ < 0.05). Radiofrequency ablation with the Pringle maneuver created more severe pathologic changes in the portal vein, bile ducts and liver parenchyma surrounding the ablation zone compared with RF

  20. Dietary fructose augments ethanol-induced liver pathology.

    Science.gov (United States)

    Thomes, Paul G; Benbow, Jennifer H; Brandon-Warner, Elizabeth; Thompson, Kyle J; Jacobs, Carl; Donohue, Terrence M; Schrum, Laura W

    2017-05-01

    Certain dietary components when combined with alcohol exacerbate alcohol-induced liver injury (ALI). Here, we tested whether fructose, a major ingredient of the western diet, enhances the severity of ALI. We fed mice ethanol for 8 weeks in the following Lieber-DeCarli diets: (a) Regular (contains olive oil); (b) corn oil (contains corn oil); (c) fructose (contains fructose and olive oil) and (d) corn+fructose (contains fructose and corn oil). We compared indices of metabolic function and liver pathology among the different groups. Mice fed fructose-free and fructose-containing ethanol diets exhibited similar levels of blood alcohol, blood glucose and signs of disrupted hepatic insulin signaling. However, only mice given fructose-ethanol diets showed lower insulin levels than their respective controls. Compared with their respective pair-fed controls, all ethanol-fed mice exhibited elevated levels of serum ALT; the inflammatory cytokines TNF-α, MCP-1 and MIP-2; hepatic lipid peroxides and triglycerides. All the latter parameters were significantly higher in mice given fructose-ethanol diets than those fed fructose-free ethanol diets. Mice given fructose-free or fructose-containing ethanol diets each had higher levels of hepatic lipogenic enzymes than controls. However, the level of the lipogenic enzyme fatty acid synthase (FAS) was significantly higher in livers of mice given fructose control and fructose-ethanol diets than in all other groups. Our findings indicate that dietary fructose exacerbates ethanol-induced steatosis, oxidant stress, inflammation and liver injury, irrespective of the dietary fat source, to suggest that inclusion of fructose in or along with alcoholic beverages increases the risk of more severe ALI in heavy drinkers. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Serial computed tomography and its uses in the diagnosis of pathological changes in the liver, pancreas and kidneys

    International Nuclear Information System (INIS)

    Schmiedel, R.

    1983-01-01

    The investigations described were carried out in such a way as to fulfil the defined requirements of serial computed tomography like short periods of measurement, high scanning frequency and intravasal bolus injection of a contrast medium that would readily be excreted by the renal route. In this connection, the following questions were of particular interest: 1. Is computed serial tomography able to provide better clues to tissue identification and the distinction between normal and pathological structures in the liver, pancreas and kidneys? 2. Would it be possible to obtain information as to the degree of vascularisation in space-occupying pathological processes in the liver, pancreas and kidneys? 3. Is serial computed tomography a useful tool to diagnose specific pathological changes in the liver, pancreas and kidneys? 4. Would this investigation permit predictions to be made about the functional performance of the liver, pancreas and kidneys? (orig./MG) [de

  2. Contribution of Gut Bacteria to Liver Pathobiology

    Directory of Open Access Journals (Sweden)

    Gakuhei Son

    2010-01-01

    Full Text Available Emerging evidence suggests a strong interaction between the gut microbiota and health and disease. The interactions of the gut microbiota and the liver have only recently been investigated in detail. Receiving approximately 70% of its blood supply from the intestinal venous outflow, the liver represents the first line of defense against gut-derived antigens and is equipped with a broad array of immune cells (i.e., macrophages, lymphocytes, natural killer cells, and dendritic cells to accomplish this function. In the setting of tissue injury, whereby the liver is otherwise damaged (e.g., viral infection, toxin exposure, ischemic tissue damage, etc., these same immune cell populations and their interactions with the infiltrating gut bacteria likely contribute to and promote these pathologies. The following paper will highlight recent studies investigating the relationship between the gut microbiota, liver biology, and pathobiology. Defining these connections will likely provide new targets for therapy or prevention of a wide variety of acute and chronic liver pathologies.

  3. Role of docosahexaenoic acid treatment in improving liver histology in pediatric nonalcoholic fatty liver disease.

    Science.gov (United States)

    Nobili, Valerio; Carpino, Guido; Alisi, Anna; De Vito, Rita; Franchitto, Antonio; Alpini, Gianfranco; Onori, Paolo; Gaudio, Eugenio

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) is one of the most important causes of liver-related morbidity and mortality in children. Recently, we have reported the effects of docosahexaenoic acid (DHA), the major dietary long-chain polyunsaturated fatty acids, in children with NAFLD. DHA exerts a potent anti-inflammatory activity through the G protein-coupled receptor (GPR)120. Our aim was to investigate in pediatric NAFLD the mechanisms underlying the effects of DHA administration on histo-pathological aspects, GPR120 expression, hepatic progenitor cell activation and macrophage pool. 20 children with untreated NAFLD were included. Children were treated with DHA for 18 months. Liver biopsies before and after the treatment were analyzed. Hepatic progenitor cell activation, macrophage pool and GPR120 expression were evaluated and correlated with clinical and histo-pathological parameters. GPR120 was expressed by hepatocytes, liver macrophages, and hepatic progenitor cells. After DHA treatment, the following modifications were present: i) the improvement of histo-pathological parameters such as NAFLD activity score, ballooning, and steatosis; ii) the reduction of hepatic progenitor cell activation in correlation with histo-pathological parameters; iii) the reduction of the number of inflammatory macrophages; iv) the increase of GPR120 expression in hepatocytes; v) the reduction of serine-311-phosphorylated nuclear factor kappa B (NF-κB) nuclear translocation in hepatocytes and macrophages in correlation with serum inflammatory cytokines. DHA could modulate hepatic progenitor cell activation, hepatocyte survival and macrophage polarization through the interaction with GPR120 and NF-κB repression. In this scenario, the modulation of GPR120 exploits a novel crucial role in the regulation of the cell-to-cell cross-talk that drives inflammatory response, hepatic progenitor cell activation and hepatocyte survival.

  4. Role of docosahexaenoic acid treatment in improving liver histology in pediatric nonalcoholic fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Valerio Nobili

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is one of the most important causes of liver-related morbidity and mortality in children. Recently, we have reported the effects of docosahexaenoic acid (DHA, the major dietary long-chain polyunsaturated fatty acids, in children with NAFLD. DHA exerts a potent anti-inflammatory activity through the G protein-coupled receptor (GPR120. Our aim was to investigate in pediatric NAFLD the mechanisms underlying the effects of DHA administration on histo-pathological aspects, GPR120 expression, hepatic progenitor cell activation and macrophage pool.20 children with untreated NAFLD were included. Children were treated with DHA for 18 months. Liver biopsies before and after the treatment were analyzed. Hepatic progenitor cell activation, macrophage pool and GPR120 expression were evaluated and correlated with clinical and histo-pathological parameters.GPR120 was expressed by hepatocytes, liver macrophages, and hepatic progenitor cells. After DHA treatment, the following modifications were present: i the improvement of histo-pathological parameters such as NAFLD activity score, ballooning, and steatosis; ii the reduction of hepatic progenitor cell activation in correlation with histo-pathological parameters; iii the reduction of the number of inflammatory macrophages; iv the increase of GPR120 expression in hepatocytes; v the reduction of serine-311-phosphorylated nuclear factor kappa B (NF-κB nuclear translocation in hepatocytes and macrophages in correlation with serum inflammatory cytokines.DHA could modulate hepatic progenitor cell activation, hepatocyte survival and macrophage polarization through the interaction with GPR120 and NF-κB repression. In this scenario, the modulation of GPR120 exploits a novel crucial role in the regulation of the cell-to-cell cross-talk that drives inflammatory response, hepatic progenitor cell activation and hepatocyte survival.

  5. Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases

    Directory of Open Access Journals (Sweden)

    Irina V. Kholodenko

    2017-01-01

    Full Text Available The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique. Restoration of the mass of liver parenchyma is achieved by compensatory hypertrophy and hyperplasia of the differentiated parenchymal cells, hepatocytes, while expansion and differentiation of the resident stem/progenitor cells play a minor or negligible role. Participation of blood-borne cells of the bone marrow origin in liver parenchyma regeneration has been proven but does not exceed 1-2% of newly formed hepatocytes. Liver regeneration is activated spontaneously after injury and can be further stimulated by cell therapy with hepatocytes, hematopoietic stem cells, or mesenchymal stem cells. Further studies aimed at improving the outcomes of cell therapy of liver diseases are underway. In case of liver failure, transplantation of engineered liver can become the best option in the foreseeable future. Engineering of a transplantable liver or its major part is an enormous challenge, but rapid progress in induced pluripotency, tissue engineering, and bioprinting research shows that it may be doable.

  6. Three-dimentional growth of liver / stem cells in vitro under simulated microgravity

    Science.gov (United States)

    Feng, Mei Fu

    Liver is a important and largest parenchymatous organ in vivo, and have complex and diverse structures and functions. In the world, there are many peoples suffers from liver injury and dis-ease, especially in Asia, but serious shortage of donor organ, especially for organic pathological changes, is a big problem in the world. Stem cells have the capabilities to self-renew and differ-entiate into multiple lineages, and are very significant in both theoretical research and clinical applications. Compared with traditional cell culture, cells of 3D growth are more close to their situation in vivo. The specific physics environment in space provides a great opportunity for 3D growth of cells and tissues. Due to the chance for entering into the space is so scarce, to mimic microgravity effects using a rotating cell culture system (RCCS) designed by NASA, and some other methods were studied for cellular 3D growth in vitro. Neonatal mouse liver Cells, hepatic progenitor/stem cells from fetal liver and WB-F344 cells were cultured in a 1:1 mixture of DMEM and F-12 supplemented with 10 % FCS and several factors, and seeded into the RCCS, 6-well and 24-well plates. Their growth characteristic, metabolism, differentiation and gene expression were studied by SEM, Histochemistry, Flow Cytometry, RT-PCR and so on. The results showed: 1. Neonatal mouse liver Cells (1day after birth) seem easy to grow for a three-dimentional-like structure, when the cells were cultured in the RCCS, a cell aggregate formed after 1 day of culture and were kept during 10 days culture. The size of aggregate was about 1 2 mm in diameter. 2. Hepatic progenitor/stem cells from fetal liver seem a good cell resource for liver disease'cell therapy. They expressed AFP and CKs, and no mature hepato-cytes marker and bile duct epithelial cells marker were detected. When were transplanted into Nod-Scid mice, they had multi-potential differentiation. 3. WB-F344 cells, a liver epithelial cell line, could grew well on

  7. Chronic inflammation-elicited liver progenitor cell conversion to liver cancer stem cell with clinical significance.

    Science.gov (United States)

    Li, Xiao-Feng; Chen, Cheng; Xiang, Dai-Min; Qu, Le; Sun, Wen; Lu, Xin-Yuan; Zhou, Teng-Fei; Chen, Shu-Zhen; Ning, Bei-Fang; Cheng, Zhuo; Xia, Ming-Yang; Shen, Wei-Feng; Yang, Wen; Wen, Wen; Lee, Terence Kin Wah; Cong, Wen-Ming; Wang, Hong-Yang; Ding, Jin

    2017-12-01

    The substantial heterogeneity and hierarchical organization in liver cancer support the theory of liver cancer stem cells (LCSCs). However, the relationship between chronic hepatic inflammation and LCSC generation remains obscure. Here, we observed a close correlation between aggravated inflammation and liver progenitor cell (LPC) propagation in the cirrhotic liver of rats exposed to diethylnitrosamine. LPCs isolated from the rat cirrhotic liver initiated subcutaneous liver cancers in nonobese diabetic/severe combined immunodeficient mice, suggesting the malignant transformation of LPCs toward LCSCs. Interestingly, depletion of Kupffer cells in vivo attenuated the LCSC properties of transformed LPCs and suppressed cytokeratin 19/Oval cell 6-positive tumor occurrence. Conversely, LPCs cocultured with macrophages exhibited enhanced LCSC properties. We further demonstrated that macrophage-secreted tumor necrosis factor-α triggered chromosomal instability in LPCs through the deregulation of ubiquitin D and checkpoint kinase 2 and enhanced the self-renewal of LPCs through the tumor necrosis factor receptor 1/Src/signal transducer and activator of transcription 3 pathway, which synergistically contributed to the conversion of LPCs to LCSCs. Clinical investigation revealed that cytokeratin 19/Oval cell 6-positive liver cancer patients displayed a worse prognosis and exhibited superior response to sorafenib treatment. Our results not only clarify the cellular and molecular mechanisms underlying the inflammation-mediated LCSC generation but also provide a molecular classification for the individualized treatment of liver cancer. (Hepatology 2017;66:1934-1951). © 2017 by the American Association for the Study of Liver Diseases.

  8. Comparative study of radiologic-pathologic findings of experimental clonorchiasis in rabbits

    International Nuclear Information System (INIS)

    Ryu, Kyung Nam; Lim, Jae Hoon; Cho, You Jung; Yang, Moon Ho

    1993-01-01

    Radiological investigation in patients with clonorchiasis is very important as this is the only method of evaluating the severity of clonorchiasis. In order to correlate the radiologic and pathologic findings of clonorchiasis, fourteen rabbits infested with Clonorchis sinensis and five control rabbits were examined radiologically by ultrasonography, computed tomography and cholangiography and the results were correlated with pathologic findings. Dilatation of the intrahepatic small bile ducts of the liver was due to obstruction by flukes: oval or elliptical, small filling defects or irregular margin of the bile ducts on cholangiogram or intraluminal echoes on sonogram represented flukes per se; periductal thickening on sonogram and periductal enhancement of bile ducts on CT were due to inflammatory cell infiltration, adenomatous hyperplasia and periductal fibrosis; band like enhancement at the periphery of the liver on CT represented proliferated bile ducts, destruction of liver cells and resultant fibrosis. The study confirmed the pathological bases for the radiological findings of clonorchiasis in liver and bile ducts and will, perhaps, serve as a basis for the future radiologic-pathological correlation of clonorchiasis and in further clinical and experimental researches in the biliary tract diseases

  9. Comparative study of radiologic-pathologic findings of experimental clonorchiasis in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Kyung Nam; Lim, Jae Hoon; Cho, You Jung; Yang, Moon Ho [College of Medicine, Kyung Hee University, Seoul (Korea, Republic of)

    1993-01-15

    Radiological investigation in patients with clonorchiasis is very important as this is the only method of evaluating the severity of clonorchiasis. In order to correlate the radiologic and pathologic findings of clonorchiasis, fourteen rabbits infested with Clonorchis sinensis and five control rabbits were examined radiologically by ultrasonography, computed tomography and cholangiography and the results were correlated with pathologic findings. Dilatation of the intrahepatic small bile ducts of the liver was due to obstruction by flukes: oval or elliptical, small filling defects or irregular margin of the bile ducts on cholangiogram or intraluminal echoes on sonogram represented flukes per se; periductal thickening on sonogram and periductal enhancement of bile ducts on CT were due to inflammatory cell infiltration, adenomatous hyperplasia and periductal fibrosis; band like enhancement at the periphery of the liver on CT represented proliferated bile ducts, destruction of liver cells and resultant fibrosis. The study confirmed the pathological bases for the radiological findings of clonorchiasis in liver and bile ducts and will, perhaps, serve as a basis for the future radiologic-pathological correlation of clonorchiasis and in further clinical and experimental researches in the biliary tract diseases.

  10. Evaluating the Efficiency of Hepatoprotector Hepa Veda in Patients with Liver Pathology

    Directory of Open Access Journals (Sweden)

    Yu.M. Stepanov

    2015-04-01

    Full Text Available The article presents the results of efficiency of monotherapy with hepatoprotector Hepa veda in patients with liver pathology. There were found a significant decrease of aminotransferase level in patients with non-alcoholic steatohepatitis and a tendency to decrease in patients with chronic viral hepatitis C that showed the efficiency of this hepatoprotector.

  11. [Imaging manifestations and pathologic basis for hepatic capsular retraction syndrome caused by benign and malignant liver tumors].

    Science.gov (United States)

    Ou, Youkuan; Xiao, Enhua; Shang, Quanliang; Chen, Juan

    2015-10-01

    To investigate the imaging manifestations of CT, MRI and pathological basis for hepatic capsular retraction syndrome caused by benign and malignant liver tumors.
 CT or MRI images and pathological features for hepatic capsular retraction syndrome were retrospectively analyzed in 50 patients with benign and malignant liver tumors. Picture archive and communication system (PACS) was used to observe and compare the morphology, size, width, depth, edge of the capsular retraction and the status of liquid under the liver capsule. The structure, differentiation and proliferation of the tumor were analyzed under the microscope.
 There were malignant liver tumors in 44 patients and benign tumor in 6 patients. The smooth or rough for the edge of capsular retraction was significant difference between the benign tumors and the malignant tumors with three differentiated grades (all PBenign and malignant hepatic tumors may appear capsule retraction syndrome, but there are morphological differences between them. The differences are closely related with the lesion size, differentiated degree of tumor and fibrous tissue proliferation.

  12. Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue.

    Science.gov (United States)

    Ho, Chen-Ta; Lin, Ruei-Zeng; Chen, Rong-Jhe; Chin, Chung-Kuang; Gong, Song-En; Chang, Hwan-You; Peng, Hwei-Ling; Hsu, Long; Yew, Tri-Rung; Chang, Shau-Feng; Liu, Cheng-Hsien

    2013-09-21

    A lobule-mimetic cell-patterning technique for on-chip reconstruction of centimetre-scale liver tissue of heterogeneous hepatic and endothelial cells via an enhanced field-induced dielectrophoresis (DEP) trap is demonstrated and reported. By mimicking the basic morphology of liver tissue, the classic hepatic lobule, the lobule-mimetic-stellate-electrodes array was designed for cell patterning. Through DEP manipulation, well-defined and enhanced spatial electric field gradients were created for in-parallel manipulation of massive individual cells. With this liver-cell patterning labchip design, the original randomly distributed hepatic and endothelial cells inside the microfluidic chamber can be manipulated separately and aligned into the desired pattern that mimicks the morphology of liver lobule tissue. Experimental results showed that both hepatic and endothelial cells were orderly guided, snared, and aligned along the field-induced orientation to form the lobule-mimetic pattern. About 95% cell viability of hepatic and endothelial cells was also observed after cell-patterning demonstration via a fluorescent assay technique. The liver function of CYP450-1A1 enzyme activity showed an 80% enhancement for our engineered liver tissue (HepG2+HUVECs) compared to the non-patterned pure HepG2 for two-day culturing.

  13. TWEAK induces liver progenitor cell proliferation

    Science.gov (United States)

    Jakubowski, Aniela; Ambrose, Christine; Parr, Michael; Lincecum, John M.; Wang, Monica Z.; Zheng, Timothy S.; Browning, Beth; Michaelson, Jennifer S.; Baestcher, Manfred; Wang, Bruce; Bissell, D. Montgomery; Burkly, Linda C.

    2005-01-01

    Progenitor (“oval”) cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors. PMID:16110324

  14. Xenotransplantation of neonatal porcine liver cells.

    Science.gov (United States)

    Garkavenko, O; Emerich, D F; Muzina, M; Muzina, Z; Vasconcellos, A V; Ferguson, A B; Cooper, I J; Elliott, R B

    2005-01-01

    Xenotransplantation of porcine liver cell types may provide a means of overcoming the shortage of suitable donor tissues to treat hepatic diseases characterized by inherited inborn errors of metabolism or protein production. Here we report the successful isolation, culture, and xenotransplantation of liver cells harvested from 7- to 10-day-old piglets. Liver cells were isolated and cultured immediately after harvesting. Cell viability was excellent (>90%) over the duration of the in vitro studies (3 weeks) and the cultured cells continued to significantly proliferate. These cells also retained their normal secretory and metabolic capabilities as determined by continued release of albumin, factor 8, and indocyanin green (ICG) uptake. After 3 weeks in culture, porcine liver cells were loaded into immunoisolatory macro devices (Theracyte devices) and placed into the intraperitoneal cavity of immunocompetant CD1 mice. Eight weeks later, the devices were retrieved and the cells analyzed for posttransplant determinations of survival and function. Post mortem analysis confirmed that the cell-loaded devices were biocompatible, and were well-tolerated without inducing any notable inflammatory reaction in the tissues immediately surrounding the encapsulated cells. Finally, the encapsulated liver cells remained viable and functional as determined by histologic analyses and ICG uptake/release. The successful harvesting, culturing, and xenotransplantation of functional neonatal pig liver cells support the continued development of this approach for treating a range of currently undertreated or intractable hepatic diseases.

  15. Kupffer Cells in the Liver

    Science.gov (United States)

    Dixon, Laura J.; Barnes, Mark; Tang, Hui; Pritchard, Michele T.; Nagy, Laura E.

    2016-01-01

    Kupffer cells are a critical component of the mononuclear phagocytic system and are central to both the hepatic and systemic response to pathogens. Kupffer cells are reemerging as critical mediators of both liver injury and repair. Kupffer cells exhibit a tremendous plasticity; depending on the local metabolic and immune environment, then can express a range of polarized phenotypes, from the proinflammatory M1 phenotype to the alternative/M2 phenotype. Multiple M2 phenotypes can be distinguished, each involved in the resolution of inflammation and wound healing. Here, we have provided an update on recent research that has contributed to the developing delineation of the contribution of Kupffer cells to different types of liver injury, with an emphasis on alcoholic and nonalcoholic liver diseases. These recent advances in our understanding of Kupffer cell function and regulation will likely provide new insights into the potential for therapeutic manipulation of Kupffer cells to promote the resolution of inflammation and enhance wound healing in liver disease. PMID:23720329

  16. Cell sources for in vitro human liver cell culture models

    Science.gov (United States)

    Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-01-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro. However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro. Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595

  17. Interleukin-22: immunobiology and pathology

    Science.gov (United States)

    Dudakov, Jarrod A.; Hanash, Alan M.; van den Brink, Marcel R.M.

    2015-01-01

    Interleukin-22 (IL-22) is a recently described IL-10 family cytokine that is produced by T-helper (Th)-17 cells, γδ T cells, NKT cells and newly described innate lymphoid cells (ILCs). Knowledge of IL-22 biology has rapidly evolved since its discovery in 2000, and a role for IL-22 has been identified in numerous tissues including the intestines, lung, liver, kidney, thymus, pancreas and skin. IL-22 primarily targets non-hematopoietic epithelial and stromal cells where it can promote proliferation and play a role in tissue regeneration. In addition, IL-22 regulates host defense at barrier surfaces. However, IL-22 has also been linked to several conditions involving inflammatory tissue pathology. In this review, we will assess the current understanding of this cytokine, including its physiologic and pathologic effects on epithelial cell function. PMID:25706098

  18. Human endometrial regenerative cells alleviate carbon tetrachloride-induced acute liver injury in mice

    Directory of Open Access Journals (Sweden)

    Shanzheng Lu

    2016-10-01

    Full Text Available Abstract Background The endometrial regenerative cell (ERC is a novel type of adult mesenchymal stem cell isolated from menstrual blood. Previous studies demonstrated that ERCs possess unique immunoregulatory properties in vitro and in vivo, as well as the ability to differentiate into functional hepatocyte-like cells. For these reasons, the present study was undertaken to explore the effects of ERCs on carbon tetrachloride (CCl4–induced acute liver injury (ALI. Methods An ALI model in C57BL/6 mice was induced by administration of intraperitoneal injection of CCl4. Transplanted ERCs were intravenously injected (1 million/mouse into mice 30 min after ALI induction. Liver function, pathological and immunohistological changes, cell tracking, immune cell populations and cytokine profiles were assessed 24 h after the CCl4 induction. Results ERC treatment effectively decreased the CCl4-induced elevation of serum alanine aminotransferase (ALT and aspartate aminotransferase (AST activities and improved hepatic histopathological abnormalities compared to the untreated ALI group. Immunohistochemical staining showed that over-expression of lymphocyte antigen 6 complex, locus G (Ly6G was markedly inhibited, whereas expression of proliferating cell nuclear antigen (PCNA was increased after ERC treatment. Furthermore, the frequency of CD4+ and CD8+ T cell populations in the spleen was significantly down-regulated, while the percentage of splenic CD4+CD25+FOXP3+ regulatory T cells (Tregs was obviously up-regulated after ERC treatment. Moreover, splenic dendritic cells in ERC-treated mice exhibited dramatically decreased MHC-II expression. Cell tracking studies showed that transplanted PKH26-labeled ERCs engrafted to lung, spleen and injured liver. Compared to untreated controls, mice treated with ERCs had lower levels of IL-1β, IL-6, and TNF-α but higher level of IL-10 in both serum and liver. Conclusions Human ERCs protect the liver from acute injury

  19. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation

    Directory of Open Access Journals (Sweden)

    Sara Calafate

    2015-05-01

    Full Text Available Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer’s disease (AD. Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology.

  20. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation.

    Science.gov (United States)

    Calafate, Sara; Buist, Arjan; Miskiewicz, Katarzyna; Vijayan, Vinoy; Daneels, Guy; de Strooper, Bart; de Wit, Joris; Verstreken, Patrik; Moechars, Diederik

    2015-05-26

    Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer's disease (AD). Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Administration of multipotent mesenchymal stromal cells restores liver regeneration and improves liver function in obese mice with hepatic steatosis after partial hepatectomy.

    Science.gov (United States)

    Ezquer, Fernando; Bahamonde, Javiera; Huang, Ya-Lin; Ezquer, Marcelo

    2017-01-28

    The liver has the remarkable capacity to regenerate in order to compensate for lost or damaged hepatic tissue. However, pre-existing pathological abnormalities, such as hepatic steatosis (HS), inhibits the endogenous regenerative process, becoming an obstacle for liver surgery and living donor transplantation. Recent evidence indicates that multipotent mesenchymal stromal cells (MSCs) administration can improve hepatic function and increase the potential for liver regeneration in patients with liver damage. Since HS is the most common form of chronic hepatic illness, in this study we evaluated the role of MSCs in liver regeneration in an animal model of severe HS with impaired liver regeneration. C57BL/6 mice were fed with a regular diet (normal mice) or with a high-fat diet (obese mice) to induce HS. After 30 weeks of diet exposure, 70% hepatectomy (Hpx) was performed and normal and obese mice were divided into two groups that received 5 × 10 5 MSCs or vehicle via the tail vein immediately after Hpx. We confirmed a significant inhibition of hepatic regeneration when liver steatosis was present, while the hepatic regenerative response was promoted by infusion of MSCs. Specifically, MSC administration improved the hepatocyte proliferative response, PCNA-labeling index, DNA synthesis, liver function, and also reduced the number of apoptotic hepatocytes. These effects may be associated to the paracrine secretion of trophic factors by MSCs and the hepatic upregulation of key cytokines and growth factors relevant for cell proliferation, which ultimately improves the survival rate of the mice. MSCs represent a promising therapeutic strategy to improve liver regeneration in patients with HS as well as for increasing the number of donor organs available for transplantation.

  2. Orphan nuclear receptor NR4A2 inhibits hepatic stellate cell proliferation through MAPK pathway in liver fibrosis.

    Science.gov (United States)

    Chen, Pengguo; Li, Jie; Huo, Yan; Lu, Jin; Wan, Lili; Li, Bin; Gan, Run; Guo, Cheng

    2015-01-01

    Hepatic stellate cells (HSCs) play a crucial role in liver fibrosis, which is a pathological process characterized by extracellular matrix accumulation. NR4A2 is a nuclear receptor belonging to the NR4A subfamily and vital in regulating cell growth, metabolism, inflammation and other biological functions. However, its role in HSCs is unclear. We analyzed NR4A2 expression in fibrotic liver and stimulated HSCs compared with control group and studied the influence on cell proliferation, cell cycle, cell apoptosis and MAPK pathway after NR4A2 knockdown. NR4A2 expression was examined by real-time polymerase chain reaction, Western blotting, immunohistochemistry and immunofluorescence analyses. NR4A2 expression was significantly lower in fibrotic liver tissues and PDGF BB or TGF-β stimulated HSCs compared with control group. After NR4A2 knockdown α-smooth muscle actin and Col1 expression increased. In addition, NR4A2 silencing led to the promotion of cell proliferation, increase of cell percentage in S phase and reduced phosphorylation of ERK1/2, P38 and JNK in HSCs. These results indicate that NR4A2 can inhibit HSC proliferation through MAPK pathway and decrease extracellular matrix in liver fibrogenesis. NR4A2 may be a promising therapeutic target for liver fibrosis.

  3. [A case of transverse colon cancer with multiple liver metastases and hepatic pedicle lymph node involvement showing pathological complete response by XELOX plus bevacizumab].

    Science.gov (United States)

    Mukai, Toshiki; Akiyoshi, Takashi; Koga, Rintaro; Arita, Junichi; Saiura, Akio; Ikeda, Atsushi; Nagasue, Yasutomo; Oikawa, Yoshinori; Yamakawa, Keiko; Konishi, Tsuyoshi; Fujimoto, Yoshiya; Nagayama, Satoshi; Fukunaga, Yosuke; Ueno, Masashi; Suenaga, Mitsukuni; Mizunuma, Nobuyuki; Shinozaki, Eiji; Yamamoto, Chiriko; Yamaguchi, Toshiharu

    2012-12-01

    A 70-year-old woman was referred to our hospital because of abdominal pain. Abdominal computed tomography(CT)and colonoscopy revealed transverse colon cancer with multiple liver metastases, with involvement of the hepatic pedicle and superior mesenteric artery lymph nodes. The patient received eight courses of XELOX plus bevacizumab, and CT showed a decrease in the size of the liver metastases and hepatic pedicle lymphadenopathy. Right hemicolectomy, partial hepatectomy, and hepatic pedicle lymph node resection were performed. Histopathological examination of the resected tissue revealed no residual cancer cells, suggesting a pathological complete response. The patient remains well 7 months after operation, without any signs of recurrence. Surgical resection should be considered for patients with initially unresectable colon cancer with liver metastases and hepatic pedicle lymph nodes involvement if systemic chemotherapy is effective.

  4. Liver resection for colorectal metastases after chemotherapy: impact of chemotherapy-related liver injuries, pathological tumor response, and micrometastases on long-term survival.

    Science.gov (United States)

    Viganò, Luca; Capussotti, Lorenzo; De Rosa, Giovanni; De Saussure, Wassila Oulhaci; Mentha, Gilles; Rubbia-Brandt, Laura

    2013-11-01

    We analyzed the impact of chemotherapy-related liver injuries (CALI), pathological tumor regression grade (TRG), and micrometastases on long-term prognosis in patients undergoing liver resection for colorectal metastases after preoperative chemotherapy. CALI worsen the short-term outcomes of liver resection, but their impact on long-term prognosis is unknown. Recently, a prognostic role of TRG has been suggested. Micrometastases (microscopic vascular or biliary invasion) are reduced by preoperative chemotherapy, but their impact on survival is unclear. Patients undergoing liver resection for colorectal metastases between 1998 and 2011 and treated with oxaliplatin and/or irinotecan-based preoperative chemotherapy were eligible for the study. Patients with operative mortality or incomplete resection (R2) were excluded. All specimens were reviewed to assess CALI, TRG, and micrometastases. A total of 323 patients were included. Grade 2-3 sinusoidal obstruction syndrome (SOS) was present in 124 patients (38.4%), grade 2-3 steatosis in 73 (22.6%), and steatohepatitis in 30 (9.3%). Among all patients, 22.9% had TRG 1-2 (major response), whereas 55.7% had TRG 4-5 (no response). Microvascular invasion was detected in 37.8% of patients and microscopic biliary infiltration in 5.6%.The higher the SOS grade the lower the pathological response: TRG 1-2 occurred in 16.9% of patients with grade 2-3 SOS versus 26.6% of patients with grade 0-1 SOS (P = 0.032).After a median follow-up of 36.9 months, 5-year survival was 38.6%. CALI did not negatively impact survival. Multivariate analysis showed that grade 2-3 steatosis was associated with better survival than grade 0-1 steatosis (5-year survival rate of 52.5% vs 35.2%, P = 0.002). TRG better than the percentage of viable cells stratified patient prognosis: 5-year survival rate of 60.4% in TRG 1-2, 40.2% in TRG 3, and 29.8% in TRG 4-5 (P = 0.0001). Microscopic vascular and biliary invasion negatively impacted outcome (5-year survival

  5. Liver Progenitor Cell Line HepaRG Differentiated in a Bioartificial Liver Effectively Supplies Liver Support to Rats with Acute Liver Failure

    NARCIS (Netherlands)

    Nibourg, Geert A. A.; Chamuleau, Robert A. F. M.; van der Hoeven, Tessa V.; Maas, Martinus A. W.; Ruiter, An F. C.; Lamers, Wouter H.; Oude Elferink, Ronald P. J.; van Gulik, Thomas M.; Hoekstra, Ruurdtje

    2012-01-01

    A major roadblock to the application of bioartificial livers is the need for a human liver cell line that displays a high and broad level of hepatic functionality. The human bipotent liver progenitor cell line HepaRG is a promising candidate in this respect, for its potential to differentiate into

  6. New ways of looking at very small holes - using optical nanoscopy to visualize liver sinusoidal endothelial cell fenestrations

    Science.gov (United States)

    Øie, Cristina I.; Mönkemöller, Viola; Hübner, Wolfgang; Schüttpelz, Mark; Mao, Hong; Ahluwalia, Balpreet S.; Huser, Thomas R.; McCourt, Peter

    2018-02-01

    Super-resolution fluorescence microscopy, also known as nanoscopy, has provided us with a glimpse of future impacts on cell biology. Far-field optical nanoscopy allows, for the first time, the study of sub-cellular nanoscale biological structures in living cells, which in the past was limited to electron microscopy (EM) (in fixed/dehydrated) cells or tissues. Nanoscopy has particular utility in the study of "fenestrations" - phospholipid transmembrane nanopores of 50-150 nm in diameter through liver sinusoidal endothelial cells (LSECs) that facilitate the passage of plasma, but (usually) not blood cells, to and from the surrounding hepatocytes. Previously, these fenestrations were only discernible with EM, but now they can be visualized in fixed and living cells using structured illumination microscopy (SIM) and in fixed cells using single molecule localization microscopy (SMLM) techniques such as direct stochastic optical reconstruction microscopy. Importantly, both methods use wet samples, avoiding dehydration artifacts. The use of nanoscopy can be extended to the in vitro study of fenestration dynamics, to address questions such as the following: are they actually dynamic structures, and how do they respond to endogenous and exogenous agents? A logical further extension of these methodologies to liver research (including the liver endothelium) will be their application to liver tissue sections from animal models with different pathological manifestations and ultimately to patient biopsies. This review will cover the current state of the art of the use of nanoscopy in the study of liver endothelium and the liver in general. Potential future applications in cell biology and the clinical implications will be discussed.

  7. Hepatic stellate cell and myofibroblast-like cell gene expression in the explanted cirrhotic livers of patients undergoing liver transplantation.

    Science.gov (United States)

    Estep, J Michael; O'Reilly, Linda; Grant, Geraldine; Piper, James; Jonsson, Johann; Afendy, Arian; Chandhoke, Vikas; Younossi, Zobair M

    2010-02-01

    Hepatic stellate cells (HSC) are involved in hepatic fibrogenesis. Cell signaling associated with an insult to the liver affects an HSC transdifferentiation to fibrogenic myofibroblast-like cells. To investigate the transcriptional expression distinguishing HSC and myofibroblast-like cells between livers with and without cirrhosis. Tissue from ten cirrhotic livers (undergoing transplant) and four non-cirrhotic livers from the National Disease Research Interchange underwent cell separation to extract HSC and myofibroblast-like cell populations. Separated cell types as well as LI-90 cells were subjected to microarray analysis. Selected microarray results were verified by quantitative real-time PCR. Differential expression of some genes, such as IL-1beta, IL-1alpha, and IL-6, was associated with both transdifferentiation and disease. Other genes, such as fatty acid 2-hydroxylase only show differential expression in association with disease. Functional analysis supported these findings, indicating some signal transduction pathways (IL-6) are involved in disease and activation, whereas retinoid X receptor signaling in HSC from cirrhotic and non-cirrhotic livers varies in scope and quality. These findings indicate distinct phenotypes for HSC from cirrhotic and non-cirrhotic livers. Furthermore, coordinated differential expression between genes involved in the same signal transduction pathways provides some insight into the mechanisms that may control the balance between fibrogenesis and fibrolysis.

  8. Liver immunology and its role in inflammation and homeostasis.

    Science.gov (United States)

    Robinson, Mark W; Harmon, Cathal; O'Farrelly, Cliona

    2016-05-01

    The human liver is usually perceived as a non-immunological organ engaged primarily in metabolic, nutrient storage and detoxification activities. However, we now know that the healthy liver is also a site of complex immunological activity mediated by a diverse immune cell repertoire as well as non-hematopoietic cell populations. In the non-diseased liver, metabolic and tissue remodeling functions require elements of inflammation. This inflammation, in combination with regular exposure to dietary and microbial products, creates the potential for excessive immune activation. In this complex microenvironment, the hepatic immune system tolerates harmless molecules while at the same time remaining alert to possible infectious agents, malignant cells or tissue damage. Upon appropriate immune activation to challenge by pathogens or tissue damage, mechanisms to resolve inflammation are essential to maintain liver homeostasis. Failure to clear 'dangerous' stimuli or regulate appropriately activated immune mechanisms leads to pathological inflammation and disrupted tissue homeostasis characterized by the progressive development of fibrosis, cirrhosis and eventual liver failure. Hepatic inflammatory mechanisms therefore have a spectrum of roles in the healthy adult liver; they are essential to maintain tissue and organ homeostasis and, when dysregulated, are key drivers of the liver pathology associated with chronic infection, autoimmunity and malignancy. In this review, we explore the changing perception of inflammation and inflammatory mediators in normal liver homeostasis and propose targeting of liver-specific immune regulation pathways as a therapeutic approach to treat liver disease.

  9. Polyploidization in liver tissue.

    Science.gov (United States)

    Gentric, Géraldine; Desdouets, Chantal

    2014-02-01

    Polyploidy (alias whole genome amplification) refers to organisms containing more than two basic sets of chromosomes. Polyploidy was first observed in plants more than a century ago, and it is known that such processes occur in many eukaryotes under a variety of circumstances. In mammals, the development of polyploid cells can contribute to tissue differentiation and, therefore, possibly a gain of function; alternately, it can be associated with development of disease, such as cancer. Polyploidy can occur because of cell fusion or abnormal cell division (endoreplication, mitotic slippage, or cytokinesis failure). Polyploidy is a common characteristic of the mammalian liver. Polyploidization occurs mainly during liver development, but also in adults with increasing age or because of cellular stress (eg, surgical resection, toxic exposure, or viral infections). This review will explore the mechanisms that lead to the development of polyploid cells, our current state of understanding of how polyploidization is regulated during liver growth, and its consequence on liver function. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Analytical study of cell liver proliferation and serum AFP in various liver diseases other than hepatomas

    Energy Technology Data Exchange (ETDEWEB)

    Takino, T; Okuda, K; Kitamura, O; Takahashi, T; Ashihara, T [Kyoto Prefectural Univ. of Medicine (Japan)

    1974-12-01

    Cell proliferative activity in the liver tissue obtained in 50 cases by liver biopsy, was analyzed using in vitro labeling of /sup 3/H-thymidine autoradiography. The proliferating cells were found to be located mainly in the periportal areas of the lobules. The mean labeling indices of the liver cells were 0.06 % in chronic hepatitis in its active form, 0.05 % in pre-cirrhosis of the liver, 0.03 % in liver cirrhosis, 0.02 % in chronic hepatitis in an inactive form and 0.018 % in acute hepatitis at the restoractive stage. The labeling indices of the liver parenchymal cells of each specimen studied were very low being at most 0.2 %. On the other hand, when the serum AFP was analyzed by radioimmunoassay technique in 185 patients with various liver diseases, level of the mean serum AFP in each group of the liver diseases was found to correspond to that of the proliferative activity of the liver cells in its respective group. From these data it was suggested that the proliferative activity of the liver cells in various liver diseases, with the exception of hepatomas, was closely related to release of AFP into the serum.

  11. Ambiguous roles of innate lymphoid cells in chronic development of liver diseases.

    Science.gov (United States)

    Shen, Yue; Li, Jing; Wang, Si-Qi; Jiang, Wei

    2018-05-14

    Innate lymphoid cells (ILCs) are defined as a distinct arm of innate immunity. According to their profile of secreted cytokines and lineage-specific transcriptional factors, ILCs can be categorized into the following three groups: group 1 ILCs (including natural killer (NK) cells and ILC1s) are dependent on T-bet and can produce interferon-γ; group 2 ILCs (ILC2s) are dependent on GATA3 and can produce type 2 cytokines, including interleukin (IL)-5 and IL-13; and, group 3 ILCs (including lymphoid tissue-like cells and ILC3s) are dependent on RORγt and can produce IL-22 and IL-17. Collaborative with adaptive immunity, ILCs are highly reactive innate effectors that promptly orchestrate immunity, inflammation and tissue repair. Dysregulation of ILCs might result in inflammatory disorders. Evidence regarding the function of intrahepatic ILCs is emerging from longitudinal studies of inflammatory liver diseases wherein they exert both physiological and pathological functions, including immune homeostasis, defenses and surveillance. Their overall effect on the liver depends on the balance of their proinflammatory and antiinflammatory populations, specific microenvironment and stages of immune responses. Here, we review the current data about ILCs in chronic liver disease progression, to reveal their roles in different stages as well as to discuss their therapeutic potency as intervention targets.

  12. LIVER AND BONE MARROW STEM/PROGENITOR CELLS AS REGULATORS OF REPARATIVE REGENERATION OF DAMAGED LIVER

    Directory of Open Access Journals (Sweden)

    А. V. Lundup

    2010-01-01

    Full Text Available In this review the modern information about effectiveness of liver insufficiency treatment by stem/ progenitor cells of liver (oval cells and bone marrow (hemopoietic cells and mesenchymal cells was presented. It is shown that medical action of these cells is referred on normalization of liver cell interaction and reorganization of processes of a reparative regeneration in damaged liver. It is believed that application of mesenchymal stromal cells from an autological bone marrow is the most perspective strategy. However, for definitive judgement about regenerative possibilities of the autological bone marrow cells it is necessary to carry out large-scale double blind clinical researches. 

  13. Heterogenic transplantation of bone marrow-derived rhesus macaque mesenchymal stem cells ameliorates liver fibrosis induced by carbon tetrachloride in mouse

    Directory of Open Access Journals (Sweden)

    Xufeng Fu

    2018-02-01

    Full Text Available Liver fibrosis is a disease that causes high morbidity and has become a major health problem. Liver fibrosis can lead to the end stage of liver diseases (livercirrhosisand hepatocellularcarcinoma. Currently, liver transplantation is the only effective treatment for end-stage liver disease. However, the shortage of organ donors, high cost of medical surgery, immunological rejection and transplantation complications severely hamper liver transplantation therapy. Mesenchymal stem cells (MSCs have been regarded as promising cells for clinical applications in stem cell therapy in the treatment of liver diseases due to their unique multipotent differentiation capacity, immunoregulation and paracrine effects. Although liver fibrosis improvements by MSC transplantation in preclinical experiments as well as clinical trials have been reported, the in vivo fate of MSCs after transportation and their therapeutic mechanisms remain unclear. In this present study, we isolated MSCs from the bone marrow of rhesus macaques. The cells exhibited typical MSC markers and could differentiate into chondrocytes, osteocytes, and adipocytes, which were not affected by labeling with enhanced green fluorescent protein (EGFP. The harvested MSCs respond to interferon-γ stimulation and have the ability to inhibit lymphocyte proliferation in vitro. EGFP-labeled MSCs (1 × 106 cells were transplanted into mice with carbon tetrachloride-induced liver fibrosis via tail vein injection. The ability of the heterogenic MSC infusion to ameliorate liver fibrosis in mice was evaluated by a blood plasma chemistry index, pathological examination and liver fibrosis-associated gene expression. Additionally, a small number of MSCs that homed and engrafted in the mouse liver tissues were evaluated by immunofluorescence analysis. Our results showed that the transplantation of heterogenic MSCs derived from monkey bone marrow can be used to treat liver fibrosis in the mouse model and that the

  14. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice

    International Nuclear Information System (INIS)

    Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna; Chowdhury, Abhijit; Boyer, James L.; Santra, Amal

    2011-01-01

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 μg/gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection of mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including α-smooth muscle actin, transforming growth factor-β1, PDGF-Rβ, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro(α) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis.

  15. [Jaundice and pathological liver values].

    Science.gov (United States)

    Schwarzenbach, Hans-Rudolf

    2013-06-05

    Jaundice corresponds to elevated bilirubin- levels, whereat one has to distinguish between direct and indirect serum-bilirubin. In the present Mini Review causes and differential diagnosis of jaundice are outlined. Ultrasound-diagnostic plays a major role in identifying intrahepatic or extrahepatic jaundice. Attention is given to the differential diagnosis of elevated liver enzymes in presence of jaundice, pointing out the distinction between hepatocellular and cholestatic parameters as well as the differentiation in acute or chronic increase. Moreover, the consequences of liver enzyme elevations including further diagnostic procedures, are highlighted. Finally, possibilities and limitations of modern diagnostic tests for liver fibrosis are briefly overviewed.

  16. New insights into molecular diagnostic pathology of primary liver cancer: Advances and challenges.

    Science.gov (United States)

    Cong, Wen-Ming; Wu, Meng-Chao

    2015-11-01

    Primary liver cancer (PLC) is one of the most common malignancies worldwide with increasing incidence and accounts for the third leading cause of cancer-related mortality. Traditional morphopathology primarily emphasizes qualitative diagnosis of PLC, which is not sufficient to resolve the major concern of increasing the long-term treatment efficacy of PLC in clinical management for the modern era. Since the beginning of the 21st century, molecular pathology has played an active role in the investigation of the evaluation of the metastatic potential of PLC, detection of drug targets, prediction of recurrence risks, analysis of clonal origins, evaluation of the malignancy trend of precancerous lesions, and determination of clinical prognosis. As a result, many new progresses have been obtained, and new strategies of molecular-pathological diagnosis have been formed. Moreover, the new types of pathobiological diagnosis indicator systems for PLC have been preliminarily established. These achievements provide valuable molecular pathology-based guide for clinical formulation of individualized therapy programs for PLC. This review article briefly summarizes some relevant progresses of molecular-pathological diagnosis of PLC from the perspective of clinical translational application other than basic experimental studies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Nuclear magnetic resonance (NMR): application to examine liver tissues during invasion of the Liver fluke in cattle

    International Nuclear Information System (INIS)

    Wranicz, M.; Podbielski, T.; Grabiec, S.

    1989-01-01

    The T 1 and T 2 relaxation times of protons of hydrogen in the liver parenchyma and biliary ducts in normal and parazitized by the Liver fluke cows were determined. A method of the NMR in which a lenght or relaxation time is an index was applied. The value of this index is characteristic for determined physiological and pathological states of cells and it reveals changes which developed in body cells. It was found that tissues of cows parazitized by the Liver fluke (parenchyma and biliary ducts) and healthy ones differ significantly by the lenght of relaxation times. Parazitized tissues show a longer relaxation time than tissues of normal cows. (author)

  18. Pathological features of liver tissue in autoantibody-positive chronic hepatitis C patients after plasmaphoresis

    Directory of Open Access Journals (Sweden)

    WU Huili

    2018-02-01

    Full Text Available ObjectiveTo investigate the detection rate and features of autoantibodies in chronic hepatitis C (CHC patients after plasmaphoresis, as well as the liver pathological features of autoantibody-positive CHC patients. MethodsA total of 120 patients who were infected with hepatitis C virus after plasmaphoresis in the Hospital of Dingxi County and Dingxi Hospital of Infectious Diseases from January 1992 to December 1995 were selected as test group; 11 healthy people from the same region were selected as control group. Autoantibody detection was performed for the 120 CHC patients, and liver pathological features were compared between the autoantibody-positive group(n=44 and autoantibody-negative group(n=76 of these patients. The t test was used for comparison of continuous data, and the chi-square test was used for comparison of categorical data. ResultsOf all 120 CHC patients who underwent plasmaphoresis, 44 (36.7% were found to have serum autoantibodies, with antinuclear antibodies as the most common type (21.7%. Compared with the autoantibody-negative group, the autoantibody-positive group had significantly higher scores of focal necrosis inside the hepatic lobules (211±0.88 vs 164±0.88, t=2.349,P=0.021 and ductular reaction inside the portal area (1.86±0.71 vs 1.13±0.66, t=4.217,P<0.001, as well as a significantly higher rate of interlobular bile duct injury (86.4% vs 55.3%, χ2=12.129,P=0.001. There were no significant differences between the two groups in the degree of liver fibrosis and hepatic steatosis (both P>0.05. ConclusionAutoantibody-positive are common in CHC patients after plasmaphoresis, and autoantibody-positive patients tend to have more severe injuries of the liver.

  19. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids.

    Directory of Open Access Journals (Sweden)

    Cyrill Géraud

    Full Text Available Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ, i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

  20. Tuberculosis and hepatic steatosis are prevalent liver pathology findings among HIV-infected patients in South Africa.

    Directory of Open Access Journals (Sweden)

    Christopher J Hoffmann

    Full Text Available Liver disease epidemiology in sub-Saharan Africa has shifted as a result of HIV and the increased use of antiretroviral therapy leading to a need for updated data on common causes of liver disease. We retrospectively reviewed records from all hospitalized patients who had liver biopsy at a single hospital in South Africa from 2001 to 2009 and compared diagnosis by HIV status. During the period of study 262 patients had liver biopsy, 108 (41% were HIV-infected, 25 (10% were HIV-sero-negative, and 129 (49% had unknown or unrecorded HIV status. Overall 81% of biopsies provided additional diagnostic data. Malignancy was the most common finding reported on 56 (21% biopsies followed by granuloma or TB, hepatic steatosis, and fibrosis or cirrhosis. HIV-infected patients were more likely to have granulomas and steatosis. Half of patients with granulomas were already on TB treatment, suggesting paradoxical reactions or drug induced liver injury may have been important causes of liver inflammation among these patients. We note that TB, paradoxical reactions during TB treatment, possible drug induced liver injury, and hepatic steatosis are important causes of liver pathology among HIV-infected hospitalized patients with unclear etiology of liver disease after initial assessment. Among HIV sero-negative patients, malignancy was the major cause of liver disease. Our findings re-enforce the importance of TB as a diagnosis among HIV-infected individuals.

  1. Liver cell-targeted delivery of therapeutic molecules.

    Science.gov (United States)

    Kang, Jeong-Hun; Toita, Riki; Murata, Masaharu

    2016-01-01

    The liver is the largest internal organ in mammals and is involved in metabolism, detoxification, synthesis of proteins and lipids, secretion of cytokines and growth factors and immune/inflammatory responses. Hepatitis, alcoholic or non-alcoholic liver disease, hepatocellular carcinoma, hepatic veno-occlusive disease, and liver fibrosis and cirrhosis are the most common liver diseases. Safe and efficient delivery of therapeutic molecules (drugs, genes or proteins) into the liver is very important to increase the clinical efficacy of these molecules and to reduce their side effects in other organs. Several liver cell-targeted delivery systems have been developed and tested in vivo or ex vivo/in vitro. In this review, we discuss the literature concerning liver cell-targeted delivery systems, with a particular emphasis on the results of in vivo studies.

  2. Liver involvement in Langerhans cell histiocytosis

    International Nuclear Information System (INIS)

    Wong, Adelaine; Ortiz-Neira, Clara L.; Abou Reslan, Walid; Kaura, Deepak; Sharon, Raphael; Anderson, Ronald; Pinto-Rojas, Alfredo

    2006-01-01

    Liver involvement in Langerhans cell histiocytosis (LCH) typically presents with hepatomegaly and other signs of liver dysfunction. We present an 11-month-old child having only minimally elevated liver enzymes as an indication of liver involvement. Using sonography as the initial diagnostic tool followed by MRI, LCH of the liver was revealed. A review of sonographic, CT, MRI and MR cholangiopancreatography findings in liver LCH is presented. We recommend that physicians consider sonography and MRI screening for liver involvement in patients with newly diagnosed LCH, as periportal involvement may be present with little or no liver function abnormality present, as in this patient. (orig.)

  3. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    Directory of Open Access Journals (Sweden)

    Wan Nurlina Wan Yahya

    2014-07-01

    Full Text Available Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration.

  4. Production of factor VIII by human liver sinusoidal endothelial cells transplanted in immunodeficient uPA mice.

    Directory of Open Access Journals (Sweden)

    Marina E Fomin

    Full Text Available Liver sinusoidal endothelial cells (LSECs form a semi-permeable barrier between parenchymal hepatocytes and the blood. LSECs participate in liver metabolism, clearance of pathological agents, immunological responses, architectural maintenance of the liver and synthesis of growth factors and cytokines. LSECs also play an important role in coagulation through the synthesis of Factor VIII (FVIII. Herein, we phenotypically define human LSECs isolated from fetal liver using flow cytometry and immunofluorescence microscopy. Isolated LSECs were cultured and shown to express endothelial markers and markers specific for the LSEC lineage. LSECs were also shown to engraft the liver when human fetal liver cells were transplanted into immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA transgene (uPA-NOG mice. Engrafted cells expressed human Factor VIII at levels approaching those found in human plasma. We also demonstrate engraftment of adult LSECs, as well as hepatocytes, transplanted into uPA-NOG mice. We propose that overexpression of uPA provides beneficial conditions for LSEC engraftment due to elevated expression of the angiogenic cytokine, vascular endothelial growth factor. This work provides a detailed characterization of human midgestation LSECs, thereby providing the means for their purification and culture based on their expression of CD14 and CD32 as well as a lack of CD45 expression. The uPA-NOG mouse is shown to be a permissive host for human LSECs and adult hepatocytes, but not fetal hepatoblasts. Thus, these mice provide a useful model system to study these cell types in vivo. Demonstration of human FVIII production by transplanted LSECs encourages further pursuit of LSEC transplantation as a cellular therapy for the treatment of hemophilia A.

  5. Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques

    International Nuclear Information System (INIS)

    Ahsan, Muhammad H.; Gill, Amy F.; Alvarez, Xavier; Lackner, Andrew A.; Veazey, Ronald S.

    2013-01-01

    Since the liver drains antigens from the intestinal tract, and since the intestinal tract is a major site of viral replication, we examined the dynamics of liver macrophages (Kupffer cells) throughout SIV infection. Absolute numbers of Kupffer cells increased in the livers in acute infection, and in animals with AIDS. Significantly higher percentages of proliferating (BrdU+) Kupffer cells were detected in acute infection and in AIDS with similar trends in blood monocytes. Significantly higher percentages of apoptotic (AC3+) Kupffer cells were also found in acute and AIDS stages. However, productively infected cells were not detected in liver of 41/42 animals examined, despite abundant infected cells in gut and lymph nodes of all animals. Increased rates of Kupffer cell proliferation resulting in an increase in Kupffer cells without productive infection indicate SIV infection affects Kupffer cells, but the liver does not appear to be a major site of productive viral replication. - Highlights: • Kupffer cells increase in the liver of SIV-infected macaques. • Increased proliferation and apoptosis of Kupffer cells occurs in SIV infection. • Productively infected cells are rarely detected in the liver. • The liver is not a major site for SIV replication

  6. Fraction from human and rat liver which is inhibitory for proliferation of liver cells.

    Science.gov (United States)

    Chen, T S; Ottenweller, J; Luke, A; Santos, S; Keeting, P; Cuy, R; Lea, M A

    1989-01-01

    A comparative study was undertaken with human and rat liver of a fraction reported to have growth inhibitory activity when prepared from rat liver. Fractions which were soluble in 70% ethanol and insoluble in 87% ethanol were prepared from liver cytosols. Electrophoretic analysis under denaturing conditions indicated that there were several quantitative or qualitative differences in the fractions from the two species. Fractions from both human and rat liver were found to be inhibitory for the incorporation of 3H-thymidine into DNA of foetal chick hepatocytes. Under conditions in which the rat fraction inhibited precursor incorporation into DNA of rat liver epithelial cells there was not a significant inhibitory effect with the fraction from human liver. DNA synthesis in a rat hepatoma cell line was not significantly inhibited by preparations from either species. The data suggested that corresponding fractions from both rat and human liver could have inhibitory effects on precursor incorporation into DNA but the magnitude of the effects and target cell specificity may differ.

  7. New therapeutic strategies for canine liver disease; Growth factors and liver progenitor cells

    NARCIS (Netherlands)

    Arends, B.

    2008-01-01

    The liver has the unique capacity to regulate its mass after loss of functional liver cells due to liver disease, injury, and/or toxicity. Unfortunately, in the course of chronic liver disease this meticulously regulated regeneration process is imbalanced resulting in a decreased regenerative

  8. Generation and characterization of rat liver stem cell lines and their engraftment in a rat model of liver failure

    Science.gov (United States)

    Kuijk, Ewart W.; Rasmussen, Shauna; Blokzijl, Francis; Huch, Meritxell; Gehart, Helmuth; Toonen, Pim; Begthel, Harry; Clevers, Hans; Geurts, Aron M.; Cuppen, Edwin

    2016-01-01

    The rat is an important model for liver regeneration. However, there is no in vitro culture system that can capture the massive proliferation that can be observed after partial hepatectomy in rats. We here describe the generation of rat liver stem cell lines. Rat liver stem cells, which grow as cystic organoids, were characterized by high expression of the stem cell marker Lgr5, by the expression of liver progenitor and duct markers, and by low expression of hepatocyte markers, oval cell markers, and stellate cell markers. Prolonged cultures of rat liver organoids depended on high levels of WNT-signalling and the inhibition of BMP-signaling. Upon transplantation of clonal lines to a Fah−/− Il2rg−/− rat model of liver failure, the rat liver stem cells engrafted into the host liver where they differentiated into areas with FAH and Albumin positive hepatocytes. Rat liver stem cell lines hold potential as consistent reliable cell sources for pharmacological, toxicological or metabolic studies. In addition, rat liver stem cell lines may contribute to the development of regenerative medicine in liver disease. To our knowledge, the here described liver stem cell lines represent the first organoid culture system in the rat. PMID:26915950

  9. Stem Cells Transplantation in the Treatment of Patients with Liver Failure.

    Science.gov (United States)

    Tao, Ya-Chao; Wang, Meng-Lan; Chen, En-Qiang; Tang, Hong

    2018-02-23

    Liver failure is a life-threatening liver disease encompassing severe acute deterioration of liver function. Emergency liver transplantation is the only curative treatment for liver failure, but is restricted by the severe shortage of organ donors. Stem cell, including embroyonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells and hepatic progenitor cells, have capacity to proliferate and differentiate and could be used in a variety of liver diseases including hereditary liver diseases, cirrhosis and liver failure. We summarized the basic experimental and clinical advances of stem cell transplantation in liver failure treatment, and also discussed the advantages and disadvantage of different stem cells subtype in this field, aiming to provide a perspective on the stem cell-based therapy for liver failure. Stem cells, especially mesenchymal stem cells (mainly low immunogenicity and paracrine characteristics) and induced pluripotent stem cells (generation of desired cell type from somatic cell), are feasible candidates for cell therapy in the treatment of liver failure, but there are some drawbacks remaining to be resolved, such as low engraftment, cryotpreservation methods and tumorigenesis. Stem cell transplantation is a promising but challenging strategy and paves a new way for curing liver failure. But more efforts need to be made to overcome problems before this new strategy could be safely and effectively applied to humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Molecular mechanism of intracellular lipid accumulation: Suppressive effect of PycnogenolR in liver cells

    Directory of Open Access Journals (Sweden)

    Shoichiro Ikuyama

    2013-09-01

    Full Text Available ABSTRACTCells are physiologically ready to accumulate lipids such as triacylglycerides in the cytoplasm.Five classes of perilipin (PLIN family proteins are known to be involved in the process of intracellular lipid accumulation. PLIN2 is expressed ubiquitously including adipocytes, hepatocytes and macrophages. Over-expression of PLIN2 is demonstrated in the lesions of fatty liver diseases and atherosclerosis. Suppression of PLIN2 expression prevents from developing these pathological conditions in animal models, suggesting that PLIN2 could be a therapeutic target molecule for excessive intracellular lipid accumulation which leads to various metabolic derangements. The PLIN2 gene promoter has two important cis-acting elements in close proximity:AP-1 element which mediates inflammatory signals and PPRE which mediates free fatty acid effect. In NMuLi mouse liver cells, FFA such as oleic acid requires both functional AP-1 and PPRE simultaneously to stimulate the promoter activity, indicating the presence of intimate interaction of inflammatory and metabolic signals on this gene. PycnogenolR, French maritime pine bark extracts, suppressed the oleic acid-induced PLIN2 expression and lipid accumulation in NMuLi cells. We found that PycnogenolR did not suppress the PLIN2 promoter activity or AP-1 binding to DNA. Instead, PycnogenolRfacilitates the PLIN2 mRNA degradation, leading to suppression of lipid accumulation. This effect seems to be independent of antioxidant effect of PycnogenolR.We raise the idea that PLIN2 is a putative target molecule for prevention of pathological condition induced by excessive lipid accumulation, and this class of natural compounds could be putative therapeutic modalities.Key words: PycnogenolR, lipid droplet, perilipin, fatty liver disease

  11. Schistosoma liver disease; a clinico- pathological study

    International Nuclear Information System (INIS)

    Ali, Suzan Ibrahim

    1996-05-01

    Schistomiasis mansoni infection is a leading cause of severe morbidity in the Sudan. Most of the morbidity and mortality are due to the development of hepatic periportal fibrosis and consequent portal hypertension and bleeding varices. This is a hospital-based, retro-prospective study in the period from 1980-1995. Liver disease (i.e. periportal fibrosis) and its clinical presentation were studied in relation to the degree of fibrosis and other pathological, haematological, and biochemical parameters. The study identified the common hospital presenting symptoms, assessed factors that influence pathogenesis of periportal fibrosis and its severity, as well as, defined criteria which predict those patients who are at risk of bleeding. 898 patients were included. The common presenting symptoms were left hypochondrial pain, haematemesis and enlarged spleen (Towal). Males were found to have an increase prevalence of periportal fibrosis. Splenomegaly was found in almost all patients of the study of different age groups, but spleen size didn't show any significant difference between bleeders and non-bleeders (p=0.28). A sharp rise in the prevalence of bleeding was noted after the age of 16 years. Upper gastrointestinal bleeding was found to be more common

  12. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology.

    Directory of Open Access Journals (Sweden)

    Wen Liang

    Full Text Available The recently developed histological scoring system for non-alcoholic fatty liver disease (NAFLD by the NASH Clinical Research Network (NASH-CRN has been widely used in clinical settings, but is increasingly employed in preclinical research as well. However, it has not been systematically analyzed whether the human scoring system can directly be converted to preclinical rodent models. To analyze this, we systematically compared human NAFLD liver pathology, using human liver biopsies, with liver pathology of several NAFLD mouse models. Based upon the features pertaining to mouse NAFLD, we aimed at establishing a modified generic scoring system that is applicable to broad spectrum of rodent models.The histopathology of NAFLD was analyzed in several different mouse models of NAFLD to define generic criteria for histological assessment (preclinical scoring system. For validation of this scoring system, 36 slides of mouse livers, covering the whole spectrum of NAFLD, were blindly analyzed by ten observers. Additionally, the livers were blindly scored by one observer during two separate assessments longer than 3 months apart.The criteria macrovesicular steatosis, microvesicular steatosis, hepatocellular hypertrophy, inflammation and fibrosis were generally applicable to rodent NAFLD. The inter-observer reproducibility (evaluated using the Intraclass Correlation Coefficient between the ten observers was high for the analysis of macrovesicular steatosis and microvesicular steatosis (ICC = 0.784 and 0.776, all p<0.001, respectively and moderate for the analysis of hypertrophy and inflammation (ICC = 0.685 and 0.650, all p<0.001, respectively. The intra-observer reproducibility between the different observations of one observer was high for the analysis of macrovesicular steatosis, microvesicular steatosis and hypertrophy (ICC = 0.871, 0.871 and 0.896, all p<0.001, respectively and very high for the analysis of inflammation (ICC = 0.931, p

  13. Blockade of PD-1 Signaling Enhances Th2 Cell Responses and Aggravates Liver Immunopathology in Mice with Schistosomiasis japonica.

    Directory of Open Access Journals (Sweden)

    Sha Zhou

    2016-10-01

    Full Text Available More than 220 million people worldwide are chronically infected with schistosomes, causing severe disease or even death. The major pathological damage occurring in schistosomiasis is attributable to the granulomatous inflammatory response and liver fibrosis induced by schistosome eggs. The inflammatory response is tightly controlled and parallels immunosuppressive regulation, constantly maintaining immune homeostasis and limiting excessive immunopathologic damage in important host organs. It is well known that the activation of programmed death 1 (PD-1 signaling causes a significant suppression of T cell function. However, the roles of PD-1 signaling in modulating CD4+ T cell responses and immunopathology during schistosome infection, have yet to be defined.Here, we show that PD-1 is upregulated in CD4+ T cells in Schistosoma japonicum (S. japonicum-infected patients. We also show the upregulation of PD-1 expression in CD4+ T cells in the spleens, mesenteric lymph nodes, and livers of mice with S. japonicum infection. Finally, we found that the blockade of PD-1 signaling enhanced CD4+ T helper 2 (Th2 cell responses and led to more severe liver immunopathology in mice with S. japonicum infection, without a reduction of egg production or deposition in the host liver.Overall, our study suggests that PD-1 signaling is specifically induced to control Th2-associated inflammatory responses during schistosome infection and is beneficial to the development of PD-1-based control of liver immunopathology.

  14. LABILE IRON IN CELLS AND BODY FLUIDS . Physiology, Pathology and Pharmacology

    Directory of Open Access Journals (Sweden)

    Zvi Ioav Cabantchik

    2014-03-01

    Full Text Available In living systems iron appears predominantly associated with proteins, but can also be detected in forms referred as labile iron, which denotes the combined redox properties of iron and its amenability to exchange between ligands, including chelators. The labile cell iron (LCI composition varies with metal concentration and substances with chelating groups but also with pH and the redox potential. Although physiologically in the lower µM range, LCI plays a key role in cell iron economy as cross-roads of metabolic pathways. LCI levels are continually regulated by an iron-responsive machinery that balances iron uptake versus deposition into ferritin. However, LCI rises aberrantly in some cell types due to faulty cell utilization pathways or infiltration by pathological iron forms that are found in hemosiderotic plasma. As LCI attains pathological levels, it can catalyze reactive O species (ROS formation that, at particular threshold, can surpass cellular anti-oxidant capacities and seriously damage its constituents. While in normal plasma and interstitial fluids, virtually all iron is securely carried by circulating transferrin (that renders iron essentially non-labile, in systemic iron overload (IO, the total plasma iron binding capacity is often surpassed by a massive iron influx from hyperabsorptive gut or from erythrocyte overburdened spleen and/or liver. As plasma transferrin approaches iron saturation, labile plasma iron (LPI emerges in forms that can infiltrate cells by unregulated routes and raise LCI to toxic levels. Despite the limited knowledge available on LPI speciation in different types and degrees of iron overload, LPI measurements can be and are in fact used for identifying systemic IO and for initiating/adjusting chelation regimens to attain full-day LPI protection. A recent application of labile iron assay is the detection of labile components in iv iron formulations per se as well as in plasma (LPI following parenteral iron

  15. Successful Sequential Liver and Hematopoietic Stem Cell Transplantation in a Child With CD40 Ligand Deficiency and Cryptosporidium-Induced Liver Cirrhosis.

    Science.gov (United States)

    Quarello, Paola; Tandoi, Francesco; Carraro, Francesca; Vassallo, Elena; Pinon, Michele; Romagnoli, Renato; David, Ezio; Dell Olio, Dominic; Salizzoni, Mauro; Fagioli, Franca; Calvo, Pier Luigi

    2018-05-01

    Hematopoietic stem cell transplantation (HSCT) is curative in patients with primary immunodeficiencies. However, pre-HSCT conditioning entails unacceptably high risks if the liver is compromised. The presence of a recurrent opportunistic infection affecting the biliary tree and determining liver cirrhosis with portal hypertension posed particular decisional difficulties in a 7-year-old child with X-linked CD40-ligand deficiency. We aim at adding to the scanty experience available on such rare cases, as successful management with sequential liver transplantation (LT) and HSCT has been reported in detail only in 1 young adult to date. A closely sequential strategy, with a surgical complication-free LT, followed by reduced-intensity conditioning, allowed HSCT to be performed only one month after LT, preventing Cryptosporidium parvum recolonization of the liver graft. Combined sequential LT and HSCT resolved the cirrhotic evolution and corrected the immunodeficiency so that the infection responsible for the progressive sclerosing cholangitis did not recur. Hopefully, this report of the successful resolution of a potentially fatal combination of immunodeficiency and chronic opportunistic infection with end-stage organ damage in a child will encourage others to adapt a sequential transplant approach to this highly complex pathology. However, caution is to be exercised to carefully balance the risks intrinsic to transplant surgery and immunosuppression in primary immunodeficiencies.

  16. [Recent developments in biopsy diagnosis of early and undefined liver tumors].

    Science.gov (United States)

    Longerich, T; Schirmacher, P

    2009-01-01

    Biopsy diagnosis of early and highly differentiated liver tumors is difficult and complex. Modern pathology has met this challenge by several different means; elaborate morphological algorithms and novel immunohistological markers support the differential diagnosis of highly differentiated HCC and a new, predictive molecular pathological and histological classification of liver cell adenoma was developed. By these new diagnostic tools together with the so-called 'matrix diagnosis' a reliable diagnostic classification is now feasible in the vast majority of these difficult cases.

  17. Cytokines, hepatic cell profiling and cell interactions during bone marrow cell therapy for liver fibrosis in cholestatic mice.

    Directory of Open Access Journals (Sweden)

    Daphne Pinheiro

    Full Text Available Bone marrow cells (BMC migrate to the injured liver after transplantation, contributing to regeneration through multiple pathways, but mechanisms involved are unclear. This work aimed to study BMC migration, characterize cytokine profile, cell populations and proliferation in mice with liver fibrosis transplanted with GFP+ BMC. Confocal microscopy analysis showed GFP+ BMC near regions expressing HGF and SDF-1 in the fibrotic liver. Impaired liver cell proliferation in fibrotic groups was restored after BMC transplantation. Regarding total cell populations, there was a significant reduction in CD68+ cells and increased Ly6G+ cells in transplanted fibrotic group. BMC contributed to the total populations of CD144, CD11b and Ly6G cells in the fibrotic liver, related to an increment of anti-fibrotic cytokines (IL-10, IL-13, IFN-γ and HGF and reduction of pro-inflammatory cytokines (IL-17A and IL-6. Therefore, HGF and SDF-1 may represent important chemoattractants for transplanted BMC in the injured liver, where these cells can give rise to populations of extrahepatic macrophages, neutrophils and endothelial progenitor cells that can interact synergistically with other liver cells towards the modulation of an anti-fibrotic cytokine profile promoting the onset of liver regeneration.

  18. Uptake and clearance of plutonium-238 from intact liver and liver cells transplanted into fat pads of F344/N rats

    International Nuclear Information System (INIS)

    Brooks, A.L.; Guilmette, R.A.; Hahn, F.F.; Jirtle, R.L.

    1985-01-01

    An understanding of the role of liver cells and the intact liver in plutonium biokinetics is needed. Liver cells were isolated from rats, injected into fat pads of recipient rats, and allowed 21 days to form cell colonies. Rats then received a single intraperitoneal injection of 1 μCi 238 Pu-citrate and were serially sacrificed. Uptake, retention, and distribution of Pu in intact liver and in liver cells growing in fat pads were determined. Intact liver cells took up about twice as much 238 Pu as liver cells transplanted into fat pads. However, the retention kinetics of Pu were similar for both the liver cells in the fat pads and the intact liver cells when the retention was expressed as activity per cell. 4 references, 1 figure, 1 table

  19. Procalcitonin Impairs Liver Cell Viability and Function In Vitro: A Potential New Mechanism of Liver Dysfunction and Failure during Sepsis?

    Directory of Open Access Journals (Sweden)

    Martin Sauer

    2017-01-01

    Full Text Available Purpose. Liver dysfunction and failure are severe complications of sepsis and result in poor outcome and increased mortality. The underlying pathologic mechanisms of hepatocyte dysfunction and necrosis during sepsis are only incompletely understood. Here, we investigated whether procalcitonin, a biomarker of sepsis, modulates liver cell function and viability. Materials and Methods. Employing a previously characterized and patented biosensor system evaluating hepatocyte toxicity in vitro, human hepatocellular carcinoma cells (HepG2/C3A were exposed to 0.01–50 ng/mL procalcitonin for 2×72 h and evaluated for proliferation, necrosis, metabolic activity, cellular integrity, microalbumin synthesis, and detoxification capacity. Acetaminophen served as positive control. For further standardization, procalcitonin effects were confirmed in a cellular toxicology assay panel employing L929 fibroblasts. Data were analyzed using ANOVA/Tukey’s test. Results. Already at concentrations as low as 0.25 ng/mL, procalcitonin induced HepG2/C3A necrosis (P<0.05 and reduced metabolic activity, cellular integrity, synthesis, and detoxification capacity (all P<0.001. Comparable effects were obtained employing L929 fibroblasts. Conclusion. We provide evidence for procalcitonin to directly impair function and viability of human hepatocytes and exert general cytotoxicity in vitro. Therapeutical targeting of procalcitonin could thus display a novel approach to reduce incidence of liver dysfunction and failure during sepsis and lower morbidity and mortality of septic patients.

  20. Fluorescent cell-traceable dexamethasone-loaded liposomes for the treatment of inflammatory liver diseases

    NARCIS (Netherlands)

    Bartneck, M.; Scheyda, K.M.; Warzecha, K.T.; Rizzo, L.Y.; Hittatiya, K.; Luedde, T.; Storm, Gerrit; Trautwein, C.; Lammers, Twan Gerardus Gertudis Maria; Tacke, F.

    2015-01-01

    Liposomes are routinely used carrier materials for delivering drug molecules to pathological sites. Besides in tumors and inflammatory sites, liposomes also strongly accumulate in liver and spleen. The potential of using liposomes to treat acute and chronic liver disorders, however, has not yet been

  1. Fluorescent cell-traceable dexamethasone-loaded liposomes for the treatment of inflammatory liver diseases

    NARCIS (Netherlands)

    Bartneck, Matthias; Scheyda, Katharina M; Warzecha, Klaudia T; Rizzo, Larissa Y; Hittatiya, Kanishka; Luedde, Tom; Storm, G; Trautwein, Christian; Lammers, Twan; Tacke, Frank

    Liposomes are routinely used carrier materials for delivering drug molecules to pathological sites. Besides in tumors and inflammatory sites, liposomes also strongly accumulate in liver and spleen. The potential of using liposomes to treat acute and chronic liver disorders, however, has not yet been

  2. Characterization of genetically engineered mouse hepatoma cells with inducible liver functions by overexpression of liver-enriched transcription factors.

    Science.gov (United States)

    Yamamoto, Hideaki; Tonello, Jane Marie; Sambuichi, Takanori; Kawabe, Yoshinori; Ito, Akira; Kamihira, Masamichi

    2018-01-01

    New cell sources for the research and therapy of organ failure could significantly alleviate the shortage of donor livers that are available to patients who suffer from liver disease. Liver carcinoma derived cells, or hepatoma cells, are the ideal cells for developing bioartificial liver systems. Such cancerous liver cells are easy to prepare in large quantities and can be maintained over long periods under standard culture conditions, unlike primary hepatocytes. However, hepatoma cells possess only a fraction of the functions of primary hepatocytes. In a previous study, by transducing cells with liver-enriched transcription factors that could be inducibly overexpressed-hepatocyte nuclear factor (HNF)1α, HNF1β, HNF3β [FOXA2], HNF4α, HNF6, CCAAT/enhancer binding protein (C/EBP)α, C/EBPβ and C/EBPγ-we created mouse hepatoma cells with high liver-specific gene expression called the Hepa/8F5 cell line. In the present study, we performed functional and genetic analyses to characterize the Hepa/8F5 cell line. Further, in three-dimensional cultures, the function of these cells improved significantly compared to parental cells. Ultimately, these cells might become a new resource that can be used in basic and applied hepatic research. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Liver-resident NK cells and their potential functions.

    Science.gov (United States)

    Peng, Hui; Sun, Rui

    2017-09-18

    Natural killer (NK) cells represent a heterogeneous population of innate lymphocytes with phenotypically and functionally distinct subsets. In particular, recent studies have identified a unique subset of NK cells residing within the liver that are maintained as tissue-resident cells, confer antigen-specific memory responses and exhibit different phenotypical and developmental characteristics compared with conventional NK (cNK) cells. These findings have encouraged researchers to uncover tissue-resident NK cells at other sites, and detailed analyses have revealed that these tissue-resident NK cells share many similarities with liver-resident NK cells and tissue-resident memory T cells. Here, we present a brief historical perspective on the discovery of liver-resident NK cells and discuss their relationship to cNK cells and other emerging NK cell subsets and their potential functions.Cellular &Molecular Immunology advance online publication, 18 September 2017; doi:10.1038/cmi.2017.72.

  4. Human Liver Cells Expressing Albumin and Mesenchymal Characteristics Give Rise to Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Irit Meivar-Levy

    2011-01-01

    Full Text Available Activation of the pancreatic lineage in the liver has been suggested as a potential autologous cell replacement therapy for diabetic patients. Transcription factors-induced liver-to-pancreas reprogramming has been demonstrated in numerous species both in vivo and in vitro. However, human-derived liver cells capable of acquiring the alternate pancreatic repertoire have never been characterized. It is yet unknown whether hepatic-like stem cells or rather adult liver cells give rise to insulin-producing cells. Using an in vitro experimental system, we demonstrate that proliferating adherent human liver cells acquire mesenchymal-like characteristics and a considerable level of cellular plasticity. However, using a lineage-tracing approach, we demonstrate that insulin-producing cells are primarily generated in cells enriched for adult hepatic markers that coexpress both albumin and mesenchymal markers. Taken together, our data suggest that adult human hepatic tissue retains a substantial level of developmental plasticity, which could be exploited in regenerative medicine approaches.

  5. Clinical evaluation of computed tomography in various liver diseases with diffuse pathological alteration

    International Nuclear Information System (INIS)

    Toyoda, Eiichi

    1983-01-01

    Twenty seven cases of acute hepatitis 120 of chronic hepatitis 133 of liver cirrhosis 79 of fatty liver 28 of alcoholic liver injury 5 of intrahepatic cholestasis 22 of obstructive jaundice and 100 normal adults were studied. EMI CT 5005 whole body scanner was used to obtain scan of the liver and spleen, and CT number of them was measured in EMI units, so L/S ratio was calculated by dividing both EMI number. In the patients with obesity, the EMI number of the liver and/or spleen were higher than normal controls. In acute hepatitis, EMI number of the liver, spleen and L/S ratio were no significant differences compared with controls. In chronic hepatitis inactive and active type, EMI number of the liver and spleen were no significant differences between chronic hepatitis and controls, but L/S ratio was lower than that of controls. In cirrhosis of the liver, EMI number of the liver and L/S ratio were lower than that of controls, but EMI number of the spleen had no significant differences compared with controls. In patients with fatty liver, EMI number of the liver and L/S ratio were lower than any other diffuse liver diseases. In alcoholic liver injury had no significant differences from normal controls in liver EMI number, spleen EMI number and L/S ratio. In intrahepatic cholestsis, there was weak inverse corelation between liver EMI number and serum total bilirubin, and in obstructive jaundice strong inverse corelation was seen. In diffuse liver diseases, fatty infiltration, liver cell necrosis, fibrosis or jaundice may decrease the EMI number of the liver and/or L/S ratio, but except for fatty liver, it seems difficult to diagnose the diffuse liver diseases by CT scanner. (J.P.N.)

  6. Long live the liver: immunohistochemical and stereological study of hepatocytes, liver sinusoidal endothelial cells, Kupffer cells and hepatic stellate cells of male and female rats throughout ageing.

    Science.gov (United States)

    Marcos, Ricardo; Correia-Gomes, Carla

    2016-12-01

    Male/female differences in enzyme activity and gene expression in the liver are known to be attenuated with ageing. Nevertheless, the effect of ageing on liver structure and quantitative cell morphology remains unknown. Male and female Wistar rats aged 2, 6, 12 and 18 months were examined by means of stereological techniques and immunohistochemical tagging of hepatocytes (HEP), liver sinusoidal endothelial cells (LSEC), Kupffer cells (KC) and hepatic stellate cells (HSC) in order to assess the total number and number per gram of these cells throughout life. The mean cell volume of HEP and HSC, the lobular position and the collagen content of the liver were also evaluated with stereological techniques. The number per gram of HSC was similar for both genders and was maintained throughout ageing. The mean volume of HSC was also conserved but differences in the cell body and lobular location were observed. Statistically significant gender differences in HEP were noted in young rats (females had smaller and more binucleated HEP) but were attenuated with ageing. The same occurred for KC and LSEC, since the higher number per gram in young females disappeared in older animals. Liver collagen increased with ageing but only in males. Thus, the numbers of these four cell types are related throughout ageing, with well-defined cell ratios. The shape and lobular position of HSC change with ageing in both males and females. Gender dimorphism in HEP, KC and LSEC of young rat liver disappears with ageing.

  7. Bioengineered Liver Models for Drug Testing and Cell Differentiation Studies

    Directory of Open Access Journals (Sweden)

    Gregory H. Underhill

    2018-01-01

    Full Text Available In vitro models of the human liver are important for the following: (1 mitigating the risk of drug-induced liver injury to human beings, (2 modeling human liver diseases, (3 elucidating the role of single and combinatorial microenvironmental cues on liver cell function, and (4 enabling cell-based therapies in the clinic. Methods to isolate and culture primary human hepatocytes (PHHs, the gold standard for building human liver models, were developed several decades ago; however, PHHs show a precipitous decline in phenotypic functions in 2-dimensional extracellular matrix–coated conventional culture formats, which does not allow chronic treatment with drugs and other stimuli. The development of several engineering tools, such as cellular microarrays, protein micropatterning, microfluidics, biomaterial scaffolds, and bioprinting, now allow precise control over the cellular microenvironment for enhancing the function of both PHHs and induced pluripotent stem cell–derived human hepatocyte-like cells; long-term (4+ weeks stabilization of hepatocellular function typically requires co-cultivation with liver-derived or non–liver-derived nonparenchymal cell types. In addition, the recent development of liver organoid culture systems can provide a strategy for the enhanced expansion of therapeutically relevant cell types. Here, we discuss advances in engineering approaches for constructing in vitro human liver models that have utility in drug screening and for determining microenvironmental determinants of liver cell differentiation/function. Design features and validation data of representative models are presented to highlight major trends followed by the discussion of pending issues that need to be addressed. Overall, bioengineered liver models have significantly advanced our understanding of liver function and injury, which will prove useful for drug development and ultimately cell-based therapies.

  8. T cell progenitors in the mouse fetal liver

    International Nuclear Information System (INIS)

    Rabinowich, H.; Umiel, T.; Globerson, A.

    1983-01-01

    Fourteen-day mouse fetal liver was found to contain cells capable of giving rise to T as well as B cell functions. The experimental system consisted of congenic C3H/DiSn and (C3H/DiSn X C3H.SW)F1 lethally irradiated (900 R) mice reconstituted with C3H/DiSn fetal liver or bone marrow cells. Assays included thyroid allograft rejection as well as in vitro measurement of reactivity to phytohemagglutinin (PHA) and concanavalin A (Con A) and in a mixed lymphocyte culture (MLC) system in spleen, lymph node, and thymus cells. The fetal liver chimeras were found to become as capable as the bone marrow chimeras in responding in these various assays. The T cell responses lagged behind the responses to the B cell mitogens dextran sulfate (DXS) and lipopolysaccharide (LPS) (30 days after reconstitution, as compared with 14 days for DXS and 21 for LPS). The reacting cells were of the donor genotype, as revealed after treatment with C3H/DiSn (H-2k) anti-C3H.SW (H-2b) congenic sera. T cell responses were not manifest in thymectomized (TX) chimeras. Hence, the liver seems to contain cells capable of developing into T cell lineages in a thymus-dependent process

  9. CT examination of segmental liver transplants from living donors. Anatomy and pathological findings

    International Nuclear Information System (INIS)

    Krupski, G.; Maas, R.; Rogiers, X.; Burdelski, M.; Broelsch, C.E.

    1994-01-01

    A lack of suitable pediatric donors and significantly better results than conventional transplantation have contributed to the steady increase in the number of segmental liver transplants from living donors throughout the world. This article describes the diagnostic impact of axial CT scans following transplantation in a retrospective evaluation of 18 CT examinations of 10 children with an average age of two years. Both spiral and conventional CT scans permit precise visualization of the postoperative anatomy of the upper abdomen that is more distinct than the images provided by ultrasonic scans. Thus, CT scans better facilitate detection of pathological findings. In 60% of the patients (67% of the examinations), the CT scan permitted a definite diagnosis; in the remaining cases, no morphological correlate to the clinical and laboratory findings was detected. In addition to traditional ultrasonic scanning, computed tomography represents a further noninvasive imaging technique for postoperative diagnostics following segmental liver transplants from living donors. (orig.) [de

  10. How to interpret liver function tests

    Directory of Open Access Journals (Sweden)

    Christina Levick

    2017-05-01

    Full Text Available Careful interpretation of liver function tests within the clinical context can help elucidate the cause and severity of the underlying pathology. Predominantly raised alkaline phosphatase represents the cholestatic pattern of biliary pathology, whilst predominantly raised alanine aminotransferase and aspartate aminotransferase represent the hepatocellular pattern of hepatocellular pathology. The severity of liver dysfunction or biliary obstruction is reflected in the bilirubin level and the degree of liver synthetic function can also be indicated by the albumin level. Beyond the liver function tests, prothrombin time provides another marker of liver synthetic function and a low platelet count suggests portal hypertension.

  11. NKT cells act through third party bone marrow-derived cells to suppress NK cell activity in the liver and exacerbate hepatic melanoma metastases.

    Science.gov (United States)

    Sadegh, Leila; Chen, Peter W; Brown, Joseph R; Han, Zhiqiang; Niederkorn, Jerry Y

    2015-09-01

    Uveal melanoma (UM) is the most common intraocular tumor in adults and liver metastasis is the leading cause of death in UM patients. We have previously shown that NKT cell-deficient mice develop significantly fewer liver metastases from intraocular melanomas than do wild-type (WT) mice. Here, we examine the interplay between liver NKT cells and NK cells in resistance to liver metastases from intraocular melanomas. NKT cell-deficient CD1d(-/-) mice and WT C57BL/6 mice treated with anti-CD1d antibody developed significantly fewer liver metastases than WT mice following either intraocular or intrasplenic injection of B16LS9 melanoma cells. The increased number of metastases in WT mice was associated with reduced liver NK cytotoxicity and decreased production of IFN-γ. However, liver NK cell-mediated cytotoxic activity was identical in non-tumor bearing NKT cell-deficient mice and WT mice, indicating that liver metastases were crucial for the suppression of liver NK cells. Depressed liver NK cytotoxicity in WT mice was associated with production of IL-10 by bone marrow-derived liver cells that were neither Kupffer cells nor myeloid-derived suppressor cells and by increased IL-10 receptor expression on liver NK cells. IL-10(-/-) mice had significantly fewer liver metastases than WT mice, but were not significantly different from NKT cell-deficient mice. Thus, development of melanoma liver metastases is associated with upregulation of IL-10 in the liver and an elevated expression of IL-10 receptor on liver NK cells. This impairment of liver NK activity is NKT cell-dependent and only occurs in hosts with melanoma liver metastases. © 2015 UICC.

  12. Protective effects of C-phycocyanin on alcohol-induced acute liver injury in mice

    Science.gov (United States)

    Xia, Dong; Liu, Bing; Luan, Xiying; Sun, Junyan; Liu, Nana; Qin, Song; Du, Zhenning

    2016-03-01

    Excessive alcohol consumption leads to liver disease. Extensive evidence suggests that C-phycocyanin (C-PC), a chromophore phycocyanobilin derived from Spirulina platensis, exerts protective effects against chemical-induced organ damage. In this study, we investigated whether C-PC could protect against ethanol-induced acute liver injury. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (CHOL), low-density lipoprotein (LDL), liver homogenate malondialdehyde (MDA), superoxide dismutase (SOD) content were measured, and pathological examination of liver sections were examined. C-PC showed obvious inhibitory effects on serum ALT, AST, TG, CHOL, LDL and MDA, and SOD content significantly increased in the liver. The structure of hepatic lobules was clear, liver sinus returned to normal, and liver cell cords were arranged in neat rows. Cloudiness, swelling, inflammatory cell infiltration and spotty necrosis of liver cells were significantly reduced. Therefore, C-PC can significantly protect against ethanol-induced acute liver injury.

  13. MR of the liver in Wilson's disease

    International Nuclear Information System (INIS)

    Vogl, T.J.; Steiner, S.; Hammerstingl, R.; Schwarz, S.; Kraft, E.; Weinzierl, M.; Felix, R.

    1994-01-01

    To show that Wilson's disease is one likely cause of multiple low-intensity nodules of the liver we obtained MR images in 16 patients with clinically and histopathologically confirmed Wilson's disease. Corresponding to morphological changes MRI enabled the subdivision of the patients into two groups. Using a T 2 -weighted spin-echo sequence (TR/TE=2000/45-90) liver parenchyma showed multiple tiny low-intensity-nodules surrounded by high-intensity septa in 10 out of 16 patients. 5 patients had also low-intensity nodules in T 1 -weighted images (TR/TE=600/20). In patients of this group histopathology revealed liver cirrhosis (n=7) and fibrosis (n=2). Common feature of this patient group was marked inflammatory cell infiltration into fibrous septa, increase of copper concentration in liver parenchyma and distinct pathological changes of laboratory data. In the remaining 6 patients no pathological change of liver morphology was demonstrated by MRI corresponding to slight histopathological changes of parenchyma and normal laboratory data. As low-intensity nodules surrounded by high intensity septa can be demonstrated in patients with marked inflammatory infiltration of liver parenchyma MRI may help to define Wilson patients with poorer prognosis. In patients with low-intensity nodules of the liver and unknown cause of liver cirrhosis laboratory data and histopathology should be checked when searching for disorders of copper metabolism. (orig.) [de

  14. Memory NK cells: why do they reside in the liver?

    Science.gov (United States)

    Jiang, Xiaojun; Chen, Yonglin; Peng, Hui; Tian, Zhigang

    2013-05-01

    Immune memory is the hallmark of adaptive immunity. However, recent studies have shown that natural killer (NK) cells, key components of the innate immune system, also mediate memory responses in mice and humans. Strikingly, memory NK cells were liver-resident in some models, raising the question as to whether the liver is a special organ for the acquisition of NK cell memory. Here, we review the characteristics of NK cell memory by summarizing recent progress and discuss how the liver may generate both the initiation and the recall phase of memory. We propose that the liver may have unique precursors for memory NK cells, which are developmentally distinct from NK cells derived from bone marrow.

  15. Intravascular Immune Surveillance by CXCR6+ NKT Cells Patrolling Liver Sinusoids

    Directory of Open Access Journals (Sweden)

    Geissmann Frederic

    2005-01-01

    Full Text Available We examined the in vivo behavior of liver natural killer T cells (NKT cells by intravital fluorescence microscopic imaging of mice in which a green fluorescent protein cDNA was used to replace the gene encoding the chemokine receptor CXCR6. NKT cells, which account for most CXCR6+ cells in liver, were found to crawl within hepatic sinusoids at 10-20 µm/min and to stop upon T cell antigen receptor activation. CXCR6-deficient mice exhibited a selective and severe reduction of CD1d-reactive NKT cells in the liver and decreased susceptibility to T-cell-dependent hepatitis. CXCL16, the cell surface ligand for CXCR6, is expressed on sinusoidal endothelial cells, and CXCR6 deficiency resulted in reduced survival, but not in altered speed or pattern of patrolling of NKT cells. Thus, NKT cells patrol liver sinusoids to provide intravascular immune surveillance, and CXCR6 contributes to liver-based immune responses by regulating their abundance.

  16. Plectin deficiency in liver cancer cells promotes cell migration and sensitivity to sorafenib treatment.

    Science.gov (United States)

    Cheng, Chiung-Chi; Chao, Wei-Ting; Liao, Chen-Chun; Tseng, Yu-Hui; Lai, Yen-Chang Clark; Lai, Yih-Shyong; Hsu, Yung-Hsiang; Liu, Yi-Hsiang

    2018-01-02

    Plectin involved in activation of kinases in cell signaling pathway and plays important role in cell morphology and migration. Plectin knockdown promotes cell migration by activating focal adhesion kinase and Rac1-GTPase activity in liver cells. Sorafenib is a multi-targeting tyrosine kinase inhibitor that improves patient survival on hepatocellular carcinoma. The aim of this study is to investigate the correlation between the expression of plectin and cell migration as well as the sensitivity of hepatoma cell lines exposing to sorafenib. Hepatoma cell lines PLC/PRF/5 and HepG2 were used to examine the level of plectin expression and cell migration in comparison with Chang liver cell line. In addition, sensitivity of the 3 cell lines to sorafenib treatment was also measured. Expression of plectin was lower in PLC/PRF/5 and HepG2 hepatoma cells than that of Chang liver cells whereas HepG2 and PLC/PRF/5 cells exhibit higher rate of cell migration in trans-well migration assay. Immunohistofluorecent staining on E-cadherin revealed the highest rate of collective cell migration in HepG2 cells and the lowest was found in Chang liver cells. Likewise, HepG2 cell line was most sensitive to sorafenib treatment and Chang liver cells exhibited the least sensitivity. The drug sensitivity to sorafenib treatment showed inverse correlation with the expression of plectin. We suggest that plectin deficiency and increased E-cadherin in hepatoma cells were associated with higher rates of cell motility, collective cell migration as well as higher drug sensitivity to sorafenib treatment.

  17. Bone morphogenetic protein 9 as a key regulator of liver progenitor cells in DDC-induced cholestatic liver injury.

    Science.gov (United States)

    Addante, Annalisa; Roncero, Cesáreo; Almalé, Laura; Lazcanoiturburu, Nerea; García-Álvaro, María; Fernández, Margarita; Sanz, Julián; Hammad, Seddik; Nwosu, Zeribe C; Lee, Se-Jin; Fabregat, Isabel; Dooley, Steven; Ten Dijke, Peter; Herrera, Blanca; Sánchez, Aránzazu

    2018-05-11

    Bone morphogenetic protein 9 (BMP9) interferes with liver regeneration upon acute injury, while promoting fibrosis upon carbon tetrachloride-induced chronic injury. We have now addressed the role of BMP9 in 3,5 diethoxicarbonyl-1,4 dihydrocollidine (DDC)-induced cholestatic liver injury, a model of liver regeneration mediated by hepatic progenitor cell (known as oval cell), exemplified as ductular reaction and oval cell expansion. WT and BMP9KO mice were submitted to DDC diet. Livers were examined for liver injury, fibrosis, inflammation and oval cell expansion by serum biochemistry, histology, RT-qPCR and western blot. BMP9 signalling and effects in oval cells were studied in vitro using western blot and transcriptional assays, plus functional assays of DNA synthesis, cell viability and apoptosis. Crosslinking assays and short hairpin RNA approaches were used to identify the receptors mediating BMP9 effects. Deletion of BMP9 reduces liver damage and fibrosis, but enhances inflammation upon DDC feeding. Molecularly, absence of BMP9 results in overactivation of PI3K/AKT, ERK-MAPKs and c-Met signalling pathways, which together with an enhanced ductular reaction and oval cell expansion evidence an improved regenerative response and decreased damage in response to DDC feeding. Importantly, BMP9 directly targets oval cells, it activates SMAD1,5,8, decreases cell growth and promotes apoptosis, effects that are mediated by Activin Receptor-Like Kinase 2 (ALK2) type I receptor. We identify BMP9 as a negative regulator of oval cell expansion in cholestatic injury, its deletion enhancing liver regeneration. Likewise, our work further supports BMP9 as an attractive therapeutic target for chronic liver diseases. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Evidence that Meningeal Mast Cells Can Worsen Stroke Pathology in Mice

    Science.gov (United States)

    Arac, Ahmet; Grimbaldeston, Michele A.; Nepomuceno, Andrew R.B.; Olayiwola, Oluwatobi; Pereira, Marta P.; Nishiyama, Yasuhiro; Tsykin, Anna; Goodall, Gregory J.; Schlecht, Ulrich; Vogel, Hannes; Tsai, Mindy; Galli, Stephen J.; Bliss, Tonya M.; Steinberg, Gary K.

    2015-01-01

    Stroke is the leading cause of adult disability and the fourth most common cause of death in the United States. Inflammation is thought to play an important role in stroke pathology, but the factors that promote inflammation in this setting remain to be fully defined. An understudied but important factor is the role of meningeal-located immune cells in modulating brain pathology. Although different immune cells traffic through meningeal vessels en route to the brain, mature mast cells do not circulate but are resident in the meninges. With the use of genetic and cell transfer approaches in mice, we identified evidence that meningeal mast cells can importantly contribute to the key features of stroke pathology, including infiltration of granulocytes and activated macrophages, brain swelling, and infarct size. We also obtained evidence that two mast cell-derived products, interleukin-6 and, to a lesser extent, chemokine (C-C motif) ligand 7, can contribute to stroke pathology. These findings indicate a novel role for mast cells in the meninges, the membranes that envelop the brain, as potential gatekeepers for modulating brain inflammation and pathology after stroke. PMID:25134760

  19. Inflammatory pseudotumor of the liver: ferumoxide-enhanced MR imaging as a tiebreaker.

    Science.gov (United States)

    Kato, Hiroki; Kanematsu, Masayuki; Kondo, Hiroshi; Osada, Shinji; Goshima, Satoshi; Yamada, Tetsuya; Yamada, Yasuhiro; Yokoyama, Ryujiro; Hoshi, Hiroaki; Moriyama, Noriyuki

    2004-09-01

    We examined a 70-year-old male patient with an inflammatory pseudotumor of the liver mimicking a peripheral-type cholangiocellular carcinoma. Ferumoxide-enhanced magnetic resonance (MR) imaging revealed residual Kupffer cell function in liver parenchyma in and surrounding the inflammatory pseudotumor involvement, which suggested the diagnosis of inflammatory pseudotumor of the liver. We correlate the MR imaging and pathologic findings in this report. Copyright 2004 Wiley-Liss, Inc.

  20. Isolation of Kupffer Cells and Hepatocytes from a Single Mouse Liver

    DEFF Research Database (Denmark)

    Aparicio-Vergara, Marcela; Tencerova, Michaela; Morgantini, Cecilia

    2017-01-01

    Liver perfusion is a common technique used to isolate parenchymal and non-parenchymal liver cells for in vitro experiments. This method allows hepatic cells to be separated based on their size and weight, by centrifugation using a density gradient. To date, other methods allow the isolation of only...... one viable hepatic cellular fraction from a single mouse; either parenchymal (hepatocytes) or non-parenchymal cells (i.e., Kupffer cells or hepatic stellate cells). Here, we describe a method to isolate both hepatocytes and Kupffer cells from a single mouse liver, thereby providing the unique...... advantage of studying different liver cell types that have been isolated from the same organism....

  1. Cardiac pathology in chronic alcoholics: A preliminary study

    Directory of Open Access Journals (Sweden)

    P Vaideeswar

    2014-01-01

    Full Text Available Background: Ethyl alcohol exerts both positive and negative effects on the cardiovascular system. Alcoholic cardiomyopathy, produced by direct or indirect mechanisms, is well-documented. An important, but seldom appreciated effect is an increase in iron deposition in the myocardium, which can add to the cardiac dysfunction. The present study was planned to document the pathological features and iron levels in the cardiac tissue of patients who were chronic alcoholics and correlate these characteristics with the liver pathology and iron content. Materials and Methods: An autopsy-based prospective study of 40 consecutive patients compared with ten age matched controls (no history of alcohol intake. Histopathological changes like the morphology of the cardiac myocytes, degree of fibrosis (interstitial, interfiber, perivascular, and replacement, presence of inflammatory cells, increased capillary network, and adipose tissue deposition were noted and graded. These were also correlated with the liver pathology. The iron content in the heart and liver were measured by using calorimetry. Results: All cases had increased epicardial adipose tissue with epicardial and endocardial fibrosis, prominence of interstitial and interfiber fibrosis, myofiber degeneration, and increased capillary network; this was particularly prominent in patients with cirrhosis. Elemental iron level in heart tissue was raised in the cases relative to controls. Conclusions: Alcohol produces subclinical changes in the myocardium, with an increased iron content, which may be the forerunner for subsequent clinical cardiac dysfunction.

  2. NK Cell Subtypes as Regulators of Autoimmune Liver Disease

    Directory of Open Access Journals (Sweden)

    Guohui Jiao

    2016-01-01

    Full Text Available As major components of innate immunity, NK cells not only exert cell-mediated cytotoxicity to destroy tumors or infected cells, but also act to regulate the functions of other cells in the immune system by secreting cytokines and chemokines. Thus, NK cells provide surveillance in the early defense against viruses, intracellular bacteria, and cancer cells. However, the effecter function of NK cells must be exquisitely controlled to prevent inadvertent attack against normal “self” cells. In an organ such as the liver, where the distinction between immunotolerance and immune defense against routinely processed pathogens is critical, the plethora of NK cells has a unique role in the maintenance of homeostasis. Once self-tolerance is broken, autoimmune liver disease resulted. NK cells act as a “two-edged weapon” and even play opposite roles with both regulatory and inducer activities in the hepatic environment. That is, NK cells act not only to produce inflammatory cytokines and chemokines, but also to alter the proliferation and activation of associated lymphocytes. However, the precise regulatory mechanisms at work in autoimmune liver diseases remain to be identified. In this review, we focus on recent research with NK cells and their potential role in the development of autoimmune liver disease.

  3. [Effects of three Wenyang Jianpi Tang on cell proliferation and apoptosis of nonalcoholic fatty liver cells].

    Science.gov (United States)

    Yang, Jia-Yao; Tao, Dong-Qing; Liu, Song; Zhang, Shu; Ma, Wei; Shi, Zhao-Hong

    2017-04-01

    To investigate the effects of Sijunzi Tang, Lizhong Tang and Fuzi Lizhong Tang on the cell proliferation and apoptosis of nonalcoholic fatty liver cells through the nonalcoholic fatty liver cell model established by inducing L02 cells with oleic acid. Different concentrations of oleic acid were added into L02 cells to induce the nonalcoholic fatty liver cell model. Oil red O staining was used to observe fatty droplets of fatty liver cells. Automatic biochemical analyzer was used to detect the levels of aspartic transaminase(AST), alanine aminotransferase(ALT), total cholesterol(TC), and triglyceride(TG) in the cell supernatants. There were five groups, namely normal group, model group, model and Sijunzi Tang group, model and Lizhong Tang group, and model and Fuzi Lizhong Tang group. The cell proliferation and apoptosis of the five groups were detected by MTT colorimetry test and flow cytometer. The expressions of PCNA, cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, Bax and Bcl-2 proteins of the five groups were detected by Western blot. The oil red O staining results showed that the optimum concentration of oleic acid that was used to induce nonalcoholic fatty liver cell models was 80 mg•L-1. The levels of AST, ALT, TC and TG in the nonalcoholic fatty liver cell supernatants were higher than that in normal liver cell supernatants(PTang, Lizhong Tang and Fuzi Lizhong Tang could effectively promote the cell proliferation, and inhibit the cellular apoptosis of nonalcoholic fatty liver cells(PTang showed the best effect. Western blot results showed that Sijunzi Tang, Lizhong Tang and Fuzi Lizhong Tang could down-regulate the expressions of cleaved caspase-3, cleaved caspase-8, cleaved caspase-9 and Bax proteins, and up-regulate the expressions of PCNA and Bcl-2 proteins of nonalcoholic fatty liver cells. And Fuzi Lizhong Tang showed the best effect. In conclusion, all of Sijunzi Tang, Lizhong Tang and Fuzi Lizhong Tang could effectively promote the cell

  4. On the postradiation effect of cystamine in rat liver cells

    International Nuclear Information System (INIS)

    Gil'yano, N.Ya.; Malinovskij, O.V.

    1979-01-01

    The effect of cystamine, classical radioprotector introduced prior to and after irradiation has been tested. The protector has been paralelly tested on the regenerating liver in a presynthetic phase of a mitotic cycle (G 1 ). White nonbred male mice have been irradiated with 205 and 6O5 rad on the RUM-11 X-ray apparatus prior to (intact liver) and 6 hours after (regenerating liver) partial hepatectomy. Cystamine has been injected to animals 15 min prior to irradiation and in different periods after irradiation in the concentration of 150 mg/kg of weight. The decrease in the share of cells with asymmetic chromosome transformations (bridges and fragments in the anaphase) has been the protector effectiveness index. It is shown that the protector is effective in the cells of a regenerating liver only when introduced before irradiation, while in the cells of an intact liver it produces a protective effect both prior to and 15 mins after irradiation. Cystamine effectiveness for cells of the intact and regenerating liver has been investigated by introducing it after irradiation of animals with 250 and 305 rad. It has been established that the protector makes it possible to modify the irradiation effect within 20 mins after irradiation in the cells of the intact liver (Go). Cystamine postradiation protection in the cells of the regenerating liver (G 1 ) is low if it is introduced immediately after irradiation (1 min) and is absent after 10 min. The dependence of cystamine postradiation protective effect on the moment of liver cell stimulation has been investigated. It has been shown that the modification of irradiation effect is possible within 5 hrs after irradiation if the protector is introduced 15 min after irradiation of animals with 250 rad. The mechanism of the preparation action is discussed

  5. Gene Expression Profile Change and Associated Physiological and Pathological Effects in Mouse Liver Induced by Fasting and Refeeding

    Science.gov (United States)

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes. PMID:22096593

  6. Memory NK cells: why do they reside in the liver?

    OpenAIRE

    Jiang, Xiaojun; Chen, Yonglin; Peng, Hui; Tian, Zhigang

    2013-01-01

    Immune memory is the hallmark of adaptive immunity. However, recent studies have shown that natural killer (NK) cells, key components of the innate immune system, also mediate memory responses in mice and humans. Strikingly, memory NK cells were liver-resident in some models, raising the question as to whether the liver is a special organ for the acquisition of NK cell memory. Here, we review the characteristics of NK cell memory by summarizing recent progress and discuss how the liver may ge...

  7. Comparison of Species and Cell-Type Differences in Fraction Unbound of Liver Tissues, Hepatocytes, and Cell Lines.

    Science.gov (United States)

    Riccardi, Keith; Ryu, Sangwoo; Lin, Jian; Yates, Phillip; Tess, David; Li, Rui; Singh, Dhirender; Holder, Brian R; Kapinos, Brendon; Chang, George; Di, Li

    2018-04-01

    Fraction unbound ( f u ) of liver tissue, hepatocytes, and other cell types is an essential parameter used to estimate unbound liver drug concentration and intracellular free drug concentration. f u,liver and f u,cell are frequently measured in multiple species and cell types in drug discovery and development for various applications. A comparison study of 12 matrices for f u,liver and f u,cell of hepatocytes in five different species (mouse, rat, dog, monkey, and human), as well as f u,cell of Huh7 and human embryonic kidney 293 cell lines, was conducted for 22 structurally diverse compounds with the equilibrium dialysis method. Using an average bioequivalence approach, our results show that the average difference in binding to liver tissue, hepatocytes, or different cell types was within 2-fold of that of the rat f u,liver Therefore, we recommend using rat f u,liver as a surrogate for liver binding in other species and cell types in drug discovery. This strategy offers the potential to simplify binding studies and reduce cost, thereby enabling a more effective and practical determination of f u for liver tissues, hepatocytes, and other cell types. In addition, f u under hepatocyte stability incubation conditions should not be confused with f u,cell , as one is a diluted f u and the other is an undiluted f u Cell density also plays a critical role in the accurate measurement of f u,cell . Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Elasticity-based development of functionally enhanced multicellular 3D liver encapsulated in hybrid hydrogel.

    Science.gov (United States)

    Lee, Ho-Joon; Son, Myung Jin; Ahn, Jiwon; Oh, Soo Jin; Lee, Mihee; Kim, Ansoon; Jeung, Yun-Ji; Kim, Han-Gyeul; Won, Misun; Lim, Jung Hwa; Kim, Nam-Soon; Jung, Cho-Rock; Chung, Kyung-Sook

    2017-12-01

    Current in vitro liver models provide three-dimensional (3-D) microenvironments in combination with tissue engineering technology and can perform more accurate in vivo mimicry than two-dimensional models. However, a human cell-based, functionally mature liver model is still desired, which would provide an alternative to animal experiments and resolve low-prediction issues on species differences. Here, we prepared hybrid hydrogels of varying elasticity and compared them with a normal liver, to develop a more mature liver model that preserves liver properties in vitro. We encapsulated HepaRG cells, either alone or with supporting cells, in a biodegradable hybrid hydrogel. The elastic modulus of the 3D liver dynamically changed during culture due to the combined effects of prolonged degradation of hydrogel and extracellular matrix formation provided by the supporting cells. As a result, when the elastic modulus of the 3D liver model converges close to that of the in vivo liver (≅ 2.3 to 5.9 kPa), both phenotypic and functional maturation of the 3D liver were realized, while hepatic gene expression, albumin secretion, cytochrome p450-3A4 activity, and drug metabolism were enhanced. Finally, the 3D liver model was expanded to applications with embryonic stem cell-derived hepatocytes and primary human hepatocytes, and it supported prolonged hepatocyte survival and functionality in long-term culture. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. We provide a functionally improved 3D liver model that recapitulates in vivo liver stiffness. We have experimentally addressed the issues of orchestrated effects of mechanical compliance, controlled matrix formation by stromal cells in conjunction with hepatic differentiation, and functional maturation of hepatocytes in a dynamic 3D

  9. MAIT cells: new guardians of the liver

    OpenAIRE

    Kurioka, Ayako; Walker, Lucy J; Klenerman, Paul; Willberg, Christian B

    2016-01-01

    The liver is an important immunological organ that remains sterile and tolerogenic in homeostasis, despite continual exposure to non-self food and microbial-derived products from the gut. However, where intestinal mucosal defenses are breached or in the presence of a systemic infection, the liver acts as a second 'firewall', because of its enrichment with innate effector cells able to rapidly respond to infections or tissue dysregulation. One of the largest populations of T cells within the h...

  10. NKT-cell subsets: promoters and protectors in inflammatory liver disease.

    Science.gov (United States)

    Kumar, Vipin

    2013-09-01

    Natural killer T cells (NKT) are innate-like cells which are abundant in liver sinusoids and express the cell surface receptors of NK cells (e.g., NK1.1 (mouse) or CD161+/CD56+(human)) as well as an antigen receptor (TCR) characteristic of conventional T cells. NKT cells recognize lipid antigens in the context of CD1d, a non-polymorphic MHC class I-like molecule. Activation of NKT cells has a profound influence on the immune response against tumors and infectious organisms and in autoimmune diseases. NKT cells can be categorized into at least two distinct subsets: iNKT or type I use a semi-invariant TCR, whereas type II NKT TCRs are more diverse. Recent evidence suggests that NKT-cell subsets can play opposing roles early in non-microbial liver inflammation in that type I NKT are proinflammatory whereas type II NKT cells inhibit type I NKT-mediated liver injury. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  11. Adaptive remodeling of the biliary tree: the essence of liver progenitor cell expansion.

    Science.gov (United States)

    Kok, Cindy Yuet-Yin; Miyajima, Atsushi; Itoh, Tohru

    2015-07-01

    The liver progenitor cell population has long been thought to exist within the liver. However, there are no standardized criteria for defining the liver progenitor cells, and there has been intense debate about the origin of these cells in the adult liver. The characteristics of such cells vary depending on the disease model used and also on the method of analysis. Visualization of three-dimensional biliary structures has revealed that the emergence of liver progenitor cells essentially reflects the adaptive remodeling of the hepatic biliary network in response to liver injury. We propose that the progenitor cell exists as a subpopulation in the biliary tree and show that the appearance of liver progenitor cells in injured parenchyma is reflective of extensive remodeling of the biliary structure. © 2015 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  12. Human amnion epithelial cells expressing HLA-G as novel cell-based treatment for liver disease.

    Science.gov (United States)

    Strom, Stephen C; Gramignoli, Roberto

    2016-09-01

    Despite routine liver transplantation and supporting medical therapies, thousands of patients currently wait for an organ and there is an unmet need for more refined and widely available regenerative strategies to treat liver diseases. Cell transplants attempt to maximize the potential for repair and/or regeneration in liver and other organs. Over 40years of laboratory pre-clinical research and 25years of clinical procedures have shown that certain liver diseases can be treated by the infusion of isolated cells (hepatocyte transplant). However, like organ transplants, hepatocyte transplant suffers from a paucity of tissues useful for cell production. Alternative sources have been investigated, yet with limited success. The tumorigenic potential of pluripotent stem cells together with their primitive level of hepatic differentiation, have limited the use of stem cell populations. Stem cell sources from human placenta, and the amnion tissue in particular are receiving renewed interest in the field of regenerative medicine. Unlike pluripotent stem cells, human amnion epithelial (AE) cells are easily available without ethical or religious concerns; they do not express telomerase and are not immortal or tumorigenic when transplanted. In addition, AE cells have been reported to express genes normally expressed in mature liver, when transplanted into the liver. Moreover, because of the possibility of an immune-privileged status related to their expression of HLA-G, it might be possible to transplant human AE cells without immunosuppression of the recipient. Copyright © 2016. Published by Elsevier Inc.

  13. A small population of liver endothelial cells undergoes endothelial-to-mesenchymal transition in response to chronic liver injury.

    Science.gov (United States)

    Ribera, Jordi; Pauta, Montse; Melgar-Lesmes, Pedro; Córdoba, Bernat; Bosch, Anna; Calvo, Maria; Rodrigo-Torres, Daniel; Sancho-Bru, Pau; Mira, Aurea; Jiménez, Wladimiro; Morales-Ruiz, Manuel

    2017-11-01

    Rising evidence points to endothelial-to-mesenchymal transition (EndMT) as a significant source of the mesenchymal cell population in fibrotic diseases. In this context, we hypothesized that liver endothelial cells undergo EndMT during fibrosis progression. Cirrhosis in mice was induced by CCl 4 A transgenic mouse expressing a red fluorescent protein reporter under the control of Tie2 promoter (Tie2-tdTomato) was used to trace the acquisition of EndMT. Sinusoidal vascular connectivity was evaluated by intravital microscopy and high-resolution three-dimensional confocal microscopy. A modest but significant fraction of liver endothelial cells from both cirrhotic patients and CCl 4 -treated Tie2-tdTomato mice acquired an EndMT phenotype characterized by the coexpression of CD31 and α-smooth muscle actin, compared with noncirrhotic livers. Bone morphogenetic protein-7 (BMP-7) inhibited the acquisition of EndMT induced by transforming growth factor-β1 (TGF-β1) treatment in cultured primary mouse liver endothelial cells from control mice. EndMT was also reduced significantly in vivo in cirrhotic Tie2-tdTomato mice treated intraperitoneally with BMP-7 compared with untreated mice (1.9 ± 0.2 vs. 3.8 ± 0.3%, respectively; P livers correlated with a significant decrease in liver fibrosis ( P livers in both animal models and patients. BMP-7 treatment decreases the occurrence of the EndMT phenotype and has a positive impact on the severity of disease by reducing fibrosis and sinusoidal vascular disorganization. NEW & NOTEWORTHY A subpopulation of liver endothelial cells from cirrhotic patients and mice with liver fibrosis undergoes endothelial-to-mesenchymal transition. Liver endothelial cells from healthy mice could transition into a mesenchymal phenotype in culture in response to TGF-β1 treatment. Fibrotic livers treated chronically with BMP-7 showed lower EndMT acquisition, reduced fibrosis, and improved vascular organization. Copyright © 2017 the American

  14. Malignant focal hepatic lesions complicating underlying liver disease: dual-phase contrast-enhanced spiral CT sensitivity and specificity in orthotopic liver transplant patients

    International Nuclear Information System (INIS)

    Mortele, K.J.; De Keukeleire, K.; Praet, M.; Van Vlierberghe, H.; Hemptinne, B. de; Ros, P.R.

    2001-01-01

    The aim of this study was to determine the accuracy of contrast-enhanced biphasic spiral CT as a screening tool in the preoperative evaluation of orthotopic liver transplant (OLT) patients. Spiral-CT examinations were performed before liver transplantation in 53 patients. Scans were retrospectively reviewed and compared with pathologic findings in fresh-sectioned livers. When findings between spiral CT and pathology were discordant, formalized livers were reexamined with lesion-by lesion evaluation. Fresh pathologic evaluation revealed 23 liver lesions (16 HCC, 7 macro-regenerative nodules). Malignancy was identified in 13 of 53 patients (24.5%). Pre-transplantation spiral CT depicted 27 liver lesions (23 HCC, 4 macro-regenerative nodules). Malignancy was suspected in 14 patients (26.4%). In 10 of 53 (18.9%), spiral CT and pathologic evaluation were discordant. Subsequent retrospective pathologic evaluation showed malignancy in 4 additional patients. Spiral CT compared with the retrospective pathologic findings revealed 36 real-negative, 14 real-positive, 0 false-positive, and 3 false-negative patients with malignancy. Sensitivity and specificity of spiral CT in detection of malignancy was 82 and 100%, respectively. Contrast-enhanced biphasic spiral CT is an accurate technique in the evaluation of patients preceding OLT. Routine fresh-sectioned liver pathologic findings are not as sensitive as previously estimated. (orig.)

  15. High circulatory leptin mediated NOX-2-peroxynitrite-miR21 axis activate mesangial cells and promotes renal inflammatory pathology in nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Firas Alhasson

    2018-07-01

    Full Text Available High circulatory insulin and leptin followed by underlying inflammation are often ascribed to the ectopic manifestations in non-alcoholic fatty liver disease (NAFLD but the exact molecular pathways remain unclear. We have shown previously that CYP2E1-mediated oxidative stress and circulating leptin in NAFLD is associated with renal disease severity. Extending the studies, we hypothesized that high circulatory leptin in NAFLD causes renal mesangial cell activation and tubular inflammation via a NOX2 dependent pathway that upregulates proinflammatory miR21. High-fat diet (60% kcal was used to induce fatty liver phenotype with parallel insulin and leptin resistance. The kidneys were probed for mesangial cell activation and tubular inflammation that showed accelerated NASH phenotype and oxidative stress in the liver. Results showed that NAFLD kidneys had significant increases in α-SMA, a marker of mesangial cell activation, miR21 levels, tyrosine nitration and renal inflammation while they were significantly decreased in leptin and p47 phox knockout mice. Micro RNA21 knockout mice showed decreased tubular immunotoxicity and proinflammatory mediator release. Mechanistically, use of NOX2 siRNA or apocynin,phenyl boronic acid (FBA, DMPO or miR21 antagomir inhibited leptin primed-miR21-mediated mesangial cell activation in vitro suggesting a direct role of leptin-mediated NOX-2 in miR21-mediated mesangial cell activation. Finally, JAK-STAT inhibitor completely abrogated the mesangial cell activation in leptin-primed cells suggesting that leptin signaling in the mesangial cells depended on the JAK-STAT pathway. Taken together the study reports a novel mechanistic pathway of leptin-mediated renal inflammation that is dependent on NOX-2-miR21 axis in ectopic manifestations underlying NAFLD-induced co-morbidities. Keywords: Leptin, NOX-2, NADPH, Mesangial cells, miR21, Oxidative stress, NAFLD, JAK/STAT, siRNA

  16. All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells.

    Directory of Open Access Journals (Sweden)

    Melanie Werner

    Full Text Available Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen.Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity.Cell preparation yielded the following cell counts per gram of liver tissue: 2.0 ± 0.4 × 10(7 hepatocytes, 1.8 ± 0.5 × 10(6 Kupffer cells, 4.3 ± 1.9 × 10(5 liver sinusoidal endothelial cells, and 3.2 ± 0.5 × 10(5 stellate cells. Hepatocytes were identified by albumin (95.5 ± 1.7% and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5 ± 1.2% and exhibited phagocytic activity, as determined with 1 μm latex beads. Endothelial cells were CD146(+ (97.8 ± 1.1% and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1 ± 1.5%. These cells further exhibited retinol (vitamin A-mediated autofluorescence.Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease.

  17. Gene expression profiling of liver cancer stem cells by RNA-sequencing.

    Directory of Open Access Journals (Sweden)

    David W Y Ho

    Full Text Available BACKGROUND: Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90(+ liver cancer stem cells (CSCs in hepatocellular carcinoma (HCC. Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq to compare the gene expression profiling of CD90(+ cells sorted from tumor (CD90(+CSCs with parallel non-tumorous liver tissues (CD90(+NTSCs and elucidate the roles of putative target genes in hepatocarcinogenesis. METHODOLOGY/PRINCIPAL FINDINGS: CD90(+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90(+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90(+CSCs and CD90(+NTSCs, and validated by quantitative real-time PCR (qRT-PCR on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes between CD90(+CSCs and CD90(+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90(+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3, a member of glypican family, was markedly elevated in CD90(+CSCs compared to CD90(+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90(+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90(+CSCs in liver tumor tissues. CONCLUSIONS

  18. Gene Expression Profiling of Liver Cancer Stem Cells by RNA-Sequencing

    Science.gov (United States)

    Lam, Chi Tat; Ng, Michael N. P.; Yu, Wan Ching; Lau, Joyce; Wan, Timothy; Wang, Xiaoqi; Yan, Zhixiang; Liu, Hang; Fan, Sheung Tat

    2012-01-01

    Background Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90+ liver cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq) to compare the gene expression profiling of CD90+ cells sorted from tumor (CD90+CSCs) with parallel non-tumorous liver tissues (CD90+NTSCs) and elucidate the roles of putative target genes in hepatocarcinogenesis. Methodology/Principal Findings CD90+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90+CSCs and CD90+NTSCs, and validated by quantitative real-time PCR (qRT-PCR) on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes) between CD90+CSCs and CD90+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3), a member of glypican family, was markedly elevated in CD90+CSCs compared to CD90+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90+CSCs in liver tumor tissues. Conclusions/Significance The identified genes

  19. Chronic Liver Disease : Value of Sonographic Study of the Liver Surface

    International Nuclear Information System (INIS)

    Chung, Jae Joon; Kim, Myeong Jin; Han, Kwang Hyub; Chon, Chae Yoon; Yoo, Hyung Sik; Lee, Jong Tae; Kim, Ki Whang

    1995-01-01

    To evaluate the diagnostic value of sonographic irregularities of liver surface in the differentiation of chronic liver disease. Fifty-eight patients with either chronic hepatitis or early stage of liver cirrhosis were examined with 5 MHz linear array transducer by observing the liver surface.We compared the sonographic findings with peritoneoscopic and pathologic findings. Thirty-five patients with smooth surface showed variable pathological results, including chronic active and persistent hepatitis, inactive hepatitis and alcoholic hepatitis without any evidence of cirrhosis. Nineteen patients with micronodules mostly revealed chronic active hepatitis and cirrhosis. All 4 patients with macronodules were proved pathologically ascirrhosis. High resolution ultrasonography(HRUS) showed smooth liver surface in 35 patients(60.3%),micronodular surface in l9(32.8%), and macronodular surface in 4 (6.9%). Twenty-one cases(60.0%) among 35 patients with smooth surface were peritoneoscopically normal and 12 cases(34.3%) showed dimpling surface. However among l9 patients with micronodular surface, only 5 cases(26.3%) showed micronodular surface on peritoneoscopy. while 8 cases(42.l%) showed nracronodular surface and 6 cases(3l.6%) dimpling surface. All 4 patients with macronodulesrevealed peritoneoscopically nracronodular surface. Observation of liver surface by HRUS was useful in predicting the progression of chronic hepatitis to cirrhosis. However, it was not helpful in the differentiation between normal liver and chronic hepatrtrs

  20. Diffuse Reflectance Spectroscopy for Surface Measurement of Liver Pathology.

    Science.gov (United States)

    Nilsson, Jan H; Reistad, Nina; Brange, Hannes; Öberg, Carl-Fredrik; Sturesson, Christian

    2017-01-01

    Liver parenchymal injuries such as steatosis, steatohepatitis, fibrosis, and sinusoidal obstruction syndrome can lead to increased morbidity and liver failure after liver resection. Diffuse reflectance spectroscopy (DRS) is an optical measuring method that is fast, convenient, and established. DRS has previously been used on the liver with an invasive technique consisting of a needle that is inserted into the parenchyma. We developed a DRS system with a hand-held probe that is applied to the liver surface. In this study, we investigated the impact of the liver capsule on DRS measurements and whether liver surface measurements are representative of the whole liver. We also wanted to confirm that we could discriminate between tumor and liver parenchyma by DRS. The instrumentation setup consisted of a light source, a fiber-optic contact probe, and two spectrometers connected to a computer. Patients scheduled for liver resection due to hepatic malignancy were included, and DRS measurements were performed on the excised liver part with and without the liver capsule and alongside a newly cut surface. To estimate the scattering parameters and tissue chromophore volume fractions, including blood, bile, and fat, the measured diffuse reflectance spectra were applied to an analytical model. In total, 960 DRS spectra from the excised liver tissue of 18 patients were analyzed. All factors analyzed regarding tumor versus liver tissue were significantly different. When measuring through the capsule, the blood volume fraction was found to be 8.4 ± 3.5%, the lipid volume fraction was 9.9 ± 4.7%, and the bile volume fraction was 8.2 ± 4.6%. No differences could be found between surface measurements and cross-sectional measurements. In measurements with/without the liver capsule, the differences in volume fraction were 1.63% (0.75-2.77), -0.54% (-2.97 to 0.32), and -0.15% (-1.06 to 1.24) for blood, lipid, and bile, respectively. This study shows that it is possible to manage DRS

  1. Ethanol and liver: Recent insights into the mechanisms of ethanol-induced fatty liver

    Science.gov (United States)

    Liu, Jinyao

    2014-01-01

    Alcoholic fatty liver disease (AFLD), a potentially pathologic condition, can progress to steatohepatitis, fibrosis, and cirrhosis, leading to an increased probability of hepatic failure and death. Alcohol induces fatty liver by increasing the ratio of reduced form of nicotinamide adenine dinucleotide to oxidized form of nicotinamide adenine dinucleotide in hepatocytes; increasing hepatic sterol regulatory element-binding protein (SREBP)-1, plasminogen activator inhibitor (PAI)-1, and early growth response-1 activity; and decreasing hepatic peroxisome proliferator-activated receptor-α activity. Alcohol activates the innate immune system and induces an imbalance of the immune response, which is followed by activated Kupffer cell-derived tumor necrosis factor (TNF)-α overproduction, which is in turn responsible for the changes in the hepatic SREBP-1 and PAI-1 activity. Alcohol abuse promotes the migration of bone marrow-derived cells (BMDCs) to the liver and then reprograms TNF-α expression from BMDCs. Chronic alcohol intake triggers the sympathetic hyperactivity-activated hepatic stellate cell (HSC) feedback loop that in turn activates the HSCs, resulting in HSC-derived TNF-α overproduction. Carvedilol may block this feedback loop by suppressing sympathetic activity, which attenuates the progression of AFLD. Clinical studies evaluating combination therapy of carvedilol with a TNF-α inhibitor to treat patients with AFLD are warranted to prevent the development of alcoholic liver disease. PMID:25356030

  2. Liver and Skin Histopathology in Adults with Acid Sphingomyelinase Deficiency (Niemann-Pick Disease Type B)

    Science.gov (United States)

    Thurberg, Beth L.; Wasserstein, Melissa P.; Schiano, Thomas; O’Brien, Fanny; Richards, Susan; Cox, Gerald F.; McGovern, Margaret M.

    2012-01-01

    Acid sphingomyelinase deficiency (ASMD) is a lysosomal storage disorder characterized by the pathologic accumulation of sphingomyelin in multiple cells types, and occurs most prominently within the liver, spleen and lungs, leading to significant clinical disease. Seventeen ASMD patients underwent a liver biopsy during baseline screening for a Phase 1 trial of recombinant human acid sphingomyelinase (rhASM) in adults with Niemann-Pick disease type B. Eleven of the 17 were enrolled in the trial and each received a single dose of rhASM and underwent a repeat liver biopsy on Day 14. Biopsies were evaluated for fibrosis, sphingomyelin accumulation and macrophage infiltration by light and electron microscopy. When present, fibrosis was periportal and pericellular, predominantly surrounding affected Kupffer cells. Two baseline biopsies exhibited frank cirrhosis. Sphingomyelin was localized to isolated Kupffer cells in mildly affected biopsies and was present in both Kupffer cells and hepatocytes in more severely affected cases. Morphometric quantification of sphingomyelin storage in liver biopsies ranged from 4–44% of the microscopic field. Skin biopsies were also performed at baseline and Day 14 in order to compare the sphingomyelin distribution in a peripheral tissue to that of liver. Sphingomyelin storage was present at lower levels in multiple cell types of the skin, including dermal fibroblasts, macrophages, vascular endothelial cells, vascular smooth muscle cells and Schwann cells. This Phase 1 trial of rhASM in adults with ASMD provided a unique opportunity for a prospective assessment of hepatic and skin pathology in this rare disease and their potential usage as pharmacodynamic biomarkers. PMID:22613999

  3. Characterization of in vitro healthy and pathological human liver tissue periodicity using backscattered ultrasound signals.

    Science.gov (United States)

    Machado, Christiano Bittencourt; Pereira, Wagner Coelho de Albuquerque; Meziri, Mahmoud; Laugier, Pascal

    2006-05-01

    This work studied the periodicity of in vitro healthy and pathologic liver tissue, using backscattered ultrasound (US) signals. It utilized the mean scatterer spacing (MSS) as a parameter of tissue characterization, estimated by three methods: the spectral autocorrelation (SAC), the singular spectrum analysis (SSA) and the quadratic transformation method (SIMON). The liver samples were classified in terms of tissue status using the METAVIR scoring system. Twenty tissue samples were classified in four groups: F0, F1, F3 and F4 (five samples for each). The Kolmogorov-Smirnov test (applied on group pairs) resulted as nonsignificant (p > 0.05) for two pairs only: F1/F3 (for SSA) and F3/F4 (for SAC). A discriminant analysis was applied using as parameters the MSS mean (MSS) and standard deviation (sigmaMSS), the estimates histogram mode (mMSS), and the speed of US (mc(foie)) in the medium, to evaluate the degree of discrimination among healthy and pathologic tissues. The better accuracy (Ac) with SAC (80%) was with parameter group (MSS, sigmaMSS, mc(foie)), achieving a sensitivity (Ss) of 92.3% and a specificity (Sp) of 57.1%. For SSA, the group with all four parameters showed an Ac of 75%, an Ss of 78.6% and an Sp of 66.70%. SIMON obtained the best Ac of all (85%) with group (MSS, mMSS, mc(foie)), an Ss of 100%, but with an Sp of 50%.

  4. Catheter-directed Intraportal Delivery of Endothelial Cell Therapy for Liver Regeneration: A Feasibility Study in a Large-Animal Model of Cirrhosis.

    Science.gov (United States)

    Lee, Kyungmouk Steve; Santagostino, Sara F; Li, David; Ramjit, Amit; Serrano, Kenneth; Ginsberg, Michael D; Ding, Bi-Sen; Rafii, Shahin; Madoff, David C

    2017-10-01

    Purpose To demonstrate the feasibility of imaging-guided catheter-directed delivery of endothelial cell therapy in a porcine model of cirrhosis for liver regeneration. Materials and Methods After approval from the institutional animal care and use committee, autologous liver endothelial cells were grown from core hepatic specimens from swine. Cirrhosis was induced in swine by means of transcatheter infusion of ethanol and iodized oil into the hepatic artery. Three weeks after induction of cirrhosis, the swine were randomly assigned to receive autologous cell therapy (endothelial cells, n = 4) or control treatment (phosphate-buffered saline, n = 4) by means of imaging-guided transhepatic intraportal catheterization. Fluorescence-activated cell sorting analysis was performed on biopsy samples 1 hour after therapy. Three weeks after intraportal delivery of endothelial cells, the swine were euthanized and the explanted liver underwent quantitative pathologic examination. Statistical analysis was performed with an unpaired t test by using unequal variance. Results Liver endothelial cells were successfully isolated, cultured, and expanded from eight 20-mm, 18-gauge hepatic core samples to 50 × 10 6 autologous cells per pig. Intraportal delivery of endothelial cell therapy or saline was technically successful in all eight swine, with no complications. Endothelial cells were present in the liver for a minimum of 1 hour after intraportal infusion. Swine treated with endothelial cell therapy showed mean levels of surrogate markers of hepatobiliary injury that were consistent with decreases in hepatic fibrosis and biliary ductal damage relative to the control animals, although statistical significance was not met in this pilot study: The mean percentage of positive pixels at Masson trichrome staining was 7.28% vs 5.57%, respectively (P = .20), the mean proliferation index with cytokeratin wide-spectrum was 2.55 vs 1.13 (P = .06), and the mean proliferation index with Ki67

  5. Hepatocyte transplantation and advancements in alternative cell sources for liver-based regenerative medicine.

    Science.gov (United States)

    Lee, Charlotte A; Sinha, Siddharth; Fitzpatrick, Emer; Dhawan, Anil

    2018-06-01

    Human hepatocyte transplantation has been actively perused as an alternative to liver replacement for acute liver failure and liver-based metabolic defects. Current challenges in this field include a limited cell source, reduced cell viability following cryopreservation and poor engraftment of cells into the recipient liver with consequent limited life span. As a result, alternative stem cell sources such as pluripotent stem cells, fibroblasts, hepatic progenitor cells, amniotic epithelial cells and mesenchymal stem/stromal cells (MSCs) can be used to generate induced hepatocyte like cells (HLC) with each technique exhibiting advantages and disadvantages. HLCs may have comparable function to primary human hepatocytes and could offer patient-specific treatment. However, long-term functionality of transplanted HLCs and the potential oncogenic risks of using stem cells have yet to be established. The immunomodulatory effects of MSCs are promising, and multiple clinical trials are investigating their effect in cirrhosis and acute liver failure. Here, we review the current status of hepatocyte transplantation, alternative cell sources to primary human hepatocytes and their potential in liver regeneration. We also describe recent clinical trials using hepatocytes derived from stem cells and their role in improving the phenotype of several liver diseases.

  6. Cutaneous features seen in primary liver cell (Hepatocellular ...

    African Journals Online (AJOL)

    kemrilib

    features associated with the entity as a possible aid to diagnosis cutaneous features being considered a cheap tool that can help ... liver cell cancer (PLCC) and cancer of the breast and ... laboratory based -abdominal ultrasonography, liver.

  7. Molecular Cues Guiding Matrix Stiffness in Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Takaoki Saneyasu

    2016-01-01

    Full Text Available Tissue and matrix stiffness affect cell properties during morphogenesis, cell growth, differentiation, and migration and are altered in the tissue remodeling following injury and the pathological progression. However, detailed molecular mechanisms underlying alterations of stiffness in vivo are still poorly understood. Recent engineering technologies have developed powerful techniques to characterize the mechanical properties of cell and matrix at nanoscale levels. Extracellular matrix (ECM influences mechanical tension and activation of pathogenic signaling during the development of chronic fibrotic diseases. In this short review, we will focus on the present knowledge of the mechanisms of how ECM stiffness is regulated during the development of liver fibrosis and the molecules involved in ECM stiffness as a potential therapeutic target for liver fibrosis.

  8. TRANSPLANTATION OF CRYOPRESERVED FETAL LIVER CELLS SEEDED INTO MACROPOROUS ALGINATE-GELATIN SCAFFOLDS IN RATS WITH LIVER FAILURE

    Directory of Open Access Journals (Sweden)

    D. V. Grizay

    2015-01-01

    Full Text Available Aim. To study the therapeutic potential of cryopreserved fetal liver cells seeded into macroporous alginategelatin scaffolds after implantation to omentum of rats with hepatic failure.Materials and methods.Hepatic failure was simulated by administration of 2-acetyl aminofl uorene followed partial hepatectomy. Macroporous alginate-gelatin scaffolds, seeded with allogenic cryopreserved fetal liver cells (FLCs were implanted into rat omentum. To prevent from colonization of host cells scaffolds were coated with alginate gel shell. Serum transaminase activity, levels of albumin and bilirubin as markers of hepatic function were determined during 4 weeks after failure model formation and scaffold implantation. Morphology of liver and scaffolds after implantation were examined histologically. Results. Macroporous alginate-gelatin scaffolds after implantation to healthy rats were colonized by host cells. Additional formation of alginate gel shell around scaffolds prevented the colonization. Implantation of macroporous scaffolds seeded with cryopreserved rat FLCs and additionally coated with alginate gel shell into omentum of rats with hepatic failure resulted in signifi cant improvement of hepatospecifi c parameters of the blood serum and positive changes of liver morphology. The presence of cells with their extracellular matrix within the scaffolds was confi rmed after 4 weeks post implantation.Conclusion. The data above indicate that macroporous alginate-gelatin scaffolds coated with alginate gel shell are promising cell carriers for the development of bioengineered liver equivalents.

  9. Liver involvement in Langerhans' cell histiocytosis. Case report.

    Science.gov (United States)

    Dina, Ion; Copaescu, Catalin; Herlea, Vlad; Wrba, Fritz; Iacobescu, Claudia

    2006-03-01

    Langerhans'cell histiocytosis (Histiocytosis X) is a rare disease of unknown cause characterized by oligoclonal proliferation of Langerhans cells. It occurs mostly in children and young adults and involves one or more body systems such as bone, hypothalamus, posterior pituitary gland, lymph nodes, liver or various soft tissues. The diagnosis is always made by a histological approach. We report a case of Langerhans'cell histiocytosis in a young patient with clinical signs of diabetes insipidus and hepatic involvement in whom the immunohistochemical analysis of the liver tissue led to the definitive diagnosis.

  10. Understanding Liver Regeneration: From Mechanisms to Regenerative Medicine.

    Science.gov (United States)

    Gilgenkrantz, Hélène; Collin de l'Hortet, Alexandra

    2018-04-16

    Liver regeneration is a complex and unique process. When two-thirds of a mouse liver is removed, the remaining liver recovers its initial weight in approximately 10 days. The understanding of the mechanisms responsible for liver regeneration may help patients needing large liver resections or transplantation and may be applied to the field of regenerative medicine. All differentiated hepatocytes are capable of self-renewal, but different subpopulations of hepatocytes seem to have distinct proliferative abilities. In the setting of chronic liver diseases, a ductular reaction ensues in which liver progenitor cells (LPCs) proliferate in the periportal region. Although these LPCs have the capacity to differentiate into hepatocytes and biliary cells in vitro, their ability to participate in liver regeneration is far from clear. Their expansion has even been associated with increased fibrosis and poorer prognosis in chronic liver diseases. Controversies also remain on their origin: lineage studies in experimental mouse models of chronic injury have recently suggested that these LPCs originate from hepatocyte dedifferentiation, whereas in other situations, they seem to come from cholangiocytes. This review summarizes data published in the past 5 years in the liver regeneration field, discusses the mechanisms leading to regeneration disruption in chronic liver disorders, and addresses the potential use of novel approaches for regenerative medicine. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. [Hepatic cell transplantation: a new therapy in liver diseases].

    Science.gov (United States)

    Pareja, Eugenia; Cortés, Miriam; Martínez, Amparo; Vila, Juan José; López, Rafael; Montalvá, Eva; Calzado, Angeles; Mir, José

    2010-07-01

    Liver transplantation has been remarkably effective in the treatment in patients with end-stage liver disease. However, disparity between solid-organ supply and increased demand is the greatest limitation, resulting in longer waiting times and increase in mortality of transplant recipients. This situation creates the need to seek alternatives to orthotopic liver transplantation.Hepatocyte transplantation or liver cell transplantation has been proposed as the best method to support patients. The procedure consists of transplanting individual cells to a recipient organ in sufficient quantity to survive and restore the function. The capacity of hepatic regeneration is the biological basis of hepatocyte transplantation. This therapeutic option is an experimental procedure in some patients with inborn errors of metabolism, fulminant hepatic failure and acute and chronic liver failure, as a bridge to orthotopic liver transplantation. In the Hospital La Fe of Valencia, we performed the first hepatocyte transplantation in Spain creating a new research work on transplant program. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.

  12. Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway

    NARCIS (Netherlands)

    Neumann, Katrin; Rudolph, Christine; Neumann, Christian; Janke, Marko; Amsen, Derk; Scheffold, Alexander

    2015-01-01

    Under homeostasis, liver sinusoidal endothelial cells (LSECs) shift intrahepatic T-cell responses towards tolerance. However, the role of LSECs in the regulation of T-cell-induced liver inflammation is less clear. Here, we studied the capacity of LSECs to modulate pro-inflammatory Th1-cell

  13. T cells but not NK cells are associated with a favourable outcome for resected colorectal liver metastases

    International Nuclear Information System (INIS)

    Pugh, Siân A; Harrison, Rebecca J; Primrose, John N; Khakoo, Salim I

    2014-01-01

    The adaptive immune response to colorectal cancer is important for survival. Less is understood about the role of innate lymphocytes, such as Natural Killer (NK) cells, which are abundant in human liver. Samples of fresh liver (n = 21) and tumour (n = 11) tissue were obtained from patients undergoing surgical resection of colorectal liver metastases. Flow cytometry was used to analyse the presence and phenotype of NK cells, as compared to T cells, in the tumour and liver tissue. Results were correlated with survival. NK cells were poorly recruited to the tumours (distant liver tissue 38.3%, peritumoural liver 34.2%, tumour 12.9%, p = 0.0068). Intrahepatic and intratumoural NK cells were KIR (killer immunoglobulin-like receptor) lo NKG2A hi whereas circulating NK cells were KIR hi NKG2A lo . By contrast T cells represented 65.7% of the tumour infiltrating lymphocytes. Overall survival was 43% at 5 years, with the 5-year survival for individuals with a T cell rich infiltrate being 60% (95% CI 17-93%) and for those with a low T cell infiltrate being 0% (95% CI 0-48%). Conversely individuals with higher levels of NK cells in the tumour had an inferior outcome, although there were insufficient numbers to reach significance (median survivals: NK Hi 1.63 years vs NK Lo 3.92 years). T cells, but not NK cells, are preferentially recruited to colorectal liver metastases. NK cells within colorectal metastases have an intrahepatic and potentially tolerogenic, rather than a peripheral, phenotype. Similar to primary tumours, the magnitude of the T cell infiltrate in colorectal metastases is positively associated with survival

  14. Accuracy of FibroScan for diagnosing liver fibrosis

    Directory of Open Access Journals (Sweden)

    Jian ZHANG

    2011-11-01

    Full Text Available Objective To evaluate the accuracy of transient elastometry(FibroScan for the detection of liver fibrosis.Methods A total of 323 patients diagnosed with chronic liver disease based on pathological examination in the 302 Hospital of the People’s Liberation Army from April to December of 2009 were involved in the current study.Among them,141 patients were subjected to liver biopsy.Their liver function,coagulant index,B-ultrasound and blood cell count were examined clinically.Four examinations related to liver fibrosis were done on some of the patients.Meanwhile,FibroScan was used for liver stiffness measurement(LSM of every patient.The correlation between liver stiffness and the serologic index and liver fibrosis degree was analyzed.The Receive Operating Characteristic(ROC curve was adopted to analyze the accuracy of FibroScan for diagnosing liver fibrosis.Results Each serologic index was significantly correlated with liver stiffness(P < 0.001,and liver stiffness was closely related to the stage of liver fibrosis(r=0.74,P < 0.001.The statistical results of the 141 patients who underwent pathologic examination show that the areas under the ROC curve were 0.97(0.94,1.00 for patients with portal fibrosis(F1,0.96(0.93,0.99 for patients with significant fibrosis(F2,0.99(0.98,1.00 for patients with severe fibrosis(F3,and 0.97(0.94,0.99 for patients with cirrhosis(F4.The cutoff values were 4.4KPa,6.8KPa,9.7KPa,and 10.0KPa,respectively.Conclusion FibroScan is valuable for the diagnosis of liver fibrosis.It can be used as the basis for follow-up and management of patients with chronic liver diseases.

  15. The role of Foxp3+ regulatory T cells in liver transplant tolerance.

    Science.gov (United States)

    Li, W; Carper, K; Zheng, X X; Kuhr, C S; Reyes, J D; Liang, Y; Perkins, D L; Thomson, A W; Perkins, J D

    2006-12-01

    The liver has long been considered a tolerogenic organ that favors the induction of peripheral tolerance. The mechanisms underlying liver tolerogenicity remain largely undefined. In this study, we characterized Foxp3-expressing CD4+ CD25+ regulatory T cells (Treg) in liver allograft recipients and examined the role of Treg in inherent liver tolerogenicity by employing the mouse spontaneous liver transplant tolerance model. Orthotopic liver transplantation was performed from C57BL/10 (H2b) to C3H/HeJ (H2k) mice. The percentage of CD4+ CD25+ Treg was expanded in the liver grafts and recipient spleens from day 5 up to day 100 posttransplantation, associated with high intracellular Foxp3 and CTLA4 expression. Immunohistochemistry further demonstrated significant numbers of Foxp3+ cells in the liver grafts and recipient spleens and increased transforming growth factor beta expression in the recipient spleens throughout the time courses. Adoptive transfer of spleen cells from the long-term liver allograft survivors significantly prolonged donor heart graft survival. Depletion of recipient CD4+ CD25+ Treg using anti-CD25 monoclonal antibody (250 microg/d) induced acute liver allograft rejection, associated with elevated anti-donor T-cell proliferative responses, CTL and natural killer activities, enhanced interleukin (IL)-2, interferon-gamma, IL-10, and decreased IL-4 production, and decreased T-cell apoptotic activity in anti-CD25-treated recipients. Moreover, CTLA4 blockade by anti-CTLA4 monoclonal antibody administration exacerbated liver graft rejection when combined with anti-CD25 monoclonal antibody. Thus, Foxp3+ CD4+ CD25+ Treg appear to underpin spontaneous acceptance of major histocompatability complex- mismatched liver allografts in mice. CTLA4, IL-4, and apoptosis of alloreactive T cells appear to contribute to the function of Treg and regulation of graft outcome.

  16. Use of tissue-specific microRNA to control pathology of wild-type adenovirus without attenuation of its ability to kill cancer cells.

    Science.gov (United States)

    Cawood, Ryan; Chen, Hannah H; Carroll, Fionnadh; Bazan-Peregrino, Miriam; van Rooijen, Nico; Seymour, Leonard W

    2009-05-01

    Replicating viruses have broad applications in biomedicine, notably in cancer virotherapy and in the design of attenuated vaccines; however, uncontrolled virus replication in vulnerable tissues can give pathology and often restricts the use of potent strains. Increased knowledge of tissue-selective microRNA expression now affords the possibility of engineering replicating viruses that are attenuated at the RNA level in sites of potential pathology, but retain wild-type replication activity at sites not expressing the relevant microRNA. To assess the usefulness of this approach for the DNA virus adenovirus, we have engineered a hepatocyte-safe wild-type adenovirus 5 (Ad5), which normally mediates significant toxicity and is potentially lethal in mice. To do this, we have included binding sites for hepatocyte-selective microRNA mir-122 within the 3' UTR of the E1A transcription cassette. Imaging versions of these viruses, produced by fusing E1A with luciferase, showed that inclusion of mir-122 binding sites caused up to 80-fold decreased hepatic expression of E1A following intravenous delivery to mice. Animals administered a ten-times lethal dose of wild-type Ad5 (5x10(10) viral particles/mouse) showed substantial hepatic genome replication and extensive liver pathology, while inclusion of 4 microRNA binding sites decreased replication 50-fold and virtually abrogated liver toxicity. This modified wild-type virus retained full activity within cancer cells and provided a potent, liver-safe oncolytic virus. In addition to providing many potent new viruses for cancer virotherapy, microRNA control of virus replication should provide a new strategy for designing safe attenuated vaccines applied across a broad range of viral diseases.

  17. Bioluminescence imaging of β cells and intrahepatic insulin gene activity under normal and pathological conditions.

    Directory of Open Access Journals (Sweden)

    Tokio Katsumata

    Full Text Available In diabetes research, bioluminescence imaging (BLI has been applied in studies of β-cell impairment, development, and islet transplantation. To develop a mouse model that enables noninvasive imaging of β cells, we generated a bacterial artificial chromosome (BAC transgenic mouse in which a mouse 200-kbp genomic fragment comprising the insulin I gene drives luciferase expression (Ins1-luc BAC transgenic mouse. BLI of mice was performed using the IVIS Spectrum system after intraperitoneal injection of luciferin, and the bioluminescence signal from the pancreatic region analyzed. When compared with MIP-Luc-VU mice [FVB/N-Tg(Ins1-lucVUPwrs/J] expressing luciferase under the control of the 9.2-kbp mouse insulin I promoter (MIP, the bioluminescence emission from Ins1-luc BAC transgenic mice was enhanced approximately 4-fold. Streptozotocin-treated Ins1-luc BAC transgenic mice developed severe diabetes concomitant with a sharp decline in the BLI signal intensity in the pancreas. Conversely, mice fed a high-fat diet for 8 weeks showed an increase in the signal, reflecting a decrease or increase in the β-cell mass. Although the bioluminescence intensity of the islets correlated well with the number of isolated islets in vitro, the intensity obtained from a living mouse in vivo did not necessarily reflect an absolute quantification of the β-cell mass under pathological conditions. On the other hand, adenovirus-mediated gene transduction of β-cell-related transcription factors in Ins1-luc BAC transgenic mice generated luminescence from the hepatic region for more than 1 week. These results demonstrate that BLI in Ins1-luc BAC transgenic mice provides a noninvasive method of imaging islet β cells and extrapancreatic activity of the insulin gene in the liver under normal and pathological conditions.

  18. Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis

    Science.gov (United States)

    Liu, Longwei; You, Zhifeng; Yu, Hongsheng; Zhou, Lyu; Zhao, Hui; Yan, Xiaojun; Li, Dulei; Wang, Bingjie; Zhu, Lu; Xu, Yuzhou; Xia, Tie; Shi, Yan; Huang, Chenyu; Hou, Wei; Du, Yanan

    2017-12-01

    The role of pathological angiogenesis on liver fibrogenesis is still unknown. Here, we developed fibrotic microniches (FμNs) that recapitulate the interaction of liver sinusoid endothelial cells (LSECs) and hepatic stellate cells (HSCs). We investigated how the mechanical properties of their substrates affect the formation of capillary-like structures and how they relate to the progression of angiogenesis during liver fibrosis. Differences in cell response in the FμNs were synonymous of the early and late stages of liver fibrosis. The stiffness of the early-stage FμNs was significantly elevated due to condensation of collagen fibrils induced by angiogenesis, and led to activation of HSCs by LSECs. We utilized these FμNs to understand the response to anti-angiogenic drugs, and it was evident that these drugs were effective only for early-stage liver fibrosis in vitro and in an in vivo mouse model of liver fibrosis. Late-stage liver fibrosis was not reversed following treatment with anti-angiogenic drugs but rather with inhibitors of collagen condensation. Our work reveals stage-specific angiogenesis-induced liver fibrogenesis via a previously unrevealed mechanotransduction mechanism which may offer precise intervention strategies targeting stage-specific disease progression.

  19. Potential and Challenges of Induced Pluripotent Stem Cells in Liver Diseases Treatment

    Directory of Open Access Journals (Sweden)

    Yue Yu

    2014-09-01

    Full Text Available Tens of millions of patients are affected by liver disease worldwide. Many of these patients can benefit from cell therapy involving living metabolically active cells, either by treatment of their liver disease, or by prevention of their disease phenotype. Cell therapies, including hepatocyte transplantation and bioartificial liver (BAL devices, have been proposed as therapeutic alternatives to the shortage of transplantable livers. Both BAL and hepatocyte transplantation are cellular therapies that avoid use of a whole liver. Hepatocytes are also widely used in drug screening and liver disease modelling. However, the demand for human hepatocytes, heavily outweighs their availability by conventional means. Induced pluripotent stem cells (iPSCs technology brings together the potential benefits of embryonic stem cells (ESCs (i.e., self-renewal, pluripotency and addresses the major ethical and scientific concerns of ESCs: embryo destruction and immune-incompatibility. It has been shown that hepatocyte-like cells (HLCs can be generated from iPSCs. Furthermore, human iPSCs (hiPSCs can provide an unlimited source of human hepatocytes and hold great promise for applications in regenerative medicine, drug screening and liver diseases modelling. Despite steady progress, there are still several major obstacles that need to be overcome before iPSCs will reach the bedside. This review will focus on the current state of efforts to derive hiPSCs for potential use in modelling and treatment of liver disease.

  20. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells.

    Science.gov (United States)

    Witek, Rafal P; Yang, Liu; Liu, Renshui; Jung, Youngmi; Omenetti, Alessia; Syn, Wing-Kin; Choi, Steve S; Cheong, Yeiwon; Fearing, Caitlin M; Agboola, Kolade M; Chen, Wei; Diehl, Anna Mae

    2009-01-01

    Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes, and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). MF-HSC and cholangiocytes were exposed to platelet-derived growth factor to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy and immunoblots, and applied to Hh-reporter-containing cells. Microparticles were obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, an Hh signaling inhibitor. Effects on SEC gene expression were evaluated by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Platelet-derived growth factor-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically-active Hh ligands. BDL increased release of Hh-containing exosome-enriched microparticles into plasma and bile. Transmission electron microscopy and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy.

  1. Wnt Ligands as a Part of the Stem Cell Niche in the Intestine and the Liver.

    Science.gov (United States)

    Degirmenci, Bahar; Hausmann, George; Valenta, Tomas; Basler, Konrad

    2018-01-01

    The term "Wnt signaling" does not refer to one uniform signal transduction cascade. Instead, it describes the multiple discrete signals elicited by Wnt ligands following their interaction with distinct receptor complexes. The interaction of stem cells with niche cells is coordinated by the involvement of different signaling pathways, including Wnt signaling. The stem cell populations are highly sensitive to modulation of Wnt pathway activity. Wnt signaling is of paramount importance for stem cell self-renewal, survival, proliferation, differentiation, movement, and cell polarity. Aberrant activation of Wnt/β-catenin signaling is associated with the pathology of many types of cancer, such as colorectal cancer and hepatocellular carcinoma. Importantly, although often initiated by mutation(s) downstream of the Wnt-receptor complex, the progression of colorectal cancer still seems to be augmented by Wnt ligand-mediated signaling. This chapter focuses on the role of Wnt ligands in the intestine and the liver during homeostasis and cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Role of liver progenitors in liver regeneration.

    Science.gov (United States)

    Best, Jan; Manka, Paul; Syn, Wing-Kin; Dollé, Laurent; van Grunsven, Leo A; Canbay, Ali

    2015-02-01

    During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs.

  3. Mesenchymal Stem Cells Enhance Liver Regeneration via Improving Lipid Accumulation and Hippo Signaling

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2018-01-01

    Full Text Available The liver has the potential to regenerate after injury. It is a challenge to improve liver regeneration (LR after liver resection in clinical practice. Bone morrow-derived mesenchymal stem cells (MSCs have shown to have a role in various liver diseases. To explore the effects of MSCs on LR, we established a model of 70% partial hepatectomy (PHx. Results revealed that infusion of MSCs could improve LR through enhancing cell proliferation and cell growth during the first 2 days after PHx, and MSCs could also restore liver synthesis function. Infusion of MSCs also improved liver lipid accumulation partly via mechanistic target of rapamycin (mTOR signaling and enhanced lipid β-oxidation support energy for LR. Rapamycin-induced inhibition of mTOR decreased liver lipid accumulation at 24 h after PHx, leading to impaired LR. And after infusion of MSCs, a proinflammatory environment formed in the liver, evidenced by increased expression of IL-6 and IL-1β, and thus the STAT3 and Hippo-YAP pathways were activated to improve cell proliferation. Our results demonstrated the function of MSCs on LR after PHx and provided new evidence for stem cell therapy of liver diseases.

  4. Overexpression of c-Met in bone marrow mesenchymal stem cells improves their effectiveness in homing and repair of acute liver failure.

    Science.gov (United States)

    Wang, Kun; Li, Yuwen; Zhu, Tiantian; Zhang, Yongting; Li, Wenting; Lin, Wenyu; Li, Jun; Zhu, Chuanlong

    2017-07-05

    Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) has emerged as a novel therapy for acute liver failure (ALF). However, the homing efficiency of BMSCs to the injured liver sites appears to be poor. In this study, we aimed to determine if overexpression of c-Met in BMSCs could promote the homing ability of BMSCs to rat livers affected by ALF. Overexpression of c-Met in BMSCs (c-Met-BMSCs) was attained by transfection of naive BMSCs with the lenti-c-Met-GFP. The impact of transplanted c-Met-BMSCs on both homing and repair of ALF was evaluated and compared with lenti-GFP empty vector transfected BMSCs (control BMSCs). After cells were transfected with the lenti-c-Met-GFP vector, the BMSCs displayed very high expression of c-Met protein as demonstrated by Western blot. In addition, in vitro transwell migration assays showed that the migration ability of c-Met-BMSCs was significantly increased in comparison with that of control BMSCs (P liver; this was accompanied by elevated survival rates and liver function in the ALF rats. Parallel pathological examination further confirmed that transplantation of c-Met-BMSCs ameliorated liver injury with reduced hepatic activity index (HAI) scores, and that the effects of c-Met-BMSCs were more profound than those of control BMSCs. Overexpression of c-Met promotes the homing of BMSCs to injured hepatic sites in a rat model of ALF, thereby improving the efficacy of BMSC therapy for ALF repair.

  5. Increased Expression of TGF-β1 in Correlation with Liver Fibrosis during Echinococcus granulosus Infection in Mice.

    Science.gov (United States)

    Liu, Yumei; Abudounnasier, Gulizhaer; Zhang, Taochun; Liu, Xuelei; Wang, Qian; Yan, Yi; Ding, Jianbing; Wen, Hao; Yimiti, Delixiati; Ma, Xiumin

    2016-08-01

    To investigate the potential role of transforming growth factor (TGF)-β1 in liver fibrosis during Echinococcus granulosus infection, 96 BALB/c mice were randomly divided into 2 groups, experimental group infected by intraperitoneal injection with a metacestode suspension and control group given sterile physiological saline. The liver and blood samples were collected at days 2, 8, 30, 90, 180, and 270 post infection (PI), and the expression of TGF-β1 mRNA and protein was determined by real-time quantitative RT-PCR and ELISA, respectively. We also evaluated the pathological changes in the liver during the infection using hematoxylin and eosin (H-E) and Masson staining of the liver sections. Pathological analysis of H-E stained infected liver sections revealed liver cell edema, bile duct proliferation, and structural damages of the liver as evidenced by not clearly visible lobular architecture of the infected liver, degeneration of liver cell vacuoles, and infiltration of lymphocytes at late stages of infection. The liver tissue sections from control mice remained normal. Masson staining showed worsening of liver fibrosis at the end stages of the infection. The levels of TGF-β1 did not show significant changes at the early stages of infection, but there were significant increases in the levels of TGF-β1 at the middle and late stages of infection (Pgranulosus infection may play a significant role in liver fibrosis associated with E. granulosus infection.

  6. Advanced glycation end products promote ChREBP expression and cell proliferation in liver cancer cells by increasing reactive oxygen species.

    Science.gov (United States)

    Chen, Hanbei; Li, Yakui; Zhu, Yemin; Wu, Lifang; Meng, Jian; Lin, Ning; Yang, Dianqiang; Li, Minle; Ding, WenJin; Tong, Xuemei; Su, Qing

    2017-08-01

    The aim of the study was to elucidate the mechanism by which advanced glycation end products (AGEs) promote cell proliferation in liver cancer cells.We treated liver cancer HepG2 cells with 200 mg/L AGEs or bovine serum albumin (BSA) and assayed for cell viability, cell cycle, and apoptosis. We performed real-time PCR and Western blot analysis for RNA and protein levels of carbohydrate responsive element-binding protein (ChREBP) in AGEs- or BSA-treated HepG2 cells. We analyzed the level of reactive oxygen species (ROS) in HepG2 cells treated with AGEs or BSA.We found that increased S-phase cell percentage and decreased apoptosis contributed to AGEs-induced liver cancer cell proliferation. Real-time PCR and Western blot analysis showed that AGEs stimulated RNA and protein levels of ChREBP, a transcription factor promoting glycolysis and maintaining cell proliferation in liver cancer cells. Intriguingly, the level of ROS was higher in AGEs-treated liver cancer cells. Treating liver cancer cells with antioxidant N-acetyl cystein (NAC) partly blocked AGEs-induced ChREBP expression and cell proliferation.Our results suggest that the AGEs-ROS-ChREBP pathway plays a critical role in promoting ChREBP expression and liver cancer cell proliferation.

  7. Mangosteen peel extract reduces formalin-induced liver cell death in rats

    Directory of Open Access Journals (Sweden)

    Afiana Rohmani

    2014-08-01

    Full Text Available Background Formalin is a xenobiotic that is now commonly used as a preservative in the food industry. The liver is an organ that has the highest metabolic capacity as compared to other organs. Mangosteen or Garcinia mangostana Linn (GML peel contains xanthones, which are a source of natural antioxidants. The purpose of this study was to evaluate the effect of mangosteen peel extract on formalin-induced liver cell mortality rate and p53 protein expression in Wistar rats. Methods Eighteen rats received formalin orally for 2 weeks, and were subsequently divided into 3 groups, consisting of the formalin-control group receiving a placebo and treatment groups 1 and 2, which were treated with mangosteen peel extract at doses of 200 and 400 mg/kgBW/day, respectively. The treatment was carried out for 1 week, and finally the rats were terminated. The differences in liver cell mortality rate and p53 protein expression were analyzed. Results One-way ANOVA analysis showed significant differences in liver cell mortality rate among the three groups (p=0.004. The liver cell mortality rate in the treatment group receiving 400 mg/kgBW/day extract was lower than that in the formalin-control group. There was no p53 expression in all groups. Conclusions Garcinia mangostana Linn peel extract reduced the mortality rate of liver cells in rats receiving oral formalin. Involvement of p53 expression in liver cell mortality in rats exposed to oral formalin is presumably negligible.

  8. A Roadmap for Human Liver Differentiation from Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Lay Teng Ang

    2018-02-01

    Full Text Available How are closely related lineages, including liver, pancreas, and intestines, diversified from a common endodermal origin? Here, we apply principles learned from developmental biology to rapidly reconstitute liver progenitors from human pluripotent stem cells (hPSCs. Mapping the formation of multiple endodermal lineages revealed how alternate endodermal fates (e.g., pancreas and intestines are restricted during liver commitment. Human liver fate was encoded by combinations of inductive and repressive extracellular signals at different doses. However, these signaling combinations were temporally re-interpreted: cellular competence to respond to retinoid, WNT, TGF-β, and other signals sharply changed within 24 hr. Consequently, temporally dynamic manipulation of extracellular signals was imperative to suppress the production of unwanted cell fates across six consecutive developmental junctures. This efficiently generated 94.1% ± 7.35% TBX3+HNF4A+ human liver bud progenitors and 81.5% ± 3.2% FAH+ hepatocyte-like cells by days 6 and 18 of hPSC differentiation, respectively; the latter improved short-term survival in the Fah−/−Rag2−/−Il2rg−/− mouse model of liver failure.

  9. In Vitro Large Scale Production of Human Mature Red Blood Cells from Hematopoietic Stem Cells by Coculturing with Human Fetal Liver Stromal Cells

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    2013-01-01

    Full Text Available In vitro models of human erythropoiesis are useful in studying the mechanisms of erythroid differentiation in normal and pathological conditions. Here we describe an erythroid liquid culture system starting from cord blood derived hematopoietic stem cells (HSCs. HSCs were cultured for more than 50 days in erythroid differentiation conditions and resulted in a more than 109-fold expansion within 50 days under optimal conditions. Homogeneous erythroid cells were characterized by cell morphology, flow cytometry, and hematopoietic colony assays. Furthermore, terminal erythroid maturation was improved by cosculturing with human fetal liver stromal cells. Cocultured erythroid cells underwent multiple maturation events, including decrease in size, increase in glycophorin A expression, and nuclear condensation. This process resulted in extrusion of the pycnotic nuclei in up to 80% of the cells. Importantly, they possessed the capacity to express the adult definitive β-globin chain upon further maturation. We also show that the oxygen equilibrium curves of the cord blood-differentiated red blood cells (RBCs are comparable to normal RBCs. The large number and purity of erythroid cells and RBCs produced from cord blood make this method useful for fundamental research in erythroid development, and they also provide a basis for future production of available RBCs for transfusion.

  10. Endocrine pathology: past, present and future.

    Science.gov (United States)

    Asa, Sylvia L; Mete, Ozgur

    2018-01-01

    Endocrine pathology is the subspecialty of diagnostic pathology which deals with the diagnosis and characterisation of neoplastic and non-neoplastic diseases of the endocrine system. This relatively young subspecialty was initially focused mainly on thyroid and parathyroid pathology, with some participants also involved in studies of the pituitary, the endocrine pancreas, and the adrenal glands. However, the endocrine system involves much more than these traditional endocrine organs and the discipline has grown to encompass lesions of the dispersed neuroendocrine cells, including neuroendocrine tumours (NETs) of the lungs, gastrointestinal tract, thymus, breast and prostate, as well as paraganglia throughout the body, not just in the adrenals. Indeed, the production of hormones is the hallmark of the endocrine system, and some aspects of gynecological/testicular, bone and liver pathology also fall into the realm of this specialty. Many of the lesions that are the focus of this discipline are increasing in incidence and their pathology is becoming more complex with increased understanding of molecular pathology and a high incidence of familial disease. The future of endocrine pathology will demand a depth of understanding of structure, function, prognosis and prediction as pathologists play a key role in the multidisciplinary care team of patients with endocrine diseases. It is anticipated that new technologies will allow increased subspecialisation in pathology and growth of this important area of expertise. Copyright © 2017 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.

  11. Pathogenesis of Nonalcoholic Steatohepatitis: Interactions between Liver Parenchymal and Nonparenchymal Cells

    Directory of Open Access Journals (Sweden)

    Nancy Magee

    2016-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is the most common type of chronic liver disease in the Western countries, affecting up to 25% of the general population and becoming a major health concern in both adults and children. NAFLD encompasses the entire spectrum of fatty liver disease in individuals without significant alcohol consumption, ranging from nonalcoholic fatty liver (NAFL to nonalcoholic steatohepatitis (NASH and cirrhosis. NASH is a manifestation of the metabolic syndrome and hepatic disorders with the presence of steatosis, hepatocyte injury (ballooning, inflammation, and, in some patients, progressive fibrosis leading to cirrhosis. The pathogenesis of NASH is a complex process and implicates cell interactions between liver parenchymal and nonparenchymal cells as well as crosstalk between various immune cell populations in liver. Lipotoxicity appears to be the central driver of hepatic cellular injury via oxidative stress and endoplasmic reticulum (ER stress. This review focuses on the contributions of hepatocytes and nonparenchymal cells to NASH, assessing their potential applications to the development of novel therapeutic agents. Currently, there are limited pharmacological treatments for NASH; therefore, an increased understanding of NASH pathogenesis is pertinent to improve disease interventions in the future.

  12. Pathologic Stimulus Determines Lineage Commitment of Cardiac C-kit+ Cells.

    Science.gov (United States)

    Chen, Zhongming; Zhu, Wuqiang; Bender, Ingrid; Gong, Wuming; Kwak, Il-Youp; Yellamilli, Amritha; Hodges, Thomas J; Nemoto, Natsumi; Zhang, Jianyi; Garry, Daniel J; van Berlo, Jop H

    2017-12-12

    Although cardiac c-kit + cells are being tested in clinical trials, the circumstances that determine lineage differentiation of c-kit + cells in vivo are unknown. Recent findings suggest that endogenous cardiac c-kit + cells rarely contribute cardiomyocytes to the adult heart. We assessed whether various pathological stimuli differentially affect the eventual cell fates of c-kit + cells. We used single-cell sequencing and genetic lineage tracing of c-kit + cells to determine whether various pathological stimuli would result in different fates of c-kit + cells. Single-cell sequencing of cardiac CD45 - c-kit + cells showed innate heterogeneity, indicative of the existence of vascular and mesenchymal c-kit + cells in normal hearts. Cardiac pressure overload resulted in a modest increase in c-kit-derived cardiomyocytes, with significant increases in the numbers of endothelial cells and fibroblasts. Doxorubicin-induced acute cardiotoxicity did not increase c-kit-derived endothelial cell fates but instead induced cardiomyocyte differentiation. Mechanistically, doxorubicin-induced DNA damage in c-kit + cells resulted in expression of p53. Inhibition of p53 blocked cardiomyocyte differentiation in response to doxorubicin, whereas stabilization of p53 was sufficient to increase c-kit-derived cardiomyocyte differentiation. These results demonstrate that different pathological stimuli induce different cell fates of c-kit + cells in vivo. Although the overall rate of cardiomyocyte formation from c-kit + cells is still below clinically relevant levels, we show that p53 is central to the ability of c-kit + cells to adopt cardiomyocyte fates, which could lead to the development of strategies to preferentially generate cardiomyocytes from c-kit + cells. © 2017 American Heart Association, Inc.

  13. In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells.

    Science.gov (United States)

    Ramachandran, Sarada Devi; Schirmer, Katharina; Münst, Bernhard; Heinz, Stefan; Ghafoory, Shahrouz; Wölfl, Stefan; Simon-Keller, Katja; Marx, Alexander; Øie, Cristina Ionica; Ebert, Matthias P; Walles, Heike; Braspenning, Joris; Breitkopf-Heinlein, Katja

    2015-01-01

    In this study we used differentiated adult human upcyte® cells for the in vitro generation of liver organoids. Upcyte® cells are genetically engineered cell strains derived from primary human cells by lenti-viral transduction of genes or gene combinations inducing transient proliferation capacity (upcyte® process). Proliferating upcyte® cells undergo a finite number of cell divisions, i.e., 20 to 40 population doublings, but upon withdrawal of proliferation stimulating factors, they regain most of the cell specific characteristics of primary cells. When a defined mixture of differentiated human upcyte® cells (hepatocytes, liver sinusoidal endothelial cells (LSECs) and mesenchymal stem cells (MSCs)) was cultured in vitro on a thick layer of Matrigel™, they self-organized to form liver organoid-like structures within 24 hours. When further cultured for 10 days in a bioreactor, these liver organoids show typical functional characteristics of liver parenchyma including activity of cytochromes P450, CYP3A4, CYP2B6 and CYP2C9 as well as mRNA expression of several marker genes and other enzymes. In summary, we hereby describe that 3D functional hepatic structures composed of primary human cell strains can be generated in vitro. They can be cultured for a prolonged period of time and are potentially useful ex vivo models to study liver functions.

  14. Stellate-cell lipidosis in liver biopsy specimens. Recognition and significance.

    Science.gov (United States)

    Levine, Pascale Hummel; Delgado, Yara; Theise, Neil D; West, A Brian

    2003-02-01

    Hepatic stellate-cell lipidosis due to hypervitaminosis A can lead to cirrhosis, which can be averted by restricting vitamin A intake. Other causes, including the use of synthetic retinoids, have been postulated. We studied the frequency and etiology of stellate-cell lipidosis in patients undergoing liver biopsy for reasons other than vitamin A abuse. Fourteen cases (1.1%) were identified retrospectively among 1,235 nontransplant liver biopsy specimens examined from January 1995 through December 1999. Diagnostic criteria included the following: lipid-laden cells in the space of Disse; small, dark, crescent-shaped nuclei with inconspicuous nucleoli; and wispy cytoplasmic strands separating fat droplets. Patient details, reason for biopsy, and medication use were studied. Reasons for biopsy included hepatitis C (10 cases), abnormal liver enzyme levels (2 cases), methotrexate use (1 case), and alcohol abuse (1 case). Hypervitaminosis A was not suspected clinically in the 5 patients who used oral vitamin A or 3 who used topical tretinoin (Retin-A). In 6 patients, no cause of stellate-cell lipidosis was discerned. Stellate-cell lipidosis should be reported to alert clinicians to a potentially preventable form of liver injury.

  15. Uptake and clearance of plutonium-238 from liver cells transplanted into fat pads of F344 rats

    International Nuclear Information System (INIS)

    Brooks, A.L.; Guilmette, R.A.; Hahn, F.F.

    1986-01-01

    Animals injected with liver cells and control animals received a single intraperitoneal injection of 37 kBq (1 μCi) 238 Pu citrate and were serially sacrificed. It was observed that the cells of the intact liver took up about twice as much 238 Pu as liver cells transplanted into the fat pads of the same animal. The retention half-life was 8.3 days for the total activity in the liver, 20 days using tracks/cell measurements in the liver and 16 days for the tracks/cell measurements in the liver cells translocated to fat pads. When the data on tracks/cell were standardized relative to the amount of Pu present at 5 days after injection, there was no significant difference between the retention of Pu in liver cells from intact animals and liver cells transplanted into the fat pads. About 20% of the 5-day Pu liver burden in both liver cells and liver cells transplanted into fat pads was retained at 70 days. The smaller retention and clearance for liver cells in different environments indicate that uptake and clearance of Pu from the body is dependent, to a major extent, upon hepatocyte function. (author)

  16. Establishment and characterization of a unique 1 microm diameter liver-derived progenitor cell line.

    Science.gov (United States)

    Aravalli, Rajagopal N; Behnan Sahin, M; Cressman, Erik N K; Steer, Clifford J

    2010-01-01

    Liver-derived progenitor cells (LDPCs) are recently identified novel stem/progenitor cells from healthy, unmanipulated adult rat livers. They are distinct from other known liver stem/progenitor cells such as the oval cells. In this study, we have generated a LDPC cell line RA1 by overexpressing the simian virus 40 (SV40) large T antigen (TAg) in primary LDPCs. This cell line was propagated continuously for 55 passages in culture, after which it became senescent. Interestingly, following transformation with SV40 TAg, LDPCs decreased in size significantly and the propagating cells measured 1 microm in diameter. RA1 cells proliferated in vitro with a doubling time of 5-7 days, and expressed cell surface markers of LDPCs. In this report, we describe the characterization of this novel progenitor cell line that might serve as a valuable model to study liver cell functions and stem cell origin of liver cancers. Copyright 2009 Elsevier Inc. All rights reserved.

  17. Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell-mediated liver regeneration

    DEFF Research Database (Denmark)

    Jelnes, Peter; Santoni-Rugiu, Eric; Rasmussen, Morten

    2007-01-01

    The experimental protocols used in the investigation of stem cell-mediated liver regeneration in rodents are characterized by activation of the hepatic stem cell compartment in the canals of Hering followed by transit amplification of oval cells and their subsequent differentiation along hepatic...... the molecular phenotypes of oval cells in several of the most commonly used protocols of stem cell-mediated liver regeneration-namely, treatment with 2-acetylaminofluorene and partial (70%) hepatectomy (AAF/PHx); a choline-deficient, ethionine-supplemented (CDE) diet; a 3,5-diethoxycarbonyl-1,4-dihydro...... remarkable phenotypic discrepancies exhibited by oval cells in stem cell-mediated liver regeneration between rats and mice and underline the importance of careful extrapolation between individual species....

  18. Pathologic findings and liver elements in hibernating bats with white-nose syndrome.

    Science.gov (United States)

    Courtin, F; Stone, W B; Risatti, G; Gilbert, K; Van Kruiningen, H J

    2010-03-01

    Two groups of vespertilionid bats were collected from affected hibernacula. In group 1 (n, 14; pathology and microbiology), the average body weights of all species were at the lower limit of published ranges. Twelve bats (86%) had mycotic growth in the epidermis, hair follicles, and sebaceous glands. Geomyces destructans, with its characteristic curved conidia, was observed microscopically, cultured, and confirmed by polymerase chain reaction. Dermatitis and mural folliculitis was nil to mild. When focally coinfected with Gram-negative bacteria, there was necrosis and pustules. Fat stores were little to abundant in 12 bats (86%) and nil in 2. Thirteen bats (93%) had pulmonary congestion and 7 (50%) had bone marrow granulocytosis. In group 2 (n, 24; liver elements), 3 bats (13%) had potentially toxic lead levels and 1 (4%), potentially toxic arsenic level. There was no evidence of major organ failure or consistent element toxicity.

  19. Sensitivity of mitochondria of the mouse liver cells to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shima, A [Tokyo Univ. (Japan). Faculty of Science

    1974-06-01

    In order to study the sensitivity of mitochondria (Mt) of the liver cells to radiation, 0.4 mg of riboflavine (RF) was intraperitoneally injected into mice which had been fed RF deficient food for 13 weeks. Three hours later 400 R of X-ray (190 KVP, 25 mA, 0.5 mmCu, 0.5 mmAl filter, FSD 61.5 cm, and HVL 0.80 mmCu) were irradiated to the whole body, and giant Mt of the liver cells were observed. When the liver cells were observed 24 hours after injection, neither giant Mt nor mitotic findings of Mt were found. All Mt observed were small (1.2 ..mu..), although mice received 400 R of X-ray.

  20. Impact of NKT Cells and LFA-1 on Liver Regeneration under Subseptic Conditions.

    Directory of Open Access Journals (Sweden)

    Ann-Kathrin Jörger

    Full Text Available Activation of the immune system in terms of subseptic conditions during liver regeneration is of paramount clinical importance. However, little is known about molecular mechanisms and their mediators that control hepatocyte proliferation. We sought to determine the functional role of immune cells, especially NKT cells, in response to partial hepatectomy (PH, and to uncover the impact of the integrin lymphocyte function-associated antigen-1 (LFA-1 on liver regeneration in a subseptic setting.Wild-type (WT and LFA-1-/- mice underwent a 2/3 PH and low-dose lipopolysaccharid (LPS application. Hepatocyte proliferation, immune cell infiltration, and cytokine profile in the liver parenchyma were determined.Low-dose LPS application after PH results in a significant delay of liver regeneration between 48h and 72h, which is associated with a reduced number of CD3+ cells within the regenerating liver. In absence of LFA-1, an impaired regenerative capacity was observed under low-dose LPS application. Analysis of different leukocyte subpopulations showed less CD3+NK1.1+ NKT cells in the liver parenchyma of LFA-1-/- mice after PH and LPS application compared to WT controls, while CD3-NK1.1+ NK cells markedly increased. Concordantly with this observation, lower levels of NKT cell related cytokines IL-12 and IL-23 were expressed in the regenerating liver of LFA-1-/- mice, while the expression of NK cell-associated CCL5 and IL-10 was increased compared to WT mice.A subseptic situation negatively alters hepatocyte proliferation. Within this scenario, we suggest an important impact of NKT cells and postulate a critical function for LFA-1 during processes of liver regeneration.

  1. Magnetic targeting of iron-oxide-labeled fluorescent hepatoma cells to the liver

    International Nuclear Information System (INIS)

    Luciani, Alain; Wilhelm, Claire; Gazeau, Florence; Bruneval, Patrick; Cunin, Patrick; Autret, Gwennhael; Clement, Olivier; Rahmouni, Alain

    2009-01-01

    The purpose of this study was to determine whether an external magnet field can induce preferential trafficking of magnetically labeled Huh7 hepatoma cells to the liver following liver cell transplantation. Huh7 hepatoma cells were labeled with anionic magnetic nanoparticles (AMNP) and tagged with a fluorescent membrane marker (PKH67). Iron-uptake was measured by magnetophoresis. Twenty C57Bl6 mice received an intrasplenic injection of 2 x 10 6 labeled cells. An external magnet (0.29 T; 25 T/m) was placed over the liver of 13 randomly selected animals (magnet group), while the remaining 7 animals served as controls. MRI (1.5 T) and confocal fluorescence microscopy (CFM) were performed 10 days post-transplantation. The presence and location of labeled cells within the livers were compared in the magnet group and controls, and confronted with histological analysis representing the standard of reference. Mean iron content per cell was 6 pg. Based on histology, labeled cells were more frequently present within recipient livers in the magnet group (p < 0.01) where their distribution was preferentially peri-vascular (p<0.05). MRI and CFM gave similar results for the overall detection of transplanted cells (kappa=0.828) and for the identification of peri-vascular cells (kappa=0.78). Application of an external magnet can modify the trafficking of transplanted cells, especially by promoting the formation of perivascular aggregates. (orig.)

  2. Dendritic cells regulate angiogenesis associated with liver fibrogenesis.

    Science.gov (United States)

    Blois, Sandra M; Piccioni, Flavia; Freitag, Nancy; Tirado-González, Irene; Moschansky, Petra; Lloyd, Rodrigo; Hensel-Wiegel, Karin; Rose, Matthias; Garcia, Mariana G; Alaniz, Laura D; Mazzolini, Guillermo

    2014-01-01

    During liver fibrogenesis the immune response and angiogenesis process are fine-tuned resulting in activation of hepatic stellate cells that produce an excess of extracellular matrix proteins. Dendritic cells (DC) play a central role modulating the liver immunity and have recently been implicated to favour fibrosis regression; although their ability to influence the development of fibrogenesis is unknown. Therefore, we explored whether the depletion of DC during early stages of liver injury has an impact in the development of fibrogenesis. Using the CD11c.DTR transgenic mice, DC were depleted in two experimental models of fibrosis in vivo. The effect of anti-angiogenic therapy was tested during early stages of liver fibrogenesis. DC depletion accelerates the development of fibrosis and as a consequence, the angiogenesis process is boosted. We observed up-regulation of pro-angiogenic factors together with an enhanced vascular endothelial growth factor (VEGF) bioavailability, mainly evidenced by the decrease of anti-angiogenic VEGF receptor 1 (also known as sFlt-1) levels. Interestingly, fibrogenesis process enhanced the expression of Flt-1 on hepatic DC and administration of sFlt-1 was sufficient to abrogate the acceleration of fibrogenesis upon DC depletion. Thus, DC emerge as novel players during the development of liver fibrosis regulating the angiogenesis process and thereby influencing fibrogenesis.

  3. Oxidant Status and Lipid Composition of Erythrocyte Membranes in Patients with Type 2 Diabetes, Chronic Liver Damage, and a Combination of Both Pathologies

    Directory of Open Access Journals (Sweden)

    Rolando Hernández-Muñoz

    2013-01-01

    Full Text Available There is an important set of cirrhotic and diabetic patients that present both diseases. However, information about metabolic and cellular blood markers that are altered, in conjunction or distinctively, in the 3 pathological conditions is scarce. The aim of this project was to evaluate several indicators of prooxidant reactions and the membrane composition of blood samples (serum and red blood cells (RBCs from patients clinically classified as diabetic (n=60, cirrhotic (n=70, and diabetic with liver cirrhosis (n=25 as compared to samples from a similar population of healthy individuals (n=60. The results showed that levels of TBARS, nitrites, cysteine, and conjugated dienes in the RBC of cirrhotic patients were significantly increased. However, the coincidence of diabetes and cirrhosis partially reduced the alterations promoted by the cirrhotic condition. The amount of total phospholipids and cholesterol was greatly enhanced in the patients with both pathologies (between 60 and 200% according to the type of phospholipid but not in the patients with only one disease. Overall, the data indicate that the cooccurrence of diabetes and cirrhosis elicits a physiopathological equilibrium that is different from the alterations typical of each individual malady.

  4. Characterization of two distinct liver progenitor cell subpopulations of hematopoietic and hepatic origins

    International Nuclear Information System (INIS)

    Corcelle, V.; Stieger, B.; Gjinovci, A.; Wollheim, C.B.; Gauthier, B.R.

    2006-01-01

    Despite extensive studies, the hematopoietic versus hepatic origin of liver progenitor oval cells remains controversial. The aim of this study was to determine the origin of such cells after liver injury and to establish an oval cell line. Rat liver injury was induced by subcutaneous insertion of 2-AAF pellets for 7 days with subsequent injection of CCl 4 . Livers were removed 9 to 13 days post-CCl 4 treatment. Immunohistochemistry was performed using anti-c-kit, OV6, Thy1, CK19, AFP, vWF and Rab3b. Isolated non-parenchymal cells were grown on mouse embryonic fibroblast, and their gene expression profile was characterized by RT-PCR. We identified a subpopulation of OV6/CK19/Rab3b-expressing cells that was activated in the periportal region of traumatized livers. We also characterized a second subpopulation that expressed the HSCs marker c-kit but not Thy1. Although we successfully isolated both cell types, OV6/CK19/Rab3b + cells fail to propagate while c-kit + -HSCs appeared to proliferate for up to 7 weeks. Cells formed clusters which expressed c-kit, Thy1 and albumin. Our results indicate that a bona fide oval progenitor cell population resides within the liver and is distinct from c-kit + -HSCs. Oval cells require the hepatic niche to proliferate, while cells mobilized from the circulation proliferate and transdifferentiate into hepatocytes without evidence of cell fusion

  5. In situ targeting of dendritic cells sets tolerogenic environment and ameliorates CD4+ T-cell response in the postischemic liver.

    Science.gov (United States)

    Funken, Dominik; Ishikawa-Ankerhold, Hellen; Uhl, Bernd; Lerchenberger, Maximilian; Rentsch, Markus; Mayr, Doris; Massberg, Steffen; Werner, Jens; Khandoga, Andrej

    2017-11-01

    CD4 + T cells recruited to the liver play a key role in the pathogenesis of ischemia/reperfusion (I/R) injury. The mechanism of their activation during alloantigen-independent I/R is not completely understood. We hypothesized that liver-resident dendritic cells (DCs) interact with CD4 + T cells in the postischemic liver and that modulation of DCs or T-cell-DC interactions attenuates liver inflammation. In mice, warm hepatic I/R (90/120-240 min) was induced. Tolerogenic DCs were generated in situ by pretreatment of animals with the vitamin D analog paricalcitol. A mAb-CD44 was used for blockade of CD4 + T-cell-DC interactions. As shown by 2-photon in vivo microscopy as well as confocal microscopy, CD4 + T cells were closely colocalized with DCs in the postischemic liver. Pretreatment with paricalcitol attenuated I/R-induced maturation of DCs (flow cytometry), CD4 + T-cell recruitment into the liver (intravital microscopy), and hepatocellular/microvascular damage (intravital microscopy, alanine aminotransferase/aspartate aminotransferase, histology). However, interruption of T-cell-DC interaction increased proinflammatory DC maturation and even enhanced tissue damage. Simultaneous treatment with an anti-CD44mAb completely abolished the beneficial effect of paricalcitol on T-cell migration and tissue injury. Our study demonstrates for the first time that hepatic DCs interact with CD4 + T cells in the postischemic liver in vivo ; modulation of DCs and/or generation of tolerogenic DCs attenuates intrahepatic CD4 + T-cell recruitment and reduces I/R injury; and interruption of CD44-dependent CD4 + T-cell-DC interactions enhances tissue injury by preventing the modulatory effect of hepatic DCs on T cells, especially type 1 T helper effector cells. Thus, hepatic DCs are strongly involved in the promotion of CD4 + T-cell-dependent postischemic liver inflammation.-Funken, D., Ishikawa-Ankerhold, H., Uhl, B., Lerchenberger, M., Rentsch, M., Mayr, D., Massberg, S., Werner, J

  6. Nonredundant functions of alphabeta and gammadelta T cells in acrolein-induced pulmonary pathology.

    Science.gov (United States)

    Borchers, Michael T; Wesselkamper, Scott C; Eppert, Bryan L; Motz, Gregory T; Sartor, Maureen A; Tomlinson, Craig R; Medvedovic, Mario; Tichelaar, Jay W

    2008-09-01

    Acrolein exposure represents a significant human health hazard. Repeated acrolein exposure causes the accumulation of monocytes/macrophages and lymphocytes, mucous cell metaplasia, and epithelial injury. Currently, the mechanisms that control these events are unclear, and the relative contribution of T-cell subsets to pulmonary pathologies following repeated exposures to irritants is unknown. To examine whether lymphocyte subpopulations regulate inflammation and epithelial cell pathology, we utilized a mouse model of pulmonary pathology induced by repeated acrolein exposures. The role of lymphocyte subsets was examined by utilizing transgenic mice genetically deficient in either alphabeta T cells or gammadelta T cells, and changes in cellular, molecular, and pathologic outcomes associated with repeated inhalation exposure to 2.0 and 0.5 ppm acrolein were measured. To examine the potential functions of lymphocyte subsets, we purified these cells from the lungs of mice repeatedly exposed to 2.0 ppm acrolein, isolated and amplified messenger RNA, and performed microarray analysis. Our data demonstrate that alphabeta T cells are required for macrophage accumulation, whereas gammadelta T cells are critical regulators of epithelial cell homeostasis, as identified by epithelial cell injury and apoptosis, following repeated acrolein exposure. This is supported by microarray analyses that indicated the T-cell subsets are unique in their gene expression profiles following acrolein exposures. Microarray analyses identified several genes that may contribute to phenotypes mediated by T-cell subpopulations including those involved in cytokine receptor signaling, chemotaxis, growth factor production, lymphocyte activation, and apoptosis. These data provide strong evidence that T-cell subpopulations in the lung are major determinants of pulmonary pathology and highlight the advantages of dissecting their effector functions in response to toxicant exposures.

  7. Effect of liver histopathology on islet cell engraftment in the model mimicking autologous islet cell transplantation.

    Science.gov (United States)

    Desai, Chirag S; Khan, Khalid M; Ma, Xiaobo; Li, Henghong; Wang, Juan; Fan, Lijuan; Chen, Guoling; Smith, Jill P; Cui, Wanxing

    2017-11-02

    The inflammatory milieu in the liver as determined by histopathology is different in individual patients undergoing autologous islet cell transplantation. We hypothesized that inflammation related to fatty-liver adversely impacts islet survival. To test this hypothesis, we used a mouse model of fatty-liver to determine the outcome of syngeneic islet transplantation after chemical pancreatectomy. Mice (C57BL/6) were fed a high-fat-diet from 6 weeks of age until attaining a weight of ≥28 grams (6-8 weeks) to produce a fatty liver (histologically > 30% fat);steatosis was confirmed with lipidomic profile of liver tissue. Islets were infused via the intra-portal route in fatty-liver and control mice after streptozotocin induction of diabetes. Outcomes were assessed by the rate of euglycemia, liver histopathology, evaluation of liver inflammation by measuring tissue cytokines IL-1β and TNF-α by RT-PCR and CD31 expression by immunohistochemistry. The difference in the euglycemic fraction between the normal liver group (90%, 9/10) and the fatty-liver group (37.5%, 3/8) was statistically significant at the 18 th day post- transplant and was maintained to the end of the study (day 28) (p = 0.019, X 2 = 5.51). Levels of TNF-α and IL-1β were elevated in fatty-liver mice (p = 0.042, p = 0.037). Compared to controls cytokine levels were elevated after islet cell transplantation and in transplanted fatty-liver mice as compared to either fatty- or islet transplant group alone (p = NS). A difference in the histochemical pattern of CD31 could not be determined. Fatty-liver creates an inflammatory state which adversely affects the outcome of autologous islet cell transplantation.

  8. Hypercholesterolemia Induces Differentiation of Regulatory T Cells in the Liver.

    Science.gov (United States)

    Mailer, Reiner K W; Gisterå, Anton; Polyzos, Konstantinos A; Ketelhuth, Daniel F J; Hansson, Göran K

    2017-05-26

    The liver is the central organ that responds to dietary cholesterol intake and facilitates the release and clearance of lipoprotein particles. Persistent hypercholesterolemia leads to immune responses against lipoprotein particles that drive atherosclerosis. However, the effect of hypercholesterolemia on hepatic T-cell differentiation remains unknown. To investigate hepatic T-cell subsets upon hypercholesterolemia. We observed that hypercholesterolemia elevated the intrahepatic regulatory T (Treg) cell population and increased the expression of transforming growth factor-β1 in the liver. Adoptive transfer experiments revealed that intrahepatically differentiated Treg cells relocated to the inflamed aorta in atherosclerosis-prone low-density lipoprotein receptor deficient ( Ldlr -/- ) mice. Moreover, hypercholesterolemia induced the differentiation of intrahepatic, but not intrasplenic, Th17 cells in wild-type mice, whereas the disrupted liver homeostasis in hypercholesterolemic Ldlr -/- mice led to intrahepatic Th1 cell differentiation and CD11b + CD11c + leukocyte accumulation. Our results elucidate a new mechanism that controls intrahepatic T-cell differentiation during atherosclerosis development and indicates that intrahepatically differentiated T cells contribute to the CD4 + T-cell pool in the atherosclerotic aorta. © 2017 American Heart Association, Inc.

  9. Liver schwannoma incidentally discovered in a patient with breast cancer.

    Science.gov (United States)

    Akin, Murat; Bozkirli, Bahadir; Leventoglu, Sezai; Unal, Kemal; Kapucu, L Ozlem; Akyurek, Nalan; Sare, Mustafa

    2009-01-01

    Benign schwannomas, also referred to as neurilemomas, neurinomas, and perineural fibroblastomas, are encapsulated nerve sheath tumors. Primary schwannomas of the liver are extremely rare. We present a case of liver schwannoma, incidentally found in a patient with breast cancer. A 66-year-old female consulted her physician for a mass she palpated on her left breast. The abdominal ultrasonography (USG) revealed a 44 x 28 mm mass in the medial segment of the left lobe of her liver suspicious of a metastasis. An USG-guided biopsy was performed and the histo-pathological examination revealed a "peripheral nerve sheath tumor". Positron emission tomography (PET-CT) revealed a pathologic FDG uptake in the lesion that was previously defined in the liver. The tumor resected from the liver was 5 x 4 x 3 cm, yellowish, soft, and capsulated tumor. Microscopic examination revealed that the mass consisted of bundles of spindle cells with hypercellular and hypocellular areas. In immunohistochemistry, there was a strong positive staining for S-100. The tumor was diagnosed as benign liver schwannoma. Schwannomas are benign, encapsulated neoplasms. Symptoms and signs vary depending on the anatomical site and the size of the neoplasm; however, most schwannomas present as an asymptomatic or painless mass. Recurrence is unusual, despite of an incomplete removal, and malignant transformation is exceedingly rare (Fig. 4, Ref. 8). Full Text (Free, PDF) www.bmj.sk.

  10. A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver

    International Nuclear Information System (INIS)

    Shikanai, Mima; Asahina, Kinji; Iseki, Sachiko; Teramoto, Kenichi; Nishida, Tomohiro; Shimizu-Saito, Keiko; Ota, Masato; Eto, Kazuhiro; Teraoka, Hirobumi

    2009-01-01

    Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or α-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.

  11. In Vitro and In Vivo Hepatic Differentiation of Adult Somatic Stem Cells and Extraembryonic Stem Cells for Treating End Stage Liver Diseases

    Directory of Open Access Journals (Sweden)

    Chenxia Hu

    2015-01-01

    Full Text Available The shortage of liver donors is a major handicap that prevents most patients from receiving liver transplantation and places them on a waiting list for donated liver tissue. Then, primary hepatocyte transplantation and bioartificial livers have emerged as two alternative treatments for these often fatal diseases. However, another problem has emerged. Functional hepatocytes for liver regeneration are in short supply, and they will dedifferentiate immediately in vitro after they are isolated from liver tissue. Alternative stem-cell-based therapeutic strategies, including hepatic stem cells (HSCs, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and mesenchymal stem cells (MSCs, are more promising, and more attention has been devoted to these approaches because of the high potency and proliferation ability of the cells. This review will focus on the general characteristics and the progress in hepatic differentiation of adult somatic stem cells and extraembryonic stem cells in vitro and in vivo for the treatment of end stage liver diseases. The hepatic differentiation of stem cells would offer an ideal and promising source for cell therapy and tissue engineering for treating liver diseases.

  12. Synthesis of erythrocyte membrane proteins in dispersed cells from fetal rat liver

    International Nuclear Information System (INIS)

    Kitagawa, Yasuo; Murakami, Akihiko; Sugimoto, Etsuro

    1984-01-01

    Protein synthesis in dispersed cells from fetal liver was studied by fluorography of SDS-polyacrylamide gel electrophoresis of a [ 35 S] methionine labeled cell lysate. Synthesis of several proteins with molecular weights ranging from 45,000 to 220,000 was observed during erythropoiesis in fetal liver. Some of these proteins were demonstrated to be erythrocyte membrane proteins because they were immunoprecipitated with antiserum against rat red blood cells and the immunoprecipitation was competitive with non-radioactive proteins solubilized from erythrocyte ghosts. The same antiserum caused agglutination of dispered cells from fetal liver. This supported the possibility that these proteins are translocated onto plasma membranes of the dispersed cells. (author)

  13. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    Science.gov (United States)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  14. Sensitivity of mitochondria of the mouse liver cells to radiation

    International Nuclear Information System (INIS)

    Shima, Akihiro

    1974-01-01

    In order to study the sensitivity of mitochondria (Mt) of the liver cells to radiation, 0.4 mg of riboflavine (RF) was intraperitoneally injected into mice which had been fed RF deficient food for 13 weeks. Three hours later 400 R of X-ray (190 KVP, 25 mA, 0.5 mmCu, 0.5 mmAl filter, FSD 61.5 cm, and HVL 0.80 mmCu) were irradiated to the whole body, and giant Mt of the liver cells were observed. When the liver cells were observed 24 hours after injection, neither giant Mt nor mitotic findings of Mt were found. All Mt observed were small (1.2 μ), although mice received 400 R of X-ray. (Serizawa, K.)

  15. Fasting enhances TRAIL-mediated liver natural killer cell activity via HSP70 upregulation.

    Directory of Open Access Journals (Sweden)

    Vu T A Dang

    Full Text Available Acute starvation, which is frequently observed in clinical practice, sometimes augments the cytolytic activity of natural killer cells against neoplastic cells. In this study, we investigated the molecular mechanisms underlying the enhancement of natural killer cell function by fasting in mice. The total number of liver resident natural killer cells in a unit weight of liver tissue obtained from C57BL/6J mice did not change after a 3-day fast, while the proportions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL+ and CD69+ natural killer cells were significantly elevated (n = 7, p <0.01, as determined by flow cytometric analysis. Furthermore, we found that TRAIL- natural killer cells that were adoptively transferred into Rag-2-/- γ chain-/- mice could convert into TRAIL+ natural killer cells in fasted mice at a higher proportion than in fed mice. Liver natural killer cells also showed high TRAIL-mediated antitumor function in response to 3-day fasting. Since these fasted mice highly expressed heat shock protein 70 (n = 7, p <0.05 in liver tissues, as determined by western blot, the role of this protein in natural killer cell activation was investigated. Treatment of liver lymphocytes with 50 µg/mL of recombinant heat shock protein 70 led to the upregulation of both TRAIL and CD69 in liver natural killer cells (n = 6, p <0.05. In addition, HSP70 neutralization by intraperitoneally injecting an anti- heat shock protein 70 monoclonal antibody into mice prior to fasting led to the downregulation of TRAIL expression (n = 6, p <0.05. These findings indicate that acute fasting enhances TRAIL-mediated liver natural killer cell activity against neoplastic cells through upregulation of heat shock protein 70.

  16. Gene expression profiling and secretome analysis differentiate adult-derived human liver stem/progenitor cells and human hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Silvia Berardis

    Full Text Available Adult-derived human liver stem/progenitor cells (ADHLSC are obtained after primary culture of the liver parenchymal fraction. The cells are of fibroblastic morphology and exhibit a hepato-mesenchymal phenotype. Hepatic stellate cells (HSC derived from the liver non-parenchymal fraction, present a comparable morphology as ADHLSC. Because both ADHLSC and HSC are described as liver stem/progenitor cells, we strived to extensively compare both cell populations at different levels and to propose tools demonstrating their singularity. ADHLSC and HSC were isolated from the liver of four different donors, expanded in vitro and followed from passage 5 until passage 11. Cell characterization was performed using immunocytochemistry, western blotting, flow cytometry, and gene microarray analyses. The secretion profile of the cells was evaluated using Elisa and multiplex Luminex assays. Both cell types expressed α-smooth muscle actin, vimentin, fibronectin, CD73 and CD90 in accordance with their mesenchymal origin. Microarray analysis revealed significant differences in gene expression profiles. HSC present high expression levels of neuronal markers as well as cytokeratins. Such differences were confirmed using immunocytochemistry and western blotting assays. Furthermore, both cell types displayed distinct secretion profiles as ADHLSC highly secreted cytokines of therapeutic and immuno-modulatory importance, like HGF, interferon-γ and IL-10. Our study demonstrates that ADHLSC and HSC are distinct liver fibroblastic cell populations exhibiting significant different expression and secretion profiles.

  17. Liver-primed memory T cells generated under noninflammatory conditions provide anti-infectious immunity.

    Science.gov (United States)

    Böttcher, Jan P; Schanz, Oliver; Wohlleber, Dirk; Abdullah, Zeinab; Debey-Pascher, Svenja; Staratschek-Jox, Andrea; Höchst, Bastian; Hegenbarth, Silke; Grell, Jessica; Limmer, Andreas; Atreya, Imke; Neurath, Markus F; Busch, Dirk H; Schmitt, Edgar; van Endert, Peter; Kolanus, Waldemar; Kurts, Christian; Schultze, Joachim L; Diehl, Linda; Knolle, Percy A

    2013-03-28

    Development of CD8(+) T cell (CTL) immunity or tolerance is linked to the conditions during T cell priming. Dendritic cells (DCs) matured during inflammation generate effector/memory T cells, whereas immature DCs cause T cell deletion/anergy. We identify a third outcome of T cell priming in absence of inflammation enabled by cross-presenting liver sinusoidal endothelial cells. Such priming generated memory T cells that were spared from deletion by immature DCs. Similar to central memory T cells, liver-primed T cells differentiated into effector CTLs upon antigen re-encounter on matured DCs even after prolonged absence of antigen. Their reactivation required combinatorial signaling through the TCR, CD28, and IL-12R and controlled bacterial and viral infections. Gene expression profiling identified liver-primed T cells as a distinct Neuropilin-1(+) memory population. Generation of liver-primed memory T cells may prevent pathogens that avoid DC maturation by innate immune escape from also escaping adaptive immunity through attrition of the T cell repertoire. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Liver-Primed Memory T Cells Generated under Noninflammatory Conditions Provide Anti-infectious Immunity

    Directory of Open Access Journals (Sweden)

    Jan P. Böttcher

    2013-03-01

    Full Text Available Development of CD8+ T cell (CTL immunity or tolerance is linked to the conditions during T cell priming. Dendritic cells (DCs matured during inflammation generate effector/memory T cells, whereas immature DCs cause T cell deletion/anergy. We identify a third outcome of T cell priming in absence of inflammation enabled by cross-presenting liver sinusoidal endothelial cells. Such priming generated memory T cells that were spared from deletion by immature DCs. Similar to central memory T cells, liver-primed T cells differentiated into effector CTLs upon antigen re-encounter on matured DCs even after prolonged absence of antigen. Their reactivation required combinatorial signaling through the TCR, CD28, and IL-12R and controlled bacterial and viral infections. Gene expression profiling identified liver-primed T cells as a distinct Neuropilin-1+ memory population. Generation of liver-primed memory T cells may prevent pathogens that avoid DC maturation by innate immune escape from also escaping adaptive immunity through attrition of the T cell repertoire.

  19. Mechanisms of bile acid mediated inflammation in the liver.

    Science.gov (United States)

    Li, Man; Cai, Shi-Ying; Boyer, James L

    2017-08-01

    Bile acids are synthesized in the liver and are the major component in bile. Impaired bile flow leads to cholestasis that is characterized by elevated levels of bile acid in the liver and serum, followed by hepatocyte and biliary injury. Although the causes of cholestasis have been extensively studied, the molecular mechanisms as to how bile acids initiate liver injury remain controversial. In this chapter, we summarize recent advances in the pathogenesis of bile acid induced liver injury. These include bile acid signaling pathways in hepatocytes as well as the response of cholangiocytes and innate immune cells in the liver in both patients with cholestasis and cholestatic animal models. We focus on how bile acids trigger the production of molecular mediators of neutrophil recruitment and the role of the inflammatory response in this pathological process. These advances point to a number of novel targets where drugs might be judged to be effective therapies for cholestatic liver injury. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Magnetic targeting of iron-oxide-labeled fluorescent hepatoma cells to the liver

    Energy Technology Data Exchange (ETDEWEB)

    Luciani, Alain [Universite Rene Descartes, Hopital Europeen Georges Pompidou, Laboratoire de Recherche en Imagerie, EA 4062, Paris (France); Imagerie Medicale, Faculte de Medecine Paris XII, CHU Henri Mondor, Creteil cedex (France); Wilhelm, Claire; Gazeau, Florence [Universite Paris Diderot, Batiment Condorcet, Laboratoire Matiere et Systemes Complexes, CNRS-UMR 7057, Paris Cedex (France); Bruneval, Patrick [Anatomopathologie, Hopital Europeen Georges Pompidou, Paris (France); Cunin, Patrick [Unite de Recherche Clinique, Faculte de Medecine Paris XII, CHU Henri Mondor, Creteil cedex (France); Autret, Gwennhael; Clement, Olivier [Universite Rene Descartes, Hopital Europeen Georges Pompidou, Laboratoire de Recherche en Imagerie, EA 4062, Paris (France); Rahmouni, Alain [Imagerie Medicale, Faculte de Medecine Paris XII, CHU Henri Mondor, Creteil cedex (France)

    2009-05-15

    The purpose of this study was to determine whether an external magnet field can induce preferential trafficking of magnetically labeled Huh7 hepatoma cells to the liver following liver cell transplantation. Huh7 hepatoma cells were labeled with anionic magnetic nanoparticles (AMNP) and tagged with a fluorescent membrane marker (PKH67). Iron-uptake was measured by magnetophoresis. Twenty C57Bl6 mice received an intrasplenic injection of 2 x 10{sup 6} labeled cells. An external magnet (0.29 T; 25 T/m) was placed over the liver of 13 randomly selected animals (magnet group), while the remaining 7 animals served as controls. MRI (1.5 T) and confocal fluorescence microscopy (CFM) were performed 10 days post-transplantation. The presence and location of labeled cells within the livers were compared in the magnet group and controls, and confronted with histological analysis representing the standard of reference. Mean iron content per cell was 6 pg. Based on histology, labeled cells were more frequently present within recipient livers in the magnet group (p < 0.01) where their distribution was preferentially peri-vascular (p<0.05). MRI and CFM gave similar results for the overall detection of transplanted cells (kappa=0.828) and for the identification of peri-vascular cells (kappa=0.78). Application of an external magnet can modify the trafficking of transplanted cells, especially by promoting the formation of perivascular aggregates. (orig.)

  1. Polycystic Liver Disease

    Energy Technology Data Exchange (ETDEWEB)

    Linda, Nguyen, E-mail: nguyenli@einstein.edu [5501 Old York Road, Philadelphia, PA 19141 (United States)

    2016-03-25

    A 77-year-old African American male presented with intermittent abdominal pain for one week. He denied nausea, vomiting, diarrhea, constipation, fevers, anorexia, or weight loss. He denied a family history of liver disease, recent travel, or history of intravenous drug abuse. His vital signs were normal. Labs revealed total bilirubin of 1.5 mg/dl, hypoalbuminaemia 3.0 gm/dl and prolonged prothrombin time of 14.8 sec. Computed Tomography of the abdomen and pelvis with contrast showed multiple hepatic cysts with the largest cyst occupying the right abdomen, measuring 20.6 cm (Panel A and). This cyst had predominantly fluid attenuation, but also contained several septations. The patient underwent laparoscopic fenestration of the large hepatic cyst with hepatic cyst wall biopsy. Pathology revealed blood without malignant cells. The patient tolerated the procedure well with improvement of his abdominal pain and normalization of his liver function tests and coagulation profile.

  2. Polycystic Liver Disease

    International Nuclear Information System (INIS)

    Linda, Nguyen

    2016-01-01

    A 77-year-old African American male presented with intermittent abdominal pain for one week. He denied nausea, vomiting, diarrhea, constipation, fevers, anorexia, or weight loss. He denied a family history of liver disease, recent travel, or history of intravenous drug abuse. His vital signs were normal. Labs revealed total bilirubin of 1.5 mg/dl, hypoalbuminaemia 3.0 gm/dl and prolonged prothrombin time of 14.8 sec. Computed Tomography of the abdomen and pelvis with contrast showed multiple hepatic cysts with the largest cyst occupying the right abdomen, measuring 20.6 cm (Panel A and). This cyst had predominantly fluid attenuation, but also contained several septations. The patient underwent laparoscopic fenestration of the large hepatic cyst with hepatic cyst wall biopsy. Pathology revealed blood without malignant cells. The patient tolerated the procedure well with improvement of his abdominal pain and normalization of his liver function tests and coagulation profile

  3. Establishment and characterization of a unique 1 μm diameter liver-derived progenitor cell line

    International Nuclear Information System (INIS)

    Aravalli, Rajagopal N.; Behnan Sahin, M.; Cressman, Erik N.K.; Steer, Clifford J.

    2010-01-01

    Liver-derived progenitor cells (LDPCs) are recently identified novel stem/progenitor cells from healthy, unmanipulated adult rat livers. They are distinct from other known liver stem/progenitor cells such as the oval cells. In this study, we have generated a LDPC cell line RA1 by overexpressing the simian virus 40 (SV40) large T antigen (TAg) in primary LDPCs. This cell line was propagated continuously for 55 passages in culture, after which it became senescent. Interestingly, following transformation with SV40 TAg, LDPCs decreased in size significantly and the propagating cells measured 1 μm in diameter. RA1 cells proliferated in vitro with a doubling time of 5-7 days, and expressed cell surface markers of LDPCs. In this report, we describe the characterization of this novel progenitor cell line that might serve as a valuable model to study liver cell functions and stem cell origin of liver cancers.

  4. Establishment and characterization of a unique 1 {mu}m diameter liver-derived progenitor cell line

    Energy Technology Data Exchange (ETDEWEB)

    Aravalli, Rajagopal N., E-mail: arava001@umn.edu [Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455 (United States); Behnan Sahin, M. [Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455 (United States); Cressman, Erik N.K. [Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455 (United States); Steer, Clifford J., E-mail: steer001@umn.edu [Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455 (United States); Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455 (United States)

    2010-01-01

    Liver-derived progenitor cells (LDPCs) are recently identified novel stem/progenitor cells from healthy, unmanipulated adult rat livers. They are distinct from other known liver stem/progenitor cells such as the oval cells. In this study, we have generated a LDPC cell line RA1 by overexpressing the simian virus 40 (SV40) large T antigen (TAg) in primary LDPCs. This cell line was propagated continuously for 55 passages in culture, after which it became senescent. Interestingly, following transformation with SV40 TAg, LDPCs decreased in size significantly and the propagating cells measured 1 {mu}m in diameter. RA1 cells proliferated in vitro with a doubling time of 5-7 days, and expressed cell surface markers of LDPCs. In this report, we describe the characterization of this novel progenitor cell line that might serve as a valuable model to study liver cell functions and stem cell origin of liver cancers.

  5. Evaluation of turmeric (Curcuma longa) effect on biochemical and pathological parameters of liver and kidney in chicken aflatoxicosis.

    Science.gov (United States)

    Gholami-Ahangaran, Majid; Rangsaz, Nader; Azizi, Shahrzad

    2016-01-01

    Aflatoxins as potent mycotoxins can influence vital parameters in chickens. Turmeric was used in decreasing toxic effect of mycotoxins on vital organs, traditionally. The study compared the protective effect of turmeric and Mycoad(TR) in broilers exposed to aflatoxin. Chickens (270) were divided into six groups. The chickens were fed a basal diet, turmeric extract (5 mg/kg diet), Mycoad(TR) (25 mg/kg diet), productive aflatoxin (3 mg/kg diet), aflatoxin plus turmeric extract (3 versus 5 mg/kg diet), and aflatoxin plus Mycoad(TR) (3 versus 25 mg/kg diet) in basal diet. At 28 d old, we determined plasma concentration of total protein, albumin, triglyceride, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), calcium, potassium, phosphorous, uric acid, aspartate transferase (AST), and alanine aminotransferase (ALT). Furthermore, liver and kidney were sampled for pathological examination. Chickens fed turmeric with aflatoxin had significant lower ALT, AST, and uric acid than chickens fed aflatoxin (11.4 ± 0.79, 228 ± 9, and 6 ± 0.4 versus 17.2 ± 1.7, 283 ± 5, and 7.7 ± 0.1) whereas, total protein, calcium, and HDL values in chickens fed aflatoxin plus turmeric increased significantly (2.66 ± 0.16, 8.4 ± 0.2, and 920 ± 4.1 versus 1.7 ± 0.17, 7 ± 0.2, and 690 ± 4.8). Pathological examination revealed severe congestion, degeneration, and necrosis in liver and kidney in chickens that received aflatoxin. The study showed that turmeric may provide protection against the toxic effects of aflatoxin on liver and kidney.

  6. Synthesis of nearshore recovery following the 1989 Exxon Valdez oil spill: sea otter liver pathology and survival in Western Prince William Sound, 2001 – 2008

    Science.gov (United States)

    Ballachey, Brenda E.; Monson, Daniel H.; Kloecker, K.A.; Esslinger, George G.; Mohr, F.C.; Lipscomb, T.P.; Murray, M.J.; Howlin, S.

    2014-01-01

    We examined livers and liver biopsies collected from captured sea otters in WPWS, 2001–2008, to determine whether indicators of liver health correlated with history of oil contamination from the 1989 Exxon Valdez oil spill. Sea otters captured in oiled areas had a significantly higher proportion of livers with gross pathological change, based on visual inspection at the time of capture, than those from unoiled areas. Of the 10 histopathology variables scored on liver biopsies, only two (vacuolar change and pigment) differed between animals from oiled and unoiled areas, and neither correlated with gross pathology scores. Vacuolar change indicates physiological disturbance, which is consistent with potential effects from oil exposure but also could be influenced by a number of other factors. We concluded that, as of 2008, some differences in liver health were evident between sea otters from oiled and unoiled areas; these differences were consistent with, but not specific to, effects that might be expected with sublethal exposure to lingering Exxon Valdez oil. We also quantified variation in survival of radiomarked sea otters within oiled areas of WPWS in relation to age, sex, body condition, selected blood serum chemistry variables, and histological scores indicative of liver health. Of the variables considered, only the serum enzyme aspartate aminotransferase (AST) and the ratio of serum proteins albumin and globulin (A/G) were correlated with survival, with higher levels of AST and lower levels of A/G associated with increased likelihood of mortality. High AST and low A/G both may be indicative of liver disease. Taken together, results reported here suggest that liver health of sea otters in oiled areas was slightly poorer than those from unoiled areas and, ifurther, that this may have translated to poorer survival through 2008, nearly 2 decades after the spill. More recently collected information indicated that mortality patterns and abundance had returned to

  7. ATP Binding cassette transporter gene expression in rat liver progenitor cells

    NARCIS (Netherlands)

    Ros, J.E.; Roskams, T.A.D.; Geuken, M.; Havinga, R.; Splinter, P.L.; Petersen, B.E.; LaRusso, N.F.; Kolk, van der D.M.; Kuipers, F.; Faber, K.N.; Müller, M.R.; Jansen, P.L.M.

    2003-01-01

    Background and aim: Liver regeneration after severe liver damage depends in part on proliferation and differentiation of hepatic progenitor cells (HPCs). Under these conditions they must be able to withstand the toxic milieu of the damaged liver. ATP binding cassette (ABC) transporters are

  8. ATP binding cassette transporter gene expression in rat liver progenitor cells

    NARCIS (Netherlands)

    Ros, J. E.; Roskams, T. A. D.; Geuken, M.; Havinga, R.; Splinter, P. L.; Petersen, B. E.; LaRusso, N. F.; van der Kolk, D. M.; Kuipers, F.; Faber, K. N.; Müller, M.; Jansen, P. L. M.

    2003-01-01

    BACKGROUND AND AIM: Liver regeneration after severe liver damage depends in part on proliferation and differentiation of hepatic progenitor cells (HPCs). Under these conditions they must be able to withstand the toxic milieu of the damaged liver. ATP binding cassette (ABC) transporters are

  9. ATP binding cassette transporter gene expression in rat liver progenitor cells

    NARCIS (Netherlands)

    Ros, J.E.; Roskams, TAD; Geuken, M; Havinga, R; Splinter, PL; Petersen, BE; LaRusso, NF; van der Kolk, D.M.; Kuipers, F; Faber, KN; Muller, M; Jansen, PLM

    Background and aim: Liver regeneration after severe liver damage depends in part on proliferation and differentiation of hepatic progenitor cells (HPCs). Under these conditions they must be able to withstand the toxic milieu of the damaged liver. ATP binding cassette (ABC) transporters are

  10. [Toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect].

    Science.gov (United States)

    Liao, R Y; Liu, S

    2016-06-20

    To investigate the toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect. The normal human liver cells (L02 cells) and liver cells with CYP3A4 gene defect were exposed to trichloroethylene at different doses (0.0, 0.4, 0.8, 1.6, 3.2, and 6.4 mmol/L). CCK8 assay and RT-qPCR were used to measure cell viability and changes in the expression of apoptosis genes and oncogenes. After being exposed to trichloroethylene at doses of 1.6, 3.2, and 6.4 mmol/L, the liver cells with CYP3A4 gene defect showed significantly higher cell viability than L02 cells (0.91±0.06/0.89±0.05/0.85±0.07 vs 0.80±0.04/0.73±0.06/0.67±0.07, Ptrichloroethylene groups showed significant increases in the expression of the apoptosis genes caspase-3, caspase-8, and caspase-9 (PTrichloroethylene exposure has a less effect on the expression of apoptosis genes and oncogenes in liver cells with CYP3A4 gene defect than in normal human liver cells, suggesting that CYP3A4 gene defect reduces the inductive effect of trichloroethylene on apoptosis genes and oncogenes.

  11. Completion of hepatitis C virus replication cycle in heterokaryons excludes dominant restrictions in human non-liver and mouse liver cell lines.

    Directory of Open Access Journals (Sweden)

    Anne Frentzen

    2011-04-01

    Full Text Available Hepatitis C virus (HCV is hepatotropic and only infects humans and chimpanzees. Consequently, an immunocompetent small animal model is lacking. The restricted tropism of HCV likely reflects specific host factor requirements. We investigated if dominant restriction factors expressed in non-liver or non-human cell lines inhibit HCV propagation thus rendering these cells non-permissive. To this end we explored if HCV completes its replication cycle in heterokaryons between human liver cell lines and non-permissive cell lines from human non-liver or mouse liver origin. Despite functional viral pattern recognition pathways and responsiveness to interferon, virus production was observed in all fused cells and was only ablated when cells were treated with exogenous interferon. These results exclude that constitutive or virus-induced expression of dominant restriction factors prevents propagation of HCV in these cell types, which has important implications for HCV tissue and species tropism. In turn, these data strongly advocate transgenic approaches of crucial human HCV cofactors to establish an immunocompetent small animal model.

  12. Liver investigation with respect to possible reactions to radiotherapy

    International Nuclear Information System (INIS)

    Wolzenburg, G.

    1980-01-01

    A partial liver irradiation was performed in 98 patients within the framework of an Y-field- or kidney-bed-after-irradiation. The liver reaction was tested by means of scintigraphy. In 73 patients, i.e. 74.5 percent of all cases, no increase in the storage capacity of the Kupffer-cells could be found as a consequence of the radiotherapy. In 16 of the patients (16.3 percent) a focused limited band-like necess could be found that corresponded to the irradiation field. The rest of the activity distribution was standard. In 9 of the patients pathological liver processes were independent of the therapy. The values of the lencocytes and thrombocytes were examined during and after the radiation therapy for similarities in 16 patients with liver reactions against irradiation. The values were compared with the course in patients without irradiation reaction. A correlation between blood-level processes and irradiation reactions of the Kupffer star-cells could not be determined. The liver function of RES appeared limited already by 3000 rads within 3 weeks after the end of the treatment. A complete restitution appeared within 18 months - even without the attempt of a treatment. (orig.) [de

  13. MR elastography of the liver at 3.0 T in diagnosing liver fibrosis grades; preliminary clinical experience.

    Science.gov (United States)

    Yoshimitsu, Kengo; Mitsufuji, Toshimichi; Shinagawa, Yoshinobu; Fujimitsu, Ritsuko; Morita, Ayako; Urakawa, Hiroshi; Hayashi, Hiroyuki; Takano, Koichi

    2016-03-01

    To clarify the usefulness of 3.0-T MR elastography (MRE) in diagnosing the histological grades of liver fibrosis using preliminary clinical data. Between November 2012 and March 2014, MRE was applied to all patients who underwent liver MR study at a 3.0-T clinical unit. Among them, those who had pathological evaluation of liver tissue within 3 months from MR examinations were retrospectively recruited, and the liver stiffness measured by MRE was correlated with histological results. Institutional review board approved this study, waiving informed consent. There were 70 patients who met the inclusion criteria. Liver stiffness showed significant correlation with the pathological grades of liver fibrosis (rho = 0.89, p 3.0-T clinical MRE was suggested to be sufficiently useful in assessing the grades of liver fibrosis. MR elastography may help clinicians assess patients with chronic liver diseases. Usefulness of 3.0-T MR elastography has rarely been reported. Measured liver stiffness correlated well with the histological grades of liver fibrosis. Measured liver stiffness was also affected by necroinflammation, but to a lesser degree. 3.0-T MRE could be a non-invasive alternative to liver biopsy.

  14. Treatment with 4-methylpyrazole modulated stellate cells and natural killer cells and ameliorated liver fibrosis in mice.

    Directory of Open Access Journals (Sweden)

    Hyon-Seung Yi

    Full Text Available Accumulating evidence suggests that retinol and its metabolites are closely associated with liver fibrogenesis. Recently, we demonstrated that genetic ablation of alcohol dehydrogenase 3 (ADH3, a retinol metabolizing gene that is expressed in hepatic stellate cells (HSCs and natural killer (NK cells, attenuated liver fibrosis in mice. In the current study, we investigated whether pharmacological ablation of ADH3 has therapeutic effects on experimentally induced liver fibrosis in mice.Liver fibrosis was induced by intraperitoneal injections of carbon tetrachloride (CCl4 or bile duct ligation (BDL for two weeks. To inhibit ADH3-mediated retinol metabolism, 10 μg 4-methylpyrazole (4-MP/g of body weight was administered to mice treated with CCl4 or subjected to BDL. The mice were sacrificed at week 2 to evaluate the regression of liver fibrosis. Liver sections were stained for collagen and α-smooth muscle actin (α-SMA. In addition, HSCs and NK cells were isolated from control and treated mice livers for molecular and immunological studies.Treatment with 4-MP attenuated CCl4- and BDL-induced liver fibrosis in mice, without any adverse effects. HSCs from 4-MP treated mice depicted decreased levels of retinoic acids and increased retinol content than HSCs from control mice. In addition, the expression of α-SMA, transforming growth factor-β1 (TGF-β1, and type I collagen α1 was significantly reduced in the HSCs of 4-MP treated mice compared to the HSCs from control mice. Furthermore, inhibition of retinol metabolism by 4-MP increased interferon-γ production in NK cells, resulting in increased apoptosis of activated HSCs.Based on our data, we conclude that inhibition of retinol metabolism by 4-MP ameliorates liver fibrosis in mice through activation of NK cells and suppression of HSCs. Therefore, retinol and its metabolizing enzyme, ADH3, might be potential targets for therapeutic intervention of liver fibrosis.

  15. Intra-Hepatic Depletion of Mucosal-Associated Invariant T Cells in Hepatitis C Virus-Induced Liver Inflammation.

    Science.gov (United States)

    Bolte, Fabian J; O'Keefe, Ashley C; Webb, Lauren M; Serti, Elisavet; Rivera, Elenita; Liang, T Jake; Ghany, Marc; Rehermann, Barbara

    2017-11-01

    Chronic hepatitis affects phenotypes of innate and adaptive immune cells. Mucosal-associated invariant T (MAIT) cells are enriched in the liver as compared with the blood, respond to intra-hepatic cytokines, and (via the semi-invariant T-cell receptor) to bacteria translocated from the gut. Little is known about the role of MAIT cells in livers of patients with chronic hepatitis C virus (HCV) infection and their fate after antiviral therapy. We collected blood samples from 42 patients with chronic HCV infection who achieved a sustained virologic response after 12 weeks of treatment with sofosbuvir and velpatasvir. Mononuclear cells were isolated from blood before treatment, at weeks 4 and 12 during treatment, and 24 weeks after the end of treatment. Liver biopsies were collected from 37 of the patients prior to and at week 4 of treatment. Mononuclear cells from 56 blood donors and 10 livers that were not suitable for transplantation were used as controls. Liver samples were assessed histologically for inflammation and fibrosis. Mononuclear cells from liver and blood were studied by flow cytometry and analyzed for responses to cytokine and bacterial stimulation. The frequency of MAIT cells among T cells was significantly lower in blood and liver samples of patients with HCV infection than of controls (median, 1.31% vs 2.32% for blood samples, P = .0048; and median, 4.34% vs 13.40% for liver samples, P = .001). There was an inverse correlation between the frequency of MAIT cells in the liver and histologically determined levels of liver inflammation (r = -.5437, P = .0006) and fibrosis (r = -.5829, P = .0002). MAIT cells from the liver had higher levels of activation and cytotoxicity than MAIT cells from blood (P liver inflammation and MAIT cell activation and cytotoxicity, and increased the MAIT cell frequency among intra-hepatic but not blood T cells. The MAIT cell response to T-cell receptor-mediated stimulation did not change during the 12 weeks of

  16. Role of stellate cells in alcoholic liver fibrosis

    Directory of Open Access Journals (Sweden)

    Krzysztof Plewka

    2009-07-01

    Full Text Available Many different diseases and toxins can cause liver damage, which is diffi cult to treat and often leads to the development of liver fi brosis or even cirrhosis. The key event in this process is the activation of hepatic stellate cells (HSCs. During such activation, HSCs undergo a dramatic transformation in morphology and behavior, changing from a neuronal-like to a fi broblast-like morphology. After activation, HSCs increase their proliferation rate and extracellular matrix (ECM production. Overproduction of ECM, which contains mainly collagen type I, is a direct cause of liver disruption. HSCs also produce substances which inhibit protease activities, such as TIMPs, which enhance ECM deposition in the liver. On the molecular level, HSCs are activated by cytokines, growth factors, and oxidative stress, which are abundant in affl icted liver. These factors induce intracellular signals transmitted by many kinases, the most important of which are JNK, ERK1/2, p38, TAK-1, PKC, FAK, and P3IK. Signals transmitted via these pathways change the activities of transcription factors such as Smad, AP-1, and NF-κβ. This in turn causes changes In gene transcription and ultimately alters the whole cell’s behavior and morphology. The cell begins the production collagen type I, TIMP-1, and aSMA. Activated HSCs can sustain their own activation by producing growth factors such as PDGF and TGF-β. Despite the vast knowledge about the mechanisms causing liver fi brosis and cirrhosis, there is still no effective cure. Further studies are therefore needed to solve this problem.

  17. PPARα agonists up-regulate organic cation transporters in rat liver cells

    International Nuclear Information System (INIS)

    Luci, Sebastian; Geissler, Stefanie; Koenig, Bettina; Koch, Alexander; Stangl, Gabriele I.; Hirche, Frank; Eder, Klaus

    2006-01-01

    It has been shown that clofibrate treatment increases the carnitine concentration in the liver of rats. However, the molecular mechanism is still unknown. In this study, we observed for the first time that treatment of rats with the peroxisome proliferator activated receptor (PPAR)-α agonist clofibrate increases hepatic mRNA concentrations of organic cation transporters (OCTNs)-1 and -2 which act as transporters of carnitine into the cell. In rat hepatoma (Fao) cells, treatment with WY-14,643 also increased the mRNA concentration of OCTN-2. mRNA concentrations of enzymes involved in carnitine biosynthesis were not altered by treatment with the PPARα agonists in livers of rats and in Fao cells. We conclude that PPARα agonists increase carnitine concentrations in livers of rats and cells by an increased uptake of carnitine into the cell but not by an increased carnitine biosynthesis

  18. Cutting Edge: Eosinophils Undergo Caspase-1-Mediated Pyroptosis in Response to Necrotic Liver Cells.

    Science.gov (United States)

    Palacios-Macapagal, Daphne; Connor, Jane; Mustelin, Tomas; Ramalingam, Thirumalai R; Wynn, Thomas A; Davidson, Todd S

    2017-08-01

    Many chronic liver disorders are characterized by dysregulated immune responses and hepatocyte death. We used an in vivo model to study the immune response to necrotic liver injury and found that necrotic liver cells induced eosinophil recruitment. Necrotic liver induced eosinophil IL-1β and IL-18 secretion, degranulation, and cell death. Caspase-1 inhibitors blocked all of these responses. Caspase-1-mediated cell death with accompanying cytokine release is the hallmark of a novel form of cell death termed pyroptosis. To confirm this response in a disease model, we isolated eosinophils from the livers of Schistosoma mansoni -infected mice. S. mansoni eggs lodge in the hepatic sinusoids of infected mice, resulting in hepatocyte death, inflammation, and progressive liver fibrosis. This response is typified by massive eosinophilia, and we were able to confirm pyroptosis in the infiltrating eosinophils. This demonstrated that pyroptosis is a cellular pathway used by eosinophils in response to large-scale hepatic cell death. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. Induction of insulin secretion in engineered liver cells by nitric oxide

    Directory of Open Access Journals (Sweden)

    Özcan Sabire

    2007-10-01

    Full Text Available Abstract Background Type 1 Diabetes Mellitus results from an autoimmune destruction of the pancreatic beta cells, which produce insulin. The lack of insulin leads to chronic hyperglycemia and secondary complications, such as cardiovascular disease. The currently approved clinical treatments for diabetes mellitus often fail to achieve sustained and optimal glycemic control. Therefore, there is a great interest in the development of surrogate beta cells as a treatment for type 1 diabetes. Normally, pancreatic beta cells produce and secrete insulin only in response to increased blood glucose levels. However in many cases, insulin secretion from non-beta cells engineered to produce insulin occurs in a glucose-independent manner. In the present study we engineered liver cells to produce and secrete insulin and insulin secretion can be stimulated via the nitric oxide pathway. Results Expression of either human insulin or the beta cell specific transcription factors PDX-1, NeuroD1 and MafA in the Hepa1-6 cell line or primary liver cells via adenoviral gene transfer, results in production and secretion of insulin. Although, the secretion of insulin is not significantly increased in response to high glucose, treatment of these engineered liver cells with L-arginine stimulates insulin secretion up to three-fold. This L-arginine-mediated insulin release is dependent on the production of nitric oxide. Conclusion Liver cells can be engineered to produce insulin and insulin secretion can be induced by treatment with L-arginine via the production of nitric oxide.

  20. The value of cell-free DNA for molecular pathology.

    Science.gov (United States)

    Stewart, Caitlin M; Kothari, Prachi D; Mouliere, Florent; Mair, Richard; Somnay, Saira; Benayed, Ryma; Zehir, Ahmet; Weigelt, Britta; Dawson, Sarah-Jane; Arcila, Maria E; Berger, Michael F; Tsui, Dana Wy

    2018-04-01

    Over the past decade, advances in molecular biology and genomics techniques have revolutionized the diagnosis and treatment of cancer. The technological advances in tissue profiling have also been applied to the study of cell-free nucleic acids, an area of increasing interest for molecular pathology. Cell-free nucleic acids are released from tumour cells into the surrounding body fluids and can be assayed non-invasively. The repertoire of genomic alterations in circulating tumour DNA (ctDNA) is reflective of both primary tumours and distant metastatic sites, and ctDNA can be sampled multiple times, thereby overcoming the limitations of the analysis of single biopsies. Furthermore, ctDNA can be sampled regularly to monitor response to treatment, to define the evolution of the tumour genome, and to assess the acquisition of resistance and minimal residual disease. Recently, clinical ctDNA assays have been approved for guidance of therapy, which is an exciting first step in translating cell-free nucleic acid research tests into clinical use for oncology. In this review, we discuss the advantages of cell-free nucleic acids as analytes in different body fluids, including blood plasma, urine, and cerebrospinal fluid, and their clinical applications in solid tumours and haematological malignancies. We will also discuss practical considerations for clinical deployment, such as preanalytical factors and regulatory requirements. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  1. Nutrition and Liver Health.

    Science.gov (United States)

    Jackson, Alan A

    2017-01-01

    Good clinical practice is based on a secure and accurate diagnosis. Poor nutrition is frequently associated with disorders of the liver, and a specific nutrition diagnosis is needed for providing best care and experiencing successful outcome. There is opportunity for better-structured approaches to making secure and consistent nutritional diagnoses in patients with liver disease. Nutrition is the set of integrated processes by which cells, tissues, organs and the whole body acquire the energy and nutrients to retain normal structure and perform the required functions. At the level of the whole body, this is achieved through dietary supply and the capacity of the body to transform the substrates and cofactors necessary for metabolism. All of these domains (diet, metabolic capacity, activity of the microbiome, body composition and the level of demand for energy and nutrients) are influenced by levels of physical activity and can vary according to physiological and pathological disease states. The liver plays a central role in establishing and maintaining these regulated processes. Its capacity to achieve and maintain these functional capabilities is established during one's early life. When these capabilities are exceeded and the ability to maintain the milieu interieur is compromised, ill-health supervenes. Stress tests that assess flow through gateway pathways can be used to determine the maximal capacity and functional reserve for critical functions. The inability of the liver to reliably integrate body lipid metabolism and the accumulation of abnormal lipid are obvious manifestations of impaired regulation both in situations of weight loss, for example, the fatty liver of severe malnutrition, and in situations of energy excess, as in non-alcoholic fatty liver disease. The use of stable isotopic probes and the more recent definition of the variability in the metabolome in different nutritional and pathological states indicate the great potential for clinical tools

  2. Molecular signatures associated with HCV-induced hepatocellular carcinoma and liver metastasis.

    Directory of Open Access Journals (Sweden)

    Valeria De Giorgi

    Full Text Available Hepatocellular carcinomas (HCCs are a heterogeneous group of tumors that differ in risk factors and genetic alterations. In Italy, particularly Southern Italy, chronic hepatitis C virus (HCV infection represents the main cause of HCC. Using high-density oligoarrays, we identified consistent differences in gene-expression between HCC and normal liver tissue. Expression patterns in HCC were also readily distinguishable from those associated with liver metastases. To characterize molecular events relevant to hepatocarcinogenesis and identify biomarkers for early HCC detection, gene expression profiling of 71 liver biopsies from HCV-related primary HCC and corresponding HCV-positive non-HCC hepatic tissue, as well as gastrointestinal liver metastases paired with the apparently normal peri-tumoral liver tissue, were compared to 6 liver biopsies from healthy individuals. Characteristic gene signatures were identified when normal tissue was compared with HCV-related primary HCC, corresponding HCV-positive non-HCC as well as gastrointestinal liver metastases. Pathway analysis classified the cellular and biological functions of the genes differentially expressed as related to regulation of gene expression and post-translational modification in HCV-related primary HCC; cellular Growth and Proliferation, and Cell-To-Cell Signaling and Interaction in HCV-related non HCC samples; Cellular Growth and Proliferation and Cell Cycle in metastasis. Also characteristic gene signatures were identified of HCV-HCC progression for early HCC diagnosis.A diagnostic molecular signature complementing conventional pathologic assessment was identified.

  3. Nuclear receptor CAR (NR1I3) is essential for DDC-induced liver injury and oval cell proliferation in mouse liver.

    Science.gov (United States)

    Yamazaki, Yuichi; Moore, Rick; Negishi, Masahiko

    2011-11-01

    The liver is endowed with the ability to regenerate hepatocytes in response to injury. When this regeneration ability is impaired during liver injury, oval cells, which are considered to be postnatal hepatic progenitors, proliferate and differentiate into hepatocytes. Here we have demonstrated that 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) activates the nuclear receptor constitutive active/androstane receptor (CAR), resulting in proliferation of oval cells in mouse liver. Activation of CAR by DDC was shown by hepatic nuclear CAR accumulation and cytochrome P450 (CYP)2B10 mRNA induction after feeding a 0.1% DDC-containing diet to Car(+/+) mice. After being fed the DDC diet, Car(+/+), but not Car(-/-) mice, developed severe liver injury and an A6 antibody-stained ductular reaction in an area around the portal tract. Oval cell proliferation was confirmed by laser capture microdissection and real-time PCR; mRNAs for the two oval cell markers epithelial cell adhesion molecule and TROP2 were specifically induced in the periportal region of DDC diet-fed Car(+/+), but not Car(-/-) mice. Although rates of both hepatocyte growth and death were initially enhanced only in DDC diet-fed Car(+/+) mice, growth was attenuated when oval cells proliferated, whereas death continued unabated. DDC-induced liver injury, which differs from other CAR activators such as phenobarbital, occurred in the periportal region where cells developed hypertrophy, accumulated porphyrin crystals and inflammation developed, all in association with the proliferation of oval cells. Thus, CAR provides an excellent experimental model for further investigations into its roles in liver regeneration, as well as the development of diseases such as hepatocellular carcinoma.

  4. Suppression of Human Liver Cancer Cell Migration and Invasion via the GABAA Receptor

    International Nuclear Information System (INIS)

    Chen, Zhi-ao; Bao, Mei-yan; Xu, Yong-fen; Zha, Ruo-peng; Shi, Hai-bing; Chen, Tao-yang; He, Xiang-huo

    2012-01-01

    To investigate the roles of the γ-aminobutyric acid (GABA) in the metastasis of hepatocellular carcinoma (HCC) and to explore the potential of a novel therapeutic approach for the treatment of HCC. The expression levels of GABA receptor subunit genes in various HCC cell lines and patients‘ tissues were detected by quantitative real-time polymerase chain reaction and Western blot analysis. Transwell cell migration and invasion assays were carried out for functional analysis. The effects of GABA on liver cancer cell cytoskeletal were determined by immunofluorescence staining. And the effects of GABA on HCC metastasis in nude mice were evaluated using an in vivo orthotopic model of liver cancer. The mRNA level of GABA receptor subunits varied between the primary hepatocellular carcinoma tissue and the adjacent non-tumor liver tissue. GABA inhibited human liver cancer cell migration and invasion via the ionotropic GABA A receptor as a result of the induction of liver cancer cell cytoskeletal reorganization. Pretreatment with GABA also significantly reduced intrahepatic liver metastasis and primary tumor formation in vivo. These findings introduce a potential and novel therapeutic approach for the treatment of cancer patients based on the modulation of the GABAergic system

  5. An assessment in rodents of the pathological and immunopathological consequence of multiple vaccinations and challenge with radiation-attenuated malaria parasites (blood forms and sporozoites)

    International Nuclear Information System (INIS)

    Boonpucknavig, S.

    1982-06-01

    Multiple vaccination with irradiated merozoites of Plasmodium berghei resulted in high levels of circulating antibody but a low degree of protection to challenge with normal merozoites. On the other hand, the multiple vaccinations and the challenge resulted in severe immunopathological reactions shortly after the immunization or challenge. These reactions were seen in the liver, kidneys and spleen and included the accumulation of mononuclear cells, severe coagulative necrosis of liver cells and proliferative changes in the splenic white pulp and in the glomeruli. The pathological reactions were more severe than in non-immunized animals but the parasitemia was lower and less malarial antigen was detected in Kupfer Cells of the liver, the sinusoidal cells of the spleen and the reticuloendothelial cells in the interstitial tissue of the kidney. Vaccination with irradiated sporozoites of P. berghei resulted in good protection to challenge with normal sporozoites even before circulating anti-sporozoite antibody could be detected. Only mild pathological changes were associated with up to 4 immunizations followed by challenge and these were largely limited to the liver, and were reversible. Sporozoite antigens were detected in the spleen and immune complexes in the glomeruli for 2-4 weeks following challenge but not later. Immunized mice however often developed some lobular pneumonia of the lung but the severity of this did not increase with challenge

  6. A new liver function test using the asialoglycoprotein-receptor system on the liver cell membrane, 3

    International Nuclear Information System (INIS)

    Hazama, Hiroshi; Kawa, Soukichi; Kubota, Yoshitsugu

    1986-01-01

    We evaluated the vilidity of a new liver function test using liver scintigraphy based on the asialoglycoprotein (ASGP) receptor system on the liver cell membrane in rats with galactosamine-induced acute liver disorder and those with carbon tetra-chloride-induced chronic liver disorder. Neoglycoprotein (GHSA) produced by combining human serum albumin with 32 galactose units was labeled with 99m Tc and administered (50 μg/100 g body weight) to rats with acute or chronic liver disorder. Clearance curves were produced based on liver scintigrams and analysed using the two-compartment model to obtain parameters. In acute liver disorder, the prolongation of 99m Tc-GHSA clearance and the decrease in ASGP receptor activities correlated well to the increase in serum GOT and the decrease in the esterified to total cholesterol ratio (E/T ratio); in chronic liver disorder, they correlated significantly to the increase in the content of liver hydroxyproline (Hyp) which increased in proportion to the severity of liver fibrosis studied histologically, and to the decrease in the contents of cytochrome P-450 and cytochrome b 5 in liver microsomes. Significant correlation was observed between the prolongation of 99m Tc-GHSA clearance and the decrease in ASGP receptor activities in both acute and chronic liver disorders. These findings indicate that the measurement of 99m Tc-GHSA clearance can be a new liver function test sensitively reflecting the severity of liver damage. (author)

  7. Lipid Biomarkers Identified for Liver Cancer | Center for Cancer Research

    Science.gov (United States)

    Hepatocellular carcinoma (HCC) is an aggressive cancer of the liver with poor prognosis and growing incidence in developed countries. Pathology and genetic profiles of HCC are heterogeneous, suggesting that it can begin growing in different cell types. Although human tumors such as HCC have been profiled in-depth by genomics-based studies, not much is known about their overall

  8. Mitochondrial Roles and Cytoprotection in Chronic Liver Injury

    Directory of Open Access Journals (Sweden)

    Davide Degli Esposti

    2012-01-01

    Full Text Available The liver is one of the richest organs in terms of number and density of mitochondria. Most chronic liver diseases are associated with the accumulation of damaged mitochondria. Hepatic mitochondria have unique features compared to other organs' mitochondria, since they are the hub that integrates hepatic metabolism of carbohydrates, lipids and proteins. Mitochondria are also essential in hepatocyte survival as mediator of apoptosis and necrosis. Hepatocytes have developed different mechanisms to keep mitochondrial integrity or to prevent the effects of mitochondrial lesions, in particular regulating organelle biogenesis and degradation. In this paper, we will focus on the role of mitochondria in liver physiology, such as hepatic metabolism, reactive oxygen species homeostasis and cell survival. We will also focus on chronic liver pathologies, especially those linked to alcohol, virus, drugs or metabolic syndrome and we will discuss how mitochondria could provide a promising therapeutic target in these contexts.

  9. The Role of Innate Lymphoid Cells in Immune-Mediated Liver Diseases

    Science.gov (United States)

    Liu, Meifang; Zhang, Cai

    2017-01-01

    Innate lymphoid cells (ILCs) are a recently identified group of innate immune cells lacking antigen-specific receptors that can mediate immune responses and regulate tissue homeostasis and inflammation. ILCs comprise group 1 ILCs, group 2 ILCs, and group 3 ILCs. These ILCs usually localize at mucosal surfaces and combat pathogens by the rapid release of certain cytokines. However, the uncontrolled activation of ILCs can also lead to damaging inflammation, especially in the gut, lung, and skin. Although the physiological and pathogenic roles of ILCs in liver diseases have been attracting increasing attention recently, there has been no systematic review regarding the roles of ILCs in immune-mediated liver diseases. Here, we review the relationships between the ILC subsets and their functions in immune-mediated liver diseases, and discuss their therapeutic potential based on current knowledge about the functional roles of these cells in liver diseases. PMID:28659927

  10. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells

    Science.gov (United States)

    Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg

    2016-01-01

    Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine1. Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models. PMID:27077489

  11. Liver restores immune homeostasis after local inflammation despite the presence of autoreactive T cells.

    Directory of Open Access Journals (Sweden)

    Kathie Béland

    Full Text Available The liver must keep equilibrium between immune tolerance and immunity in order to protect itself from pathogens while maintaining tolerance to food antigens. An imbalance between these two states could result in an inflammatory liver disease. The aims of this study were to identify factors responsible for a break of tolerance and characterize the subsequent restoration of liver immune homeostasis. A pro-inflammatory environment was created in the liver by the co-administration of TLR ligands CpG and Poly(I:C in presence or absence of activated liver-specific autoreactive CD8(+ T cells. Regardless of autoreactive CD8(+ T cells, mice injected with CpG and Poly(I:C showed elevated serum ALT levels and a transient liver inflammation. Both CpG/Poly(I:C and autoreactive CD8(+T cells induced expression of TLR9 and INF-γ by the liver, and an up-regulation of homing and adhesion molecules CXCL9, CXCL10, CXCL16, ICAM-1 and VCAM-1. Transferred CFSE-labeled autoreactive CD8(+ T cells, in presence of TLR3 and 9 ligands, were recruited by the liver and spleen and proliferated. This population then contracted by apoptosis through intrinsic and extrinsic pathways. Up-regulation of FasL and PD-L1 in the liver was observed. In conclusion, TLR-mediated activation of the innate immune system results in a pro-inflammatory environment that promotes the recruitment of lymphocytes resulting in bystander hepatitis. Despite this pro-inflammatory environment, the presence of autoreactive CD8(+ T cells is not sufficient to sustain an autoimmune response against the liver and immune homeostasis is rapidly restored through the apoptosis of T cells.

  12. Liver restores immune homeostasis after local inflammation despite the presence of autoreactive T cells.

    Science.gov (United States)

    Béland, Kathie; Lapierre, Pascal; Djilali-Saiah, Idriss; Alvarez, Fernando

    2012-01-01

    The liver must keep equilibrium between immune tolerance and immunity in order to protect itself from pathogens while maintaining tolerance to food antigens. An imbalance between these two states could result in an inflammatory liver disease. The aims of this study were to identify factors responsible for a break of tolerance and characterize the subsequent restoration of liver immune homeostasis. A pro-inflammatory environment was created in the liver by the co-administration of TLR ligands CpG and Poly(I:C) in presence or absence of activated liver-specific autoreactive CD8(+) T cells. Regardless of autoreactive CD8(+) T cells, mice injected with CpG and Poly(I:C) showed elevated serum ALT levels and a transient liver inflammation. Both CpG/Poly(I:C) and autoreactive CD8(+)T cells induced expression of TLR9 and INF-γ by the liver, and an up-regulation of homing and adhesion molecules CXCL9, CXCL10, CXCL16, ICAM-1 and VCAM-1. Transferred CFSE-labeled autoreactive CD8(+) T cells, in presence of TLR3 and 9 ligands, were recruited by the liver and spleen and proliferated. This population then contracted by apoptosis through intrinsic and extrinsic pathways. Up-regulation of FasL and PD-L1 in the liver was observed. In conclusion, TLR-mediated activation of the innate immune system results in a pro-inflammatory environment that promotes the recruitment of lymphocytes resulting in bystander hepatitis. Despite this pro-inflammatory environment, the presence of autoreactive CD8(+) T cells is not sufficient to sustain an autoimmune response against the liver and immune homeostasis is rapidly restored through the apoptosis of T cells.

  13. Betatrophin: A liver-derived hormone for the pancreatic β-cell proliferation.

    Science.gov (United States)

    Raghow, Rajendra

    2013-12-15

    The pancreatic β-cell failure which invariably accompanies insulin resistance in the liver and skeletal muscle is a hallmark of type-2 diabetes mellitus (T2DM). The persistent hyperglycemia of T2DM is often treated with anti-diabetic drugs with or without subcutaneous insulin injections, neither of which mimic the physiological glycemic control seen in individuals with fully functional pancreas. A sought after goal for the treatment of T2DM has been to harness the regenerative potential of pancreatic β-cells that might obviate a need for exogenous insulin injections. A new study towards attaining this aim was reported by Yi et al, who have characterized a liver-derived protein, named betatrophin, capable of inducing pancreatic β-cell proliferation in mice. Using a variety of in vitro and in vivo methods, Yi et al, have shown that betatrophin was expressed mainly in the liver and adipose tissue of mice. Exogenous expression of betatrophin in the liver led to dramatic increase in the pancreatic β-cell mass and higher output of insulin in mice that also concomitantly elicited improved glucose tolerance. The authors discovered that betatrophin was also present in the human plasma. Surprisingly, betatrophin has been previously described by three other names, i.e., re-feeding-induced fat and liver protein, lipasin and atypical angiopoeitin-like 8, by three independent laboratories, as nutritionally regulated liver-enriched factors that control serum triglyceride levels and lipid metabolism. Yi et al demonstration of betatrophin, as a circulating hormone that regulates β-cell proliferation, if successfully translated in the clinic, holds the potential to change the course of current therapies for diabetes.

  14. The role of hepatocyte nuclear factor 4 alpha in development and progression of liver diseases

    Directory of Open Access Journals (Sweden)

    YANG Jinlian

    2016-02-01

    Full Text Available Hepatocyte nuclear factor 4 alpha (HNF4α, a member of the nuclear receptor superfamily, has a high expression level in mature hepatocytes. HNF4α can regulate hepatocyte-specific gene expression at a transcriptional level, promote hepatocyte development and differentiation, participate in establishment and maintenance of hepatocyte polarity, and enhance the synthetic, metabolic, and detoxifying functions of the liver. Through inhibiting the activation of hepatic stellate cells, reversing epithelial-mesenchymal transition, and inhibiting the proliferation, invasion, and metastasis of hepatoma cells, HNF4α may be involved in the development and progression of various liver diseases including liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. This paper elaborates on the biological functions of HNF4α, and summarizes and analyzes the research advances in the mechanisms of action of HNF4α in the pathological process of liver diseases, in order to provide references for further investigation of the potential targeted therapies for liver diseases.

  15. Autologous Bone Marrow Stem Cell Infusion (AMBI therapy for Chronic Liver Diseases

    Directory of Open Access Journals (Sweden)

    Rajkumar JS

    2007-01-01

    Full Text Available Liver Cirrhosis is the end stage of chronic liver disease which may happen due to alcoholism, viral infections due to Hepatitis B, Hepatitis C viruses and is difficult to treat. Liver transplantation is the only available definitive treatment which is marred by lack of donors, post operative complications such as rejection and high cost. Autologous bone marrow stem cells have shown a lot of promise in earlier reported animal studies and clinical trials. We have in this study administered in 22 patients with chronic liver disease, autologous bone marrow stem cell whose results are presented herewith.

  16. CULTIVATION OF HUMAN LIVER CELLS AND ADIPOSE-DERIVED MESENCHYMAL STROMAL CELLS IN PERFUSION BIOREACTOR

    Directory of Open Access Journals (Sweden)

    Yu. В. Basok

    2018-01-01

    Full Text Available Aim: to show the progress of the experiment of cultivation of human liver cells and adipose-derived mesenchymal stromal cells in perfusion bioreactor.Materials and methods. The cultivation of a cell-engineered construct, consisting of a biopolymer microstructured collagen-containing hydrogel, human liver cells, adipose-derived mesenchymal stromal cells, and William’s E Medium, was performed in a perfusion bioreactor.Results. On the 7th day large cells with hepatocyte morphology – of a polygonal shape and a centrally located round nucleus, – were present in the culture chambers of the bioreactor. The metabolic activity of hepatocytes in cell-engineered constructs was confi rmed by the presence of urea in the culture medium on the seventh day of cultivation in the bioreactor and by the resorption of a biopolymer microstructured collagen-containing hydrogel.

  17. Assessment of hepatocyte and kupffer cell function using Tc-99m DISIDA/Tc-99m tin colloid in thioacetamide-induced liver injury

    International Nuclear Information System (INIS)

    Ahn, B. C.; Chun, K. A.; Lee, J.; Lee, K. B.

    1997-01-01

    Toxic liver injury is not unusual in clinical field and liver biopsy is one of the most accurate method to define the severity of liver injury. But occasionally, it is impossible to obtain liver tissue in patients with acute toxic liver injury. The aim of this study is to evaluate the possibility of liver scintigraphy with Tc-99m DISIDA or Tc-99m tin colloid as a non-invasive tool in predicting functional status of hepatocyte and Kupffer cell and severity of liver injury. Intraperitoneal injection of thioacetamide was performed to make acute liver injury in mice and rats, and liver status was assessed by pathologic specimen and scintigraphic methods. Scintigraphic evaluation were performed by biodistribution of Tc-99m DISIDA or Tc-99m tin colloid in thioacetamide-treated mice. Liver time-activity curves were generated. Comparison between histologic data and scintigraphic data was done with SAS program. Thioacetamide-treated mice demonstrated hepatocyte necrosis in histologic examination and low liver/blood uptake ratios in biodistribution studies using both radiotracers. Biodistribution study using Tc-99m tin colloid revealed increased lung radioactivity in thioacetamide-treated mice. Twenty-four hours after thioacetamide administration, thioacetamide-treated rats demonstrated maximal hepatocyte necrosis and inflammation in histologic finding and delayed maximal uptake time (Tmax) and prolonged half time (T 1/2 ) of liver time-activity curve in liver scintigraphy. Histologic results and scintigraphic data were well correlated, and these two scintigraphic parameters (Tmax T 1/2 ) seemed to be good predictors of histologic change of liver. These data showed that liver injury could be assessed by non-invasive scintigraphic study in rat and mouse. This experimental study might be used as a animal model to evaluate the liver protecting drugs, and this scintigraphic study could be applied to acute toxic hepatitis for assessment of liver status in men

  18. Behavior of HepG2 liver cancer cells using microfluidic-microscopy: a preliminary study

    Science.gov (United States)

    Karamahmutoglu, Hande; ćetin, Metin; Yaǧcı, Tamer; Elitaş, Meltem

    2018-02-01

    Hepatocellular carcinoma is one of the most common types of liver cancer causing death all over the world. Although early-stage liver cancer can sometimes be treated with partial hepatectomy, liver transplantation, ablation, and embolization, sorafenib treatment is the only approved systemic therapy for advanced HCC. The aim of this research is to develop tools and methods to understand the individuality of hepatocellular carcinoma. Microfluidic cell-culture platform has been developed to observe behavior of single-cells; fluorescence microscopy has been implemented to investigate phenotypic changes of cells. Our preliminary data proved high-level heterogeneity of hepatocellular carcinoma while verifying limited growth of liver cancer cell lines on the silicon wafer.

  19. Circulating extracellular vesicles with specific proteome and liver microRNAs are potential biomarkers for liver injury in experimental fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Davide Povero

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is the most common chronic liver disease in both adult and children. Currently there are no reliable methods to determine disease severity, monitor disease progression, or efficacy of therapy, other than an invasive liver biopsy.Choline Deficient L-Amino Acid (CDAA and high fat diets were used as physiologically relevant mouse models of NAFLD. Circulating extracellular vesicles were isolated, fully characterized by proteomics and molecular analyses and compared to control groups. Liver-related microRNAs were isolated from purified extracellular vesicles and liver specimens.We observed statistically significant differences in the level of extracellular vesicles (EVs in liver and blood between two control groups and NAFLD animals. Time-course studies showed that EV levels increase early during disease development and reflect changes in liver histolopathology. EV levels correlated with hepatocyte cell death (r2 = 0.64, p<0.05, fibrosis (r2 = 0.66, p<0.05 and pathological angiogenesis (r2 = 0.71, p<0.05. Extensive characterization of blood EVs identified both microparticles (MPs and exosomes (EXO present in blood of NAFLD animals. Proteomic analysis of blood EVs detected various differentially expressed proteins in NAFLD versus control animals. Moreover, unsupervised hierarchical clustering identified a signature that allowed for discrimination between NAFLD and controls. Finally, the liver appears to be an important source of circulating EVs in NAFLD animals as evidenced by the enrichment in blood with miR-122 and 192--two microRNAs previously described in chronic liver diseases, coupled with a corresponding decrease in expression of these microRNAs in the liver.These findings suggest a potential for using specific circulating EVs as sensitive and specific biomarkers for the noninvasive diagnosis and monitoring of NAFLD.

  20. Observation of Liver Color Scan

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Y K; Ahn, S B [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1969-09-15

    In the past few years, scintigraphy has become increasingly important in clinical practice, and the use of a color-printing technique has permitted a more accurate interpretation of the scan image. Our liver color scintigrams consist of 51 hepatomas, 35 liver cirrhosis, 22 liver abscesses, 10 hepatitis and other 13 cases of the liver diseases which were clinically and pathologically diagnosed at Severance Hospital, Yonsei Univ. since Feb. 1969 through Sept. 1969. These scintigrams have been analyzed in terms of various pathologic morphology, such as size, shape, margin of the liver, distribution of radioactivity, and shape of the space occupying lesions. The results are as follows: 1) Enlargement of the liver was the most common finding in the diseased livers. The Rt. lobe enlargement was particularly prominent in the liver abscess. 2) Irregular distribution of radioactivity in the liver (so called mottling) was present in 78% of hepatoma, while it was seen only in 31% of liver abscesses. 3) Liver cirrhosis tends to show perihilar accumulation of the isotope (57%). 4) The deformity of the lower most angle of the Rt. lobe, and the Lt. lateral margin of the Lt. lobe was also impressive throughout the cases (74-95% of all diseased livers). 5) The frequency of visualization of the spleen was influenced by the size of space occupying lesions and the amount of functioning liver. 6) Differentiation between the liver abscess and hepatoma seems to be possible on scintigram, when shape an margin of defect and patterns of distribution of radioactivity in the remaining liver are clearly demonstrated.

  1. Observation of Liver Color Scan

    International Nuclear Information System (INIS)

    Choe, Y. K.; Ahn, S. B.

    1969-01-01

    In the past few years, scintigraphy has become increasingly important in clinical practice, and the use of a color-printing technique has permitted a more accurate interpretation of the scan image. Our liver color scintigrams consist of 51 hepatomas, 35 liver cirrhosis, 22 liver abscesses, 10 hepatitis and other 13 cases of the liver diseases which were clinically and pathologically diagnosed at Severance Hospital, Yonsei Univ. since Feb. 1969 through Sept. 1969. These scintigrams have been analyzed in terms of various pathologic morphology, such as size, shape, margin of the liver, distribution of radioactivity, and shape of the space occupying lesions. The results are as follows: 1) Enlargement of the liver was the most common finding in the diseased livers. The Rt. lobe enlargement was particularly prominent in the liver abscess. 2) Irregular distribution of radioactivity in the liver (so called mottling) was present in 78% of hepatoma, while it was seen only in 31% of liver abscesses. 3) Liver cirrhosis tends to show perihilar accumulation of the isotope (57%). 4) The deformity of the lower most angle of the Rt. lobe, and the Lt. lateral margin of the Lt. lobe was also impressive throughout the cases (74-95% of all diseased livers). 5) The frequency of visualization of the spleen was influenced by the size of space occupying lesions and the amount of functioning liver. 6) Differentiation between the liver abscess and hepatoma seems to be possible on scintigram, when shape an margin of defect and patterns of distribution of radioactivity in the remaining liver are clearly demonstrated.

  2. Cell Pleomorphism and Cytoskeleton Disorganization in Human Liver Cancer.

    Science.gov (United States)

    Cheng, Chiung-Chi; Lai, Yen-Chang Clark; Lai, Yih-Shyong; Chao, Wei-Ting; Tseng, Yu-Hui; Hsu, Yung-Hsiang; Chen, You-Yin; Liu, Yi-Hsiang

    Nucleoskeleton maintains the framework of a cell nucleus that is required for a variety of nuclear functions. However, the nature of nucleoskeleton structure has not been yet clearly elucidated due to microscopy visualization limitations. Plectin, a nuclear pore-permeable component of cytoskeleton, exhibits a role of cross-linking between cytoplasmic intermediate filaments and nuclear lamins. Presumably, plectin is also a part of nucleoskeleton. Previously, we demonstrated that pleomorphism of hepatoma cells is the consequence of cytoskeletal changes mediated by plectin deficiency. In this study, we applied a variety of technologies to detect the cytoskeletons in liver cells. The images of confocal microscopy did not show the existence of plectin, intermediate filaments, microfilaments and microtubules in hepatic nuclei. However, in the isolated nuclear preparation, immunohistochemical staining revealed positive results for plectin and cytoskeletal proteins that may contribute to the contamination derived from cytoplasmic residues. Therefore, confocal microscopy provides a simple and effective technology to observe the framework of nucleoskeleton. Accordingly, we verified that cytoskeletons are not found in hepatic cell nuclei. Furthermore, the siRNA-mediated knockdown of plectin in liver cells leads to collapsed cytoskeleton, cell transformation and pleomorphic nuclei. Plectin and cytoskeletons were not detected in the nuclei of liver cells compared to the results of confocal microscopy. Despite the absence of nuclear plectin and cytoskeletal filaments, the evidence provided support that nuclear pleomorphism of cancer cells is correlated with the cytoplasmic disorganization of cytoskeleton. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Two sides of one coin: massive hepatic necrosis and progenitor cell-mediated regeneration in acute liver failure

    Directory of Open Access Journals (Sweden)

    Honglei eWeng

    2015-06-01

    Full Text Available Massive hepatic necrosis is a key event underlying acute liver failure, a serious clinical syndrome with high mortality. Massive hepatic necrosis in acute liver failure has unique pathophysiological characteristics including extremely rapid parenchymal cell death and removal. On the other hand, massive necrosis rapidly induces the activation of liver progenitor cells, the so-called second pathway of liver regeneration. The final clinical outcome of acute liver failure depends on whether liver progenitor cell-mediated regeneration can efficiently restore parenchymal mass and function within a short time. This review summarizes the current knowledge regarding massive hepatic necrosis and liver progenitor cell-mediated regeneration in patients with acute liver failure, the two sides of one coin.

  4. Two sides of one coin: massive hepatic necrosis and progenitor cell-mediated regeneration in acute liver failure.

    Science.gov (United States)

    Weng, Hong-Lei; Cai, Xiaobo; Yuan, Xiaodong; Liebe, Roman; Dooley, Steven; Li, Hai; Wang, Tai-Ling

    2015-01-01

    Massive hepatic necrosis is a key event underlying acute liver failure, a serious clinical syndrome with high mortality. Massive hepatic necrosis in acute liver failure has unique pathophysiological characteristics including extremely rapid parenchymal cell death and removal. On the other hand, massive necrosis rapidly induces the activation of liver progenitor cells, the so-called "second pathway of liver regeneration." The final clinical outcome of acute liver failure depends on whether liver progenitor cell-mediated regeneration can efficiently restore parenchymal mass and function within a short time. This review summarizes the current knowledge regarding massive hepatic necrosis and liver progenitor cell-mediated regeneration in patients with acute liver failure, the two sides of one coin.

  5. Cell-swelling-induced taurine release from isolated perfused rat liver

    NARCIS (Netherlands)

    Brand, H. S.; Meijer, A. J.; Gustafson, L. A.; Jörning, G. G.; Leegwater, A. C.; Maas, M. A.; Chamuleau, R. A.

    1994-01-01

    Astrocytes and lymphocytes are able to release significant amounts of taurine during periods of hypotonicity to reduce the increase in cell volume. To investigate this mechanism in the liver, we studied the release of free amino acids from isolated perfused rat liver during hypotonicity. The

  6. The Microscope against Cell Theory: Cancer Research in Nineteenth-Century Parisian Anatomical Pathology.

    Science.gov (United States)

    Loison, Laurent

    2016-07-01

    This paper examines the reception of cell theory in the field of French anatomical pathology. This reception is studied under the lens of the concept of the cancer cell, which was developed in Paris in the 1840s. In the medical field, cell theory was quickly accessible, understood, and discussed. In the wake of research by Hermann Lebert, the cancer cell concept was supported by a wealth of high-quality microscopic observations. The concept was constructed in opposition to cell theory, which appears retrospectively paradoxical and surprising. Indeed, the biological atomism inherent in cell theory, according to which the cell is the elementary unit of all organs of living bodies, appeared at the time incompatible with the possible existence of pathological cells without equivalent in healthy tissues. Thus, the postulate of atomism was used as an argument by Parisian clinicians who denied the value of the cancer cell. This study shows that at least in the field of anatomical pathology, cell theory did not directly result from the use of the microscope but was actually hindered by it. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Modeling Dynamics and Function of Bone Marrow Cells in Mouse Liver Regeneration

    NARCIS (Netherlands)

    Pedone, Elisa; Olteanu, Vlad-Aris; Marucci, Lucia; Muñoz-Martin, Maria Isabel; Youssef, Sameh A; de Bruin, Alain; Cosma, Maria Pia

    2017-01-01

    In rodents and humans, the liver can efficiently restore its mass after hepatectomy. This is largely attributed to the proliferation and cell cycle re-entry of hepatocytes. On the other hand, bone marrow cells (BMCs) migrate into the liver after resection. Here, we find that a block of BMC

  8. Disruptive cell cycle regulation involving epigenetic downregulation of Cdkn2a (p16Ink4a) in early-stage liver tumor-promotion facilitating liver cell regeneration in rats

    International Nuclear Information System (INIS)

    Tsuchiya, Takuma; Wang, Liyun; Yafune, Atsunori; Kimura, Masayuki; Ohishi, Takumi; Suzuki, Kazuhiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2012-01-01

    Cell cycle aberration was immunohistochemically examined in relation to preneoplastic liver cell foci expressing glutathione S-transferase placental form (GST-P) at early stages of tumor-promotion in rats with thioacetamide (TAA), a hepatocarcinogen facilitating liver cell regeneration. Immunoexpression of p16 Ink4a following exposure to other hepatocarcinogens/promoters and its DNA methylation status were also analyzed during early and late tumor-promotion stages. GST-P + liver cell foci increased cell proliferation and decreased apoptosis when compared with surrounding liver cells. In concordance with GST-P + foci, checkpoint proteins at G 1 /S (p21 Cip1 , p27 Kip1 and p16 Ink4a ) and G 2 /M (phospho-checkpoint kinase 1, Cdc25c and phospho-Wee1) were either up- or downregulated. Cellular distribution within GST-P + foci was either increased or decreased with proteins related to G 2 -M phase or DNA damage (topoisomerase IIα, phospho-histone H2AX, phospho-histone H3 and Cdc2). In particular, p16 Ink4a typically downregulated in GST-P + foci and regenerative nodules at early tumor-promotion stage with hepatocarcinogens facilitating liver cell regeneration and in neoplastic lesions at late tumor-promotion stage with hepatocarcinogens/promoters irrespective of regenerating potential. Hypermethylation at exon 2 of Cdkn2a was detected at both early- and late-stages. Thus, diverse disruptive expression of G 1 /S and G 2 /M proteins, which allows for clonal selection of GST-P + foci, results in the acquisition of multiple aberrant phenotypes to disrupt checkpoint function. Moreover, increased DNA-damage responses within GST-P + foci may be the signature of genetic alterations. Intraexonic hypermethylation may be responsible for p16 Ink4a -downregulation, which facilitates cell cycle progression in early preneoplastic lesions produced by repeated cell regeneration and late-stage neoplastic lesions irrespective of the carcinogenic mechanism.

  9. Liver fibrosis alleviation after co-transplantation of hematopoietic stem cells with mesenchymal stem cells in patients with thalassemia major.

    Science.gov (United States)

    Ghavamzadeh, Ardeshir; Sotoudeh, Masoud; Hashemi Taheri, Amir Pejman; Alimoghaddam, Kamran; Pashaiefar, Hossein; Jalili, Mahdi; Shahi, Farhad; Jahani, Mohammad; Yaghmaie, Marjan

    2018-02-01

    The aims of this study are to determine the replacement rate of damaged hepatocytes by donor-derived cells in sex-mismatched recipient patients with thalassemia major and to determine whether co-transplantation of mesenchymal stem cells and hematopoietic stem cells (HSCs) can alleviate liver fibrosis. Ten sex-mismatched donor-recipient pairs who received co-transplantation of HSCs with mesenchymal stem cells were included in our study. Liver biopsy was performed before transplantation. Two other liver biopsies were performed between 2 and 5 years after transplantation. The specimens were studied for the presence of donor-derived epithelial cells or hepatocytes using fluorescence in situ hybridization by X- and Y-centromeric probes and immunohistochemical staining for pancytokeratin, CD45, and a hepatocyte-specific antigen. All sex-mismatched tissue samples demonstrated donor-derived hepatocyte independent of donor gender. XY-positive epithelial cells or hepatocytes accounted for 11 to 25% of the cells in histologic sections of female recipients in the first follow-up. It rose to 47-95% in the second follow-up. Although not statistically significant, four out of ten patients showed signs of improvement in liver fibrosis. Our results showed that co-transplantation of HSC with mesenchymal stem cells increases the rate of replacement of recipient hepatocytes by donor-derived cells and may improve liver fibrosis.

  10. Liver and Skin Histopathology in Adults with Acid Sphingomyelinase Deficiency (Niemann-Pick Disease Type B)

    OpenAIRE

    Thurberg, Beth L.; Wasserstein, Melissa P.; Schiano, Thomas; O’Brien, Fanny; Richards, Susan; Cox, Gerald F.; McGovern, Margaret M.

    2012-01-01

    Acid sphingomyelinase deficiency (ASMD) is a lysosomal storage disorder characterized by the pathologic accumulation of sphingomyelin in multiple cells types, and occurs most prominently within the liver, spleen and lungs, leading to significant clinical disease. Seventeen ASMD patients underwent a liver biopsy during baseline screening for a Phase 1 trial of recombinant human acid sphingomyelinase (rhASM) in adults with Niemann-Pick disease type B. Eleven of the 17 were enrolled in the trial...

  11. In vivo multiphoton and fluorescence lifetime imaging microscopy of the healthy and cholestatic liver

    Science.gov (United States)

    Kuznetsova, Daria S.; Dudenkova, Varvara V.; Rodimova, Svetlana A.; Bobrov, Nikolai V.; Zagainov, Vladimir E.; Zagaynova, Elena V.

    2018-02-01

    A cholestatic liver disease presents one of the most common liver diseases and can potentially progress to cirrhosis or even cholangiocarcinoma. Conventional techniques are insufficient to precisely describe the complex internal structure, heterogeneous cell populations and the dynamics of biological processes of the liver. Currently, the methods of multiphoton and fluorescence lifetime imaging microscopy are actively introducing to biomedical research. Those methods are extremely informative and non-destructive that allows studying of a large number of processes occurring inside cells and tissues, analyzing molecular cellular composition, as well as evaluating the state of connective tissue fibers due to their ability to generate a second optical harmonic. Multiphoton and FLIM microscopy do not need additional staining of samples or the incorporation of any markers to study metabolism, lipid composition, microstructure analysis, evaluation of fibrous structures. These parameters have pronounced changes in hepatocytes of liver with common pathological diseases. Thereby in this study we investigated metabolic changes in the healthy and cholestatic liver based on the fluorescence of the metabolic co-factors NAD(P)H and FAD by multiphoton microscopy combined with FLIM. To estimate the contribution of energy metabolism and lipogenesis in the observed changes of the metabolic profile, a separate analysis of NADH and NADPH was presented. The data can be used to develop new criteria for the identification of hepatic pathology at the level of hepatocyte changes directed to personalized medicine in the future.

  12. Bioartificial liver and liver transplantation: new modalities for the treatment of liver failure

    Directory of Open Access Journals (Sweden)

    DING Yitao

    2017-09-01

    Full Text Available The main features of liver failure are extensive necrosis of hepatocytes, rapid disease progression, and poor prognosis, and at present, there are no effective drugs and methods for the treatment of liver failure. This article summarizes four treatment methods for liver failure, i.e., medical treatment, cell transplantation, liver transplantation, and artificial liver support therapy, and elaborates on the existing treatment methods. The current medical treatment regimen should be optimized; cell transplantation has not been used in clinical practice; liver transplantation is the most effective method, but it is limited by donor liver shortage and high costs; artificial liver can effectively remove toxic substances in human body. Therefore, this article puts forward artificial liver as a transition for liver transplantation; artificial liver can buy time for liver regeneration or liver transplantation and prolong patients′ survival time and thus has a promising future. The new treatment modality of bioartificial liver combined with liver transplantation may bring good news to patients with liver failure.

  13. Mechanism of impaired regeneration of fatty liver in mouse partial hepatectomy model.

    Science.gov (United States)

    Murata, Hiroshi; Yagi, Takahito; Iwagaki, Hiromi; Ogino, Tetsuya; Sadamori, Hiroshi; Matsukawa, Hiroyoshi; Umeda, Yuzoh; Haga, Sanae; Takaka, Noriaki; Ozaki, Michitaka

    2007-12-01

    The mechanism of injury in steatotic liver under pathological conditions been extensively examined. However, the mechanism of an impaired regeneration is still not well understood. The aim of this study was to analyze the mechanism of impaired regeneration of steatotic liver after partial hepatectomy (PH). db/db fatty mice and lean littermates were used for the experiments. Following 70% PH, the survival rate and recovery of liver mass were examined. Liver tissue was histologically examined and analyzed by western blotting and RT-PCR. Of 35 db/db mice, 25 died within 48 h of PH, while all of the control mice survived. Liver regeneration of surviving db/db mice was largely impaired. In db/db mice, mitosis of hepatocytes after PH was disturbed, even though proliferating cell nuclear antigen (PCNA) expression (G1 to S phase marker) in hepatocytes was equally observed in both mice groups. Interestingly, phosphorylation of Cdc2 in db/db mice was suppressed by reduced expression of Wee1 and Myt1, which phosphorylate Cdc2 in S to G2 phase. In steatotic liver, cell-cycle-related proliferative disorders occurred at mid-S phase after PCNA expression. Reduced expression of Wee1 and Myt1 kinases may therefore maintain Cdc2 in an unphosphorylated state and block cell cycle progression in mid-S phase. These kinases may be critical factors involved in the impaired liver regeneration in fatty liver.

  14. Liver-derived systemic factors drive β-cell hyperplasia in insulin resistant states

    Energy Technology Data Exchange (ETDEWEB)

    El Ouaamari, Abdelfattah; Kawamori, Dan; Dirice, Ercument; Liew, Chong Wee; Shadrach, Jennifer L.; Hu, Jiang; Katsuta, Hitoshi; Hollister-Lock, Jennifer; Qian, Weijun; Wagers, Amy J.; Kulkarni, Rohit N.

    2013-02-21

    Integrative organ cross-talk regulates key aspects of energy homeostasis and its dysregulation may underlie metabolic disorders such as obesity and diabetes. To test the hypothesis that cross-talk between the liver and pancreatic islets modulates β-cell growth in response to insulin resistance, we used the Liver-specific Insulin Receptor Knockout (LIRKO) mouse, a unique model that exhibits dramatic islet hyperplasia. Using complementary in vivo parabiosis and transplantation assays, and in vitro islet culture approaches, we demonstrate that humoral, non-neural, non-cell autonomous factor(s) induce β-cell proliferation in LIRKO mice. Furthermore, we report that a hepatocyte-derived factor(s) stimulates mouse and human β-cell proliferation in ex vivo assays, independent of ambient glucose and insulin levels. These data implicate the liver as a critical source of β-cell growth factors in insulin resistant states.

  15. Impaired liver regeneration is associated with reduced cyclin B1 in natural killer T cell-deficient mice.

    Science.gov (United States)

    Ben Ya'acov, Ami; Meir, Hadar; Zolotaryova, Lydia; Ilan, Yaron; Shteyer, Eyal

    2017-03-23

    It has been shown that the proportion of natural killer T cells is markedly elevated during liver regeneration and their activation under different conditions can modulate this process. As natural killer T cells and liver injury are central in liver regeneration, elucidating their role is important. The aim of the current study is to explore the role of natural killer T cells in impaired liver regeneration. Concanvalin A was injected 4 days before partial hepatectomy to natural killer T cells- deficient mice or to anti CD1d1-treated mice. Ki-67 and proliferating cell nuclear antigen were used to measure hepatocytes proliferation. Expression of hepatic cyclin B1 and proliferating cell nuclear antigen were evaluated by Western Blot and liver injury was assessed by ALT and histology. Natural killer T cells- deficient or mice injected with anti CD1d antibodies exhibited reduced liver regeneration. These mice were considerably resistant to ConA-induced liver injury. In the absence of NKT cells hepatic proliferating cell nuclear antigen and cyclin B1 decreased in mice injected with Concanvalin A before partial hepatectomy. This was accompanied with reduced serum interleukin-6 levels. Natural killer T cells play an important role in liver regeneration, which is associated with cyclin B1 and interleukin-6.

  16. Identification of hepatic niche harboring human acute lymphoblastic leukemic cells via the SDF-1/CXCR4 axis.

    Directory of Open Access Journals (Sweden)

    Itaru Kato

    Full Text Available In acute lymphoblastic leukemia (ALL patients, the bone marrow niche is widely known to be an important element of treatment response and relapse. Furthermore, a characteristic liver pathology observed in ALL patients implies that the hepatic microenvironment provides an extramedullary niche for leukemic cells. However, it remains unclear whether the liver actually provides a specific niche. The mechanism underlying this pathology is also poorly understood. Here, to answer these questions, we reconstituted the histopathology of leukemic liver by using patients-derived primary ALL cells into NOD/SCID/Yc (null mice. The liver pathology in this model was similar to that observed in the patients. By using this model, we clearly demonstrated that bile duct epithelial cells form a hepatic niche that supports infiltration and proliferation of ALL cells in the liver. Furthermore, we showed that functions of the niche are maintained by the SDF-1/CXCR4 axis, proposing a novel therapeutic approach targeting the extramedullary niche by inhibition of the SDF-1/CXCR4 axis. In conclusion, we demonstrated that the liver dissemination of leukemia is not due to nonselective infiltration, but rather systematic invasion and proliferation of leukemic cells in hepatic niche. Although the contribution of SDF-1/CXCR4 axis is reported in some cancer cells or leukemic niches such as bone marrow, we demonstrated that this axis works even in the extramedullary niche of leukemic cells. Our findings form the basis for therapeutic approaches that target the extramedullary niche by inhibiting the SDF-1/CXCR4 axis.

  17. Drug-related perinatal damage from the pathological point of view

    Directory of Open Access Journals (Sweden)

    Daniela Fanni

    2014-06-01

    Full Text Available Drug dosage in the perinatal period represents a continuous challenge for the neonatologist because of interindividual variability of drug metabolism. The human liver plays a central role in the uptake, transport, metabolism and excretion of the vast majority of xenobiotics and drugs. The protein products of human CYP3A account for the largest portion of CYP450 proteins in human liver. At least 50% of currently used drugs in neonatal intensive care units (NICUs are substrates of CYP3A4 including antibiotics, antivirals, antifungals, immunomodulators, benzodiazepines, proton pump inhibitors, steroid hormones and acetaminophen. The variable CYP3A4 and CYP3A7 expression recently reported in neonatal liver suggests the existence of a marked interindividual variability in drug metabolism during the intrauterine and neonatal lives and, as a consequence, the need of an individualized tailored therapeutic approach in NICUs. The increased risk for adverse effects reported for some drugs in neonates could be related to pharmacokinetic peculiarities of the newborn liver. The fetal and neonatal liver in infants undergoing drug-induced liver injury (DILI is always characterized by the overlapping between developmental and pathological changes, the differential diagnosis between these changes representing often a challenge for the pathologist. Data here reported clearly evidence the peculiarity of the histological examination of the newborn liver, as compared to the adult liver. In conclusion, the role of the pathologist in the interpretation of liver reactions to drugs may be relevant, only when supported by the dialogue with neonatologists. A deep knowledge of the events taking place during liver development at different gestational ages is necessary for a dedicated neonatal pathologist, in order to avoid misinterpretation of the histological changes related to liver development, giving them a pathological significance. Proceedings of the International

  18. Prostaglandin E2 Regulates Liver versus Pancreas Cell Fate Decisions and Endodermal Outgrowth

    Science.gov (United States)

    Nissim, Sahar; Sherwood, Richard I.; Wucherpfennig, Julia; Saunders, Diane; Harris, James M.; Esain, Virginie; Carroll, Kelli J.; Frechette, Gregory M.; Kim, Andrew J.; Hwang, Katie L.; Cutting, Claire C.; Elledge, Susanna; North, Trista E.; Goessling, Wolfram

    2014-01-01

    SUMMARY The liver and pancreas arise from common endodermal progenitors. How these distinct cell fates are specified is poorly understood. Here, we describe prostaglandin E2 (PGE2) as a regulator of endodermal fate specification during development. Modulating PGE2 activity has opposing effects on liver-versus-pancreas specification in zebrafish embryos as well as mouse endodermal progenitors. The PGE2 synthetic enzyme cox2a and receptor ep2a are patterned such that cells closest to PGE2 synthesis acquire a liver fate whereas more distant cells acquire a pancreas fate. PGE2 interacts with the bmp2b pathway to regulate fate specification. At later stages of development, PGE2 acting via the ep4a receptor promotes outgrowth of both the liver and pancreas. PGE2 remains important for adult organ growth, as it modulates liver regeneration. This work provides in vivo evidence that PGE2 may act as a morphogen to regulate cell fate decisions and outgrowth of the embryonic endodermal anlagen. PMID:24530296

  19. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zou, He [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Otani, Atsushi, E-mail: otan@kuhp.kyoto-u.ac.jp [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan); Oishi, Akio; Yodoi, Yuko; Kameda, Takanori; Kojima, Hiroshi; Yoshimura, Nagahisa [Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507 (Japan)

    2010-01-08

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a {sup 137}Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that

  20. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    International Nuclear Information System (INIS)

    Zou, He; Otani, Atsushi; Oishi, Akio; Yodoi, Yuko; Kameda, Takanori; Kojima, Hiroshi; Yoshimura, Nagahisa

    2010-01-01

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a 137 Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that bone

  1. An optimized method for mouse liver sinusoidal endothelial cell isolation

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Jeremy, E-mail: jeremy.meyer@hcuge.ch [Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14 (Switzerland); Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Lacotte, Stéphanie, E-mail: stephanie.lacotte@unige.ch [Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Morel, Philippe, E-mail: philippe.morel@hcuge.ch [Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14 (Switzerland); Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Gonelle-Gispert, Carmen, E-mail: carmen.gonelle@unige.ch [Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Bühler, Léo, E-mail: leo.buhler@hcuge.ch [Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14 (Switzerland); Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland)

    2016-12-10

    The objective of the present study was to develop an accurate and reproducible method for liver sinusoidal endothelial cell (LSEC) isolation in mice. Non-parenchymal cells were isolated using a modified two-step collagenase digestion combined with Optiprep density gradient centrifugation. LSEC were further purified using two prevalent methods, short-term selective adherence and CD146+ magnetic-activated cell sorting (MACS), and compared in terms of cell yield, viability and purity to our purification technique using CD11b cell depletion combined with long-term selective adherence. LSEC purification using our technique allowed to obtain 7.07±3.80 million LSEC per liver, while CD146+ MACS and short-term selective adherence yielded 2.94±1.28 and 0.99±0.66 million LSEC, respectively. Purity of the final cell preparation reached 95.10±2.58% when using our method. In contrast, CD146+ MACS and short-term selective adherence gave purities of 86.75±3.26% and 47.95±9.82%, respectively. Similarly, contamination by non-LSEC was the lowest when purification was performed using our technique, with a proportion of contaminating macrophages of only 1.87±0.77%. Further, isolated cells analysed by scanning electron microscopy presented typical LSEC fenestrations organized in sieve plates, demonstrating that the technique allowed to isolate bona fide LSEC. In conclusion, we described a reliable and reproducible technique for the isolation of high yields of pure LSEC in mice. This protocol provides an efficient method to prepare LSEC for studying their biological functions. - Highlights: • This protocol provides an efficient method to prepare primary mouse LSEC for studying their biological functions. • The liver cell dispersion step was improved by performing a retrograde cannulation of the liver. • The cell yield and the purity obtained were higher than comparative techniques in mice. • Contaminating macrophages were removed by introducing a CD11b- magnetic

  2. An optimized method for mouse liver sinusoidal endothelial cell isolation

    International Nuclear Information System (INIS)

    Meyer, Jeremy; Lacotte, Stéphanie; Morel, Philippe; Gonelle-Gispert, Carmen; Bühler, Léo

    2016-01-01

    The objective of the present study was to develop an accurate and reproducible method for liver sinusoidal endothelial cell (LSEC) isolation in mice. Non-parenchymal cells were isolated using a modified two-step collagenase digestion combined with Optiprep density gradient centrifugation. LSEC were further purified using two prevalent methods, short-term selective adherence and CD146+ magnetic-activated cell sorting (MACS), and compared in terms of cell yield, viability and purity to our purification technique using CD11b cell depletion combined with long-term selective adherence. LSEC purification using our technique allowed to obtain 7.07±3.80 million LSEC per liver, while CD146+ MACS and short-term selective adherence yielded 2.94±1.28 and 0.99±0.66 million LSEC, respectively. Purity of the final cell preparation reached 95.10±2.58% when using our method. In contrast, CD146+ MACS and short-term selective adherence gave purities of 86.75±3.26% and 47.95±9.82%, respectively. Similarly, contamination by non-LSEC was the lowest when purification was performed using our technique, with a proportion of contaminating macrophages of only 1.87±0.77%. Further, isolated cells analysed by scanning electron microscopy presented typical LSEC fenestrations organized in sieve plates, demonstrating that the technique allowed to isolate bona fide LSEC. In conclusion, we described a reliable and reproducible technique for the isolation of high yields of pure LSEC in mice. This protocol provides an efficient method to prepare LSEC for studying their biological functions. - Highlights: • This protocol provides an efficient method to prepare primary mouse LSEC for studying their biological functions. • The liver cell dispersion step was improved by performing a retrograde cannulation of the liver. • The cell yield and the purity obtained were higher than comparative techniques in mice. • Contaminating macrophages were removed by introducing a CD11b- magnetic

  3. Biodistribution of Liver-Derived Mesenchymal Stem Cells After Peripheral Injection in a Hemophilia A Patient.

    Science.gov (United States)

    Sokal, Etienne M; Lombard, Catherine Anne; Roelants, Véronique; Najimi, Mustapha; Varma, Sharat; Sargiacomo, Camillo; Ravau, Joachim; Mazza, Giuseppe; Jamar, François; Versavau, Julia; Jacobs, Vanessa; Jacquemin, Marc; Eeckhoudt, Stéphane; Lambert, Catherine; Stéphenne, Xavier; Smets, Françoise; Hermans, Cédric

    2017-08-01

    With the exception of liver transplantation, there is no cure for hemophilia, which is currently managed by preemptive replacement therapy. Liver-derived stem cells are in clinical development for inborn and acquired liver diseases and could represent a curative treatment for hemophilia A. The liver is a major factor VIII (FVIII) synthesis site, and mesenchymal stem cells have been shown to control joint bleeding in animal models of hemophilia. Adult-derived human liver stem cells (ADHLSCs) have mesenchymal characteristics and have been shown able to engraft in and repopulate both animal and human livers. Thus, the objectives were to evaluate the potency of ADHLSCs to control bleeding in a hemophilia A patient and assess the biodistribution of the cells after intravenous injection. A patient suffering from hemophilia A was injected with repeated doses of ADHLSCs via a peripheral vein (35 million In-oxine-labeled cells, followed by 125 million cells the next day, and 3 infusions of 250 million cells every 2 weeks thereafter; total infusion period, 50 days). After cell therapy, we found a temporary (15 weeks) decrease in the patient's FVIII requirements and severe bleeding complications, despite a lack of increase in circulating FVIII. The cells were safely administered to the patient via a peripheral vein. Biodistribution analysis revealed an initial temporary entrapment of the cells in the lungs, followed by homing to the liver and to a joint afflicted with hemarthrosis. These results suggest the potential use of ADHLSCs in the treatment of hemophilia A.

  4. MR imaging of renal cell carcinoma. Associations among signal intensity, tumor enhancement, and pathologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Yabuki, Takayuki; Togami, Izumi; Kitagawa, Takahiro; Sasai, Nobuya; Tsushima, Tomoyasu; Shirasaki, Yoshinori; Hiraki, Yoshio [Okayama Univ. (Japan). Graduate School of Medicine and Dentistry

    2003-08-01

    The purpose of this study was to compare the MR characteristics of renal cell carcinomas against histologic findings and to assess the correlations among signal intensity, tumor enhancement, and pathologic findings. Fifty-four patients (56 lesions) were examined by MR imaging and then underwent partial or radical nephrectomy. The pathologic diagnosis of all lesions was renal cell carcinoma. All MR examinations were performed as dynamic studies using the same 1.5-T scanner. MR characteristics were compared against pathologic findings after resection, and the correlations among signal intensity, tumor enhancement, and pathologic findings were then assessed. A significant correlation was observed between tumor grade and tumor enhancement, with G3 lesions tending to show little enhancement. Regardless of the histologic classification, G3 tumors were found to contain highly heterotypic cancer cells and very few vessels by histopathologic examination. No significant correlations were noted between the other MR characteristics and pathologic findings. Renal cell carcinomas showing little enhancement tend to be highly malignant lesions based on the pathologic findings. Special consideration is required for these tumors with regard to the selection of surgical intervention and follow-up observation. (author)

  5. MR imaging of renal cell carcinoma. Associations among signal intensity, tumor enhancement, and pathologic findings

    International Nuclear Information System (INIS)

    Yabuki, Takayuki; Togami, Izumi; Kitagawa, Takahiro; Sasai, Nobuya; Tsushima, Tomoyasu; Shirasaki, Yoshinori; Hiraki, Yoshio

    2003-01-01

    The purpose of this study was to compare the MR characteristics of renal cell carcinomas against histologic findings and to assess the correlations among signal intensity, tumor enhancement, and pathologic findings. Fifty-four patients (56 lesions) were examined by MR imaging and then underwent partial or radical nephrectomy. The pathologic diagnosis of all lesions was renal cell carcinoma. All MR examinations were performed as dynamic studies using the same 1.5-T scanner. MR characteristics were compared against pathologic findings after resection, and the correlations among signal intensity, tumor enhancement, and pathologic findings were then assessed. A significant correlation was observed between tumor grade and tumor enhancement, with G3 lesions tending to show little enhancement. Regardless of the histologic classification, G3 tumors were found to contain highly heterotypic cancer cells and very few vessels by histopathologic examination. No significant correlations were noted between the other MR characteristics and pathologic findings. Renal cell carcinomas showing little enhancement tend to be highly malignant lesions based on the pathologic findings. Special consideration is required for these tumors with regard to the selection of surgical intervention and follow-up observation. (author)

  6. Clinical potential of regulatory T cell therapy in liver diseases: An overview and current perspectives

    Directory of Open Access Journals (Sweden)

    Hannah Claire Jeffery

    2016-09-01

    Full Text Available The increasing demand for liver transplantation and the decline in donor organs has highlighted the need for alternative novel therapies to prevent chronic active hepatitis, which eventually leads to liver cirrhosis and liver cancer. Liver histology of chronic hepatitis is composed of both effector and regulatory lymphocytes. The human liver contains different subsets of effector lymphocytes, that are kept in check by a subpopulation of T cells known as Regulatory T cells (Treg. The balance of effector and regulatory lymphocytes generally determines the outcome of hepatic inflammation: resolution, fulminant hepatitis or chronic active hepatitis. Thus, maintaining and adjusting this balance is crucial in immunological manipulation of liver diseases. One of the options to restore this balance is to enrich Treg in the liver disease patients.Advances in the knowledge of Treg biology and development of clinical grade isolation reagents, cell sorting equipment and Good Manufacturing Practice (GMP facilities have paved the way to apply Treg cells as a potential therapy to restore peripheral self-tolerance in autoimmune liver diseases, chronic rejection and post-transplantation. Past and on-going studies have applied Treg in type-1 diabetes mellitus, systemic lupus erythematosus, graft versus host diseases (GVHD and solid organ transplantations. There have not been any new therapies for the autoimmune liver diseases for more than three decades; thus the clinical potential for the application of autologous Treg cell therapy to treat autoimmune liver disease is an attractive and novel option. However, it is fundamental to understand the deep immunology, genetic profiles, biology, homing behavior and microenvironment of Treg before applying the cells to the patients.

  7. Manipulation of the Host Cell Membrane during Plasmodium Liver Stage Egress

    Directory of Open Access Journals (Sweden)

    Paul-Christian Burda

    2017-04-01

    Full Text Available A crucial step in the life cycle of Plasmodium parasites is the transition from the liver stage to the blood stage. Hepatocyte-derived merozoites reach the blood vessels of the liver inside host cell-derived vesicles called merosomes. The molecular basis of merosome formation is only partially understood. Here we show that Plasmodium berghei liver stage merozoites, upon rupture of the parasitophorous vacuole membrane, destabilize the host cell membrane (HCM and induce separation of the host cell actin cytoskeleton from the HCM. At the same time, the phospholipid and protein composition of the HCM appears to be substantially altered. This includes the loss of a phosphatidylinositol 4,5-bisphosphate (PIP2 reporter and the PIP2-dependent actin-plasma membrane linker ezrin from the HCM. Furthermore, transmembrane domain-containing proteins and palmitoylated and myristoylated proteins, as well as glycosylphosphatidylinositol-anchored proteins, lose their HCM localization. Collectively, these findings provide an explanation of HCM destabilization during Plasmodium liver stage egress and thereby contribute to our understanding of the molecular mechanisms that lead to merosome formation.

  8. Primary Fibrosarcoma of the Liver: We Don’t Know Much

    Directory of Open Access Journals (Sweden)

    Sadaf Ali

    2008-11-01

    Full Text Available A 60-year-old lady presented to us with a right upper abdominal mass. With a clinical diagnosis of liver tumor, she was evaluated with abdominal CT, MRI, nuclear scan, tumor markers, USG guided FNAC and other baseline investigations. On evaluation she had a massive right lobe tumor crossing the midline. In view of the ambiguous diagnosis she was subjected to laparotomy where the lesion was judged unresectable and a biopsy was taken. Histopathological examination showed the rare pathology of primary fibrosarcoma of the liver with features of homogeneous, spindle-shaped cells with abundant collagen fibers showing a classic herringbone pattern. Tissue samples were then sent to another referral cancer hospital for immunohistochemistry and immunoreactive vimentin was found in the tumor cells. Electron microscopically, the tumor cells were rich in rough endoplasmic reticulum without a basement membrane, and were surrounded by large amounts of collagen fibers. The fibroblastic character of the tumor cells was suggested by light and electron microscopy.

  9. Aging-associated oxidative stress inhibits liver progenitor cell activation in mice.

    Science.gov (United States)

    Cheng, Yiji; Wang, Xue; Wang, Bei; Zhou, Hong; Dang, Shipeng; Shi, Yufang; Hao, Li; Luo, Qingquan; Jin, Min; Zhou, Qianjun; Zhang, Yanyun

    2017-04-29

    Recent studies have discovered aging-associated changes of adult stem cells in various tissues and organs, which potentially contribute to the organismal aging. However, aging-associated changes of liver progenitor cells (LPCs) remain elusive. Employing young (2-month-old) and old (24-month-old) mice, we found diverse novel alterations in LPC activation during aging. LPCs in young mice could be activated and proliferate upon liver injury, whereas the counterparts in old mice failed to respond and proliferate, leading to the impaired liver regeneration. Surprisingly, isolated LPCs from young and old mice did not exhibit significant difference in their clonogenic and proliferative capacity. Later, we uncovered that the decreased activation and proliferation of LPCs were due to excessive reactive oxygen species produced by neutrophils infiltrated into niche, which was resulted from chemokine production from activated hepatic stellate cells during aging. This study demonstrates aging-associated changes in LPC activation and reveals critical roles for the stem cell niche, including neutrophils and hepatic stellate cells, in the negative regulation of LPCs during aging.

  10. Effects on haematological parameters and pathology of internal ...

    African Journals Online (AJOL)

    Effects on haematological parameters and pathology of internal organs of Trypanosoma brucei brucei infected albino rats. ... Group A served as the control (uninfected). ... The gross pathological effects on the internal organs showed significant enlargement of the spleen (splenomegaly) and slight enlargement of the liver ...

  11. Influence of matrix nature on the functional efficacy of biomedical cell product for the regeneration of damaged liver (experimental model of acute liver failure

    Directory of Open Access Journals (Sweden)

    S. V. Gautier

    2017-01-01

    Full Text Available Aim. A comparative analysis of the functional efficacy of biomedical cell products (BMCP for the regeneration of damaged liver based on biopolymer scaffolded porous and hydrogel matrices was performed on the experimental model of acute liver failure. Materials and methods. Matrices allowed for clinical use were employed for BMCP in the form of a sponge made from biopolymer nanostructured composite material (BNCM based on a highly purified bacterial copolymers of poly (β-hydroxybutyrate-co-β-oxyvalerate and polyethylene glycol and a hydrogel matrix from biopolymer microheterogeneous collagen-containing hydrogel (BMCH. Cellular component of BMCP was represented by liver cells and multipotent mesenchymal bone marrow stem cells. The functional efficacy of BMCP for the regeneration of damaged liver was evaluated on the experimental model of acute liver failure in Wistar rats (n = 40 via biochemical, morphological, and immunohistochemical methods. Results. When BMCP was implanted to regenerate the damaged liver on the basis of the scaffolded BNCM or hydrogel BMCH matrices, the lethality in rats with acute liver failure was absent; while in control it was 66.6%. Restoration of the activity of cytolytic enzyme levels and protein-synthetic liver function began on day 9 after modeling acute liver failure, in contrast to the control group, where recovery occurred only by days 18–21. Both matrices maintained the viability and functional activity of liver cells up to 90 days with the formation of blood vessels in BMCP. The obtained data confirm that scaffolded BNCM matrix and hydrogel BMCH matrix retain for a long time (up to 90 days the vital activity of the adherent cells in the BMCP composition, which allows using them to correct acute liver failure. At the same time, hydrogel matrix due to the presence of bioactive components contributes to the creation of the best conditions for adhesion and cell activity which accelerate the regeneration processes

  12. Assessment of pathologic increase in liver stiffness enables earlier diagnosis of CFLD: Results from a prospective longitudinal cohort study.

    Directory of Open Access Journals (Sweden)

    Victoria Klotter

    Full Text Available About 30% of patients with Cystic Fibrosis (CF develop CF-associated liver disease (CFLD. Recent studies have shown that transient elastography (TE, as a method to quantify liver stiffness, allows non-invasive diagnosis of CFLD in adults and children with CF. Within this study we aimed to prospectively identify patients at risk for development of CFLD by longitudinal analysis of liver stiffness and fibrosis scores in a 5-year follow-up. 36 pediatric and 16 adult patients with initial liver stiffness below the cut-off value indicative of CFLD (6.3 kPa were examined by transient elastography for 4-5 years. TE, APRI-, and FIB-4-scores were assessed and compared by Kruskal-Wallis test and receiver operating characteristic (ROC-analysis. Frequencies were compared by Chi2-test. Among the 36 patients participating in this study, a subgroup of 9 patients developed liver stiffness >6.3 kPa after 4-5 years with an increase of ΔTE >0.38 kPa/a (the group with increasing liver stiffness was labelled TEinc. APRI- and FIB-4 scores confirmed the rationale for grouping. The frequency of CFLD assessed by conventional diagnosis was significantly higher in TEinc-group compared to the control group (TEnorm. None of the adult CF patients matched criteria for TEinc-group. For the first time it was shown that the non-invasive longitudinal assessment of TE allows identification of patients with progression of CFLD in a subgroup of juvenile but not in adult CF patients. Comparing TE to conventional fibrosis-scores underlined the strength of the continuous assessment of liver stiffness for the exact diagnosis of progressive CFLD. The newly described cut-off for pathologic increase of liver stiffness, ΔTEcutoff = 0.38kPa/a, might enable to detect developing CFLD using consequent follow up TE measurements before reaching the level of stiffness indicating established CFLD. Nevertheless, the limited size of the analyzed cohort should encourage a prospective, multi

  13. Successful orthotopic liver transplantation in an adult patient with sickle cell disease and review of the literature

    Directory of Open Access Journals (Sweden)

    Morey Blinder

    2013-05-01

    Full Text Available Sickle cell disease can lead to hepatic complications ranging from acute hepatic crises to chronic liver disease including intrahepatic cholestasis, and iron overload. Although uncommon, intrahepatic cholestasis may be severe and medical treatment of this complication is often ineffective. We report a case of a 37 year-old male patient with sickle cell anemia, who developed liver failure and underwent successful orthotopic liver transplantation. Both pre and post-operatively, he was maintained on red cell transfusions. He remains stable with improved liver function 42 months post transplant. The role for orthotopic liver transplantation is not well defined in patients with sickle cell disease, and the experience remains limited. Although considerable challenges of post-transplant graft complications remain, orthotopic liver transplantation should be considered as a treatment option for sickle cell disease patients with end-stage liver disease who have progressed despite conventional medical therapy. An extended period of red cell transfusion support may lessen the post-operative complications.

  14. Complete pathological response (ypT0N0M0) after preoperative chemotherapy alone for stage IV rectal cancer.

    Science.gov (United States)

    Naiken, Surennaidoo P; Toso, Christian; Rubbia-Brandt, Laura; Thomopoulos, Theodoros; Roth, Arnaud; Mentha, Gilles; Morel, Philippe; Gervaz, Pascal

    2014-01-17

    Complete pathological response occurs in 10-20% of patients with rectal cancer who are treated with neoadjuvant chemoradiation therapy prior to pelvic surgery. The possibility that complete pathological response of rectal cancer can also occur with neoadjuvant chemotherapy alone (without radiation) is an intriguing hypothesis. A 66-year old man presented an adenocarcinoma of the rectum with nine liver metastases (T3N1M1). He was included in a reverse treatment, aiming at first downsizing the liver metastases by chemotherapy, and subsequently performing the liver surgery prior to the rectum resection. The neoadjuvant chemotherapy consisted in a combination of oxaliplatin, 5-FU, irinotecan, leucovorin and bevacizumab (OCFL-B). After a right portal embolization, an extended right liver lobectomy was performed. On the final histopathological analysis, all lesions were fibrotic, devoid of any viable cancer cells. One month after liver surgery, the rectoscopic examination showed a near-total response of the primary rectal adenocarcinoma, which convinced the colorectal surgeon to perform the low anterior resection without preoperative radiation therapy. Macroscopically, a fibrous scar was observed at the level of the previously documented tumour, and the histological examination of the surgical specimen did not reveal any malignant cells in the rectal wall as well as in the mesorectum. All 15 resected lymph nodes were free of tumour, and the final tumour stage was ypT0N0M0. Clinical outcome was excellent, and the patient is currently alive 5 years after the first surgery without evidence of recurrence. The presented patient with stage IV rectal cancer and liver metastases was in a unique situation linked to its inclusion in a reversed treatment and the use of neoadjuvant chemotherapy alone. The observed achievement of a complete pathological response after chemotherapy should promote the design of prospective randomized studies to evaluate the benefits of chemotherapy

  15. Optical diagnostics of tumour cells at different stages of pathology development

    Energy Technology Data Exchange (ETDEWEB)

    Shcheglova, L S; Maryakhina, V S [Orenburg State University, Orenburg (Russian Federation); Abramova, L L [Orenburg State Agrarian University, Orenburg (Russian Federation)

    2013-11-30

    The differences in optical and biophysical properties between the cells of mammary gland tumour extracted from tumours of different diameter are described. It is shown that the spectral and spectrokinetic properties of fluorescent probes in the cells extracted from the tumours 1 – 3 cm in diameter are essentially different. Thus, the extinction coefficient of rhodamine 6G gradually increases with the pathology development. At the same time the rate of interaction of the triplet states of molecular probes with the oxygen, diluted in the tumour cells cytoplasm, decreases with the growth of the tumour capsule diameter. The observed regularities can be due to the changes in the cell structure, biochemical and biophysical properties. The reported data may be useful for developing optical methods of diagnostics of biotissue pathological conditions. (optical methods in biology and medicine)

  16. Identification and Characterization of Mesenchymal-Epithelial Progenitor-Like Cells in Normal and Injured Rat Liver

    Science.gov (United States)

    Liu, Daqing; Yovchev, Mladen I.; Zhang, Jinghang; Alfieri, Alan A.; Tchaikovskaya, Tatyana; Laconi, Ezio; Dabeva, Mariana D.

    2016-01-01

    In normal rat liver, thymocyte antigen 1 (Thy1) is expressed in fibroblasts/myofibroblasts and in some blood progenitor cells. Thy1-expressing cells also accumulate in the liver during impaired liver regeneration. The origin and nature of these cells are not well understood. By using RT-PCR analysis and immunofluorescence microscopy, we describe the presence of rare Thy1+ cells in the liver lobule of normal animals, occasionally forming small collections of up to 20 cells. These cells constitute a small portion (1.7% to 1.8%) of nonparenchymal cells and reveal a mixed mesenchymal-epithelial phenotype, expressing E-cadherin, cytokeratin 18, and desmin. The most potent mitogens for mesenchymal-epithelial Thy1+ cells in vitro are the inflammatory cytokines interferon γ, IL-1, and platelet-derived growth factor-BB, which are not produced by Thy1+ cells. Thy1+ cells express all typical mesenchymal stem cell and hepatic progenitor cell markers and produce growth factor and cytokine mRNA (Hgf, Il6, Tgfa, and Tweak) for proteins that maintain oval cell growth and differentiation. Under appropriate conditions, mesenchymal-epithelial cells differentiate in vitro into hepatocyte-like cells. In this study, we show that the adult rat liver harbors a small pool of endogenous mesenchymal-epithelial cells not recognized previously. In the quiescent state, these cells express both mesenchymal and epithelial cell markers. They behave like hepatic stem cells/progenitors with dual phenotype, exhibiting high plasticity and long-lasting proliferative activity. PMID:25447047

  17. Phosphatase of Regenerating Liver-3 Promotes Motility and Metastasis of Mouse Melanoma Cells

    Science.gov (United States)

    Wu, Xiaopeng; Zeng, Hu; Zhang, Xianming; Zhao, Ying; Sha, Haibo; Ge, Xiaomei; Zhang, Minyue; Gao, Xiang; Xu, Qiang

    2004-01-01

    Recent reports suggested that phosphatase of regenerating liver (PRL)-3 might be involved in colorectal carcinoma metastasis with an unknown mechanism. Here we demonstrated that PRL-3 expression was up-regulated in human liver carcinoma compared with normal liver. PRL-3 was also highly expressed in metastatic melanoma B16-BL6 cells but not in its lowly metastatic parental cell line, B16 cells. B16 cells transfected with PRL-3 cDNA displayed morphological transformation from epithelial-like shape to fibroblast-like shape. PRL-3-overexpressed cells showed much higher migratory ability, which could be reversed by specific anti-sense oligodeoxynucleotide and the phosphatase inhibitors sodium orthovanadate or potassium bisperoxo oxovanadate V. Meanwhile, the expression of the catalytically inactive PRL-3 mutations (D72A or C104S) significantly reduced the cell migratory capability. In addition, PRL-3 transfectants demonstrated altered extracellular matrix adhesive property and up-regulated integrin-mediated cell spreading efficiency. Furthermore, we confirmed that PRL-3 could facilitate lung and liver metastasis of B16 cells in an experimental metastasis model in mice, consistent with accelerated proliferation and growth rate both in vitro and in vivo. Together, these observations provide convincing evidence that PRL-3 truly plays a causal role in tumor metastasis. PMID:15161639

  18. Pathological significance and prognostic roles of densities of CD57+ cells, CD68+ cells, and mast cells, and their ratios in clear cell renal cell carcinoma.

    Science.gov (United States)

    Nakanishi, Hiromi; Miyata, Yasuyoshi; Mochizuki, Yasushi; Yasuda, Takuji; Nakamura, Yuichiro; Araki, Kyohei; Sagara, Yuji; Matsuo, Tomohiro; Ohba, Kojiro; Sakai, Hideki

    2018-05-19

    The immune system is closely associated with malignant behavior in renal cell carcinoma (RCC). Therefore, understanding the pathological roles of immune cells in tumor stroma is essential to discuss the pathological characteristics of RCC. In this study, the clinical significance of densities of CD57+ cells, CD68+ cells, and mast cells, and their ratios were investigated in patients with clear cell RCC. The densities of CD57+, CD68+, and mast cells were evaluated by immunohistochemical techniques in 179 patients. Proliferation index (PI), apoptotic index (AI), and microvessel density (MVD) were evaluated by using anti-Ki-67, anti-cleaved caspase-3, and anti-CD31 antibodies, respectively. The density of CD57+ cell was negatively correlated with grade, pT stage, and metastasis, although densities of CD68+ cell and mast cell were positively correlated. Ratios of CD68+ cell/CD57+ cell and mast cell/CD57+ cell were significantly correlated with grade, pT stage, and metastasis. Survival analyses showed that the CD68+ cell/CD57+ cell ratio was a significant predictor for cause-specific survival by multi-variate analyses (hazard ratio=1.41, 95% confidential interval=1.03-1.93, P=.031), and was significantly correlated with PI, AI, and MVD (r=.47; P <. 001, r=-.31, P<.001, and r=.40, P<.001, respectively). In conclusion, CD57+ cell, CD68+ cell, and mast cell played important roles in malignancy in clear cell RCC. The CD68+ cell/CD57+ cell ratio was strongly correlated with pathological features and prognosis in these patients because this ratio reflected the status of cancer cell proliferation, apoptosis, and angiogenesis. Copyright © 2018. Published by Elsevier Inc.

  19. Stem cells in degenerative orthopaedic pathologies: effects of aging on therapeutic potential.

    Science.gov (United States)

    Atesok, Kivanc; Fu, Freddie H; Sekiya, Ichiro; Stolzing, Alexandra; Ochi, Mitsuo; Rodeo, Scott A

    2017-02-01

    The purpose of this study was to summarize the current evidence on the use of stem cells in the elderly population with degenerative orthopaedic pathologies and to highlight the pathophysiologic mechanisms behind today's therapeutic challenges in stem cell-based regeneration of destructed tissues in the elderly patients with osteoarthritis (OA), degenerative disc disease (DDD), and tendinopathies. Clinical and basic science studies that report the use of stem cells in the elderly patients with OA, DDD, and tendinopathies were identified using a PubMed search. The studies published in English have been assessed, and the best and most recent evidence was included in the current study. Evidence suggests that, although short-term results regarding the effects of stem cell therapy in degenerative orthopaedic pathologies can be promising, stem cell therapies do not appear to reverse age-related tissue degeneration. Causes of suboptimal outcomes can be attributed to the decrease in the therapeutic potential of aged stem cell populations and the regenerative capacity of these cells, which might be negatively influenced in an aged microenvironment within the degenerated tissues of elderly patients with OA, DDD, and tendinopathies. Clinical protocols guiding the use of stem cells in the elderly patient population are still under development, and high-level randomized controlled trials with long-term outcomes are lacking. Understanding the consequences of age-related changes in stem cell function and responsiveness of the in vivo microenvironment to stem cells is critical when designing cell-based therapies for elderly patients with degenerative orthopaedic pathologies.

  20. Inhibition of type I NKT cells by retinoids or following sulfatide-mediated activation of type II NKT cells attenuates alcoholic liver disease

    Science.gov (United States)

    Maricic, Igor; Sheng, Huiming; Marrero, Idania; Seki, Ehikiro; Kisseleva, Tatiana; Chaturvedi, Som; Molle, Natasha; Mathews, K. Stephanie; Gao, Bin; Kumar, Vipin

    2015-01-01

    Innate immune mechanisms leading to liver injury following chronic alcohol ingestion are poorly understood. Natural killer T (NKT) cells, enriched in the liver and comprised of at least two distinct subsets, type I and type II, recognize different lipid antigens presented by CD1d molecules. We have investigated whether differential activation of NKT cell subsets orchestrates inflammatory events leading to alcoholic liver disease (ALD). We found that following chronic plus binge feeding of Lieber-DeCarli liquid diet in male C57BL/6 mice, type I but not type II NKT cells are activated leading to recruitment of inflammatory Gr-1highCD11b+ cells into liver. A central finding is that liver injury following alcohol feeding is dependent upon type I NKT cells. Thus liver injury is significantly inhibited in Jα18−/− mice deficient in type I NKT cells as well as following their inactivation by sulfatide-mediated activation of type II NKT cells. Furthermore we have identified a novel pathway involving all-trans retinoic acid (ATRA) and its receptor RARγ signaling that inhibits type I NKT cells and consequently ALD. A semi-quantitative PCR analysis of hepatic gene expression of some of the key proinflammatory molecules shared in human disease indicated that their upregulation in ALD is dependent upon type I NKT cells. Conclusion Type I but not type II NKT cells become activated following alcohol feeding. Type I NKT cells-induced inflammation and neutrophil recruitment results in liver tissue damage while type II NKT cells protect from injury in ALD. Inhibition of type I NKT cells by retinoids or by sulfatide prevents ALD. Since the CD1d pathway is highly conserved between mice and humans, NKT cell subsets might be targeted for potential therapeutic intervention in ALD. PMID:25477000

  1. Effect of Co-Culturing of Mice Liver Cells and Embryonic Carcinomatous Stem Cells on the Rate of Differentiation to Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    AA Pourfatollah

    2005-10-01

    Full Text Available Introduction: Considering the importance of co-culture in differentiation of embryonic stem cells, the aim of this study was evaluation of the effect of co-culturing fetal liver stroma cells with P19 cells on the line of differentiation. Materials and Methods: For this purpose, P19 cells were cultured directly in semisolid medium. These cells proliferated and primarily differentiated to colonies know as embryoid bodies (EBs after 8-12 days. The Ebs cells were trypsinized and dissociated to single or double cells. Then these cells were co-cultured on the mouse fetal liver feeder layer in the absence of exogenous factors. After 14-18 days, the colonies were studied morphologically by benzidine and giemsa staining and also counted under invert microscope. Results: The percentages of benzidine positive (or erythroid and negative colonies were 94% and 6% respectively and also the cells of colonies were studied by Giemsa staining. Results showed that they were myeloid or lymphoid type cells. Thus, the results show that in the presence of mouse fetal liver feeder layer, the number of erythroid colonies was increased. Conclusions: Therefore, this technique may be effective for differentiation of stem cells from different sources into hematopoietic cells and can be used in future for human cell therapy.

  2. Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of nonalcoholic fatty liver disease

    Science.gov (United States)

    Obesity is often associated with a cluster of increased health risks collectively known as "Metabolic Syndrome" (MS). MS is often accompanied by development of fatty liver. Sometimes fatty liver results in damage leading to reduced liver function, and need for a transplant. This condition is known...

  3. Comparative Peripheral Blood T Cells Analysis Between Adult Deceased Donor Liver Transplantation (DDLT) and Living Donor Liver Transplantation (LDLT).

    Science.gov (United States)

    Kim, Jong Man; Kwon, Choon Hyuck David; Joh, Jae-Won; Choi, Gyu-Seong; Kang, Eun-Suk; Lee, Suk-Koo

    2017-08-08

    BACKGROUND T lymphocytes are an essential component of allograft rejection and tolerance. The aim of the present study was to analyze and compare the characteristics of T cell subsets in patients who underwent deceased donor liver transplantation (DDLT) versus living donor liver transplantation (LDLT). MATERIAL AND METHODS Between April 2013 and June 2014, 64 patients underwent adult liver transplantation. The distribution of peripheral blood T lymphocyte subsets before transplantation and at 4, 8, 12, and 24 weeks post-transplantation were monitored serially. RESULTS In the serial peripheral blood samples, the absolute CD3+ T cell counts in the LDLT group were higher than those in the DDLT group (p=0.037). The CD4+, CD8+, CD4/CD8, Vδ1, Vδ2, and γδ T cell counts did not change significantly over time in either group. The Vδ1/Vδ2 ratio was higher in patients with cytomegalovirus (CMV) infection than in patients without CMV infection (0.12 versus 0.26; p=0.033). The median absolute CD3+ and CD8+ T cell counts in patients with biopsy-proven acute rejection (BPAR) were 884 (range, 305-1,320) and 316 (range, 271-1,077), respectively, whereas they were 320 (range, 8-1,167) and 257 (range, 58-1,472) in patients without BPAR. The absolute CD3+ and CD8 T cell counts were higher in patients with BPAR than in patients without BPAR (p=0.007 and p=0.039, respectively). CONCLUSIONS With the exception of CD3+ T cells, T cell populations did not differ significantly between patients who received DDLT versus LDLT. In liver transplantation patients, CMV infection and BPAR were closely associated with T cell population changes.

  4. Renal cell carcinoma: incidental detection and pathological staging.

    Science.gov (United States)

    Siow, W Y; Yip, S K; Ng, L G; Tan, P H; Cheng, W S; Foo, K T

    2000-10-01

    In developed countries, there has been increased incidental detection of renal cell carcinoma (RCC). The incidence, pathological stage and survival of incidentally detected carcinoma in a developing country in Asia where, from 1990 to 1998, 165 renal cell carcinomas were identified. The clinical presentation, diagnostic-imaging modality employed, pathological staging and patient survival was reviewed. Incidental renal cancers included those that were diagnosed through health screening or detected incidentally through imaging studies for other conditions. The survival between these incidentally detected lesions and their symptomatic counterparts (suspected group) was compared. Sixty-four patients (39%) had their tumours detected incidentally, including 39 who were entirely asymptomatic and 25 who presented with non-specific symptoms, not initially suggestive of RCC. For the entire group, computed tomography provided the definitive diagnosis in 81% of cases. The incidental detection group had significantly smaller size of tumour (5.9 cm c.f. 7.6 cm), lower stage and lower histological grading. In particular, 78% of patients with incidental RCC had stage I or II diseases (TNM stage classification), compared with 57% of patients with suspected tumour (p c.f. 66% at last follow up; p < 0.05; log-rank test) over a mean follow up period of 33 months (range 1-91). Regression analysis showed that stage of disease was the only independent variable predictive of clinical outcome. In conclusion, that significant numbers of RCC were detected incidentally. These tumours were of a lower clinical pathological stage and had a better prognosis.

  5. Toxicity of single walled carbon nanotubes to rainbow trout (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Catherine J. [Ecotoxicology and Stress Biology Research Group, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Shaw, Benjamin J. [Ecotoxicology and Stress Biology Research Group, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Handy, Richard D. [Ecotoxicology and Stress Biology Research Group, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)]. E-mail: rhandy@plymouth.ac.uk

    2007-05-01

    Mammalian studies have raised concerns about the toxicity of carbon nanotubes (CNTs), but there is very limited data on ecotoxicity to aquatic life. We describe the first detailed report on the toxicity of single walled carbon nanotubes (SWCNT) to rainbow trout, using a body systems approach. Stock solutions of dispersed SWCNT were prepared using a combination of solvent (sodium dodecyl sulphate, SDS) and sonication. A semi-static test system was used to expose rainbow trout to either a freshwater control, solvent control, 0.1, 0.25 or 0.5 mg l{sup -1} SWCNT for up to 10 days. SWCNT exposure caused a dose-dependent rise in ventilation rate, gill pathologies (oedema, altered mucocytes, hyperplasia), and mucus secretion with SWCNT precipitation on the gill mucus. No major haematological or blood disturbances were observed in terms of red and white blood cell counts, haematocrits, whole blood haemoglobin, and plasma Na{sup +} or K{sup +}. Tissue metal levels (Na{sup +}, K{sup +}, Ca{sup 2+}, Cu, Zn and Co) were generally unaffected. However some dose-dependent changes in brain and gill Zn or Cu were observed (but not tissue Ca{sup 2+}), that were also partly attributed to the solvent. SWCNT exposure caused statistically significant increases in Na{sup +}K{sup +}-ATPase activity in the gills and intestine, but not in the brain. Thiobarbituric acid reactive substances (TBARS) showed dose-dependent and statistically significant decreases especially in the gill, brain and liver during SWCNT exposure compared to controls. SWCNT exposure caused statistically significant increases in the total glutathione levels in the gills (28%) and livers (18%), compared to the solvent control. Total glutathione in the brain and intestine remained stable in all treatments. Pathologies in the brain included possible aneurisms or swellings on the ventral surface of the cerebellum. Liver cells exposed to SWCNT showed condensed nuclear bodies (apoptotic bodies) and cells in abnormal nuclear

  6. Toxicity of single walled carbon nanotubes to rainbow trout (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects

    International Nuclear Information System (INIS)

    Smith, Catherine J.; Shaw, Benjamin J.; Handy, Richard D.

    2007-01-01

    Mammalian studies have raised concerns about the toxicity of carbon nanotubes (CNTs), but there is very limited data on ecotoxicity to aquatic life. We describe the first detailed report on the toxicity of single walled carbon nanotubes (SWCNT) to rainbow trout, using a body systems approach. Stock solutions of dispersed SWCNT were prepared using a combination of solvent (sodium dodecyl sulphate, SDS) and sonication. A semi-static test system was used to expose rainbow trout to either a freshwater control, solvent control, 0.1, 0.25 or 0.5 mg l -1 SWCNT for up to 10 days. SWCNT exposure caused a dose-dependent rise in ventilation rate, gill pathologies (oedema, altered mucocytes, hyperplasia), and mucus secretion with SWCNT precipitation on the gill mucus. No major haematological or blood disturbances were observed in terms of red and white blood cell counts, haematocrits, whole blood haemoglobin, and plasma Na + or K + . Tissue metal levels (Na + , K + , Ca 2+ , Cu, Zn and Co) were generally unaffected. However some dose-dependent changes in brain and gill Zn or Cu were observed (but not tissue Ca 2+ ), that were also partly attributed to the solvent. SWCNT exposure caused statistically significant increases in Na + K + -ATPase activity in the gills and intestine, but not in the brain. Thiobarbituric acid reactive substances (TBARS) showed dose-dependent and statistically significant decreases especially in the gill, brain and liver during SWCNT exposure compared to controls. SWCNT exposure caused statistically significant increases in the total glutathione levels in the gills (28%) and livers (18%), compared to the solvent control. Total glutathione in the brain and intestine remained stable in all treatments. Pathologies in the brain included possible aneurisms or swellings on the ventral surface of the cerebellum. Liver cells exposed to SWCNT showed condensed nuclear bodies (apoptotic bodies) and cells in abnormal nuclear division. Overt fatty change or wide

  7. Advances in ultrasound-targeted microbubble-mediated gene therapy for liver fibrosis.

    Science.gov (United States)

    Huang, Cuiyuan; Zhang, Hong; Bai, Ruidan

    2017-07-01

    Hepatic fibrosis develops as a wound-healing scar in response to acute and chronic liver inflammation and can lead to cirrhosis in patients with chronic hepatitis B and C. The condition arises due to increased synthesis and reduced degradation of extracellular matrix (ECM) and is a common pathological sequela of chronic liver disease. Excessive deposition of ECM in the liver causes liver dysfunction, ascites, and eventually upper gastrointestinal bleeding as well as a series of complications. However, fibrosis can be reversed before developing into cirrhosis and has thus been the subject of extensive researches particularly at the gene level. Currently, therapeutic genes are imported into the damaged liver to delay or prevent the development of liver fibrosis by regulating the expression of exogenous genes. One technique of gene delivery uses ultrasound targeting of microbubbles combined with therapeutic genes where the time and intensity of the ultrasound can control the release process. Ultrasound irradiation of microbubbles in the vicinity of cells changes the permeability of the cell membrane by its cavitation effect and enhances gene transfection. In this paper, recent progress in the field is reviewed with emphasis on the following aspects: the types of ultrasound microbubbles, the construction of an ultrasound-mediated gene delivery system, the mechanism of ultrasound microbubble-mediated gene transfer and the application of ultrasound microbubbles in the treatment of liver fibrosis.

  8. Advances in ultrasound-targeted microbubble-mediated gene therapy for liver fibrosis

    Directory of Open Access Journals (Sweden)

    Cuiyuan Huang

    2017-07-01

    Full Text Available Hepatic fibrosis develops as a wound-healing scar in response to acute and chronic liver inflammation and can lead to cirrhosis in patients with chronic hepatitis B and C. The condition arises due to increased synthesis and reduced degradation of extracellular matrix (ECM and is a common pathological sequela of chronic liver disease. Excessive deposition of ECM in the liver causes liver dysfunction, ascites, and eventually upper gastrointestinal bleeding as well as a series of complications. However, fibrosis can be reversed before developing into cirrhosis and has thus been the subject of extensive researches particularly at the gene level. Currently, therapeutic genes are imported into the damaged liver to delay or prevent the development of liver fibrosis by regulating the expression of exogenous genes. One technique of gene delivery uses ultrasound targeting of microbubbles combined with therapeutic genes where the time and intensity of the ultrasound can control the release process. Ultrasound irradiation of microbubbles in the vicinity of cells changes the permeability of the cell membrane by its cavitation effect and enhances gene transfection. In this paper, recent progress in the field is reviewed with emphasis on the following aspects: the types of ultrasound microbubbles, the construction of an ultrasound-mediated gene delivery system, the mechanism of ultrasound microbubble–mediated gene transfer and the application of ultrasound microbubbles in the treatment of liver fibrosis.

  9. Disruption of contact inhibition in rat liver epithelial cells by various types of AhR ligands

    Energy Technology Data Exchange (ETDEWEB)

    Vondracek, J.; Chramostova, K.; Kozubik, A. [Institute of Biophysics, Brno (Czech Republic); Krcmar, P.; Machala, M. [Veterinary Research Institute, Brno (Czech Republic)

    2004-09-15

    The maintenance of a balance between cell gain and cell loss is essential for proper liver function. The exact role of aryl hydrocarbon receptor (AhR) in regulating cell proliferation and apoptosis of liver cells remains unclear, since ligand-dependent activation of AhR has been shown to induce cell cycle arrest, proliferation, differentiation or apoptosis, depending on the cellular model used. AhR can directly interact with retinoblastoma protein in hepatic cells, forming protein complexes that can efficiently block cell cycle progression by inducing G1 arrest, or to induce the expression of inhibitors of cyclin-dependent kinases, such as p271. On the other hand, it has been suggested that AhR could play a stimulatory role in cell proliferation, either directly or by mediating a release from contact inhibition. It is now generally accepted that progenitor cells exist in the liver, are activated in various liver diseases and can form a potential target cell population for both tumor initiating and tumor promoting chemicals4. 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD) has been found to release rat liver epithelial cells from contact inhibition by upregulating cyclin A expression and cyclin A/cdk2 activity. Our previous studies have shown that a number of AhR ligands5,6 can stimulate proliferation of confluent of rat liver epithelial ''stem-like'' WB-F344 cells. Such mechanism could play a role in liver tumor promotion. In the present study, we used flavonoid compounds that have been reported to act either as pure agonists, such as beta-naphthoflavone (BNF), or as partial/complete antagonists of AhR - alpha-naphthoflavone (ANF) and 3'-methoxy-4'-nitroflavone (3'M4'NF), in order to investigate effects of AhR agonists/antagonists on confluent rat liver epithelial cells. The present study aimed to investigate the effects of model flavonoids on the release of rat liver epithelial cells from contact inhibition, and on inducibility of

  10. The Use of Induced Pluripotent Stem Cells for the Study and Treatment of Liver Diseases.

    Science.gov (United States)

    Hansel, Marc C; Davila, Julio C; Vosough, Massoud; Gramignoli, Roberto; Skvorak, Kristen J; Dorko, Kenneth; Marongiu, Fabio; Blake, William; Strom, Stephen C

    2016-02-01

    Liver disease is a major global health concern. Liver cirrhosis is one of the leading causes of death in the world and currently the only therapeutic option for end-stage liver disease (e.g., acute liver failure, cirrhosis, chronic hepatitis, cholestatic diseases, metabolic diseases, and malignant neoplasms) is orthotropic liver transplantation. Transplantation of hepatocytes has been proposed and used as an alternative to whole organ transplant to stabilize and prolong the lives of patients in some clinical cases. Although these experimental therapies have demonstrated promising and beneficial results, their routine use remains a challenge due to the shortage of donor livers available for cell isolation, variable quality of those tissues, the potential need for lifelong immunosuppression in the transplant recipient, and high costs. Therefore, new therapeutic strategies and more reliable clinical treatments are urgently needed. Recent and continuous technological advances in the development of stem cells suggest they may be beneficial in this respect. In this review, we summarize the history of stem cell and induced pluripotent stem cell (iPSC) technology in the context of hepatic differentiation and discuss the potential applications the technology may offer for human liver disease modeling and treatment. This includes developing safer drugs and cell-based therapies to improve the outcomes of patients with currently incurable health illnesses. We also review promising advances in other disease areas to highlight how the stem cell technology could be applied to liver diseases in the future. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  11. Development of intraepithelial T lymphocytes in the intestine of irradiated SCID mice by adult liver hematopoietic stem cells from normal mice

    International Nuclear Information System (INIS)

    Yamagiwa, Satoshi; Seki, Shuhji; Shirai, Katsuaki; Yoshida, Yuhei; Miyaji, Chikako; Watanabe, Hisami; Abo, Toru

    1999-01-01

    Background/Aims: We recently reported the adult mouse liver to contain c-kit + stem cells that can give rise to multilineage leukocytes. This study was designed to determine whether or not adult mouse liver stem cells can generate intraepithelial T cells in the intestine as well as to examine the possibility that adult liver c-kit + stem cells originate from the fetal liver. Methods: Adult liver mononuclear cells, bone marrow (BM) cells, liver c-kit + cells or bone BM c-kit + cells of BALB/c mice were i.v. transferred into 4 Gy irradiated CB17/-SCID mice. In other experiments, fetal liver cells from Ly5.1 C57BL/6 mice and T cell depleted adult BM cells from Ly5.2 C57BL/6 mice were simultaneously transferred into irradiated C57BL/6 SCID mice (Ly5.2). At 1 to 8 weeks after cell transfer, the SCID mice were examined. Results: Not only BM cells and BM c-kit + cells but also liver mononuclear cells and liver c-kit + cells reconstituted γδT cells, CD4 + CD8 + double-positive T cells and CDiα + β - T cells of intestinal intraepithelial lymphocytes of SCID mice. Injection of a mixture of fetal liver cells from Ly5.1 C57BL/6 mice and adult BM cells from Ly5.2 C57BL/6 mice into Ly5.2 C57BL/6 SCID mice induced both Ly5.1 and Ly5.2 T cells, while also generating c-kit + cells of both Ly5.1 and Ly5.2 origins in the liver. Conclusions: Adult mouse liver stem cells were able to generate intestinal intraepithelial T cells of the SCID mice, and it is thus suggested that some adult liver stem cells may indeed be derived from the fetal liver. (au)

  12. Extracellular vesicles from human liver stem cells restore argininosuccinate synthase deficiency.

    Science.gov (United States)

    Herrera Sanchez, Maria Beatriz; Previdi, Sara; Bruno, Stefania; Fonsato, Valentina; Deregibus, Maria Chiara; Kholia, Sharad; Petrillo, Sara; Tolosano, Emanuela; Critelli, Rossana; Spada, Marco; Romagnoli, Renato; Salizzoni, Mauro; Tetta, Ciro; Camussi, Giovanni

    2017-07-27

    Argininosuccinate synthase (ASS)1 is a urea cycle enzyme that catalyzes the conversion of citrulline and aspartate to argininosuccinate. Mutations in the ASS1 gene cause citrullinemia type I, a rare autosomal recessive disorder characterized by neonatal hyperammonemia, elevated citrulline levels, and early neonatal death. Treatment for this disease is currently restricted to liver transplantation; however, due to limited organ availability, substitute therapies are required. Recently, extracellular vesicles (EVs) have been reported to act as intercellular transporters carrying genetic information responsible for cell reprogramming. In previous studies, we isolated a population of stem cell-like cells known as human liver stem cells (HLSCs) from healthy liver tissue. Moreover, EVs derived from HLSCs were reported to exhibit regenerative effects on the liver parenchyma in models of acute liver injury. The aim of this study was to evaluate whether EVs derived from normal HLSCs restored ASS1 enzymatic activity and urea production in hepatocytes differentiated from HLSCs derived from a patient with type I citrullinemia. HLSCs were isolated from the liver of a patient with type I citrullinemia (ASS1-HLSCs) and characterized by fluorescence-activated cell sorting (FACS), immunofluorescence, and DNA sequencing analysis. Furthermore, their differentiation capabilities in vitro were also assessed. Hepatocytes differentiated from ASS1-HLSCs were evaluated by the production of urea and ASS enzymatic activity. EVs derived from normal HLSCs were purified by differential ultracentrifugation followed by floating density gradient. The EV content was analyzed to identify the presence of ASS1 protein, mRNA, and ASS1 gene. In order to obtain ASS1-depleted EVs, a knockdown of the ASS1 gene in HLSCs was performed followed by EV isolation from these cells. Treating ASS1-HLSCs with EVs from HLSCs restored both ASS1 activity and urea production mainly through the transfer of ASS1 enzyme

  13. Biochemical and pathological studies in rats following dietary ...

    African Journals Online (AJOL)

    Biochemical and pathological studies in rats following dietary supplementation with high levels of polyunsaturated fatty acids and vitamin E. ... Furthermore, high dietary supplementation of vitamin E showed no deleterious effects on rats and no pathological changes in the liver, kidney and heart tissues were observed in the ...

  14. Protective effects of Sapindus mukorossi Gaertn against fatty liver disease induced by high fat diet in rats

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Qiuxian [School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Zhang, Qin; Xiao, Wei; Shao, Meng; Fan, Qin; Zhang, Hongwei [School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Zou, Yukai [Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Li, Xin [Cancer Research Institute of Southern Medical University, Guangzhou (China); Xu, Wenxue; Mo, Zhixian [School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Cai, Hongbing, E-mail: chbing2008@163.com [School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China)

    2014-07-18

    Highlights: • AESM is able to prevent the elevation of ALT and AST, and to decreased LDL-C level. • AESM demonstrates the effects of down-regulating blood fat level and protecting liver. • AESM consistent with the efficacy of simvastatin in NAFLD. - Abstract: Objectives: Study the effects of alcohol extract of Sapindus mukorossi Gaertn (AESM) on the metabolism of blood fat, morphology of fenestrated liver sinusoidal endothelial cells (LSEC), and the ultrastructure of liver cells of the rats with non-alcoholic fatty liver disease (NAFLD). Methods: Divide SD rats into control group, model group, simvastatin (7.2 mg/kg) group, and S.mukorossi Gaertn group with high dosage (0.5 g/kg), moderate dosage (0.1 g/kg), and low dosage (0.05 g/kg). After feeding with fat-rich nutrients for 3 weeks and establishing the model of hepatic adipose, conduct intragastric administration and provide the rats with fat-rich nutrients at the same time. At the 43rd day, take blood sample and measure aminotransferase and different indexes of blood fat; take hepatic tissue for pathological section, and observe the hepatic morphological patterns under light microscope; obtain and fix the hepatic tissue after injecting perfusate into the body, and observe the changes of fenestrated LSEC under scanning electron microscope; observe the ultrastructure of liver cells under transmission electron microscope. Results: High-dosage alcohol extracts of S.mukorossi Gaertn can alleviate the AST, ALT, TC, TG, LDL, γ-GT, and ALP level, as well as raise the HDL and APN level in the serum of NAFLD-rat model. In addition, through the observation from light microscope and electron microscopes, the morphology of the hepatic tissue and liver cells as well as the recovery of the fenestrated LSEC in the treatment group has become normal. Conclusions: Alcohol extracts of S.mukorossi Gaertn can regulate the level of blood fat and improve the pathological changes of the hepatic tissues in NAFLD-rat model, which

  15. Fetal liver stromal cells promote hematopoietic cell expansion

    International Nuclear Information System (INIS)

    Zhou, Kun; Hu, Caihong; Zhou, Zhigang; Huang, Lifang; Liu, Wenli; Sun, Hanying

    2009-01-01

    Future application of hematopoietic stem and progenitor cells (HSPCs) in clinical therapies largely depends on their successful expansion in vitro. Fetal liver (FL) is a unique hematopoietic organ in which hematopoietic cells markedly expand in number, but the mechanisms involved remain unclear. Stromal cells (StroCs) have been suggested to provide a suitable cellular environment for in vitro expansion of HSPCs. In this study, murine StroCs derived from FL at E14.5, with a high level of Sonic hedgehog (Shh) and Wnt expression, were found to have an increased ability to support the proliferation of HSPCs. This effect was inhibited by blocking Shh signaling. Supplementation with soluble Shh-N promoted the proliferation of hematopoietic cells by activating Wnt signaling. Our findings suggest that FL-derived StroCs support proliferation of HSPCs via Shh inducing an autocrine Wnt signaling loop. The use of FL-derived StroCs and regulation of the Shh pathway might further enhance HPSC expansion.

  16. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    Science.gov (United States)

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J; Korangy, Firouzeh; Greten, Tim F

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  17. Kupffer cells hasten resolution of liver immunopathology in mouse models of viral hepatitis.

    Directory of Open Access Journals (Sweden)

    Giovanni Sitia

    2011-06-01

    Full Text Available Kupffer cells (KCs are widely considered important contributors to liver injury during viral hepatitis due to their pro-inflammatory activity. Herein we utilized hepatitis B virus (HBV-replication competent transgenic mice and wild-type mice infected with a hepatotropic adenovirus to demonstrate that KCs do not directly induce hepatocellular injury nor do they affect the pathogenic potential of virus-specific CD8 T cells. Instead, KCs limit the severity of liver immunopathology. Mechanistically, our results are most compatible with the hypothesis that KCs contain liver immunopathology by removing apoptotic hepatocytes in a manner largely dependent on scavenger receptors. Apoptotic hepatocytes not readily removed by KCs become secondarily necrotic and release high-mobility group box 1 (HMGB-1 protein, promoting organ infiltration by inflammatory cells, particularly neutrophils. Overall, these results indicate that KCs resolve rather than worsen liver immunopathology.

  18. MR elastography of the liver at 3.0 T in diagnosing liver fibrosis grades; preliminary clinical experience

    International Nuclear Information System (INIS)

    Yoshimitsu, Kengo; Mitsufuji, Toshimichi; Shinagawa, Yoshinobu; Fujimitsu, Ritsuko; Morita, Ayako; Urakawa, Hiroshi; Takano, Koichi; Hayashi, Hiroyuki

    2016-01-01

    To clarify the usefulness of 3.0-T MR elastography (MRE) in diagnosing the histological grades of liver fibrosis using preliminary clinical data. Between November 2012 and March 2014, MRE was applied to all patients who underwent liver MR study at a 3.0-T clinical unit. Among them, those who had pathological evaluation of liver tissue within 3 months from MR examinations were retrospectively recruited, and the liver stiffness measured by MRE was correlated with histological results. Institutional review board approved this study, waiving informed consent. There were 70 patients who met the inclusion criteria. Liver stiffness showed significant correlation with the pathological grades of liver fibrosis (rho = 0.89, p < 0.0001, Spearman's rank correlation). Areas under the receiver operating characteristic curve were 0.93, 0.95, 0.99 and 0.95 for fibrosis score greater than or equal to F1, F2, F3 and F4, with cut-off values of 3.13, 3.85, 4.28 and 5.38 kPa, respectively. Multivariate analysis suggested that grades of necroinflammation also affected liver stiffness, but to a significantly lesser degree as compared to fibrosis. 3.0-T clinical MRE was suggested to be sufficiently useful in assessing the grades of liver fibrosis. (orig.)

  19. MR elastography of the liver at 3.0 T in diagnosing liver fibrosis grades; preliminary clinical experience

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimitsu, Kengo; Mitsufuji, Toshimichi; Shinagawa, Yoshinobu; Fujimitsu, Ritsuko; Morita, Ayako; Urakawa, Hiroshi; Takano, Koichi [Fukuoka University, Department of Radiology, Fukuoka (Japan); Hayashi, Hiroyuki [Fukuoka University, Department of Pathology, Faculty of Medicine, Fukuoka (Japan)

    2016-03-15

    To clarify the usefulness of 3.0-T MR elastography (MRE) in diagnosing the histological grades of liver fibrosis using preliminary clinical data. Between November 2012 and March 2014, MRE was applied to all patients who underwent liver MR study at a 3.0-T clinical unit. Among them, those who had pathological evaluation of liver tissue within 3 months from MR examinations were retrospectively recruited, and the liver stiffness measured by MRE was correlated with histological results. Institutional review board approved this study, waiving informed consent. There were 70 patients who met the inclusion criteria. Liver stiffness showed significant correlation with the pathological grades of liver fibrosis (rho = 0.89, p < 0.0001, Spearman's rank correlation). Areas under the receiver operating characteristic curve were 0.93, 0.95, 0.99 and 0.95 for fibrosis score greater than or equal to F1, F2, F3 and F4, with cut-off values of 3.13, 3.85, 4.28 and 5.38 kPa, respectively. Multivariate analysis suggested that grades of necroinflammation also affected liver stiffness, but to a significantly lesser degree as compared to fibrosis. 3.0-T clinical MRE was suggested to be sufficiently useful in assessing the grades of liver fibrosis. (orig.)

  20. Dietary modification dampens liver inflammation and fibrosis in obesity-related fatty liver disease.

    Science.gov (United States)

    Larter, Claire Z; Yeh, Matthew M; Haigh, W Geoffrey; Van Rooyen, Derrick M; Brooling, John; Heydet, Deborah; Nolan, Christopher J; Teoh, Narci C; Farrell, Geoffrey C

    2013-06-01

    Alms1 mutant (foz/foz) mice develop hyperphagic obesity, diabetes, metabolic syndrome, and fatty liver (steatosis). High-fat (HF) feeding converts pathology from bland steatosis to nonalcoholic steatohepatitis (NASH) with fibrosis, which leads to cirrhosis in humans. We sought to establish how dietary composition contributes to NASH pathogenesis. foz/foz mice were fed HF diet or chow 24 weeks, or switched HF to chow after 12 weeks. Serum ALT, NAFLD activity score (NAS), fibrosis severity, neutrophil, macrophage and apoptosis immunohistochemistry, uncoupling protein (UCP)2, ATP, NF-κB activation/expression of chemokines/adhesion molecules/fibrogenic pathways were determined. HF intake upregulated liver fatty acid and cholesterol transporter, CD36. Dietary switch expanded adipose tissue and decreased hepatomegaly by lowering triglyceride, cholesterol ester, free cholesterol and diacylglyceride content of liver. There was no change in lipogenesis or fatty acid oxidation pathways; instead, CD36 was suppressed. These diet-induced changes in hepatic lipids improved NAS, reduced neutrophil infiltration, normalized UCP2 and increased ATP; this facilitated apoptosis with a change in macrophage phenotype favoring M2 cells. Dietary switch also abrogated NF-κB activation and chemokine/adhesion molecule expression, and arrested fibrosis by dampening stellate cell activation. Reversion to a physiological dietary composition after HF feeding in foz/foz mice alters body weight distribution but not obesity. This attenuates NASH severity and fibrotic progression by suppressing NF-κB activation and reducing neutrophil and macrophage activation. However, adipose inflammation persists and is associated with continuing apoptosis in the residual fatty liver disease. Taken together, these findings indicate that other measures, such as weight reduction, may be required to fully reverse obesity-related NASH. Copyright © 2013 The Obesity Society.

  1. Hyper-IL-15 suppresses metastatic and autochthonous liver cancer by promoting tumour-specific CD8+ T cell responses.

    Science.gov (United States)

    Cheng, Liang; Du, Xuexiang; Wang, Zheng; Ju, Jianqi; Jia, Mingming; Huang, Qibin; Xing, Qiao; Xu, Meng; Tan, Yi; Liu, Mingyue; Du, Peishuang; Su, Lishan; Wang, Shengdian

    2014-12-01

    Liver cancer has a very dismal prognosis due to lack of effective therapy. Here, we studied the therapeutic effects of hyper-interleukin15 (hyper-IL-15), which is composed of IL-15 and the sushi domain of the IL-15 receptor α chain, on metastatic and autochthonous liver cancers. Liver metastatic tumour models were established by intraportally injecting syngeneic mice with murine CT26 colon carcinoma cells or B16-OVA melanoma cells. Primary hepatocellular carcinoma (HCC) was induced by diethylnitrosamine (DEN). A hydrodynamics-based gene delivery method was used to achieve sustained hyper-IL-15 expression in the liver. Liver gene delivery of hyper-IL-15 robustly expanded CD8(+) T and NK cells, leading to a long-term (more than 40 days) accumulation of CD8(+) T cells in vivo, especially in the liver. Hyper-IL-15 treatment exerted remarkable therapeutic effects on well-established liver metastatic tumours and even on DEN-induced autochthonous HCC, and these effects were abolished by depletion of CD8(+) T cells but not NK cells. Hyper-IL-15 triggered IL-12 and interferon-γ production and reduced the expression of co-inhibitory molecules on dendritic cells in the liver. Adoptive transfer of T cell receptor (TCR) transgenic OT-1 cells showed that hyper-IL-15 preferentially expanded tumour-specific CD8(+) T cells and promoted their interferon-γ synthesis and cytotoxicity. Liver delivery of hyper-IL-15 provides an effective therapy against well-established metastatic and autochthonous liver cancers in mouse models by preferentially expanding tumour-specific CD8(+) T cells and promoting their anti-tumour effects. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  2. Subnormothermic ex vivo liver perfusion reduces endothelial cell and bile duct injury after donation after cardiac death pig liver transplantation.

    Science.gov (United States)

    Knaak, Jan M; Spetzler, Vinzent N; Goldaracena, Nicolas; Boehnert, Markus U; Bazerbachi, Fateh; Louis, Kristine S; Adeyi, Oyedele A; Minkovich, Leonid; Yip, Paul M; Keshavjee, Shaf; Levy, Gary A; Grant, David R; Selzner, Nazia; Selzner, Markus

    2014-11-01

    An ischemic-type biliary stricture (ITBS) is a common feature after liver transplantation using donation after cardiac death (DCD) grafts. We compared sequential subnormothermic ex vivo liver perfusion (SNEVLP; 33°C) with cold storage (CS) for the prevention of ITBS in DCD liver grafts in pig liver transplantation (n = 5 for each group). Liver grafts were stored for 10 hours at 4°C (CS) or preserved with combined 7-hour CS and 3-hour SNEVLP. Parameters of hepatocyte [aspartate aminotransferase (AST), international normalized ratio (INR), factor V, and caspase 3 immunohistochemistry], endothelial cell (EC; CD31 immunohistochemistry and hyaluronic acid), and biliary injury and function [alkaline phosphatase (ALP), total bilirubin, and bile lactate dehydrogenase (LDH)] were determined. Long-term survival (7 days) after transplantation was similar between the SNEVLP and CS groups (60% versus 40%, P = 0.13). No difference was observed between SNEVLP- and CS-treated animals with respect to the peak of serum INR, factor V, or AST levels within 24 hours. CD31 staining 8 hours after transplantation demonstrated intact EC lining in SNEVLP-treated livers (7.3 × 10(-4) ± 2.6 × 10(-4) cells/μm(2)) but not in CS-treated livers (3.7 × 10(-4) ± 1.3 × 10(-4) cells/μm(2) , P = 0.03). Posttransplant SNEVLP animals had decreased serum ALP and serum bilirubin levels in comparison with CS animals. In addition, LDH in bile fluid was lower in SNEVLP pigs versus CS pigs (14 ± 10 versus 60 ± 18 μmol/L, P = 0.02). Bile duct histology revealed severe bile duct necrosis in 3 of 5 animals in the CS group but none in the SNEVLP group (P = 0.03). Sequential SNEVLP preservation of DCD grafts reduces bile duct and EC injury after liver transplantation. © 2014 American Association for the Study of Liver Diseases.

  3. TAT-Gap19 and Carbenoxolone Alleviate Liver Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Sara Crespo Yanguas

    2018-03-01

    Full Text Available Although a plethora of signaling pathways are known to drive the activation of hepatic stellate cells in liver fibrosis, the involvement of connexin-based communication in this process remains elusive. Connexin43 expression is enhanced in activated hepatic stellate cells and constitutes the molecular building stone of hemichannels and gap junctions. While gap junctions support intercellular communication, and hence the maintenance of liver homeostasis, hemichannels provide a circuit for extracellular communication and are typically opened by pathological stimuli, such as oxidative stress and inflammation. The present study was set up to investigate the effects of inhibition of connexin43-based hemichannels and gap junctions on liver fibrosis in mice. Liver fibrosis was induced by administration of thioacetamide to Balb/c mice for eight weeks. Thereafter, mice were treated for two weeks with TAT-Gap19, a specific connexin43 hemichannel inhibitor, or carbenoxolone, a general hemichannel and gap junction inhibitor. Subsequently, histopathological analysis was performed and markers of hepatic damage and functionality, oxidative stress, hepatic stellate cell activation and inflammation were evaluated. Connexin43 hemichannel specificity of TAT-Gap19 was confirmed in vitro by fluorescence recovery after photobleaching analysis and the measurement of extracellular release of adenosine-5′-triphosphate. Upon administration to animals, both TAT-Gap19 and carbenoxolone lowered the degree of liver fibrosis accompanied by superoxide dismutase overactivation and reduced production of inflammatory proteins, respectively. These results support a role of connexin-based signaling in the resolution of liver fibrosis, and simultaneously demonstrate the therapeutic potential of TAT-Gap19 and carbenoxolone in the treatment of this type of chronic liver disease.

  4. Comparative retention of fission fragment 147Pm in regenerated and fetal liver on induction of chromosome aberrations in these cells

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Zheng Siying; Wang Liuyi; Yang Shujin

    1989-01-01

    The purpose of the present study is to ascertain comparative retention of fission fragment 147 Pm in regenerated and fetal liver on induction of chromosome aberrations in these cells. The results indicated that retention of 147 Pm in regenerated liver was about 700 times than in fetal liver. The cumulative absorption dose in regenerated liver was about 2.87 Gy, while in fetal liver-only 0.004 Gy. Under the same conditions, the incidence rate of chromosome aberrations in regenerated liver cells induced by 147 Pm was 50.2%, and in fetal liver cells-about 28.3%. It should be concluded that the radiosensitivity to 147 Pm was not uniform among the regenerated and fetal liver cells. The study suggested that fetal liver cells show to be more radiosensitive to 147 Pm than regenerated liver cells. Among the type of aberrations in both cells induced by 147 Pm, chromatid breakages were predominant, accompanied with a few chromosome breakages

  5. Transcriptome atlas of eight liver cell types uncovers effects of ...

    Indian Academy of Sciences (India)

    ... types, and bioinformatic and systems biology approaches were employed to analyse the relationship between above genes and rat liver regeneration. The results showed that the urocanic acid (UA) was degraded from histidine in Kupffer cells, acts on Kupffer cells itself and dendritic cells to generate immune suppression ...

  6. Inhibitory effect of gene combination in a mouse model of colon cancer with liver metastasis.

    Science.gov (United States)

    DU, Tong; Niu, Hongxin

    2014-09-01

    The aim of the present study was to establish an animal liver metastasis model with human colon cancer and investigate the inhibitory effect of the wild type (WT) p53 gene combined with thymidine kinase/ganciclovir (TK/GCV) and cytosine deaminase/5-fluorocytosine (CD/5-FC) systems on liver metastasis of colon cancer. A nude mouse liver metastasis model with human colon cancer was established via a spleen cultivation method. A total of 32 nude mice were randomly divided into four groups, each group with eight mice. Group 1 mice received splenic injections of SW480 cells (control group), while group 2 mice were injected with SW480/p53 cells in the spleen. Group 3 mice were administered splenic injections of SW480/TK-CD cells, and GCV and 5-FC were injected into the abdominal cavity. Finally, group 4 mice received splenic injections of SW480/p53 cells mixed in equal proportion with SW480/TK-CD cells, as well as GCV and 5-FC injections in the abdominal cavity. These cells described were constructed in our laboratory and other laboratories. The number of liver metastatic tumors, the liver metastasis rate, conventional pathology, electron microscopy and other indicators in the nude mice of each group were compared and observed. The nude mouse liver metastasis model with human colon cancer was successfully established; the liver metastasis rate of the control group was 100%. The results demonstrated that the rate of liver metastasis in the nude mice in each treatment group decreased, as well as the average number of liver metastatic tumors. Furthermore, the effect of the treatment group with genetic combination (group 4) was the most effective, demonstrating that WTp53 had a synergistic effect with TK/GCV and CD/5-FC. Therefore, the present study successfully established a mouse model of liver metastasis with colon cancer by injecting human colon cancer cells in the spleen. Combined gene therapy was shown to have a synergistic effect, which effectively inhibited the

  7. Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells

    International Nuclear Information System (INIS)

    Hirose, Yoshikazu; Itoh, Tohru; Miyajima, Atsushi

    2009-01-01

    Hedgehog (Hh) signaling plays crucial roles in development and homeostasis of various organs. In the adult liver, it regulates proliferation and/or viability of several types of cells, particularly under injured conditions, and is also implicated in stem/progenitor cell maintenance. However, the role of this signaling pathway during the normal developmental process of the liver remains elusive. Although Sonic hedgehog (Shh) is expressed in the ventral foregut endoderm from which the liver derives, the expression disappears at the onset of the liver bud formation, and its possible recurrence at the later stages has not been investigated. Here we analyzed the activation and functional relevance of Hh signaling during the mouse fetal liver development. At E11.5, Shh and an activation marker gene for Hh signaling, Gli1, were expressed in Dlk + hepatoblasts, the fetal liver progenitor cells, and the expression was rapidly decreased thereafter as the development proceeded. In the culture of Dlk + hepatoblasts isolated from the E11.5 liver, activation of Hh signaling stimulated their proliferation and this effect was cancelled by a chemical Hh signaling inhibitor, cyclopamine. In contrast, hepatocyte differentiation of Dlk + hepatoblasts in vitro as manifested by the marker gene expression and acquisition of ammonia clearance activity was significantly inhibited by forced activation of Hh signaling. Taken together, these results demonstrate the temporally restricted manner of Hh signal activation and its role in promoting the hepatoblast proliferation, and further suggest that the pathway needs to be shut off for the subsequent hepatic differentiation of hepatoblasts to proceed normally.

  8. The contribution of Chlamydia-specific CD8⁺ T cells to upper genital tract pathology.

    Science.gov (United States)

    Vlcek, Kelly R; Li, Weidang; Manam, Srikanth; Zanotti, Brian; Nicholson, Bruce J; Ramsey, Kyle H; Murthy, Ashlesh K

    2016-02-01

    Genital chlamydial infections lead to severe upper reproductive tract pathology in a subset of untreated women. We demonstrated previously that tumor necrosis factor (TNF)-α-producing CD8(+) T cells contribute significantly to chlamydial upper genital tract pathology in female mice. In addition, we observed that minimal chlamydial oviduct pathology develops in OT-1 transgenic (OT-1) mice, wherein the CD8(+) T-cell repertoire is restricted to recognition of the ovalbumin peptide Ova(257-264), suggesting that non-Chlamydia-specific CD8(+) T cells may not be responsible for chlamydial pathogenesis. In the current study, we evaluated whether antigen-specific CD8(+) T cells mediate chlamydial pathology. Groups of wild-type (WT) C57BL/6J, OT-1 mice, and OT-1 mice replete with WT CD8(+) T cells (1 × 10(6) cells per mouse intravenously) were infected intravaginally with C. muridarum (5 × 10(4) IFU/mouse). Serum total anti-Chlamydia antibody and total splenic anti-Chlamydia interferon (IFN)-γ and TNF-α responses were comparable among the three groups of animals. However, Chlamydia-specific IFN-γ and TNF-α production from purified splenic CD8(+) T cells of OT-1 mice was minimal, whereas responses in OT-1 mice replete with WT CD8(+) T cells were comparable to those in WT animals. Vaginal chlamydial clearance was comparable between the three groups of mice. Importantly, the incidence and severity of oviduct and uterine horn pathology was significantly reduced in OT-1 mice but reverted to WT levels in OT-1 mice replete with WT CD8(+) T cells. Collectively, these results demonstrate that Chlamydia-specific CD8(+) T cells contribute significantly to upper genital tract pathology.

  9. Plain film diagnosis of the liver

    International Nuclear Information System (INIS)

    Rogers, J.V. Jr.; Torres, W.E.; Clements, J.L. Jr.; Gedgaudas-McClees, R.K.

    1985-01-01

    One of the first examinations obtained routinely in abdominal radiography is the plain radiograph of the abdomen. The liver occupies anywhere from 15 to 30 percent of the area on such examinations. Thus, it is important to pay particular attention to the region of the liver and obtain as much information as possible from these films. The purpose of this chapter is to review the normal radiographic anatomy and pathology. Also, pathologic calcifications, gas collections, unusual collections of fat, and the systemic manifestations of hepatic disease are discussed within this chapter

  10. The value of "liver windows" settings in the detection of small renal cell carcinomas on unenhanced computed tomography.

    Science.gov (United States)

    Sahi, Kamal; Jackson, Stuart; Wiebe, Edward; Armstrong, Gavin; Winters, Sean; Moore, Ronald; Low, Gavin

    2014-02-01

    To assess if "liver window" settings improve the conspicuity of small renal cell carcinomas (RCC). Patients were analysed from our institution's pathology-confirmed RCC database that included the following: (1) stage T1a RCCs, (2) an unenhanced computed tomography (CT) abdomen performed ≤ 6 months before histologic diagnosis, and (3) age ≥ 17 years. Patients with multiple tumours, prior nephrectomy, von Hippel-Lindau disease, and polycystic kidney disease were excluded. The unenhanced CT was analysed, and the tumour locations were confirmed by using corresponding contrast-enhanced CT or magnetic resonance imaging studies. Representative single-slice axial, coronal, and sagittal unenhanced CT images were acquired in "soft tissue windows" (width, 400 Hounsfield unit (HU); level, 40 HU) and liver windows (width, 150 HU; level, 88 HU). In addition, single-slice axial, coronal, and sagittal unenhanced CT images of nontumourous renal tissue (obtained from the same cases) were acquired in soft tissue windows and liver windows. These data sets were randomized, unpaired, and were presented independently to 3 blinded radiologists for analysis. The presence or absence of suspicious findings for tumour was scored on a 5-point confidence scale. Eighty-three of 415 patients met the study criteria. Receiver operating characteristics (ROC) analysis, t test analysis, and kappa analysis were used. ROC analysis showed statistically superior diagnostic performance for liver windows compared with soft tissue windows (area under the curve of 0.923 vs 0.879; P = .0002). Kappa statistics showed "good" vs "moderate" agreement between readers for liver windows compared with soft tissue windows. Use of liver windows settings improves the detection of small RCCs on the unenhanced CT. Copyright © 2014 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  11. Dysregulated Intrahepatic CD4+ T-Cell Activation Drives Liver Inflammation in Ileitis-Prone SAMP1/YitFc MiceSummary

    Directory of Open Access Journals (Sweden)

    Sara Omenetti

    2015-07-01

    Full Text Available Background & Aims: Liver inflammation is a common extraintestinal manifestation of inflammatory bowel disease (IBD, but whether liver involvement is a consequence of a primary intestinal defect or results from alternative pathogenic processes remains unclear. Therefore, we sought to determine the potential pathogenic mechanism(s of concomitant liver inflammation in an established murine model of IBD. Methods: Liver inflammation and immune cell subsets were characterized in ileitis-prone SAMP1/YitFc (SAMP and AKR/J (AKR control mice, lymphocyte-depleted SAMP (SAMPxRag-1−/−, and immunodeficient SCID recipient mice receiving SAMP or AKR donor CD4+ T cells. Proliferation and suppressive capacity of CD4+ T-effector (Teff and T-regulatory (Treg cells from gut-associated lymphoid tissue (GALT and livers of SAMP and AKR mice were measured. Results: Surprisingly, prominent inflammation was detected in 4-week-old SAMP livers before histologic evidence of ileitis, whereas both disease phenotypes were absent in age-matched AKR mice. SAMP liver disease was characterized by abundant infiltration of lymphocytes, required for hepatic inflammation to occur, a TH1-skewed environment, and phenotypically activated CD4+ T cells. SAMP intrahepatic CD4+ T cells also had the ability to induce liver and ileal inflammation when adoptively transferred into SCID recipients, whereas GALT-derived CD4+ T cells produced milder ileitis but not liver inflammation. Interestingly, SAMP intrahepatic CD4+ Teff cells showed increased proliferation compared with both SAMP GALT- and AKR liver-derived CD4+ Teff cells, and SAMP intrahepatic Tregs were decreased among CD4+ T cells and impaired in in vitro suppressive function compared with AKR. Conclusions: Activated intrahepatic CD4+ T cells induce liver inflammation and contribute to experimental ileitis via locally impaired hepatic immunosuppressive function. Keywords: Hepatic CD4+ T Cells, IBD-Associated Liver

  12. Live cell imaging of cytosolic NADH/NAD+ ratio in hepatocytes and liver slices.

    Science.gov (United States)

    Masia, Ricard; McCarty, William J; Lahmann, Carolina; Luther, Jay; Chung, Raymond T; Yarmush, Martin L; Yellen, Gary

    2018-01-01

    Fatty liver disease (FLD), the most common chronic liver disease in the United States, may be caused by alcohol or the metabolic syndrome. Alcohol is oxidized in the cytosol of hepatocytes by alcohol dehydrogenase (ADH), which generates NADH and increases cytosolic NADH/NAD + ratio. The increased ratio may be important for development of FLD, but our ability to examine this question is hindered by methodological limitations. To address this, we used the genetically encoded fluorescent sensor Peredox to obtain dynamic, real-time measurements of cytosolic NADH/NAD + ratio in living hepatocytes. Peredox was expressed in dissociated rat hepatocytes and HepG2 cells by transfection, and in mouse liver slices by tail-vein injection of adeno-associated virus (AAV)-encoded sensor. Under control conditions, hepatocytes and liver slices exhibit a relatively low (oxidized) cytosolic NADH/NAD + ratio as reported by Peredox. The ratio responds rapidly and reversibly to substrates of lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH). Ethanol causes a robust dose-dependent increase in cytosolic NADH/NAD + ratio, and this increase is mitigated by the presence of NAD + -generating substrates of LDH or SDH. In contrast to hepatocytes and slices, HepG2 cells exhibit a relatively high (reduced) ratio and show minimal responses to substrates of ADH and SDH. In slices, we show that comparable results are obtained with epifluorescence imaging and two-photon fluorescence lifetime imaging (2p-FLIM). Live cell imaging with Peredox is a promising new approach to investigate cytosolic NADH/NAD + ratio in hepatocytes. Imaging in liver slices is particularly attractive because it allows preservation of liver microanatomy and metabolic zonation of hepatocytes. NEW & NOTEWORTHY We describe and validate a new approach for measuring free cytosolic NADH/NAD + ratio in hepatocytes and liver slices: live cell imaging with the fluorescent biosensor Peredox. This approach yields dynamic, real

  13. A diagnostic dilemma in breast pathology – benign fibroadenoma with multinucleated stromal giant cells

    Directory of Open Access Journals (Sweden)

    Tobbia Igdam

    2008-08-01

    Full Text Available Abstract Fibroadenomas are common benign breast tumours that display a characteristic pathological morphology, although several epithelial and stromal variations exist. A very rare histological finding is the presence of multinucleated giant cells throughout the stroma of a benign fibroadenoma. Cells of this type, which are more commonly found incidentally within the interlobular stroma of breast tissue, are benign and should not be mistaken for malignant cells on microscopic examination. Unfortunately a lack of awareness of this pathological entity can lead to diagnostic confusion amongst pathologists resulting in the multinucleate giant cells being mistaken for highly mitotic cells and consequently the fibroadenoma being mistaken for a malignant lesion. This may have serious implications for the subsequent management of the patient. The presence of this unusual cell type in the stroma does not alter the prognosis of otherwise benign lesion. We encountered two such cases at our institution in a six month period recently. We present their histories along with relevant radiological, microscopic and immunohistochemical features, followed by a discussion of this unusual pathological entity.

  14. A new liver function test using the asialoglycoprotein-receptor system on the liver cell membrane, 2

    International Nuclear Information System (INIS)

    Kawa, Soukichi; Hazama, Hiroshi; Kojima, Michimasa

    1986-01-01

    We produced labeled neoglycoprotein (GHSA) that is physiologically equivalent to ASGP, and quantitatively examined whether its uptake by the liver is dose-related using the following methods: 1) binding assay between GHSA and ASGP receptors, 2) measurement of the liver extraction ratio in the initial circulation following administration into the portal vein, and 3) measurement of clearance in normal rats and rats with galacosamine-induced acute liver disorder. The binding assay showed a linear relationship between the concentration of 125 I-GHSA and the amount of ASGP receptors obtained from the rat liver. A membrane assay using 125 I-GHSA and the liver cell membrane revealed similar results. The liver extraction ratio in the initial circulation following the administration into the portal vein of normal rabbits was highly dose-dependent (r = -0.95 in the range of 5 - 100 μg GHSA). Serial imaging of 99m Tc-GHSA during two-hour period after administration into the peripheral blood showed specific accumulation in the liver beginning immediately after the intravenous injection and subsequent transport mainly via the biliary system into the small intestine in the normal rat and mainly into the urine in the bile duct ligated rat. As a dynamic model of 99m Tc-GHSA, its circulation through the heart and liver and inactivated release from the liver was used, and two-compartment analysis was made on measurement curves in the heart and liver to obtain clearance parameters. The concentration of administered 99m Tc-GHSA (50 - 100 μg/100 g body weight) showed a positive linear relationship with clearance. Administration of 50 μg/100 g body weight of 99m Tc-GHSA revealed a significant correlation (p < 0.001) between clearance and ASGP receptor activity in normal rats and rats with galactosamine-induced acute liver disorder. (J.P.N.)

  15. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    Directory of Open Access Journals (Sweden)

    Tobias Eggert

    Full Text Available Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL, while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  16. Role of Stereotactic Body Radiation Therapy Before Orthotopic Liver Transplantation: Retrospective Evaluation of Pathologic Response and Outcomes

    International Nuclear Information System (INIS)

    Mannina, Edward Michael; Cardenes, Higinia Rosa; Lasley, Foster D.; Goodman, Benjamin; Zook, Jennifer; Althouse, Sandra; Cox, John Alvin; Saxena, Romil; Tector, Joseph; Maluccio, Mary

    2017-01-01

    Purpose: To analyze the results of stereotactic body radiation therapy (SBRT) in patients with early-stage, localized hepatocellular carcinoma who underwent definitive orthotopic liver transplantation (OLT). Methods and Materials: The subjects of this retrospective report are 38 patients diagnosed with hepatocellular carcinoma who underwent SBRT per institutional phase 1 to 2 eligibility criteria, before definitive OLT. Pre-OLT radiographs were compared with pathologic gold standard. Analysis of treatment failures and deaths was undertaken. Results: With median follow-up of 4.8 years from OLT, 9 of 38 patients (24%) recurred, whereas 10 of 38 patients (26%) died. Kaplan-Meier estimates of 3-year overall survival and disease-free survival are 77% and 74%, respectively. Sum longest dimension of tumors was significantly associated with disease-free survival (hazard ratio 1.93, P=.026). Pathologic response rate (complete plus partial response) was 68%. Radiographic scoring criteria performed poorly; modified Response Evaluation Criteria in Solid Tumors produced highest concordance (κ = 0.224). Explants revealed viable tumor in 74% of evaluable patients. Treatment failures had statistically larger sum longest dimension of tumors (4.0 cm vs 2.8 cm, P=.014) and non–statistically significant higher rates of lymphovascular space invasion (44% vs 17%), cT2 disease (44% vs 21%), ≥pT2 disease (67% vs 34%), multifocal tumors at time of SBRT (44% vs 21%), and less robust mean α-fetoprotein response (−25 IU/mL vs −162 IU/mL). Conclusions: Stereotactic body radiation therapy before to OLT is a well-tolerated treatment providing 68% pathologic response, though 74% of explants ultimately contained viable tumor. Radiographic response criteria poorly approximate pathology. Our data suggest further stratification of patients according to initial disease burden and treatment response.

  17. Role of Stereotactic Body Radiation Therapy Before Orthotopic Liver Transplantation: Retrospective Evaluation of Pathologic Response and Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Mannina, Edward Michael, E-mail: emmannina@gmail.com [Department of Radiation Oncology, Slidell Memorial Hospital Regional Cancer Center, Slidell, Louisiana (United States); Cardenes, Higinia Rosa [Department of Radiation Oncology, Schneck Medical Center, Seymour, Indiana (United States); Lasley, Foster D. [Department of Radiation Oncology, Mercy Hospital, Oklahoma City, Oklahoma (United States); Goodman, Benjamin [Department of Radiation Oncology, St. Francis Healthcare, Cape Girardeau, Missouri (United States); Zook, Jennifer [Department of Radiation Oncology, Community Hospital Anderson, Anderson, Indiana (United States); Althouse, Sandra [Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana (United States); Cox, John Alvin [Department of Radiation Oncology, Columbus Regional, Columbus, Indiana (United States); Saxena, Romil [Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana (United States); Tector, Joseph [Department of Surgery, University of Alabama-Birmingham, Birmingham, Alabama (United States); Maluccio, Mary [Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana (United States)

    2017-04-01

    Purpose: To analyze the results of stereotactic body radiation therapy (SBRT) in patients with early-stage, localized hepatocellular carcinoma who underwent definitive orthotopic liver transplantation (OLT). Methods and Materials: The subjects of this retrospective report are 38 patients diagnosed with hepatocellular carcinoma who underwent SBRT per institutional phase 1 to 2 eligibility criteria, before definitive OLT. Pre-OLT radiographs were compared with pathologic gold standard. Analysis of treatment failures and deaths was undertaken. Results: With median follow-up of 4.8 years from OLT, 9 of 38 patients (24%) recurred, whereas 10 of 38 patients (26%) died. Kaplan-Meier estimates of 3-year overall survival and disease-free survival are 77% and 74%, respectively. Sum longest dimension of tumors was significantly associated with disease-free survival (hazard ratio 1.93, P=.026). Pathologic response rate (complete plus partial response) was 68%. Radiographic scoring criteria performed poorly; modified Response Evaluation Criteria in Solid Tumors produced highest concordance (κ = 0.224). Explants revealed viable tumor in 74% of evaluable patients. Treatment failures had statistically larger sum longest dimension of tumors (4.0 cm vs 2.8 cm, P=.014) and non–statistically significant higher rates of lymphovascular space invasion (44% vs 17%), cT2 disease (44% vs 21%), ≥pT2 disease (67% vs 34%), multifocal tumors at time of SBRT (44% vs 21%), and less robust mean α-fetoprotein response (−25 IU/mL vs −162 IU/mL). Conclusions: Stereotactic body radiation therapy before to OLT is a well-tolerated treatment providing 68% pathologic response, though 74% of explants ultimately contained viable tumor. Radiographic response criteria poorly approximate pathology. Our data suggest further stratification of patients according to initial disease burden and treatment response.

  18. Surgery-induced reactive oxygen species enhance colon carcinoma cell binding by disrupting the liver endothelial cell lining

    NARCIS (Netherlands)

    Gül, N.; Bögels, M.; Grewal, S.; van der Meer, A.J.; Rojas, L.B.; Fluitsma, D.M.; van den Tol, M.P.; Hoeben, K.A.; van Marle, J.; de Vries, H.E.; Beelen, R.H.J.; van Egmond, M.

    2011-01-01

    Objective: Resection of primary colorectal cancer is associated with enhanced risk of development of liver metastases. It was previously demonstrated that surgery initiated an early inflammatory response resulting in elevated tumour cell adhesion in the liver. Because reactive oxygen species (ROS)

  19. Surgery-induced reactive oxygen species enhance colon carcinoma cell binding by disrupting the liver endothelial cell lining

    NARCIS (Netherlands)

    Gul, N.; Bogels, M.; Grewal, S.; van der Meer, A.J.; Rojas, L.B.; Fluitsma, D.M.; van den Tol, M.P.; Hoeben, K.A.; van Marle, J.; de Vries, H.E.; Beelen, R.H.J.; van Egmond, M.

    2011-01-01

    Objective Resection of primary colorectal cancer is associated with enhanced risk of development of liver metastases. It was previously demonstrated that surgery initiated an early inflammatory response resulting in elevated tumour cell adhesion in the liver. Because reactive oxygen species (ROS)

  20. FXR blocks the growth of liver cancer cells through inhibiting mTOR-s6K pathway

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiongfei, E-mail: xiongfeihuang@hotmail.com [Department of Pathology and Institute of Oncology, Preclinical School, Fujian Medical University, Fuzhou 350108, Fujian (China); Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian (China); Zeng, Yeting [Department of Pathology and Institute of Oncology, Preclinical School, Fujian Medical University, Fuzhou 350108, Fujian (China); Wang, Xinrui [Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350108, Fujian (China); Ma, Xiaoxiao [Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, CA 91010 (United States); Li, Qianqian; Li, Ningbo; Su, Hongying [Department of Pathology and Institute of Oncology, Preclinical School, Fujian Medical University, Fuzhou 350108, Fujian (China); Huang, Wendong [Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, CA 91010 (United States)

    2016-05-27

    The nuclear receptor Farnesoid X Receptor (FXR) is likely a tumor suppressor in liver tissue but its molecular mechanism of suppression is not well understood. In this study, the gene expression profile of human liver cancer cells was investigated by microarray. Bioinformatics analysis of these data revealed that FXR might regulate the mTOR/S6K signaling pathway. This was confirmed by altering the expression level of FXR in liver cancer cells. Overexpression of FXR prevented the growth of cells and induced cell cycle arrest, which was enhanced by the mTOR/S6K inhibitor rapamycin. FXR upregulation also intensified the inhibition of cell growth by rapamycin. Downregulation of FXR produced the opposite effect. Finally, we found that ectopic expression of FXR in SK-Hep-1 xenografts inhibits tumor growth and reduces expression of the phosphorylated protein S6K. Taken together, our data provide the first evidence that FXR suppresses proliferation of human liver cancer cells via the inhibition of the mTOR/S6K signaling pathway. FXR expression can be used as a biomarker of personalized mTOR inhibitor treatment assessment for liver cancer patients. -- Highlights: •FXR inhibits the proliferation of liver cancer cells by prolonging G0/G1 phase. •Microarray results indicate that mTOR-S6k signaling is involved in cellular processes in which FXR plays an important role. •FXR blocks the growth of liver cancer cells via the inhibition of the mTOR/S6K signaling pathway in vitro and in vivo.

  1. FXR blocks the growth of liver cancer cells through inhibiting mTOR-s6K pathway

    International Nuclear Information System (INIS)

    Huang, Xiongfei; Zeng, Yeting; Wang, Xinrui; Ma, Xiaoxiao; Li, Qianqian; Li, Ningbo; Su, Hongying; Huang, Wendong

    2016-01-01

    The nuclear receptor Farnesoid X Receptor (FXR) is likely a tumor suppressor in liver tissue but its molecular mechanism of suppression is not well understood. In this study, the gene expression profile of human liver cancer cells was investigated by microarray. Bioinformatics analysis of these data revealed that FXR might regulate the mTOR/S6K signaling pathway. This was confirmed by altering the expression level of FXR in liver cancer cells. Overexpression of FXR prevented the growth of cells and induced cell cycle arrest, which was enhanced by the mTOR/S6K inhibitor rapamycin. FXR upregulation also intensified the inhibition of cell growth by rapamycin. Downregulation of FXR produced the opposite effect. Finally, we found that ectopic expression of FXR in SK-Hep-1 xenografts inhibits tumor growth and reduces expression of the phosphorylated protein S6K. Taken together, our data provide the first evidence that FXR suppresses proliferation of human liver cancer cells via the inhibition of the mTOR/S6K signaling pathway. FXR expression can be used as a biomarker of personalized mTOR inhibitor treatment assessment for liver cancer patients. -- Highlights: •FXR inhibits the proliferation of liver cancer cells by prolonging G0/G1 phase. •Microarray results indicate that mTOR-S6k signaling is involved in cellular processes in which FXR plays an important role. •FXR blocks the growth of liver cancer cells via the inhibition of the mTOR/S6K signaling pathway in vitro and in vivo.

  2. Lipid droplet-associated proteins in alcoholic liver disease: a potential linkage with hepatocellular damage

    OpenAIRE

    Ikura, Yoshihiro; Caldwell, Stephen H

    2015-01-01

    Steatosis is a characteristic morphological change of alcoholic liver disease, but its pathologic significance is still obscure. Regardless of cell types, intracellular lipid droplets are coated with a phospholipid monolayer, on which many kinds of lipid droplet-associated proteins are present. These proteins, such as the perilipin family of proteins and the cell death inducing DNA fragmentation factor (DFF) 45-like effectors, are recognized to play important roles in lipid metabolism in the ...

  3. Scintigraphy of liver and spleen in vinyl chloride workers

    Energy Technology Data Exchange (ETDEWEB)

    Biersack, H J; San Luis, T Jr; Lange, C E; Thelen, M; Veltman, G; Winkler, C [Bonn Univ. (Germany, F.R.). Inst. fuer Klinische und Experimentelle Nuklearmedizin; Bonn Univ. (Germany, F.R.). Klinik und Poliklinik der Haut- und Geschlechtskrankheiten; Bonn Univ. (Germany, F.R.). Radiologische Klinik)

    1977-10-01

    In 152 VC-exposed workers of whom 124 were employed in the PVC-production and 28 in VC-processing plants, liver and spleen imaging was performed using sup(99m)Tc-sulphur colloid and /sup 197/Hg-BMHP. In 101 (= 81%) of the 124 workers of the PVC-production plant and in 18 (= 64%) workers of PVC-processing factories pathological liver and spleen scintigrams were found. The most frequent pathological change in the scintigraphic image was an increase in splenic colloid accumulation, when compared with the liver uptake. Three angiosarcomas of the liver were detected through circumscribed defects of colloid accumulation. Sequential liver scintigraphy was done in 15 cases. In 7 patients with esophageal varices, considerable decrease in portal venous blood flow was demonstrated. - As a result of our investigations it can be stated that scintigraphically detectable changes are sensitive indicators of VC-induced lesions of the liver including liver fibrosis, portal hypertension and angiosarcoma.

  4. Cross-activating invariant NKT cells and kupffer cells suppress cholestatic liver injury in a mouse model of biliary obstruction.

    Directory of Open Access Journals (Sweden)

    Caroline C Duwaerts

    Full Text Available Both Kupffer cells and invariant natural killer T (iNKT cells suppress neutrophil-dependent liver injury in a mouse model of biliary obstruction. We hypothesize that these roles are interdependent and require iNKT cell-Kupffer cell cross-activation. Female, wild-type and iNKT cell-deficient C57Bl/6 mice were injected with magnetic beads 3 days prior to bile duct ligation (BDL in order to facilitate subsequent Kupffer cell isolation. On day three post-BDL, the animals were euthanized and the livers dissected. Necrosis was scored; Kupffer cells were isolated and cell surface marker expression (flow cytometry, mRNA expression (qtPCR, nitric oxide (NO (. production (Griess reaction, and protein secretion (cytometric bead-array or ELISAs were determined. To address the potential role of NO (. in suppressing neutrophil accumulation, a group of WT mice received 1400W, a specific inducible nitric oxide synthase (iNOS inhibitor, prior to BDL. To clarify the mechanisms underlying Kupffer cell-iNKT cell cross-activation, WT animals were administered anti-IFN-γ or anti-lymphocyte function-associated antigen (LFA-1 antibody prior to BDL. Compared to their WT counterparts, Kupffer cells obtained from BDL iNKT cell-deficient mice expressed lower iNOS mRNA levels, produced less NO (. , and secreted more neutrophil chemoattractants. Both iNOS inhibition and IFN-γ neutralization increased neutrophil accumulation in the livers of BDL WT mice. Anti-LFA-1 pre-treatment reduced iNKT cell accumulation in these same animals. These data indicate that the LFA-1-dependent cross-activation of iNKT cells and Kupffer cells inhibits neutrophil accumulation and cholestatic liver injury.

  5. Interpreting and Integrating Clinical and Anatomic Pathology Results.

    Science.gov (United States)

    Ramaiah, Lila; Hinrichs, Mary Jane; Skuba, Elizabeth V; Iverson, William O; Ennulat, Daniela

    2017-01-01

    The continuing education course on integrating clinical and anatomical pathology data was designed to communicate the importance of using a weight of evidence approach to interpret safety findings in toxicology studies. This approach is necessary, as neither clinical nor anatomic pathology data can be relied upon in isolation to fully understand the relationship between study findings and the test article. Basic principles for correlating anatomic pathology and clinical pathology findings and for integrating these with other study end points were reviewed. To highlight these relationships, a series of case examples, presented jointly by a clinical pathologist and an anatomic pathologist, were used to illustrate the collaborative effort required between clinical and anatomical pathologists. In addition, the diagnostic utility of traditional liver biomarkers was discussed using results from a meta-analysis of rat hepatobiliary marker and histopathology data. This discussion also included examples of traditional and novel liver and renal biomarker data implementation in nonclinical toxicology studies to illustrate the relationship between discrete changes in biochemistry and tissue morphology.

  6. Splenic littoral cell angioma. Radio pathological correlation in two cases

    International Nuclear Information System (INIS)

    Asensio, J.; Montero, N.; Perez-Cidoncha, P.

    2000-01-01

    We present two cases of Littoral Cell Angiomas (LCA), a recently described variant of splenic angioma which originates in the cells that line the sinusoids from the red pulp (littoral cell). The histopathological and immunohistochemical characteristics of this neoplasm verifies its origin in the littoral cell with an intermediate origin between the endothelial and histiocyte cell and makes it possible to consider it as a pathological entity which is differentiated from the hemangiomas. The imaging findings are indistinguishable from the other splenic vascular neoplasms and the role of the Magnetic Resonance (MRI) stands out. (Author) 21 refs

  7. Regenerative medicine using dental pulp stem cells for liver diseases.

    Science.gov (United States)

    Ohkoshi, Shogo; Hara, Hajime; Hirono, Haruka; Watanabe, Kazuhiko; Hasegawa, Katsuhiko

    2017-02-06

    Acute liver failure is a refractory disease and its prognosis, if not treated using liver transplantation, is extremely poor. It is a good candidate for regenerative medicine, where stem cell-based therapies play a central role. Mesenchymal stem cells (MSCs) are known to differentiate into multiple cell lineages including hepatocytes. Autologous cell transplant without any foreign gene induction is feasible using MSCs, thereby avoiding possible risks of tumorigenesis and immune rejection. Dental pulp also contains an MSC population that differentiates into hepatocytes. A point worthy of special mention is that dental pulp can be obtained from deciduous teeth during childhood and can be subsequently harvested when necessary after deposition in a tooth bank. MSCs have not only a regenerative capacity but also act in an anti-inflammatory manner via paracrine mechanisms. Promising efficacies and difficulties with the use of MSC derived from teeth are summarized in this review.

  8. Reduced Expression of the Liver/Beta-Cell Glucose Transporter Isoform in Glucose-Insensitive Pancreatic Beta Cells of Diabetic Rats

    Science.gov (United States)

    Thorens, Bernard; Weir, Gordon C.; Leahy, John L.; Lodish, Harvey F.; Bonner-Weir, Susan

    1990-09-01

    Rats injected with a single dose of streptozocin at 2 days of age develop non-insulin-dependent diabetes 6 weeks later. The pancreatic beta islet cells of these diabetic rats display a loss of glucose-induced insulin secretion while maintaining sensitivity to other secretagogues such as arginine. We analyzed the level of expression of the liver/beta-cell glucose transporter isoform in diabetic islets by immunofluorescence staining of pancreas sections and by Western blotting of islet lysates. Islets from diabetic animals have a reduced expression of this beta-cell-specific glucose transporter isoform and the extent of reduction is correlated with the severity of hyperglycemia. In contrast, expression of this transporter isoform in liver is minimally modified by the diabetes. Thus a decreased expression of the liver/beta-cell glucose transporter isoform in beta cells is associated with the impaired glucose sensing characteristic of diabetic islets; our data suggest that this glucose transporter may be part of the beta-cell glucose sensor.

  9. Surgery-induced reactive oxygen species enhance colon carcinoma cell binding by disrupting the liver endothelial cell lining

    NARCIS (Netherlands)

    Gül, Nuray; Bögels, Marijn; Grewal, Simran; van der Meer, Anne Jan; Rojas, Lucy Baldeon; Fluitsma, Donna M.; van den Tol, M. Petrousjka; Hoeben, Kees A.; van Marle, Jan; de Vries, Helga E.; Beelen, Robert H. J.; van Egmond, Marjolein

    2011-01-01

    Resection of primary colorectal cancer is associated with enhanced risk of development of liver metastases. It was previously demonstrated that surgery initiated an early inflammatory response resulting in elevated tumour cell adhesion in the liver. Because reactive oxygen species (ROS) are shown to

  10. Recellularization via the bile duct supports functional allogenic and xenogenic cell growth on a decellularized rat liver scaffold.

    Science.gov (United States)

    Hassanein, Wessam; Uluer, Mehmet C; Langford, John; Woodall, Jhade D; Cimeno, Arielle; Dhru, Urmil; Werdesheim, Avraham; Harrison, Joshua; Rivera-Pratt, Carlos; Klepfer, Stephen; Khalifeh, Ali; Buckingham, Bryan; Brazio, Philip S; Parsell, Dawn; Klassen, Charlie; Drachenberg, Cinthia; Barth, Rolf N; LaMattina, John C

    2017-01-02

    Recent years have seen a proliferation of methods leading to successful organ decellularization. In this experiment we examine the feasibility of a decellularized liver construct to support growth of functional multilineage cells. Bio-chamber systems were used to perfuse adult rat livers with 0.1% SDS for 24 hours yielding decellularized liver scaffolds. Initially, we recellularized liver scaffolds using a human tumor cell line (HepG2, introduced via the bile duct). Subsequent studies were performed using either human tumor cells co-cultured with human umbilical vein endothelial cells (HUVECs, introduced via the portal vein) or rat neonatal cell slurry (introduced via the bile duct). Bio-chambers were used to circulate oxygenated growth medium via the portal vein at 37C for 5-7 days. Human HepG2 cells grew readily on the scaffold (n = 20). HepG2 cells co-cultured with HUVECs demonstrated viable human endothelial lining with concurrent hepatocyte growth (n = 10). In the series of neonatal cell slurry infusion (n = 10), distinct foci of neonatal hepatocytes were observed to repopulate the parenchyma of the scaffold. The presence of cholangiocytes was verified by CK-7 positivity. Quantitative albumin measurement from the grafts showed increasing albumin levels after seven days of perfusion. Graft albumin production was higher than that observed in traditional cell culture. This data shows that rat liver scaffolds support human cell ingrowth. The scaffold likewise supported the engraftment and survival of neonatal rat liver cell slurry. Recellularization of liver scaffolds thus presents a promising model for functional liver engineering.

  11. Ultrasound-guided cytology of spleen and liver: a prognostic tool in canine cutaneous mast cell tumor.

    Science.gov (United States)

    Stefanello, D; Valenti, P; Faverzani, S; Bronzo, V; Fiorbianco, V; Pinto da Cunha, N; Romussi, S; Cantatore, M; Caniatti, M

    2009-01-01

    In the clinical staging of cutaneous mast cell tumors (cMCT), the diagnosis of metastasis is controversial based on cytological examination of lymph nodes, spleen, liver, bone marrow, and blood. To define the prognostic role of ultrasound-guided cytology of spleen and liver in cMCT. The results of cytological evaluation were compared in relation with survival time. Fifty-two client-owned dogs with a diagnosis of cMCT. Selection of cases was based on cytological evaluation of liver and spleen to detect infiltration at distant sites. The Kaplan Meier method was used to compare survival in dogs with and without infiltration of spleen and liver (log-rank test P dogs with cMCT had mast cell infiltration of spleen, liver, or both and 4 of these dogs had involvement of the regional lymph nodes. The majority of dogs had 2 or more ultrasonographically abnormal findings simultaneously in spleen and liver. Nine dogs had grade II cMCT, and 1 had grade III cMCT. Dogs with positive evidence of mast cell infiltration to spleen, liver, or both had shorter survival times (34 versus 733 days) compared with dogs negative for mast cell infiltration at distant sites. Dogs with evidence of mast cell infiltration at distant sites have a shorter survival times than dogs without evidence of infiltration at distant sites. This study suggests that cytology of spleen and liver is indicated either for ultrasonographically normal or for ultrasonographically abnormal spleen and liver in dogs with cMCT.

  12. Increased liver pathology in hepatitis C virus transgenic mice expressing the hepatitis B virus X protein

    International Nuclear Information System (INIS)

    Keasler, Victor V.; Lerat, Herve; Madden, Charles R.; Finegold, Milton J.; McGarvey, Michael J.; Mohammed, Essam M.A.; Forbes, Stuart J.; Lemon, Stanley M.; Hadsell, Darryl L.; Grona, Shala J.; Hollinger, F. Blaine; Slagle, Betty L.

    2006-01-01

    Transgenic mice expressing the full-length HCV coding sequence were crossed with mice that express the HBV X gene-encoded regulatory protein HBx (ATX mice) to test the hypothesis that HBx expression accelerates HCV-induced liver pathogenesis. At 16 months (mo) of age, hepatocellular carcinoma was identified in 21% of HCV/ATX mice, but in none of the single transgenic animals. Analysis of 8-mo animals revealed that, relative to HCV/WT mice, HCV/ATX mice had more severe steatosis, greater liver-to-body weight ratios, and a significant increase in the percentage of hepatocytes staining for proliferating cell nuclear antigen. Furthermore, primary hepatocytes from HCV, ATX, and HCV/ATX transgenic mice were more resistant to fas-mediated apoptosis than hepatocytes from nontransgenic littermates. These results indicate that HBx expression contributes to increased liver pathogenesis in HCV transgenic mice by a mechanism that involves an imbalance in hepatocyte death and regeneration within the context of severe steatosis

  13. Dexamethasone-induced haptoglobin release by calf liver parenchymal cells.

    Science.gov (United States)

    Higuchi, H; Katoh, N; Miyamoto, T; Uchida, E; Yuasa, A; Takahashi, K

    1994-08-01

    Parenchymal cells were isolated from the liver of male calves, and monolayer cultures formed were treated with glucocorticoids to examine whether haptoglobin, appearance of which is associated with hepatic lipidosis (fatty liver) in cattle, is induced by steroid hormones. Without addition of dexamethasone, only trace amounts of haptoglobin were detected in culture medium. With addition of dexamethasone (10(-12) to 10(-4) M), considerable amounts of haptoglobin were released into the medium. Maximal release was observed at concentrations of 10(-8) to 10(-6) M dexamethasone. Haptoglobin release was similarly induced by cortisol, although the effect was less potent than that of dexamethasone. Actinomycin D (a known protein synthesis inhibitor) dose-dependently reduced amounts of haptoglobin released in response to 10(-8) M dexamethasone. Dexamethasone also induced annexin I, which is known to be synthesized in response to glucocorticoids. Dexamethasone treatment resulted in reduced protein kinase C activity in the cell cytosol, which has been shown to be an early event in dexamethasone-treated cells. Other than glucocorticoids, estradiol induced haptoglobin release, whereas progesterone was less effective. The association of haptoglobin with hepatic lipidosis can be reasonably explained by the fact that haptoglobin production by the liver is induced by glucocorticoids and estradiol, and these steroid hormones are triggers for development of hepatic lipidosis in cattle.

  14. In vivo migration of labeled autologous natural killer cells to liver metastases in patients with colon carcinoma

    Directory of Open Access Journals (Sweden)

    Satolli Maria A

    2006-11-01

    Full Text Available Abstract Background Besides being the effectors of native anti-tumor cytotoxicity, NK cells participate in T-lymphocyte responses by promoting the maturation of dendritic cells (DC. Adherent NK (A-NK cells constitute a subset of IL-2-stimulated NK cells which show increased expression of integrins and the ability to adhere to solid surface and to migrate, infiltrate, and destroy cancer. A critical issue in therapy of metastatic disease is the optimization of NK cell migration to tumor tissues and their persistence therein. This study compares localization to liver metastases of autologous A-NK cells administered via the systemic (intravenous, i.v. versus locoregional (intraarterial, i.a. routes. Patients and methods A-NK cells expanded ex-vivo with IL-2 and labeled with 111In-oxine were injected i.a. in the liver of three colon carcinoma patients. After 30 days, each patient had a new preparation of 111In-A-NK cells injected i.v. Migration of these cells to various organs was evaluated by SPET and their differential localization to normal and neoplastic liver was demonstrated after i.v. injection of 99mTc-phytate. Results A-NK cells expressed a donor-dependent CD56+CD16+CD3- (NK or CD56+CD16+CD3+ (NKT phenotype. When injected i.v., these cells localized to the lung before being visible in the spleen and liver. By contrast, localization of i.a. injected A-NK cells was virtually confined to the spleen and liver. Binding of A-NK cells to liver neoplastic tissues was observed only after i.a. injections. Conclusion This unique study design demonstrates that A-NK cells adoptively transferred to the liver via the intraarterial route have preferential access and substantial accumulation to the tumor site.

  15. The spleen as an extramedullary source of inflammatory cells responding to acetaminophen-induced liver injury

    International Nuclear Information System (INIS)

    Mandal, Mili; Gardner, Carol R.; Sun, Richard; Choi, Hyejeong; Lad, Sonali; Mishin, Vladimir; Laskin, Jeffrey D.; Laskin, Debra L.

    2016-01-01

    Macrophages have been shown to play a role in acetaminophen (APAP)-induced hepatotoxicity, contributing to both pro- and anti-inflammatory processes. In these studies, we analyzed the role of the spleen as an extramedullary source of hepatic macrophages. APAP administration (300 mg/kg, i.p.) to control mice resulted in an increase in CD11b + infiltrating Ly6G + granulocytic and Ly6G − monocytic cells in the spleen and the liver. The majority of the Ly6G + cells were also positive for the monocyte/macrophage activation marker, Ly6C, suggesting a myeloid derived suppressor cell (MDSC) phenotype. By comparison, Ly6G − cells consisted of 3 subpopulations expressing high, intermediate, and low levels of Ly6C. Splenectomy was associated with increases in mature (F4/80 + ) and immature (F4/80 − ) pro-inflammatory Ly6C hi macrophages and mature anti-inflammatory (Ly6C lo ) macrophages in the liver after APAP; increases in MDSCs were also noted in the livers of splenectomized (SPX) mice after APAP. This was associated with increases in APAP-induced expression of chemokine receptors regulating pro-inflammatory (CCR2) and anti-inflammatory (CX3CR1) macrophage trafficking. In contrast, APAP-induced increases in pro-inflammatory galectin-3 + macrophages were blunted in livers of SPX mice relative to control mice, along with hepatic expression of TNF-α, as well as the anti-inflammatory macrophage markers, FIZZ-1 and YM-1. These data demonstrate that multiple subpopulations of pro- and anti-inflammatory cells respond to APAP-induced injury, and that these cells originate from distinct hematopoietic reservoirs. - Highlights: • Multiple inflammatory cell subpopulations accumulate in the spleen and liver following acetaminophen (APAP) intoxication. • Splenectomy alters liver inflammatory cell populations responding to APAP. • Inflammatory cells accumulating in the liver in response to APAP originate from the spleen and the bone marrow. • Hepatotoxicity is reduced in

  16. The spleen as an extramedullary source of inflammatory cells responding to acetaminophen-induced liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Mili, E-mail: milimandal@gmail.com [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sun, Richard, E-mail: fishpower52@gmail.com [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Choi, Hyejeong, E-mail: choi@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Lad, Sonali, E-mail: sonurose92@gmail.com [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Mishin, Vladimir, E-mail: mishinv@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2016-08-01

    Macrophages have been shown to play a role in acetaminophen (APAP)-induced hepatotoxicity, contributing to both pro- and anti-inflammatory processes. In these studies, we analyzed the role of the spleen as an extramedullary source of hepatic macrophages. APAP administration (300 mg/kg, i.p.) to control mice resulted in an increase in CD11b{sup +} infiltrating Ly6G{sup +} granulocytic and Ly6G{sup −} monocytic cells in the spleen and the liver. The majority of the Ly6G{sup +} cells were also positive for the monocyte/macrophage activation marker, Ly6C, suggesting a myeloid derived suppressor cell (MDSC) phenotype. By comparison, Ly6G{sup −} cells consisted of 3 subpopulations expressing high, intermediate, and low levels of Ly6C. Splenectomy was associated with increases in mature (F4/80{sup +}) and immature (F4/80{sup −}) pro-inflammatory Ly6C{sup hi} macrophages and mature anti-inflammatory (Ly6C{sup lo}) macrophages in the liver after APAP; increases in MDSCs were also noted in the livers of splenectomized (SPX) mice after APAP. This was associated with increases in APAP-induced expression of chemokine receptors regulating pro-inflammatory (CCR2) and anti-inflammatory (CX3CR1) macrophage trafficking. In contrast, APAP-induced increases in pro-inflammatory galectin-3{sup +} macrophages were blunted in livers of SPX mice relative to control mice, along with hepatic expression of TNF-α, as well as the anti-inflammatory macrophage markers, FIZZ-1 and YM-1. These data demonstrate that multiple subpopulations of pro- and anti-inflammatory cells respond to APAP-induced injury, and that these cells originate from distinct hematopoietic reservoirs. - Highlights: • Multiple inflammatory cell subpopulations accumulate in the spleen and liver following acetaminophen (APAP) intoxication. • Splenectomy alters liver inflammatory cell populations responding to APAP. • Inflammatory cells accumulating in the liver in response to APAP originate from the spleen and the

  17. Continuous cell injury promotes hepatic tumorigenesis in cdc42-deficient mouse liver

    DEFF Research Database (Denmark)

    van Hengel, Jolanda; D'Hooge, Petra; Hooghe, Bart

    2008-01-01

    be required for liver function. METHODS: Mice in which Cdc42 was ablated in hepatocytes and bile duct cells were generated by Cre-loxP technology. Livers were examined by histologic, immunohistochemical, ultrastructural, and serum analysis to define the effect of loss of Cdc42 on liver structure. RESULTS...... of 2 months, the canaliculi between hepatocytes were greatly enlarged, although the tight junctions flanking the canaliculi appeared normal. Regular liver plates were absent. E-cadherin expression pattern and gap junction localization were distorted. Analysis of serum samples indicated cholestasis...

  18. Transplant of Hepatocytes, Undifferentiated Mesenchymal Stem Cells, and In Vitro Hepatocyte-Differentiated Mesenchymal Stem Cells in a Chronic Liver Failure Experimental Model: A Comparative Study.

    Science.gov (United States)

    El Baz, Hanan; Demerdash, Zeinab; Kamel, Manal; Atta, Shimaa; Salah, Faten; Hassan, Salwa; Hammam, Olfat; Khalil, Heba; Meshaal, Safa; Raafat, Inas

    2018-02-01

    Liver transplant is the cornerstone line of treatment for chronic liver diseases; however, the long list of complications and obstacles stand against this operation. Searching for new modalities for treatment of chronic liver illness is a must. In the present research, we aimed to compare the effects of transplant of undifferentiated human mesenchymal stem cells, in vitro differentiated mesenchymal stem cells, and adult hepatocytes in an experimental model of chronic liver failure. Undifferentiated human cord blood mesenchymal stem cells were isolated, pro-pagated, and characterized by morphology, gene expression analysis, and flow cytometry of surface markers and in vitro differentiated into hepatocyte-like cells. Rat hepatocytes were isolated by double perfusion technique. An animal model of chronic liver failure was developed, and undifferentiated human cord blood mesenchymal stem cells, in vitro hepato-genically differentiated mesenchymal stem cells, or freshly isolated rat hepatocytes were transplanted into a CCL4 cirrhotic experimental model. Animals were killed 3 months after transplant, and liver functions and histopathology were assessed. Compared with the cirrhotic control group, the 3 cell-treated groups showed improved alanine aminotransferase, aspartate aminotransferase, albumin, and bilirubin levels, with best results shown in the hepatocyte-treated group. Histopathologic examination of the treated groups showed improved fibrosis, with best results obtained in the undifferentiated mesenchymal stem cell-treated group. Both adult hepatocytes and cord blood mesenchymal stem cells proved to be promising candidates for cell-based therapy in liver regeneration on an experimental level. Improved liver function was evident in the hepatocyte-treated group, and fibrosis control was more evident in the undifferentiated mesenchymal stem cell-treated group.

  19. Liver scintigraphy

    International Nuclear Information System (INIS)

    Tateno, Yukio

    1996-01-01

    Liver scintigraphy can be classified into 3 major categories according to the properties of the radiopharmaceuticals used, i.e., methods using radiopharmaceuticals which are (1) incorporated by hepatocytes, (2) taken up by reticulo endothelial cells, and (3) distributed in the blood pool of the liver. Of these three categories, the liver scintigraphy of the present research falls into category 2. Radiopharmaceuticals which are taken up by endothelial cells include 198 Au colloids and 99m Tc-labelled colloids. Liver scintigraphy takes advantage of the property by which colloidal microparticles are phagocytosed by Kupffer cells, and reflect the distribution of endothelial cells and the intensity of their phagocytic capacity. This examination is indicated in the following situations: (i) when you suspect a localized intrahepatic lesion (tumour, abscess, cyst, etc.), (ii) when you want to follow the course of therapy of a localized lesion, (iii) when you suspect liver cirrhosis, (iv) when you want to know the severity of liver cirrhosis or hepatitis, (v) when there is hepatomegaly and you want to determine the morphology of the liver, (vi) differential diagnosis of upper abdominal masses, and (vii) when there are abnormalities of the right diaphragm and you want to know their relation to the liver

  20. Age-related changes in the endocytic capacity of rat liver Kupffer and endothelial cells

    International Nuclear Information System (INIS)

    Brouwer, A.; Barelds, R.J.; Knook, D.L.

    1985-01-01

    There are many indications that the functional capacity of the reticuloendothelial system (RES) declines with age. The aim of this study was to investigate the cellular basis of age-related changes in the clearance function of the RES. The experiments were focused mainly on Kupffer and endothelial cells of the liver which represent a major part of the RES and are primarily responsible for clearance of colloidal material from the circulation. The clearance capacity of the RES was tested clinically and experimentally by intravenous injection of colloids, such as radiolabeled heat-aggregated colloidal albumin. Age-related changes in the endocytosis of 125 I-labeled colloidal albumin (CA) in rats were determined by clearance and organ distribution of different doses of intravenously injected CA, uptake of CA by Kupffer and endothelial liver cells in vivo as determined after isolation of the cells from injected rats and kinetic studies on CA uptake by Kupffer cells in culture. The results show that, at a low dose, the clearance of CA is primarily determined by liver blood flow. At a higher saturating dose, plasma clearance and uptake by the liver are not significantly decreased with age. Endocytosis by endothelial cells, which accounts for about 60% of that of the whole liver, is also unchanged with age. In contrast, a significant decrease in endocytic capacity was observed for Kupffer cells in vivo. This age-related functional decline was also observed in Kupffer cells which were isolated from rats of different ages and maintained in culture

  1. PTP1B confers liver fibrosis by regulating the activation of hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pei-Jie; Cai, Shuang-Peng; Yang, Yang; Li, Wan-Xia; Huang, Cheng; Meng, Xiao-Ming; Li, Jun, E-mail: lj@ahmu.edu.cn

    2016-02-01

    Liver fibrosis is a reversible wound-healing response to chronic hepatic injuries. Activation of hepatic stellate cells (HSCs) plays a pivotal role in the development of hepatic fibrosis. The currently accepted mechanism for the resolution of liver fibrosis is the apoptosis and inactivation of activated HSCs. Protein tyrosine phosphatase 1B (PTP1B), a prototype of non-receptor protein tyrosine phosphatase, is proved to be a vital modulator in cardiac fibrogenesis. However, the precise role of PTP1B on liver fibrosis and HSC activation is still unclear. Our study showed that the expression of PTP1B was elevated in fibrotic liver but reduced after spontaneous recovery. Moreover, stimulation of HSC-T6 cells with transforming growth factor-β1 (TGF-β1) resulted in a dose/time-dependent increase of PTP1B mRNA and protein. Co-incubation of HSC-T6 cells with PTP1B-siRNA inhibited the cell proliferation and activation induced by TGF-β1. Additionally, both mRNA and protein of PTP1B were dramatically decreased in inactivated HSCs after treated with adipogenic differentiation mixture (MDI). Over-expression of PTP1B hindered the inactivation of HSC-T6 cells induced by MDI. These observations revealed a regulatory role of PTP1B in liver fibrosis and implied PTP1B as a potential therapeutic target. - Highlights: • The expression of PTP1B in the fibrotic livers and recovery livers • The expression of PTP1B in activated and inactivated HSCs • Blockade of PTP1B inhibited the TGF-β1-induced proliferation and activation of HSCs. • Over-expression of PTP1B abolished the inactivation of HSCs induced by MDI.

  2. PTP1B confers liver fibrosis by regulating the activation of hepatic stellate cells

    International Nuclear Information System (INIS)

    Chen, Pei-Jie; Cai, Shuang-Peng; Yang, Yang; Li, Wan-Xia; Huang, Cheng; Meng, Xiao-Ming; Li, Jun

    2016-01-01

    Liver fibrosis is a reversible wound-healing response to chronic hepatic injuries. Activation of hepatic stellate cells (HSCs) plays a pivotal role in the development of hepatic fibrosis. The currently accepted mechanism for the resolution of liver fibrosis is the apoptosis and inactivation of activated HSCs. Protein tyrosine phosphatase 1B (PTP1B), a prototype of non-receptor protein tyrosine phosphatase, is proved to be a vital modulator in cardiac fibrogenesis. However, the precise role of PTP1B on liver fibrosis and HSC activation is still unclear. Our study showed that the expression of PTP1B was elevated in fibrotic liver but reduced after spontaneous recovery. Moreover, stimulation of HSC-T6 cells with transforming growth factor-β1 (TGF-β1) resulted in a dose/time-dependent increase of PTP1B mRNA and protein. Co-incubation of HSC-T6 cells with PTP1B-siRNA inhibited the cell proliferation and activation induced by TGF-β1. Additionally, both mRNA and protein of PTP1B were dramatically decreased in inactivated HSCs after treated with adipogenic differentiation mixture (MDI). Over-expression of PTP1B hindered the inactivation of HSC-T6 cells induced by MDI. These observations revealed a regulatory role of PTP1B in liver fibrosis and implied PTP1B as a potential therapeutic target. - Highlights: • The expression of PTP1B in the fibrotic livers and recovery livers • The expression of PTP1B in activated and inactivated HSCs • Blockade of PTP1B inhibited the TGF-β1-induced proliferation and activation of HSCs. • Over-expression of PTP1B abolished the inactivation of HSCs induced by MDI.

  3. Protective Effect of Astaxanthin on Liver Fibrosis through Modulation of TGF-β1 Expression and Autophagy

    Directory of Open Access Journals (Sweden)

    Miao Shen

    2014-01-01

    Full Text Available Liver fibrosis is a common pathway leading to cirrhosis and a worldwide clinical issue. Astaxanthin is a red carotenoid pigment with antioxidant, anticancer, and anti-inflammatory properties. The aim of this study was to investigate the effect of astaxanthin on liver fibrosis and its potential protective mechanisms. Liver fibrosis was induced in a mouse model using CCL4 (intraperitoneal injection, three times a week for 8 weeks, and astaxanthin was administered everyday at three doses (20, 40, and 80 mg/kg. Pathological results indicated that astaxanthin significantly improved the pathological lesions of liver fibrosis. The levels of alanine aminotransferase aspartate aminotransferase and hydroxyproline were also significantly decreased by astaxanthin. The same results were confirmed in bile duct liagtion, (BDL model. In addition, astaxanthin inhibited hepatic stellate cells (HSCs activation and formation of extracellular matrix (ECM by decreasing the expression of NF-κB and TGF-β1 and maintaining the balance between MMP2 and TIMP1. In addition, astaxanthin reduced energy production in HSCs by downregulating the level of autophagy. These results were simultaneously confirmed in vivo and in vitro. In conclusion, our study showed that 80 mg/kg astaxanthin had a significant protective effect on liver fibrosis by suppressing multiple profibrogenic factors.

  4. Action of DTPA on hepatic plutonium. II. DTPA-induced removal of monomeric plutonium from mouse liver parenchymal cells

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.; Peterson, D.P.; Lindenbaum, A.

    1978-01-01

    Liver parenchymal cells were isolated 6 and 24 hr following the administration of diethylenetriaminepentaacetic acid (DTPA, 0.25 mmole/kg) to mice previously injected with 239 Pu-citrate (4.4 μCi/kg). Isolated parenchymal cells contained 440 dpm Pu/10 6 cells at 24 hr after Pu injection, just prior to DTPA administration. The PU content decreased to 330 dpm/10 6 cells at 6 hr and 140 dpm/10 6 cells at 24 hr after DTPA administration. Thus DTPA induced a striking decrease in the Pu content of isolated liver parenchymal cells. Parenchymal cells isolated from control mice not treated with DTPA changed little in Pu content from 24 to 48 hr after Pu injection. By 24 hr after DTPA treatment, the decrease in the Pu content of isolated liver parenchymal cells could account for the DTPA-induced release of Pu from the intact liver. Thus in the liver DTPA appears to act preferentially on the Pu associated with parenchymal cells. Liver parenchymal cells isolated 6 hr after DTPA administration and containing 330 dpm Pu/10 6 cells were incubated in vitro in the absence of added DTPA. After 18 hr of incubation the cells contained 130 dpm Pu/10 6 cells. This level corresponds to the level observed in cells isolated 24 hr after DTPA administration. Cells isolated from untreated mice lost only 15% of their Pu content during a similar in vitro incubation. Thus, by 6 hr after DTPA administration to the mouse, isolated liver parenchymal cells appeared to retain their ability to release Pu in vitro with no need for additional exposure to DTPA. The physiological significance of this finding is discussed

  5. Fibropolycystic liver disease in children

    International Nuclear Information System (INIS)

    Veigel, Myka Call; Prescott-Focht, Julia; Zinati, Reza; Rodriguez, Michael G.; Shao, Lei; Moore, Charlotte A.W.; Lowe, Lisa H.

    2009-01-01

    Fibropolycystic liver diseases are a group of associated congenital disorders that present most often in childhood. These disorders include congenital hepatic fibrosis, biliary hamartomas, autosomal dominant polycystic liver disease, choledochal cysts and Caroli disease. We present a discussion and illustrations of the embryology, genetics, anatomy, pathology, imaging approach and key imaging features that distinguish fibropolycystic liver disease in children. The pathogenesis of these disorders is believed to be abnormal development of the embryonic ductal plates, which ultimately form the liver and biliary systems. An understanding of the abnormal embryogenesis helps to explain the characteristic imaging features of these disorders. (orig.)

  6. Replicative stress and alterations in cell cycle checkpoint controls following acetaminophen hepatotoxicity restrict liver regeneration.

    Science.gov (United States)

    Viswanathan, Preeti; Sharma, Yogeshwar; Gupta, Priya; Gupta, Sanjeev

    2018-03-05

    Acetaminophen hepatotoxicity is a leading cause of hepatic failure with impairments in liver regeneration producing significant mortality. Multiple intracellular events, including oxidative stress, mitochondrial damage, inflammation, etc., signify acetaminophen toxicity, although how these may alter cell cycle controls has been unknown and was studied for its significance in liver regeneration. Assays were performed in HuH-7 human hepatocellular carcinoma cells, primary human hepatocytes and tissue samples from people with acetaminophen-induced acute liver failure. Cellular oxidative stress, DNA damage and cell proliferation events were investigated by mitochondrial membrane potential assays, flow cytometry, fluorescence staining, comet assays and spotted arrays for protein expression after acetaminophen exposures. In experimental groups with acetaminophen toxicity, impaired mitochondrial viability and substantial DNA damage were observed with rapid loss of cells in S and G2/M and cell cycle restrictions or even exit in the remainder. This resulted from altered expression of the DNA damage regulator, ATM and downstream transducers, which imposed G1/S checkpoint arrest, delayed entry into S and restricted G2 transit. Tissues from people with acute liver failure confirmed hepatic DNA damage and cell cycle-related lesions, including restrictions of hepatocytes in aneuploid states. Remarkably, treatment of cells with a cytoprotective cytokine reversed acetaminophen-induced restrictions to restore cycling. Cell cycle lesions following mitochondrial and DNA damage led to failure of hepatic regeneration in acetaminophen toxicity but their reversibility offers molecular targets for treating acute liver failure. © 2018 John Wiley & Sons Ltd.

  7. Potential genotoxic and cytotoxicity of emamectin benzoate in human normal liver cells.

    Science.gov (United States)

    Zhang, Zhijie; Zhao, Xinyu; Qin, Xiaosong

    2017-10-10

    Pesticide residue inducing cancer-related health problems draw people more attention recently. Emamectin benzoate (EMB) has been widely used in agriculture around the world based on its specificity targets. Although potential risk and the molecular mechanism of EMB toxicity to human liver has not been well-characterized. Unlike well-reported toxicity upon central nervous system, potential genotoxic and cytotoxicity of EMB in human liver cell was ignored and very limited. In this study, we identify genotoxicity and cytotoxicity of EMB to human normal liver cells (QSG7701 cell line) in vitro . We demonstrate that EMB inhibited the viability of QSG7701 cells and induced the DNA damage. Established assays of cytotoxicity were performed to characterize the mechanism of EMB toxicity on QSG7701 cells. Typical chromatin condensation and DNA fragmentation indicated the apoptosis of QSG7701 cells induced by EMB. And the intracellular biochemical results demonstrated that EMB-enhanced apoptosis of QSG7701 cells concurrent with generated ROS, a loss of mitochondrial membrane potential, the cytochrome-c release, up regulate the Bax/Bcl-2 and the activation of caspase-9/-3. Our results of EMB induces the death of QSG7701 cells maybe via mitochondrial-mediated intrinsic apoptotic pathways would contribute to promote the awareness of EMB as an extensive used pesticide to human being effects and reveal the underlying mechanisms of potential genotoxic.

  8. Light microscopical demonstration and zonal distribution of parasinusoidal cells (Ito cells) in normal human liver

    DEFF Research Database (Denmark)

    Horn, T; Junge, Jette; Nielsen, O

    1988-01-01

    The parasinusoidal cells of the liver (Ito cells) were demonstrated light microscopically in autopsy specimens fixed in formalin and stained with Oil red O after dichromate treatment. The method allows examination of large samples containing numerous acini. Quantitative assessment showed a zonal ...

  9. Light microscopical demonstration and zonal distribution of parasinusoidal cells (Ito cells) in normal human liver

    DEFF Research Database (Denmark)

    Horn, T; Junge, Jette; Nielsen, O

    1988-01-01

    The parasinusoidal cells of the liver (Ito cells) were demonstrated light microscopically in autopsy specimens fixed in formalin and stained with Oil red O after dichromate treatment. The method allows examination of large samples containing numerous acini. Quantitative assessment showed a zonal...

  10. Effect of adoptive transfer or depletion of regulatory T cells on triptolide-induced liver injury

    Directory of Open Access Journals (Sweden)

    Xinzhi eWang

    2016-04-01

    Full Text Available ObjectiveThe aim of this study is to clarify the role of regulatory T cell (Treg in triptolide (TP-induced hepatotoxicity. MethodsFemale C57BL/6 mice received either adoptive transfer of Tregs or depletion of Tregs, then underwent TP administration and were sacrificed 24 hours after TP administration. Liver injury was determined according to ALT and AST levels in serum and histopathological change in liver tissue. Hepatic frequencies of Treg cells and the mRNA expression levles of transcription factor FoxP3 and RORγt, IL-10, SOCS and Notch/Notch ligand were investigated.ResultsDuring TP-induced liver injury, hepatic Treg and IL-10 decreased, while Th17 cell transcription factor RORγt, SOCS signaling and Notch signaling increased, accompanied with liver inflammation. Adoptive transfer of Tregs ameliorated the severity of TP-induced liver injury, accompanied with increased levels of hepatic Treg and IL-10. Adoptive transfer of Tregs remarkably inhibited the expression of RORγt, SOCS3, Notch1 and Notch3. On the contrary, depletion of Treg cells in TP-administered mice resulted in a notable increase of RORγt, SOCS1, SOCS3 and Notch3, while the Treg and IL-10 of liver decreased. Consistent with the exacerbation of liver injury, higher serum levels of ALT and AST were detected in Treg-depleted mice. ConclusionsThese results showed that adoptive transfer or depletion of Tregs attenuated or aggravated TP-induced liver injury, suggesting that Tregs could play important roles in the progression of liver injury. SOCS proteins and Notch signaling affected Tregs, which may contribute to the pathogenesis of TP-induced hepatotoxicity.

  11. Carcinoma-associated perisinusoidal laminin may signal tumour cell metastasis to the liver

    DEFF Research Database (Denmark)

    Wewer, U M; Albrechtsen, R

    1992-01-01

    using chain-specific monoclonal antibodies against B2 laminin. In an ex vivo assay, viable tumour cells (Panc-1 and clone A) were found to bind with remarkable specificity to frozen sections of liver tissue containing perisinusoidal laminin as opposed to liver tissues without laminin. We suggest...

  12. Human Adipose Tissue Derived Stem Cells Promote Liver Regeneration in a Rat Model of Toxic Injury

    Directory of Open Access Journals (Sweden)

    Eva Koellensperger

    2013-01-01

    Full Text Available In the light of the persisting lack of donor organs and the risks of allotransplantations, the possibility of liver regeneration with autologous stem cells from adipose tissue (ADSC is an intriguing alternative. Using a model of a toxic liver damage in Sprague Dawley rats, generated by repetitive intraperitoneal application of retrorsine and allyl alcohol, the ability of human ADSC to support the restoration of liver function was investigated. A two-thirds hepatectomy was performed, and human ADSC were injected into one remaining liver lobe in group 1 (n = 20. Injection of cell culture medium performed in group 2 (n = 20 served as control. Cyclosporine was applied to achieve immunotolerance. Blood samples were drawn weekly after surgery to determine liver-correlated blood values. Six and twelve weeks after surgery, animals were sacrificed and histological sections were analyzed. ADSC significantly raised postoperative albumin (P < 0.017, total protein (P < 0.031, glutamic oxaloacetic transaminase (P < 0.001, and lactate dehydrogenase (P < 0.04 levels compared to injection of cell culture medium alone. Transplanted cells could be found up to twelve weeks after surgery in histological sections. This study points towards ADSC being a promising alternative to hepatocyte or liver organ transplantation in patients with severe liver failure.

  13. Controlled cell morphology and liver-specific function of engineered primary hepatocytes by fibroblast layer cell densities.

    Science.gov (United States)

    Sakai, Yusuke; Koike, Makiko; Kawahara, Daisuke; Hasegawa, Hideko; Murai, Tomomi; Yamanouchi, Kosho; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Fujita, Fumihiko; Kuroki, Tamotsu; Eguchi, Susumu

    2018-03-05

    Engineered primary hepatocytes, including co-cultured hepatocyte sheets, are an attractive to basic scientific and clinical researchers because they maintain liver-specific functions, have reconstructed cell polarity, and have high transplantation efficiency. However, co-culture conditions regarding engineered primary hepatocytes were suboptimal in promoting these advantages. Here we report that the hepatocyte morphology and liver-specific function levels are controlled by the normal human diploid fibroblast (TIG-118 cell) layer cell density. Primary rat hepatocytes were plated onto TIG-118 cells, previously plated 3 days before at 1.04, 5.21, and 26.1×10 3  cells/cm 2 . Hepatocytes plated onto lower TIG-118 cell densities expanded better during the early culture period. The hepatocytes gathered as colonies and only exhibited small adhesion areas because of the pushing force from proliferating TIG-118 cells. The smaller areas of each hepatocyte result in the development of bile canaliculi. The highest density of TIG-118 cells downregulated albumin synthesis activity of hepatocytes. The hepatocytes may have undergone apoptosis associated with high TGF-β1 concentration and necrosis due to a lack of oxygen. These occurrences were supported by apoptotic chromatin condensation and high expression of both proteins HIF-1a and HIF-1b. Three types of engineered hepatocyte/fibroblast sheets comprising different TIG-118 cell densities were harvested after 4 days of hepatocyte culture and showed a complete cell sheet format without any holes. Hepatocyte morphology and liver-specific function levels are controlled by TIG-118 cell density, which helps to design better engineered hepatocytes for future applications such as in vitro cell-based assays and transplantable hepatocyte tissues. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Immunohistochemical analyses of cell cycle progression and gene expression of biliary epithelial cells during liver regeneration after partial hepatectomy of the mouse.

    Science.gov (United States)

    Fukuda, Tatsuya; Fukuchi, Tomokazu; Yagi, Shinomi; Shiojiri, Nobuyoshi

    2016-05-20

    The liver has a remarkable regeneration capacity, and, after surgical removal of its mass, the remaining tissue undergoes rapid regeneration through compensatory growth of its constituent cells. Although hepatocytes synchronously proliferate under the control of various signaling molecules from neighboring cells, there have been few detailed analyses on how biliary cells regenerate for their cell population after liver resection. The present study was undertaken to clarify how biliary cells regenerate after partial hepatectomy of mice through extensive analyses of their cell cycle progression and gene expression using immunohistochemical and RT-PCR techniques. When expression of PCNA, Ki67 antigen, topoisomerase IIα and phosphorylated histone H3, which are cell cycle markers, was immunohistochemically examined during liver regeneration, hepatocytes had a peak of the S phase and M phase at 48-72 h after resection. By contrast, biliary epithelial cells had much lower proliferative activity than that of hepatocytes, and their peak of the S phase was delayed. Mitotic figures were rarely detectable in biliary cells. RT-PCR analyses of gene expression of biliary markers such as Spp1 (osteopontin), Epcam and Hnf1b demonstrated that they were upregulated during liver regeneration. Periportal hepatocytes expressed some of biliary markers, including Spp1 mRNA and protein. Some periportal hepatocytes had downregulated expression of HNF4α and HNF1α. Gene expression of Notch signaling molecules responsible for cell fate decision of hepatoblasts to biliary cells during development was upregulated during liver regeneration. Notch signaling may be involved in biliary regeneration.

  15. Repair effect of transplantation of bone marrow mesenchymal stem cells on liver injury in severe burned rats and its mechanism

    International Nuclear Information System (INIS)

    Chen Hao; Zhou Yubo; Zhang Ying; Qin Yonggang; Guo Li; Yin Fei; Meng Chunyang; Yang Xiaoyu

    2014-01-01

    Objective: To investigate the repair effect of transplantation of bone marrow mesenchymal stem cells (BMSCs) on liver injury in severe burned rats, and to clarify its mechanism. Methods: The BMSCs of rats were isolated, cultured, amplified, identified, and labeled in vitro. 30 Wistar rats were randomly divided into normal control group (n=10), model group (n=10) and cell therapy group (n=10). The burned rat model was established. The BMSCs labeled by chlormethyl-benzamidodialkylcarbocyanine (CM-Dil) were transplanted into the rats in cell therapy group by retro-orbital intravenous injection and the saline was injected into the rats in model group. The general status of all rats were observed. The liver tissues of rats were obtained 2 weeks after transplantation, and the pathohistological changes were observed and the pathohistological scores were detected; the apoptotic rate of liver cells was detected by TUNEL method; the engraftment of BMSCs in liver tissues of the rats was observed under laser scanning confocal microscope. Results: 2 weeks after transplantation, the rats in model group were obviously malaise dispirited and the rats in cell therapy group showed obviously better, and the body weight of the rats in cell therapy group was higher than that in model group (P<0.05). The pathohistological results showed the normal liver lobules of the rats in model group disappeared, and the liver cords disordered, and some liver sinusoids dilated and congested, lymphocytes infiltrated with occasional focal aggregating, and cell edema was found, cytoplasm loose and steatosis were seen in liver tissue. However, the pathohistological changes of liver tissue of the rats in cell therapy group were significantly better than those in model group. The pathohistological score of the rats in cell therapy group was significantly lower than that in model group (P<0.05). The TUNEL staining results showed that there were lots of apoptotic liver cells in liver tissue of the rats in

  16. OPD4-positive T-cell lymphoma of the liver in systemic lupus erythematosus.

    Science.gov (United States)

    Tsutsumi, Y; Deng, Y L; Uchiyama, M; Kawano, K; Ikeda, Y

    1991-11-01

    Primary malignant lymphoma of the liver occupying the right lobe, 14 x 9 x 7 cm in size, developed in a 30-year-old man with a 4-year history of autoimmune hemolytic anemia. The diagnosis of systemic lupus erythematosus (SLE) accompanying thrombocytopenia had been made clinically 10 months earlier. The liver biopsy specimen revealed diffuse proliferation of large lymphoma cells expressing the activated helper/inducer T-cell phenotype (LCA+, UCHL1+, OPD4+, LN3+, MT1-, L26-, MB1-, Leu M1-, Ki-1-, KP1-). The lymphoma was successfully treated by chemotherapy and irradiation. Intractable thrombocytopenia provoked fatal esophageal hemorrhage. At autopsy, no lymphomatous lesion was identified, and the hepatic right lobe contained an encapsulated necrotic lesion without any viable tumor cells. The bone marrow revealed marked hyperplasia of erythroid and megakaryocytic series. Extramedullary hematopoiesis was demonstrated in the liver, spleen and lymph nodes. This is the second case of primary hepatic T-cell lymphoma associated with SLE.

  17. Methylation of Septin9 mediated by DNMT3a enhances hepatic stellate cells activation and liver fibrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuting, E-mail: wuyuting1302@sina.com; Bu, Fangtian; Yu, Haixia; Li, Wanxia; Huang, Cheng; Meng, Xiaoming; Zhang, Lei; Ma, Taotao; Li, Jun, E-mail: lj@ahmu.edu.cn

    2017-01-15

    Liver fibrosis, resulting from chronic and persistent injury to the liver, is a worldwide health problem. Advanced liver fibrosis results in cirrhosis, liver failure and even hepatocellular cancer (HCC), often eventually requiring liver transplantation, poses a huge health burden on the global community. However, the specific pathogenesis of liver fibrosis remains not fully understood. Numerous basic and clinical studies have provided evidence that epigenetic modifications, especially DNA methylation, might contribute to the activation of hepatic stellate cells (HSCs), the pivotal cell type responsible for the fibrous scar in liver. Here, reduced representation bisulfite sequencing (RRBS) and bisulfite pyrosequencing PCR (BSP) analysis identified hypermethylation status of Septin9 (Sept9) gene in liver fibrogenesis. Sept9 protein was dramatically decreased in livers of CCl4-treated mice and immortalized HSC-T6 cells exposed to TGF-β1. Nevertheless, the suppression of Sept9 could be blocked by DNMT3a-siRNA and DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine (5-azadC). Overexpressed Sept9 attenuated TGF-β1-induced expression of myofibroblast markers α-SMA and Col1a1, accompanied by up-regulation of cell apoptosis-related proteins. Conversely, RNAi-mediated silencing of Sept9 enhanced accumulation of extracellular matrix. These observations suggested that Sept9 contributed to alleviate liver fibrosis might partially through promoting activated HSCs apoptosis and this anti-fibrogenesis effect might be blocked by DNMT-3a mediated methylation of Sept9. Therefore, pharmacological agents that inhibit Sept9 methylation and increase its expression could be considered as valuable treatments for liver fibrosis. - Highlights: • This is the first report of Sept9 methylation and function in liver fibrosis. • Ectopic expression of Sept9 could block the liver fibrogenesis. • DNMT3a might be responsible for the suppression of Sept9 in liver fibrosis.

  18. Methylation of Septin9 mediated by DNMT3a enhances hepatic stellate cells activation and liver fibrogenesis

    International Nuclear Information System (INIS)

    Wu, Yuting; Bu, Fangtian; Yu, Haixia; Li, Wanxia; Huang, Cheng; Meng, Xiaoming; Zhang, Lei; Ma, Taotao; Li, Jun

    2017-01-01

    Liver fibrosis, resulting from chronic and persistent injury to the liver, is a worldwide health problem. Advanced liver fibrosis results in cirrhosis, liver failure and even hepatocellular cancer (HCC), often eventually requiring liver transplantation, poses a huge health burden on the global community. However, the specific pathogenesis of liver fibrosis remains not fully understood. Numerous basic and clinical studies have provided evidence that epigenetic modifications, especially DNA methylation, might contribute to the activation of hepatic stellate cells (HSCs), the pivotal cell type responsible for the fibrous scar in liver. Here, reduced representation bisulfite sequencing (RRBS) and bisulfite pyrosequencing PCR (BSP) analysis identified hypermethylation status of Septin9 (Sept9) gene in liver fibrogenesis. Sept9 protein was dramatically decreased in livers of CCl4-treated mice and immortalized HSC-T6 cells exposed to TGF-β1. Nevertheless, the suppression of Sept9 could be blocked by DNMT3a-siRNA and DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine (5-azadC). Overexpressed Sept9 attenuated TGF-β1-induced expression of myofibroblast markers α-SMA and Col1a1, accompanied by up-regulation of cell apoptosis-related proteins. Conversely, RNAi-mediated silencing of Sept9 enhanced accumulation of extracellular matrix. These observations suggested that Sept9 contributed to alleviate liver fibrosis might partially through promoting activated HSCs apoptosis and this anti-fibrogenesis effect might be blocked by DNMT-3a mediated methylation of Sept9. Therefore, pharmacological agents that inhibit Sept9 methylation and increase its expression could be considered as valuable treatments for liver fibrosis. - Highlights: • This is the first report of Sept9 methylation and function in liver fibrosis. • Ectopic expression of Sept9 could block the liver fibrogenesis. • DNMT3a might be responsible for the suppression of Sept9 in liver fibrosis.

  19. Applications of 1H-NMR relaxometry in experimental liver studies

    International Nuclear Information System (INIS)

    Holzmueller, P.

    1992-01-01

    Purpose of this study was to investigate applications of proton nuclear magnetic resonance ( 1 H-NMR) relaxometry in experimental medicine. Relaxometry was performed by measurements of spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation time parameters on liver biopsies up to four hours after biopsy excision. Variations of relaxation times due to species and strain, different sample handling and different liver damage models, ethionine fatty liver and paracetamol liver necrosis, were investigated. Cell integrity effects were studied on homogenized liver samples. Relaxation time parameters, especially 'main' components T 1A and T 2A of biexponential model fit, were identified to react very sensitive after tissue damages as well as to cell viability. Thus, investigation of stored liver grafts was performed in order to evaluate the possibility of a rapid liver graft viability testing method for human liver transplantation surgery by 1 H-NMR relaxometry. Another series of measurements was performed to investigate the applicability of isoflurane anesthesia for in vivo NMR experiments. This study proved the good appropriateness of isoflurane for that purpose provided that physiological monitoring and individual adjustment of anesthesia are performed. In these investigations it could be revealed that mainly T 1A and T 2A are influenced by tissue condition and that different information is inherent in these two parameters, with T 2A reflecting tissue viability and changes of tissue conditions very sensitively but rather unspecifically in respect to the damage applied. Based on these results the following future applications of 1 H-NMR relaxometry are suggested : (1) model investigations, (2) investigation of given pathologies, (3) investigation of basic requirements for in vivo NMR and (4) application in a liver graft viability testing protocol, which seems to be the most important future application of 1 H-NMR relaxometry in medicine. (author)

  20. Post-transplant lymphoproliferative disease in liver transplant recipients

    Directory of Open Access Journals (Sweden)

    Mercedes Rubio-Manzanares-Dorado

    Full Text Available Introduction: Post-transplant lymphoproliferative syndrome (PTLD is a rare and potentially life-threatening complication after liver transplantation. The aim of this study was to analyze the clinicopathologic features related to PTLD in a single institution after liver transplantation. Methods: Observational study where we have retrospectively analyzed 851 cases who underwent liver transplantation. Ten cases have developed PTLD. Their clinical-pathological characteristics and the treatment received have been analyzed. Results: PTLD incidence was 1.2% (10/851. The mean time from liver transplantation to PTLD diagnosis was 36 months (range 1.2 to 144 months. PTLD localization was extranodal in all cases, the most frequent location being intestinal. Seven cases showed a monomorphic lymphoma which in all cases was differentiated B cell lymphomas. Fifty per cent of the series were seropositive for Epstein-Barr virus. Five patients were alive at the time of the review. Among these patients, we observed three cases of complete remission and two cases of disease stabilization. The death rate was higher in the first year after diagnosis of PTLD. Conclusion: PTLD is a rare complication after liver transplantation, but it may pose a threat to the life of a liver transplant recipient. It is essential to identify patients at risk, to establish an early diagnosis and treatment that can change the outcome of the disease.

  1. Cutaneous features seen in primary liver cell (Hepatocellular ...

    African Journals Online (AJOL)

    Primary liver cell carcinoma (PLCC), predominantly hepatocellular carcinoma is a killer. In the southwestern region of Nigeria it occupies the second position, behind prostate cancer in males. Females account for about a third of diagnosed cases. Children are not spared. Over 80 % of PLCC cases present to the hospital at ...

  2. Pinworm infection masquerading as colorectal liver metastasis.

    Science.gov (United States)

    Roberts, K J; Hubscher, S; Mangat, K; Sutcliffe, R; Marudanayagam, R

    2012-09-01

    Enterobius vermicularis is responsible for a variety of diseases but rarely affects the liver. Accurate characterisation of suspected liver metastases is essential to avoid unnecessary surgery. In the presented case, following a diagnosis of rectal cancer, a solitary liver nodule was diagnosed as a liver metastasis due to typical radiological features and subsequently resected. At pathological assessment, however, a necrotic nodule containing E. vermicularis was identified. Solitary necrotic nodules of the liver are usually benign but misdiagnosed frequently as malignant due to radiological features. It is standard practice to diagnose colorectal liver metastases solely on radiological evidence. Without obtaining tissue prior to liver resection, misdiagnosis of solitary necrotic nodules of the liver will continue to occur.

  3. Drug-Induced Liver Injury: Cascade of Events Leading to Cell Death, Apoptosis or Necrosis

    Directory of Open Access Journals (Sweden)

    Andrea Iorga

    2017-05-01

    Full Text Available Drug-induced liver injury (DILI can broadly be divided into predictable and dose dependent such as acetaminophen (APAP and unpredictable or idiosyncratic DILI (IDILI. Liver injury from drug hepatotoxicity (whether idiosyncratic or predictable results in hepatocyte cell death and inflammation. The cascade of events leading to DILI and the cell death subroutine (apoptosis or necrosis of the cell depend largely on the culprit drug. Direct toxins to hepatocytes likely induce oxidative organelle stress (such as endoplasmic reticulum (ER and mitochondrial stress leading to necrosis or apoptosis, while cell death in idiosyncratic DILI (IDILI is usually the result of engagement of the innate and adaptive immune system (likely apoptotic, involving death receptors (DR. Here, we review the hepatocyte cell death pathways both in direct hepatotoxicity such as in APAP DILI as well as in IDILI. We examine the known signaling pathways in APAP toxicity, a model of necrotic liver cell death. We also explore what is known about the genetic basis of IDILI and the molecular pathways leading to immune activation and how these events can trigger hepatotoxicity and cell death.

  4. A Pilot Study of Mesenchymal Stem Cell Therapy for Acute Liver Allograft Rejection

    OpenAIRE

    Shi, Ming; Liu, Zhenwen; Wang, Ying; Xu, Rounan; Sun, Yanling; Zhang, Min; Yu, Xi; Wang, Hongbo; Meng, Lingzhan; Su, Haibin; Jin, Lei; Wang, Fu‐Sheng

    2017-01-01

    Abstract Acute allograft rejection remains common after liver transplantation despite modern immunosuppressive agents. In addition, the long‐term side effects of these regimens, including opportunistic infections, are challenging. This study evaluated the safety and clinical feasibility of umbilical cord‐derived mesenchymal stem cell (UC‐MSC) therapy in liver transplant patients with acute graft rejection. Twenty‐seven liver allograft recipients with acute rejection were randomly assigned int...

  5. Silent information regulator 1 (SIRT1) ameliorates liver fibrosis via promoting activated stellate cell apoptosis and reversion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuting, E-mail: wuyuting1302@sina.com; Liu, Xuejiao; Zhou, Qun; Huang, Cheng; Meng, Xiaoming; Xu, Fengyun; Li, Jun, E-mail: lj@ahmu.edu.cn

    2015-12-01

    SIRT1 (silent information regulator 1), a conserved NAD +-dependent histone deacetylase, is closely related with various biological processes. Moreover, the important role of SIRT1 in alcoholic liver disease, nonalcoholic fatty liver and HCC had been widely reported. Recently, a novel role of SIRT1 was uncovered in organ fibrosis diseases. Here, we investigated the inhibitory effect of SIRT1 in liver fibrogenesis. SIRT1 protein was dramatically decreased in CCl4-treated mice livers. Stimulation of LX-2 cells with TGF-β1 also resulted in a significant suppression of SIRT1 protein. Nevertheless, TGF-β1-induced LX-2 cell activation was inhibited by SIRT1 plasmid, and this was accompanied by up-regulation of cell apoptosis-related proteins. Overexpression of SIRT1 also attenuated TGF-β1-induced expression of myofibroblast markers α-SMA and COL1a. However, the important characteristic of the recovery of liver fibrosis is not only the apoptosis of activated stellate cells but also the reversal of the myofibroblast-like phenotype to a quiescent-like phenotype. Restoration of SIRT1 protein was observed in the in vivo spontaneously liver fibrosis reversion model and in vitro MDI (isobutylmethylxanthine, dexamethasone, and insulin)-induced reversed stellate cells, and forced expression of SIRT1 also promoted the reversal of activated stellate cells. Furthermore, lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) was increased in liver fibrosis. RNAi-mediated suppression of MALAT1 resulted in a decrease of myofibroblast markers and restoration of SIRT1 protein. These observations suggested that SIRT1 contributed to apoptosis and reversion of activated LX-2 cells and SIRT1 might be regulated by MALAT1 in liver fibrosis. Therefore, SIRT1 could be considered as a valuable therapeutic target for translational studies of liver fibrosis. - Highlights: • This is the first report of SIRT1 expression and function in liver fibrogenesis and reversion.

  6. Gastrointestinal toxicity, systemic inflammation, and liver biochemistry in allogeneic hematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Jordan, Karina; Pontoppidan, Peter; Uhlving, Hilde Hylland

    2017-01-01

    Liver toxicity is frequently seen in relation to allogeneic hematopoietic stem cell transplantation (HSCT), but pathogenesis and the risk factors are poorly understood. The purpose of this study was to investigate associations between liver toxicity, gastrointestinal toxicity, and levels of immun...

  7. Alleviation of lipopolysaccharide/d-galactosamine-induced liver injury in leukocyte cell-derived chemotaxin 2 deficient mice

    Directory of Open Access Journals (Sweden)

    Akinori Okumura

    2017-12-01

    Full Text Available Leukocyte cell-derived chemotaxin 2 (LECT2 is a secreted pleiotropic protein that is mainly produced by the liver. We have previously shown that LECT2 plays an important role in the pathogenesis of inflammatory liver diseases. Lipopolysaccharide/d-galactosamine (LPS/d-GalN-induced acute liver injury is a known animal model of fulminant hepatic failure. Here we found that this hepatic injury was alleviated in LECT2-deficient mice. The levels of TNF-α and IFN-γ, which mediate this hepatitis, had significantly decreased in these mice, with the decrease in IFN-γ production notably greater than that in TNF-α. We therefore analyzed IFN-γ-producing cells in liver mononuclear cells. Flow cytometric analysis showed significantly reduced IFN-γ production in hepatic NK and NKT cells in LECT2-deficient mice compared with in wild-type mice. We also demonstrated a decrease in IFN-γ production in LECT2-deficient mice after systemic administration of recombinant IL-12, which is known to induce IFN-γ in NK and NKT cells. These results indicate that a decrease of IFN-γ production in NK and NKT cells was involved in the alleviation of LPS/d-GalN-induced liver injury in LECT2-deficient mice.

  8. Nuclear medicine study of regeneration process of the liver after partial hepatectomy in normal rats

    International Nuclear Information System (INIS)

    Nomura, Yasushi

    1990-01-01

    To evaluate regeneration of the liver in rats after partial hepatectomy based on Higgins' and Anderson's method, the present study reports using the morphological and radionuclide technique. The adult Wistar rats over 8 weeks of age were prepared in this study and were injected intravenously with either 99m Tc-N-(2,6 dimethylphenylcarbamoylmethyl) iminodiacetic acid ( 99m Tc-HIDA) or 99m Tc-phytate. Using Fishback equation, the ratio of wet weight liver regeneration was approximately 80% at 14 days after partial hepatectomy. On pathology, the microscopical findings were as follows: congestion and hepatocytes swelling on day 1; diffuse fat deposition and nuclear division on day 2; decreased hepatocytes swelling, fat deposition, and regular alignment of the hepatocytes on day 5; appearance of normal liver on day 7-14. The uptake and excretion ratio of the hepatocytes using 99m Tc-HIDA as a radionuclide technique recovered to the value prior to partial hepatectomy on day 3, and also the hepatic accumulation coefficient of Kupffer cells using 99m Tc-phytate recoverd on day 4. In conclusion, it was found that the functional recovery employed 3-4 days after partial hepatectomy. The present study using two radiopharmaceuticals describes that the radionuclide techniques can facilitate to evaluate the manifest pathological alterations of hepatocytes and Kupffer cells after partial hepatectomy. (author)

  9. Expression pattern of thymosin beta 4 in the adult human liver

    Directory of Open Access Journals (Sweden)

    S. Nemolato

    2011-09-01

    Full Text Available Thymosin beta-4 (Tβ4 is a member of beta-thymosins, a family of small peptides involved in polymerization of G-actin, and in many critical biological processes including apoptosis, cell migration, angiogenesis, and fibrosis. Previous studies in the newborn liver did not reveal any significant reactivity for Tβ4 during the intrauterine life. The aim of the present study was to investigate by immunohistochemistry Tβ4 expression in the adult normal liver. Thirty-five human liver samples, including 11 needle liver biopsies and 24 liver specimens obtained at autopsy, in which no pathological change was detected at the histological examination, were immunostained utilizing an anti-Tβ4 commercial antibody. Tβ4 was detected in the hepatocytes of all adult normal livers examined. A zonation of Tβ4 expression was evident in the vast majority of cases. Immunostaining was preferentially detected in zone 3, while a minor degree of reactivity was detected in periportal hepatocytes (zone 1. At higher power, Tβ4-reactive granules appeared mainly localized at the biliary pole of hepatocytes. In cases with a strong immunostaining, even perinuclear areas and the sinusoidal pole of hepatocytes appeared interested by immunoreactivity for Tβ4. The current work first evidences a strong diffuse expression of Tβ4 in the adult human liver, and adds hepatocytes to the list of human cells able to synthesize large amounts of Tβ4 in adulthood. Moreover, Tβ4 should be added to the liver proteins characterized by a zonate expression pattern, in a descending gradient from the terminal vein to the periportal areas of the liver acinus. Identifying the intimate role played by this peptide intracellularly and extracellularly, in physiology and in different liver diseases, is a major challenge for future research focusing on Tβ4.

  10. Building blocks of the GIPU, Italian Group of Ultrastructural Pathology.

    Science.gov (United States)

    Papa, V; Costa, R; Cenacchi, G

    2016-06-01

    The Italian Group of Ultrastructural Pathology, GIPU, is a scientific organization committed to promote the art and science of Electron Microscopy (EM) in the pathology field in Italy, sharing its professional work with a public audience. The history of the GIPU goes back to 1990s when a founder group set up the Italian Group of Ultrastructural Diagnostic (GIDU) in Milan. The central focus of annual meetings was on EM, transmission and scanning one, about interesting cases in which it was instrumental in diagnosis. In the 1990s, ultrastructure was still the gold standard for cell/tissue morphology, biology, biochemistry, diagnostic pathology, and played an important role in tailored medicine. So, especially transmission EM, could play a critical role in the diagnosis of various diseases as in human as in animals. Best topics of the annual scientific meetings of the group were kidney, muscle, heart, and liver pathology, infertility, neuropathology, respiratory diseases, skin diseases, storage diseases, tumor pathology, infectious diseases, parasitology, veterinary pathology and more. Nowadays, EM is a method whose importance for diagnosis and pathology is well established: it is still essential in several pathologies, helpful in others, and welcome implemented in eclectic research pathology. Omission of EM likely makes the studies suboptimal and wasteful. So, from 2007 the name of the group has been changed to the Italian Group of Ultrastructural Pathology (GIPU) to favor broader applications of EM also to pathology research field. During last decades, GIDU/GIPU has interconnected with international (Society for Ultrastructural Pathology) and european (European Society of Pathology and Joint Meeting with the European Electron Microscopy Working Group) scientific society, according its statute. By 1991, GIPU has had 40 members: membership in this Group is still open and welcome to all pathologists, PhD, electron microscopy technologists, pathology trainees, and

  11. A tryptophan derivative, ITE, enhances liver cell metabolic functions in vitro

    Science.gov (United States)

    Zhang, Xiaoqian; Lu, Juan; He, Bin; Tang, Lingling; Liu, Xiaoli; Zhu, Danhua; Cao, Hongcui; Wang, Yingjie; Li, Lanjuan

    2017-01-01

    Cell encapsulation provides a three-dimensional support by incorporating isolated cells into microcapsules with the goal of simultaneously maintaining cell survival and function, as well as providing active transport for a bioreactor in vitro similarly to that observed in vivo. However, the biotransformation and metabolic functions of the encapsulated cells are not satisfactory for clinical applications. For this purpose, in this study, hepatoma-derived Huh7 cells/C3A cells were treated with 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), an endogenous non-toxic ligand for aryl hydrocarbon receptor, in monolayer cultures and on microspheres. The mRNA and protein levels, as well as the metabolic activities of drug metabolizing enzymes, albumin secretion and urea synthesis were determined. When the Huh7 and C3A cells cultured in a monolayer on two-dimensional surfaces, ITE enhanced the protein levels and the metabolic activities of the major cytochrome P450 (CYP450) enzymes, CYP1A1, CYP1A2, CYP3A4 and CYP1B1, and slightly increased albumin secretion and urea synthesis. Moreover, when cultured on microspheres, ITE also substantially increased the protein levels and metabolic activities of CYP1A1, CYP1A2, CYP3A4 and CYP1B1 in both liver cell lines. On the whole, our findings indicate that ITE enhances the enzymatic activities of major CYP450 enzymes and the metabolic functions of liver cells cultured in monolayer or on microspheres, indicating that it may be utilized to improve the functions of hepatocytes. Thus, it may be used in the future for the treatment of liver diseases. PMID:27959388

  12. A study on the effect of the injected absolute ethanol and hot-saline in the normal liver of rat

    International Nuclear Information System (INIS)

    Rhim, Hyun Chul; Hong, Eun Kyung; Cho, On Koo; Song, Soon Young; Koh, Byung Hee; Seo, Heung Suk; Hahm, Chang Kok; Park, Hwon Kyum

    1995-01-01

    To compare the effect of local injection therapy with absolute ethanol and hot-saline in the normal liver of rat. An experimental study was performed with the normal liver of 52 rats. The resected livers were pathologically analyzed on three days, one week, two weeks, and four weeks after injection of 0.1 ml absolute ethanol and hot-saline. The assessment was done in view of 1) main pathologic changes on time, 2) pattern of inflammatory cell infiltration, 3) measurement of necrotic area, 4) effect on vascular and biliary tracts adjacent to necrotic area, and 5) extrahepatic peritoneal adhesion. The main pathologic changes were acute necrosis with inflammation for three days group and secondary regenerative fibrosis in all groups. The degree of necrosis was significantly more severe in absolute ethanol injection group, demonstrating larger necrotic area, than hot-saline injection group. The effect on vessels and bile ducts adjacent to the necrotic area was almost not seen in both groups. The extrahepatic peritoneal adhesion was noted in both groups, but the degree was more prominent in the absolute ethanol injection group than hot-saline injection group. Absolute ethanol is superior to hot-saline in the necrotic effect of percutaneous injection therapy. However, hot-saline could be applied in case of the borderline area between mass and adjacent normal liver or the subcapsular mass

  13. A Complex Interplay between Wnt/β-Catenin Signalling and the Cell Cycle in the Adult Liver

    Directory of Open Access Journals (Sweden)

    Angélique Gougelet

    2012-01-01

    Full Text Available Canonical Wnt signalling, governed by its effector β-catenin, is known for a long time as playing an important role in development, tissue homeostasis, and cancer. In the liver, it was unravelled as both an oncogenic pathway involved in a subset of liver cancers and a physiological signalling identified as the “zonation-keeper” of the quiescent liver lobule. This duality has encouraged to explore the role of canonical Wnt in liver regeneration and liver-cell proliferation mainly using murine genetic models of β-catenin overactivation or inactivation. These studies definitely integrate Wnt signalling within the hepatic network driving regeneration and proliferation. We will review here the current knowledge concerning the mitogenic effect of Wnt, to switch on its specific role in the liver, which is quiescent but with a great capacity to regenerate. The duality of β-catenin signalling, associated both with liver quiescence and liver-cell proliferation, will be brought forward.

  14. A Complex Interplay between Wnt/β-Catenin Signalling and the Cell Cycle in the Adult Liver.

    Science.gov (United States)

    Gougelet, Angélique; Colnot, Sabine

    2012-01-01

    Canonical Wnt signalling, governed by its effector β-catenin, is known for a long time as playing an important role in development, tissue homeostasis, and cancer. In the liver, it was unravelled as both an oncogenic pathway involved in a subset of liver cancers and a physiological signalling identified as the "zonation-keeper" of the quiescent liver lobule. This duality has encouraged to explore the role of canonical Wnt in liver regeneration and liver-cell proliferation mainly using murine genetic models of β-catenin overactivation or inactivation. These studies definitely integrate Wnt signalling within the hepatic network driving regeneration and proliferation. We will review here the current knowledge concerning the mitogenic effect of Wnt, to switch on its specific role in the liver, which is quiescent but with a great capacity to regenerate. The duality of β-catenin signalling, associated both with liver quiescence and liver-cell proliferation, will be brought forward.

  15. Gastrointestinal toxicity, systemic inflammation, and liver biochemistry in allogeneic hematopoietic stem cell transplantation

    Science.gov (United States)

    Liver toxicity is frequently seen in relation to allogeneic hematopoietic stem cell transplantation (HSCT), but pathogenesis and the risk factors are poorly understood. The purpose of this study was to investigate associations between liver toxicity, gastrointestinal toxicity, and levels of immune-r...

  16. Etanercept blocks inflammatory responses orchestrated by TNF-α to promote transplanted cell engraftment and proliferation in rat liver

    Science.gov (United States)

    Viswanathan, Preeti; Kapoor, Sorabh; Kumaran, Vinay; Joseph, Brigid; Gupta, Sanjeev

    2014-01-01

    Engraftment of transplanted cells is critical for liver-directed cell therapy but most transplanted cells are rapidly cleared from liver sinusoids by proinflammatory cytokines/chemokines/receptors after activation of neutrophils or Kupffer cells. To define whether TNF-α served roles in cell-transplantation-induced hepatic inflammation, we used TNF-α antagonist, etanercept, for studies in syngeneic rat hepatocyte transplantation systems. After cell transplantation, multiple cytokines/chemokines/receptors were overexpressed, whereas etanercept prior to cell transplantation essentially normalized these responses. Moreover, ETN downregulated cell transplantation-induced intrahepatic release of secretory cytokines, such as high mobility group box 1. These effects of etanercept decreased cell transplantation-induced activation of neutrophils but not of Kupffer cells. Transplanted cell engraftment improved by several-fold in etanercept-treated animals. These gains in cell engraftment were repeatedly realized after pretreatment of animals with etanercept before multiple cell transplantation sessions. Transplanted cell numbers did not change over time indicating absence of cell proliferation after etanercept alone. By contrast, in animals preconditioned with retrorsine and partial hepatectomy, cell transplantation after etanercept pretreatment significantly accelerated liver repopulation compared with control rats. We concluded that TNF-α played a major role in orchestrating cell transplantation-induced inflammation through regulation of multiple cytokines/chemokines/receptor expression. As TNF-α antagonism by etanercept decreased transplanted cell clearance, improved cell engraftment and accelerated liver repopulation, this pharmacological approach to control hepatic inflammation will help optimize clinical strategies for liver cell therapy. PMID:24844924

  17. Development of the liver during the fetal period

    International Nuclear Information System (INIS)

    Albay, S.; Malas, Mehmet A.; Cetin, E.; Cankara, N.; Karahan, N.

    2005-01-01

    To investigate the development of the liver in human fetuses aged between 9-40 weeks. We studied 121 human fetuses (62 males, 59 females) with no external anomalies aged between 9-40 postmenstrual weeks during 2003-2004 in Suleyman Demirel University, Isparta, Turkey. The fetuses were divided into four groups as 1st, 2nd and 3rd trimesters and full term fetuses. We measured fetal weight, length, width, thickness, and volume of the liver. We established localization of the liver and its relation with the neighboring structures, its ligaments, and size of itself and its lobes, shapes of the liver and the localization of the porta hepatis on the visceral surface of the liver. We found significant correlations between the size, weight, volume of the liver, sizes of its lobe and gestational age (p 0.05). However, the proportion of the distance between the porta hepatis and the upper margin to the distance between the porta hepatis and the lower margin decreased significantly with gestational age (p<0.05). Type 3 liver (square) was the most commonly observed type of fetal liver (53%). Our opinion is that the parameters obtained can be useful to diagnose pathologies of liver development and anomalies concerning several branches of medicine such as anatomy, pathologic anatomy (fetopathology), forensic medicine, medical imaging, obstetrics and pediatrics. (author)

  18. Inflammatory pseudotumor of the liver: CT findings

    International Nuclear Information System (INIS)

    Lee, Kang Mo; Yoon, Kwon Ha; Rho, Ji Young; Park, Ki Han; Yun, Ki Jung; Kim, Chang Keun; Won, Jong Jin; Ha, Hyun Kwon; Suh, Jae Hee; Auh, Yong Ho

    1998-01-01

    To evaluate the CT features of inflammatory pseudotumor of the liver with histopathologic correlation. The CT features of 14 cases (ten patients) with pathologically proven inflammatory hepatic pseudotumor were retrospectively analyzed and correlated with resected and biopsy specimens. The size of lesions ranged between 2.0 and 7.0cm (mean, 3.7 cm); On unenhanced CT, the masses were seen as ill-defined hypodense lesions, while on contrast-enhanced CT they were heterogeneous and multiseptated, with enhancement of internal septa and peripheral wall (n=3D10). In four lesions, central low density and peripheral homogeneous enhancement were seen. On histopathological correlation, the central hypoattenuated area corresponded to chronic inflammatory cell infiltrates with foamy histiocytes, plasmacytes, and lymphocytes, while the hyperattenuated peripheral wall and internal septa represented dense fibrosis. In patients in whon CT shows a heterogeneous enhancing mass, inflammatory pseudotumor of the liver should be included in differential diagnosis

  19. Thinking outside the liver: induced pluripotent stem cells for hepatic applications.

    Science.gov (United States)

    Subba Rao, Mekala; Sasikala, Mitnala; Nageshwar Reddy, D

    2013-06-14

    The discovery of induced pluripotent stem cells (iPSCs) unraveled a mystery in stem cell research, after identification of four re-programming factors for generating pluripotent stem cells without the need of embryos. This breakthrough in generating iPSCs from somatic cells has overcome the ethical issues and immune rejection involved in the use of human embryonic stem cells. Hence, iPSCs form a great potential source for developing disease models, drug toxicity screening and cell-based therapies. These cells have the potential to differentiate into desired cell types, including hepatocytes, under in vitro as well as under in vivo conditions given the proper microenvironment. iPSC-derived hepatocytes could be useful as an unlimited source, which can be utilized in disease modeling, drug toxicity testing and producing autologous cell therapies that would avoid immune rejection and enable correction of gene defects prior to cell transplantation. In this review, we discuss the induction methods, role of reprogramming factors, and characterization of iPSCs, along with hepatocyte differentiation from iPSCs and potential applications. Further, we discuss the location and detection of liver stem cells and their role in liver regeneration. Although tumor formation and genetic mutations are a cause of concern, iPSCs still form a promising source for clinical applications.

  20. Recellularization of rat liver: An in vitro model for assessing human drug metabolism and liver biology.

    Directory of Open Access Journals (Sweden)

    Matthew J Robertson

    Full Text Available Liver-like organoids that recapitulate the complex functions of the whole liver by combining cells, scaffolds, and mechanical or chemical cues are becoming important models for studying liver biology and drug metabolism. The advantages of growing cells in three-dimensional constructs include enhanced cell-cell and cell-extracellular matrix interactions and preserved cellular phenotype including, prevention of de-differentiation. In the current study, biomimetic liver constructs were made via perfusion decellularization of rat liver, with the goal of maintaining the native composition and structure of the extracellular matrix. We optimized our decellularization process to produce liver scaffolds in which immunogenic residual DNA was removed but glycosaminoglycans were maintained. When the constructs were recellularized with rat or human liver cells, the cells remained viable, capable of proliferation, and functional for 28 days. Specifically, the cells continued to express cytochrome P450 genes and maintained their ability to metabolize a model drug, midazolam. Microarray analysis showed an upregulation of genes involved in liver regeneration and fibrosis. In conclusion, these liver constructs have the potential to be used as test beds for studying liver biology and drug metabolism.

  1. Paxillin: a crossroad in pathological cell migration

    Directory of Open Access Journals (Sweden)

    Ana María López-Colomé

    2017-02-01

    Full Text Available Abstract Paxilllin is a multifunctional and multidomain focal adhesion adapter protein which serves an important scaffolding role at focal adhesions by recruiting structural and signaling molecules involved in cell movement and migration, when phosphorylated on specific Tyr and Ser residues. Upon integrin engagement with extracellular matrix, paxillin is phosphorylated at Tyr31, Tyr118, Ser188, and Ser190, activating numerous signaling cascades which promote cell migration, indicating that the regulation of adhesion dynamics is under the control of a complex display of signaling mechanisms. Among them, paxillin disassembly from focal adhesions induced by extracellular regulated kinase (ERK-mediated phosphorylation of serines 106, 231, and 290 as well as the binding of the phosphatase PEST to paxillin have been shown to play a key role in cell migration. Paxillin also coordinates the spatiotemporal activation of signaling molecules, including Cdc42, Rac1, and RhoA GTPases, by recruiting GEFs, GAPs, and GITs to focal adhesions. As a major participant in the regulation of cell movement, paxillin plays distinct roles in specific tissues and developmental stages and is involved in immune response, epithelial morphogenesis, and embryonic development. Importantly, paxillin is also an essential player in pathological conditions including oxidative stress, inflammation, endothelial cell barrier dysfunction, and cancer development and metastasis.

  2. Automatic classification of liver scintigram patterns by computer

    International Nuclear Information System (INIS)

    Csernay, L.; Csirik, J.

    1976-01-01

    The pattern recognition of projection is one of the problems in the automatic evaluation of scintigrams. An algorythm and a computerized programme with the ability to classify the shapes of liver scintigrams has been elaborated by the authors. The programme differentiates not only normal and pathologic basic forms, but performs the identification of nine normal forms described by the literature. To pattern recognition structural and local parameters of the picture were defined. A detailed mechanism of the programme is given in their reports. The programme can classify 55 out of 60 actual liver scintigrams, a result different from subjective definition obtained in 5 cases. These were normal pattern of liver scans. No wrong definition was obtained when classifying normal and pathologic patterns

  3. Radioprotective role of H2S/CSE pathway in Chang liver cells

    International Nuclear Information System (INIS)

    Pan Yan; Ye Shuang; Yuan Dexiao; Zhang Jianghong; Bai Yang; Shao Chunlin

    2012-01-01

    Radiation-induced liver cell damage may be life-threatening. Here, we investigated whether hydrogen sulfide (H 2 S)/cystathionine γ-lyase (CSE) pathway could serve the protective role toward radiation in normal human liver cells. Our data showed that pretreatment of cells with H 2 S donor, sodium hydrosulfide (NaHS) significantly attenuated radiation induced micronuclei formation and improved cell viability. However, the use of DL-propargylglycine (PPG), a potent inhibitor of CSE, markedly enhanced the cell-killing effect induced by radiation. Exposure of cells to 2 Gy γ-radiation led to significant increases of the endogenous H 2 S content. The mRNA and protein expressions of CSE also increased after radiation in a time-dependent manner, while the expression of cystathionine β-synthase (CBS), another endogenous H 2 S synthetase, did not change significantly. Notably, radiation induced production of reactive oxygen species (ROS) was significantly reversed by the pretreatment of NaHS, while blockage of CSE activity resulted in an enhanced ROS production in irradiated cells. Moreover, NaHS markedly suppressed radiation-induced phosphorylation of P53, decrease of Bcl-2/Bax, and activity of nuclear factor kappaB (NF-κB). In conclusion, our finding demonstrates that H 2 S/CSE pathway plays a radioprotection role by inhibiting radiation-induced ROS production, P53 phosphorylation, NF-κB activation and decrease of Bcl-2/Bax, indicating that modulation of H 2 S may be a novel protection strategy for liver radiation injury in radiotherapy.

  4. Induction of Inducible Nitric Oxide Synthase by Lipopolysaccharide and the Influences of Cell Volume Changes, Stress Hormones and Oxidative Stress on Nitric Oxide Efflux from the Perfused Liver of Air-Breathing Catfish, Heteropneustes fossilis.

    Directory of Open Access Journals (Sweden)

    Mahua G Choudhury

    in significant increase of NO efflux accompanied with decrease of hydration status/cell volume of hepatic cells. However, the reasons for these cell volume-sensitive changes of NO efflux from the liver of singhi catfish are not fully understood with the available data. Nonetheless, enhanced or decreased production of NO from the perfused liver under osmotic stress, in presence of stress hormones and oxidative stress reflected its potential role in cellular homeostasis and also for better adaptations under environmental challenges. This is the first report of osmosensitive and oxidative stress-induced changes of NO production and efflux from the liver of any teleosts. Further, the level of expression of iNOS in this singhi catfish could also serve as an important indicator to determine the pathological status of the external environment.

  5. The effect of apple (Malus Domestica juice on the damage of mice liver cells due to paracetamol treatment

    Directory of Open Access Journals (Sweden)

    Anthony Hartanto

    2009-07-01

    Full Text Available The liver is an important organ for body metabolism process. Liver disease is one of serious health problems in developing countries including Indonesia. Liver damage is caused by viral infection, toxic agent exposure (medications, alcohol, hormonal disturbance, neoplasm and autoimmune diseases. The use of high dose paracetamol to reduce pain also leads to liver damage. Apple (Malus domestica juice is a natural anti oxidant agent. This laboratory experimental study was performed to discover the effect of giving apple juice on damaged cell regeneration due to the use of paracetamol. The study was performed in 21 male mice from Swiss-Webster strain that were divided into group I, II, and III. Group, I served as control while group II received 1 mg/ml paracetamol dose for 5 days and Group III received 1 mg/ml paracetamol for 5 days and 1 ml of apple juice on the 5th to 10th day. The observation of the mice liver cells was conducted using a light microscope with 400x magnification to get the number of necrotic liver cells per view field. The results of this study showed a difference in the number of necrotic liver cells between Group II and III. ANOVA statistical test ( = 0.05 concluded that apple juice significantly helps regeneration process in damaged liver cells caused by paracetamol.

  6. Effect of polysaccharides from Angelica sinensis on Bcl-2 and Bax protein expression of irradiated liver cells

    International Nuclear Information System (INIS)

    Sun Yuanlin; Tang Jian; Gu Xiaohong; Li Deyuan

    2009-01-01

    Objective: To investigate the effect of polysaccharides from Angelica sinensis (ASP3) on Bcl-2 and Bax protein expression of irradiated liver cells from mice. Methods: Bcl-2 and Bax protein expression of liver cells in vitro exposed to 2.0 Gy rays were examined by using immunohistochemistry method. Results: The expression of apoptosis-accelerating protein Bax in the irradiation group was enhanced obviously (70.83%), while apoptosis inhibiting protein Bcl-2 tended to decline (55.60%), with the statistically significant difference (P <0.01) compared with that of the control. ASP3 pretreatment could regulate Bcl-2 and Bax protein expression of liver cells, inhibiting Bax protein expression(64.14/58.37%) and increasing Bcl-2 protein expression(59.21%/ 67.45%). The differences between the high dosage (100 mg/L of ASP3) and the irradiation group were statistically significant (P<0.05). Conclusions: ASP3 pretreatment could prohibit the apoptosis of radiation- damaged liver cells due to abnormal expression of Bcl-2 and Bax, and reduce the cell apoptosis by increasing Bcl-2/Bax protein expression so as to enhance the radiation endurance of liver cells. (authors)

  7. Natural killer T (NKT cells accelerate Shiga toxin type 2 (Stx2 pathology in mice

    Directory of Open Access Journals (Sweden)

    Fumiko eObata

    2015-04-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC is a leading cause of childhood renal disease He-molytic Uremic Syndrome (HUS. The involvement of renal cytokines and chemokines is sus-pected to play a critical role in disease progression. In current article, we tested the hypothesis that NKT cells are involved in Stx2-induced pathology in vivo. To address this hypothesis we compared Stx2 toxicity in WT and CD1 knockout (KO mice. In CD1KO mice, which lack nat-ural killer T (NKT cells, Stx2-induced pathologies such as weight loss, renal failure, and death were delayed. In WT mice, Stx2-specific selective increase in urinary albumin occurs in later time points, and this was also delayed in NKT cell deficient mice. NKT cell-associated cytokines such as IL-2, IL-4, IFN-γ and IL-17 were detected in kidney lysates of Stx2-injected WT mice with the peak around 36 h after Stx2 injection. In CD1KO, there was a delay in the kinetics, and increases in these cytokines were observed 60 h post Stx2 injection. These data suggest that NKT cells accelerate Stx2-induced pathology in mouse kidneys. To determine the mechanism by which NKT cells promote Stx2-associated disease, in vitro studies were performed using murine renal cells. We found that murine glomerular endothelial cells and podocytes express functional CD1d molecules and can present exogenous antigen to NKT cells. Moreover, we observed the direct interaction between Stx2 and the receptor Gb3 on the surface of mouse renal cells by 3D STORM-TIRF which provides single molecule imaging. Collectively, these data suggest that Stx2 binds to Gb3 on renal cells and leads to aberrant CD1d-mediated NKT cell activation. Therefore, strategies targeting NKT cells could have a significant impact on Stx2-associated renal pathology in STEC disease.

  8. Natural killer T (NKT) cells accelerate Shiga toxin type 2 (Stx2) pathology in mice.

    Science.gov (United States)

    Obata, Fumiko; Subrahmanyam, Priyanka B; Vozenilek, Aimee E; Hippler, Lauren M; Jeffers, Tynae; Tongsuk, Methinee; Tiper, Irina; Saha, Progyaparamita; Jandhyala, Dakshina M; Kolling, Glynis L; Latinovic, Olga; Webb, Tonya J

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) is a leading cause of childhood renal disease Hemolytic Uremic Syndrome (HUS). The involvement of renal cytokines and chemokines is suspected to play a critical role in disease progression. In current article, we tested the hypothesis that NKT cells are involved in Stx2-induced pathology in vivo. To address this hypothesis we compared Stx2 toxicity in WT and CD1 knockout (KO) mice. In CD1KO mice, which lack natural killer T (NKT) cells, Stx2-induced pathologies such as weight loss, renal failure, and death were delayed. In WT mice, Stx2-specific selective increase in urinary albumin occurs in later time points, and this was also delayed in NKT cell deficient mice. NKT cell-associated cytokines such as IL-2, IL-4, IFN-γ, and IL-17 were detected in kidney lysates of Stx2-injected WT mice with the peak around 36 h after Stx2 injection. In CD1KO, there was a delay in the kinetics, and increases in these cytokines were observed 60 h post Stx2 injection. These data suggest that NKT cells accelerate Stx2-induced pathology in mouse kidneys. To determine the mechanism by which NKT cells promote Stx2-associated disease, in vitro studies were performed using murine renal cells. We found that murine glomerular endothelial cells and podocytes express functional CD1d molecules and can present exogenous antigen to NKT cells. Moreover, we observed the direct interaction between Stx2 and the receptor Gb3 on the surface of mouse renal cells by 3D STORM-TIRF which provides single molecule imaging. Collectively, these data suggest that Stx2 binds to Gb3 on renal cells and leads to aberrant CD1d-mediated NKT cell activation. Therefore, strategies targeting NKT cells could have a significant impact on Stx2-associated renal pathology in STEC disease.

  9. MR imaging of renal cell carcinoma: associations among signal intensity, tumor enhancement, and pathologic findings.

    OpenAIRE

    Yabuki, Takayuki; Togami, Izumi; Kitagawa, Takahiro; Sasai, Nobuya; Tsushima, Tomoyasu; Shirasaki, Yoshinori; Hiraki, Yoshio

    2003-01-01

    The purpose of this study was to compare the MR characteristics of renal cell carcinomas against histologic findings and to assess the correlations among signal intensity, tumor enhancement, and pathologic findings. Fifty-four patients (56 lesions) were examined by MR imaging and then underwent partial or radical nephrectomy. The pathologic diagnosis of all lesions was renal cell carcinoma. All MR examinations were performed as dynamic studies using the same 1.5-T scanner. MR characteristics ...

  10. Estradiol inhibits hepatic stellate cell area and collagen synthesis in the chicken liver.

    Science.gov (United States)

    Nishimura, Shotaro; Teshima, Akifumi; Kawabata, Fuminori; Tabata, Shoji

    2017-11-01

    Hepatic stellate cells (HSCs) are the main collagen-producing cells in the liver. The HSC area and amount of collagen fibers are different between male and female chickens. This study was performed to confirm the effect of estradiol on collagen synthesis in the growing chicken liver. Blood estradiol levels in chicks were compared at 4 and 8 weeks of age, and the collagen fibril network in liver tissue was observed at 8 weeks by scanning electron microscopy. Intraperitoneal administrations of estradiol and tamoxifen to male and female chicks, respectively, were performed daily from 5 to 8 weeks of age. The areas of HSCs and collagen contents were measured in the liver tissue. The blood estradiol level was higher in females than in males, and the collagen fibril network was denser in males than in females at 8 weeks of age. Estradiol administration in males induced decreases in the HSC area and collagen content of the liver. Conversely, tamoxifen administration in females induced an increase in the HSC area but did not facilitate collagen synthesis. Based on these results, estradiol inhibits the area and collagen synthesis of HSCs in the growing chicken liver under normal physiological conditions. © 2017 Japanese Society of Animal Science.

  11. Oval cell response is attenuated by depletion of liver resident macrophages in the 2-AAF/partial hepatectomy rat.

    Directory of Open Access Journals (Sweden)

    Shuai Xiang

    Full Text Available BACKGROUND/AIMS: Macrophages are known to play an important role in hepatocyte mediated liver regeneration by secreting inflammatory mediators. However, there is little information available on the role of resident macrophages in oval cell mediated liver regeneration. In the present study we aimed to investigate the role of macrophages in oval cell expansion induced by 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH in rats. METHODOLOGY/PRINCIPAL FINDINGS: We depleted macrophages in the liver of 2-AAF/PH treated rats by injecting liposome encapsulated clodronate 48 hours before PH. Regeneration of remnant liver mass, as well as proliferation and differentiation of oval cells were measured. We found that macrophage-depleted rats suffered higher mortality and liver transaminase levels. We also showed that depletion of macrophages yielded a significant decrease of EPCAM and PCK positive oval cells in immunohistochemical stained liver sections 9 days after PH. Meanwhile, oval cell differentiation was also attenuated as a result of macrophage depletion, as large foci of small basophilic hepatocytes were observed by day 9 following hepatectomy in control rats whereas they were almost absent in macrophage depleted rats. Accordingly, real-time polymerase chain reaction analysis showed lower expression of albumin mRNA in macrophage depleted livers. Then we assessed whether macrophage depletion may affect hepatic production of stimulating cytokines for liver regeneration. We showed that macrophage-depletion significantly inhibited hepatic expression of tumor necrosis factor-α and interleukin-6, along with a lack of signal transducer and activator of transcription 3 phosphorylation during the early period following hepatectomy. CONCLUSIONS: These data indicate that macrophages play an important role in oval cell mediated liver regeneration in the 2-AAF/PH model.

  12. [Establishment of a D-galactosamine/lipopolysaccharide induced acute-on-chronic liver failure model in rats].

    Science.gov (United States)

    Liu, Xu-hua; Chen, Yu; Wang, Tai-ling; Lu, Jun; Zhang, Li-jie; Song, Chen-zhao; Zhang, Jing; Duan, Zhong-ping

    2007-10-01

    To establish a practical and reproducible animal model of human acute-on-chronic liver failure for further study of the pathophysiological mechanism of acute-on-chronic liver failure and for drug screening and evaluation in its treatment. Immunological hepatic fibrosis was induced by human serum albumin in Wistar rats. In rats with early-stage cirrhosis (fibrosis stage IV), D-galactosamine and lipopolysaccharide were administered. Mortality and survival time were recorded in 20 rats. Ten rats were sacrificed at 4, 8, and 12 hours. Liver function tests and plasma cytokine levels were measured after D-galactosamine/lipopolysaccharide administration and liver pathology was studied. Cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Most of the rats treated with human albumin developed cirrhosis and fibrosis, and 90% of them died from acute liver failure after administration of D-galactosamine/lipopolysaccharide, with a mean survival time of (16.1+/-3.7) hours. Liver histopathology showed massive or submassive necrosis of the regenerated nodules, while fibrosis septa were intact. Liver function tests were compatible with massive necrosis of hepatocytes. Plasma level of TNFalpha increased significantly, parallel with the degree of the hepatocytes apoptosis. Plasma IL-10 levels increased similarly as seen in patients with acute-on-chronic liver failure. We established an animal model of acute-on-chronic liver failure by treating rats with human serum albumin and later with D-galactosamine and lipopolysaccharide. TNFalpha-mediated liver cell apoptoses plays a very important role in the pathogenesis of acute liver failure.

  13. A Novel Small-molecule WNT Inhibitor, IC-2, Has the Potential to Suppress Liver Cancer Stem Cells.

    Science.gov (United States)

    Seto, Kenzo; Sakabe, Tomohiko; Itaba, Noriko; Azumi, Junya; Oka, Hiroyuki; Morimoto, Minoru; Umekita, Yoshihisa; Shiota, Goshi

    2017-07-01

    The presence of cancer stem cells (CSCs) contributes to metastasis, recurrence, and resistance to chemo/radiotherapy in hepatocellular carcinoma (HCC). The WNT signaling pathway is reportedly linked to the maintenance of stemness of CSCs. In the present study, in order to eliminate liver CSCs and improve the prognosis of patients with HCC, we explored whether small-molecule compounds targeting WNT signaling pathway suppress liver CSCs. The screening was performed using cell proliferation assay and reporter assay. We next investigated whether these compounds suppress liver CSC properties by using flow cytometric analysis and sphere-formation assays. A mouse xenograft model transplanted with CD44-positive HuH7 cells was used to examine the in vivo antitumor effect of IC-2. In HuH7 human HCC cells, 10 small-molecule compounds including novel derivatives, IC-2 and PN-3-13, suppressed cell viability and WNT signaling activity. Among them, IC-2 significantly reduced the CD44-positive population, also known as liver CSCs, and dramatically reduced the sphere-forming ability of both CD44-positive and CD44-negative HuH7 cells. Moreover, CSC marker-positive populations, namely CD90-positive HLF cells, CD133-positive HepG2 cells, and epithelial cell adhesion molecule-positive cells, were also reduced by IC-2 treatment. Finally, suppressive effects of IC-2 on liver CSCs were also observed in a xenograft model using CD44-positive HuH7 cells. The novel derivative of small-molecule WNT inhibitor, IC-2, has the potential to suppress liver CSCs and can serve as a promising therapeutic agent to improve the prognosis of patients with HCC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused 3D Porous Polymer Scaffold for Liver Tissue Engineering

    DEFF Research Database (Denmark)

    Hemmingsen, Mette; Muhammad, Haseena Bashir; Mohanty, Soumyaranjan

    A huge shortage of liver organs for transplantation has motivated the research field of tissue engineering to develop bioartificial liver tissue and even a whole liver. The goal of NanoBio4Trans is to create a vascularized bioartificial liver tissue, initially as a liver-support system. Due...... to limitations of primary hepatocytes regarding availability and maintenance of functionality, stem cells and especially human induced pluripotent stem cells (hIPS cells) are an attractive cell source for liver tissue engineering. The aim of this part of NanoBio4Trans is to optimize culture and hepatic...... differentiation of hIPS-derived definitive endoderm (DE) cells in a 3D porous polymer scaffold built-in a perfusable bioreactor. The use of a microfluidic bioreactor array enables the culture of 16 independent tissues in one experimental run and thereby an optimization study to be performed....

  15. Liver Development, Regeneration, and Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Janet W. C. Kung

    2010-01-01

    Full Text Available The identification of putative liver stem cells has brought closer the previously separate fields of liver development, regeneration, and carcinogenesis. Significant overlaps in the regulation of these processes are now being described. For example, studies in embryonic liver development have already provided the basis for directed differentiation of human embryonic stem cells and induced pluripotent stem cells into hepatocyte-like cells. As a result, the understanding of the cell biology of proliferation and differentiation in the liver has been improved. This knowledge can be used to improve the function of hepatocyte-like cells for drug testing, bioartificial livers, and transplantation. In parallel, the mechanisms regulating cancer cell biology are now clearer, providing fertile soil for novel therapeutic approaches. Recognition of the relationships between development, regeneration, and carcinogenesis, and the increasing evidence for the role of stem cells in all of these areas, has sparked fresh enthusiasm in understanding the underlying molecular mechanisms and has led to new targeted therapies for liver cirrhosis and primary liver cancers.

  16. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxia; Cui, Ruina [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Xuejiang [State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029 (China); Hu, Jiayue [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Dai, Jiayin, E-mail: daijy@ioz.ac.cn [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China)

    2016-08-05

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  17. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    International Nuclear Information System (INIS)

    Zhang, Hongxia; Cui, Ruina; Guo, Xuejiang; Hu, Jiayue; Dai, Jiayin

    2016-01-01

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  18. Targeting Alpha-Fetoprotein (AFP)-MHC Complex with CAR T-Cell Therapy for Liver Cancer.

    Science.gov (United States)

    Liu, Hong; Xu, Yiyang; Xiang, Jingyi; Long, Li; Green, Shon; Yang, Zhiyuan; Zimdahl, Bryan; Lu, Jingwei; Cheng, Neal; Horan, Lucas H; Liu, Bin; Yan, Su; Wang, Pei; Diaz, Juan; Jin, Lu; Nakano, Yoko; Morales, Javier F; Zhang, Pengbo; Liu, Lian-Xing; Staley, Binnaz K; Priceman, Saul J; Brown, Christine E; Forman, Stephen J; Chan, Vivien W; Liu, Cheng

    2017-01-15

    The majority of tumor-specific antigens are intracellular and/or secreted and therefore inaccessible by conventional chimeric antigen receptor (CAR) T-cell therapy. Given that all intracellular/secreted proteins are processed into peptides and presented by class I MHC on the surface of tumor cells, we used alpha-fetoprotein (AFP), a specific liver cancer marker, as an example to determine whether peptide-MHC complexes can be targets for CAR T-cell therapy against solid tumors. We generated a fully human chimeric antigen receptor, ET1402L1-CAR (AFP-CAR), with exquisite selectivity and specificity for the AFP 158-166 peptide complexed with human leukocyte antigen (HLA)-A*02:01. We report that T cells expressing AFP-CAR selectively degranulated, released cytokines, and lysed liver cancer cells that were HLA-A*02:01 + /AFP + while sparing cells from multiple tissue types that were negative for either expressed proteins. In vivo, intratumoral injection of AFP-CAR T cells significantly regressed both Hep G2 and AFP 158 -expressing SK-HEP-1 tumors in SCID-Beige mice (n = 8 for each). Moreover, intravenous administration of AFP-CAR T cells in Hep G2 tumor-bearing NSG mice lead to rapid and profound tumor growth inhibition (n = 6). Finally, in an established intraperitoneal liver cancer xenograft model, AFP-CAR T cells showed robust antitumor activity (n = 6). This study demonstrates that CAR T-cell immunotherapy targeting intracellular/secreted solid tumor antigens can elicit a potent antitumor response. Our approach expands the spectrum of antigens available for redirected T-cell therapy against solid malignancies and offers a promising new avenue for liver cancer immunotherapy. Clin Cancer Res; 23(2); 478-88. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. TRAIL enhances paracetamol-induced liver sinusoidal endothelial cell death in a Bim- and Bid-dependent manner

    Science.gov (United States)

    Badmann, A; Langsch, S; Keogh, A; Brunner, T; Kaufmann, T; Corazza, N

    2012-01-01

    Paracetamol (acetaminophen, APAP) is a universally used analgesic and antipyretic agent. Considered safe at therapeutic doses, overdoses cause acute liver damage characterized by centrilobular hepatic necrosis. One of the major clinical problems of paracetamol-induced liver disease is the development of hemorrhagic alterations. Although hepatocytes represent the main target of the cytotoxic effect of paracetamol overdose, perturbations within the endothelium involving morphological changes of liver sinusoidal endothelial cells (LSECs) have also been described in paracetamol-induced liver disease. Recently, we have shown that paracetamol-induced liver damage is synergistically enhanced by the TRAIL signaling pathway. As LSECs are constantly exposed to activated immune cells expressing death ligands, including TRAIL, we investigated the effect of TRAIL on paracetamol-induced LSEC death. We here demonstrate for the first time that TRAIL strongly enhances paracetamol-mediated LSEC death with typical features of apoptosis. Inhibition of caspases using specific inhibitors resulted in a strong reduction of cell death. TRAIL appears to enhance paracetamol-induced LSEC death via the activation of the pro-apoptotic BH3-only proteins Bid and Bim, which initiate the mitochondrial apoptotic pathway. Taken together this study shows that the liver endothelial layer, mainly LSECs, represent a direct target of the cytotoxic effect of paracetamol and that activation of TRAIL receptor synergistically enhances paracetamol-induced LSEC death via the mitochondrial apoptotic pathway. TRAIL-mediated acceleration of paracetamol-induced cell death may thus contribute to the pathogenesis of paracetamol-induced liver damage. PMID:23254290

  20. Pathologic highlights of dengue hemorrhagic fever in 13 autopsy cases from Myanmar.

    Science.gov (United States)

    Aye, Khin Saw; Charngkaew, Komgrid; Win, Ne; Wai, Kyaw Zin; Moe, Kyaw; Punyadee, Nuntaya; Thiemmeca, Somchai; Suttitheptumrong, Aroonroong; Sukpanichnant, Sanya; Prida, Malasit; Halstead, Scott B

    2014-06-01

    Vascular permeability, thrombocytopenia, liver pathology, complement activation, and altered hemostasis accompanying a febrile disease are the hallmarks of the dengue hemorrhagic fever/dengue shock syndrome, a major arthropod-borne viral disease that causes significant morbidity and mortality throughout tropical countries. We studied tissues from 13 children who died of acute dengue hemorrhagic fever/dengue shock syndrome at the Childrens' Hospital, Yangon, Myanmar. Dengue viral RNA from each of the 4 dengue viruses (DENVs) was detected by reverse transcriptase polymerase chain reaction in 11 cases, and dengue viral proteins (envelope, NS1, or NS3) were detected in 1 or more tissues from all 13 cases. Formalin-fixed and frozen tissues were studied for evidence of virus infection using monoclonal antibodies against DENV structural and nonstructural antigens (E, NS1, and nonsecreting NS3). In the liver, DENV infection occurred in hepatocytes and Kupffer cells but not in endothelial cells. Liver damage was associated with deposition on hepatocytes of complement components of both classical and alternative pathways. Evidence of dengue viral replication was observed in macrophage-like cells in spleens and lymph nodes. No dengue antigens were detected in endothelial cells in any organ. Germinal centers of the spleen and lymph nodes showed a marked reduction in the number of lymphocytes that were replaced by eosinophilic deposits, which contained dengue antigens as well as immunoglobulins, and complement components (C3, C1q, and C9). The latter findings had previously been reported but overlooked as a diagnostic feature. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Evaluation of rat liver apoptotic and necrotic cell death after cold storage using UW, HTK, and Celsior

    NARCIS (Netherlands)

    Straatsburg, Irene H.; Abrahamse, Salomon L.; Song, Shao W.; Hartman, Robin J.; van Gulik, Thomas M.

    2002-01-01

    Background. The benefit of Celsior in liver graft preservation is controversial. In the isolated perfused rat liver model, we compared the effects of Celsior, University of Wisconsin (UW), and histidine-tryptophan-ketoglutarate (HTK) preservation solutions on liver cell death. Methods. Rat livers

  2. Low level arsenic promotes progressive inflammatory angiogenesis and liver blood vessel remodeling in mice

    International Nuclear Information System (INIS)

    Straub, Adam C.; Stolz, Donna B.; Vin, Harina; Ross, Mark A.; Soucy, Nicole V.; Klei, Linda R.; Barchowsky, Aaron

    2007-01-01

    The vascular effects of arsenic in drinking water are global health concerns contributing to human disease worldwide. Arsenic targets the endothelial cells lining blood vessels, and endothelial cell activation or dysfunction may underlie the pathogenesis of both arsenic-induced vascular diseases and arsenic-enhanced tumorigenesis. The purpose of the current studies was to demonstrate that exposing mice to drinking water containing environmentally relevant levels of arsenic promoted endothelial cell dysfunction and pathologic vascular remodeling. Increased angiogenesis, neovascularization, and inflammatory cell infiltration were observed in Matrigel plugs implanted in C57BL/6 mice following 5-week exposures to 5-500 ppb arsenic [Soucy, N.V., Mayka, D., Klei, L.R., Nemec, A.A., Bauer, J.A., Barchowsky, A., 2005. Neovascularization and angiogenic gene expression following chronic arsenic exposure in mice. Cardiovasc.Toxicol 5, 29-42]. Therefore, functional in vivo effects of arsenic on endothelial cell function and vessel remodeling in an endogenous vascular bed were investigated in the liver. Liver sinusoidal endothelial cells (LSEC) became progressively defenestrated and underwent capillarization to decrease vessel porosity following exposure to 250 ppb arsenic for 2 weeks. Sinusoidal expression of PECAM-1 and laminin-1 proteins, a hallmark of capillarization, was also increased by 2 weeks of exposure. LSEC caveolin-1 protein and caveolae expression were induced after 2 weeks of exposure indicating a compensatory change. Likewise, CD45/CD68-positive inflammatory cells did not accumulate in the livers until after LSEC porosity was decreased, indicating that inflammation is a consequence and not a cause of the arsenic-induced LSEC phenotype. The data demonstrate that the liver vasculature is an early target of pathogenic arsenic effects and that the mouse liver vasculature is a sensitive model for investigating vascular health effects of arsenic

  3. The thin-section CT, pathological and clinical findings of peripheral small squamous cell lung carcinomas

    International Nuclear Information System (INIS)

    Yamamoto, Takahito; Saito, Haruhiro; Kondo, Tetsuro

    2010-01-01

    We analyzed thin-section CT, pathological, and clinical findings of peripheral lung squamous cell carcinomas, with diameters of less than 20 mm and compared these findings with solid type adenocarcinomas. CT findings of polygonal shapes, notches, pleural thickness, and cavities are more frequently found in squamous cell carcinomas than in adenocarcinomas. The pathological types can be classified in two groups: Solid types, Scirrhous types. The 5 year survival rate after resection is 64.5%, which is poorer than survival rate for solid type adenocarcinomas. It is vital to diagnose and treat peripheral squamous cell carcinomas as early as possible. (author)

  4. Human mesenchymal stem cells suppress donor CD4(+) T cell proliferation and reduce pathology in a humanized mouse model of acute graft-versus-host disease.

    Science.gov (United States)

    Tobin, L M; Healy, M E; English, K; Mahon, B P

    2013-05-01

    Acute graft-versus-host disease (aGVHD) is a life-threatening complication following allogeneic haematopoietic stem cell transplantation (HSCT), occurring in up to 30-50% of patients who receive human leucocyte antigen (HLA)-matched sibling transplants. Current therapies for steroid refractory aGVHD are limited, with the prognosis of patients suboptimal. Mesenchymal stem or stromal cells (MSC), a heterogeneous cell population present in many tissues, display potent immunomodulatory abilities. Autologous and allogeneic ex-vivo expanded human MSC have been utilized to treat aGVHD with promising results, but the mechanisms of therapeutic action remain unclear. Here a robust humanized mouse model of aGVHD based on delivery of human peripheral blood mononuclear cells (PBMC) to non-obese diabetic (NOD)-severe combined immunodeficient (SCID) interleukin (IL)-2rγ(null) (NSG) mice was developed that allowed the exploration of the role of MSC in cell therapy. MSC therapy resulted in the reduction of liver and gut pathology and significantly increased survival. Protection was dependent upon the timing of MSC therapy, with conventional MSC proving effective only after delayed administration. In contrast, interferon (IFN)-γ-stimulated MSC were effective when delivered with PBMC. The beneficial effect of MSC therapy in this model was not due to the inhibition of donor PBMC chimerism, as CD45(+) and T cells engrafted successfully in this model. MSC therapy did not induce donor T cell anergy, FoxP3(+) T regulatory cells or cause PBMC apoptosis in this model; however, it was associated with the direct inhibition of donor CD4(+) T cell proliferation and reduction of human tumour necrosis factor-α in serum. © 2012 British Society for Immunology.

  5. 24-nor-ursodeoxycholic acid ameliorates inflammatory response and liver fibrosis in a murine model of hepatic schistosomiasis.

    Science.gov (United States)

    Sombetzki, Martina; Fuchs, Claudia D; Fickert, Peter; Österreicher, Christoph H; Mueller, Michaela; Claudel, Thierry; Loebermann, Micha; Engelmann, Robby; Langner, Cord; Sahin, Emine; Schwinge, Dorothee; Guenther, Nina D; Schramm, Christoph; Mueller-Hilke, Brigitte; Reisinger, Emil C; Trauner, Michael

    2015-04-01

    Intrahepatic granuloma formation and fibrosis characterize the pathological features of Schistosoma mansoni infection. Based on previously observed substantial anti-fibrotic effects of 24-nor-ursodeoxycholic acid (norUDCA) in Abcb4/Mdr2(-/-) mice with cholestatic liver injury and biliary fibrosis, we hypothesized that norUDCA improves inflammation-driven liver fibrosis in S. mansoni infection. Adult NMRI mice were infected with 50 S. mansoni cercariae and after 12 weeks received either norUDCA- or ursodeoxycholic acid (UDCA)-enriched diet (0.5% wt/wt) for 4 weeks. Bile acid effects on liver histology, serum biochemistry, key regulatory cytokines, hepatic hydroxyproline content as well as granuloma formation were compared to naive mice and infected controls. In addition, effects of norUDCA on primary T-cell activation/proliferation and maturation of the antigen-presenting-cells (dendritic cells, macrophages) were determined in vitro. UDCA as well as norUDCA attenuated the inflammatory response in livers of S. mansoni infected mice, but exclusively norUDCA changed cellular composition and reduced size of hepatic granulomas as well as TH2-mediated hepatic fibrosis in vivo. Moreover, norUDCA affected surface expression level of major histocompatibility complex (MHC) class II of macrophages and dendritic cells as well as activation/proliferation of T-lymphocytes in vitro, whereas UDCA had no effect. This study demonstrates pronounced anti-inflammatory and anti-fibrotic effects of norUDCA compared to UDCA in S. mansoni induced liver injury, and indicates that norUDCA directly represses antigen presentation of antigen presenting cells and subsequent T-cell activation in vitro. Therefore, norUDCA represents a promising drug for the treatment of this important cause of liver fibrosis. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  6. Concomitant apoptosis and regeneration of liver cells as a mechanism of liver-tumor promotion by β-naphthoflavone involving TNFα-signaling due to oxidative cellular stress in rats

    International Nuclear Information System (INIS)

    Kuwata, Kazunori; Shibutani, Makoto; Hayashi, Hitomi; Shimamoto, Keisuke; Hayashi, Shim-Mo; Suzuki, Kazuhiko; Mitsumori, Kunitoshi

    2011-01-01

    β-Naphthoflavone (BNF) is a strong inducer of cytochrome P450 1A enzymes, and exerts liver tumor-promoting activity through enhancement of oxidative stress responses in rats. This study investigated the role of the tissue environment surrounding hepatocellular preneoplastic lesions in the early tumor-promotion stage by BNF, using enzymatically modified isoquercitrin (EMIQ) as an anti-oxidative chemopreventive agent. Male F344 rats were fed a diet containing BNF (0.5%) for 6 weeks, with or without EMIQ (0.2%) in the drinking water, 2 weeks after initiation with N-diethylnitrosamine, and were subjected to two-thirds partial hepatectomy 1 week after starting BNF-promotion. BNF-treatment increased concentrations of liver thiobarbituric acid-reactive substances, single liver cells expressing glutathione S-transferase placental form or heme oxygenase (HO)-1, and concomitant apoptosis and proliferation of liver cells. Transcript upregulation of anti-oxidative enzymes (Aldh1a1 and Nqo1), cell cycle-related molecules (Cdc20 and Cdkn2b) and inflammation-related molecules including proinflammatory cytokines (Ccl2, Col1a1, Il6, Nos2 and Serpine1) was also evident. Furthermore, BNF increased HO-1-expressing Kupffer cells and liver cells expressing tumor necrosis factor receptor 1 (TNFR1) and the TNFR1-associated death domain. Most of these BNF-induced fluctuations disappeared or were suppressed by EMIQ in conjunction with suppression of tumor-promotion. Tnf transcript levels with BNF were also suppressed by EMIQ. These results suggest that BNF-induced oxidative stress causes single liver cell toxicity, allowing subsequent concomitant apoptosis and regeneration involving inflammatory responses including TNFα-signaling, contributing to tumor promotion. Kupffer cells may act to protect against inflammatory stimuli induced as a result of oxidative cellular stress by BNF, causing proinflammatory cytokine level fluctuations.

  7. Liver Immunology

    Science.gov (United States)

    Bogdanos, Dimitrios P.; Gao, Bin; Gershwin, M. Eric

    2014-01-01

    The liver is the largest organ in the body and is generally regarded by non-immunologists as not having lymphoid function. However, such is far from accurate. This review highlights the importance of the liver as a lymphoid organ. Firstly, we discuss experimental data surrounding the role of liver as a lymphoid organ. The liver facilitates a tolerance rather than immunoreactivity, which protects the host from antigenic overload of dietary components and drugs derived from the gut and is also instrumental to fetal immune tolerance. Loss of liver tolerance leads to autoaggressive phenomena which if are not controlled by regulatory lymphoid populations may lead to the induction of autoimmune liver diseases. Liver-related lymphoid subpopulations also act as critical antigen-presenting cells. The study of the immunological properties of liver and delineation of the microenvironment of the intrahepatic milieu in normal and diseased livers provides a platform to understand the hierarchy of a series of detrimental events which lead to immune-mediated destruction of the liver and the rejection of liver allografts. The majority of emphasis within this review will be on the normal mononuclear cell composition of the liver. However, within this context, we will discus select, but not all, immune mediated liver disease and attempt to place these data in the context of human autoimmunity. PMID:23720323

  8. Isolation of primary human hepatocytes from normal and diseased liver tissue: a one hundred liver experience.

    Directory of Open Access Journals (Sweden)

    Ricky H Bhogal

    2011-03-01

    Full Text Available Successful and consistent isolation of primary human hepatocytes remains a challenge for both cell-based therapeutics/transplantation and laboratory research. Several centres around the world have extensive experience in the isolation of human hepatocytes from non-diseased livers obtained from donor liver surplus to surgical requirement or at hepatic resection for tumours. These livers are an important but limited source of cells for therapy or research. The capacity to isolate cells from diseased liver tissue removed at transplantation would substantially increase availability of cells for research. However no studies comparing the outcome of human hepatocytes isolation from diseased and non-diseased livers presently exist. Here we report our experience isolating human hepatocytes from organ donors, non-diseased resected liver and cirrhotic tissue. We report the cell yields and functional qualities of cells isolated from the different types of liver and demonstrate that a single rigorous protocol allows the routine harvest of good quality primary hepatocytes from the most commonly accessible human liver tissue samples.

  9. Diffuse fatty infiltration of the liver: Pitfalls in computed tomography diagnosis

    International Nuclear Information System (INIS)

    Loh, Y.H.; Dunn, G.D.

    1997-01-01

    The presence of a fatty liver often complicates the interpretation of abdominal computed tomography (CT). Abnormalities in or adjacent to the liver, including dilated bile ducts, liver masses and subphrenic collections, may be masked by the fatty liver. Furthermore, normal structures may simulate pathological conditions. Five cases are presented to illustrate some of these diagnostic pitfalls. (authors)

  10. The influence of TLR4 agonist lipopolysaccharides on hepatocellular carcinoma cells and the feasibility of its application in treating liver cancer.

    Science.gov (United States)

    Gu, Junsheng; Sun, Ranran; Shen, Shen; Yu, Zujiang

    2015-01-01

    This study was designed to explore the influence of Toll-like receptor 4 (TLR4) agonist lipopolysaccharides (LPS) on liver cancer cell and the feasibility to perform liver cancer adjuvant therapy. Human liver cancer cell lines HepG2, H7402, and PLC/PRF/5 were taken as models, and the expression of TLRs mRNA was detected by real time-polymerase chain reaction method semiquantitatively. WST-1 method was used to detect the influence of LPS on the proliferation ability of liver cancer cells; propidium iodide (PI) single staining and Annexin V/PI double staining were used to test the influence of LPS on the cell cycle and apoptosis, respectively, on human liver cancer cell line H7402. Fluorescent quantitative polymerase chain reaction and Western blot method were used to determine the change of expression of Cyclin D1. The results demonstrated that most TLRs were expressed in liver cancer cells; stimulating TLR4 by LPS could upregulate TLR4 mRNA and the protein level, activate NF-κB signaling pathway downstream of TLR4, and mediate the generation of inflammatory factors IL-6, IL-8, and TNF-α; LPS was found to be able to strengthen the proliferation ability of liver cancer cells, especially H7402 cells; the expression of Cyclin D1 rose and H7402 cells were promoted to transit from G1 stage to S stage under the stimulation of LPS, but cell apoptosis was not affected. It was also found that LPS was able to activate signal transducer and activator of transcription -3 (STAT3) signaling pathway in H7402 cells and meanwhile significantly increase the initiation activity of STAT3; proliferation promoting effect of LPS to liver cancer cells remarkably lowered once STAT3 was blocked or inhibited. Thus, TLR4 agonist LPS is proved to be able to induce liver cancer cells to express inflammation factors and mediate liver cancer cell proliferation and generation of multidrug resistance by activating the cyclooxygenase-2/prostaglandin signal axis as well as the STAT3 pathway.

  11. In vivo measurements of relaxation process in the human liver by MRI. The role of respiratory gating/triggering

    DEFF Research Database (Denmark)

    Thomsen, C; Henriksen, O; Ring, P

    1988-01-01

    In vivo estimation of relaxation processes in the liver by magnetic resonance imaging (MRI) may be helpful for characterization of various pathological conditions in the liver. However, such measurements may be significantly hampered by movement of the liver with the respiration. The effect...... of synchronization of data acquisition to the respiratory cycle on measured T1- and T2-relaxation curves was studied in normal subjects, patients with diffuse liver disease, and patients with focal liver pathology. Multi spin echo sequences with five different repetition times were used. The measurements were...... carried out with and without respiratory gating/triggering. In the healthy subjects as well as in the patients with diffuse liver diseases respiratory synchronization did not alter the obtained relaxation curves. However, in the patients with focal pathology the relaxation curves were significantly...

  12. Radioimmunotherapy of small cell lung cancer xenograft mice with a 90Y anti-ROBO1 monoclonal antibody: Pathological study of effects on tumor and normal organs

    International Nuclear Information System (INIS)

    Fujiwara, K.; Koyama, K.; Kitada, T.; Takahashi, M.; Momose, T.; Suga, K.

    2015-01-01

    Full text of publication follows. ROBO1 is a membrane protein that is concerned about axon guidance. It is reported that ROBO1 contributes to tumor metastasis and angio genesis. ROBO1 is specifically expressed at high levels in small cell lung cancer (SCLC). In this study, we performed radioimmunotherapy (RIT) to SCLC models, and analyzed pathological alteration of tumor and organs. Methods: For the biodistribution study, 111 In-DOTA anti-ROBO1 IgG (about 370 kBq, 111 In anti-ROBO1) was injected into NCI-H69 xenograft mice via tail vein. To evaluate antitumor effect, RIT study was performed. 90 Y-DOTA anti-ROBO1 IgG (about 7.4 MBq, 90 Y anti-ROBO1) was injected. The experiments measured tumor volume, mouse weights and blood cell counts periodically. The tumors and organs (liver, kidney, intestine, spleen, femoral and sternum) of mice were obtained, and histopathologic analysis were carried out. Results: as a result of biodistribution study, the specific accumulation in the tumor of 111 In anti-ROBO1 was observed. Liver, kidney, spleen and lung showed comparatively high accumulation of 111 In anti-ROBO1. In the RIT study, 90 Y anti-ROBO1 significantly reduced tumor volume compared with original volume and increased median survival time to 58 days (p<0.01, versus saline, 28 days), while 90 Y anti-ROBO1 induced transient pancytopenia. Histopathologic analysis of tumors and organs further validated the therapeutic efficacy and the systemic toxicity of 90 Y anti-ROBO1. In day 7 when tumor volume reduced to 60% compared with original volume, irreversible nuclear denaturation and fibrosis were observed. The percentage of TUNEL-positive cells increased to 11.4%±5.1 in the day 7 (p<0.01, versus control, 4.14%±1.4), which showed increase of DNA fragmentation and apoptosis in the tumor tissues. Normal organs excluding spleen and sternum showed no significant injury. In day 7 post injection, spleen showed transient reduction of hematopoietic cells. Hematopoietic cells in

  13. Increase of infiltrating monocytes in the livers of patients with chronic liver diseases.

    Science.gov (United States)

    Huang, Rui; Wu, Hongyan; Liu, Yong; Yang, Chenchen; Pan, Zhiyun; Xia, Juan; Xiong, Yali; Wang, Guiyang; Sun, Zhenhua; Chen, Jun; Yan, Xiaomin; Zhang, Zhaoping; Wu, Chao

    2016-01-01

    Infiltrating monocytes have been demonstrated to contribute to tissue damage in experimental models of liver injury and fibrosis. However, less is known about monocyte infiltration in the livers of patients with chronic liver diseases (CLD). In the present study, we demonstrated that CD68+ hepatic macrophages and MAC387+ infiltrating monocytes were significantly increased in the livers of CLD patients with different etiologies as compared with normal liver tissue. In addition, CLD patients with higher inflammatory grading scores had more CD68+ macrophages and MAC387+ monocytes infiltration in their livers compared to those with lower scores. Significantly more MAC387+ infiltrating monocytes were found in the liver tissue of CLD patients with higher fibrotic staging scores compared to those with lower scores. Monocyte chemoattractant protein-1 (MCP-1) expression was significantly increased in the livers of CLD patients with different etiologies. MCP-1 staining scores were significantly positively associated with the numbers of MAC387+ infiltrating monocytes in CLD patients. Taken together, our results demonstrate that infiltrating monocytes may play a pathological role in exacerbating chronic liver inflammation and fibrosis in CLD. MCP-1 may be involved in the monocyte infiltration and progression of liver inflammation and fibrosis in CLD.

  14. A preliminary study for constructing a bioartificial liver device with induced pluripotent stem cell-derived hepatocytes

    Directory of Open Access Journals (Sweden)

    Iwamuro Masaya

    2012-12-01

    Full Text Available Abstract Background Bioartificial liver systems, designed to support patients with liver failure, are composed of bioreactors and functional hepatocytes. Immunological rejection of the embedded hepatocytes by the host immune system is a serious concern that crucially degrades the performance of the device. Induced pluripotent stem (iPS cells are considered a desirable source for bioartificial liver systems, because patient-derived iPS cells are free from immunological rejection. The purpose of this paper was to test the feasibility of a bioartificial liver system with iPS cell-derived hepatocyte-like cells. Methods Mouse iPS cells were differentiated into hepatocyte-like cells by a multi-step differentiation protocol via embryoid bodies and definitive endoderm. Differentiation of iPS cells was evaluated by morphology, PCR assay, and functional assays. iPS cell-derived hepatocyte-like cells were cultured in a bioreactor module with a pore size of 0.2 μm for 7 days. The amount of albumin secreted into the circulating medium was analyzed by ELISA. Additionally, after a 7-day culture in a bioreactor module, cells were observed by a scanning electron microscope. Results At the final stage of the differentiation program, iPS cells changed their morphology to a polygonal shape with two nucleoli and enriched cytoplasmic granules. Transmission electron microscope analysis revealed their polygonal shape, glycogen deposition in the cytoplasm, microvilli on their surfaces, and a duct-like arrangement. PCR analysis showed increased expression of albumin mRNA over the course of the differentiation program. Albumin and urea production was also observed. iPS-Heps culture in bioreactor modules showed the accumulation of albumin in the medium for up to 7 days. Scanning electron microscopy revealed the attachment of cell clusters to the hollow fibers of the module. These results indicated that iPS cells were differentiated into hepatocyte-like cells after culture

  15. LP-THAE induced tumor cell apoptosis of rabbit VX2 liver carcinoma

    International Nuclear Information System (INIS)

    Chen Shengli; Quan Yi; Huang Zicheng; Chen Guodong; Zhu Dongliang

    2007-01-01

    Objective: To research tumor cell apoptosis induced by Lp-THAE of rabbit VX2 liver implanted tumor. Methods: 27 New Zealand white rabbits implanted with VX2 tumor at left middle lobe of the liver divided into three groups: Group A(n= 9) Lp-THAE: treated through transhepatic artery catheterization; Group B(n=9) THAI and Group C(n=9) as control. The rabbits were executed at second to fifth day after treatment. HE dye microscopy was taken for counting the typical apoptosis cells and calculating apoptosis index (ApI). FITC-AnnexinV/PI assay was used for measuring apoptosis by flow cytometry. Results: The ApI of tumor central area and marginal area were (17.769±2.417)%, (4.129±1.172)%, P<0.01. The percentages of tumor cell apoptosis and tumor cell necrosis were (16.483±1.404)%, (9.478±0.964)%, P<0.01 and (43.559±5.053)%, (33.460±1.840)%, P=0.093. The total percentages of tumor cell apoptosis and necrosis were (60.042±13.979)%, (42.938±8.979)%, P< 0.01, at tumor center and marginal area in THAE group respectively. The ApI, percentages of tumor cell apoptosis and necrosis in THAE group were significantly higher than those of THAI group (P<0.01). The percentages of tumor cell apoptosis at tumor center area in THAE group were significantly higher than those of tumor marginal area(P<0.01). Conclusion: Induced tumor cell apoptosis and necrosis are two mechanisms of action for Lp-THAE treatment of liver carcinoma. (authors)

  16. Propranolol inhibits the in vitro conversion of thyroxine into triiodothyronine by isolated rat liver parenchymal cells

    NARCIS (Netherlands)

    van Noorden, C. J.; Wiersinga, W. M.; Touber, J. L.

    1979-01-01

    A model for the in vitro study of the conversion of thyroxine into triiodothyronine using isolated rat liver parenchymal cells is described. Isolated liver cells (mean protein content 18 mg/ml) convert approximately 0.8% of 1.3 microM exogenously added T4 into T3 during thirty minutes incubation.

  17. Research advances in sorafenib-induced apoptotic signaling pathways in liver cancer cells

    Directory of Open Access Journals (Sweden)

    ZHANG Chaoya

    2016-04-01

    Full Text Available Currently, sorafenib is the multi-target inhibitor for the treatment of advanced primary liver cancer, and can effectively prolong the progression-free survival and overall survival in patients with advanced primary liver cancer. The application of sorafenib in the targeted therapy for liver cancer has become a hot topic. Major targets or signaling pathways include Raf/Mek/Erk, Jak/Stat, PI3K/Akt/mTOR, VEGFR and PDGFR, STAT, microRNA, Wnt/β-catenin, autolysosome, and tumor-related proteins, and sorafenib can regulate the proliferation, differentiation, metastasis, and apoptosis of liver cancer cells through these targets. This article reviews the current research on the action of sorafenib on these targets or signaling pathways to provide useful references for further clinical research on sorafenib.

  18. Hepatic progenitors for liver disease: current position

    Directory of Open Access Journals (Sweden)

    Alice Conigliaro

    2010-02-01

    Full Text Available Alice Conigliaro1, David A Brenner2, Tatiana Kisseleva21University “La Sapienza”, Dipartimento di Biotecnologie Cellulari ed Ematologia Policlinico Umberto I, V Clinica Medica, Rome, Italy; 2Department of Medicine, University of California, San Diego, La Jolla, CA, USAAbstract: Liver regeneration restores the original functionality of hepatocytes and cholangiocytes in response to injury. It is regulated on several levels, with different cellular populations contributing to this process, eg, hepatocytes, liver precursor cells, intrahepatic stem cells. In response to injury, mature hepatocytes have the capability to proliferate and give rise to new hepatocytes and cholangiocytes. Meanwhile, liver precursor cells (oval cells have become the most recognized bipotential precursor cells in the damaged liver. They rapidly proliferate, change their cellular composition, and differentiate into hepatocytes and cholangiocytes to compensate for the cellular loss and maintain liver homeostasis. There is a growing body of evidence that oval cells originate from the intrahepatic stem cell(s, which in turn give(s rise to epithelial, including oval cells, and/or other hepatic cells of nonepithelial origin. Since there is a close relationship between the liver and hematopoiesis, bone marrow derived cells can also contribute to liver regeneration by the fusion of myeloid cells with damaged hepatocytes, or differentiation of mesenchymal stem cells into hepatocyte-like cells. The current review discusses the contribution of different cells to liver regeneration and their characteristics.Keywords: hepatic progenitor, liver disease, liver precursor cells, oval cells, hepatocytes, intrahepatic stem cells, cholangiocytes

  19. GSK-3β Inhibition Attenuates CLP-Induced Liver Injury by Reducing Inflammation and Hepatic Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2014-01-01

    Full Text Available Liver dysfunction has been known to occur frequently in cases of sepsis. Excessive inflammation and apoptosis are pathological features of acute liver failure. Recent studies suggest that activation of glycogen synthase kinase- (GSK- 3β is involved in inflammation and apoptosis. We aimed to investigate the protective effects of GSK-3β inhibition on polymicrobial sepsis-induced liver injury and to explore the possible mechanisms. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP, and SB216763 was used to inhibit GSK-3β in C57BL/6 mice. GSK-3β was activated following CLP. Administration of SB216763 decreased mortality, ameliorated liver injury, and reduced hepatic apoptosis. The inhibition of GSK-3β also reduced leukocyte infiltration and hepatic inflammatory cytokine expression and release. Moreover, GSK-3β inhibition suppressed the transcriptional activity of nuclear factor-kappa B (NF-κB but enhanced the transcriptional activity of cAMP response element binding protein (CREB in the liver. In in vitro studies, GSK-3β inhibition reduced inflammatory cytokine production via modulation of NF-κB and CREB signaling pathways in lipopolysaccharide-stimulated macrophages. In conclusion, these findings suggest that GSK-3β blockade protects against CLP-induced liver via inhibition of inflammation by modulating NF-κB and CREB activity and suppression of hepatic apoptosis.

  20. Human Mesenchymal Stem Cell Transfusion Is Safe and Improves Liver Function in Acute-on-Chronic Liver Failure Patients

    Science.gov (United States)

    Shi, Ming; Zhang, Zheng; Xu, Ruonan; Lin, Hu; Fu, Junliang; Zou, Zhengsheng; Zhang, Aimin; Shi, Jianfei; Chen, Liming; Lv, Sa; He, Weiping; Geng, Hua; Jin, Lei; Liu, Zhenwen

    2012-01-01

    Acute-on-chronic liver failure (ACLF) is a severe, life-threatening complication, and new and efficient therapeutic strategies for liver failure are urgently needed. Mesenchymal stem cell (MSC) transfusions have been shown to reverse fulminant hepatic failure in mice and to improve liver function in patients with end-stage liver diseases. We assessed the safety and initial efficacy of umbilical cord-derived MSC (UC-MSC) transfusions for ACLF patients associated with hepatitis B virus (HBV) infection. A total of 43 ACLF patients were enrolled for this open-labeled and controlled study; 24 patients were treated with UC-MSCs, and 19 patients were treated with saline as controls. UC-MSC therapy was given three times at 4-week intervals. The liver function, adverse events, and survival rates were evaluated during the 48-week or 72-week follow-up period. No significant side effects were observed during the trial. The UC-MSC transfusions significantly increased the survival rates in ACLF patients; reduced the model for end-stage liver disease scores; increased serum albumin, cholinesterase, and prothrombin activity; and increased platelet counts. Serum total bilirubin and alanine aminotransferase levels were significantly decreased after the UC-MSC transfusions. UC-MSC transfusions are safe in the clinic and may serve as a novel therapeutic approach for HBV-associated ACLF patients. PMID:23197664

  1. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  2. CALCIUM-DRIVEN TRANSCRIPTION OF CARDIAC SPECIFYING GENE PROGRAM IN LIVER STEM CELLS

    Science.gov (United States)

    We have previously shown that a cloned liver stem cell line (WB F344) acquires a cardiac phenotype when seeded in a cardiac microenvironment in vivo and ex vivo. Here we investigated the mechanisms of this transdifferentiation in early (cell, rat neonatal ventricu...

  3. Retinol and retinyl esters in parenchymal and nonparenchymal rat liver cell fractions after long-term administration of ethanol

    International Nuclear Information System (INIS)

    Rasmussen, M.; Blomhoff, R.; Helgerud, P.; Solberg, L.A.; Berg, T.; Norum, K.R.

    1985-01-01

    Chronic ethanol consumption reduces the liver retinoid store in man and rat. We have studied the effect of ethanol on some aspects of retinoid metabolism in parenchymal and nonparenchymal liver cells. Rats fed 36% of total energy intake as ethanol for 5-6 weeks had the liver retinoid concentration reduced to about one-third, as compared to pair-fed controls. The reduction in liver retinoid affected both the parenchymal and the nonparenchymal cell fractions. Plasma retinol level was normal. Liver uptake of injected chylomicron [3H]retinyl ester was similar in the experimental and control group. The transport of retinoid from the parenchymal to the nonparenchymal cells was not found to be significantly retarded in the ethanol-fed rats. Despite the reduction in total retinoid level in liver, the concentrations of unesterified retinol and retinyl oleate were increased in the ethanol fed rats. Hepatic retinol esterification was not significantly affected in the ethanol-fed rats. Since our study has demonstrated that liver uptake of chylomicron retinyl ester is not impaired in the ethanol-fed rat, we suggest that liver retinoid metabolism may be increased

  4. Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury

    Directory of Open Access Journals (Sweden)

    Yuewen Tang

    2017-02-01

    Full Text Available Abstract Tissue damage induces cells into reprogramming-like cellular state, which contributes to tissue regeneration. However, whether factors promoting the cell reprogramming favor tissue regeneration remains elusive. Here we identified combination of small chemical compounds including drug cocktails robustly promoting in vitro cell reprogramming. We then administrated the drug cocktails to mice with acute liver injuries induced by partial hepatectomy or toxic treatment. Our results demonstrated that the drug cocktails which promoted cell reprogramming in vitro improved liver regeneration and hepatic function in vivo after acute injuries. The underlying mechanism could be that expression of pluripotent genes activated after injury is further upregulated by drug cocktails. Thus our study offers proof-of-concept evidence that cocktail of clinical compounds improving cell reprogramming favors tissue recovery after acute damages, which is an attractive strategy for regenerative purpose.

  5. Analysis of iron storage proteins in chicken liver and spleen tissues in comparison with human liver ferritin by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Oshtrakh, M.I.; Milder, O.B.; Semionkin, V.A.; Malakheeva, L.I.; Prokopenko, P.G.

    2006-01-01

    Characterization of iron storage proteins in liver and spleen from normal chicken and chicken with lymphoid leukemia in comparison with human liver ferritin were considered by Moessbauer spectroscopy (preliminary results). Small differences in Moessbauer hyperfine parameters for both normal and lymphoid leukemia chicken liver and spleen were observed. The value of quadrupole splitting for human liver ferritin was higher than those for chicken tissues. A decrease of iron content in lymphoid leukemia chicken tissues was also found, however, the reason of this fact (pathology or feeding) was not clear yet. (author)

  6. A tryptophan derivative, ITE, enhances liver cell metabolic functions in vitro.

    Science.gov (United States)

    Zhang, Xiaoqian; Lu, Juan; He, Bin; Tang, Lingling; Liu, Xiaoli; Zhu, Danhua; Cao, Hongcui; Wang, Yingjie; Li, Lanjuan

    2017-01-01

    Cell encapsulation provides a three-dimensional support by incorporating isolated cells into microcapsules with the goal of simultaneously maintaining cell survival and function, as well as providing active transport for a bioreactor in vitro similarly to that observed in vivo. However, the biotra-nsformation and metabolic functions of the encapsulated cells are not satisfactory for clinical applications. For this purpose, in this study, hepatoma-derived Huh7 cells/C3A cells were treated with 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), an endogenous non-toxic ligand for aryl hydrocarbon receptor, in monolayer cultures and on microspheres. The mRNA and protein levels, as well as the metabolic activities of drug metabolizing enzymes, albumin secretion and urea synthesis were determined. When the Huh7 and C3A cells cultured in a monolayer on two‑dimensional surfaces, ITE enhanced the protein levels and the metabolic activities of the major cytochrome P450 (CYP450) enzymes, CYP1A1, CYP1A2, CYP3A4 and CYP1B1, and slightly increased albumin secretion and urea synthesis. Moreover, when cultured on microspheres, ITE also substantially increased the protein levels and metabolic activities of CYP1A1, CYP1A2, CYP3A4 and CYP1B1 in both liver cell lines. On the whole, our findings indicate that ITE enhances the enzymatic activities of major CYP450 enzymes and the metabolic functions of liver cells cultured in monolayer or on microspheres, indicating that it may be utilized to improve the functions of hepatocytes. Thus, it may be used in the future for the treatment of liver diseases.

  7. Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway.

    Science.gov (United States)

    Neumann, Katrin; Rudolph, Christine; Neumann, Christian; Janke, Marko; Amsen, Derk; Scheffold, Alexander

    2015-07-01

    Under homeostasis, liver sinusoidal endothelial cells (LSECs) shift intrahepatic T-cell responses towards tolerance. However, the role of LSECs in the regulation of T-cell-induced liver inflammation is less clear. Here, we studied the capacity of LSECs to modulate pro-inflammatory Th1-cell differentiation in mice. Using in vitro co-culture systems and subsequent cytokine analysis, we showed that LSECs induced high amounts of the anti-inflammatory cytokine IL-10 in developing Th1 cells. These LSEC-stimulated Th1 cells had no pro-inflammatory capacity in vivo but instead actively suppressed an inflammatory Th1-cell-induced delayed-type hypersensitivity reaction. Blockage of IL-10 signaling in vivo inhibited immunosuppressive activity of LSEC-stimulated Th1 cells. We identified the Notch pathway as a mechanism how LSECs trigger IL-10 expression in Th1 cells. LSECs expressed high levels of the Delta-like and Jagged family of Notch ligands and induced expression of the Notch target genes hes-1 and deltex-1 in Th1 cells. Blockade of Notch signaling selectively inhibited IL-10 induction in Th1 cells by LSECs. Our findings suggest that LSEC-induced IL-10 expression in Th1 cells via the Notch pathway may contribute to the control of hepatic inflammatory immune responses by induction of a self-regulatory mechanism in pro-inflammatory Th1 cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Liver morphology in morbid obesity

    DEFF Research Database (Denmark)

    Andersen, T; Gluud, C

    1984-01-01

    Literature on liver morphology in untreated obesity reveals varying prevalences of various pathological findings. The purpose of this literature study was to summarize and evaluate the published observations and to discuss discrepant findings. A complete search was aimed at utilizing bibliographic...... methods including a computerized survey. Forty-one original articles were included, comprising information on liver morphology in 1515 morbidly obese patients. Liver biopsy was considered normal in 12 per cent of the cases. The most frequent abnormality reported was fatty change, present in 80 per cent...... of obesity, age, sex, alcohol consumption, diabetes mellitus) does not point towards a single causal factor. Co-influence of additional pathogenetic factors are likely in the development of liver changes in morbid obesity....

  9. Merlin, the product of NF2 gene, is associated with aromatase expression and estrogen formation in human liver tissues and liver cancer cells.

    Science.gov (United States)

    Cocciadiferro, Letizia; Miceli, Vitale; Granata, Orazia M; Carruba, Giuseppe

    2017-09-01

    The product of neurofibromatosis type 2 (NF2) gene, also known as Merlin/neurofibromin 2, homeostatically regulates liver stem cells by controlling abundance and signaling of epidermal growth factor receptor (EGFR), with a mechanism independent of the Hippo pathway. We have reported that locally elevated estrogen formation, driven by abnormally high expression and function of aromatase, may be implicated in development and progression of human hepatocellular carcinoma (HCC) through activation of a rapid signaling pathway mediated by amphiregulin (AREG) and EGFR. We have recently presented a model by which the aromatase-estrogen-amphiregulin-EGFR axis is activated in response to tissue injury and/or inflammatory disease, with its alteration eventually leading to development of major human tumors (liver, breast, prostate) and other chronic diseases (diabetes, obesity, Alzheimer's and heart disease). In this study, we investigated NF2 expression in liver cancer cells and tissues in relation to aromatase expression/function, estrogen receptor (ER) status and amphiregulin. Our data indicate that NF2 expression is associated with aromatase and AREG expression, being elevated in HCC tissues and HepG2 cells, intermediate in cirrhotic tissues and Huh7 cells, and lower in nontumoral liver and HA22T cells. In addition, NF2 expression is inversely related to wild type hERα66 and proportional to the expression of the membrane-associated hERα36 splice variant, as measured by exon-specific RT-PCR analysis, both in vivo and in vitro. Furthermore, incubation with estradiol induced a significant decrease of NF2 expression in both HA22T and Huh7 cells (over 54% and 22%, respectively), while no change could be observed in HepG2 cells, this effect being inversely related to aromatase expression and activity in HCC cell lines. Based on the above combined evidence, we hypothesize that NF2 behaves as a protein sensing tissue damage and aromatase-driven local estrogen formation

  10. HBx induced AFP receptor expressed to activate PI3K/AKT signal to promote expression of Src in liver cells and hepatoma cells

    International Nuclear Information System (INIS)

    Zhu, Mingyue; Guo, Junli; Li, Wei; Xia, Hua; Lu, Yan; Dong, Xu; Chen, Yi; Xie, Xieju; Fu, Shigan; Li, Mengsen

    2015-01-01

    Hepatitis B virus (HBV)-X protein(HBx) is a transactivator of host several cellular genes including alpha-fetoprotein(AFP) and AFP receptor(AFPR) which contributes to HBV-associated tumor development. The expression of AFP/AFPR are correlated with hepatocellular carcinoma(HCC)-initial cells. But the role of AFP and AFPR in promoting occurrence of HBV-related HCC were still unclear. A total of 71 clinical patients’ liver specimens, normal human liver cells L-02 and HCC cell lines, PLC/PRF/5 were selected for analyzing the effects of HBx on expression of AFP, AFPR and Src. The expression of goal proteins were detected by Immunohistochemical stained and Western blotting; HBx-expressed vectors were constructed and transfected into L-02 cells, laser confocal microscopy was applied to observe expression and location of AFP, AFPR and Src in the normal liver cells and HCC cells, soft agar colony formation assay was used to observe colonies formed of the cells. We confirmed HBx gives preference to promote the expression of AFP and AFPR; HBx priors to up-regulate the expression of AFPR and AFP in L-02 cells and in normal liver specimens; AFPR signal been able to stimulate Src expression. The results also indicated that phosphatidylinositol 3-kinase(PI3K) inhibitors Ly294002 and GDC0941 effectively suppress AFPR mediated up-regulation expression of Src in AFPR positive HCC lines. HBx priors to drive the expression of AFP and AFPR to promote expression of Src in normal liver cells and hepatoma cells; AFP and AFPR maybe play pivotal role in HBV-related hepatocarcinogenesis; Targeting AFPR is an available therapeutic strategy of HCC. The online version of this article (doi:10.1186/s12885-015-1384-9) contains supplementary material, which is available to authorized users

  11. Impaired methylation as a novel mechanism for proteasome suppression in liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Osna, Natalia A., E-mail: nosna@UNMC.edu [Liver Study Unit, The Omaha Veterans Affairs VA Medical Center, Omaha, NE 68105 (United States); Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 (United States); White, Ronda L.; Donohue, Terrence M. [Liver Study Unit, The Omaha Veterans Affairs VA Medical Center, Omaha, NE 68105 (United States); Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 (United States); Beard, Michael R. [Department of Molecular Biosciences, University of Adelaide (Australia); Tuma, Dean J.; Kharbanda, Kusum K. [Liver Study Unit, The Omaha Veterans Affairs VA Medical Center, Omaha, NE 68105 (United States); Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 (United States)

    2010-01-08

    The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell and hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.

  12. SET mediates TCE-induced liver cell apoptosis through dephosphorylation and upregulation of nucleolin.

    Science.gov (United States)

    Ren, Xiaohu; Huang, Xinfeng; Yang, Xifei; Liu, Yungang; Liu, Wei; Huang, Haiyan; Wu, Desheng; Zou, Fei; Liu, Jianjun

    2017-06-20

    Trichloroethylene (TCE) is an occupational and environmental chemical that can cause severe hepatotoxicity. While our previous studies showed that the phosphatase inhibitor SET is a key mediator of TCE-induced liver cell apoptosis, the molecular mechanisms remain elusive. Using quantitative phosphoproteomic analysis, we report here that nucleolin is a SET-regulated phosphoprotein in human liver HL-7702 cells. Functional analysis suggested that SET promoted dephosphorylation of nucleolin, decreased its binding to its transcriptional activator, c-myc, and upregulated nucleolin expression in TCE-treated cells. Importantly, TCE-induced hepatocyte apoptosis was significantly attenuated when nucleolin was downregulated with specific siRNAs. These findings indicate that TCE may induce hepatocyte apoptosis via SET-mediated dephosphorylation and overexpression of nucleolin.

  13. Inhibitory Effects of Verrucarin A on Tunicamycin-Induced ER Stress in FaO Rat Liver Cells

    Directory of Open Access Journals (Sweden)

    Eun Young Bae

    2015-05-01

    Full Text Available Endoplasmic reticulum (ER stress is linked with development and maintenance of cancer, and serves as a therapeutic target for treatment of cancer. Verrucarin A, isolated from the broth of Fusarium sp. F060190, showed potential inhibitory activity on tunicamycin-induced ER stress in FaO rat liver cells. In addition, the compound decreased tunicamycin-induced GRP78 promoter activity in a dose dependent manner without inducing significant inhibition of luciferase activity and cell growth for 6 and 12 h. Moreover, the compound decreased the expression of GRP78, CHOP, XBP-1, and suppressed XBP-1, and reduced phosphorylation of IRE1α in FaO rat liver cells. This evidence suggests for the first time that verrucarin A inhibited tunicamycin-induced ER stress in FaO rat liver cells.

  14. Development of experimental fibrotic liver diseases animal model by Carbon Tetracholoride.

    Science.gov (United States)

    Gitiara, Atoosa; Tokhanbigli, Samaneh; Mazhari, Sogol; Baghaei, Kaveh; Hatami, Behzad; Hashemi, Seyed Mahmoud; Asadi Rad, Ali; Moradi, Afshin; Nasiri, Meyam; Zarrabi Ahrabi, Nakisa; Zali, Mohammad Reza

    2017-01-01

    This study is presenting an effective method of inducing liver fibrosis by CCL4 as a toxin in two different breeds of rat models. Liver fibrosis is a result of inflammation and liver injury caused by wound healing responses which ultimately lead to liver failure. Consequently, after liver fibrosis, the progression will be continued to liver cirrhosis and at the end stage hepatocellular carcinoma (HCC). Many studies have demonstrated that one of the most important causes of liver fibrosis is Non-alcoholic steatohepatitis (NASH). Fibrotic Liver is affected by an excessive accumulation of extracellular matrix (ECM) proteins like collagen and α-SMA. In two different experiments, male Vistar, and Sprague Dawley Rat models ranging from 200±60, corresponding to an age of approximately 10 weeks were utilized in order to induce CCL4 treated liver fibrosis. After 6 weeks of CCL4 injection, different tests have been carried out to verify the liver fibrosis including serum markers such as Aspartate aminotransferase (AST) and Alanine aminotransferase (ALT), molecular tests containing, laminin and α-SMA and also pathological observation by Hematoxylin and eosin staining in both fibrosis and control group. The results of Pathology and Real-time PCR showed that fibrosis was induced much more effectively in Sprague Dawley rat model compared with Wistar rats.

  15. Extracellular Membrane Vesicles as Vehicles for Brain Cell-to-Cell Interactions in Physiological as well as Pathological Conditions

    Directory of Open Access Journals (Sweden)

    Gabriella Schiera

    2015-01-01

    Full Text Available Extracellular vesicles are involved in a great variety of physiological events occurring in the nervous system, such as cross talk among neurons and glial cells in synapse development and function, integrated neuronal plasticity, neuronal-glial metabolic exchanges, and synthesis and dynamic renewal of myelin. Many of these EV-mediated processes depend on the exchange of proteins, mRNAs, and noncoding RNAs, including miRNAs, which occurs among glial and neuronal cells. In addition, production and exchange of EVs can be modified under pathological conditions, such as brain cancer and neurodegeneration. Like other cancer cells, brain tumours can use EVs to secrete factors, which allow escaping from immune surveillance, and to transfer molecules into the surrounding cells, thus transforming their phenotype. Moreover, EVs can function as a way to discard material dangerous to cancer cells, such as differentiation-inducing proteins, and even drugs. Intriguingly, EVs seem to be also involved in spreading through the brain of aggregated proteins, such as prions and aggregated tau protein. Finally, EVs can carry useful biomarkers for the early diagnosis of diseases. Herein we summarize possible roles of EVs in brain physiological functions and discuss their involvement in the horizontal spreading, from cell to cell, of both cancer and neurodegenerative pathologies.

  16. Hyperthyroidism Improves the Pathological Condition of Nonalcoholic Steatohepatitis: A Case of Nonalcoholic Steatohepatitis with Graves' Disease.

    Science.gov (United States)

    Miyake, Teruki; Matsuura, Bunzo; Furukawa, Shinya; Todo, Yasuhiko; Yamamoto, Shin; Yoshida, Osamu; Imai, Yusuke; Watanabe, Takao; Yamamoto, Yasunori; Hirooka, Masashi; Tokumoto, Yoshio; Kumagi, Teru; Abe, Masanori; Seike, Hirotaka; Miyauchi, Shozo; Hiasa, Yoichi

    2016-01-01

    3,5,3'-triiodo-L-thyronine regulates the glucose metabolism, lipid metabolism, and hepatic steatosis. Several groups have shown the relationships between hypothyroidism and nonalcoholic fatty liver and hypothyroidism and nonalcoholic steatohepatitis (NASH). However, the effect of hyperthyroidism on NASH has not yet been investigated. We herein report effects of thyroid hormone on the pathological condition of NASH in a patient with NASH complicated by Graves' disease. In our case, the liver enzyme level improved with the increasing thyroid hormone level; however, the liver enzyme level was aggravated with the improving thyroid hormone level. Therefore, hyperthyroidism may improve the pathological condition of NASH.

  17. Arsenic induced clinico-hemato-pathological alterations in broilers and its attenuation by vitamin e and selenium

    International Nuclear Information System (INIS)

    Mashkoor, J.; Khan, A.; Khan, M.Z.; Saleemi, M.K.; Mahmood, F.

    2012-01-01

    Present study was carried out to know the arsenic (As) induced toxico-pathological alterations in broiler chicks and their attenuation with vitamin E (Vit E) and selenium (Se). A total of 90 day-old broiler chicks were equally distributed into 5 groups. Groups 1-4 were administered As at 50 mg/kg BW daily through feed for 30 days. In addition to A , groups 2 to 4 received Vitamin E at 150 mg/kg BW, selenium at 0.25 mg/kg BW and Vitamin E plus selenium, respectively. Group 5 (Control) received normal drinking water for 30 days. Dullness, depression, open mouth breathing, increased thirst; ruffled feathers, pale comb, skin irritation and watery diarrhea were the most striking clinical signs. The body weight and feed intake was significantly decreased in treated birds. The erythrocyte counts, hemoglobin concentration and packed cell volume decreased (P<0.05) in treated broilers with As or As with Se and Vit E. Grossly pale and hemorrhagic liver and swollen kidneys were observed in As treated birds. Arsenic treated groups showed significant decrease in serum. Histopathologically, liver exhibited congestion and cytoplasmic vacuolation. In kidneys, condensation of tubular epithelium nuclei, epithelial cell necrosis, increased urinary spaces, sloughing of tubules from basement membrane and cast deposition were observed. In conclusion As induced toxico-pathological alterations and vitamin E and selenium partially ameliorate the toxic effects in broilers chicks. (author)

  18. Amarogentin Induces Apoptosis of Liver Cancer Cells via Upregulation of p53 and Downregulation of Human Telomerase Reverse Transcriptase in Mice

    Science.gov (United States)

    Li, Runqin; Zhang, Yinglin

    2016-01-01

    Background and Objective: Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. Materials and Methods: The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. Results: The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. Conclusion: The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells. PMID:27402632

  19. Study on bone marrow mesenchymal stem cells in repairing of radiation induced acute liver injury of rats

    International Nuclear Information System (INIS)

    Bao Yongxing; Lou Fan; Zhao Huarong; Zhu Huhu; Ma Yan; Wen Hao

    2010-01-01

    Objective: To investigate the role of mesenchymal stem cells in the repair of radiation induced liver injury. Methods: 12 female SD rats were irradiated with 20 Gy 6 MV X-rays on the right lobe of the liver, to establish the model of radiation induced liver injury. The rats were divided randomly into two groups as invention group and control group, and transplanted with 1 ml male mesenchymal suspension or 1 ml normal saline in 4 hours after radiotherapy. The morphological changes of liver were observed. The existence of sex determining gene Y(SRY) and the level of alpha-smooth muscle actin (a-SMA) were detected. Results: Some injury of right lobe liver in two groups were observed, and the injury degree of right lobe liver in intervention group were lower than that of control group. The amount of SRY positive cells in the right lobe liver of intervention group was higher than that in the left lobe liver (t = 3.77, P <0.05). The positive expression rate of a-SMA in right lobe liver of intervention group was lower than that of control group. Conclusions: Acute radiation induced liver injury could lead BMSCs' homing in order to decrease the degree of liver fibrosis. (authors)

  20. System in biology leading to cell pathology: stable protein-protein interactions after covalent modifications by small molecules or in transgenic cells.

    Science.gov (United States)

    Malina, Halina Z

    2011-01-19

    The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules

  1. Acute liver failure due to natural killer-like T-cell leukemia/lymphoma: A case report and review of the Literature

    Institute of Scientific and Technical Information of China (English)

    Evan S Dellon; Shannon R Morris; Wozhan Tang; Cherie H Dunphy; Mark W Russo

    2006-01-01

    Acute liver failure (ALF) is a medical emergency requiring immediate evaluation for liver transplantation. We describe an unusual case of a patient who presented with ascites, jaundice, and encephalopathy and was found to have ALF due to natural killer (NK)-like T cell leukemia/lymphoma. The key immunophenotype was CD2+, CD3+, CD7+, CD56+. This diagnosis, which was based on findings in the peripheral blood and ascitic fluid, was confirmed with liver biopsy, and was a contraindication to liver transplantation. A review of the literature shows that hematologic malignancies are an uncommon cause of fulminant hepatic failure, and that NK-like T-cell leukemia/lymphoma is a relatively recently recognized entity which is characteristically CD3+ and CD56+. This case demonstrates that liver biopsy is essential in diagnosing unusual causes of acute liver failure, and that infiltration of the liver with NK-like T-cell lymphoma/leukemia can cause acute liver failure.

  2. A characterization of the ZFL cell line and primary hepatocytes as in vitro liver cell models for the zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Eide, Marta; Rusten, Marte; Male, Rune; Jensen, Knut Helge Midtbø; Goksøyr, Anders

    2014-01-01

    Highlights: •The ZFL cell line and primary hepatocytes were characterized. •Basic and induced expression of nuclear receptors and target genes were found. •The ZFL cell line expresses very low basic levels of most genes. •The ZFL cells have low induction of gene expression following exposures. •Primary hepatocytes show large sex-dependent differences in gene expression. -- Abstract: The zebrafish (Danio rerio) is a widely used model species in biomedical research. The ZFL cell line, established from zebrafish liver, and freshly isolated primary hepatocytes from zebrafish have been used in several toxicological studies. However, no previous report has compared and characterized these two systems at the level of gene expression. The aim of this study was to evaluate the ZFL cell line in comparison to primary hepatocytes as in vitro models for studying effects of environmental contaminants in zebrafish liver. Using quantitative real-time PCR, the basal level and transcriptional induction potential of key genes involved in toxic responses in the ZFL cell line, primary hepatocytes and whole liver from zebrafish were compared. The study showed that the ZFL cells have lower levels of mRNA of most selected genes compared to zebrafish liver. The induced gene transcription following exposure to ligand was much lower in ZFL cells compared to zebrafish primary hepatocytes at the doses tested. Importantly, oestrogen receptor and vitellogenin genes showed low basal transcription and no induction response in the ZFL cell line. In conclusion, it appears that primary hepatocytes are well suited for studying environmental contaminants including xenoestrogens, but may show large sex-dependent differences in gene transcription. The ZFL cell line shows potential in toxicological studies involving the aryl hydrocarbon receptor pathway. However, low potential for transcriptional induction of genes in general should be expected, especially notable when studying estrogenic

  3. A characterization of the ZFL cell line and primary hepatocytes as in vitro liver cell models for the zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Eide, Marta, E-mail: marta.eide@bio.uib.no [Department of Biology, University of Bergen, Bergen (Norway); Rusten, Marte; Male, Rune [Department of Molecular Biology, University of Bergen, Bergen (Norway); Jensen, Knut Helge Midtbø; Goksøyr, Anders [Department of Biology, University of Bergen, Bergen (Norway)

    2014-02-15

    Highlights: •The ZFL cell line and primary hepatocytes were characterized. •Basic and induced expression of nuclear receptors and target genes were found. •The ZFL cell line expresses very low basic levels of most genes. •The ZFL cells have low induction of gene expression following exposures. •Primary hepatocytes show large sex-dependent differences in gene expression. -- Abstract: The zebrafish (Danio rerio) is a widely used model species in biomedical research. The ZFL cell line, established from zebrafish liver, and freshly isolated primary hepatocytes from zebrafish have been used in several toxicological studies. However, no previous report has compared and characterized these two systems at the level of gene expression. The aim of this study was to evaluate the ZFL cell line in comparison to primary hepatocytes as in vitro models for studying effects of environmental contaminants in zebrafish liver. Using quantitative real-time PCR, the basal level and transcriptional induction potential of key genes involved in toxic responses in the ZFL cell line, primary hepatocytes and whole liver from zebrafish were compared. The study showed that the ZFL cells have lower levels of mRNA of most selected genes compared to zebrafish liver. The induced gene transcription following exposure to ligand was much lower in ZFL cells compared to zebrafish primary hepatocytes at the doses tested. Importantly, oestrogen receptor and vitellogenin genes showed low basal transcription and no induction response in the ZFL cell line. In conclusion, it appears that primary hepatocytes are well suited for studying environmental contaminants including xenoestrogens, but may show large sex-dependent differences in gene transcription. The ZFL cell line shows potential in toxicological studies involving the aryl hydrocarbon receptor pathway. However, low potential for transcriptional induction of genes in general should be expected, especially notable when studying estrogenic

  4. Gene targeting and cloning in pigs using fetal liver derived cells.

    Science.gov (United States)

    Waghmare, Sanjeev K; Estrada, Jose; Reyes, Luz; Li, Ping; Ivary, Bess; Sidner, Richard A; Burlak, Chris; Tector, A Joseph

    2011-12-01

    Since there are no pig embryonic stem cells, pig genetic engineering is done in fetal fibroblasts that remain totipotent for only 3 to 5 wk. Nuclear donor cells that remain totipotent for longer periods of time would facilitate complicated genetic engineering in pigs. The goal of this study was to test the feasibility of using fetal liver-derived cells (FLDC) to perform gene targeting, and create a genetic knockout pig. FLDC were isolated and processed using a human liver stem cell protocol. Single copy α-1,3-galactosyl transferase knockout (GTKO) FLDCs were created using electroporation and neomycin resistant colonies were screened using PCR. Homozygous GTKO cells were created through loss of heterozygosity mutations in single GTKO FLDCs. Double GTKO FLDCs were used in somatic cell nuclear transfer (SCNT) to create GTKO pigs. FLDCs grew for more than 80 population doublings, maintaining normal karyotype. Gene targeting and loss of heterozygosity mutations produced homozygous GTKO FLDCs. FLDCs used in SCNT gave rise to homozygous GTKO pigs. FDLCs can be used in gene targeting and SCNT to produce genetically modified pigs. The increased life span in culture compared to fetal fibroblasts may facilitate genetic engineering in the pig. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. AMC-Bio-Artificial Liver culturing enhances mitochondrial biogenesis in human liver cell lines: The role of oxygen, medium perfusion and 3D configuration

    NARCIS (Netherlands)

    Adam, Aziza A. A.; van Wenum, Martien; van der Mark, Vincent A.; Jongejan, Aldo; Moerland, Perry D.; Houtkooper, Riekelt H.; Wanders, Ronald J. A.; Oude Elferink, Ronald P.; Chamuleau, Robert A. F. M.; Hoekstra, Ruurdtje

    2017-01-01

    Human liver cell lines, like HepaRG and C3A, acquire higher functionality when cultured in the AMC-Bio-Artificial Liver (AMC-BAL). The three main differences between BAL and monolayer culture are the oxygenation (40% vs 20%O2), dynamic vs absent medium perfusion and 3D vs 2D configuration. Here, we

  6. Pathology associated with vaccination against Schistosoma mansoni in mice using cryopreserved radiation attenuated schistosomula

    International Nuclear Information System (INIS)

    James, E.R.; Dobinson, A.R.

    1985-01-01

    Twenty-one mice were injected intramuscularly with 2000 Schistosoma mansoni schistosomula irradiated at 20 krad and cryopreserved; three mice were killed on each of day 0, 2, 5, 9, 19, 28 and 44 days after infection and muscle from the site of injection in the left hind leg, the lungs and livers removed for histological examination. Schistosomula were seen in sections from the leg muscle from days 0 to 19 inclusive, in the lungs from day 2 to day 28 inclusive and in the livers from days 9 to 28 inclusive. Most schistosomula were seen in sections of the leg muscle with considerably fewer parasites occurring in the lungs and especially the livers. Granulomatous reactions comprising eosinophils, polymorphs, plasma cells and macrophages were first seen in the leg muscle on day 2, in the lungs on day 5 and in the liver on day 19. The peak inflammatory reactions appeared to occur between days 5 and 9, 9 and 19 and 28 and 44 respectively in the three tissues. The pathology is discussed in relation to the dose of irradiation required to attenuate the schistosomula for optimal immunogenicity. (author)

  7. Liver Function In Patients With Homozygous Sickle Cell Disease ...

    African Journals Online (AJOL)

    Using the sensitive ELISA technique, 213 patients with sickle cell anemia (112 males and 101 females) aged 6 months to 18 years were screened for Hepatitis B infection using Hepatitis B surface antigen (HBsAg) and antibody to Hepatitis B core antigen. A biochemical evaluation of liver function was carried out on all ...

  8. Muscular exercise can cause highly pathological liver function tests in healthy men.

    Science.gov (United States)

    Pettersson, Jonas; Hindorf, Ulf; Persson, Paula; Bengtsson, Thomas; Malmqvist, Ulf; Werkström, Viktoria; Ekelund, Mats

    2008-02-01

    The occurrence of idiosyncratic drug hepatotoxicity is a major problem in all phases of clinical drug development and the leading cause of postmarketing warnings and withdrawals. Physical exercise can result in transient elevations of liver function tests. There is no consensus in the literature on which forms of exercise may cause changes in liver function tests and to what extent. Weightlifting results in profound increases in liver function tests in healthy men used to moderate physical activity, not including weightlifting. Liver function tests are significantly increased for at least 7 days after weightlifting. It is important to impose relevant restrictions on heavy muscular exercise prior to and during clinical studies. To investigate the effect of intensive muscular exercise (weightlifting) on clinical chemistry parameters reflecting liver function in healthy men. Fifteen healthy men, used to moderate physical activity not including weightlifting, performed an 1 h long weightlifting programme. Blood was sampled for clinical chemistry parameters [aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LD), gamma-glutamyl transferase (gamma GT), alkaline phosphatase (ALP), bilirubin, creatine kinase (CK) and myoglobin] at repeated intervals during 7 days postexercise and at a follow-up examination 10-12 days postexercise. Five out of eight studied clinical chemistry parameters (AST, ALT, LD, CK and myoglobin) increased significantly after exercise (P exercise. In addition, LD and, in particular, CK and myoglobin showed highly elevated levels. These findings highlight the importance of imposing restrictions on weightlifting prior to and during clinical studies. Intensive muscular exercise, e.g. weightlifting, should also be considered as a cause of asymptomatic elevations of liver function tests in daily clinical practice.

  9. Generalized Liver- and Blood-Derived CD8+ T-Cell Impairment in Response to Cytokines in Chronic Hepatitis C Virus Infection.

    Directory of Open Access Journals (Sweden)

    Stephanie C Burke Schinkel

    Full Text Available Generalized CD8+ T-cell impairment in chronic hepatitis C virus (HCV infection and the contribution of liver-infiltrating CD8+ T-cells to the immunopathogenesis of this infection remain poorly understood. It is hypothesized that this impairment is partially due to reduced CD8+ T-cell activity in response to cytokines such as IL-7, particularly within the liver. To investigate this, the phenotype and cytokine responsiveness of blood- and liver-derived CD8+ T-cells from healthy controls and individuals with HCV infection were compared. In blood, IL-7 receptor α (CD127 expression on bulk CD8+ T-cells in HCV infection was no different than controls yet was lower on central memory T-cells, and there were fewer naïve cells. IL-7-induced signalling through phosphorylated STAT5 was lower in HCV infection than in controls, and differed between CD8+ T-cell subsets. Production of Bcl-2 following IL-7 stimulation was also lower in HCV infection and inversely related to the degree of liver fibrosis. In liver-derived CD8+ T-cells, STAT5 activation could not be increased with cytokine stimulation and basal Bcl-2 levels of liver-derived CD8+ T-cells were lower than blood-derived counterparts in HCV infection. Therefore, generalized CD8+ T-cell impairment in HCV infection is characterized, in part, by impaired IL-7-mediated signalling and survival, independent of CD127 expression. This impairment is more pronounced in the liver and may be associated with an increased potential for apoptosis. This generalized CD8+ T-cell impairment represents an important immune dysfunction in chronic HCV infection that may alter patient health.

  10. MRI and CT in alveolar echinococcosis of the liver

    International Nuclear Information System (INIS)

    Duewell, S.; Marincek, B.; Schulthess, G.K. von; Ammann, R.; Zurich Univ.

    1990-01-01

    To compare the value of MRI and CT in evaluating hepatic alveolar echinococcosis a study was conducted on 30 patients. The liver was initially affected in all patients. At the time of examination, 15 patients had undergone partial liver resection. MRI showed no advantage over CT in demonstrating an echinococcal mass lesion. MRI was superior in identifying concomitant pathological changes of the intrahepatic and extrahepatic venous system due to the intrinsic contrast of vascular structures. However, CT was superior in identifying calcifications, an important attribute of the disease. MRI should only be used in imaging alveolar echinococcosis of the liver if diagnostic questions remain open after CT, in particular questions concerning venous pathology. MRI may also be used to replace CT in patients with a contraindication to urographic contrast material. (orig.) [de

  11. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, van den G.J.; de Goeij, J.J.M.; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendriks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (<1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  12. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, G.J. van den; Goeij, J.J.M. de; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendruiks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (< 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  13. Prolonged antigen presentation is required for optimal CD8+ T cell responses against malaria liver stage parasites.

    Directory of Open Access Journals (Sweden)

    Ian A Cockburn

    2010-05-01

    Full Text Available Immunization with irradiated sporozoites is currently the most effective vaccination strategy against liver stages of malaria parasites, yet the mechanisms underpinning the success of this approach are unknown. Here we show that the complete development of protective CD8+ T cell responses requires prolonged antigen presentation. Using TCR transgenic cells specific for the malaria circumsporozoite protein, a leading vaccine candidate, we found that sporozoite antigen persists for over 8 weeks after immunization--a remarkable finding since irradiated sporozoites are incapable of replication and do not differentiate beyond early liver stages. Persisting antigen was detected in lymphoid organs and depends on the presence of CD11c+ cells. Prolonged antigen presentation enhanced the magnitude of the CD8+ T cell response in a number of ways. Firstly, reducing the time primed CD8+ T cells were exposed to antigen in vivo severely reduced the final size of the developing memory population. Secondly, fully developed memory cells expanded in previously immunized mice but not when transferred to naïve animals. Finally, persisting antigen was able to prime naïve cells, including recent thymic emigrants, to become functional effector cells capable of eliminating parasites in the liver. Together these data show that the optimal development of protective CD8+ T cell immunity against malaria liver stages is dependent upon the prolonged presentation of sporozoite-derived antigen.

  14. Stem Cells and Liver Disease | Akhter | Internet Journal of Medical ...

    African Journals Online (AJOL)

    Liver transplantation is the primary treatment for various end-stage hepatic diseases but is hindered by the lack of donor organs, complications associated with rejection and immunosuppression. An increasingly unbridgeable gap exists between the supply and demand of transplantable organs. Hence stem cell research ...

  15. Effects of quantum dots on the ROS amount of liver cancer stem cells.

    Science.gov (United States)

    Li, Kunmeng; Xia, Chunhui; Wang, Baiqi; Chen, Hetao; Wang, Tong; He, Qian; Cao, Hailong; Wang, Yu

    2017-07-01

    Liver cancer (LC) is a serious disease that threatens human lives. LC has a high recurrence rate and poor prognosis. LC stem cells (LCSCs) play critical roles in these processes. However, the mechanism remains unclear. Reactive oxygen species (ROS) can be used to determine cell apoptosis and proliferation. However, studies of the effects of exogenous nanomaterials on LCSC ROS changes are rarely reported. In this work, quantum dots (QDs) were prepared using a hydrothermal method, and QDs were further modified with polyethylene glycol (PEG) and bovine serum albumin (BSA) using a chemical approach. The effects of QDs, PEG-modified QDs (PEG@QDs) and BSA-modified QDs (BSA@QDs) on the amounts of ROS in liver cancer PLC/PRF/5 (PLC) cells and liver cancer stem cells (LCSCs) were principally investigated. The results showed that when the concentration of QDs, PEG@QDs, and BSA@QDs were 10nM and 90nM, the ROS amount in PLC cells increased by approximately 2- to 5-fold. However, when the concentrations of these nanomaterials were 10nM and 90nM, ROS levels in LCSCs were reduced by approximately 50%. This critical path potentially leads to drug resistance and recurrence of LC. This work provides an important indication for further study of LC drug resistance and recurrence. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Three-Dimensional Culture of Human Embryonic Stem Cell Derived Hepatic Endoderm and Its Role in Bioartificial Liver Construction

    Directory of Open Access Journals (Sweden)

    Ruchi Sharma

    2010-01-01

    Full Text Available The liver carries out a range of functions essential for bodily homeostasis. The impairment of liver functions has serious implications and is responsible for high rates of patient morbidity and mortality. Presently, liver transplantation remains the only effective treatment, but donor availability is a major limitation. Therefore, artificial and bioartificial liver devices have been developed to bridge patients to liver transplantation. Existing support devices improve hepatic encephalopathy to a certain extent; however their usage is associated with side effects. The major hindrance in the development of bioartificial liver devices and cellular therapies is the limited availability of human hepatocytes. Moreover, primary hepatocytes are difficult to maintain and lose hepatic identity and function over time even with sophisticated tissue culture media. To overcome this limitation, renewable cell sources are being explored. Human embryonic stem cells are one such cellular resource and have been shown to generate a reliable and reproducible supply of human hepatic endoderm. Therefore, the use of human embryonic stem cell-derived hepatic endoderm in combination with tissue engineering has the potential to pave the way for the development of novel bioartificial liver devices and predictive drug toxicity assays.

  17. Protection of lethally irradiated mice with allogeneic fetal liver cells: influence of irradiation dose on immunologic reconstitution

    International Nuclear Information System (INIS)

    Tulunay, O.; Good, R.A.; Yunis, E.J.

    1975-01-01

    After lethal irradiation long-lived, immunologically vigorous C3Hf mice were produced by treatment with syngeneic fetal liver cells or syngeneic newborn or adult spleen cells. Treatment of lethally irradiated mice with syngeneic or allogeneic newborn thymus cells or allogeneic newborn or adult spleen cells regularly led to fatal secondary disease or graft-versus-host reactions. Treatment of the lethally irradiated mice with fetal liver cells regularly yielded long-lived, immunologically vigorous chimeras. The introduction of the fetal liver cells into the irradiated mice appeared to be followed by development of immunological tolerance of the donor cells. The findings suggest that T-cells at an early stage of differentiation are more susceptible to tolerance induction than are T-lymphocytes at later stages of differentiation. These investigations turned up a perplexing paradox which suggests that high doses of irradiation may injure the thymic stroma, rendering it less capable of supporting certain T-cell populations in the peripheral lymphoid tissue. Alternatively, the higher and not the lower dose of irradiation may have eliminated a host cell not readily derived from fetal liver precursors which represents an important helper cell in certain cell-mediated immune functions, e.g., graft-versus-host reactions, but which is not important in others, e.g., allograft rejections. The higher dose of lethal irradiation did not permit development or maintenance of a population of spleen cells that could initiate graft-versus-host reactions but did permit the development of a population of donor cells capable of achieving vigorous allograft rejection

  18. The influence of TLR4 agonist lipopolysaccharides on hepatocellular carcinoma cells and the feasibility of its application in treating liver cancer

    Directory of Open Access Journals (Sweden)

    Gu J

    2015-08-01

    Full Text Available Junsheng Gu, Ranran Sun, Shen Shen, Zujiang Yu Department of Infectious Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China Objective: This study was designed to explore the influence of Toll-like receptor 4 (TLR4 agonist lipopolysaccharides (LPS on liver cancer cell and the feasibility to perform liver cancer adjuvant therapy. Methods: Human liver cancer cell lines HepG2, H7402, and PLC/PRF/5 were taken as models, and the expression of TLRs mRNA was detected by real time-polymerase chain reaction method semiquantitatively. WST-1 method was used to detect the influence of LPS on the proliferation ability of liver cancer cells; propidium iodide (PI single staining and Annexin V/PI double staining were used to test the influence of LPS on the cell cycle and apoptosis, respectively, on human liver cancer cell line H7402. Fluorescent quantitative polymerase chain reaction and Western blot method were used to determine the change of expression of Cyclin D1. Results: The results demonstrated that most TLRs were expressed in liver cancer cells; stimulating TLR4 by LPS could upregulate TLR4 mRNA and the protein level, activate NF-κB signaling pathway downstream of TLR4, and mediate the generation of inflammatory factors IL-6, IL-8, and TNF-α; LPS was found to be able to strengthen the proliferation ability of liver cancer cells, especially H7402 cells; the expression of Cyclin D1 rose and H7402 cells were promoted to transit from G1 stage to S stage under the stimulation of LPS, but cell apoptosis was not affected. It was also found that LPS was able to activate signal transducer and activator of transcription -3 (STAT3 signaling pathway in H7402 cells and meanwhile significantly increase the initiation activity of STAT3; proliferation promoting effect of LPS to liver cancer cells remarkably lowered once STAT3 was blocked or inhibited. Conclusion: Thus, TLR4 agonist LPS is proved to be able to

  19. Induction and maintenance of protective CD8+ T cells against malaria liver stages: implications for vaccine development

    Directory of Open Access Journals (Sweden)

    Sze-Wah Tse

    2011-08-01

    Full Text Available CD8+ T cells against malaria liver stages represent a major protective immune mechanism against infection. Following induction in the peripheral lymph nodes by dendritic cells (DCs, these CD8+ T cells migrate to the liver and eliminate parasite infected hepatocytes. The processing and presentation of sporozoite antigen requires TAP mediated transport of major histocompatibility complex class I epitopes to the endoplasmic reticulum. Importantly, in DCs this process is also dependent on endosome-mediated cross presentation while this mechanism is not required for epitope presentation on hepatocytes. Protective CD8+ T cell responses are strongly dependent on the presence of CD4+ T cells and the capacity of sporozoite antigen to persist for a prolonged period of time. While human trials with subunit vaccines capable of inducing antibodies and CD4+ T cell responses have yielded encouraging results, an effective anti-malaria vaccine will likely require vaccine constructs designed to induce protective CD8+ T cells against malaria liver stages.

  20. Differential genomic effects of six different TiO2 nanomaterials on human liver HepG2 cells

    Science.gov (United States)

    Engineered nanoparticles are reported to cause liver toxicity in vivo. To better assess the mechanism of the in vivo liver toxicity, we used the human hepatocarcinoma cells (HepG2) as a model system. Human HepG2 cells were exposed to 6 TiO2 nanomaterials (with dry primary partic...

  1. Active contour based segmentation of resected livers in CT images

    Science.gov (United States)

    Oelmann, Simon; Oyarzun Laura, Cristina; Drechsler, Klaus; Wesarg, Stefan

    2015-03-01

    The majority of state of the art segmentation algorithms are able to give proper results in healthy organs but not in pathological ones. However, many clinical applications require an accurate segmentation of pathological organs. The determination of the target boundaries for radiotherapy or liver volumetry calculations are examples of this. Volumetry measurements are of special interest after tumor resection for follow up of liver regrow. The segmentation of resected livers presents additional challenges that were not addressed by state of the art algorithms. This paper presents a snakes based algorithm specially developed for the segmentation of resected livers. The algorithm is enhanced with a novel dynamic smoothing technique that allows the active contour to propagate with different speeds depending on the intensities visible in its neighborhood. The algorithm is evaluated in 6 clinical CT images as well as 18 artificial datasets generated from additional clinical CT images.

  2. silver nanoparticles on liver cancer cells (HepG2

    Directory of Open Access Journals (Sweden)

    Ahmed I. El-Batal

    2018-01-01

    Full Text Available This study demonstrates a novel approach for the synthesis of silver nanoparticles (AgNPs against human liver cancer cell line (HepG2 using prodigiosin pigment isolated from Serratia marcescens. It further investigates the influence of various parameters such as initial pH, temperature, silver nitrate (AgNO 3 concentration, and prodigiosin concentration on stability and optical properties of synthesized prodigiosin AgNPs. Highly stable, spherical prodigiosin-conjugated AgNPs were synthesized with a mean diameter of 9.98 nm using a rapid one-step method. The cytotoxic activity investigated in the present study indicated that prodigiosin and prodigiosin-conjugated AgNPs possessed a strong cytotoxic potency against human liver cancer. The In silico molecular docking results of prodigiosin and prodigiosin-conjugated AgNPs are congruent with the In vitro studies and these AgNPs can be considered as good inhibitors of mitogen-activated protein kinase 1 (MEK kinases. The study opened the possibility of using prodigiosin-conjugated AgNPs to increase the efficiency of liver cancer treatment.

  3. PPARα activation differently affects microparticle content in atherosclerotic lesions and liver of a mouse model of atherosclerosis and NASH.

    Science.gov (United States)

    Baron, Morgane; Leroyer, Aurélie S; Majd, Zouher; Lalloyer, Fanny; Vallez, Emmanuelle; Bantubungi, Kadiombo; Chinetti-Gbaguidi, Giulia; Delerive, Philippe; Boulanger, Chantal M; Staels, Bart; Tailleux, Anne

    2011-09-01

    Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) are complex pathologies characterized by lipid accumulation, chronic inflammation and extensive tissue remodelling. Microparticles (MPs), small membrane vesicles produced by activated and apoptotic cells, might not only be biomarkers, but also functional actors in these pathologies. The apoE2-KI mouse is a model of atherosclerosis and NAFLD. Activation of the nuclear receptor PPARα decreases atherosclerosis and components of non-alcoholic steatohepatitis (NASH) in the apoE2-KI mouse. (1) To determine whether MPs are present in atherosclerotic lesions, liver and plasma during atherosclerosis and NASH progression in apoE2-KI mice, and (2) to study whether PPARα activation modulates MP concentrations. ApoE2-KI mice were fed a Western diet to induce atherosclerosis and NASH. MPs were isolated from atherosclerotic lesions, liver and blood and quantified by flow cytometry. An increase of MPs was observed in the atherosclerotic lesions and in the liver of apoE2-KI mice upon Western diet feeding. PPARα activation with fenofibrate decreased MP levels in the atherosclerotic lesions in a PPARα-dependent manner, but did not influence MP concentrations in the liver. Here we report that MPs are present in atherosclerotic lesions and in the liver of apoE2-KI mice. Their concentration increased during atherosclerosis and NASH development. PPARα activation differentially modulates MP levels in a tissue-specific manner. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.

    Science.gov (United States)

    Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D

    2015-03-01

    Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. PNPLA3 expression and its impact on the liver: current perspectives

    Directory of Open Access Journals (Sweden)

    Bruschi FV

    2017-11-01

    Full Text Available Francesca Virginia Bruschi, Matteo Tardelli, Thierry Claudel, Michael Trauner Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria Abstract: A single-nucleotide polymorphism occurring in the sequence of the human patatin-like phospholipase domain-containing 3 gene (PNPLA3, known as I148M variant, is one of the best characterized and deeply investigated variants in several clinical scenarios, because of its tight correlation with increased risk for developing hepatic steatosis and more aggressive part of the disease spectrum, such as nonalcoholic steatohepatitis, advanced fibrosis and cirrhosis. Further, the I148M variant is positively associated with alcoholic liver diseases, chronic hepatitis C–related cirrhosis and hepatocellular carcinoma. The native gene encodes for a protein that has not yet a fully defined role in liver lipid metabolism and, according to recent observations, seems to be divergently regulated among distinct liver cells type, such as hepatic stellate cells. Therefore, the aim of this review is to collect the latest data regarding PNPLA3 expression in human liver and to analyze the impact of its genetic variant in human hepatic pathologies. Moreover, a description of the current biochemical and metabolic data pertaining to PNPLA3 function in both animal models and in vitro studies is summarized to allow a better understanding of the relevant pathophysiological role of this enzyme in the progression of hepatic diseases. Keywords: adiponutrin, liver disease, genetic polymorphism, gene expression, metabolism

  6. Correlation of ultrasound findings, liver and spleen cytology, and prognosis in the clinical staging of high metastatic risk canine mast cell tumors.

    Science.gov (United States)

    Book, Alison P; Fidel, Janean; Wills, Tamara; Bryan, Jeffrey; Sellon, Rance; Mattoon, John

    2011-01-01

    Cytologic sampling of the ultrasonographically normal spleen and liver is not implemented routinely in the clinical staging of canine cutaneous mast cell tumors and normal ultrasound findings are often accepted as sufficient evidence for ruling out splenic or liver metastasis. Our objective was to define the specificity and sensitivity of ultrasound findings for diagnosis of mast cell infiltration when verified with cytologic evaluation, and to define the prognostic role of cytologic evaluation of liver and splenic aspirates. Dogs with a diagnosis of clinically aggressive grade II, or grade III mast cell tumor treated with a combination vinblastine/CCNU chemotherapy protocol, were selected retrospectively based on availability of cytologic evaluation of spleen plus or minus liver for staging. Out of 19 dogs, 10 dogs had a grade II tumor and nine a grade III tumor. Seven dogs had mast cell infiltration of the spleen, liver, or both. The sensitivity of ultrasound for detecting mast cell infiltration was 43% for the spleen and 0% for the liver. Dogs with positive cytologic evidence of mast cell infiltration to spleen, liver, or both had significantly shorter survival (100 vs. 291 days) than dogs without evidence of mast cell infiltration (Pdogs with a clinically aggressive mast cell tumor. © 2011 Veterinary Radiology & Ultrasound.

  7. Autoserum: An Optimal Supplement for Bone Marrow Mesenchymal Stem Cells of Liver-Injured Rats

    Directory of Open Access Journals (Sweden)

    Qinglin Zhang

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSCs are an attractive source for the clinical cell therapy of liver injury. Although the use of adult serum, platelet lysate, or cord blood serum solves some of the problems caused by fetal bovine serum (FBS, the allogeneic immune response, contamination, and donor-to-donor and donor-to-receptor differences still obstruct the application of MSCs. In this study, the influences of autoserum from liver-injured rats (LIRs and allogeneic serum from healthy rats on the isolation and culture of bone marrow MSCs (BMSCs were examined and compared to FBS. The results showed that BMSCs cultured with autoserum or allogeneic serum exhibited better MSC-specific morphology, lower rate of cell senescent, and higher proliferation kinetics than those with FBS. In addition, autoserum promoted the osteogenic differentiation potential of BMSCs as allogeneic serum did. Although there were no significant differences in proliferation activity, immunophenotypic characterization, and differentiation potential between BMSCs cultured with autoserum and those with allogeneic serum, the potential adverse immunological reactions in patients with allogeneic material transplantation must be considered. We therefore believe that the autoserum from liver-injured patients may be a better choice for MSC expansion to meet the needs of liver injury therapy.

  8. H2S-induced S-sulfhydration of pyruvate carboxylase contributes to gluconeogenesis in liver cells.

    Science.gov (United States)

    Ju, YoungJun; Untereiner, Ashley; Wu, Lingyun; Yang, Guangdong

    2015-11-01

    Cystathionine gamma-lyase (CSE)-derived hydrogen sulfide (H(2)S) possesses diverse roles in the liver, affecting lipoprotein synthesis, insulin sensitivity, and mitochondrial biogenesis. H(2)S S-sulfhydration is now proposed as a major mechanism for H(2)S-mediated signaling. Pyruvate carboxylase (PC) is an important enzyme for gluconeogenesis. S-sulfhydration regulation of PC by H(2)S and its implication in gluconeogenesis in the liver have been unknown. Gene expressions were analyzed by real-time PCR and western blotting, and protein S-sulfhydration was assessed by both modified biotin switch assay and tag switch assay. Glucose production and PC activity was measured with coupled enzyme assays, respectively. Exogenously applied H(2)S stimulates PC activity and gluconeogenesis in both HepG2 cells and mouse primary liver cells. CSE overexpression enhanced but CSE knockout reduced PC activity and gluconeogenesis in liver cells, and blockage of PC activity abolished H(2)S-induced gluconeogenesis. H(2)S had no effect on the expressions of PC mRNA and protein, while H(2)S S-sulfhydrated PC in a dithiothreitol-sensitive way. PC S-sulfhydration was significantly strengthened by CSE overexpression but attenuated by CSE knockout, suggesting that H(2)S enhances glucose production through S-sulfhydrating PC. Mutation of cysteine 265 in human PC diminished H(2)S-induced PC S-sulfhydration and activity. In addition, high-fat diet feeding of mice decreased both CSE expression and PC S-sulfhydration in the liver, while glucose deprivation of HepG2 cells stimulated CSE expression. CSE/H(2)S pathway plays an important role in the regulation of glucose production through S-sulfhydrating PC in the liver. Tissue-specific regulation of CSE/H(2)S pathway might be a promising therapeutic target of diabetes and other metabolic syndromes. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Toward angiogenesis of implanted bio-artificial liver using scaffolds with type I collagen and adipose tissue-derived stem cells.

    Science.gov (United States)

    Lee, Jae Geun; Bak, Seon Young; Nahm, Ji Hae; Lee, Sang Woo; Min, Seon Ok; Kim, Kyung Sik

    2015-05-01

    Stem cell therapies for liver disease are being studied by many researchers worldwide, but scientific evidence to demonstrate the endocrinologic effects of implanted cells is insufficient, and it is unknown whether implanted cells can function as liver cells. Achieving angiogenesis, arguably the most important characteristic of the liver, is known to be quite difficult, and no practical attempts have been made to achieve this outcome. We carried out this study to observe the possibility of angiogenesis of implanted bio-artificial liver using scaffolds. This study used adipose tissue-derived stem cells that were collected from adult patients with liver diseases with conditions similar to the liver parenchyma. Specifically, microfilaments were used to create an artificial membrane and maintain the structure of an artificial organ. After scratching the stomach surface of severe combined immunocompromised (SCID) mice (n=4), artificial scaffolds with adipose tissue-derived stem cells and type I collagen were implanted. Expression levels of angiogenesis markers including vascular endothelial growth factor (VEGF), CD34, and CD105 were immunohistochemically assessed after 30 days. Grossly, the artificial scaffolds showed adhesion to the stomach and surrounding organs; however, there was no evidence of angiogenesis within the scaffolds; and VEGF, CD34, and CD105 expressions were not detected after 30 days. Although implantation of cells into artificial scaffolds did not facilitate angiogenesis, the artificial scaffolds made with type I collagen helped maintain implanted cells, and surrounding tissue reactions were rare. Our findings indicate that type I collagen artificial scaffolds can be considered as a possible implantable biomaterial.

  10. Systemic administration of a novel human umbilical cord mesenchymal stem cells population accelerates the resolution of acute liver injury

    Directory of Open Access Journals (Sweden)

    Burra Patrizia

    2012-07-01

    Full Text Available Abstract Background Hepatocytes and stem cells transplantation may be an alternative to liver transplantation in acute or chronic liver disease. We aimed to evaluate the therapeutic potential of mesenchymal stem cells from human umbilical cord (UCMSCs, a readily available source of mesenchymal stem cells, in the CCl4-induced acute liver injury model. Methods Mesenchymal stem cells profile was analyzed by flow cytometry. In order to evaluate the capability of our UCMSCs to differentiate in hepatocytes, cells were seeded on three different supports, untreated plastic support, MatrigelTM and human liver acellular matrix. Cells were analyzed by immunocitochemistry for alpha-fetoprotein and albumin expression, qPCR for hepatocyte markers gene expression, Periodic Acid-Schiff staining for glycogen storage, ELISA for albumin detection and colorimetric assay for urea secretion. To assess the effects of undifferentiated UCMSCs in hepatic regeneration after an acute liver injury, we transplanted them via tail vein in mice injected intraperitoneally with a single dose of CCl4. Livers were analyzed by histological evaluation for damage quantification, immunostaining for Kupffer and stellate cells/liver myofibroblasts activation and for UCMSCs homing. Pro- and anti-inflammatory cytokines gene expression was evaluated by qPCR analysis and antioxidant enzyme activity was measured by catalase quantification. Data were analyzed by Mann–Whitney U-test, Kruskal-Wallis test and Cuzick’s test followed by Bonferroni correction for multiple comparisons. Results We have standardized the isolation procedure to obtain a cell population with hepatogenic properties prior to in vivo transplantation. When subjected to hepatogenic differentiation on untreated plastic support, UCMSCs differentiated in hepatocyte-like cells as demonstrated by their morphology, progressive up-regulation of mature hepatocyte markers, glycogen storage, albumin and urea secretion. However

  11. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Directory of Open Access Journals (Sweden)

    Tokiko Ishida

    Full Text Available The pathogenesis of renal impairment in chronic liver diseases (CLDs has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy, autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the

  12. Copper excess in liver HepG2 cells interferes with apoptosis and lipid metabolic signaling at the protein level.

    Science.gov (United States)

    Liu, Yu; Yang, Huarong; Song, Zhi; Gu, Shaojuan

    2014-12-01

    Copper is an essential trace element that serves as an important catalytic cofactor for cuproenzymes, carrying out major biological functions in growth and development. Although Wilson's disease (WD) is unquestionably caused by mutations in the ATP7B gene and subsequent copper overload, the precise role of copper in inducing pathological changes remains poorly understood. Our study aimed to explore, in HepG2 cells exposed to copper, the cell viability and apoptotic cells was tested by MTT and Hoechst 33342 stainning respectively, and the signaling pathways involved in oxidative stress response, apoptosis and lipid metabolism were determined by real time RT-PCR and Western blot analysis. The results demonstrate dose- and time-dependent cell viability and apoptosis in HepG2 cells following treatment with 10 μM, 200 μM and 500 μM of copper sulfate for 8 and 24 h. Copper overload significantly induced the expression of HSPA1A (heat shock 70 kDa protein 1A), an oxidative stress-responsive signal gene, and BAG3 (BCL2 associated athanogene3), an anti-apoptotic gene, while expression of HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase), a lipid biosynthesis and lipid metabolism gene, was inhibited. These findings provide new insights into possible mechanisms accounting for the development of liver apoptosis and steatosis in the early stages of Wilson's disease.

  13. Long non-coding RNA APTR promotes the activation of hepatic stellate cells and the progression of liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Fujun [Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, 201508 (China); Zheng, Jianjian [Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 (China); Mao, Yuqing [Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, 201508 (China); Dong, Peihong [Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 (China); Li, Guojun [Department of Hepatology, Ningbo Yinzhou Second Hospital, Ningbo, 315000 (China); Lu, Zhongqiu [Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 (China); Guo, Chuanyong; Liu, Zhanju [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai, 200072 (China); Fan, Xiaoming, E-mail: ktsqdph@163.com [Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, 201508 (China)

    2015-08-07

    In this study, we aimed at assessing a role of Alu-mediated p21 transcriptional regulator (APTR) in hepatofibrogenesis. APTR was upregulated in fibrotic liver samples and activated hepatic stellate cells (HSCs). Knockdown of APTR inhibited the activation of HSCs in vitro and mitigated the accumulation of collagen in vivo. Importantly, APTR silencing could abrogate TGF-β{sub 1}-induced upregulation of α-SMA in HSCs. In addition, inhibition of cell cycle and cell proliferation by APTR knockdown was attenuated by p21 siRNA1 in primary HSCs. Finally, serum APTR levels were increased in patients with liver cirrhosis, indicating a potential biomarker for liver cirrhosis. Collectively, evidence is proposed for a new biological role of APTR in hepatofibrogenesis. - Highlights: • APTR is upregulated in fibrotic liver tissues and activated HSCs. • APTR silencing inhibits HSC activation and the progression of liver fibrosis. • Antifibrotic effect of APTR silencing is achieved by increasing p21.

  14. Hydrogen peroxide stimulates cell motile activity through LPA receptor-3 in liver epithelial WB-F344 cells

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Ayano; Tanabe, Eriko; Inoue, Serina; Kitayoshi, Misaho; Okimoto, Souta; Hirane, Miku; Araki, Mutsumi [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2013-04-12

    Highlights: •Hydrogen peroxide stimulates cell motility of WB-F344 cells. •LPA{sub 3} is induced by hydrogen peroxide in WB-F344 cells. •Cell motility by hydrogen peroxide is inhibited in LPA{sub 3} knockdown cells. •LPA signaling is involved in cell migration by hydrogen peroxide. -- Abstract: Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1 μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA{sub 3} on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA{sub 3} may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide.

  15. Single-Pass Percutaneous Liver Biopsy for Diffuse Liver Disease Using an Automated Device: Experience in 154 Procedures

    International Nuclear Information System (INIS)

    Rivera-Sanfeliz, Gerant; Kinney, Thomas B.; Rose, Steven C.; Agha, Ayad K.M.; Valji, Karim; Miller, Franklin J.; Roberts, Anne C.

    2005-01-01

    Purpose: To describe our experience with ultrasound (US)-guided percutaneous liver biopsies using the INRAD 18G Express core needle biopsy system.Methods: One hundred and fifty-four consecutive percutaneous core liver biopsy procedures were performed in 153 men in a single institution over 37 months. The medical charts, pathology reports, and radiology files were retrospectively reviewed. The number of needle passes, type of guidance, change in hematocrit level, and adequacy of specimens for histologic analysis were evaluated.Results: All biopsies were performed for histologic staging of chronic liver diseases. The majority of patients had hepatitis C (134/153, 90.2%). All patients were discharged to home after 4 hr of postprocedural observation. In 145 of 154 (94%) biopsies, a single needle pass was sufficient for diagnosis. US guidance was utilized in all but one of the procedures (153/154, 99.4%). The mean hematocrit decrease was 1.2% (44.1-42.9%). Pain requiring narcotic analgesia, the most frequent complication, occurred in 28 of 154 procedures (18.2%). No major complications occurred. The specimens were diagnostic in 152 of 154 procedures (98.7%).Conclusions: Single-pass percutaneous US-guided liver biopsy with the INRAD 18G Express core needle biopsy system is safe and provides definitive pathologic diagnosis of chronic liver disease. It can be performed on an outpatient basis. Routine post-biopsy monitoring of hematocrit level in stable, asymptomatic patients is probably not warranted

  16. Liver regenerative medicine: advances and challenges.

    Science.gov (United States)

    Chistiakov, Dimitry A

    2012-01-01

    Liver transplantation is the standard care for many end-stage liver diseases. However, donor organs are scarce and some people succumb to liver failure before a donor is found. Liver regenerative medicine is a special interdisciplinary field of medicine focused on the development of new therapies incorporating stem cells, gene therapy and engineered tissues in order to repair or replace the damaged organ. In this review we consider the emerging progress achieved in the hepatic regenerative medicine within the last decade. The review starts with the characterization of liver organogenesis, fetal and adult stem/progenitor cells. Then, applications of primary hepatocytes, embryonic and adult (mesenchymal, hematopoietic and induced pluripotent) stem cells in cell therapy of liver diseases are considered. Current advances and challenges in producing mature hepatocytes from stem/progenitor cells are discussed. A section about hepatic tissue engineering includes consideration of synthetic and natural biomaterials in engineering scaffolds, strategies and achievements in the development of 3D bioactive matrices and 3D hepatocyte cultures, liver microengineering, generating bioartificial liver and prospects for fabrication of the bioengineered liver. Copyright © 2012 S. Karger AG, Basel.

  17. in Human Liver Diseases

    Directory of Open Access Journals (Sweden)

    Minoru Fujimoto

    2010-01-01

    Full Text Available Toll-like receptor (TLR signaling pathways are strictly coordinated by several mechanisms to regulate adequate innate immune responses. Recent lines of evidence indicate that the suppressor of cytokine signaling (SOCS family proteins, originally identified as negative-feedback regulators in cytokine signaling, are involved in the regulation of TLR-mediated immune responses. SOCS1, a member of SOCS family, is strongly induced upon TLR stimulation. Cells lacking SOCS1 are hyperresponsive to TLR stimulation. Thus, SOCS1 is an important regulator for both cytokine and TLR-induced responses. As an immune organ, the liver contains various types of immune cells such as T cells, NK cells, NKT cells, and Kupffer cells and is continuously challenged with gut-derived bacterial and dietary antigens. SOCS1 may be implicated in pathophysiology of the liver. The studies using SOCS1-deficient mice revealed that endogenous SOCS1 is critical for the prevention of liver diseases such as hepatitis, cirrhosis, and cancers. Recent studies on humans suggest that SOCS1 is involved in the development of various liver disorders in humans. Thus, SOCS1 and other SOCS proteins are potential targets for the therapy of human liver diseases.

  18. Stromal Derived Factor-1/CXCR4 Axis Involved in Bone Marrow Mesenchymal Stem Cells Recruitment to Injured Liver

    Directory of Open Access Journals (Sweden)

    Kuai Xiao Ling

    2016-01-01

    Full Text Available The molecular mechanism of bone marrow mesenchymal stromal stem cells (BMSCs mobilization and migration to the liver was poorly understood. Stromal cell-derived factor-1 (SDF-1 participates in BMSCs homing and migration into injury organs. We try to investigate the role of SDF-1 signaling in BMSCs migration towards injured liver. The expression of CXCR4 in BMSCs at mRNA level and protein level was confirmed by RT-PCR, flow cytometry, and immunocytochemistry. The SDF-1 or liver lysates induced BMSCs migration was detected by transwell inserts. CXCR4 antagonist, AMD3100, and anti-CXCR4 antibody were used to inhibit the migration. The Sprague-Dawley rat liver injury model was established by intraperitoneal injection of thioacetamide. The concentration of SDF-1 increased as modeling time extended, which was determined by ELISA method. The Dir-labeled BMSCs were injected into the liver of the rats through portal vein. The cell migration in the liver was tracked by in vivo imaging system and the fluorescent intensity was measured. In vivo, BMSCs migrated into injured liver which was partially blocked by AMD3100 or anti-CXCR4 antibody. Taken together, the results demonstrated that the migration of BMSCs was regulated by SDF-1/CXCR4 signaling which involved in BMSCs recruitment to injured liver.

  19. Studies on therapeutic method of liver cancer(hapatocellular carcinome)by Holmium-166 radionuclide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Tae; Yoo, H. S.; Kim, M. J.; Han, K. H.; Park, C. I. [Yonsei University Medical College, Seoul (Korea, Republic of)

    1997-07-01

    As the study of radioactive nuclide, Holmium-166 in the treatment of liver cancer(hepatocellular carcinoma), this study was performed under the base of animal experimental. Using dog liver, percutaneous injection of Ho-166 MAA or chitosan with premade dose was done under the ultrasound guidance. Continuously the same procedure as previous one was performed in the skin hapatoma, which was developed by the injection of hepatocellular carcinoma cell in the nude mouse, In case of injected normal liver of dog, imaging study including ultrasound, CT and MRI was done in order to evaluate effect of Ho-166 and pathologic reaction. The result showed well defined nectosis of normal liver as well as skin hepatoma. The area of nectosis is dependent on the dose of injected Ho-166. Generally, pathologic reaction is tissue coagulation nectosis, Ho-166 particles, fibrosis and hemorrhage. In the clinical study, 50 patients with hapatoma was selected for this study under the agreement of patient. Under ultrasound guidance percutaneous injection of Ho-166 Maa or chitosan to tumor was performed and follow-up study was extended from 6 to 12 month. The result showed that 64% of patient were completely treated. Overall, the effect of treatment could be obtained in 41 patient (82%) among 50 hepatoma patient. Conclusively Ho-166 is thought to be a compromising agent in the treatment of hepatocellular carcinoma and one of therapeutic modality, if it is established internally and world-wide. In the future, the popular percutaneous ethanol injection method will be replaced to this method. 19 refs., 1 tabs., 14 figs. (author)

  20. Establishment of animal model with half-liver cirrhosis

    International Nuclear Information System (INIS)

    Yang Zhenghan; Zhou Cheng; Chen Min; Xie Jingxia; Zhang Yuewu; Hu Bifang; Mo Hongbo; Wu Xiao

    2003-01-01

    Objective: To establish a new cirrhosis model suitable for imaging study. Methods: Via a 4 F catheter, 50-100 μl of carbon tetrachloride was injected into the left or right hepatic artery of 12 dogs fortnightly. Liver functional test, imaging study, and pathological examination were performed in these dogs regularly. Results: As the times of injection increased, necrosis of hepatocytes, fibrosis, and cirrhosis of the liver aggravated. In each dog, cirrhosis was more serious in the half liver with carbon tetrachloride injection than in the other half liver without carbon tetrachloride injection. With this model, it was convenient to perform the imaging study of liver cirrhosis. Conclusion: Animal model with half-liver cirrhosis can be established by combining catheter technique and traditional method

  1. Clonogenic cell line survival of a human liver cancer cell line SMMC-7721 after carbon ion irradiation with different LET

    International Nuclear Information System (INIS)

    Lei Suwen; Su Xu; Wang Jifang; Li Wenjian

    2003-01-01

    Objective: To investigate the survival fraction of a human liver cancer cell line SMMC-7721 following irradiation with carbon ions with different LET. Methods: cells of the human liver cancer cell line SMMC-7721 were irradiated with carbon ions (LET=30 and 70 keV/μm). The survival fraction was determined with clonogenic assay after 9 days incubation in a 5% CO 2 incubator at 37 degree C. Results: When the survival fractions of 70 keV/μm were D s = 0.1 and D s=0.01 absorption dose were 2.94 and 5.88 Gy respectively, and those of 30 keV/μm were 4.00 and 8.00 Gy respectively. Conclusion: For the SMMC-7721 cell line, 70 keV/μm is more effective for cell killing than 30 keV/μm

  2. Honey can repairing damage of liver tissue due to protein energy malnutrition through induction of endogenous stem cells.

    Science.gov (United States)

    Prasetyo, R Heru; Hestianah, Eka Pramyrtha

    2017-06-01

    This study was to evaluate effect of honey in repairing damage of liver tissue due to energy protein malnutrition and in mobilization of endogenous stem cells. Male mice model of degenerative liver was obtained through food fasting but still have drinking water for 5 days. It caused energy protein malnutrition and damage of liver tissue. The administration of 50% (v/v) honey was performed for 10 consecutive days, while the positive control group was fasted and not given honey and the negative control not fasted and without honey. Observations of regeneration the liver tissue based on histologically examination, observation of Hsp70 expression, and homing signal based on vascular endothelial growth factor-1 (VEGF-1) expression using immunohistochemistry technique. Observation on expression of CD34 and CD45 as the marker of auto mobilization of hematopoietic stem cells using flow cytometry technique. There is regeneration of the liver tissue due to protein energy malnutrition, decrease of Hsp70 expression, increase of VEGF-1 expression, and high expression of CD34 and CD45. Honey can improve the liver tissue based on: (1) Mobilization of endogenous stem cells (CD34 and CD45); (2) Hsp70 and VEGF-1 expressions as regeneration marker of improvement, and (3) regeneration histologically of liver tissue.

  3. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis

    DEFF Research Database (Denmark)

    Karsdal, Morten A; Manon-Jensen, Tina; Genovese, Federica

    2015-01-01

    Emerging evidence suggests that altered components and posttranslational modifications of proteins in the extracellular matrix (ECM) may both initiate and drive disease progression. The ECM is a complex grid consisting of multiple proteins, most of which play a vital role in containing......) explore key structural and functional components of the ECM as exemplified by monogenetic disorders leading to severe pathologies, 2) discuss selected pathological posttranslational modifications of ECM proteins resulting in altered functional (signaling) properties from the original structural proteins......, and 3) discuss how these findings support the novel concept that an increasing number of components of the ECM harbor signaling functions that can modulate fibrotic liver disease. The ECM entails functions in addition to anchoring cells and modulating their migratory behavior. Key ECM components...

  4. Liver bioengineering: Current status and future perspectives

    Institute of Scientific and Technical Information of China (English)

    Christopher Booth; Tom Soker; Pedro Baptista; Christina L Ross; Shay Soker; Umar Farooq; Robert J Stratta

    2012-01-01

    The present review aims to illustrate the strategies that are being implemented to regenerate or bioengineer livers for clinical purposes.There are two general pathways to liver bioengineering and regeneration.The first consists of creating a supporting scaffold,either synthetically or by decellularization of human or animal organs,and seeding cells on the scaffold,where they will mature either in bioreactors or in vivo.This strategy seems to offer the quickest route to clinical translation,as demonstrated by the development of liver organoids from rodent livers which were repopulated with organ specific cells of animal and/or human origin.Liver bioengineering has potential for transplantation and for toxicity testing during preclinical drug development.The second possibility is to induce liver regeneration of dead or resected tissue by manipulating cell pathways.In fact,it is well known that the liver has peculiar regenerative potential which allows hepatocyte hyperplasia after amputation of liver volume.Infusion of autologous bone marrow cells,which aids in liver regeneration,into patients was shown to be safe and to improve their clinical condition,but the specific cells responsible for liver regeneration have not yet been determined and the underlying mechanisms remain largely unknown.A complete understanding of the cell pathways and dynamics and of the functioning of liver stem cell niche is necessary for the clinical translation of regenerative medicine strategies.As well,it will be crucial to elucidate the mechanisms through which cells interact with the extracellular matrix,and how this latter supports and drives cell fate.

  5. Proapoptotic Role of Potassium Ions in Liver Cells

    Directory of Open Access Journals (Sweden)

    Zhenglin Xia

    2016-01-01

    Full Text Available Potassium channels are transmembrane proteins that selectively promote the infiltration of potassium ions. The significance of these channels for tumor biology has become obvious. However, the effects of potassium ions on the tumor or normal cells have seldom been studied. To address this problem, we studied the biological effects of L02 and HepG2 cells with ectogenous potassium ions. Cell proliferation, cell cycle, and apoptosis rate were analyzed. Our results indicated that potassium ions inhibited proliferation of L02 and HepG2 cells and promoted their apoptosis. Potassium ions induced apoptosis through regulating Bcl-2 family members and depolarized the mitochondrial membrane, especially for HepG2 cell. These biological effects were associated with channel protein HERG. By facilitating expression of channel protein HERG, potassium ions may prevent it from being shunted to procancerous pathways by inducing apoptosis. These results demonstrated that potassium ions may be a key regulator of liver cell function. Thus, our findings suggest that potassium ions could inhibit tumorigenesis through inducing apoptosis of hepatoma cells by upregulating potassium ions transport channel proteins HERG and VDAC1.

  6. Histones activate the NLRP3 Inflammasome in Kupffer Cells during Sterile Inflammatory Liver Injury

    Science.gov (United States)

    Huang, Hai; Chen, Hui-Wei; Evankovich, John; Yan, Wei; Rosborough, Brian R.; Nace, Gary W.; Ding, Qing; Loughran, Patricia; Beer-Stolz, Donna; Billiar, Timothy R.; Esmon, Charles T.; Tsung, Allan

    2013-01-01

    Cellular processes that drive sterile inflammatory injury after hepatic ischemia/reperfusion (I/R) injury are not completely understood. Activation of the inflammasome plays a key role in response to invading intracellular pathogens, but mounting evidence suggests it also plays a role in inflammation driven by endogenous danger-associate molecular pattern (DAMP) molecules released after ischemic injury. The nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3) inflammasome is one such process, and the mechanism by which its activation results in damage and inflammatory responses following liver I/R is unknown. Here we report that both NLRP3 and its downstream target Caspase-1 are activated I/R and are essential for hepatic I/R injury as both NLRP3 and Caspase-1 KO mice are protected from injury. Furthermore, inflammasome-mediated injury is dependent on Caspase-1 expression in liver non-parenchymal cells. While upstream signals that activate the inflammasome during ischemic injury are not well characterized, we show that endogenous extracellular histones activate the NLRP3 inflammasome during liver I/R through Toll-like Receptor-9 (TLR9). This occurs through TLR9-dependent generation of reactive oxygen species. This mechanism is operant in resident liver Kupffer cells, which drive innate immune responses after I/R injury by recruiting additional cell types, including neutrophils and inflammatory monocytes. These novel findings illustrate a new mechanism by which extracellular histones and activation of NLRP3 inflammasome contribute to liver damage and activation of innate immunity during sterile inflammation. PMID:23904166

  7. gamma-Glutamyl transpeptidase overexpression increases metastatic growth of B16 melanoma cells in the mouse liver.

    Science.gov (United States)

    Obrador, Elena; Carretero, Julian; Ortega, Angel; Medina, Ignacio; Rodilla, Vicente; Pellicer, José A; Estrela, José M

    2002-01-01

    B16 melanoma (B16M) cells with high glutathione (GSH) content show rapid proliferation in vitro and high metastatic activity in the liver in vivo. gamma-Glutamyl transpeptidase (GGT)-mediated extracellular GSH cleavage and intracellular GSH synthesis were studied in vitro in B16M cells with high (F10) and low (F1) metastatic potential. GGT activity was modified by transfection with the human GGT gene (B16MF1/Tet-GGT cells) or by acivicin-induced inhibition. B16MF1/Tet-GGT and B16MF10 cells exhibited higher GSH content (35 +/- 6 and 40 +/- 5 nmol/10(6) cells, respectively) and GGT activity (89 +/- 9 and 37 +/- 7 mU/10(6) cells, respectively) as compared (P <.05) with B16MF1 cells (10 +/- 3 nmol GSH and 4 mU GGT/10(6) cells). Metastasis (number of foci/100 mm(3) of liver) increased in B16MF1 cells pretreated with GSH ester ( approximately 3-fold, P <.01), and decreased in B16MF1/Tet-GGT and B16MF10 cells pretreated with the GSH synthesis inhibitor L-buthionine (S,R)-sulphoximine ( approximately 5-fold and 2-fold, respectively, P <.01). Liver, kidney, brain, lung, and erythrocyte GSH content in B16MF1/Tet-GGT- or B16MF10-bearing mice decreased as compared with B16MF1- and non-tumor-bearing mice. Organic anion transporting polypeptide 1-independent sinusoidal GSH efflux from hepatocytes increased in B16MF1/Tet-GGT- or B16MF10-bearing mice ( approximately 2-fold, P <.01) as compared with non-tumor-bearing mice. Our results indicate that tumor GGT activity and an intertissue flow of GSH can regulate GSH content of melanoma cells and their metastatic growth in the liver.

  8. Therapeutic efficacy of human hepatocyte transplantation in a SCID/uPA mouse model with inducible liver disease.

    Directory of Open Access Journals (Sweden)

    Donna N Douglas

    2010-02-01

    Full Text Available Severe Combined Immune Deficient (SCID/Urokinase-type Plasminogen Activator (uPA mice undergo liver failure and are useful hosts for the propagation of transplanted human hepatocytes (HH which must compete with recipient-derived hepatocytes for replacement of the diseased liver parenchyma. While partial replacement by HH has proven useful for studies with Hepatitis C virus, complete replacement of SCID/uPA mouse liver by HH has never been achieved and limits the broader application of these mice for other areas of biomedical research. The herpes simplex virus type-1 thymidine kinase (HSVtk/ganciclovir (GCV system is a powerful tool for cell-specific ablation in transgenic animals. The aim of this study was to selectively eliminate murine-derived parenchymal liver cells from humanized SCID/uPA mouse liver in order to achieve mice with completely humanized liver parenchyma. Thus, we reproduced the HSVtk (vTK/GCV system of hepatic failure in SCID/uPA mice.In vitro experiments demonstrated efficient killing of vTK expressing hepatoma cells after GCV treatment. For in vivo experiments, expression of vTK was targeted to the livers of FVB/N and SCID/uPA mice. Hepatic sensitivity to GCV was first established in FVB/N mice since these mice do not undergo liver failure inherent to SCID/uPA mice. Hepatic vTK expression was found to be an integral component of GCV-induced pathologic and biochemical alterations and caused death due to liver dysfunction in vTK transgenic FVB/N and non-transplanted SCID/uPA mice. In SCID/uPA mice with humanized liver, vTK/GCV caused death despite extensive replacement of the mouse liver parenchyma with HH (ranging from 32-87%. Surprisingly, vTK/GCV-dependent apoptosis and mitochondrial aberrations were also localized to bystander vTK-negative HH.Extensive replacement of mouse liver parenchyma by HH does not provide a secure therapeutic advantage against vTK/GCV-induced cytotoxicity targeted to residual mouse hepatocytes

  9. Placental Growth Factor Contributes to Liver Inflammation, Angiogenesis, Fibrosis in Mice by Promoting Hepatic Macrophage Recruitment and Activation

    Directory of Open Access Journals (Sweden)

    Xi Li

    2017-07-01

    Full Text Available Placental growth factor (PlGF, a member of the vascular endothelial growth factor (VEGF family, mediates wound healing and inflammatory responses, exerting an effect on liver fibrosis and angiogenesis; however, the precise mechanism remains unclear. The aims of this study are to identify the role of PlGF in liver inflammation and fibrosis induced by bile duct ligation (BDL in mice and to reveal the underlying molecular mechanism. PlGF small interfering RNA (siRNA or non-targeting control siRNA was injected by tail vein starting 2 days after BDL. Liver inflammation, fibrosis, angiogenesis, macrophage infiltration, and hepatic stellate cells (HSCs activation were examined. Our results showed that PlGF was highly expressed in fibrotic livers and mainly distributed in activated HSCs and macrophages. Furthermore, PlGF silencing strongly reduced the severity of liver inflammation and fibrosis, and inhibited the activation of HSCs. Remarkably, PlGF silencing also attenuated BDL-induced hepatic angiogenesis, as evidenced by attenuated liver endothelial cell markers CD31 and von Willebrand factor immunostaining and genes or protein expression. Interestingly, these pathological ameliorations by PlGF silencing were due to a marked reduction in the numbers of intrahepatic F4/80+, CD68+, and Ly6C+ cell populations, which were reflected by a lower expression of these macrophage marker molecules in fibrotic livers. In addition, knockdown of PlGF by siRNA inhibited macrophages activation and substantially suppressed the expression of pro-inflammatory cytokines and chemokines in fibrotic livers. Mechanistically, evaluation of cultured RAW 264.7 cells revealed that VEGF receptor 1 (VEGFR1 mainly involved in mediating the role of PlGF in macrophages recruitment and activation, since using VEGFR1 neutralizing antibody blocking PlGF/VEGFR1 signaling axis significantly inhibited macrophages migration and inflammatory responses. Together, these findings indicate

  10. Advances in sepsis-associated liver dysfunction

    OpenAIRE

    Wang, Dawei; Yin, Yimei; Yao, Yongming

    2014-01-01

    Recent studies have revealed liver dysfunction as an early event in sepsis. Sepsis-associated liver dysfunction is mainly resulted from systemic or microcirculatory disturbances, spillovers of bacteria and endotoxin (lipopolysaccharide, LPS), and subsequent activation of inflammatory cytokines as well as mediators. Three main cell types of the liver which contribute to the hepatic response in sepsis are Kupffer cells (KCs), hepatocytes and liver sinusoidal endothelial cells (LSECs). In additi...

  11. [Impact of postoperative pathological features of esophageal squamous cell carcinoma on the prognosis].

    Science.gov (United States)

    Xu, Lei; Li, Yin; Sun, Haibo; Zheng, Yan; Wang, Zongfei; Chen, Xiankai

    2017-12-25

    Esophageal cancer is located in the 8th position of the incidence of malignant tumors and the 6th most common cause of cancer-related mortality in the world, while China has the highest incidence and mortality of esophageal cancer. Esophageal squamous cell carcinoma (ESCC), the predominant histologic type of esophageal cancer in China, accounts for about 90%. Despite recent improvement of surgical techniques and philosophy, however, the prognosis of ESCC patients treated with surgery is still poor, and 5-year survival remains unsatisfactorily low. So far, the pathogenesis of esophageal squamous cell carcinoma is still unclear, and effective prevention is also out of the question. To find the main factors affecting the prognosis of esophageal squamous cell carcinoma, and to improve the survival of patients, are the main directions of all scholars. Postoperative pathology of esophageal squamous cell carcinoma is considered to be one of the most important predictors of prognosis. Currently, the evaluation of postoperative esophageal prognosis mainly depends on TNM staging, but some criteria of its specific content and staging remains controversial. In this paper recent domestic and foreign related researches and clinical trials reports are collected, and the postoperative pathological features affecting esophageal squamous cell carcinoma prognosis were reviewed.

  12. Amniotic fluid-derived mesenchymal stem cells as a novel ...

    African Journals Online (AJOL)

    AFMSCs were transplanted into injured liver via the portal vein in the rat FHF model. Therapeutic effect was evaluated after cell transfusion by histologic pathology, hepatic enzyme levels and animal survival. Cryostat sections were prepared and directly assessed for green fluorescent protein (GFP) expression and ...

  13. CAR-mediated repression of Foxo1 transcriptional activity regulates the cell cycle inhibitor p21 in mouse livers

    International Nuclear Information System (INIS)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Pustylnyak, Vladimir O.

    2014-01-01

    Highlights: • CAR activation decreased the level of Foxo1 in mouse livers. • CAR activation decreased the level of p21 in mouse livers. • CAR activation inhibited Foxo1 transcriptional activity in mouse livers. - Abstract: 1,4-Bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), an agonist of constitutive androstane receptor (CAR), is a well-known strong primary chemical mitogen for the mouse liver. Despite extensive investigation of the role of CAR in the regulation of cell proliferation, our knowledge of the intricate mediating mechanism is incomplete. In this study, we demonstrated that long-term CAR activation by TCPOBOP increased liver-to-body weight ratio and decreased tumour suppressor Foxo1 expression and transcriptional activity, which were correlated with reduced expression of genes regulated by Foxo1, including the cell-cycle inhibitor Cdkn1a(p21), and upregulation of the cell-cycle regulator Cyclin D1. Moreover, we demonstrated the negative regulatory effect of TCPOBOP-activated CAR on the association of Foxo1 with the target Foxo1 itself and Cdkn1a(p21) promoters. Thus, we identified CAR-mediated repression of cell cycle inhibitor p21, as mediated by repression of FOXO1 expression and transcriptional activity. CAR-FOXO1 cross-talk may provide new opportunities for understanding liver diseases and developing more effective therapeutic approaches to better drug treatments

  14. Idiopathic perinatal hepatic infarct as a cause of liver mass

    African Journals Online (AJOL)

    aRecanati-Miller Transplantation Institute, bDivision of Liver Pathology, The Lillian and Henry Stratton - Hans Popper Department of Pathology and cDepartment of. Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA. Correspondence to Josep Marti, MD, PhD, Recanati-Miller Transplantation.

  15. Pathologic effects of fractionated fast neutrons or photons on canine liver

    International Nuclear Information System (INIS)

    Zook, B.C.; Bradley, E.W.; Casarett, G.W.; Hitzelberg, R.A.; Rogers, C.C.

    1981-01-01

    Thirty-nine adult male purebred beagles received either fast neutron or photon irradiation to the right thorax to determine the effects on pulmonary tissue. The right half of the liver was included in the field of radiation. Twenty-four dogs (six/group) received fast neutrons with a mean energy of 15 MeV to total doses of 1000, 1500, 2250, or 3375 rads in four fractions per week for 6 weeks. Fifteen dogs received 3000, 4500, or 6750 total rads of photons (five dogs/group) in an identical fractionation pattern. All neutron-irradiated dogs receiving 3375 and 2250 rads and one receiving 1500 rads developed clinical signs, hepatic enzyme, and bilirubin elevations, and the dogs died or were euthanized in extremis on postirradiation day 47-291. Signs of liver injury, other than enzyme changes, have not developed to date (1200 to 1300 days) in the remaining dogs, except in one 6750-rad photon dog that died of hepatic failure on postirradiation day 708. At necropsy, the irradiated right lobes of the liver were atrophic and the nonirradiated left lobes underwent compensatory hypertrophy. Hepatic arterioles and bile ducts were injured in every dog, but no obstructive lesions were observed in hepatic veins. Portal fibroplasia, bile retention, and proliferation of bile ductules was common; the latter two changes also occurred in the nonirradiated lobes. No qualitative differences were observed between hepatic lesions in neutron-versus photon-irradiated dogs. The relative biological effectiveness of fast neutrons for liver damage appears to be no less than 4.5

  16. Pathologic effects of fractionated fast neutrons or photons on canine liver

    International Nuclear Information System (INIS)

    Zook, B.C.; Bradley, E.W.; Casarett, G.W.; Hitzelberg, R.A.; Rogers, C.C.

    1981-01-01

    Thirty-nine adult male purebred beagles received either fast neutron or photon irradiation to the right thorax to determine the effects on pulmonary tissue. The right half of the liver was included in the field of radiation. Twenty-four dogs (six/group) received fast neutrons with a mean energy of 15 MeV to total doses of 1000, 1500, 2250, or 3375 rads in four fractions per week for 6 weeks. Fifteen dogs received 3000, 4500, or 6750 total rads of photons (five dogs/group) in an identical fractionation pattern. All neutron-irradiated dogs receiving 3375 and 2250 rads and one receiving 1500 rads developed clinical signs, hepatic enzyme, and bilirubin elevations, and the dogs died or were euthanized in extremis on postirradiation day 47-291. Signs of liver injury, other than enzyme changes, have not developed to date (1200-1300 days) in the remaining dogs, except in one 6750-rad photon dog that died of hepatic failure on postirradiation day 708. At necropsy, the irradiated right lobes of the liver were atrophic and the nonirradiated left lobes underwent compensatory hypertrophy. Hepatic arterioles and bile ducts were injured in every dog, but no obstructive lesions were observed in hepatic veins. Portal fibroplasia, bile retention, and proliferation of bile ductules was common; the latter two changes also occurred in the nonirradiated lobes. No qualitative differences were observed between hepatic lesions in neutron- versus photon-irradiated dogs. The relative biological effectiveness of fast neutrons for liver damage appears to be no less than 4.5

  17. Dig1 protects against cell death provoked by glyphosate-based herbicides in human liver cell lines

    Directory of Open Access Journals (Sweden)

    Travert Carine

    2010-10-01

    Full Text Available Abstract Background Worldwide used pesticides containing different adjuvants like Roundup formulations, which are glyphosate-based herbicides, can provoke some in vivo toxicity and in human cells. These pesticides are commonly found in the environment, surface waters and as food residues of Roundup tolerant genetically modified plants. In order to know their effects on cells from liver, a major detoxification organ, we have studied their mechanism of action and possible protection by precise medicinal plant extracts called Dig1. Methods The cytotoxicity pathways of four formulations of glyphosate-based herbicides were studied using human hepatic cell lines HepG2 and Hep3B, known models to study xenobiotic effects. We monitored mitochondrial succinate dehydrogenase activity and caspases 3/7 for cell mortality and protection by Dig1, as well as cytochromes P450 1A1, 1A2, 3A4 and 2C9 and glutathione-S-transferase to approach the mechanism of actions. Results All the four Roundup formulations provoke liver cell death, with adjuvants having stronger effects than glyphosate alone. Hep3B are 3-5 times more sensitive over 48 h. Caspases 3/7 are greatly activated in HepG2 by Roundup at non-cytotoxic levels, and some apoptosis induction by Roundup is possible together with necrosis. CYP3A4 is specifically enhanced by Roundup at doses 400 times less than used in agriculture (2%. CYP1A2 is increased to a lesser extent together with glutathione-S-transferase (GST down-regulation. Dig 1, non cytotoxic and not inducing caspases by itself, is able to prevent Roundup-induced cell death in a time-dependant manner with an important efficiency of up to 89%, within 48 h. In addition, we evidenced that it prevents Caspases 3/7 activation and CYP3A4 enhancement, and not GST reduction, but in turn it slightly inhibited CYP2C9 when added before Roundup. Conclusion Roundup is able to provoke intracellular disruption in hepatic cell lines at different levels, but a

  18. A three-dimensional in vitro HepG2 cells liver spheroid model for genotoxicity studies.

    Science.gov (United States)

    Shah, Ume-Kulsoom; Mallia, Jefferson de Oliveira; Singh, Neenu; Chapman, Katherine E; Doak, Shareen H; Jenkins, Gareth J S

    2018-01-01

    The liver's role in metabolism of chemicals makes it an appropriate tissue for toxicity testing. Current testing protocols, such as animal testing and two-dimensional liver cell systems, offer limited resemblance to in vivo liver cell behaviour, in terms of gene expression profiles and metabolic competence; thus, they do not always accurately predict human toxicology. In vitro three-dimensional liver cell models offer an attractive alternative. This study reports on the development of a 3D liver model, using HepG2 cells, by a hanging-drop technique, with a focus on evaluating spheroid growth characteristics and suitability for genotoxicity testing. The cytokinesis-blocked micronucleus assay protocol was adapted to enable micronucleus (MN) detection in the 3D spheroid models. This involved evaluating the difference between hanging vs non-hanging drop positions for dosing of the test agents and comparison of automated Metafer scoring with manual scoring for MN detection in HepG2 spheroids. The initial seeding density, used for all experiments, was 5000 cells/20 μl drop hanging spheroids, harvested on day 4, with >75% cell viability. Albumin secretion (7.8 g/l) and both CYP1A1 and CYP1A2 gene expression were highest in the 3D environment at day 4. Exposure to metabolically activated genotoxicants for 24 h resulted in a 6-fold increase in CYP1A1 enzyme activity (3 μM B[a]P) and a 30-fold increase in CYP1A2 enzyme activity (5 μM PhIP) in 3D hanging spheroids. MN inductions in response to B[a]P or PhIP were 2-fold and 3-fold, respectively, and were greater in 3D hanging spheroids than in 2D format, showing that hanging spheroids are more sensitive to genotoxic agents. HepG2 hanging-drop spheroids are an exciting new alternative system for genotoxicity studies, due to their improved structural and physiological properties, relative to 2D cultures. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Computational Modeling in Liver Surgery

    Directory of Open Access Journals (Sweden)

    Bruno Christ

    2017-11-01

    Full Text Available The need for extended liver resection is increasing due to the growing incidence of liver tumors in aging societies. Individualized surgical planning is the key for identifying the optimal resection strategy and to minimize the risk of postoperative liver failure and tumor recurrence. Current computational tools provide virtual planning of liver resection by taking into account the spatial relationship between the tumor and the hepatic vascular trees, as well as the size of the future liver remnant. However, size and function of the liver are not necessarily equivalent. Hence, determining the future liver volume might misestimate the future liver function, especially in cases of hepatic comorbidities such as hepatic steatosis. A systems medicine approach could be applied, including biological, medical, and surgical aspects, by integrating all available anatomical and functional information of the individual patient. Such an approach holds promise for better prediction of postoperative liver function and hence improved risk assessment. This review provides an overview of mathematical models related to the liver and its function and explores their potential relevance for computational liver surgery. We first summarize key facts of hepatic anatomy, physiology, and pathology relevant for hepatic surgery, followed by a description of the computational tools currently used in liver surgical planning. Then we present selected state-of-the-art computational liver models potentially useful to support liver surgery. Finally, we discuss the main challenges that will need to be addressed when developing advanced computational planning tools in the context of liver surgery.

  20. Allosuppressor- and allohelper-T cells in acute and chronic graft-vs.-host (GVH) disease. III. Different Lyt subsets of donor T cells induce different pathological syndromes

    International Nuclear Information System (INIS)

    Rolink, A.G.; Gleichmann, E.

    1983-01-01

    Previous work from this laboratory has led to the hypothesis that the stimulatory pathological symptoms of chronic graft-vs.-host disease (GVHD) are caused by alloreactive donor T helper (TH) cells, whereas the suppressive pathological symptoms of acute GVHD are caused by alloreactive T suppressor (TS) cells of the donor. We analyzed the Lyt phenotypes of B10 donor T cells required for the induction of either acute or chronic GVHD in H-2-different (B10 X DBA/2)F1 recipients. When nonirradiated F1 mice were used as the recipients, we found unseparated B10 T cells induced only a moderate formation of systemic lupus erythematosus (SLE)-like autoantibodies, but a high percentage of lethal GVHD (LGVHD). In contrast, Lyt-1+2- donor T cells were unable to induce LGVHD in these recipients but were capable of inducing a vigorous formation of SLE-like autoantibodies and severe immune-complex glomerulonephritis. Lyt-1-2+ T cells were incapable of inducing either acute or chronic GVHD. The sensitivity and accuracy of the GVH system were increased by using irradiated F1 mice as recipients and then comparing donor-cell inocula that contained similar numbers of T lymphocytes. Donor-cell inocula were used that had been tested for their allohelper and allosuppressor effects on F1 B cells in vitro. In the irradiated F1 recipients unseparated donor T cells were superior to T cell subsets in inducing LGVHD. In contrast Lyt-1+2- T cells, but neither unseparated T cells nor Lyt-1-2+ T cells, were capable of inducing a vigorous formation of SLE-like auto-antibodies. We conclude that the stimulatory pathological symptoms of chronic GVHD are caused by Lyt-1+2- allohelper T cells. In contrast, the development of the suppressive pathological symptoms of acute GVHD appears to involve alloreactive Lyt-1+2+ T suppressor cells