WorldWideScience

Sample records for live yeast cell

  1. Quaternary structure of the yeast pheromone receptor Ste2 in living cells.

    Science.gov (United States)

    Stoneman, Michael R; Paprocki, Joel D; Biener, Gabriel; Yokoi, Koki; Shevade, Aishwarya; Kuchin, Sergei; Raicu, Valerică

    2017-09-01

    Transmembrane proteins known as G protein-coupled receptors (GPCRs) have been shown to form functional homo- or hetero-oligomeric complexes, although agreement has been slow to emerge on whether homo-oligomerization plays functional roles. Here we introduce a platform to determine the identity and abundance of differing quaternary structures formed by GPCRs in living cells following changes in environmental conditions, such as changes in concentrations. The method capitalizes on the intrinsic capability of FRET spectrometry to extract oligomer geometrical information from distributions of FRET efficiencies (or FRET spectrograms) determined from pixel-level imaging of cells, combined with the ability of the statistical ensemble approaches to FRET to probe the proportion of different quaternary structures (such as dimers, rhombus or parallelogram shaped tetramers, etc.) from averages over entire cells. Our approach revealed that the yeast pheromone receptor Ste2 forms predominantly tetramers at average expression levels of 2 to 25 molecules per pixel (2.8·10 -6 to 3.5·10 -5 molecules/nm 2 ), and a mixture of tetramers and octamers at expression levels of 25-100 molecules per pixel (3.5·10 -5 to 1.4·10 -4 molecules/nm 2 ). Ste2 is a class D GPCR found in the yeast Saccharomyces cerevisiae of the mating type a, and binds the pheromone α-factor secreted by cells of the mating type α. Such investigations may inform development of antifungal therapies targeting oligomers of pheromone receptors. The proposed FRET imaging platform may be used to determine the quaternary structure sub-states and stoichiometry of any GPCR and, indeed, any membrane protein in living cells. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM

    International Nuclear Information System (INIS)

    Alsteens, David; Dupres, Vincent; Evoy, Kevin Mc; Dufrene, Yves F; Wildling, Linda; Gruber, Hermann J

    2008-01-01

    Although the chemical composition of yeast cell walls is known, the organization, assembly, and interactions of the various macromolecules remain poorly understood. Here, we used in situ atomic force microscopy (AFM) in three different modes to probe the ultrastructure, cell wall elasticity and polymer properties of two brewing yeast strains, i.e. Saccharomyces carlsbergensis and S. cerevisiae. Topographic images of the two strains revealed smooth and homogeneous cell surfaces, and the presence of circular bud scars on dividing cells. Nanomechanical measurements demonstrated that the cell wall elasticity of S. carlsbergensis is homogeneous. By contrast, the bud scar of S. cerevisiae was found to be stiffer than the cell wall, presumably due to the accumulation of chitin. Notably, single molecule force spectroscopy with lectin-modified tips revealed major differences in polysaccharide properties of the two strains. Polysaccharides were clearly more extended on S. cerevisiae, suggesting that not only oligosaccharides, but also polypeptide chains of the mannoproteins were stretched. Consistent with earlier cell surface analyses, these findings may explain the very different aggregation properties of the two organisms. This study demonstrates the power of using multiple complementary AFM modalities for probing the organization and interactions of the various macromolecules of microbial cell walls

  3. Mitochondrial import of human and yeast fumarase in live mammalian cells: Retrograde translocation of the yeast enzyme is mainly caused by its poor targeting sequence

    International Nuclear Information System (INIS)

    Singh, Bhag; Gupta, Radhey S.

    2006-01-01

    Studies on yeast fumarase provide the main evidence for dual localization of a protein in mitochondria and cytosol by means of retrograde translocation. We have examined the subcellular targeting of yeast and human fumarase in live cells to identify factors responsible for this. The cDNAs for mature yeast or human fumarase were fused to the gene for enhanced green fluorescent protein (eGFP) and they contained, at their N-terminus, a mitochondrial targeting sequence (MTS) derived from either yeast fumarase, human fumarase, or cytochrome c oxidase subunit VIII (COX) protein. Two nuclear localization sequences (2x NLS) were also added to these constructs to facilitate detection of any cytosolic protein by its targeting to nucleus. In Cos-1 cells transfected with these constructs, human fumarase with either the native or COX MTSs was detected exclusively in mitochondria in >98% of the cells, while the remainder 1-2% of the cells showed varying amounts of nuclear labeling. In contrast, when human fumarase was fused to the yeast MTS, >50% of the cells showed nuclear labeling. Similar studies with yeast fumarase showed that with its native MTS, nuclear labeling was seen in 80-85% of the cells, but upon fusion to either human or COX MTS, nuclear labeling was observed in only 10-15% of the cells. These results provide evidence that extramitochondrial presence of yeast fumarase is mainly caused by the poor mitochondrial targeting characteristics of its MTS (but also affected by its primary sequence), and that the retrograde translocation mechanism does not play a significant role in the extramitochondrial presence of mammalian fumarase

  4. Live cell imaging of mitochondrial movement along actin cables in budding yeast.

    Science.gov (United States)

    Fehrenbacher, Kammy L; Yang, Hyeong-Cheol; Gay, Anna Card; Huckaba, Thomas M; Pon, Liza A

    2004-11-23

    Mitochondrial inheritance is essential for cell division. In budding yeast, mitochondrial movement from mother to daughter requires (1) actin cables, F-actin bundles that undergo retrograde movement during elongation from buds into mother cells; (2) the mitochore, a mitochondrial protein complex implicated in linking mitochondria to actin cables; and (3) Arp2/3 complex-mediated force generation on mitochondria. We observed three new classes of mitochondrial motility: anterograde movement at velocities of 0.2-0.33 microm/s, retrograde movement at velocities of 0.26-0.51 microm/s, and no net anterograde or retrograde movement. In all cases, motile mitochondria were associated with actin cables undergoing retrograde flow at velocities of 0.18-0.62 microm/s. Destabilization of actin cables or mutations of the mitochore blocked all mitochondrial movements. In contrast, mutations in the Arp2/3 complex affected anterograde but not retrograde mitochondrial movements. Actin cables are required for movement of mitochondria, secretory vesicles, mRNA, and spindle alignment elements in yeast. We provide the first direct evidence that one of the proposed cargos use actin cables as tracks. In the case of mitochondrial inheritance, anterograde movement drives transfer of the organelle from mothers to buds, while retrograde movement contributes to retention of the organelle in mother cells. Interaction of mitochondria with actin cables is required for anterograde and retrograde movement. In contrast, force generation on mitochondria is required only for anterograde movement. Finally, we propose a novel mechanism in which actin cables serve as "conveyor belts" that drive retrograde organelle movement.

  5. Live Yeast and Yeast Cell Wall Supplements Enhance Immune Function and Performance in Food-Producing Livestock: A Review †,‡

    Directory of Open Access Journals (Sweden)

    Paul R. Broadway

    2015-08-01

    Full Text Available More livestock producers are seeking natural alternatives to antibiotics and antimicrobials, and searching for supplements to enhance growth performance, and general animal health and well-being. Some of the compounds currently being utilized and studied are live yeast and yeast-based products derived from the strain Saccharomyces cerevisiae. These products have been reported to have positive effects both directly and indirectly on the immune system and its subsequent biomarkers, thereby mitigating negative effects associated with stress and disease. These yeast-based products have also been reported to simultaneously enhance growth and performance by enhancing dry matter intake (DMI and average daily gain (ADG perhaps through the establishment of a healthy gastrointestinal tract. These products may be especially useful in times of potential stress such as during birth, weaning, early lactation, and during the receiving period at the feedlot. Overall, yeast supplements appear to possess the ability to improve animal health and metabolism while decreasing morbidity, thereby enhancing profitability of these animals.

  6. Determination of Concentration of Living Immobilized Yeast Cells by Fluorescence Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Podrazký, Ondřej; Kuncová, Gabriela

    2005-01-01

    Roč. 107, č. 1 (2005), s. 126-134 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /7./. Madrid, 04.04.2004-07.04.2004] R&D Projects: GA ČR GA104/01/0461; GA MŠk(CZ) OC 840.10 Institutional research plan: CEZ:AV0Z40720504 Keywords : immobilization of cells * 2-D fluorescence spectroscopy * sol–gel Subject RIV: CE - Biochemistry Impact factor: 2.646, year: 2005

  7. Nanoscale domain formation of phosphatidylinositol 4-phosphate in the plasma and vacuolar membranes of living yeast cells.

    Science.gov (United States)

    Tomioku, Kan-Na; Shigekuni, Mikiko; Hayashi, Hiroki; Yoshida, Akane; Futagami, Taiki; Tamaki, Hisanori; Tanabe, Kenji; Fujita, Akikazu

    2018-05-01

    In budding yeast Saccharomyces cerevisiae, PtdIns(4)P serves as an essential signalling molecule in the Golgi complex, endosomal system, and plasma membrane, where it is involved in the control of multiple cellular functions via direct interactions with PtdIns(4)P-binding proteins. To analyse the distribution of PtdIns(4)P in yeast cells at a nanoscale level, we employed an electron microscopy technique that specifically labels PtdIns(4)P on the freeze-fracture replica of the yeast membrane. This method minimizes the possibility of artificial perturbation, because molecules in the membrane are physically immobilised in situ. We observed that PtdIns(4)P is localised on the cytoplasmic leaflet, but not the exoplasmic leaflet, of the plasma membrane, Golgi body, vacuole, and vesicular structure membranes. PtdIns(4)P labelling was not observed in the membrane of the endoplasmic reticulum, and in the outer and inner membranes of the nuclear envelope or mitochondria. PtdIns(4)P forms clusters of plasma membrane and vacuolar membrane according to point pattern analysis of immunogold labelling. There are three kinds of compartments in the cytoplasmic leaflet of the plasma membrane. In the present study, we showed that PtdIns(4)P is specifically localised in the flat undifferentiated plasma membrane compartment. In the vacuolar membrane, PtdIns(4)P was concentrated in intramembrane particle (IMP)-deficient raft-like domains, which are tightly bound to lipid droplets, but not surrounding IMP-rich non-raft domains in geometrical IMP-distributed patterns in the stationary phase. This is the first report showing microdomain formations of PtdIns(4)P in the plasma membrane and vacuolar membrane of budding yeast cells at a nanoscale level, which will illuminate the functionality of PtdIns(4)P in each membrane. Copyright © 2018 Elsevier GmbH. All rights reserved.

  8. Cell biology of homologous recombination in yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Rothstein, Rodney; Lisby, Michael

    2011-01-01

    Homologous recombination is an important pathway for error-free repair of DNA lesions, such as single- and double-strand breaks, and for rescue of collapsed replication forks. Here, we describe protocols for live cell imaging of single-lesion recombination events in the yeast Saccharomyces...

  9. Endoplasmic reticulum involvement in yeast cell death

    International Nuclear Information System (INIS)

    Nicanor Austriaco, O.

    2012-01-01

    Yeast cells undergo programed cell death (PCD) with characteristic markers associated with apoptosis in mammalian cells including chromatin breakage, nuclear fragmentation, reactive oxygen species generation, and metacaspase activation. Though significant research has focused on mitochondrial involvement in this phenomenon, more recent work with both Saccharomyces cerevisiae and Schizosaccharomyces pombe has also implicated the endoplasmic reticulum (ER) in yeast PCD. This minireview provides an overview of ER stress-associated cell death (ER-SAD) in yeast. It begins with a description of ER structure and function in yeast before moving to a discussion of ER-SAD in both mammalian and yeast cells. Three examples of yeast cell death associated with the ER will be highlighted here including inositol starvation, lipid toxicity, and the inhibition of N-glycosylation. It closes by suggesting ways to further examine the involvement of the ER in yeast cell death.

  10. Nonlinear Dielectric Properties of Yeast Cells Cultured in Different Environmental Conditions

    Science.gov (United States)

    Kawanishi, Gomon; Fukuda, Naoki; Muraji, Masafumi

    The harmonics of the electric current through yeast suspensions, the nonlinear dielectric properties of yeast cells, have particular patterns according to the biological activity of the cells and the measurement of these patterns is a technique for determining the activity of living cells. The concentration of glucose and oxygen in yeast culture medium influences the manifestation of fermentation or respiration of yeast cells. Measurements were made with yeast cells (Saccharomyces cerevisiae) cultured aerobically and anaerobically in sufficient glucose concentration, aerobic fermentation and anaerobic fermentation, and aerobically in limited glucose concentration, respiration. The results showed that the harmonics were barely apparent for yeast cells in aerobic fermentation and respiratory; however, cells in the anaerobic fermentation displayed substantial third and fifth harmonics. We can say that environmental condition affects the yeast cells' nonlinear properties, from another viewpoint, the measurements of the nonlinear properties are available to determine the activity of yeast cells adjusted to the conditions of their cultivation.

  11. Comet assay on tetraploid yeast cells

    DEFF Research Database (Denmark)

    Rank, Jette; Syberg, Kristian; Jensen, Klara

    2009-01-01

    Tetraploid yeast cells (Saccharomyces cerevisiae) were used in the comet assay with the intention of developing a new, fast and easy assay for detecting environmental genotoxic agents without using higher organisms. Two DNA-damaging chemicals, H2O2 and acrylamide, together with wastewater from...... three municipal treatment plants were tested for their effect on the yeast-cell DNA. The main problem with using yeast in the comet assay is the necessity to degrade the cell wall. This was achieved by using Zymolase 100 T twice during the procedure, since Zymolase 20 T did not open the cell wall....... Analytical problems that arose due to the small amount of DNA in the yeast nuclei in haploid and diploid cells, which contain 13 Mbp and 26 Mbp DNA per cell, respectively, were solved by using tetraploid yeast cells (52 Mbp) instead. DNA damage was shown after exposure to H2O2 and acrylamide. The lowest dose...

  12. Developing a Biosensor for Estrogens in Water Samples: Study ofthe Real-time Response of Live Cells of the Estrogen-sensitive YeastStrain RMY/ER-ERE using Fluorescence Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wozei, E.; Hermanowicz, S.W.; Holman, H-Y.N.

    2006-01-01

    Using a fluorescein di-{beta}-d-galactopyranoside (FDG) substrate we show that in live cells of an estrogen-sensitive yeast strain RMY/ER-ERE with human estrogen receptor (ER{alpha}) gene and the lacZ gene which encodes {beta}-galactosidase, the uptake of 17{beta}-estradiol (E2) and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximal enzyme-catalyzed product formation evident after about 30 min of exposure to E2. This finding which agrees with the well-known rates of enzyme-catalyzed reactions could have implications for shortening the duration of environmental sample screening and monitoring regimes using yeast-based estrogen assays, and the development of biosensors for environmental estrogens to complement quantification methods.

  13. Developing a Biosensor for Estrogens in Water Samples: Study ofthe Real-time Response of Live Cells of the Estrogen-sensitive YeastStrain RMY/ER-ERE using Fluorescence Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wozei, E.; Hermanowicz, S.W.; Holman, H-Y.N.

    2005-07-13

    Using a fluorescein di-{beta}-D-galactopyranoside (FDG) substrate we show that in live cells of an estrogen-sensitive yeast strain RMY/ER-ERE with human estrogen receptor (ER{alpha}) gene and the lacZ gene which encodes {beta}-galactosidase, the uptake of 17 {beta}-estradiol (E2) and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximal enzyme-catalyzed product formation evident after about 30 minutes of exposure to E2. This finding which agrees with the well-known rates of enzyme-catalyzed reactions could have implications for shortening the duration of environmental sample screening and monitoring regimes using yeast-based estrogen assays, and the development of biosensors for environmental estrogens to complement quantification methods.

  14. Effect of live yeast culture Saccharomyces cerevisiae on milk production and some blood parameters

    Directory of Open Access Journals (Sweden)

    Judit Peter Szucs

    2013-05-01

    Full Text Available The aim of this study was to investigate the effect of live yeast culture (Saccharomyces cerevisiae Sc 47 on milk yield, milk composition and some blood parameters of dairy cows during their early lactation on farm conditions. The live yeast culture was given in the diet of heifers and cows (5 g day-1 solid Actisaf for 14 days before calving and exclusively for the treated cows 12 g day-1 dissolved in 500 ml of water, during 14 days after calving. The experiment took until 100th day of lactation on farm conditions. Yeast culture supplementation was the most effective for the performance of primiparous cows: It was advantageous for blod plasma parameters: decreased the beta-hydroxy butyrate (BHB content and free fatty acids (FFA which indicated the protection of the animals against ketosis or other metabolic disorders. Increased the daily milk production and the lactose /glucose content of the milk. The live yeast culture increased the lactose content of the milk and decreased the somatic cell count of multiparous cows. The listed parameters were not significant (P<0.05 compare to the results of positive control groups. The applied live yeast culture supplementation did not significant affect for other performance of the cows.

  15. Immobilization method of yeast cells for intermittent contact mode imaging using the atomic force microscope

    International Nuclear Information System (INIS)

    De, Tathagata; Chettoor, Antony M.; Agarwal, Pranav; Salapaka, Murti V.; Nettikadan, Saju

    2010-01-01

    The atomic force microscope (AFM) is widely used for studying the surface morphology and growth of live cells. There are relatively fewer reports on the AFM imaging of yeast cells (Kasas and Ikai, 1995), (Gad and Ikai, 1995). Yeasts have thick and mechanically strong cell walls and are therefore difficult to attach to a solid substrate. In this report, a new immobilization technique for the height mode imaging of living yeast cells in solid media using AFM is presented. The proposed technique allows the cell surface to be almost completely exposed to the environment and studied using AFM. Apart from the new immobilization protocol, for the first time, height mode imaging of live yeast cell surface in intermittent contact mode is presented in this report. Stable and reproducible imaging over a 10-h time span is observed. A significant improvement in operational stability will facilitate the investigation of growth patterns and surface patterns of yeast cells.

  16. Transcriptional Waves in the Yeast Cell Cycle

    OpenAIRE

    Oliva, Anna; Rosebrock, Adam; Ferrezuelo, Francisco; Pyne, Saumyadipta; Chen, Haiying; Skiena, Steve; Futcher, Bruce; Leatherwood, Janet

    2005-01-01

    Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillat...

  17. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits

    Science.gov (United States)

    2017-01-01

    We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants. PMID:28717591

  18. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits

    Directory of Open Access Journals (Sweden)

    Azucena Canto

    2017-07-01

    Full Text Available We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants.

  19. Immobilization of yeast cells by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Fujimura, T.; Kaetsu, I.

    1982-01-01

    Radiation-induced polymerization method was applied to the immobilization of yeast cells. The effects of irradiation, cooling and monomer, which are neccessary for polymerization, were recovered completely by subsequent aerobical incubation of yeast cells. The ethanol productive in immobilized yeast cells increased with the increase of aerobical incubation period. The growth of yeast cells in immobilized yeast cells was indicated. The maximum ethanol productivity in immobilized yeast cell system was around three times as much as that in free yeast cell system. (orig.)

  20. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Pack, Chan-Gi [Cellular Informatics Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Terajima, Hideki [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Yajima, Junichiro; Nishizaka, Takayuki [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Kinjo, Masataka [Laboratory of Molecular Cell Dynamics, Graduate School of Life Sciences, Hokkaido University, Sapporo 001-0021 (Japan); Taguchi, Hideki, E-mail: taguchi@bio.titech.ac.jp [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan)

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  1. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    International Nuclear Information System (INIS)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko; Pack, Chan-Gi; Terajima, Hideki; Yajima, Junichiro; Nishizaka, Takayuki; Kinjo, Masataka; Taguchi, Hideki

    2011-01-01

    Research highlights: → We develop a method to track a quantum dot-conjugated protein in yeast cells. → We incorporate the conjugated quantum dot proteins into yeast spheroplasts. → We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  2. Metals uptake by live yeast and heat-modified yeast residue

    Directory of Open Access Journals (Sweden)

    Geórgia Labuto

    2015-07-01

    Full Text Available This study evaluated the biosorption of Cd2+, Cr3+, Pb2+ and Cu2+ at pHs 3, 4, 5 and 6 for Saccharomyces cerevisiae both alive and biologically inactivated by different heating procedures (oven, autoclave or spray dry technique originated from alcohol industry. The material inactivated by autoclave (IA, at 120°C, 30 min had the best performance for metals uptake: 1.88 ± 0.07 (Cu2+, 2.22 ± 0.02 (Cr3+ and 1.57 ± 0.08 g kg-1 (Pb2+. For Cd2+; while the material inactivated by spray dry (RY presented the higher sorption capacity, 2.30 ± 0.08 g kg-1. The sorption studies showed that the biosorbent materials presented different sorption capacities and an ideal sorption pH. The sorption sites were investigated by potentiometric titration and FT-IR and showed that different heating processes used to inactivate biological samples produce materials with different characteristics and with a diverse sorption capacity due to modification of the available sorption sites. This suggests that inactivation by heating can be an alternative to improve the performance of biosorbents. The main sorption sites for each material were phenolic for live yeast (LY and carboxylic for yeast inactivated by heating in an autoclave (IA.

  3. Yeast modulation of human dendritic cell cytokine secretion: an in vitro study.

    Directory of Open Access Journals (Sweden)

    Ida M Smith

    Full Text Available Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The concept of individual microorganisms influencing the makeup of T cell subsets via interactions with intestinal dendritic cells (DCs appears to constitute the foundation for immunoregulatory effects of probiotics, and several studies have reported probiotic strains resulting in reduction of intestinal inflammation through modulation of DC function. Consequent to a focus on Saccharomyces boulardii as the fundamental probiotic yeast, very little is known about hundreds of non-Saccharomyces yeasts in terms of their interaction with the human gastrointestinal immune system. The aim of the present study was to evaluate 170 yeast strains representing 75 diverse species for modulation of inflammatory cytokine secretion by human DCs in vitro, as compared to cytokine responses induced by a S. boulardii reference strain with probiotic properties documented in clinical trials. Furthermore, we investigated whether cytokine inducing interactions between yeasts and human DCs are dependent upon yeast viability or rather a product of membrane interactions regardless of yeast metabolic function. We demonstrate high diversity in yeast induced cytokine profiles and employ multivariate data analysis to reveal distinct clustering of yeasts inducing similar cytokine profiles in DCs, highlighting clear species distinction within specific yeast genera. The observed differences in induced DC cytokine profiles add to the currently very limited knowledge of the cross-talk between yeasts and human immune cells and provide a foundation for selecting yeast strains for further characterization and development toward potentially novel yeast probiotics. Additionally, we present data to support a hypothesis that the interaction between yeasts and human DCs does not solely depend on yeast viability, a concept which may suggest a need for further classifications

  4. Yeast Modulation of Human Dendritic Cell Cytokine Secretion: An In Vitro Study

    Science.gov (United States)

    Smith, Ida M.; Christensen, Jeffrey E.; Arneborg, Nils; Jespersen, Lene

    2014-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The concept of individual microorganisms influencing the makeup of T cell subsets via interactions with intestinal dendritic cells (DCs) appears to constitute the foundation for immunoregulatory effects of probiotics, and several studies have reported probiotic strains resulting in reduction of intestinal inflammation through modulation of DC function. Consequent to a focus on Saccharomyces boulardii as the fundamental probiotic yeast, very little is known about hundreds of non-Saccharomyces yeasts in terms of their interaction with the human gastrointestinal immune system. The aim of the present study was to evaluate 170 yeast strains representing 75 diverse species for modulation of inflammatory cytokine secretion by human DCs in vitro, as compared to cytokine responses induced by a S. boulardii reference strain with probiotic properties documented in clinical trials. Furthermore, we investigated whether cytokine inducing interactions between yeasts and human DCs are dependent upon yeast viability or rather a product of membrane interactions regardless of yeast metabolic function. We demonstrate high diversity in yeast induced cytokine profiles and employ multivariate data analysis to reveal distinct clustering of yeasts inducing similar cytokine profiles in DCs, highlighting clear species distinction within specific yeast genera. The observed differences in induced DC cytokine profiles add to the currently very limited knowledge of the cross-talk between yeasts and human immune cells and provide a foundation for selecting yeast strains for further characterization and development toward potentially novel yeast probiotics. Additionally, we present data to support a hypothesis that the interaction between yeasts and human DCs does not solely depend on yeast viability, a concept which may suggest a need for further classifications beyond the current

  5. Magnetization of individual yeast cells by in situ formation of iron oxide on cell surfaces

    Science.gov (United States)

    Choi, Jinsu; Lee, Hojae; Choi, Insung S.; Yang, Sung Ho

    2017-09-01

    Magnetic functionalization of living cells has intensively been investigated with the aim of various bioapplications such as selective separation, targeting, and localization of the cells by using an external magnetic field. However, the magnetism has not been introduced to individual living cells through the in situ chemical reactions because of harsh conditions required for synthesis of magnetic materials. In this work, magnetic iron oxide was formed on the surface of living cells by optimizing reactions conditions to be mild sufficiently enough to sustain cell viability. Specifically, the reactive LbL strategy led to formation of magnetically responsive yeast cells with iron oxide shells. This facile and direct post-magnetization method would be a useful tool for remote manipulation of living cells with magnetic interactions, which is an important technique for the integration of cell-based circuits and the isolation of cell in microfluidic devices.

  6. Guidelines and recommendations on yeast cell death nomenclature

    OpenAIRE

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andres; Austriaco, Nicanor; Sigrist, Stephan J.

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of mor...

  7. Live-cell imaging.

    Science.gov (United States)

    Cole, Richard

    2014-01-01

    It would be hard to argue that live-cell imaging has not changed our view of biology. The past 10 years have seen an explosion of interest in imaging cellular processes, down to the molecular level. There are now many advanced techniques being applied to live cell imaging. However, cellular health is often under appreciated. For many researchers, if the cell at the end of the experiment has not gone into apoptosis or is blebbed beyond recognition, than all is well. This is simply incorrect. There are many factors that need to be considered when performing live-cell imaging in order to maintain cellular health such as: imaging modality, media, temperature, humidity, PH, osmolality, and photon dose. The wavelength of illuminating light, and the total photon dose that the cells are exposed to, comprise two of the most important and controllable parameters of live-cell imaging. The lowest photon dose that achieves a measureable metric for the experimental question should be used, not the dose that produces cover photo quality images. This is paramount to ensure that the cellular processes being investigated are in their in vitro state and not shifted to an alternate pathway due to environmental stress. The timing of the mitosis is an ideal canary in the gold mine, in that any stress induced from the imaging will result in the increased length of mitosis, thus providing a control model for the current imagining conditions.

  8. Microencapsulation Of Living Cells

    Science.gov (United States)

    Chang, Manchium; Kendall, James M.; Wang, Taylor G.

    1989-01-01

    In experimental technique, living cells and other biological materials encapsulated within submillimeter-diameter liquid-filled spheres. Sphere material biocompatible, tough, and compliant. Semipermeable, permitting relatively small molecules to move into and out of sphere core but preventing passage of large molecules. New technique promises to make such spherical capsules at high rates and in uniform, controllable sizes. Capsules injected into patient through ordinary hypodermic needle. Promising application for technique in treatment of diabetes. Also used to encapsulate pituitary cells and thyroid hormone adrenocortical cells for treatment of other hormonal disorders, to encapsulate other secreting cells for transplantation, and to package variety of pharmaceutical products and agricultural chemicals for controlled release.

  9. Guidelines and recommendations on yeast cell death nomenclature

    NARCIS (Netherlands)

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J; Breitenbach, Michael; Burhans, William C; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W; Grant, Chris M; Greenwood, Michael T; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D; Outeiro, Tiago F; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F; Sharon, Amir; Sigrist, Stephan J; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B; Tuite, Mick; Vögtle, F-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J; Zhao, Richard Y; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely

  10. Dietary live yeast alters metabolic profiles, protein biosynthesis and thermal stress tolerance of Drosophila melanogaster.

    Science.gov (United States)

    Colinet, Hervé; Renault, David

    2014-04-01

    The impact of nutritional factors on insect's life-history traits such as reproduction and lifespan has been excessively examined; however, nutritional determinant of insect's thermal tolerance has not received a lot of attention. Dietary live yeast represents a prominent source of proteins and amino acids for laboratory-reared drosophilids. In this study, Drosophila melanogaster adults were fed on diets supplemented or not with live yeast. We hypothesized that manipulating nutritional conditions through live yeast supplementation would translate into altered physiology and stress tolerance. We verified how live yeast supplementation affected body mass characteristics, total lipids and proteins, metabolic profiles and cold tolerance (acute and chronic stress). Females fed with live yeast had increased body mass and contained more lipids and proteins. Using GC/MS profiling, we found distinct metabolic fingerprints according to nutritional conditions. Metabolite pathway enrichment analysis corroborated that live yeast supplementation was associated with amino acid and protein biosyntheses. The cold assays revealed that the presence of dietary live yeast greatly promoted cold tolerance. Hence, this study conclusively demonstrates a significant interaction between nutritional conditions and thermal tolerance. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. LIVE/DEAD YEAST VIABILITY STAINING AS A TOOL FOR IMPROVING ARTISANAL PILSNER BEER PRODUCTION

    Directory of Open Access Journals (Sweden)

    Benedetta Bottari

    2014-10-01

    Full Text Available The production of an artisanal beer, made by brewers using traditional practices on a small scale, is founded on the empirical adjustment of parameters, including yeasts handling and serial repitching. The aim of this study was to monitor yeast viability during different stages of artisanal beer productions through the Live/Dead Yeast viability staining and to correlate it with fermentation dynamics in order to increase process standardization and to maintain the quality of final products. Yeast viability and fermentation activities were evaluated during seven fermentation cycles of an artisanal pilsner beer. Yeast inoculated with higher viability performed generally better in fermentation, resulting in faster sugar consumption, faster ethanol production and stability. Handling yeast and serial repitching based on Live/Dead viability measurements, could be the key way to ensure reliable manufacture of high quality beer and to improve process standardization particularly for microbreweries, where variability of production can be a challenging point.

  12. A high-throughput method for quantifying metabolically active yeast cells

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Knudsen, Peter Boldsen; Rosenkjær, Alexander

    2015-01-01

    By redesigning the established methylene blue reduction test for bacteria and yeast, we present a cheap and efficient methodology for quantitative physiology of eukaryotic cells applicable for high-throughput systems. Validation of themethod in fermenters and highthroughput systems proved....... The drop in metabolic activity associated with the diauxic shift in yeast proved more pronounced for the MBRT-derived curve compared with OD curves, consistent with a dramatic shift in the ratio between live and dead cells at this metabolic event. This method provides a tool with numerous applications, e.......g. characterizing the death phase of stationary phase cultures, or in drug screens with pathogenic yeasts....

  13. BioPhotonics workstation: A versatile setup for simultaneous optical manipulation, heat stress, and intracellular pH measurements of a live yeast cell

    DEFF Research Database (Denmark)

    Aabo, Thomas; Bañas, Andrew Rafael; Glückstad, Jesper

    2011-01-01

    for fast temperature variations while trapping. Using this modified BWS setup, we investigated the internal pH (pHi) response and membrane integrity of an optically trapped Saccharomyces cerevisiae cell at 5 mW subject to increasing temperatures. The pHi of the cell is obtained from the emission of 5-(and...

  14. Live Cells Decreased Methane Production in Intestinal Content of Pigs

    Directory of Open Access Journals (Sweden)

    Y. L. Gong

    2013-06-01

    Full Text Available An in vitro gas production technique was used in this study to elucidate the effect of two strains of active live yeast on methane (CH4 production in the large intestinal content of pigs to provide an insight to whether active live yeast could suppress CH4 production in the hindgut of pigs. Treatments used in this study include blank (no substrate and no live yeast cells, control (no live yeast cells and yeast (YST supplementation groups (supplemented with live yeast cells, YST1 or YST2. The yeast cultures contained 1.8×1010 cells per g, which were added at the rates of 0.2 mg and 0.4 mg per ml of the fermented inoculum. Large intestinal contents were collected from 2 Duroc×Landrace×Yorkshire pigs, mixed with a phosphate buffer (1:2, and incubated anaerobically at 39°C for 24 h using 500 mg substrate (dry matter (DM basis. Total gas and CH4 production decreased (p<0.05 with supplementation of yeast. The methane production reduction potential (MRP was calculated by assuming net methane concentration for the control as 100%. The MRP of yeast 2 was more than 25%. Compared with the control group, in vitro DM digestibility (IVDMD and total volatile fatty acids (VFA concentration increased (p<0.05 in 0.4 mg/ml YST1 and 0.2 mg/ml YST2 supplementation groups. Proportion of propionate, butyrate and valerate increased (p<0.05, but that of acetate decreased (p<0.05, which led to a decreased (p<0.05 acetate: propionate (A: P ratio in the both YST2 treatments and the 0.4 mg/ml YST 1 supplementation groups. Hydrogen recovery decreased (p<0.05 with yeast supplementation. Quantity of methanogenic archaea per milliliter of inoculum decreased (p<0.05 with yeast supplementation after 24 h of incubation. Our results suggest that live yeast cells suppressed in vitro CH4 production when inoculated into the large intestinal contents of pigs and shifted the fermentation pattern to favor propionate production together with an increased population of acetogenic

  15. Dielectric modelling of cell division for budding and fission yeast

    International Nuclear Information System (INIS)

    Asami, Koji; Sekine, Katsuhisa

    2007-01-01

    The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast

  16. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    Science.gov (United States)

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Survey of arthropod assemblages responding to live yeasts in an organic apple orchard

    Directory of Open Access Journals (Sweden)

    Stefanos S Andreadis

    2015-10-01

    Full Text Available Associations between yeasts and insect herbivores are widespread, and these inter-kingdom interactions play a crucial role in yeast and insect ecology and evolution. We report a survey of insect attraction to live yeast from a community ecology perspective. In the summer of 2013 we screened live yeast cultures of Metschnikowia pulcherrima, M. andauensis, M. hawaiiensis, M. lopburiensis, and Cryptococcus tephrensis in an organic apple orchard. More than 3,000 arthropods from 3 classes, 15 orders, and 93 species were trapped; ca. 79% of the trapped specimens were dipterans, of which 43% were hoverflies (Syrphidae, followed by Sarcophagidae, Phoridae, Lauxaniidae, Cecidomyidae, Drosophilidae, and Chironomidae. Traps baited with M. pulcherrima, M. andauensis, and C. tephrensis captured typically 2.4 times more specimens than control traps; traps baited with M. pulcherrima, M. hawaiiensis, M. andauensis, M. lopburiensis and C. tephrensis were more species-rich than unbaited control traps. We conclude that traps baited with live yeasts of the genera Metschnikowia and Cryprococcus are effective attractants and therefore of potential value for pest control. Yeast-based monitoring or attract-and-kill techniques could target pest insects or enhance the assemblage of beneficial insects. Manipulation of insect behavior through live yeast cultures should be further explored for the development of novel plant protection techniques.

  18. Effect of salt hyperosmotic stress on yeast cell viability

    Directory of Open Access Journals (Sweden)

    Logothetis Stelios

    2007-01-01

    Full Text Available During fermentation for ethanol production, yeasts are subjected to different kinds of physico-chemical stresses such as: initially high sugar concentration and low temperature; and later, increased ethanol concentrations. Such conditions trigger a series of biological responses in an effort to maintain cell cycle progress and yeast cell viability. Regarding osmostress, many studies have been focused on transcriptional activation and gene expression in laboratory strains of Saccharomyces cerevisiae. The overall aim of this present work was to further our understanding of wine yeast performance during fermentations under osmotic stress conditions. Specifically, the research work focused on the evaluation of NaCl-induced stress responses of an industrial wine yeast strain S. cerevisiae (VIN 13, particularly with regard to yeast cell growth and viability. The hypothesis was that osmostress conditions energized specific genes to enable yeast cells to survive under stressful conditions. Experiments were designed by pretreating cells with different sodium chloride concentrations (NaCl: 4%, 6% and 10% w/v growing in defined media containing D-glucose and evaluating the impact of this on yeast growth and viability. Subsequent fermentation cycles took place with increasing concentrations of D-glucose (20%, 30%, 40% w/v using salt-adapted cells as inocula. We present evidence that osmostress induced by mild salt pre-treatments resulted in beneficial influences on both cell viability and fermentation performance of an industrial wine yeast strain.

  19. Radiosensitivity of yeast cells as a function of radiation LET

    International Nuclear Information System (INIS)

    Lobachevskij, P.N.; Krasavin, E.A.

    1988-01-01

    A model is proposed for interpreting the radiosensitivity of yeast cells as a function of linear energy transfer (LET) of ionizing radiation. The model takes into account the role of repair processes in sensitivity of yeast cells to ionizing radiation of different LET. Two types of repair are discussed: (1) a nonspecific repair (characteristic of both haploid and diploid cells), and (2) a diploid - soecific repair (characteristic of diploid cells only)

  20. Lipid raft involvement in yeast cell growth and death

    Energy Technology Data Exchange (ETDEWEB)

    Mollinedo, Faustino, E-mail: fmollin@usal.es [Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas - Universidad de Salamanca, Salamanca (Spain)

    2012-10-10

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na{sup +}, K{sup +}, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  1. Lipid raft involvement in yeast cell growth and death

    International Nuclear Information System (INIS)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na + , K + , and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  2. X-ray irradiation of yeast cells

    Science.gov (United States)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  3. Cell dualism: presence of cells with alternative membrane potentials in growing populations of bacteria and yeasts.

    Science.gov (United States)

    Ivanov, Volodymyr; Rezaeinejad, Saeid; Chu, Jian

    2013-10-01

    It is considered that all growing cells, for exception of acidophilic bacteria, have negatively charged inside cytoplasmic membrane (Δψ⁻-cells). Here we show that growing populations of microbial cells contain a small portion of cells with positively charged inside cytoplasmic membrane (Δψ⁺-cells). These cells were detected after simultaneous application of the fluorescent probes for positive membrane potential (anionic dye DIBAC⁻) and membrane integrity (propidium iodide, PI). We found in exponentially growing cell populations of Escherichia coli and Saccharomyces cerevisiae that the content of live Δψ⁻-cells was 93.6 ± 1.8 % for bacteria and 90.4 ± 4.0 % for yeasts and the content of live Δψ⁺-cells was 0.9 ± 0.3 % for bacteria and 2.4 ± 0.7 % for yeasts. Hypothetically, existence of Δψ⁺-cells could be due to short-term, about 1 min for bacteria and 5 min for yeasts, change of membrane potential from negative to positive value during the cell cycle. This change has been shown by the reversions of K⁺, Na⁺, and Ca²⁺ ions fluxes across the cell membrane during synchronous yeast culture. The transformation of Δψ(⁻-cells to Δψ⁺-cells can be explained by slow influx of K⁺ ions into Δψ⁻-cell to the trigger level of K⁺ concentration ("compression of potassium spring"), which is forming "alternative" Δψ⁺-cell for a short period, following with fast efflux of K⁺ ions out of Δψ⁺-cell ("release of potassium spring") returning cell to normal Δψ⁻ state. We anticipate our results to be a starting point to reveal the biological role of cell dualism in form of Δψ⁻- and Δψ⁺- cells.

  4. Bioelectrochemical probing of intracellular redox processes in living yeast cells—application of redox polymer wiring in a microfluidic environment

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Coman, Vasile; Kostesha, Natalie

    2013-01-01

    utilizing a new double mediator system to map redox metabolism and screen for genetic modifications in Saccharomyces cerevisiae cells. The function of this new double mediator system based on menadione and osmium redox polymer (PVI-Os) is demonstrated. “Wiring” of S. cerevisiae cells using PVI-Os shows...... that microfluidic bioelectrochemical assays employing the menadione–PVI-Os double mediator system provides an effective means to conduct automated microbial assays. FigureMicrofluidic platform for bioelectrochemical assays using osmium redox polymer “wired” living yeast cells...

  5. Mitochondrial fission proteins regulate programmed cell death in yeast.

    Science.gov (United States)

    Fannjiang, Yihru; Cheng, Wen-Chih; Lee, Sarah J; Qi, Bing; Pevsner, Jonathan; McCaffery, J Michael; Hill, R Blake; Basañez, Gorka; Hardwick, J Marie

    2004-11-15

    The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mammalian cells. In support of a primordial origin of programmed cell death involving mitochondria, we found that the Saccharomyces cerevisiae homolog of human Drp1, Dnm1, promotes mitochondrial fragmentation/degradation and cell death following treatment with several death stimuli. Two Dnm1-interacting factors also regulate yeast cell death. The WD40 repeat protein Mdv1/Net2 promotes cell death, consistent with its role in mitochondrial fission. In contrast to its fission function in healthy cells, Fis1 unexpectedly inhibits Dnm1-mediated mitochondrial fission and cysteine protease-dependent cell death in yeast. Furthermore, the ability of yeast Fis1 to inhibit mitochondrial fission and cell death can be functionally replaced by human Bcl-2 and Bcl-xL. Together, these findings indicate that yeast and mammalian cells have a conserved programmed death pathway regulated by a common molecular component, Drp1/Dnm1, that is inhibited by a Bcl-2-like function.

  6. Assessing phagotrophy in the mixotrophic ciliate Paramecium bursaria using GFP-expressing yeast cells.

    Science.gov (United States)

    Miura, Takashi; Moriya, Hisao; Iwai, Sosuke

    2017-07-03

    We used cells of the yeast Saccharomyces cerevisiae expressing green fluorescent protein (GFP) as fluorescently labelled prey to assess the phagocytic activities of the mixotrophic ciliate Paramecium bursaria, which harbours symbiotic Chlorella-like algae. Because of different fluorescence spectra of GFP and algal chlorophyll, ingested GFP-expressing yeast cells can be distinguished from endosymbiotic algal cells and directly counted in individual P. bursaria cells using fluorescence microscopy. By using GFP-expressing yeast cells, we found that P. bursaria altered ingestion activities under different physiological conditions, such as different growth phases or the presence/absence of endosymbionts. Use of GFP-expressing yeast cells allowed us to estimate the digestion rates of live prey of the ciliate. In contrast to the ingestion activities, the digestion rate within food vacuoles was not affected by the presence of endosymbionts, consistent with previous findings that food and perialgal vacuoles are spatially and functionally separated in P. bursaria. Thus, GFP-expressing yeast may provide a valuable tool to assess both ingestion and digestion activities of ciliates that feed on eukaryotic organisms. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Yeast cell factories on the horizon

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2015-01-01

    For thousands of years, yeast has been used for making beer, bread, and wine. In modern times, it has become a commercial workhorse for producing fuels, chemicals, and pharmaceuticals such as insulin, human serum albumin, and vaccines against hepatitis virus and human papillomavirus. Yeast has also...... been engineered to make chemicals at industrial scale (e.g., succinic acid, lactic acid, resveratrol) and advanced biofuels (e.g., isobutanol) (1). On page 1095 of this issue, Galanie et al. (2) demonstrate that yeast can now be engineered to produce opioids (2), a major class of compounds used...

  8. Evaluation of yeast cell wall on the performance of broiles fed diets with or without mycotoxins

    Directory of Open Access Journals (Sweden)

    E Santin

    2006-12-01

    Full Text Available This experiment aimed at evaluating the effects of the interactions between aflatoxin (500 or 250 ppb and ochratoxin (500 or 250 ppb, and the possible benefits of adding yeast cell wall to prevent the effects of these mycotoxins in broiler chickens. Relative organ weight gain and live performance were evaluated at 21 and 42 days of age. Results indicated that at the levels of mycotoxins included in the experimental diets, ochratoxin reduced feed intake and body weight gain, and aflatoxin only affect feed intake of 21-day-old birds. No interaction was observed between aflatoxin and ochratoxin at the levels used in experimental study. Yeast cell wall did not significantly reduced the deleterious effects of ochratoxins. No significant differences were observed in relative organ weight gain. Yeast cell wall improved feed conversion ratio when birds were fed either contaminated or non-contaminated feeds.

  9. Correlating yeast cell stress physiology to changes in the cell surface morphology: atomic force microscopic studies.

    Science.gov (United States)

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2006-07-06

    Atomic Force Microscopy (AFM) has emerged as a powerful biophysical tool in biotechnology and medicine to investigate the morphological, physical, and mechanical properties of yeasts and other biological systems. However, properties such as, yeasts' response to environmental stresses, metabolic activities of pathogenic yeasts, cell-cell/cell-substrate adhesion, and cell-flocculation have rarely been investigated so far by using biophysical tools. Our recent results obtained by AFM on one strain each of Saccharomyces cerevisiae and Schizosaccharomyces pombe show a clear correlation between the physiology of environmentally stressed yeasts and the changes in their surface morphology. The future directions of the AFM related techniques in relation to yeasts are also discussed.

  10. Oxidative Stress and Programmed Cell Death in Yeast

    International Nuclear Information System (INIS)

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed.

  11. Guidelines and recommendations on yeast cell death nomenclature

    Directory of Open Access Journals (Sweden)

    Didac Carmona-Gutierrez

    2018-01-01

    Full Text Available Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research.

  12. Immobilisation increases yeast cells' resistance to dehydration-rehydration treatment.

    Science.gov (United States)

    Borovikova, Diana; Rozenfelde, Linda; Pavlovska, Ilona; Rapoport, Alexander

    2014-08-20

    This study was performed with the goal of revealing if the dehydration procedure used in our new immobilisation method noticeably decreases the viability of yeast cells in immobilised preparations. Various yeasts were used in this research: Saccharomyces cerevisiae cells that were rather sensitive to dehydration and had been aerobically grown in an ethanol-containing medium, a recombinant strain of S. cerevisiae grown in aerobic conditions which were completely non-resistant to dehydration and an anaerobically grown bakers' yeast strain S. cerevisiae, as well as a fairly resistant Pichia pastoris strain. Experiments performed showed that immobilisation of all these strains essentially increased their resistance to a dehydration-rehydration treatment. The increase of cells' viability (compared with control cells dehydrated in similar conditions) was from 30 to 60%. It is concluded that a new immobilisation method, which includes a dehydration stage, does not lead to an essential loss of yeast cell viability. Correspondingly, there is no risk of losing the biotechnological activities of immobilised preparations. The possibility of producing dry, active yeast preparations is shown, for those strains that are very sensitive to dehydration and which can be used in biotechnology in an immobilised form. Finally, the immobilisation approach can be used for the development of efficient methods for the storage of recombinant yeast strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Guidelines and recommendations on yeast cell death nomenclature

    Science.gov (United States)

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J.; Breitenbach, Michael; Burhans, William C.; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F.; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B.; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W.; Grant, Chris M.; Greenwood, Michael T.; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M.; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P.; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A.; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D.; Outeiro, Tiago F.; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F.; Sharon, Amir; Sigrist, Stephan J.; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M.; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B.; Tuite, Mick; Vögtle, F.-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J.; Zhao, Richard Y.; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research. PMID:29354647

  14. Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration.

    Science.gov (United States)

    Borovikova, Diana; Teparić, Renata; Mrša, Vladimir; Rapoport, Alexander

    2016-08-01

    The state of anhydrobiosis is linked with the reversible delay of metabolism as a result of strong dehydration of cells, and is widely distributed in nature. A number of factors responsible for the maintenance of organisms' viability in these conditions have been revealed. This study was directed to understanding how changes in cell wall structure may influence the resistance of yeasts to dehydration-rehydration. Mutants lacking various cell wall mannoproteins were tested to address this issue. It was revealed that mutants lacking proteins belonging to two structurally and functionally unrelated groups (proteins non-covalently attached to the cell wall, and Pir proteins) possessed significantly lower cell resistance to dehydration-rehydration than the mother wild-type strain. At the same time, the absence of the GPI-anchored cell wall protein Ccw12 unexpectedly resulted in an increase of cell resistance to this treatment; this phenomenon is explained by the compensatory synthesis of chitin. The results clearly indicate that the cell wall structure/composition relates to parameters strongly influencing yeast viability during the processes of dehydration-rehydration, and that damage to cell wall proteins during yeast desiccation can be an important factor leading to cell death. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. The effects of an active live yeast product on the growth performance ...

    African Journals Online (AJOL)

    A study was conducted to evaluate the effects of a rumen-specific, active live yeast (Saccharomyces cerevisiae; SC CNCM I-1077), alone or in combination with an ionophore (lasalocid-Na) in standard feedlot diets, on production performance and carcass quality of lambs. Sixty South African (S.A.) Mutton Merino lambs, ...

  16. The role of mitochondria in yeast programmed cell death

    International Nuclear Information System (INIS)

    Guaragnella, Nicoletta; Ždralević, Maša; Antonacci, Lucia; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2012-01-01

    Mammalian apoptosis and yeast programmed cell death (PCD) share a variety of features including reactive oxygen species production, protease activity and a major role played by mitochondria. In view of this, and of the distinctive characteristics differentiating yeast and multicellular organism PCD, the mitochondrial contribution to cell death in the genetically tractable yeast Saccharomyces cerevisiae has been intensively investigated. In this mini-review we report whether and how yeast mitochondrial function and proteins belonging to oxidative phosphorylation, protein trafficking into and out of mitochondria, and mitochondrial dynamics, play a role in PCD. Since in PCD many processes take place over time, emphasis will be placed on an experimental model based on acetic acid-induced PCD (AA-PCD) which has the unique feature of having been investigated as a function of time. As will be described there are at least two AA-PCD pathways each with a multifaceted role played by mitochondrial components, in particular by cytochrome c.

  17. Monitoring of yeast cell concentration using a micromachined impedance sensor

    NARCIS (Netherlands)

    Krommenhoek, E.E.; Gardeniers, Johannes G.E.; Bomer, Johan G.; van den Berg, Albert; Li, X.; Ottens, M.; van der Wielen, L.A.M.; van Dedem, G.W.K.; van Leeuwen, M.; van Gulik, W.M.; Heijnen, J.J.

    2005-01-01

    The paper describes the design, modelling and experimental characterization of a micromachined impedance sensor for on-line monitoring of the viable yeast cell concentration (biomass) in a miniaturized cell assay. Measurements in a Saccharomyces cerevisiae cell culture show that the permittivity of

  18. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts

    Czech Academy of Sciences Publication Activity Database

    Pálková, Z.; Váchová, Libuše

    2016-01-01

    Roč. 57, SEP (2016), s. 110-119 ISSN 1084-9521 R&D Projects: GA ČR GA13-08605S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Pathogenic yeasts * Biofilms and colonies * Cell differentiation Subject RIV: EE - Microbiology, Virology Impact factor: 6.614, year: 2016

  19. Mitochondrial fission proteins regulate programmed cell death in yeast

    OpenAIRE

    Fannjiang, Yihru; Cheng, Wen-Chih; Lee, Sarah J.; Qi, Bing; Pevsner, Jonathan; McCaffery, J. Michael; Hill, R. Blake; Basañez, Gorka; Hardwick, J. Marie

    2004-01-01

    The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mammalian cells. In support of a primordial origin of programmed cell death involving mitochondria, we fo...

  20. Yeast cell wall chitin reduces wine haze formation.

    Science.gov (United States)

    Ndlovu, Thulile; Divol, Benoit; Bauer, Florian F

    2018-04-27

    Protein haze formation in bottled wines is a significant concern for the global wine industry and wine clarification before bottling is therefore a common but expensive practice. Previous studies have shown that wine yeast strains can reduce haze formation through the secretion of certain mannoproteins, but it has been suggested that other yeast-dependent haze protective mechanisms exist. On the other hand, addition of chitin has been shown to reduce haze formation, likely because grape chitinases have been shown to be the major contributors to haze. In this study, Chardonnay grape must fermented by various yeast strains resulted in wines with different protein haze levels indicating differences in haze protective capacities of the strains. The cell wall chitin levels of these strains were determined, and a strong correlation between cell wall chitin levels and haze protection capability was observed. To further evaluate the mechanism of haze protection, Escherichia coli -produced GFP-tagged grape chitinase was shown to bind efficiently to yeast cell walls in a cell wall chitin concentration-dependent manner, while commercial chitinase was removed from synthetic wine in quantities also correlated with the cell wall chitin levels of the strains. Our findings suggest a new mechanism of reducing wine haze, and propose a strategy for optimizing wine yeast strains to improve wine clarification. Importance In this study, we establish a new mechanism by which wine yeast strains can impact on the protein haze formation of wines, and demonstrate that yeast cell wall chitin binds grape chitinase in a chitin-concentration dependent manner. We also show that yeast can remove this haze-forming protein from wine. Chitin has in the past been shown to efficiently reduce wine haze formation when added to the wine in high concentration as a clarifying agent. Our data suggest that the selection of yeast strains with high levels of cell wall chitin can reduce protein haze. We also

  1. Analysis of ribosomal RNA stability in dead cells of wine yeast by quantitative PCR.

    Science.gov (United States)

    Sunyer-Figueres, Merce; Wang, Chunxiao; Mas, Albert

    2018-04-02

    During wine production, some yeasts enter a Viable But Not Culturable (VBNC) state, which may influence the quality and stability of the final wine through remnant metabolic activity or by resuscitation. Culture-independent techniques are used for obtaining an accurate estimation of the number of live cells, and quantitative PCR could be the most accurate technique. As a marker of cell viability, rRNA was evaluated by analyzing its stability in dead cells. The species-specific stability of rRNA was tested in Saccharomyces cerevisiae, as well as in three species of non-Saccharomyces yeast (Hanseniaspora uvarum, Torulaspora delbrueckii and Starmerella bacillaris). High temperature and antimicrobial dimethyl dicarbonate (DMDC) treatments were efficient in lysing the yeast cells. rRNA gene and rRNA (as cDNA) were analyzed over 48 h after cell lysis by quantitative PCR. The results confirmed the stability of rRNA for 48 h after the cell lysis treatments. To sum up, rRNA may not be a good marker of cell viability in the wine yeasts that were tested. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Yeast mother cell-specific aging

    Czech Academy of Sciences Publication Activity Database

    Breitenbach, M.; Laun, P.; Pichová, Alena; Madeo, F.; Heeren, G.; Kohlwein, S. D.; Froehlich, K. U.; Dawes, I.

    2001-01-01

    Roč. 18, - (2001), s. 21 ISSN 0749-503X. [International Conference on Yeast Genetics and Molecular Biology /20./. 26.08.2001-31.08.2001, Prague] Institutional research plan: CEZ:AV0Z5020903 Subject RIV: EB - Genetics ; Molecular Biology

  3. Modification of the feeding behavior of dairy cows through live yeast supplementation.

    Science.gov (United States)

    DeVries, T J; Chevaux, E

    2014-10-01

    The objective of this study was to determine if the feeding behavior of dairy cows is modified through live yeast supplementation. Twelve lactating Holstein dairy cows (2 primiparous and 10 multiparous) were individually exposed, in a replicated crossover design, to each of 2 treatment diets (over 35-d periods): (1) a control TMR and (2) a control TMR plus 1 × 10(10) cfu/head per day of live yeast (Saccharomyces cerevisiae CNCM I-1077; Levucell SC20; Lallemand Animal Nutrition, Montreal, QC, Canada). Milk production, feeding, and rumination behavior were electronically monitored for each animal for the last 7 d of each treatment period. Milk samples were collected for the last 6 d of each period for milk component analysis. Dry matter intake (28.3 kg/d), eating time (229.3 min/d), and rate (0.14 kg of dry matter/min) were similar between treatments. With yeast supplementation, meal criteria (minimum intermeal interval) were shorter (20.0 vs. 25.8 min), translating to cows tending to have more meals (9.0 vs. 7.8 meals/d), which tended to be smaller in size (3.4 vs. 3.8 kg/meal). Yeast-supplemented cows also tended to ruminate longer (570.3 vs. 544.9 min/d). Milk yield (45.8 kg/d) and efficiency of production (1.64 kg of milk/kg of dry matter intake) were similar between treatments. A tendency for higher milk fat percent (3.71 vs. 3.55%) and yield (1.70 vs. 1.63 kg/d) was observed when cows were supplemented with yeast. No differences in milk fatty acid composition were observed, with the exception of a tendency for a greater concentration of 18:2 cis-9,cis-12 fatty acid (2.71 vs. 2.48% of total fatty acids) with yeast supplementation. Yeast-supplemented cows had lower mean ruminal temperature (38.4 vs. 38.5 °C) and spent less time with rumen temperature above 39.0 °C (353.1 vs. 366.9 min/d), potentially indicating improved rumen pH conditions. Overall, the results show that live yeast supplementation tended to improve meal patterns and rumination, rumen

  4. Interactions of Condensed Tannins with Saccharomyces cerevisiae Yeast Cells and Cell Walls: Tannin Location by Microscopy.

    Science.gov (United States)

    Mekoue Nguela, Julie; Vernhet, Aude; Sieczkowski, Nathalie; Brillouet, Jean-Marc

    2015-09-02

    Interactions between grape tannins/red wine polyphenols and yeast cells/cell walls was previously studied within the framework of red wine aging and the use of yeast-derived products as an alternative to aging on lees. Results evidenced a quite different behavior between whole cells (biomass grown to elaborate yeast-derived products, inactivated yeast, and yeast inactivated after autolysis) and yeast cell walls (obtained from mechanical disruption of the biomass). Briefly, whole cells exhibited a high capacity to irreversibly adsorb grape and wine tannins, whereas only weak interactions were observed for cell walls. This last point was quite unexpected considering the literature and called into question the real role of cell walls in yeasts' ability to fix tannins. In the present work, tannin location after interactions between grape and wine tannins and yeast cells and cell walls was studied by means of transmission electron microscopy, light epifluorescence, and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they also diffuse freely through the walls of dead cells to interact with their plasma membrane and cytoplasmic components.

  5. A study on immobilized ethanol yeast cells by radiation technique

    International Nuclear Information System (INIS)

    Li Zhengkui; Zhang Bosen

    1994-01-01

    Hydrophilic monomer 2-hydroxyethyl acrylate (HEA) and a series of polyethylene glycol dimethacrylate monomers were copolymerized by radiation technique at low temperature (-78 degree C) and hydrophilic hydrogels were obtained. The immobilization of yeast cells with these copolymer carriers led to a higher ethanol productivity than free cells. Of all copolymer carriers, the ethanol yield with poly (HEA-14 G) was the highest, about 2.45 times as high as that of free yeast cells. In addition, the ethanol productivity of 12 batch repeated reactions with poly (HEA-14G) carrier was all higher than that of free yeast cells. The ethanol productivity of immobilized yeast cells was dependent on the proportion of hydrophilic monomer to other monomers in copolymer systems, the chain length of the bifunctional monomer, the degree of hydration of copolymer carriers, the structure of copolymer carriers and porosity in the internal structure of carriers. The ethanol yield of immobilized cells depended on swelling ability and porosity of copolymer carriers

  6. The digestion of yeast cell wall polysaccharides in veal calves

    NARCIS (Netherlands)

    Gaillard, B.D.E.; Weerden, van E.J.

    1976-01-01

    1. The digestibility of the cell wall polysaccharides of an alkane-grown yeast in different parts of the digestive tract of two veal calves fitted with re-entrant cannulas at the end of the ileum was studied by replacing part of the skim-milk powder of their ‘normal’, milk-substitute

  7. Magnetically responsive yeast cells: methods of preparation and applications

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Maděrová, Zdeňka; Pospišková, K.; Horská, Kateřina; Šafaříková, Miroslava

    2015-01-01

    Roč. 32, č. 1 (2015), s. 227-237 ISSN 0749-503X R&D Projects: GA MŠk(CZ) LD13023; GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : yeast cells * Saccharomyces * Kluyveromyces * Rhodotorula * Yarrowia * magnetic modification Subject RIV: CE - Biochemistry Impact factor: 2.259, year: 2015

  8. Evaluation of yeast single cell protein (SCP) diets on growth ...

    African Journals Online (AJOL)

    An investigation was carried out on the possibility of replacing fishmeal with graded levels of yeast single cell protein (SCP; 10, 20, 30, 40 and 50%) in isonitrogenous feed formulations (30% protein) in the diet of Oreochromis niloticus fingerlings for a period of 12 weeks. The control diet had fishmeal as the primary protein ...

  9. Synchronization of glycolytic oscillations in a yeast cell population

    DEFF Research Database (Denmark)

    Dano, S.; Hynne, F.; De Monte, Silvia

    2001-01-01

    The mechanism of active phase synchronization in a suspension of oscillatory yeast cells has remained a puzzle for almost half a century. The difficulty of the problem stems from the fact that the synchronization phenomenon involves the entire metabolic network of glycolysis and fermentation, and...

  10. The impact of metabolism on aging and cell size in single yeast cells

    NARCIS (Netherlands)

    Huberts, Daphne

    2015-01-01

    The aim of this thesis was to determine how metabolism affects yeast aging in single yeast cells using a novel microfluidic device. We first review how cells are able to sense nutrients in their environment and then describe the use of the microfluidic dissection platform that greatly improves our

  11. Sharing the cell's bounty - organelle inheritance in yeast.

    Science.gov (United States)

    Knoblach, Barbara; Rachubinski, Richard A

    2015-02-15

    Eukaryotic cells replicate and partition their organelles between the mother cell and the daughter cell at cytokinesis. Polarized cells, notably the budding yeast Saccharomyces cerevisiae, are well suited for the study of organelle inheritance, as they facilitate an experimental dissection of organelle transport and retention processes. Much progress has been made in defining the molecular players involved in organelle partitioning in yeast. Each organelle uses a distinct set of factors - motor, anchor and adaptor proteins - that ensures its inheritance by future generations of cells. We propose that all organelles, regardless of origin or copy number, are partitioned by the same fundamental mechanism involving division and segregation. Thus, the mother cell keeps, and the daughter cell receives, their fair and equitable share of organelles. This mechanism of partitioning moreover facilitates the segregation of organelle fragments that are not functionally equivalent. In this Commentary, we describe how this principle of organelle population control affects peroxisomes and other organelles, and outline its implications for yeast life span and rejuvenation. © 2015. Published by The Company of Biologists Ltd.

  12. A Predictive Model for Yeast Cell Polarization in Pheromone Gradients.

    Science.gov (United States)

    Muller, Nicolas; Piel, Matthieu; Calvez, Vincent; Voituriez, Raphaël; Gonçalves-Sá, Joana; Guo, Chin-Lin; Jiang, Xingyu; Murray, Andrew; Meunier, Nicolas

    2016-04-01

    Budding yeast cells exist in two mating types, a and α, which use peptide pheromones to communicate with each other during mating. Mating depends on the ability of cells to polarize up pheromone gradients, but cells also respond to spatially uniform fields of pheromone by polarizing along a single axis. We used quantitative measurements of the response of a cells to α-factor to produce a predictive model of yeast polarization towards a pheromone gradient. We found that cells make a sharp transition between budding cycles and mating induced polarization and that they detect pheromone gradients accurately only over a narrow range of pheromone concentrations corresponding to this transition. We fit all the parameters of the mathematical model by using quantitative data on spontaneous polarization in uniform pheromone concentration. Once these parameters have been computed, and without any further fit, our model quantitatively predicts the yeast cell response to pheromone gradient providing an important step toward understanding how cells communicate with each other.

  13. Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells

    Science.gov (United States)

    Koyama, Sumihiro; Tsubouchi, Taishi; Usui, Keiko; Uematsu, Katsuyuki; Tame, Akihiro; Nogi, Yuichi; Ohta, Yukari; Hatada, Yuji; Kato, Chiaki; Miwa, Tetsuya; Toyofuku, Takashi; Nagahama, Takehiko; Konishi, Masaaki; Nagano, Yuriko; Abe, Fumiyoshi

    2015-01-01

    The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between −0.2 and −0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to the negative potential-applied ITO electrodes showed normal cell proliferation. We found that the flocculin FLO10 gene-disrupted diploid BY4743 mutant strain (flo10Δ /flo10Δ) almost completely lost the ability to adhere to the negative potential-applied ITO electrode. Our results indicate that the mechanisms of diploid BY4743 S. cerevisiae adhesion involve interaction between the negative potential-applied ITO electrode and the Flo10 protein on the cell wall surface. A combination of micropatterning techniques of living single yeast cell on the ITO electrode and omics technologies holds potential of novel, highly parallelized, microchip-based single-cell analysis that will contribute to new screening concepts and applications. PMID:26187908

  14. Effects of gamma radiation on Sporothrix schenckii yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Camila M. de Sousa; Martins, Estefania Mara Nascimento; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: cmsl@cdtn.br, e-mail: estefaniabio@yahoo.com.br, e-mail: antero@cdtn.br; Resende, Maria Aparecida de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: maressend@mono.icb.ufmg.br

    2009-07-01

    Sporotrichosis is a subacute or chronic infection caused by the fungus Sporothrix schenckii. Zoonotic transmission can occur after scratches or bites of animals, mainly cats, rodents, and armadillos. Up to the moment, no approved vaccine was reported for S. schenckii or to any important pathogenic fungi infection in humans, indicating the need to expand the research in this field and to explore new alternatives. The aim of this study was to evaluate the effects of gamma radiation in the viability, metabolic activity and reproductive ability of S. schenckii yeast cells for further studies on the development of a vaccine for immunization of cats and dogs. The culture of S. schenckii, in solid medium, was irradiated at doses ranging from 1.0 to 9.0 kGy. After each dose the reproductive capacity, viability and protein synthesis were estimated. The results showed that a reduction of 6 log{sub 10} cycles in the number of colonies was achieved at 6.0 kGy and after 8.0 kGy no colonies could be recovered. The viability analysis indicated that yeast cells remained viable up to 9.0 kGy. The results of protein synthesis analysis showed that the yeast cells, irradiated up to 9.0 kGy, were able to synthesize proteins. Our preliminary results indicated that for the yeast cells of S. schenckii, it is possible to find an absorbed dose in which the pathogen loses its reproductive ability, while retaining its viability, a necessary condition for the development of a radioattenuated yeast vaccine. (author)

  15. Effects of gamma radiation on Sporothrix schenckii yeast cells

    International Nuclear Information System (INIS)

    Lacerda, Camila M. de Sousa; Martins, Estefania Mara Nascimento; Andrade, Antero S.R.; Resende, Maria Aparecida de

    2009-01-01

    Sporotrichosis is a subacute or chronic infection caused by the fungus Sporothrix schenckii. Zoonotic transmission can occur after scratches or bites of animals, mainly cats, rodents, and armadillos. Up to the moment, no approved vaccine was reported for S. schenckii or to any important pathogenic fungi infection in humans, indicating the need to expand the research in this field and to explore new alternatives. The aim of this study was to evaluate the effects of gamma radiation in the viability, metabolic activity and reproductive ability of S. schenckii yeast cells for further studies on the development of a vaccine for immunization of cats and dogs. The culture of S. schenckii, in solid medium, was irradiated at doses ranging from 1.0 to 9.0 kGy. After each dose the reproductive capacity, viability and protein synthesis were estimated. The results showed that a reduction of 6 log 10 cycles in the number of colonies was achieved at 6.0 kGy and after 8.0 kGy no colonies could be recovered. The viability analysis indicated that yeast cells remained viable up to 9.0 kGy. The results of protein synthesis analysis showed that the yeast cells, irradiated up to 9.0 kGy, were able to synthesize proteins. Our preliminary results indicated that for the yeast cells of S. schenckii, it is possible to find an absorbed dose in which the pathogen loses its reproductive ability, while retaining its viability, a necessary condition for the development of a radioattenuated yeast vaccine. (author)

  16. Gamma irradiation induced ultrastructural changes in Paracoccidioides brasiliensis yeast cells

    International Nuclear Information System (INIS)

    Demicheli, Marina C.; Andrade, Antero S.R.; Goes, Alfredo Miranda

    2007-01-01

    Paracoccidioides brasiliensis is a thermally dimorphic fungus agent of paracoccidioidomycosis, a deep-seated systemic infection of humans with high prevalence in Latin America. Up to the moment no vaccine has still been reported. Ionizing radiation can be used to attenuate pathogens for vaccine development and we have successfully attenuated yeast cells of P. brasiliensis by gamma irradiation. The aim of the present study was to examine at ultrastructural level the effects of gamma irradiation attenuation on the morphology of P. brasiliensis yeast cells. P. brasiliensis (strain Pb-18) cultures were irradiated with a dose of 6.5 kGy. The irradiated cells were examined by scanning and also transmission electron microscopy. When examined two hours after the irradiation by scanning electron microscopy the 6.5 kGy irradiated cells presented deep folds or were collapsed. These lesions were reversible since examined 48 hours after irradiation the yeast have recovered the usual morphology. The transmission electron microscopy showed that the irradiated cells plasma membrane and cell wall were intact and preserved. Remarkable changes were found in the nucleus that was frequently in a very electrodense form. A extensive DNA fragmentation was produced by the gamma irradiation treatment. (author)

  17. Synthetic yeast based cell factories for vanillin-glucoside production

    DEFF Research Database (Denmark)

    Strucko, Tomas

    and controlled expression/overexpression of genes of interest. De novo biosynthetic pathway for vanillin-β-glucoside production was employed as a model system for several case studies in this project. In order to construct yeast cell factories fulfilling current demands of industrial biotechnology, methods......The yeast Saccharomyces cerevisiae is well a characterized microorganism and widely used as eukaryotic model organism as well as a key cell factory for bioproduction of various products. The latter comprise a large variety of scientifically and industrially relevant products such as low-value bulk...... chemicals and biofuels, food additives, high-value chemicals and recombinant proteins. Despite the recent achievements in the fields of systems biology and metabolic engineering together with availability of broad genetic engineering toolbox, the full potential of S. cerevisiae as a cell factory is not yet...

  18. Sorption of strontium by magnetically modified yeast cells

    International Nuclear Information System (INIS)

    Hu Yantao; Ji Yanqin; Tian Qing; Shao Xianzhang; Shi Jianhe; Ivo Safarik; Zhang Shengdong; Li Jinying

    2008-01-01

    Magnetically modified fodder's yeast (Kluyveromyces fragilis) cells using water based magnetic fluid, were characterized by scanning electron microscopy (SEM) and Vibrating Sample Magnetometer (VSM). The sorption-desorption properties of Sr 2+ by these yeast cells from nitrate salt of Sr 2+ were studied. The results demonstrated that the Sr 2+ sorption volume by these cells enhanced with increasing pH and reached a plateau between pH 4.0 and 7.0. A minor effect by temperature was observed. The sorption volumes are 19.5 mg/g and 53.5 mg/g from 10 ppm and 40 ppm Sr 2+ solution respectively within 20 min. The sorption of Sr 2+ in these cells can be desorbed under 0.1 mol/L HNO 3 solution. The maximum Sr 2+ sorption volume is 96.7 mg/g at 20℃. The sorption characteristic fits Langmuir model well with 140.8 mg/g calculated maximum sorption volume by these yeast cells. (authors)

  19. Yeast cells contain a heterogeneous population of peroxisomes that segregate asymmetrically during cell division

    NARCIS (Netherlands)

    Kumar, Sanjeev; de Boer, Rinse; van der Klei, Ida J

    2018-01-01

    Here we used fluorescence microscopy and a peroxisome-targeted tandem fluorescent protein timer to determine the relative age of peroxisomes in yeast. Our data indicate that yeast cells contain a heterogeneous population of relatively old and younger peroxisomes. During budding the peroxisome

  20. Increased genome instability is not accompanied by sensitivity to DNA damaging agents in aged yeast cells

    NARCIS (Netherlands)

    Novarina, Daniele; Mavrova, Sara N.; Janssens, Georges E.; Rempel, Irina L.; Veenhoff, Liesbeth M.; Chang, Michael

    The budding yeast Saccharomyces cerevisiae divides asymmetrically, producing a new daughter cell from the original mother cell. While daughter cells are born with a full lifespan, a mother cell ages with each cell division and can only generate on average 25 daughter cells before dying. Aged yeast

  1. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  2. Different characteristics between menadione and menadione sodium bisulfite as redox mediator in yeast cell suspension

    OpenAIRE

    Yamashoji, Shiro

    2016-01-01

    Menadione promoted the production of active oxygen species (AOS) in both yeast cell suspension and the crude enzymes from the cells, but menadione sodium bisulfite (MSB) had little effect on the production of AOS in the cell suspension. MSB kept the stable increase in the electron transfer from intact yeast cells to anode compared to menadione, but the electron transfer promoted by MSB was inhibited in permeabilized yeast cell suspension. Menadione promoted oxidation of NAD(P)H much faster th...

  3. Content of endogenous thiols and radioresistance of gemmating cells of Saccharomyces ellipsoideus and Saccharomyces cerevisiale yeasts

    International Nuclear Information System (INIS)

    Simonyan, N.V.; Avakyan, Ts.M.; Dzhanpoladyan, N.L.; Stepanyan, L.G.

    1983-01-01

    It has been shown that gemmating cells of ''wild type'' yeasts are more radioresistant and contain more endogenous thiols, than resting cells. Gemmating cells of Saccharomyces cerevisial yeasts, carrying the mutation rad 51, as to radioresistance and content of SH groups do not differ from resting cells. The results obtained testify to a connec-- tion between increased radioresistance of the yeast gemmating cells and increased content of endogenous thiols in them

  4. Mitogen-activated protein kinase (MAPK) dynamics determine cell fate in the yeast mating response.

    Science.gov (United States)

    Li, Yang; Roberts, Julie; AkhavanAghdam, Zohreh; Hao, Nan

    2017-12-15

    In the yeast Saccharomyces cerevisiae , the exposure to mating pheromone activates a prototypic mitogen-activated protein kinase (MAPK) cascade and triggers a dose-dependent differentiation response. Whereas a high pheromone dose induces growth arrest and formation of a shmoo-like morphology in yeast cells, lower pheromone doses elicit elongated cell growth. Previous population-level analysis has revealed that the MAPK Fus3 plays an important role in mediating this differentiation switch. To further investigate how Fus3 controls the fate decision process at the single-cell level, we developed a specific translocation-based reporter for monitoring Fus3 activity in individual live cells. Using this reporter, we observed strikingly different dynamic patterns of Fus3 activation in single cells differentiated into distinct fates. Cells committed to growth arrest and shmoo formation exhibited sustained Fus3 activation. In contrast, most cells undergoing elongated growth showed either a delayed gradual increase or pulsatile dynamics of Fus3 activity. Furthermore, we found that chemically perturbing Fus3 dynamics with a specific inhibitor could effectively redirect the mating differentiation, confirming the causative role of Fus3 dynamics in driving cell fate decisions. MAPKs mediate proliferation and differentiation signals in mammals and are therapeutic targets in many cancers. Our results highlight the importance of MAPK dynamics in regulating single-cell responses and open up the possibility that MAPK signaling dynamics could be a pharmacological target in therapeutic interventions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Yeast cells proliferation on various strong static magnetic fields and temperatures

    International Nuclear Information System (INIS)

    Otabe, E S; Kuroki, S; Nikawa, J; Matsumoto, Y; Ooba, T; Kiso, K; Hayashi, H

    2009-01-01

    The effect of strong magnetic fields on activities of yeast cells were investigated. Experimental yeast cells were cultured in 5 ml of YPD(Yeast extract Peptone Dextrose) for the number density of yeast cells of 5.0 ±0.2 x 10 6 /ml with various temperatures and magnetic fields up to 10 T. Since the yeast cells were placed in the center of the superconducting magnet, the effect of magnetic force due to the diamagnetism and magnetic gradient was negligibly small. The yeast suspension was opened to air and cultured in shaking condition. The number of yeast cells in the yeast suspension was counted by a counting plate with an optical microscope, and the time dependence of the number density of yeast cells was measured. The time dependence of the number density of yeast cells, ρ, of initial part is analyzed in terms of Malthus equation as given by ρ = ρo exp(kt), where k is the growth coefficient. It is found that, the growth coefficient under the magnetic field is suppressed compared with the control. The growth coefficient decreasing as increasing magnetic field and is saturated at about 5 T. On the other hand, it is found that the suppression of growth of yeast cells by the magnetic field is diminished at high temperatures.

  6. Effect of whole yeast cell product supplementation (CitriStim®) on immune responses and cecal microflora species in pullet and layer chickens during an experimental coccidial challenge.

    Science.gov (United States)

    Markazi, Ashley D; Perez, Victor; Sifri, Mamduh; Shanmugasundaram, Revathi; Selvaraj, Ramesh K

    2017-07-01

    Three separate experiments were conducted to study the effects of whole yeast cell product supplementation in pullets and layer hens. Body weight gain, fecal and intestinal coccidial oocyst counts, cecal microflora species, cytokine mRNA amounts, and CD4+ and CD8+ T-cell populations in the cecal tonsils were analyzed following an experimental coccidial infection. In Experiment I, day-old Leghorn layer chicks were fed 3 experimental diets with 0, 0.1, or 0.2% whole yeast cell product (CitriStim®, ADM, Decatur, IL). At 21 d of age, birds were challenged with 1 × 105 live coccidial oocysts. Supplementation with whole yeast cell product decreased the fecal coccidial oocyst count at 7 (P = 0.05) and 8 (P product and challenged with 1 × 105 live coccidial oocysts on d 25 of whole yeast cell product feeding. Supplementation with whole yeast cell product decreased the coccidial oocyst count in the intestinal content (P product increased relative proportion of Lactobacillus (P product decreased CD8+ T cell percentages (P product and challenged with 1 × 105 live coccidial oocysts on d 66 of whole yeast cell product feeding. At 5 d post-coccidial challenge, whole yeast cell product supplementation down-regulated (P = 0.01) IL-10 mRNA amount. It could be concluded that supplementing whole yeast cell product can help minimize coccidial infection in both growing pullets and layer chickens. © 2017 Poultry Science Association Inc.

  7. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques

    International Nuclear Information System (INIS)

    Kaetsu, Isao; Kumakura, Minoru; Fujimura, Takashi; Kasai, Noboru; Tamada, Masao

    1987-01-01

    The recent results of immobilization of cellulase-producing cells and ethanol-fermentation yeast by radiation were reported. The enzyme of cellulase produced by immobilized cells was used for saccharification of lignocellulosic wastes and immobilized yeast cells were used for fermentation reaction from glucose to ethanol. The wastes such as chaff and bagasse were treated by γ-ray or electron-beam irradiation in the presence of alkali and subsequent mechanical crushing, to form a fine powder less than 50 μm in diameter. On the other hand, Trichoderma reesei as a cellulase-producing microbial cell was immobilized on a fibrous carrier having a specific porous structure and cultured to produce cellulase. The enzymatic saccharification of the pretreated waste was carried out using the produced cellulase. The enhanced fermentation process to produce ethanol from glucose with the immobilized yeast by radiation was also studied. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells. (author)

  8. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques

    Science.gov (United States)

    Kaetsu, Isao; Kumakura, Minoru; Fujimura, Takashi; Kasai, Noboru; Tamada, Masao

    The recent results of immobilization of cellulase-producing cells and ethanol-fermentation yeast by radiation were reported. The enzyme of cellulase produced by immobilized cells was used for saccharification of lignocellulosic wastes and immobilized yeast cells were used for fermentation reaction from glucose to ethanol. The wastes such as chaff and bagasse were treated by γ-ray or electron-beam irradiation in the presence of alkali and subsequent mechanical crushing, to form a fine powder less than 50 μm in diameter. On the other hand, Trichoderma reesei as a cellulase-producing microbial cell was immobilized on a fibrous carrier having a specific porous structure and cultured to produce cellulase. The enzymatic saccharification of the pretreated waste was carried out using the produced cellulase. The enhanced fermentation process to produce ethanol from glucose with the immobilized yeast by radiation was also studied. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells.

  9. A Comparative Study of the Cell Wall Structure of Basidiomycetous and Related Yeasts

    NARCIS (Netherlands)

    Kreger-van Rij, N.J.W.; Veenhuis, M.

    1971-01-01

    The wall of basidiomycetous and related yeasts showed a lamellar structure in sections of both budding cells and hyphae fixed with potassium permanganate. The yeasts also had a typical way of bud formation and septation. These features differ from those recorded for ascomycetous yeasts. In the

  10. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall......Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective...... with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain...

  11. A study of ethanol production of yeast cells immobilized with polymer carrier produced by radiation polymerization

    International Nuclear Information System (INIS)

    Lu Zhaoxin; Fujimura, Takashi

    1993-01-01

    Polymer carriers, poly(hydroxyethyl acrylate(HEA)-methoxy polyethylene glycol methylacrylate (M-23G)) and poly(hydroxyethyl acrylate(HEA)-glycidyl methylacrylate (GMA)) used for the immobilization of yeast cells were prepared by radiation polymerization at low temperature. Yeast cells were immobilized through adhesion and multiplication of yeast cells. The ethanol productivity of immobilized yeast cells with these carriers was related to the monomer composition of polymers and the optimum monomer composition was 20%:10% in poly(HEA-M-23G) and 17%:6% in poly(HEA-GMA). In this case, the ethanol productivity of immobilized yeast cells was about 4 times that of cells in free system. The relationship between the activity of immobilized yeast cells and the water content of the polymer carrier were also discussed. (author)

  12. The extraction of liquid, protein molecules and yeast cells from paper through surface acoustic wave atomization.

    Science.gov (United States)

    Qi, Aisha; Yeo, Leslie; Friend, James; Ho, Jenny

    2010-02-21

    Paper has been proposed as an inexpensive and versatile carrier for microfluidics devices with abilities well beyond simple capillary action for pregnancy tests and the like. Unlike standard microfluidics devices, extracting a fluid from the paper is a challenge and a drawback to its broader use. Here, we extract fluid from narrow paper strips using surface acoustic wave (SAW) irradiation that subsequently atomizes the extracted fluid into a monodisperse aerosol for use in mass spectroscopy, medical diagnostics, and drug delivery applications. Two protein molecules, ovalbumin and bovine serum albumin (BSA), have been preserved in paper and then extracted using atomized mist through SAW excitation; protein electrophoresis shows there is less than 1% degradation of either protein molecule in this process. Finally, a solution of live yeast cells was infused into paper, which was subsequently dried for preservation then remoistened to extract the cells via SAW atomization, yielding live cells at the completion of the process. The successful preservation and extraction of fluids, proteins and yeast cells significantly expands the usefulness of paper in microfluidics.

  13. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    Directory of Open Access Journals (Sweden)

    Ying Luo

    Full Text Available The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.

  14. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    Science.gov (United States)

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.

  15. Effects of radiation on the cell division cycle. Using yeasts as models

    International Nuclear Information System (INIS)

    Mann, C.; Marsolier, M.C.

    2000-01-01

    The living organisms, since the appearance on earth of the simplest of them, are submitted to numerous attacks having different origin. They use response systems to the DNA damages coming from these attacks and especially radiations. The cell knows how to take stock of the situation, at different moment of its life, to slow down, eventually to stop its cycle before continuing, after repairing of its DNA and divided itself. These mechanisms have kept a remarkable similarity during the evolution. The study of these systems among yeasts is a precious help to understand the corresponding systems for man and to evaluate the limits but also the possibilities, particularly, in oncology. (N.C.)

  16. Diploid yeast cells yield homozygous spontaneous mutations

    Science.gov (United States)

    Esposito, M. S.; Bruschi, C. V.; Brushi, C. V. (Principal Investigator)

    1993-01-01

    A leucine-requiring hybrid of Saccharomyces cerevisiae, homoallelic at the LEU1 locus (leu1-12/leu1-12) and heterozygous for three chromosome-VII genetic markers distal to the LEU1 locus, was employed to inquire: (1) whether spontaneous gene mutation and mitotic segregation of heterozygous markers occur in positive nonrandom association and (2) whether homozygous LEU1/LEU1 mutant diploids are generated. The results demonstrate that gene mutation of leu1-12 to LEU1 and mitotic segregation of heterozygous chromosome-VII markers occur in strong positive nonrandom association, suggesting that the stimulatory DNA lesion is both mutagenic and recombinogenic. In addition, genetic analysis of diploid Leu+ revertants revealed that approximately 3% of mutations of leu1-12 to LEU1 result in LEU1/LEU1 homozygotes. Red-white sectored Leu+ colonies exhibit genotypes that implicate post-replicational chromatid breakage and exchange near the site of leu1-12 reversion, chromosome loss, and subsequent restitution of diploidy, in the sequence of events leading to mutational homozygosis. By analogy, diploid cell populations can yield variants homozygous for novel recessive gene mutations at biologically significant rates. Mutational homozygosis may be relevant to both carcinogenesis and the evolution of asexual diploid organisms.

  17. Analysis of the Budding Yeast Cell Cycle by Flow Cytometry.

    Science.gov (United States)

    Rosebrock, Adam P

    2017-01-03

    DNA synthesis is one of the landmark events in the cell cycle: G 1 cells have one copy of the genome, S phase cells are actively engaged in DNA synthesis, and G 2 cells have twice as much nuclear DNA as G 1 cells. Cellular DNA content can be measured by staining with a fluorescent dye followed by a flow-cytometric readout. This method provides a quantitative measurement of cell cycle position on a cell-by-cell basis at high speed. Using flow cytometry, tens of thousands of single-cell measurements can be generated in a few seconds. This protocol details staining of cells of the budding yeast Saccharomyces cerevisiae for flow cytometry using Sytox Green dye in a method that can be scaled widely-from one sample to many thousands and operating on inputs ranging from 1 million to more than 100 million cells. Flow cytometry is preferred over light microscopy or Coulter analyses for the analysis of the cell cycle as DNA content and cell cycle position are being directly measured. © 2017 Cold Spring Harbor Laboratory Press.

  18. Research of aquatic organism addition influence on the reproduction of yeast cells in the dough

    Directory of Open Access Journals (Sweden)

    Дмитро Павлович Крамаренко

    2016-12-01

    Full Text Available The analysis of the research results of influence of various amounts of aquatic organism additions on the reproduction of yeast cells is given. A positive impact of aquatic organism addition of animal and plant origin in investigated quantities on the reproduction of yeast cells is revealed. The influence of the chemical composition of the aquatic organism additives on the reproduction of yeast cells is proved

  19. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA.

    Science.gov (United States)

    Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie

    2014-03-03

    The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ 0 ). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ 0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ 0 cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ 0 cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent.

  20. Binding kinetics of magnetic nanoparticles on latex beads and yeast cells studied by magnetorelaxometry

    International Nuclear Information System (INIS)

    Eberbeck, Dietmar; Bergemann, Christian; Hartwig, Stefan; Steinhoff, Uwe; Trahms, Lutz

    2005-01-01

    The ion exchange mediated binding of magnetic nanoparticles (MNP) to modified latex spheres and yeast cells was quantified using magnetorelaxometry. By fitting subsequently recorded relaxation curves, the kinetics of the binding reactions was extracted. The signal of MNP with weak ion exchanger groups bound to latex and yeast cells scales linearly with the concentration of latex beads or yeast cells whereas that of MNP with strong ion exchanger groups is proportional to the square root of concentration. The binding of the latter leads to a much stronger aggregation of yeast cells than the former MNP

  1. Cell wall trapping of autocrine peptides for human G-protein-coupled receptors on the yeast cell surface.

    Directory of Open Access Journals (Sweden)

    Jun Ishii

    Full Text Available G-protein-coupled receptors (GPCRs regulate a wide variety of physiological processes and are important pharmaceutical targets for drug discovery. Here, we describe a unique concept based on yeast cell-surface display technology to selectively track eligible peptides with agonistic activity for human GPCRs (Cell Wall Trapping of Autocrine Peptides (CWTrAP strategy. In our strategy, individual recombinant yeast cells are able to report autocrine-positive activity for human GPCRs by expressing a candidate peptide fused to an anchoring motif. Following expression and activation, yeast cells trap autocrine peptides onto their cell walls. Because captured peptides are incapable of diffusion, they have no impact on surrounding yeast cells that express the target human GPCR and non-signaling peptides. Therefore, individual yeast cells can assemble the autonomous signaling complex and allow single-cell screening of a yeast population. Our strategy may be applied to identify eligible peptides with agonistic activity for target human GPCRs.

  2. Possibility for simultaneous electricity generation and bioremediation by using Candida melibiosica yeast in biofuel cell

    International Nuclear Information System (INIS)

    Hubenova, Yolina; Georgiev, Danail; Mitov, Mario

    2013-01-01

    Recently, we have proved that Candida melibiosica 2491 yeast strain possesses electrogenic properties and could be used as a biocatalyst in yeast-based biofuel cells. In this paper we demonstrate that when the yeast is cultivated under polarization conditions in a biofuel cell its phytase activity exceeds that obtained during cultivation in a conventional bioreactor. Furthermore, there is a correlation between the yeast phytase activity and the electrical characteristic of the biofuel cell during the different yeast growth phases. The obtained results reveal a possibility for application of C.melibiosica for simultaneous electricity generation and bioremediation of hardly degradable polyphosphates, especially in the regions with intensive stock-farming. Keywords: Biofuel cells, yeast, Candida melibiosica, electricity generation, bioremediation

  3. Synergistic reduction of toluylene blue induced by acetaldehyde and menadione in yeast cell suspension: Application to determination of yeast cell activity

    Directory of Open Access Journals (Sweden)

    Shiro Yamashoji

    2017-03-01

    Full Text Available Membrane permeant acetaldehyde and menadione induced the synergistic reduction of toluylene blue (TB acting as non-membrane permeant redox indicator in yeast cell suspension. NADH and acetaldehyde also induced the synergistic TB reduction in permeabilized yeast cells and phosphate buffer, but menadione had no ability to promote TB reduction. The pre-incubation of acetaldehyde inhibited the above synergistic reduction of TB in intact and permeabilized yeast cell suspension. The pre-incubation of acetaldehyde might promote NADH oxidation by alcohol dehydrogenase, because acetaldehyde decreased the intracellular NAD(PH concentration. The above facts indicate that the synergistic reduction of TB is controlled by the order of addition of menadione and acetaldehyde. The synergistic reduction of TB by menadione and acetaldehyde was proportional to viable yeast cell number from 104 to 2×106 cells/ml, and this assay was applicable to cytotoxicity test. The time required for the above assay was only 2 min.

  4. Comparison of methods used for assessing the viability and vitality of yeast cells.

    Science.gov (United States)

    Kwolek-Mirek, Magdalena; Zadrag-Tecza, Renata

    2014-11-01

    Determination of cell viability is the most commonly used method for assessing the impact of various types of stressors in toxicity research and in industrial microbiology studies. Viability is defined as a percentage of live cells in a whole population. Although cell death is one of the consequences of toxicity, chemical or physical factors may exert their toxic effects through a number of cellular alterations that may compromise cell ability to divide without necessarily leading to cell death. This aspect represents the term 'cell vitality' defined as physiological capabilities of cells. It is important to note that cell viability and cell vitality represent two different aspects of cell functions, and both are required for the estimation of the physiological state of a cell after exposure to various types of stressors and chemical or physical factors. In this paper, we introduced a classification of available methods for estimating both viability and vitality in Saccharomyces cerevisiae yeast cells (wild-type and Δsod1 mutant) in which the effects of selected oxidants causing oxidative stress is evaluated. We present the advantages as well as disadvantages of the selected methods and assess their usefulness in different types of research. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Analytical model for macromolecular partitioning during yeast cell division

    International Nuclear Information System (INIS)

    Kinkhabwala, Ali; Khmelinskii, Anton; Knop, Michael

    2014-01-01

    Asymmetric cell division, whereby a parent cell generates two sibling cells with unequal content and thereby distinct fates, is central to cell differentiation, organism development and ageing. Unequal partitioning of the macromolecular content of the parent cell — which includes proteins, DNA, RNA, large proteinaceous assemblies and organelles — can be achieved by both passive (e.g. diffusion, localized retention sites) and active (e.g. motor-driven transport) processes operating in the presence of external polarity cues, internal asymmetries, spontaneous symmetry breaking, or stochastic effects. However, the quantitative contribution of different processes to the partitioning of macromolecular content is difficult to evaluate. Here we developed an analytical model that allows rapid quantitative assessment of partitioning as a function of various parameters in the budding yeast Saccharomyces cerevisiae. This model exposes quantitative degeneracies among the physical parameters that govern macromolecular partitioning, and reveals regions of the solution space where diffusion is sufficient to drive asymmetric partitioning and regions where asymmetric partitioning can only be achieved through additional processes such as motor-driven transport. Application of the model to different macromolecular assemblies suggests that partitioning of protein aggregates and episomes, but not prions, is diffusion-limited in yeast, consistent with previous reports. In contrast to computationally intensive stochastic simulations of particular scenarios, our analytical model provides an efficient and comprehensive overview of partitioning as a function of global and macromolecule-specific parameters. Identification of quantitative degeneracies among these parameters highlights the importance of their careful measurement for a given macromolecular species in order to understand the dominant processes responsible for its observed partitioning

  6. Hydrothermal decomposition of yeast cells for production of proteins and amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Lamoolphak, Wiwat [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Goto, Motonobu [Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 850-8555 (Japan); Sasaki, Mitsuru [Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 850-8555 (Japan); Suphantharika, Manop [Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Muangnapoh, Chirakarn [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Prommuag, Chattip [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Shotipruk, Artiwan [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand)]. E-mail: artiwan.s@chula.ac.th

    2006-10-11

    This study examines hydrothermal decomposition of Baker's yeast cells, used as a model for spent Brewer's yeast waste, into protein and amino acids. The reaction was carried out in a closed batch reactor at various temperatures between 100 and 250 deg. C. The reaction products were separated into water-soluble and solid residue. The results demonstrated that the amount of yeast residue decreased with increasing hydrolysis temperature. After 20 min reaction in water at 250 deg. C, 78% of yeast was decomposed. The highest amount of protein produced was also obtained at this condition and was found to be 0.16 mg/mg dry yeast. The highest amount of amino acids (0.063 mg/mg dry yeast) was found at the lowest temperature tested after 15 min. The hydrolysis product obtained at 200 deg. C was tested as a nutrient source for yeast growth. The growth of yeast cells in the culture medium containing 2 w/v% of this product was comparable to that of the cells grown in the medium containing commercial yeast extract at the same concentration. These results demonstrated the feasibility of using subcritical water to potentially decompose proteinaceous waste such as spent Brewer's yeast while recovering more useful products.

  7. Hydrothermal decomposition of yeast cells for production of proteins and amino acids

    International Nuclear Information System (INIS)

    Lamoolphak, Wiwat; Goto, Motonobu; Sasaki, Mitsuru; Suphantharika, Manop; Muangnapoh, Chirakarn; Prommuag, Chattip; Shotipruk, Artiwan

    2006-01-01

    This study examines hydrothermal decomposition of Baker's yeast cells, used as a model for spent Brewer's yeast waste, into protein and amino acids. The reaction was carried out in a closed batch reactor at various temperatures between 100 and 250 deg. C. The reaction products were separated into water-soluble and solid residue. The results demonstrated that the amount of yeast residue decreased with increasing hydrolysis temperature. After 20 min reaction in water at 250 deg. C, 78% of yeast was decomposed. The highest amount of protein produced was also obtained at this condition and was found to be 0.16 mg/mg dry yeast. The highest amount of amino acids (0.063 mg/mg dry yeast) was found at the lowest temperature tested after 15 min. The hydrolysis product obtained at 200 deg. C was tested as a nutrient source for yeast growth. The growth of yeast cells in the culture medium containing 2 w/v% of this product was comparable to that of the cells grown in the medium containing commercial yeast extract at the same concentration. These results demonstrated the feasibility of using subcritical water to potentially decompose proteinaceous waste such as spent Brewer's yeast while recovering more useful products

  8. Cell-surface display of enzymes by the yeast Saccharomyces cerevisiae for synthetic biology.

    Science.gov (United States)

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-02-01

    In yeast cell-surface displays, functional proteins, such as cellulases, are genetically fused to an anchor protein and expressed on the cell surface. Saccharomyces cerevisiae, which is often utilized as a cell factory for the production of fuels, chemicals, and proteins, is the most commonly used yeast for cell-surface display. To construct yeast cells with a desired function, such as the ability to utilize cellulose as a substrate for bioethanol production, cell-surface display techniques for the efficient expression of enzymes on the cell membrane need to be combined with metabolic engineering approaches for manipulating target pathways within cells. In this Minireview, we summarize the recent progress of biorefinery fields in the development and application of yeast cell-surface displays from a synthetic biology perspective and discuss approaches for further enhancing cell-surface display efficiency. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  9. Biosynthesis of amorphous mesoporous aluminophosphates using yeast cells as templates

    International Nuclear Information System (INIS)

    Sifontes, Ángela B.; González, Gema; Tovar, Leidy M.; Méndez, Franklin J.; Gomes, Maria E.; Cañizales, Edgar; Niño-Vega, Gustavo; Villalobos, Hector; Brito, Joaquin L.

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Amorphous aluminophosphates can take place using yeast as template. ► A mesoporous material was obtained. ► The specific surface area after calcinations ranged between 176 and 214 m 2 g −1 . -- Abstract: In this study aluminophosphates have been synthesized from aluminum isopropoxide and phosphoric acid solutions using yeast cells as template. The physicochemical characterization was carried out by thermogravimetric analysis; X-ray diffraction; Fourier transform infrared; N 2 adsorption–desorption isotherms; scanning electron microscopy; transmission electron microscopy and potentiometric titration with N-butylamine for determination of: thermal stability; crystalline structure; textural properties; morphology and surface acidity, respectively. The calcined powders consisted of an intimate mixture of amorphous and crystallized AlPO particles with sizes between 23 and 30 nm. The average pore size observed is 13–16 nm and the specific surface area after calcinations (at 650 °C) ranged between 176 and 214 m 2 g −1 .

  10. Biosynthesis of amorphous mesoporous aluminophosphates using yeast cells as templates

    Energy Technology Data Exchange (ETDEWEB)

    Sifontes, Ángela B., E-mail: asifonte@ivic.gob.ve [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); González, Gema [Centro de Ingeniería de Materiales y Nanotecnología, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Tovar, Leidy M.; Méndez, Franklin J. [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Gomes, Maria E. [Centro de Ingeniería de Materiales y Nanotecnología, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Cañizales, Edgar [Área de Análisis Químico Inorgánico, PDVSA, INTEVEP, Los Teques 1070-A (Venezuela, Bolivarian Republic of); Niño-Vega, Gustavo; Villalobos, Hector [Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Brito, Joaquin L. [Centro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Amorphous aluminophosphates can take place using yeast as template. ► A mesoporous material was obtained. ► The specific surface area after calcinations ranged between 176 and 214 m{sup 2} g{sup −1}. -- Abstract: In this study aluminophosphates have been synthesized from aluminum isopropoxide and phosphoric acid solutions using yeast cells as template. The physicochemical characterization was carried out by thermogravimetric analysis; X-ray diffraction; Fourier transform infrared; N{sub 2} adsorption–desorption isotherms; scanning electron microscopy; transmission electron microscopy and potentiometric titration with N-butylamine for determination of: thermal stability; crystalline structure; textural properties; morphology and surface acidity, respectively. The calcined powders consisted of an intimate mixture of amorphous and crystallized AlPO particles with sizes between 23 and 30 nm. The average pore size observed is 13–16 nm and the specific surface area after calcinations (at 650 °C) ranged between 176 and 214 m{sup 2} g{sup −1}.

  11. Study of the role of the covalently linked cell wall protein (Ccw14p) and yeast glycoprotein (Ygp1p) within biofilm formation in a flor yeast strain.

    Science.gov (United States)

    Moreno-García, J; Coi, A L; Zara, G; García-Martínez, T; Mauricio, J C; Budroni, M

    2018-03-01

    Flor yeasts are Saccharomyces cerevisiae strains noted by their ability to create a type of biofilm in the air-liquid interface of some wines, known as 'flor' or 'velum', for which certain proteins play an essential role. Following a proteomic study of a flor yeast strain, we deleted the CCW14 (covalently linked cell wall protein) and YGP1 (yeast glycoprotein) genes-codifying for two cell surface glycoproteins-in a haploid flor yeast strain and we reported that both influence the weight of the biofilm as well as cell adherence (CCW14).

  12. Detecting estrogenic activity in water samples withestrogen-sensitive yeast cells using spectrophotometry and fluorescencemicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wozei, E.; Holman, H-Y.N.; Hermanowicz, S.W.; Borglin S.

    2006-03-15

    Environmental estrogens are environmental contaminants that can mimic the biological activities of the female hormone estrogen in the endocrine system, i.e. they act as endocrine disrupters. Several substances are reported to have estrogen-like activity or estrogenic activity. These include steroid hormones, synthetic estrogens (xenoestrogens), environmental pollutants and phytoestrogens (plant estrogens). Using the chromogenic substrate ortho-nitrophenyl-{beta}-D-galactopyranoside (ONPG) we show that an estrogen-sensitive yeast strain RMY/ER-ERE, with human estrogen receptor (hER{alpha}) gene and the lacZ gene which encodes the enzyme {beta}-galactosidase, is able to detect estrogenic activity in water samples over a wide range of spiked concentrations of the hormonal estrogen 17{beta}-estradiol (E2). Ortho-nitrophenol (ONP), the yellow product of this assay can be detected using spectrophotometry but requires cell lysis to release the enzyme and allow product formation. We improved this aspect in a fluorogenic assay by using fluorescein di-{beta}-D-galactopyranoside (FDG) as a substrate. The product was visualized using fluorescence microscopy without the need to kill, fix or lyse the cells. We show that in live yeast cells, the uptake of E2 and the subsequent production of {beta}-galactosidase enzyme occur quite rapidly, with maximum enzyme-catalyzed fluorescent product formation evident after about 30 minutes of exposure to E2. The fluorogenic assay was applied to a selection of estrogenic compounds and the Synchrotron-based Fourier transform infrared (SR-FTIR) spectra of the cells obtained to better understand the yeast whole cell response to the compounds. The fluorogenic assay is most sensitive to E2, but the SR-FTIR spectra suggest that the cells respond to all the estrogenic compounds tested even when no fluorescent response was detected. These findings are promising and may shorten the duration of environmental water screening and monitoring regimes using

  13. Interactions between semiconductor nanowires and living cells.

    Science.gov (United States)

    Prinz, Christelle N

    2015-06-17

    Semiconductor nanowires are increasingly used for biological applications and their small dimensions make them a promising tool for sensing and manipulating cells with minimal perturbation. In order to interface cells with nanowires in a controlled fashion, it is essential to understand the interactions between nanowires and living cells. The present paper reviews current progress in the understanding of these interactions, with knowledge gathered from studies where living cells were interfaced with vertical nanowire arrays. The effect of nanowires on cells is reported in terms of viability, cell-nanowire interface morphology, cell behavior, changes in gene expression as well as cellular stress markers. Unexplored issues and unanswered questions are discussed.

  14. Diffusion inside living human cells

    DEFF Research Database (Denmark)

    Leijnse, N.; Jeon, J. -H.; Loft, Steffen

    2012-01-01

    of the cell or within the nucleus. Also, granules in cells which are stressed by intense laser illumination or which have attached to a surface for a long period of time move in a more restricted fashion than those within healthy cells. For granules diffusing in healthy cells, in regions away from the cell...... cells. For these cells the exact diffusional pattern of a particular granule depends on the physiological state of the cell and on the localization of the granule within the cytoplasm. Granules located close to the actin rich periphery of the cell move less than those located towards to the center...

  15. Yeast cell surface display for lipase whole cell catalyst and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai; Wang, Shihui; Wright, Aaron T.

    2014-08-01

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chain length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.

  16. Live cell refractometry using microfluidic devices.

    Science.gov (United States)

    Lue, Niyom; Popescu, Gabriel; Ikeda, Takahiro; Dasari, Ramachandra R; Badizadegan, Kamran; Feld, Michael S

    2006-09-15

    Using Hilbert phase microscopy for extracting quantitative phase images, we measured the average refractive index associated with live cells in culture. To decouple the contributions to the phase signal from the cell refractive index and thickness, we confined the cells in microchannels. The results are confirmed by comparison with measurements of spherical cells in suspension.

  17. Novel and improved yeast cell factories for biosustainable processes

    DEFF Research Database (Denmark)

    Workman, Mhairi

    2014-01-01

    The utilization of an increasingly diverse range of cheap waste substrates will be an ongoing challenge for the bio-based economy, where the mobilization of nutrients from a variety of waste products will be necessary for realization of biosustainability on an industrial scale. Bioprocesses....... In addition to plant biomass hydrolysates, glycerol is of interest here, being available in amounts relevant for industrial scale bioprocesses due to increased production of biodiesel. The well characterised cell factory Saccharomyces cerevisiae exhibits a clear preference for glucose as a carbon source......, and is highly adapted to its utilisation. Although there have been several studies on glycerol metabolism in S. cerevisiae, many industrially used strains grow poorly on glycerol (μmax = 0.01h-1). On the other hand, several non-conventional yeast species are efficient in utilization of glycerol, some...

  18. Apple Can Act as Anti-Aging on Yeast Cells

    Directory of Open Access Journals (Sweden)

    Vanessa Palermo

    2012-01-01

    Full Text Available In recent years, epidemiological and biochemical studies have shown that eating apples is associated with reduction of occurrence of cancer, degenerative, and cardiovascular diseases. This association is often attributed to the presence of antioxidants such as ascorbic acid (vitamin C and polyphenols. The substances that hinder the presence of free radicals are also able to protect cells from aging. In our laboratory we used yeast, a unicellular eukaryotic organism, to determine in vivo efficacy of entire apples and their components, such as flesh, skin and polyphenolic fraction, to influence aging and oxidative stress. Our results indicate that all the apple components increase lifespan, with the best result given by the whole fruit, indicating a cooperative role of all apple components.

  19. Electricity production from microbial fuel cell by using yeast

    International Nuclear Information System (INIS)

    Vorasingha, A.; Souvakon, C.; Boonchom, K.

    2006-01-01

    The continuous search for methods to generate electricity from renewable sources such as water, solar energy, wind, nuclear or chemicals was discussed with particular focus on attaining the full power of the microbial fuel cell (MFC). Under ideal environmental conditions, the only byproducts of a biofuel cell would be water and carbon dioxide (CO 2 ). The production of energy from renewables such as biomass is important for sustainable development and reducing global emissions of CO 2 . Hydrogen can also be an important component of an energy infrastructure that reduces CO 2 emissions if the hydrogen is produced from renewable sources and used in fuel cells. Hydrogen gas can be biologically produced at high concentration from the fermentation of high sugar substrates such as glucose and sucrose. Some of the issues of MFC design were addressed, including the use of cheap substrates to derive microbial electricity. In the MFC, yeast donates electrons to a chemical electron mediator, which in turn transfers the electrons to an electrode, producing electricity. Experimental results showed that glucose yielded the highest peak voltage, but a semi-processed sugar and molasses were similar to glucose in the electricity production pattern. It was noted that this technology is only at the research stages, and more research is needed before household microbial fuel cells can be made available for producing power for prolonged periods of time. Future research efforts will focus on increasing the efficiency, finding alternatives to hazardous electron mediators and finding new microbes. 12 refs., 6 figs

  20. L-Lactate-selective microbial sensor based on flavocytochrome b2-enriched yeast cells using recombinant and nanotechnology approaches.

    Science.gov (United States)

    Karkovska, Maria; Smutok, Oleh; Stasyuk, Nataliya; Gonchar, Mykhailo

    2015-11-01

    In the recent years, nanotechnology is the most developing branch due to a wide variety of potential applications in biomedical, biotechnological and agriculture fields. The binding nanoparticles with various biological molecules makes them attractive candidates for using in sensor technologies. The particularly actual is obtaining the bionanomembranes based on biocatalytic elements with improved sensing characteristics. The aim of this investigation is to study the properties of microbial L-lactate-selective sensor based on using the recombinant Hansenula polymorpha yeast cells overproducing flavocytochrome b2 (FC b2), as well as additionally enriched by the enzyme bound with gold nanoparticles (FC b2-nAu). Although, the high permeability of the living cells to nanoparticles is being intensively studied (mostly for delivery of drugs), the idea of using both recombinant technology and nanotechnology to increase the amount of the target enzyme in the biosensing layer is really novel. The FC b2-nAu-enriched living and permeabilized yeast cells were used for construction of a bioselective membrane of microbial L-lactate-selective amperometric biosensor. Phenazine methosulphate was served as a free defusing electron transfer mediator which provides effective electron transfer from the reduced enzyme to the electrode surface. It was shown that the output to L-lactate of FC b2-nAu-enriched permeabilized yeast cells is 2.5-fold higher when compared to the control cells. The obtained results confirm that additional enrichment of the recombinant yeast cell by the enzyme bound with nanoparticles improves the analytical parameters of microbial sensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Cell wall staining with Trypan Blue enables quantitative analysis of morphological changes in yeast cells

    Directory of Open Access Journals (Sweden)

    Johannes eLiesche

    2015-02-01

    Full Text Available Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.

  2. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells.

    Science.gov (United States)

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.

  3. Apoptosis-like yeast cell death in response to DNA damage and replication defects

    Energy Technology Data Exchange (ETDEWEB)

    Burhans, William C.; Weinberger, Martin; Marchetti, Maria A.; Ramachandran, Lakshmi; D' Urso, Gennaro; Huberman, Joel A

    2003-11-27

    In budding (Saccharomyces cerevisiae) and fission (Schizosaccharomyces pombe) yeast and other unicellular organisms, DNA damage and other stimuli can induce cell death resembling apoptosis in metazoans, including the activation of a recently discovered caspase-like molecule in budding yeast. Induction of apoptotic-like cell death in yeasts requires homologues of cell cycle checkpoint proteins that are often required for apoptosis in metazoan cells. Here, we summarize these findings and our unpublished results which show that an important component of metazoan apoptosis recently detected in budding yeast - reactive oxygen species (ROS) - can also be detected in fission yeast undergoing an apoptotic-like cell death. ROS were detected in fission and budding yeast cells bearing conditional mutations in genes encoding DNA replication initiation proteins and in fission yeast cells with mutations that deregulate cyclin-dependent kinases (CDKs). These mutations may cause DNA damage by permitting entry of cells into S phase with a reduced number of replication forks and/or passage through mitosis with incompletely replicated chromosomes. This may be relevant to the frequent requirement for elevated CDK activity in mammalian apoptosis, and to the recent discovery that the initiation protein Cdc6 is destroyed during apoptosis in mammals and in budding yeast cells exposed to lethal levels of DNA damage. Our data indicate that connections between apoptosis-like cell death and DNA replication or CDK activity are complex. Some apoptosis-like pathways require checkpoint proteins, others are inhibited by them, and others are independent of them. This complexity resembles that of apoptotic pathways in mammalian cells, which are frequently deregulated in cancer. The greater genetic tractability of yeasts should help to delineate these complex pathways and their relationships to cancer and to the effects of apoptosis-inducing drugs that inhibit DNA replication.

  4. Apoptosis-like yeast cell death in response to DNA damage and replication defects

    International Nuclear Information System (INIS)

    Burhans, William C.; Weinberger, Martin; Marchetti, Maria A.; Ramachandran, Lakshmi; D'Urso, Gennaro; Huberman, Joel A.

    2003-01-01

    In budding (Saccharomyces cerevisiae) and fission (Schizosaccharomyces pombe) yeast and other unicellular organisms, DNA damage and other stimuli can induce cell death resembling apoptosis in metazoans, including the activation of a recently discovered caspase-like molecule in budding yeast. Induction of apoptotic-like cell death in yeasts requires homologues of cell cycle checkpoint proteins that are often required for apoptosis in metazoan cells. Here, we summarize these findings and our unpublished results which show that an important component of metazoan apoptosis recently detected in budding yeast - reactive oxygen species (ROS) - can also be detected in fission yeast undergoing an apoptotic-like cell death. ROS were detected in fission and budding yeast cells bearing conditional mutations in genes encoding DNA replication initiation proteins and in fission yeast cells with mutations that deregulate cyclin-dependent kinases (CDKs). These mutations may cause DNA damage by permitting entry of cells into S phase with a reduced number of replication forks and/or passage through mitosis with incompletely replicated chromosomes. This may be relevant to the frequent requirement for elevated CDK activity in mammalian apoptosis, and to the recent discovery that the initiation protein Cdc6 is destroyed during apoptosis in mammals and in budding yeast cells exposed to lethal levels of DNA damage. Our data indicate that connections between apoptosis-like cell death and DNA replication or CDK activity are complex. Some apoptosis-like pathways require checkpoint proteins, others are inhibited by them, and others are independent of them. This complexity resembles that of apoptotic pathways in mammalian cells, which are frequently deregulated in cancer. The greater genetic tractability of yeasts should help to delineate these complex pathways and their relationships to cancer and to the effects of apoptosis-inducing drugs that inhibit DNA replication

  5. Construction of the yeast whole-cell Rhizopus oryzae lipase biocatalyst with high activity.

    Science.gov (United States)

    Chen, Mei-ling; Guo, Qin; Wang, Rui-zhi; Xu, Juan; Zhou, Chen-wei; Ruan, Hui; He, Guo-qing

    2011-07-01

    Surface display is effectively utilized to construct a whole-cell biocatalyst. Codon optimization has been proven to be effective in maximizing production of heterologous proteins in yeast. Here, the cDNA sequence of Rhizopus oryzae lipase (ROL) was optimized and synthesized according to the codon bias of Saccharomyces cerevisiae, and based on the Saccharomyces cerevisiae cell surface display system with α-agglutinin as an anchor, recombinant yeast displaying fully codon-optimized ROL with high activity was successfully constructed. Compared with the wild-type ROL-displaying yeast, the activity of the codon-optimized ROL yeast whole-cell biocatalyst (25 U/g dried cells) was 12.8-fold higher in a hydrolysis reaction using p-nitrophenyl palmitate (pNPP) as the substrate. To our knowledge, this was the first attempt to combine the techniques of yeast surface display and codon optimization for whole-cell biocatalyst construction. Consequently, the yeast whole-cell ROL biocatalyst was constructed with high activity. The optimum pH and temperature for the yeast whole-cell ROL biocatalyst were pH 7.0 and 40 °C. Furthermore, this whole-cell biocatalyst was applied to the hydrolysis of tributyrin and the resulted conversion of butyric acid reached 96.91% after 144 h.

  6. Effects of metal salt catalysts on yeast cell growth in ethanol conversion

    Science.gov (United States)

    Chung-Yun Hse; Yin Lin

    2009-01-01

    The effects of the addition of metal salts and metal salt-catalyzed hydrolyzates on yeast cell growth in ethanol fermentation were investigated. Four yeast strains (Saccharomyces cerevisiae WT1, Saccharomyces cerevisiae MT81, Candida sp. 1779, and Klumaromyces fragilis), four metal salts (CuCl2, FeCl3, AgNO3, and I2), two metal salt-catalyzed hydrolyzates (...

  7. Types of cell death and methods of their detection in yeast Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Wloch-Salamon, D.M.; Bem, A.E.

    2013-01-01

    The occurrence of programmed cell death in unicellular organisms is a subject that arouses great interest of theoreticians and experimental scientists. Already found evolutionarily conserved genes and metabolic pathways confirmed its existence in yeast, protozoa and even bacteria. In the yeast

  8. Picosecond orientational dynamics of water in living cells.

    Science.gov (United States)

    Tros, Martijn; Zheng, Linli; Hunger, Johannes; Bonn, Mischa; Bonn, Daniel; Smits, Gertien J; Woutersen, Sander

    2017-10-12

    Cells are extremely crowded, and a central question in biology is how this affects the intracellular water. Here, we use ultrafast vibrational spectroscopy and dielectric-relaxation spectroscopy to observe the random orientational motion of water molecules inside living cells of three prototypical organisms: Escherichia coli, Saccharomyces cerevisiae (yeast), and spores of Bacillus subtilis. In all three organisms, most of the intracellular water exhibits the same random orientational motion as neat water (characteristic time constants ~9 and ~2 ps for the first-order and second-order orientational correlation functions), whereas a smaller fraction exhibits slower orientational dynamics. The fraction of slow intracellular water varies between organisms, ranging from ~20% in E. coli to ~45% in B. subtilis spores. Comparison with the water dynamics observed in solutions mimicking the chemical composition of (parts of) the cytosol shows that the slow water is bound mostly to proteins, and to a lesser extent to other biomolecules and ions.The cytoplasm's crowdedness leads one to expect that cell water is different from bulk water. By measuring the rotational motion of water molecules in living cells, Tros et al. find that apart from a small fraction of water solvating biomolecules, cell water has the same dynamics as bulk water.

  9. Study on immobilized yeast cells with hydrophilic polymer carrier by radiation-induced copolymerization

    International Nuclear Information System (INIS)

    Li Zhengkui; Zhang Bosen

    1993-01-01

    Various kinds of monomers 2-hydroxyethyl methacrylate (HEMA), 2-hydroxyethyl acrylate (HEA), hydroxypropyl methacrylate (HPMA) and methoxy polyethylene glycol methylacrylate (M-23G) are copolymerized by radiation technique at low temperature (-78 degree C) and several kinds of copolymer carriers were obtained. Yeast cells are immobilized through adhesion and multiplication of yeast cells themselves on these carriers. The ethanol productivity of immobilized yeast cells with these carriers was related to the monomer composition and water content of copolymer carriers and the optimum monomer composition was 20%:10% in poly (HEA-M23G). In this case, the ethanol productivity of immobilized yeast cells was 26 mg/(ml · h), which was 4 times as high as that of free cells. Effect of adding crosslinking reagent (4G) in lower monomer composition of poly(HEA-M23G) on the ethanol productivity of immobilized cells was better than that in higher one in this work

  10. Toxicity of Aromatic Ketone to Yeast Cell and Improvement of the Asymmetric Reduction of Aromatic Ketone Catalyzed by Yeast Cell with the Introduction of Resin Adsorption

    Directory of Open Access Journals (Sweden)

    Zhong-Hua Yang

    2008-01-01

    Full Text Available Asymmetric reduction of the prochiral aromatic ketone catalyzed by yeast cells is one of the most promising routes to produce its corresponding enantiopure aromatic alcohol, but the space-time yield does not meet people’s expectations. Therefore, the toxicity of aromatic ketone and aromatic alcohol to the yeast cell is investigated in this work. It has been found that the aromatic compounds are poisonous to the yeast cell. The activity of yeast cell decreases steeply when the concentration of acetophenone (ACP is higher than 30.0 mmol/L. Asymmetric reduction of acetophenone to chiral S-α-phenylethyl alcohol (PEA catalyzed by the yeast cell was chosen as the model reaction to study in detail the promotion effect of the introduction of the resin adsorption on the asymmetric reduction reaction. The resin acts as the substrate reservoir and product extraction agent in situ. It has been shown that this reaction could be remarkably improved with this technique when the appropriate kind of resin is applied. The enantioselectivity and yield are acceptable even though the initial ACP concentration reaches 72.2 mmol/L.

  11. Quantification of nanowire uptake by live cells

    KAUST Repository

    Margineanu, Michael B.

    2015-01-01

    attempts have been made at tagging and investigating their interaction with living cells. In this study, magnetic iron nanowires with an iron oxide layer are coated with (3-Aminopropyl)triethoxysilane (APTES), and subsequently labeled with a fluorogenic p

  12. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akira; Kawahara, Nobuhiro [Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Takagi, Hiroshi, E-mail: hiro@bs.naist.jp [Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer NO is produced from L-arginine in response to elevated temperature in yeast. Black-Right-Pointing-Pointer Tah18 was first identified as the yeast protein involved in NO synthesis. Black-Right-Pointing-Pointer Tah18-dependent NO synthesis confers tolerance to high-temperature on yeast cells. -- Abstract: Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. In the unicellular eukaryote yeast, NO may be involved in stress response pathways, but its role is poorly understood due to the lack of mammalian NO synthase (NOS) orthologues. Previously, we have proposed the oxidative stress-induced L-arginine synthesis and its physiological role under stress conditions in yeast Saccharomyces cerevisiae. Here, our experimental results indicated that increased conversion of L-proline into L-arginine led to NO production in response to elevated temperature. We also showed that the flavoprotein Tah18, which was previously reported to transfer electrons to the Fe-S cluster protein Dre2, was involved in NO synthesis in yeast. Gene knockdown analysis demonstrated that Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. As it appears that such a unique cell protection mechanism is specific to yeasts and fungi, it represents a promising target for antifungal activity.

  13. Screening of intact yeasts and cell extracts to reduce Scrapie prions during biotransformation of food waste.

    Science.gov (United States)

    Huyben, David; Boqvist, Sofia; Passoth, Volkmar; Renström, Lena; Allard Bengtsson, Ulrika; Andréoletti, Olivier; Kiessling, Anders; Lundh, Torbjörn; Vågsholm, Ivar

    2018-02-08

    Yeasts can be used to convert organic food wastes to protein-rich animal feed in order to recapture nutrients. However, the reuse of animal-derived waste poses a risk for the transmission of infectious prions that can cause neurodegeneration and fatality in humans and animals. The aim of this study was to investigate the ability of yeasts to reduce prion activity during the biotransformation of waste substrates-thereby becoming a biosafety hurdle in such a circular food system. During pre-screening, 30 yeast isolates were spiked with Classical Scrapie prions and incubated for 72 h in casein substrate, as a waste substitute. Based on reduced Scrapie seeding activity, waste biotransformation and protease activities, intact cells and cell extracts of 10 yeasts were further tested. Prion analysis showed that five yeast species reduced Scrapie seeding activity by approximately 1 log10 or 90%. Cryptococcus laurentii showed the most potential to reduce prion activity since both intact and extracted cells reduced Scrapie by 1 log10 and achieved the highest protease activity. These results show that select forms of yeast can act as a prion hurdle during the biotransformation of waste. However, the limited ability of yeasts to reduce prion activity warrants caution as a sole barrier to transmission as higher log reductions are needed before using waste-cultured yeast in circular food systems.

  14. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells

    International Nuclear Information System (INIS)

    Nishimura, Akira; Kawahara, Nobuhiro; Takagi, Hiroshi

    2013-01-01

    Highlights: ► NO is produced from L-arginine in response to elevated temperature in yeast. ► Tah18 was first identified as the yeast protein involved in NO synthesis. ► Tah18-dependent NO synthesis confers tolerance to high-temperature on yeast cells. -- Abstract: Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. In the unicellular eukaryote yeast, NO may be involved in stress response pathways, but its role is poorly understood due to the lack of mammalian NO synthase (NOS) orthologues. Previously, we have proposed the oxidative stress-induced L-arginine synthesis and its physiological role under stress conditions in yeast Saccharomyces cerevisiae. Here, our experimental results indicated that increased conversion of L-proline into L-arginine led to NO production in response to elevated temperature. We also showed that the flavoprotein Tah18, which was previously reported to transfer electrons to the Fe–S cluster protein Dre2, was involved in NO synthesis in yeast. Gene knockdown analysis demonstrated that Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. As it appears that such a unique cell protection mechanism is specific to yeasts and fungi, it represents a promising target for antifungal activity.

  15. How do yeast cells become tolerant to high ethanol concentrations?

    DEFF Research Database (Denmark)

    Snoek, Tim; Verstrepen, Kevin J.; Voordeckers, Karin

    2016-01-01

    The brewer’s yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast’s exceptional ethanol...... and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance....

  16. Timing robustness in the budding and fission yeast cell cycles.

    KAUST Repository

    Mangla, Karan

    2010-02-01

    Robustness of biological models has emerged as an important principle in systems biology. Many past analyses of Boolean models update all pending changes in signals simultaneously (i.e., synchronously), making it impossible to consider robustness to variations in timing that result from noise and different environmental conditions. We checked previously published mathematical models of the cell cycles of budding and fission yeast for robustness to timing variations by constructing Boolean models and analyzing them using model-checking software for the property of speed independence. Surprisingly, the models are nearly, but not totally, speed-independent. In some cases, examination of timing problems discovered in the analysis exposes apparent inaccuracies in the model. Biologically justified revisions to the model eliminate the timing problems. Furthermore, in silico random mutations in the regulatory interactions of a speed-independent Boolean model are shown to be unlikely to preserve speed independence, even in models that are otherwise functional, providing evidence for selection pressure to maintain timing robustness. Multiple cell cycle models exhibit strong robustness to timing variation, apparently due to evolutionary pressure. Thus, timing robustness can be a basis for generating testable hypotheses and can focus attention on aspects of a model that may need refinement.

  17. Use of non-conventional cell disruption method for extraction of proteins from black yeasts

    Directory of Open Access Journals (Sweden)

    Maja eLeitgeb

    2016-04-01

    Full Text Available The influence of pressure and treatment time on cells disruption of different black yeasts and on activities of extracted proteins using supercritical carbon dioxide process was studied. The cells of three different black yeasts Phaeotheca triangularis, Trimatostroma salinum and Wallemia ichthyophaga were exposed to supercritical carbon dioxide (SC CO2 by varying pressure at fixed temperature (35 °C. The black yeasts cell walls were disrupted and the content of the cells was spilled into the liquid medium. The impact of SC CO2 conditions on secretion of enzymes and proteins from black yeast cells suspension was studied. The residual activity of the enzymes cellulase, β-glucosidase, α-amylase and protease was studied by enzymatic assay. The viability of black yeast cells was determined by measuring the optical density of the cell suspension at 600 nm. The total protein concentration in the suspension was determined on UV-Vis spectrophotometer at 595 nm. The release of intracellular and extracellular products from black yeast cells was achieved. Also, the observation by an environmental scanning electron microscopy shows major morphological changes with SC CO2 treated cells. The advantages of the proposed method are in a simple use which is also possible for heat sensitive materials on one hand and on the other hand integration of the extraction of enzymes and their use in biocatalytical reactions.

  18. Use of Non-Conventional Cell Disruption Method for Extraction of Proteins from Black Yeasts

    Science.gov (United States)

    Čolnik, Maja; Primožič, Mateja; Knez, Željko; Leitgeb, Maja

    2016-01-01

    The influence of pressure and treatment time on cells disruption of different black yeasts and on activities of extracted proteins using supercritical carbon dioxide process was studied. The cells of three different black yeasts Phaeotheca triangularis, Trimatostroma salinum, and Wallemia ichthyophaga were exposed to supercritical carbon dioxide (SC CO2) by varying pressure at fixed temperature (35°C). The black yeasts cell walls were disrupted, and the content of the cells was spilled into the liquid medium. The impact of SC CO2 conditions on secretion of enzymes and proteins from black yeast cells suspension was studied. The residual activity of the enzymes cellulase, β-glucosidase, α-amylase, and protease was studied by enzymatic assay. The viability of black yeast cells was determined by measuring the optical density of the cell suspension at 600 nm. The total protein concentration in the suspension was determined on UV–Vis spectrophotometer at 595 nm. The release of intracellular and extracellular products from black yeast cells was achieved. Also, the observation by an environmental scanning electron microscopy shows major morphological changes with SC CO2-treated cells. The advantages of the proposed method are in a simple use, which is also possible for heat-sensitive materials on one hand and on the other hand integration of the extraction of enzymes and their use in biocatalytical reactions. PMID:27148527

  19. Studies on regulation of the cell cycle in fission yeast.

    Directory of Open Access Journals (Sweden)

    Miroslava Požgajová

    2015-05-01

    Full Text Available All living organisms including plants and animals are composed of millions of cells. These cells perform different functions for the organism although they possess the same chromosomes and carry the same genetic information. Thus, to be able to understand multicellular organism we need to understand the life cycle of individual cells from which the organism comprises. The cell cycle is the life cycle of a single cell in the plant or animal body. It involves series of events in which components of the cell doubles and afterwards equally segregate into daughter cells. Such process ensures growth of the organism, and specialized reductional cell division which leads to production of gamets, assures sexual reproduction. Cell cycle is divided in the G1, S, G2 and M phase. Two gap-phases (G1 and G2 separate S phase (or synthesis and M phase which stays either for mitosis or meiosis. Essential for normal life progression and reproduction is correct chromosome segregation during mitosis and meiosis. Defects in the division program lead to aneuploidy, which in turn leads to birth defects, miscarriages or cancer. Even thou, researchers invented much about the regulation of the cell cycle, there is still long way to understand the complexity of the regulatory machineries that ensure proper segregation of chromosomes. In this paper we would like to describe techniques and materials we use for our studies on chromosome segregation in the model organism Schizosaccharomyces pombe.

  20. In vitro ochratoxin A adsorption by commercial yeast cell walls

    Directory of Open Access Journals (Sweden)

    Carina Maricel Pereyra

    2015-03-01

    Full Text Available ABSTRACT. Pereyra C.M., Cavaglieri L.R., Keller K.M., Chiacchiera, S.M., Rosa C.A.R. & Dalcero A.M. In vitro ochratoxin A adsorption by commercial yeast cell walls. [Adsorção in vitro de ocratoxina A por paredes celulares de levedura comercial.] Revista Brasileira de Medicina Veterinária, 37(1:25-28, 2015. Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, (5800 Río Cuarto, Córdoba, Argentina. E-mail: lcavaglieri@exa.unrc.edu.ar The aim of the present study was to evaluate the ochratoxin A (OTA adsorption capacity by two kinds of commercial yeast cell walls (YCW1 and YCW2 used as dietary supplements. An in vitro test was designed to mimic the temperature (37ºC, pH (2 and passage time (30 min through the stomach of a monogastric animal. The test was performed using different concentrations of YWC (100 and 200 µg/mL and OTA (10; 80; 160 and 1000 ng/mL and extracts were quantified by HPLC. For each OTA concentration, two independent trials varying the concentration of each YCW were performed. The two YCW assayed containing different percentages of polysaccharides, were able to adsorb similar amounts of OTA. Furthermore, the relationship mannans/β-glucans does not influence the rate of adsorption of OTA. In general, it was observed that the adsorption capacity increased with decreasing OTA concentration. Results from this work related to adsorption capacity of OTA with YCW allow predicting that other factor than 3D-structure and β-glucans and mannans could be involved. Future studies could be conducted to test the in vivo binding ability to alleviate the toxic effects of OTA under field conditions. Both YCW are a promising mycotoxin adsorbent to be used in animal feed to prevent mycotoxicoses.

  1. Polyvalent Display of Biomolecules on Live Cells.

    Science.gov (United States)

    Shi, Peng; Zhao, Nan; Lai, Jinping; Coyne, James; Gaddes, Erin R; Wang, Yong

    2018-06-04

    Surface display of biomolecules on live cells offers new opportunities to treat human diseases and perform basic studies. Existing methods are primarily focused on monovalent functionalization, that is, the display of single biomolecules across the cell surface. Here we show that the surface of live cells can be functionalized to display polyvalent biomolecular structures through two-step reactions under physiological conditions. This polyvalent functionalization enables the cell surface to recognize the microenvironment one order of magnitude more effectively than with monovalent functionalization. Thus, polyvalent display of biomolecules on live cells holds great potential for various biological and biomedical applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The indentation of pressurized elastic shells: from polymeric capsules to yeast cells

    KAUST Repository

    Vella, D.; Ajdari, A.; Vaziri, A.; Boudaoud, A.

    2011-01-01

    of capsules. Our results are relevant for determining the internal pressure in bacterial, fungal or plant cells. As an illustration of this, we apply our results to recent measurements of the stiffness of baker's yeast and infer from these experiments

  3. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber.

    Science.gov (United States)

    Chen, Ke-Quan; Li, Jian; Ma, Jiang-Feng; Jiang, Min; Wei, Ping; Liu, Zhong-Min; Ying, Han-Jie

    2011-01-01

    The enzymatic hydrolysate of spent yeast cells was evaluated as a nitrogen source for succinic acid production by Actinobacillus succinogenes NJ113, using corn fiber hydrolysate as a carbon source. When spent yeast cell hydrolysate was used directly as a nitrogen source, a maximum succinic acid concentration of 35.5 g/l was obtained from a glucose concentration of 50 g/l, with a glucose utilization of 95.2%. Supplementation with individual vitamins showed that biotin was the most likely factor to be limiting for succinic acid production with spent yeast cell hydrolysate. After supplementing spent yeast cell hydrolysate and 90 g/l of glucose with 150 μg/l of biotin, cell growth increased 32.5%, glucose utilization increased 37.6%, and succinic acid concentration was enhanced 49.0%. As a result, when biotin-supplemented spent yeast cell hydrolysate was used with corn fiber hydrolysate, a succinic acid yield of 67.7% was obtained from 70.3 g/l of total sugar concentration, with a productivity of 0.63 g/(l h). Our results suggest that biotin-supplemented spent yeast cell hydrolysate may be an alternative nitrogen source for the efficient production of succinic acid by A. succinogenes NJ113, using renewable resources. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  4. Stable current outputs and phytate degradation by yeast-based biofuel cell.

    Science.gov (United States)

    Hubenova, Yolina; Georgiev, Danail; Mitov, Mario

    2014-09-01

    In this paper, we report for the first time that Candida melibiosica 2491 yeast strain expresses enhanced phytase activity when used as a biocatalyst in biofuel cells. The polarization also results in an increase of the yeast biomass. Higher steady-state electrical outputs, assigned to earlier production of an endogenous mediator, were achieved at continuous polarization under constant load. The obtained results prove that the C. melibiosica yeast-based biofuel cell could be used for simultaneous electricity generation and phytate bioremediation. In addition, the higher phytase activity obtained by interruptive polarization suggests a new method for increasing the phytase yield from microorganisms. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, K.; Ueda, M. [Lab. of Applied Biological Chemistry, Kyoto Univ., Yoshida, Kyoto (Japan)

    2004-07-01

    The Cd{sup 2+}-chelating abilities of yeast metallothionein (YMT) and hexa-His displayed on the yeast-cell surface were compared. Display of YMT and hexa-His by {alpha}-agglutinin-based cell-surface engineering was confirmed by immunofluorescent labeling. Surface-engineered yeast cells with YMT and hexa-His fused in tandem showed superior cell-surface adsorption and recovery of Cd{sup 2+} under EDTA treatment on the cell surface than hexa-His-displaying cells. YMT was demonstrated to be more effective than hexa-His for the adsorption of Cd{sup 2+}. Yeast cells displaying YMT and/or hexa-His exhibited a higher potential for the adsorption of Cd{sup 2+} than Escherichia coli cells displaying these molecules. In order to investigate the effect of the displayed YMT and hexa-His on sensitivity to toxic Cd{sup 2+}, growth in Cd{sup 2+}-containing liquid medium was monitored. Unlike hexa-His-displaying cells, cells displaying YMT and hexa-His fused in tandem induced resistance to Cd{sup 2+} through active and enhanced adsorption of toxic Cd{sup 2+}. These results indicate that YMT-displaying yeast cells are a unique bioadsorbent with a functional chelating ability superior to that of E. coli. (orig.)

  6. Bacterial toxin-antitoxin gene system as containment control in yeast cells

    DEFF Research Database (Denmark)

    Kristoffersen, P.; Jensen, G. B.; Gerdes, K.

    2000-01-01

    The potential of a bacterial toxin-antitoxin gene system for use in containment control in eukaryotes was explored. The Escherichia coli relE and relB genes were expressed in the yeast Saccharomyces cerevisiae, Expression of the relE gene was highly toxic to yeast cells. However, expression...... fermentation processes in which the escape of genetically modified cells would be considered highly risky....

  7. Global Gene Expression Analysis of Yeast Cells during Sake Brewing▿ †

    Science.gov (United States)

    Wu, Hong; Zheng, Xiaohong; Araki, Yoshio; Sahara, Hiroshi; Takagi, Hiroshi; Shimoi, Hitoshi

    2006-01-01

    During the brewing of Japanese sake, Saccharomyces cerevisiae cells produce a high concentration of ethanol compared with other ethanol fermentation methods. We analyzed the gene expression profiles of yeast cells during sake brewing using DNA microarray analysis. This analysis revealed some characteristics of yeast gene expression during sake brewing and provided a scaffold for a molecular level understanding of the sake brewing process. PMID:16997994

  8. Quantification of nanowire uptake by live cells

    KAUST Repository

    Margineanu, Michael B.

    2015-05-01

    Nanostructures fabricated by different methods have become increasingly important for various applications at the cellular level. In order to understand how these nanostructures “behave” and for studying their internalization kinetics, several attempts have been made at tagging and investigating their interaction with living cells. In this study, magnetic iron nanowires with an iron oxide layer are coated with (3-Aminopropyl)triethoxysilane (APTES), and subsequently labeled with a fluorogenic pH-dependent dye pHrodo™ Red, covalently bound to the aminosilane surface. Time-lapse live imaging of human colon carcinoma HCT 116 cells interacting with the labeled iron nanowires is performed for 24 hours. As the pHrodo™ Red conjugated nanowires are non-fluorescent outside the cells but fluoresce brightly inside, internalized nanowires are distinguished from non-internalized ones and their behavior inside the cells can be tracked for the respective time length. A machine learning-based computational framework dedicated to automatic analysis of live cell imaging data, Cell Cognition, is adapted and used to classify cells with internalized and non-internalized nanowires and subsequently determine the uptake percentage by cells at different time points. An uptake of 85 % by HCT 116 cells is observed after 24 hours incubation at NW-to-cell ratios of 200. While the approach of using pHrodo™ Red for internalization studies is not novel in the literature, this study reports for the first time the utilization of a machine-learning based time-resolved automatic analysis pipeline for quantification of nanowire uptake by cells. This pipeline has also been used for comparison studies with nickel nanowires coated with APTES and labeled with pHrodo™ Red, and another cell line derived from the cervix carcinoma, HeLa. It has thus the potential to be used for studying the interaction of different types of nanostructures with potentially any live cell types.

  9. Evidence that pulsed electric field treatment enhances the cell wall porosity of yeast cells.

    Science.gov (United States)

    Ganeva, Valentina; Galutzov, Bojidar; Teissie, Justin

    2014-02-01

    The application of rectangular electric pulses, with 0.1-2 ms duration and field intensity of 2.5-4.5 kV/cm, to yeast suspension mediates liberation of cytoplasmic proteins without cell lysis. The aim of this study was to evaluate the effect of pulsed electric field with similar parameters on cell wall porosity of different yeast species. We found that electrically treated cells become more susceptible to lyticase digestion. In dependence on the strain and the electrical conditions, cell lysis was obtained at 2-8 times lower enzyme concentration in comparison with control untreated cells. The increase of the maximal lysis rate was between two and nine times. Furthermore, when applied at low concentration (1 U/ml), the lyticase enhanced the rate of protein liberation from electropermeabilized cells without provoking cell lysis. Significant differences in the cell surface of control and electrically treated cells were revealed by scanning electron microscopy. Data presented in this study allow us to conclude that electric field pulses provoke not only plasma membrane permeabilization, but also changes in the cell wall structure, leading to increased wall porosity.

  10. Metabolic diversification of cells during the development of yeast colonies

    Czech Academy of Sciences Publication Activity Database

    Váchová, Libuše; Kučerová, Helena; Devaux, F.; Úlehlová, M.; Palková, Z.

    2009-01-01

    Roč. 11, č. 2 (2009), s. 494-504 ISSN 1462-2912 R&D Projects: GA ČR GA204/05/0294; GA ČR GA204/08/0718; GA MŠk(CZ) LC531 Grant - others:GB(GB) Howard Hughes Medical Institute International Research Award Institutional research plan: CEZ:AV0Z50200510 Keywords : yeast * yeast colonies * saccharomyces cerevisiae Subject RIV: EE - Microbiology, Virology Impact factor: 4.909, year: 2009

  11. Single cell analysis of yeast replicative aging using a new generation of microfluidic device.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available A major limitation to yeast aging study has been the inability to track mother cells and observe molecular markers during the aging process. The traditional lifespan assay relies on manual micro-manipulation to remove daughter cells from the mother, which is laborious, time consuming, and does not allow long term tracking with high resolution microscopy. Recently, we have developed a microfluidic system capable of retaining mother cells in the microfluidic chambers while removing daughter cells automatically, making it possible to observe fluorescent reporters in single cells throughout their lifespan. Here we report the development of a new generation of microfluidic device that overcomes several limitations of the previous system, making it easier to fabricate and operate, and allowing functions not possible with the previous design. The basic unit of the device consists of microfluidic channels with pensile columns that can physically trap the mother cells while allowing the removal of daughter cells automatically by the flow of the fresh media. The whole microfluidic device contains multiple independent units operating in parallel, allowing simultaneous analysis of multiple strains. Using this system, we have reproduced the lifespan curves for the known long and short-lived mutants, demonstrating the power of the device for automated lifespan measurement. Following fluorescent reporters in single mother cells throughout their lifespan, we discovered a surprising change of expression of the translation elongation factor TEF2 during aging, suggesting altered translational control in aged mother cells. Utilizing the capability of the new device to trap mother-daughter pairs, we analyzed mother-daughter inheritance and found age dependent asymmetric partitioning of a general stress response reporter between mother and daughter cells.

  12. Detection and quantitative determination by PIXE of the mutagen Sn2+ in yeast cells

    International Nuclear Information System (INIS)

    Viau, C.M.; Yoneama, M.-L.; Dias, J.F.; Pungartnik, C.; Brendel, M.; Henriques, J.A.P.

    2006-01-01

    The main goal of this work was to determine the concentration of Sn 2+ ions in cells of the yeast Saccharomyces cerevisiae and to correlate their quantity with the genotoxicity of intracellularly accumulated metal ions. The intracellular metal content of yeast cells was determined by PIXE (particle-induced X-ray emission) after cell exposure to SnCl 2 . To that end, a thick target protocol was developed for PIXE analysis. The samples were irradiated with a 2 MeV proton beam, while the induced X-rays were detected with a high-purity germanium detector. The results of the toxicity of SnCl 2 and the PIXE analysis performed with two different yeast strains (haploid and diploid) suggest that the exposure of haploid and diploid yeast to Sn 2+ induces DNA lesions and that the absorption depends on the genetic background of each strain

  13. Effect of selenium on the Hg, Zn, Fe and Co content of yeast cells

    International Nuclear Information System (INIS)

    Czauderna, M.; Peplowski, A.; Smolinski, S.

    1992-01-01

    The yeast cells, Saccharomyces cerevisiae, were exposed to Hg 2+ ions (10 -4 M) and SeO 2 (2x10 -4 -10 -2 M) or Se-methionine (2x10 -4 M). Instrumental neutron activation analysis (INAA) was used to analyze changes in the Hg, Zn,Fe and Co levels in these cells. When the yeast was incubated in a medium containing 10 -3 M and 10 -2 M Se) 2 , the Hg content of the yeast markedly increased. It was also found that the uptake of Se and Hg influenced the levels of Zn, Fe and Co found in the cells. While the presence of Se-methionine (Se-Met), SeO 2 or Hg 2+ ions caused increases in the intracellular Zn levels, the combined presence of Hg 2+ and SeO 2 and their assumed interaction, reduced the efficiency of Se for increasing the Zn content of yeast. (author) 17 refs.; 3 tabs

  14. Adhesion of yeast cells on surface of polymers produced by radiation polymerization

    International Nuclear Information System (INIS)

    Lu, Zhaoxin; Takehisa, Masaaki; Xie Zongchuan.

    1995-01-01

    The adhesion of yeast (Saccharomyces formesences) cells on polymers was studied thermodynamically. The polymers were laminally prepared by means of radiation polymerization. By measuring contact angles, we calculated dispersion component and polar component of surface free energy of the polymers and the cells, and interfacial free energy between the polymer and the cells. Then interfacial free energy change of the cell adhesion to surface of the polymer was evaluated. The adhesion behavior of yeast cells on the polymers was observed by optical microscope. From above results, we conclude that the initial adhesion of the cells is related to the surface free energy of the polymer, but the irreversible adhesion may be close to the polar component in surface free energy. The high polar component is favourable the irreversible adhesion of yeast cells. (author)

  15. Nanoscopic morphological changes in yeast cell surfaces caused by oxidative stress: an atomic force microscopic study.

    Science.gov (United States)

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2009-06-01

    Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schiz. pombe.

  16. Extraction of the number of peroxisomes in yeast cells by automated image analysis.

    Science.gov (United States)

    Niemistö, Antti; Selinummi, Jyrki; Saleem, Ramsey; Shmulevich, Ilya; Aitchison, John; Yli-Harja, Olli

    2006-01-01

    An automated image analysis method for extracting the number of peroxisomes in yeast cells is presented. Two images of the cell population are required for the method: a bright field microscope image from which the yeast cells are detected and the respective fluorescent image from which the number of peroxisomes in each cell is found. The segmentation of the cells is based on clustering the local mean-variance space. The watershed transformation is thereafter employed to separate cells that are clustered together. The peroxisomes are detected by thresholding the fluorescent image. The method is tested with several images of a budding yeast Saccharomyces cerevisiae population, and the results are compared with manually obtained results.

  17. Warburg effect and translocation-induced genomic instability: two yeast models for cancer cells

    International Nuclear Information System (INIS)

    Tosato, Valentina; Grüning, Nana-Maria; Breitenbach, Michael; Arnak, Remigiusz; Ralser, Markus; Bruschi, Carlo V.

    2013-01-01

    Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression (i) the activity of pyruvate kinase (PK), which recapitulates metabolic features of cancer cells, including the Warburg effect, and (ii) chromosome bridge-induced translocation (BIT) mimiking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect), and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, PK, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and post-translational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (“translocants”), between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the BIT system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  18. WARBURG EFFECT AND TRANSLOCATION-INDUCED GENOMIC INSTABILITY: TWO YEAST MODELS FOR CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Valentina eTosato

    2013-01-01

    Full Text Available Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression i the activity of pyruvate kinase (PK, which recapitulates metabolic features of cancer cells, including the Warburg effect, and ii Bridge-Induced chromosome Translocation (BIT mimicking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect, and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, pyruvate kinase, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and posttranslational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (translocants, between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the Bridge-Induced Translocation system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  19. Warburg effect and translocation-induced genomic instability: two yeast models for cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tosato, Valentina [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy); Grüning, Nana-Maria [Cambridge System Biology Center, Department of Biochemistry, University of Cambridge, Cambridge (United Kingdom); Breitenbach, Michael [Division of Genetics, Department of Cell Biology, University of Salzburg, Salzburg (Austria); Arnak, Remigiusz [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy); Ralser, Markus [Cambridge System Biology Center, Department of Biochemistry, University of Cambridge, Cambridge (United Kingdom); Bruschi, Carlo V., E-mail: bruschi@icgeb.org [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy)

    2013-01-18

    Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression (i) the activity of pyruvate kinase (PK), which recapitulates metabolic features of cancer cells, including the Warburg effect, and (ii) chromosome bridge-induced translocation (BIT) mimiking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect), and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, PK, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and post-translational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (“translocants”), between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the BIT system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  20. The yeast flora of some decaying mushrooms on trunks of living trees

    NARCIS (Netherlands)

    Middelhoven, W.J.

    2004-01-01

    Several ascomycetous and basidiomycetous yeasts were isolated from rotten mushrooms on the trunks of beech and tamarisk trees. One strain, identified as the novel species Cryptococcus allantoinivorans, assimilated allantoin as the sole carbon source. Phylogenetically it belongs to the C. laurentii

  1. Characterization of the minimum domain required for targeting budding yeast myosin II to the site of cell division

    Directory of Open Access Journals (Sweden)

    Tolliday Nicola J

    2006-06-01

    Full Text Available Abstract Background All eukaryotes with the exception of plants use an actomyosin ring to generate a constriction force at the site of cell division (cleavage furrow during mitosis and meiosis. The structure and filament forming abilities located in the C-terminal or tail region of one of the main components, myosin II, are important for localising the molecule to the contractile ring (CR during cytokinesis. However, it remains poorly understood how myosin II is recruited to the site of cell division and how this recruitment relates to myosin filament assembly. Significant conservation between species of the components involved in cytokinesis, including those of the CR, allows the use of easily genetically manipulated organisms, such as budding yeast (Saccharomyces cerevisiae, in the study of cytokinesis. Budding yeast has a single myosin II protein, named Myo1. Unlike most other class II myosins, the tail of Myo1 has an irregular coiled coil. In this report we use molecular genetics, biochemistry and live cell imaging to characterize the minimum localisation domain (MLD of budding yeast Myo1. Results We show that the MLD is a small region in the centre of the tail of Myo1 and that it is both necessary and sufficient for localisation of Myo1 to the yeast bud neck, the pre-determined site of cell division. Hydrodynamic measurements of the MLD, purified from bacteria or yeast, show that it is likely to exist as a trimer. We also examine the importance of a small region of low coiled coil forming probability within the MLD, which we call the hinge region. Removal of the hinge region prevents contraction of the CR. Using fluorescence recovery after photobleaching (FRAP, we show that GFP-tagged MLD is slightly more dynamic than the GFP-tagged full length molecule but less dynamic than the GFP-tagged Myo1 construct lacking the hinge region. Conclusion Our results define the intrinsic determinant for the localization of budding yeast myosin II and show

  2. Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells

    International Nuclear Information System (INIS)

    Clapp, Caitlin; Portt, Liam; Khoury, Chamel; Sheibani, Sara; Eid, Rawan; Greenwood, Matthew; Vali, Hojatollah; Mandato, Craig A.; Greenwood, Michael T.

    2012-01-01

    Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti

  3. Genetic control of yeast cell radiosensitivity modification by oxygen and hypoxic sensitizers

    International Nuclear Information System (INIS)

    Zhuranovskaya, G.P.; Petin, V.G.

    1984-01-01

    Diploid yeast cells Saccharomyces cerevisiae ''of the wild type'', individual mutants, homozygous in rad 2 and rad 54 and double mutants, containing both these loci in homozygous state are considered to prove genetic determination of radiosensitivity modification of hypoxic cells by oxygen and electron acceptor compounds previously demonstrated on yeast cells of other genotypes. It is shown that both ''oxygen effect'' and the effect of hypoxic sensitizers depend on the activity of repair systems. The possible mechanism of participation of post-radiation restoration processes in the modification of cell radiosensitivity, is discussed

  4. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis

    Science.gov (United States)

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas

    2016-01-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells. PMID:27605377

  5. Yeast cell surface display: An efficient strategy for improvement of bioethanol fermentation performance.

    Science.gov (United States)

    Chen, Xianzhong

    2017-03-04

    The cell surface serves as a functional interface between the inside and the outside of the cell. Within the past 20 y the ability of yeast (Saccharomyces cerevisiae) to display heterologous proteins on the cell surface has been demonstrated. Furthermore, S. cerevisiae has been both developed and applied in expression of various proteins on the cell surface. Using this novel and useful strategy, proteins and peptides of various kinds can be displayed on the yeast cell surface by fusing the protein of interest with the glycosylphosphatidylinositol (GPI)-anchoring system. Consolidated bioprocessing (CBP) using S. cerevisiae represents a promising technology for bioethanol production. However, further work is needed to improve the fermentation performance. There is some excellent previous research regarding construction of yeast biocatalyst using the surface display system to decrease cost, increase efficiency of ethanol production and directly utilize starch or biomass for fuel production. In this commentary, we reviewed the yeast surface display system and highlighted recent work. Additionally, the strategy for decrease of phytate phosphate content in dried distillers grains with solubles (DDGS) by display of phytase on the yeast cell surface is discussed.

  6. Copper Biosorption on Magnetically Modified Yeast Cells Under Magnetic Field

    Czech Academy of Sciences Publication Activity Database

    Uzun, L.; Saglam, N.; Šafaříková, Miroslava; Šafařík, Ivo; Denizli, A.

    2011-01-01

    Roč. 46, č. 6 (2011), s. 1045-1051 ISSN 0149-6395 Institutional research plan: CEZ:AV0Z60870520 Keywords : copper removal * heavy metal removal * magnetic biosorbents * yeast Subject RIV: CE - Biochemistry Impact factor: 1.088, year: 2011

  7. Biosorption of mercury on magnetically modified yeast cells

    Czech Academy of Sciences Publication Activity Database

    Yavuz, H.; Denizli, A.; Gungunes, H.; Šafaříková, Miroslava; Šafařík, Ivo

    2006-01-01

    Roč. 52, - (2006), s. 253-260 ISSN 1383-5866 R&D Projects: GA MŠk(CZ) OC 108 Institutional research plan: CEZ:AV0Z60870520 Keywords : mercury removal * magnetic biosorbents * yeast Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.497, year: 2006

  8. Aged yeast mother cells show markers of apoptosis

    Czech Academy of Sciences Publication Activity Database

    Laun, P.; Pichová, Alena; Madeo, F.; Heeren, G.; Kohlwein, S. D.; Fröhlich, K. W.; Dawes, I.; Breitenbach, M.

    2001-01-01

    Roč. 18, S1 (2001), s. S160 ISSN 0749-503X. [International Conference on Yeast Genetics and Molecular Biology /20./. 26.08.2001-31.08.2001, Prague] Institutional research plan: CEZ:AV0Z5020903 Subject RIV: EB - Genetics ; Molecular Biology

  9. Immobilised Sarawak Malaysia yeast cells for production of bioethanol.

    Science.gov (United States)

    Zain, Masniroszaime Mohd; Kofli, Noorhisham Tan; Rozaimah, Siti; Abdullah, Sheikh

    2011-05-01

    Bioethanol production using yeast has become a popular topic due to worrying depleting worldwide fuel reserve. The aim of the study was to investigate the capability of Malaysia yeast strains isolated from starter culture used in traditional fermented food and alcoholic beverages in producing Bioethanol using alginate beads entrapment method. The starter yeast consists of groups of microbes, thus the yeasts were grown in Sabouraud agar to obtain single colony called ST1 (tuak) and ST3 (tapai). The growth in Yeast Potatoes Dextrose (YPD) resulted in specific growth of ST1 at micro = 0.396 h-1 and ST3 at micro = 0.38 h-1, with maximum ethanol production of 7.36 g L-1 observed using ST1 strain. The two strains were then immobilized using calcium alginate entrapment method producing average alginate beads size of 0.51 cm and were grown in different substrates; YPD medium and Local Brown Sugar (LBS) for 8 h in flask. The maximum ethanol concentration measured after 7 h were at 6.63 and 6.59 g L-1 in YPD media and 1.54 and 1.39 g L-1in LBS media for ST1 and ST3, respectively. The use of LBS as carbon source showed higher yield of product (Yp/s), 0.59 g g-1 compared to YPD, 0.25 g g-1 in ST1 and (Yp/s), 0.54 g g-1 compared to YPD, 0.24 g g-1 in ST3 . This study indicated the possibility of using local strains (STI and ST3) to produce bioethanol via immobilization technique with local materials as substrate.

  10. The yeast flora of some decaying mushrooms on trunks of living trees

    OpenAIRE

    Middelhoven, W.J.

    2004-01-01

    Several ascomycetous and basidiomycetous yeasts were isolated from rotten mushrooms on the trunks of beech and tamarisk trees. One strain, identified as the novel species Cryptococcus allantoinivorans, assimilated allantoin as the sole carbon source. Phylogenetically it belongs to the C. laurentii complex, Papiliotrema bandonii being the closest relative. Some ascomycetous strains could not be distinguished from Pichia guillermondii, but deviated considerably in rDNA sequences. In addition to...

  11. Live longer on MARS: a yeast paradigm of mitochondrial adaptive ROS signaling in aging

    Directory of Open Access Journals (Sweden)

    Gerald S. Shadel

    2014-04-01

    Full Text Available Adaptive responses to stress, including hormesis, have been implicated in longevity, but their mechanisms and out comes are not fully understood. Here, I briefly summarize a longevity mechanism elucidated in the budding yeast chronological lifespan model by which Mitochondrial Adaptive ROS Signaling (MARS promotes beneficial epigenetic and metabolic remodeling. The potential relevance of MARS to the human disease Ataxia-Telangiectasia and as a potential anti-aging target is discussed.

  12. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.

    Science.gov (United States)

    Smith, I M; Baker, A; Arneborg, N; Jespersen, L

    2015-11-01

    The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast

  13. Fast automatic quantitative cell replication with fluorescent live cell imaging

    Directory of Open Access Journals (Sweden)

    Wang Ching-Wei

    2012-01-01

    Full Text Available Abstract Background live cell imaging is a useful tool to monitor cellular activities in living systems. It is often necessary in cancer research or experimental research to quantify the dividing capabilities of cells or the cell proliferation level when investigating manipulations of the cells or their environment. Manual quantification of fluorescence microscopic image is difficult because human is neither sensitive to fine differences in color intensity nor effective to count and average fluorescence level among cells. However, auto-quantification is not a straightforward problem to solve. As the sampling location of the microscopy changes, the amount of cells in individual microscopic images varies, which makes simple measurement methods such as the sum of stain intensity values or the total number of positive stain within each image inapplicable. Thus, automated quantification with robust cell segmentation techniques is required. Results An automated quantification system with robust cell segmentation technique are presented. The experimental results in application to monitor cellular replication activities show that the quantitative score is promising to represent the cell replication level, and scores for images from different cell replication groups are demonstrated to be statistically significantly different using ANOVA, LSD and Tukey HSD tests (p-value Conclusion A robust automated quantification method of live cell imaging is built to measure the cell replication level, providing a robust quantitative analysis system in fluorescent live cell imaging. In addition, the presented unsupervised entropy based cell segmentation for live cell images is demonstrated to be also applicable for nuclear segmentation of IHC tissue images.

  14. Laser-Raman spectroscopy of living cells

    International Nuclear Information System (INIS)

    Webb, S.J.

    1980-01-01

    Investigations into the laser-Raman shift spectra of bacterial and mammalian cells have revealed that many Raman lines observed at 4-6 K, do not appear in the spectra of cells held at 300 K. At 300 K, Raman activity, at set frequencies, is observed only when the cells are metabolically active; however, the actual live cell spectrum, between 0 and 3400 cm -1 , has been found to alter in a specific way with time as the cells' progress through their life cycles. Lines above 300 cm -1 , from in vivo Raman active states, appear to shift to higher wave numbers whereas those below 300 cm -1 seem to shift to lower ones. The transient nature of many shift lines observed and the intensity of them when present in the spectrum indicates that, in, vivo, a metabolically induced condensation of closely related states occurs at a set time in the life of a living cell. In addition, the calculated ratio between the intensities of Stokes and anti-Stokes lines observed suggests that the metabolically induced 'collective' Raman active states are produced, in vivo, by non thermal means. It appears, therefore, that the energetics of the well established cell 'time clock' may be studied by laser-Raman spectroscopy; moreover, Raman spectroscopy may yield a new type of information regarding the physics of such biological phenomena as nutrition, virus infection and oncogenesis. (orig.)

  15. Yeast Killer Toxin K28: Biology and Unique Strategy of Host Cell Intoxication and Killing

    Directory of Open Access Journals (Sweden)

    Björn Becker

    2017-10-01

    Full Text Available The initial discovery of killer toxin-secreting brewery strains of Saccharomyces cerevisiae (S. cerevisiae in the mid-sixties of the last century marked the beginning of intensive research in the yeast virology field. So far, four different S. cerevisiae killer toxins (K28, K1, K2, and Klus, encoded by cytoplasmic inherited double-stranded RNA viruses (dsRNA of the Totiviridae family, have been identified. Among these, K28 represents the unique example of a yeast viral killer toxin that enters a sensitive cell by receptor-mediated endocytosis to reach its intracellular target(s. This review summarizes and discusses the most recent advances and current knowledge on yeast killer toxin K28, with special emphasis on its endocytosis and intracellular trafficking, pointing towards future directions and open questions in this still timely and fascinating field of killer yeast research.

  16. Drying enhances immunoactivity of spent brewer's yeast cell wall β-D-glucans.

    Science.gov (United States)

    Liepins, Janis; Kovačova, Elena; Shvirksts, Karlis; Grube, Mara; Rapoport, Alexander; Kogan, Grigorij

    2015-07-20

    Due to immunological activity, microbial cell wall polysaccharides are defined as 'biological response modifiers' (BRM). Cell walls of spent brewer's yeast also have some BRM activity. However, up to date there is no consensus on the use of spent brewer's yeast D-glucan as specific BRM in humans or animals. The aim of this paper is to demonstrate the potential of spent brewer's yeast β-D-glucans as BRM, and drying as an efficient pretreatment to increase β-D-glucan's immunogenic activity. Our results revealed that drying does not change spent brewer's yeast biomass carbohydrate content as well as the chemical structure of purified β-D-glucan. However, drying increased purified β-D-glucan TNF-α induction activity in the murine macrophage model. We presume drying pretreatment enhances purity of extracted β-D-glucan. This is corroborated with FT-IR analyses of the β-D-glucan spectra. Based on our results, we suggest that dry spent brewer's yeast biomass can be used as a cheap source for high-quality β-D-glucan extraction. Drying in combination with carboxylmethylation (CM), endows spent brewer's yeast β-D-glucan with the immunoactivity similar or exceeding that of a well-characterized fungal BRM pleuran. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The duration of mitosis and daughter cell size are modulated by nutrients in budding yeast.

    Science.gov (United States)

    Leitao, Ricardo M; Kellogg, Douglas R

    2017-11-06

    The size of nearly all cells is modulated by nutrients. Thus, cells growing in poor nutrients can be nearly half the size of cells in rich nutrients. In budding yeast, cell size is thought to be controlled almost entirely by a mechanism that delays cell cycle entry until sufficient growth has occurred in G1 phase. Here, we show that most growth of a new daughter cell occurs in mitosis. When the rate of growth is slowed by poor nutrients, the duration of mitosis is increased, which suggests that cells compensate for slow growth in mitosis by increasing the duration of growth. The amount of growth required to complete mitosis is reduced in poor nutrients, leading to a large reduction in cell size. Together, these observations suggest that mechanisms that control the extent of growth in mitosis play a major role in cell size control in budding yeast. © 2017 Leitao and Kellogg.

  18. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories

    DEFF Research Database (Denmark)

    Zhou, Yongjin J.; Buijs, Nicolaas A; Zhu, Zhiwei

    2016-01-01

    Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level p...

  19. Expression of death receptor 4 induces caspase-independent cell death in MMS-treated yeast.

    Science.gov (United States)

    Kang, Mi-Sun; Lee, Sung-Keun; Park, Chang-Shin; Kang, Ju-Hee; Bae, Sung-Ho; Yu, Sung-Lim

    2008-11-14

    DR4, a tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, is a key element in the extrinsic pathway of TRAIL/TRAIL receptor-related apoptosis that exerts a preferential toxic effect against tumor cells. However, TRAIL and DR4 are expressed in various normal cells, and recent studies indicate that DR4 has a number of non-apoptotic functions. In this study, we evaluated the effects of human DR4 expression in yeast to determine the function of DR4 in normal cells. The expression of DR4 in yeast caused G1 arrest, which resulted in transient growth inhibition. Moreover, treatment of DR4-expressing yeast with a DNA damaging agent, MMS, elicited drastic, and sustained cell growth inhibition accompanied with massive apoptotic cell death. Further analysis revealed that cell death in the presence of DNA damage and DR4 expression was not dependent on the yeast caspase, YCA1. Taken together, these results indicate that DR4 triggers caspase-independent programmed cell death during the response of normal cells to DNA damage.

  20. The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast

    Directory of Open Access Journals (Sweden)

    Ana Belén Sanz

    2017-12-01

    Full Text Available Fungi are surrounded by an essential structure, the cell wall, which not only confers cell shape but also protects cells from environmental stress. As a consequence, yeast cells growing under cell wall damage conditions elicit rescue mechanisms to provide maintenance of cellular integrity and fungal survival. Through transcriptional reprogramming, yeast modulate the expression of genes important for cell wall biogenesis and remodeling, metabolism and energy generation, morphogenesis, signal transduction and stress. The yeast cell wall integrity (CWI pathway, which is very well conserved in other fungi, is the key pathway for the regulation of this adaptive response. In this review, we summarize the current knowledge of the yeast transcriptional program elicited to counterbalance cell wall stress situations, the role of the CWI pathway in the regulation of this program and the importance of the transcriptional input received by other pathways. Modulation of this adaptive response through the CWI pathway by positive and negative transcriptional feedbacks is also discussed. Since all these regulatory mechanisms are well conserved in pathogenic fungi, improving our knowledge about them will have an impact in the developing of new antifungal therapies.

  1. Genetic and proteomic evidences support the localization of yeast enolase in the cell surface

    DEFF Research Database (Denmark)

    López-Villar, Elena; Monteoliva, Lucía; Larsen, Martin Røssel

    2006-01-01

    Although enolase, other glycolytic enzymes, and a variety of cytoplasmic proteins lacking an N-terminal secretion signal have been widely described as located at the cell surface in yeast and in mammalian cells, their presence in this external location is still controversial. Here, we report that...

  2. Biomimetic silica encapsultation of living cells

    Science.gov (United States)

    Jaroch, David Benjamin

    Living cells perform complex chemical processes on size and time scales that artificial systems cannot match. Cells respond dynamically to their environment, acting as biological sensors, factories, and drug delivery devices. To facilitate the use of living systems in engineered constructs, we have developed several new approaches to create stable protective microenvironments by forming bioinspired cell-membrane-specific silica-based encapsulants. These include vapor phase deposition of silica gels, use of endogenous membrane proteins and polysaccharides as a site for silica nucleation and polycondensation in a saturated environment, and protein templated ordered silica shell formation. We demonstrate silica layer formation at the surface of pluripotent stem-like cells, bacterial biofilms, and primary murine and human pancreatic islets. Materials are characterized by AFM, SEM and EDS. Viability assays confirm cell survival, and metabolite flux measurements demonstrate normal function and no major diffusion limitations. Real time PCR mRNA analysis indicates encapsulated islets express normal levels of genetic markers for β-cells and insulin production. The silica glass encapsulant produces a secondary bone like calcium phosphate mineral layer upon exposure to media. Such bioactive materials can improve device integration with surrounding tissue upon implantation. Given the favorable insulin response, bioactivity, and long-term viability observed in silica-coated islets, we are currently testing the encapsulant's ability to prevent immune system recognition of foreign transplants for the treatment of diabetes. Such hybrid silica-cellular constructs have a wide range of industrial, environmental, and medical applications.

  3. The radiation effects on the living cell

    International Nuclear Information System (INIS)

    Sage, E.; Dutrillaux, B.; Soussi, Th.; Boiteux, S.; Lopez, B.; Feunteun, J.

    1999-06-01

    This publication is a presentation of particular points discussed during the colloquium of the 15-18 june 1999, for which scientific researches are performed at the CEA/CNRS. They deal with the radiobiology, for the radiation effects on living matter; with the DNA, for the knowledge and repair mechanisms on cells submitted to ionizing radiations; with the exposition to UV in correlation with neoplasms; with the P53 gene which is a tumour suppressor. (A.L.B.)

  4. Living labeling techniques of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Dong Qingyu; Chen Li

    2007-01-01

    Mesenchymal stem cells (MSCs) are well known for their self-renew and multi- differentiation potentiality. With the transplantation of the MSCs which can promote the regeneration and repair of the injured tissue, a new route for the treatment of dieases is hopeful to be effective. To trace the distribution, migration, proliferation and differentiation of the implanted MSCs, there need effective labeling techniques, especially living labeling techniques. (authors)

  5. Ethanol production potential from fermented rice noodle wastewater treatment using entrapped yeast cell sequencing batch reactor

    Science.gov (United States)

    Siripattanakul-Ratpukdi, Sumana

    2012-03-01

    Fermented rice noodle production generates a large volume of starch-based wastewater. This study investigated the treatment of the fermented rice noodle wastewater using entrapped cell sequencing batch reactor (ECSBR) compared to traditional sequencing batch reactor (SBR). The yeast cells were applied because of their potential to convert reducing sugar in the wastewater to ethanol. In present study, preliminary treatment by acid hydrolysis was performed. A yeast culture, Saccharomyces cerevisiae, with calcium alginate cell entrapment was used. Optimum yeast cell loading in batch experiment and fermented rice noodle treatment performances using ECSBR and SBR systems were examined. In the first part, it was found that the cell loadings (0.6-2.7 × 108 cells/mL) did not play an important role in this study. Treatment reactions followed the second-order kinetics with the treatment efficiencies of 92-95%. In the second part, the result showed that ECSBR performed better than SBR in both treatment efficiency and system stability perspectives. ECSBR maintained glucose removal of 82.5 ± 10% for 5-cycle treatment while glucose removal by SBR declined from 96 to 40% within the 5-cycle treatment. Scanning electron microscopic images supported the treatment results. A number of yeast cells entrapped and attached onto the matrix grew in the entrapment matrix.

  6. Label-free and live cell imaging by interferometric scattering microscopy.

    Science.gov (United States)

    Park, Jin-Sung; Lee, Il-Buem; Moon, Hyeon-Min; Joo, Jong-Hyeon; Kim, Kyoung-Hoon; Hong, Seok-Cheol; Cho, Minhaeng

    2018-03-14

    Despite recent remarkable advances in microscopic techniques, it still remains very challenging to directly observe the complex structure of cytoplasmic organelles in live cells without a fluorescent label. Here we report label-free and live-cell imaging of mammalian cell, Escherischia coli , and yeast, using interferometric scattering microscopy, which reveals the underlying structures of a variety of cytoplasmic organelles as well as the underside structure of the cells. The contact areas of the cells attached onto a glass substrate, e.g. , focal adhesions and filopodia, are clearly discernible. We also found a variety of fringe-like features in the cytoplasmic area, which may reflect the folded structures of cytoplasmic organelles. We thus anticipate that the label-free interferometric scattering microscopy can be used as a powerful tool to shed interferometric light on in vivo structures and dynamics of various intracellular phenomena.

  7. Yeast CUP1 protects HeLa cells against copper-induced stress

    Energy Technology Data Exchange (ETDEWEB)

    Xie, X.X. [Department of Animal Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai (China); College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou (China); Ma, Y.F.; Wang, Q.S.; Chen, Z.L.; Liao, R.R.; Pan, Y.C. [Department of Animal Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai (China)

    2015-06-12

    As an essential trace element, copper can be toxic in mammalian cells when present in excess. Metallothioneins (MTs) are small, cysteine-rich proteins that avidly bind copper and thus play an important role in detoxification. YeastCUP1 is a member of the MT gene family. The aim of this study was to determine whether yeast CUP1 could bind copper effectively and protect cells against copper stress. In this study,CUP1 expression was determined by quantitative real-time PCR, and copper content was detected by inductively coupled plasma mass spectrometry. Production of intracellular reactive oxygen species (ROS) was evaluated using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assay. Cellular viability was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the cell cycle distribution of CUP1 was analyzed by fluorescence-activated cell sorting. The data indicated that overexpression of yeast CUP1 in HeLa cells played a protective role against copper-induced stress, leading to increased cellular viability (P<0.05) and decreased ROS production (P<0.05). It was also observed that overexpression of yeast CUP1 reduced the percentage of G1 cells and increased the percentage of S cells, which suggested that it contributed to cell viability. We found that overexpression of yeast CUP1 protected HeLa cells against copper stress. These results offer useful data to elucidate the mechanism of the MT gene on copper metabolism in mammalian cells.

  8. Circumventing photodamage in live-cell microscopy

    Science.gov (United States)

    Magidson, Valentin; Khodjakov, Alexey

    2013-01-01

    Fluorescence microscopy has become an essential tool in cell biology. This technique allows researchers to visualize the dynamics of tissue, cells, individual organelles and macromolecular assemblies inside the cell. Unfortunately, fluorescence microscopy is not completely ‘non-invasive’ as the high-intensity excitation light required for excitation of fluorophores is inherently toxic for live cells. Physiological changes induced by excessive illumination can lead to artifacts and abnormal responses. In this chapter we review major factors that contribute to phototoxicity and discuss practical solutions for circumventing photodamage. These solutions include the proper choice of image acquisition parameters, optimization of filter sets, hardware synchronization, and the use of intelligent illumination to avoid unnecessary light exposure. PMID:23931522

  9. Thermodynamics of protein destabilization in live cells.

    Science.gov (United States)

    Danielsson, Jens; Mu, Xin; Lang, Lisa; Wang, Huabing; Binolfi, Andres; Theillet, François-Xavier; Bekei, Beata; Logan, Derek T; Selenko, Philipp; Wennerström, Håkan; Oliveberg, Mikael

    2015-10-06

    Although protein folding and stability have been well explored under simplified conditions in vitro, it is yet unclear how these basic self-organization events are modulated by the crowded interior of live cells. To find out, we use here in-cell NMR to follow at atomic resolution the thermal unfolding of a β-barrel protein inside mammalian and bacterial cells. Challenging the view from in vitro crowding effects, we find that the cells destabilize the protein at 37 °C but with a conspicuous twist: While the melting temperature goes down the cold unfolding moves into the physiological regime, coupled to an augmented heat-capacity change. The effect seems induced by transient, sequence-specific, interactions with the cellular components, acting preferentially on the unfolded ensemble. This points to a model where the in vivo influence on protein behavior is case specific, determined by the individual protein's interplay with the functionally optimized "interaction landscape" of the cellular interior.

  10. Immobilization of yeast cells on hydrogel carriers obtained by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Luzhao Xin; Carenza, M.; Kaetsu, Isao; Kumakura, Minoru; Yoshida, Masaru; Fujimura, Takashi

    1992-01-01

    Polymer hydrogels were obtained by radiation-induced copolymerization at -78 o C of aqueous solutions of acrylic and methacrylic esters. The matrices were characterized by equilibrium water content measurements, by optical microscopy observations and by scanning electron microscopy analysis. Yeast cells were immobilized on these hydrogels and the ethanol productivity by batch fermentation was determined. Matrix hydrophilicity and porosity were found to deeply influence the adhesion of yeast cells and, hence, the ethanol productivity. The latter as well as other physico-chemical properties were also affected by the presence of a crosslinking agent added in small amounts to the polymerizating mixture. (author)

  11. Soft x-ray-controlled dose deposition in yeast cells: techniques, model, and biological assessment

    Science.gov (United States)

    Milani, Marziale; Batani, Dimitri; Conti, Aldo; Masini, Alessandra; Costato, Michele; Pozzi, Achille; Turcu, I. C. Edmond

    1996-12-01

    A procedure is presented to release soft x-rays onto yeast cell membrane allegedly damaging the resident enzymatic processes connected with fermentation. The damage is expected to be restricted to regulating fermentation processes without interference with respiration. By this technique fermentation is followed leading to CO2 production, and respiration resulting in global pressure measurements. A solid state pressure sensor system has been developed linked to a data acquisition system. Yeast cells cultures have been investigated at different concentrations and with different nutrients. A non-monotone response in CO2 production as a function of the delivered x-ray dose is observed.

  12. Synthetic analog computation in living cells.

    Science.gov (United States)

    Daniel, Ramiz; Rubens, Jacob R; Sarpeshkar, Rahul; Lu, Timothy K

    2013-05-30

    A central goal of synthetic biology is to achieve multi-signal integration and processing in living cells for diagnostic, therapeutic and biotechnology applications. Digital logic has been used to build small-scale circuits, but other frameworks may be needed for efficient computation in the resource-limited environments of cells. Here we demonstrate that synthetic analog gene circuits can be engineered to execute sophisticated computational functions in living cells using just three transcription factors. Such synthetic analog gene circuits exploit feedback to implement logarithmically linear sensing, addition, ratiometric and power-law computations. The circuits exhibit Weber's law behaviour as in natural biological systems, operate over a wide dynamic range of up to four orders of magnitude and can be designed to have tunable transfer functions. Our circuits can be composed to implement higher-order functions that are well described by both intricate biochemical models and simple mathematical functions. By exploiting analog building-block functions that are already naturally present in cells, this approach efficiently implements arithmetic operations and complex functions in the logarithmic domain. Such circuits may lead to new applications for synthetic biology and biotechnology that require complex computations with limited parts, need wide-dynamic-range biosensing or would benefit from the fine control of gene expression.

  13. Axial tomography in live cell laser microscopy

    Science.gov (United States)

    Richter, Verena; Bruns, Sarah; Bruns, Thomas; Weber, Petra; Wagner, Michael; Cremer, Christoph; Schneckenburger, Herbert

    2017-09-01

    Single cell microscopy in a three-dimensional (3-D) environment is reported. Cells are grown in an agarose culture gel, located within microcapillaries and observed from different sides after adaptation of an innovative device for sample rotation. Thus, z-stacks can be recorded by confocal microscopy in different directions and used for illustration in 3-D. This gives additional information, since cells or organelles that appear superimposed in one direction, may be well resolved in another one. The method is tested and validated with single cells expressing a membrane or a mitochondrially associated green fluorescent protein, or cells accumulating fluorescent quantum dots. In addition, axial tomography supports measurements of cellular uptake and distribution of the anticancer drug doxorubicin in the nucleus (2 to 6 h after incubation) or the cytoplasm (24 h). This paper discusses that upon cell rotation an enhanced optical resolution in lateral direction compared to axial direction can be utilized to obtain an improved effective 3-D resolution, which represents an important step toward super-resolution microscopy of living cells.

  14. On strain and stress in living cells

    Science.gov (United States)

    Cox, Brian N.; Smith, David W.

    2014-11-01

    Recent theoretical simulations of amelogenesis and network formation and new, simple analyses of the basic multicellular unit (BMU) allow estimation of the order of magnitude of the strain energy density in populations of living cells in their natural environment. A similar simple calculation translates recent measurements of the force-displacement relation for contacting cells (cell-cell adhesion energy) into equivalent volume energy densities, which are formed by averaging the changes in contact energy caused by a cell's migration over the cell's volume. The rates of change of these mechanical energy densities (energy density rates) are then compared to the order of magnitude of the metabolic activity of a cell, expressed as a rate of production of metabolic energy per unit volume. The mechanical energy density rates are 4-5 orders of magnitude smaller than the metabolic energy density rate in amelogenesis or bone remodeling in the BMU, which involve modest cell migration velocities, and 2-3 orders of magnitude smaller for innervation of the gut or angiogenesis, where migration rates are among the highest for all cell types. For representative cell-cell adhesion gradients, the mechanical energy density rate is 6 orders of magnitude smaller than the metabolic energy density rate. The results call into question the validity of using simple constitutive laws to represent living cells. They also imply that cells need not migrate as inanimate objects of gradients in an energy field, but are better regarded as self-powered automata that may elect to be guided by such gradients or move otherwise. Thus Ġel=d/dt 1/2 >[(C11+C12)ɛ02+2μγ02]=(C11+C12)ɛ0ɛ˙0+2μγ0γ˙0 or Ġel=ηEɛ0ɛ˙0+η‧Eγ0γ˙0 with 1.4≤η≤3.4 and 0.7≤η‧≤0.8 for Poisson's ratio in the range 0.2≤ν≤0.4 and η=1.95 and η‧=0.75 for ν=0.3. The spatial distribution of shear strains arising within an individual cell as cells slide past one another during amelogenesis is not known

  15. Immobilization of yeast cells with ionic hydrogel produced by radiation polymerization

    International Nuclear Information System (INIS)

    Lu Zhaoxin; Fujimura, T.

    1990-01-01

    The mixture of an ionic monomer of 2-acrylamido 2-methylpropane-sulfonic acid and a series of polyethylene glycol dimethacrylate monomer were polymerized at-78 deg C with 60 Co γ-rays and were used for immobilization of yeast cells. The immobilized yeast cells with these carriers had higher ethanol productivity than that without any carriers. The yield of ethanol with poly TBAS-14G carrier was the highest, and increased by 3.5 times compared with the free yeast cells. It was found that the ethanol yield increased with the increase of the glycol number in polyethylene glycol dimethacrylate. The state of the immobilized cells was observed with microscope and it was found that the difference in the ethanol productivity was mainly due to the difference in the internal structure and the properties of polymer carrier. It was considered that the polymer carrier had a proper hydrophilicity, swelling ability, cation in the surface and porousity in the internal structure for immobilizing yeast cells

  16. Introduction of the yeast DNA repair gene PHR1 into normal and xeroderma pigmentosum human cells

    International Nuclear Information System (INIS)

    Whyte, D.B.

    1988-01-01

    The goal of the work described herein is to determine how UV light kills and mutates human cells. Specifically, the hypothesis to be tested states that the major cause of cell death is the cyclobutane dimer. The yeast (S. cerevisiae) enzyme photolyase provides an elegant means of dissecting the biological effects of the two lesions. Photolyase, the product of the PHR1 gene, catalyzes the visible light-dependent reversal of cyclobutane pyrimidine dimers. Introducing the gene for photolyase into human cells, which do not have a functional photoreactivation mechanism, should allow specific repair of cyclobutane pyrimidine dimers. To express the yeast DNA repair gene in human cells, the yeast PHR1 coding sequence was cloned into the mammalian expression vector pRSV4NEO-I. The resulting plasmid, pRSVPHR1, contains the coding sequence of the yeast gene, under control of transcription signals recognized by mammalian cells, and the dominant selectable gene neo. pRSVPHR1 was introduced into normal and XP SV40-transformed fibroblasts by the calcium phosphate coprecipitation technique, and G418-resistant clones were isolated. The level of PHR1 expression was determined by cytoplasmic RNA dot blots. Two clones, XP-3B and GM-20A, had high levels of expression

  17. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Directory of Open Access Journals (Sweden)

    Elham Aslankoohi

    Full Text Available Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  18. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Science.gov (United States)

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M; Verstrepen, Kevin J

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  19. Methods for Synchronization and Analysis of the Budding Yeast Cell Cycle.

    Science.gov (United States)

    Rosebrock, Adam P

    2017-01-03

    Like other eukaryotes, budding yeast temporally separate cell growth and division. DNA synthesis is distinct from chromosome segregation. Storage carbohydrates are accumulated slowly and then rapidly liquidated once per cycle. Cyclin-dependent kinase associates with multiple different transcriptionally and posttranslationally regulated cyclins to drive the cell cycle. These and other crucial events of cellular growth and division are limited to narrow windows of the cell cycle. Many experiments in the yeast laboratory treat a culture of cells as a homogeneous mixture. Measurements of asynchronous cultures are, however, confounded by the presence of cells in various cell cycle stages; measuring a population average in unsynchronized cells provides at best a decreased signal and at worst an artifactual result. A number of experimentally tractable methods have been developed to generate populations of yeast cells that are synchronized with respect to cell cycle phase. Robust methods for determining cell cycle position have also been developed. These methods are introduced here. © 2017 Cold Spring Harbor Laboratory Press.

  20. Cyborg cells: functionalisation of living cells with polymers and nanomaterials.

    Science.gov (United States)

    Fakhrullin, Rawil F; Zamaleeva, Alsu I; Minullina, Renata T; Konnova, Svetlana A; Paunov, Vesselin N

    2012-06-07

    Living cells interfaced with a range of polyelectrolyte coatings, magnetic and noble metal nanoparticles, hard mineral shells and other complex nanomaterials can perform functions often completely different from their original specialisation. Such "cyborg cells" are already finding a range of novel applications in areas like whole cell biosensors, bioelectronics, toxicity microscreening, tissue engineering, cell implant protection and bioanalytical chemistry. In this tutorial review, we describe the development of novel methods for functionalisation of cells with polymers and nanoparticles and comment on future advances in this technology in the light of other literature approaches. We review recent studies on the cell viability and function upon direct deposition of nanoparticles, coating with polyelectrolytes, polymer assisted assembly of nanomaterials and hard shells on the cell surface. The cell toxicity issues are considered for many practical applications in terms of possible adverse effects of the deposited polymers, polyelectrolytes and nanoparticles on the cell surface.

  1. Microencapsulating and Banking Living Cells for Cell-Based Medicine

    Directory of Open Access Journals (Sweden)

    Wujie Zhang

    2011-01-01

    Full Text Available A major challenge to the eventual success of the emerging cell-based medicine such as tissue engineering, regenerative medicine, and cell transplantation is the limited availability of the desired cell sources. This challenge can be addressed by cell microencapsulation to overcome the undesired immune response (i.e., to achieve immunoisolation so that non-autologous cells can be used to treat human diseases, and by cell/tissue preservation to bank living cells for wide distribution to end users so that they are readily available when needed in the future. This review summarizes the status quo of research in both cell microencapsulation and banking the microencapsulated cells. It is concluded with a brief outlook of future research directions in this important field.

  2. Recent advances in live cell imaging of hepatoma cells

    Science.gov (United States)

    2014-01-01

    Live cell imaging enables the study of dynamic processes of living cells in real time by use of suitable reporter proteins and the staining of specific cellular structures and/or organelles. With the availability of advanced optical devices and improved cell culture protocols it has become a rapidly growing research methodology. The success of this technique relies mainly on the selection of suitable reporter proteins, construction of recombinant plasmids possessing cell type specific promoters as well as reliable methods of gene transfer. This review aims to provide an overview of the recent developments in the field of marker proteins (bioluminescence and fluorescent) and methodologies (fluorescent resonance energy transfer, fluorescent recovery after photobleaching and proximity ligation assay) employed as to achieve an improved imaging of biological processes in hepatoma cells. Moreover, different expression systems of marker proteins and the modes of gene transfer are discussed with emphasis on the study of lipid droplet formation in hepatocytes as an example. PMID:25005127

  3. Systematic identification of yeast cell cycle transcription factors using multiple data sources

    Directory of Open Access Journals (Sweden)

    Li Wen-Hsiung

    2008-12-01

    Full Text Available Abstract Background Eukaryotic cell cycle is a complex process and is precisely regulated at many levels. Many genes specific to the cell cycle are regulated transcriptionally and are expressed just before they are needed. To understand the cell cycle process, it is important to identify the cell cycle transcription factors (TFs that regulate the expression of cell cycle-regulated genes. Results We developed a method to identify cell cycle TFs in yeast by integrating current ChIP-chip, mutant, transcription factor binding site (TFBS, and cell cycle gene expression data. We identified 17 cell cycle TFs, 12 of which are known cell cycle TFs, while the remaining five (Ash1, Rlm1, Ste12, Stp1, Tec1 are putative novel cell cycle TFs. For each cell cycle TF, we assigned specific cell cycle phases in which the TF functions and identified the time lag for the TF to exert regulatory effects on its target genes. We also identified 178 novel cell cycle-regulated genes, among which 59 have unknown functions, but they may now be annotated as cell cycle-regulated genes. Most of our predictions are supported by previous experimental or computational studies. Furthermore, a high confidence TF-gene regulatory matrix is derived as a byproduct of our method. Each TF-gene regulatory relationship in this matrix is supported by at least three data sources: gene expression, TFBS, and ChIP-chip or/and mutant data. We show that our method performs better than four existing methods for identifying yeast cell cycle TFs. Finally, an application of our method to different cell cycle gene expression datasets suggests that our method is robust. Conclusion Our method is effective for identifying yeast cell cycle TFs and cell cycle-regulated genes. Many of our predictions are validated by the literature. Our study shows that integrating multiple data sources is a powerful approach to studying complex biological systems.

  4. Modifying infrared scattering effects of single yeast cells with plasmonic metal mesh

    Science.gov (United States)

    Malone, Marvin A.; Prakash, Suraj; Heer, Joseph M.; Corwin, Lloyd D.; Cilwa, Katherine E.; Coe, James V.

    2010-11-01

    The scattering effects in the infrared (IR) spectra of single, isolated bread yeast cells (Saccharomyces cerevisiae) on a ZnSe substrate and in metal microchannels have been probed by Fourier transform infrared imaging microspectroscopy. Absolute extinction [(3.4±0.6)×10-7 cm2 at 3178 cm-1], scattering, and absorption cross sections for a single yeast cell and a vibrational absorption spectrum have been determined by comparing it to the scattering properties of single, isolated, latex microspheres (polystyrene, 5.0 μm in diameter) on ZnSe, which are well modeled by the Mie scattering theory. Single yeast cells were then placed into the holes of the IR plasmonic mesh, i.e., metal films with arrays of subwavelength holes, yielding "scatter-free" IR absorption spectra, which have undistorted vibrational lineshapes and a rising generic IR absorption baseline. Absolute extinction, scattering, and absorption spectral profiles were determined for a single, ellipsoidal yeast cell to characterize the interplay of these effects.

  5. Problem-Solving Test: Analysis of DNA Damage Recognizing Proteins in Yeast and Human Cells

    Science.gov (United States)

    Szeberenyi, Jozsef

    2013-01-01

    The experiment described in this test was aimed at identifying DNA repair proteins in human and yeast cells. Terms to be familiar with before you start to solve the test: DNA repair, germline mutation, somatic mutation, inherited disease, cancer, restriction endonuclease, radioactive labeling, [alpha-[superscript 32]P]ATP, [gamma-[superscript…

  6. Effect of Growth Conditions on Flocculation and Cell Surface Hydrophobicity of Brewing Yeast

    Czech Academy of Sciences Publication Activity Database

    Kopecká, J.; Němec, M.; Matoulková, D.; Čejka, P.; Jelínková, Markéta; Felsberg, Jürgen; Sigler, Karel

    2015-01-01

    Roč. 73, č. 2 (2015), s. 143-150 ISSN 0361-0470 Institutional support: RVO:61388971 Keywords : Ale and lager yeast * Cell surface hydrophobicity * FLO genes Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.492, year: 2015

  7. Study of the inhibition of respiration/fermentation in yeast cells by sodium fluoride

    Directory of Open Access Journals (Sweden)

    López Pérez, José Pedro

    2013-01-01

    Full Text Available This paper presents the necessary guidelines to achieve the observation of the inhibition of sugar metabolism in yeast cells by means of the compound sodium fluoride. This activity is appropriate for the subject of Biology in Secondary Education as well as High School.

  8. Obtaining sorbents of metal ions based on yeast cells Rhodotorula glutinis

    Directory of Open Access Journals (Sweden)

    Zh. Tattibayeva

    2013-05-01

    Full Text Available Ability to separate Cu2+ and Pb2+ ions from solution using yeast cells Rhodotorulа glutinis were considered. The degree of water purification in this case is of 60-70%. To increase the degree of binding of metal ions with cells and facilitate separation processes of water sorbents their immobilization on the surface of the water in the presence of polyethyleneimine was carried out. It is shown that under optimal conditions on the surface of 1 g diatomite 18 ∙ 106 cells is adsorbed. The high sorption capacity of diatomite justified its porosity. IR spectroscopic study of the interaction of the ions Cu2+ and Pb2+ with cell surface showed that high affinity Pb2 + ions to the surface of yeast cells is connected with form of slightly soluble compounds with the phosphate ions.

  9. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech; Baker, A; Arneborg, Nils

    2015-01-01

    distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase....... In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability......). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. SIGNIFICANCE AND IMPACT...

  10. Study of budding yeast colony formation and its characterizations by using circular granular cell

    Science.gov (United States)

    Aprianti, D.; Haryanto, F.; Purqon, A.; Khotimah, S. N.; Viridi, S.

    2016-03-01

    Budding yeast can exhibit colony formation in solid substrate. The colony of pathogenic budding yeast can colonize various surfaces of the human body and medical devices. Furthermore, it can form biofilm that resists drug effective therapy. The formation of the colony is affected by the interaction between cells and with its growth media. The cell budding pattern holds an important role in colony expansion. To study this colony growth, the molecular dynamic method was chosen to simulate the interaction between budding yeast cells. Every cell was modelled by circular granular cells, which can grow and produce buds. Cohesion force, contact force, and Stokes force govern this model to mimic the interaction between cells and with the growth substrate. Characterization was determined by the maximum (L max) and minimum (L min) distances between two cells within the colony and whether two lines that connect the two cells in the maximum and minimum distances intersect each other. Therefore, it can be recognized the colony shape in circular, oval, and irregular shapes. Simulation resulted that colony formation are mostly in oval shape with little branch. It also shows that greater cohesion strength obtains more compact colony formation.

  11. Lactic acid-producing yeast cells having nonfunctional L- or D-lactate:ferricytochrome C oxidoreductase cells

    Science.gov (United States)

    Miller, Matthew [Boston, MA; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Highland Ranch, CO; Hause, Benjamin Matthew [Currie, MN; Van Hoek, Pim [Camarillo, CA; Dundon, Catherine Asleson [Minneapolis, MN

    2012-03-20

    Yeast cells having an exogenous lactate dehydrogenase gene ae modified by reducing L- or D-lactate:ferricytochrome c oxidoreductase activity in the cell. This leads to reduced consumption of lactate by the cell and can increase overall lactate yields in a fermentation process. Cells having the reduced L- or D-lactate:ferricytochrome c oxidoreductase activity can be screened for by resistance to organic acids such as lactic or glycolic acid.

  12. Beer and bread to brains and beyond: can yeast cells teach us about neurodegenerative disease?

    Science.gov (United States)

    Gitler, Aaron D

    2008-01-01

    For millennia, humans have harnessed the astonishing power of yeast, producing such culinary masterpieces as bread, beer and wine. Therefore, in this new millennium, is it very farfetched to ask if we can also use yeast to unlock some of the modern day mysteries of human disease? Remarkably, these seemingly simple cells possess most of the same basic cellular machinery as the neurons in the brain. We and others have been using the baker's yeast, Saccharomyces cerevisiae, as a model system to study the mechanisms of devastating neurodegenerative diseases such as Parkinson's, Huntington's, Alzheimer's and amyotrophic lateral sclerosis. While very different in their pathophysiology, they are collectively referred to as protein-misfolding disorders because of the presence of misfolded and aggregated forms of various proteins in the brains of affected individuals. Using yeast genetics and the latest high-throughput screening technologies, we have identified some of the potential causes underpinning these disorders and discovered conserved genes that have proven effective in preventing neuron loss in animal models. Thus, these genes represent new potential drug targets. In this review, I highlight recent work investigating mechanisms of cellular toxicity in a yeast Parkinson's disease model and discuss how similar approaches are being applied to additional neurodegenerative diseases.

  13. Adsorption of ochratoxin A from grape juice by yeast cells immobilised in calcium alginate beads.

    Science.gov (United States)

    Farbo, Maria Grazia; Urgeghe, Pietro Paolo; Fiori, Stefano; Marceddu, Salvatore; Jaoua, Samir; Migheli, Quirico

    2016-01-18

    Grape juice can be easily contaminated with ochratoxin A (OTA), one of the known mycotoxins with the greatest public health significance. Among the different approaches to decontaminate juice from this mycotoxin, microbiological methods proved efficient, inexpensive and safe, particularly the use of yeast or yeast products. To ascertain whether immobilisation of the yeast biomass would lead to successful decontamination, alginate beads encapsulating Candida intermedia yeast cells were used in our experiments to evaluate their OTA-biosorption efficacy. Magnetic calcium alginate beads were also prepared by adding magnetite in the formulation to allow fast removal from the aqueous solution with a magnet. Calcium alginate beads were added to commercial grape juice spiked with 20 μg/kg OTA and after 48 h of incubation a significant reduction (>80%), of the total OTA content was achieved, while in the subsequent phases (72-120 h) OTA was slowly released into the grape juice by alginate beads. Biosorption properties of alginate-yeast beads were tested in a prototype bioreactor consisting in a glass chromatography column packed with beads, where juice amended with OTA was slowly flowed downstream. The adoption of an interconnected scaled-up bioreactor as an efficient and safe tool to remove traces of OTA from liquid matrices is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Extraction of nucleic acids from yeast cells and plant tissues using ethanol as medium for sample preservation and cell disruption.

    Science.gov (United States)

    Linke, Bettina; Schröder, Kersten; Arter, Juliane; Gasperazzo, Tatiana; Woehlecke, Holger; Ehwald, Rudolf

    2010-09-01

    Here we report that dehydrated ethanol is an excellent medium for both in situ preservation of nucleic acids and cell disruption of plant and yeast cells. Cell disruption was strongly facilitated by prior dehydration of the ethanol using dehydrated zeolite. Following removal of ethanol, nucleic acids were extracted from the homogenate pellet using denaturing buffers. The method provided DNA and RNA of high yield and integrity. Whereas cell wall disruption was essential for extraction of DNA and large RNA molecules, smaller molecules such as tRNAs could be selectively extracted from undisrupted, ethanol-treated yeast cells. Our results demonstrate the utility of absolute ethanol for sample fixation, cell membrane and cell wall disruption, as well as preservation of nucleic acids during sample storage.

  15. Scanning electrochemical microscopy of menadione-glutathione conjugate export from yeast cells

    Science.gov (United States)

    Mauzeroll, Janine; Bard, Allen J.

    2004-01-01

    The uptake of menadione (2-methyl-1,4-naphthoquinone), which is toxic to yeast cells, and its expulsion as a glutathione complex were studied by scanning electrochemical microscopy. The progression of the in vitro reaction between menadione and glutathione was monitored electrochemically by cyclic voltammetry and correlated with the spectroscopic (UV–visible) behavior. By observing the scanning electrochemical microscope tip current of yeast cells suspended in a menadione-containing solution, the export of the conjugate from the cells with time could be measured. Similar experiments were performed on immobilized yeast cell aggregates stressed by a menadione solution. From the export of the menadione-glutathione conjugate detected at a 1-μm-diameter electrode situated 10 μm from the cells, a flux of about 30,000 thiodione molecules per second per cell was extracted. Numerical simulations based on an explicit finite difference method further revealed that the observation of a constant efflux of thiodione from the cells suggested the rate was limited by the uptake of menadione and that the efflux through the glutathione-conjugate pump was at least an order of magnitude faster. PMID:15148374

  16. Influence of non-adherent yeast cells on electrical characteristics of diamond-based field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Procházka, Václav, E-mail: prochazkav@fzu.cz [Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague (Czech Republic); Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Cifra, Michal [Institute of Photonics and Electronics, The Czech Academy of Sciences, Chaberská 57, 182 51 Prague (Czech Republic); Kulha, Pavel [Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague (Czech Republic); Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Ižák, Tibor [Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Rezek, Bohuslav [Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague (Czech Republic); Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Kromka, Alexander [Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 16629 Prague (Czech Republic)

    2017-02-15

    Highlights: • Interaction of non-adherent yeast cells with H-terminated diamond described. • Effect of cell culture solutions on H-diamond SGFET (positive potential shifts). • H-diamond sensitive to metabolic activity of yeast cells (negative potential shift). - Abstract: Diamond thin films provide unique features as substrates for cell cultures and as bio-electronic sensors. Here we employ solution-gated field effect transistors (SGFET) based on nanocrystalline diamond thin films with H-terminated surface which exhibits the sub-surface p-type conductive channel. We study an influence of yeast cells (Saccharomyces cerevisiae) on electrical characteristics of the diamond SGFETs. Two different cell culture solutions (sucrose and yeast peptone dextrose–YPD) are used, with and without the cells. We have found that transfer characteristics of the SGFETs exhibit a negative shift of the gate voltage by −26 mV and −42 mV for sucrose and YPD with cells in comparison to blank solutions without the cells. This effect is attributed to a local pH change in close vicinity of the H-terminated diamond surface due to metabolic processes of the yeast cells. The pH sensitivity of the diamond-based SGFETs, the role of cell and protein adhesion on the gate surface and the role of negative surface charge of yeast cells on the SGFETs electrical characteristics are discussed as well.

  17. Influence of non-adherent yeast cells on electrical characteristics of diamond-based field-effect transistors

    International Nuclear Information System (INIS)

    Procházka, Václav; Cifra, Michal; Kulha, Pavel; Ižák, Tibor; Rezek, Bohuslav; Kromka, Alexander

    2017-01-01

    Highlights: • Interaction of non-adherent yeast cells with H-terminated diamond described. • Effect of cell culture solutions on H-diamond SGFET (positive potential shifts). • H-diamond sensitive to metabolic activity of yeast cells (negative potential shift). - Abstract: Diamond thin films provide unique features as substrates for cell cultures and as bio-electronic sensors. Here we employ solution-gated field effect transistors (SGFET) based on nanocrystalline diamond thin films with H-terminated surface which exhibits the sub-surface p-type conductive channel. We study an influence of yeast cells (Saccharomyces cerevisiae) on electrical characteristics of the diamond SGFETs. Two different cell culture solutions (sucrose and yeast peptone dextrose–YPD) are used, with and without the cells. We have found that transfer characteristics of the SGFETs exhibit a negative shift of the gate voltage by −26 mV and −42 mV for sucrose and YPD with cells in comparison to blank solutions without the cells. This effect is attributed to a local pH change in close vicinity of the H-terminated diamond surface due to metabolic processes of the yeast cells. The pH sensitivity of the diamond-based SGFETs, the role of cell and protein adhesion on the gate surface and the role of negative surface charge of yeast cells on the SGFETs electrical characteristics are discussed as well.

  18. Study on the specificity of yeast cell damage by high-intensity UV radiation (266nm)

    International Nuclear Information System (INIS)

    Burchuladze, T.G.; Frajkin, G.Ya.; Rubin, L.B.

    1981-01-01

    Peculiarities of photoreactivation and photoprotection of the Candida guilliermondii and Candida utilis yeast cells, irradiated with far and near ultraviolet radiation, are considered. New results on the study of the dependence of the cells inactivation degree on the intensity of ultraviolet radiation are presented. The impulse rate density at 266 nm reached 10 10 Ix m -2 xs -1 at the impulse duration of 10 -8 s. Survival curves of the yeast cells during their irradiation with ultraviolet radiation of 266 nm and 254 nm are given. It is shown that with the increase of the irradiation intensity of 266 nm the rates and final levels of photoreactivation decrease. Under the effect of ultraviolet irradiation of high intensity contribution of pyrimidine dimers to the cell inactivation decreases [ru

  19. Unravel lipid accumulation mechanism in oleaginous yeast through single cell systems biology study

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shiyou; Xiaoliang, Xie

    2017-12-18

    Replacement of petroleum with advanced biofuels is critical for environmental protection needs, sustainable and secure energy demands, and economic development. Bacteria, yeasts, and fungi can naturally synthesize fatty acids, isoprenoids, or polyalkanoates for energy storage, and therefore are currently explored for hydrocarbon fuel production. Oleaginous yeasts can accumulate high levels of lipids in the form of triacylglycerols (TAGs) when encountering stress conditions or imbalanced growth (e.g., growing under excess carbon sources and limited nitrogen conditions). Advantages of using oleaginous yeast as cell factories include short duplication time (< 1 hour), high yield of intracellular droplets, and easy scale-up for industrial production. Currently, various oleaginous yeasts (e.g., Yarrowia, Candida, Rhodotorulla, Rhodosporidium, Cryptococcus, Trichosporon, and Lipomyces) have been developed as potential advanced biofuel producers. Oleaginous yeast lipid production has two phases: 1) growth phase, where cells utilize the carbon and nitrogen source to build up biomass. And 2) lipid accumulation phase, where they convert carbon source in media into the storage lipid body. (i.e. a high carbon to nitrogen ratio leads to high lipid production). The lipid production varies dramatically when different sugar, e.g. glucose, xylose is used as carbon source. The efficient utilization of all monomeric sugars of hexoses and pentoses from various lignocellulosic biomass processing approaches is the key for economic lignocellulosic biofuel production. In this project, we explored lipid production in oleaginous yeast under different nitrogen and sugar conditions at the single-cell level. To understand the lipid production mechanism and identify genetic features responsive to lipid accumulation in the presence of pentose and nitrogen, we developed an automated chemical imaging and single-cell transcriptomics method to correlate the lipid accumulation with the

  20. Effect of ambient humidity on the strength of the adhesion force of single yeast cell inside environmental-SEM

    International Nuclear Information System (INIS)

    Shen, Yajing; Nakajima, Masahiro; Ridzuan Ahmad, Mohd; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2011-01-01

    A novel method for measuring an adhesion force of single yeast cell is proposed based on a nanorobotic manipulation system inside an environmental scanning electron microscope (ESEM). The effect of ambient humidity on a single yeast cell adhesion force was studied. Ambient humidity was controlled by adjusting the chamber pressure and temperature inside the ESEM. It has been demonstrated that a thicker water film was formed at a higher humidity condition. The adhesion force between an atomic force microscopy (AFM) cantilever and a tungsten probe which later on known as a substrate was evaluated at various humidity conditions. A micro-puller was fabricated from an AFM cantilever by use of focused ion beam (FIB) etching. The adhesion force of a single yeast cell (W303) to the substrate was measured using the micro-puller at the three humidity conditions: 100%, 70%, and 40%. The results showed that the adhesion force between the single yeast cell and the substrate is much smaller at higher humidity condition. The yeast cells were still alive after being observed and manipulated inside ESEM based on the result obtained from the re-culturing of the single yeast cell. The results from this work would help us to understand the ESEM system better and its potential benefit to the single cell analysis research. -- Research highlights: → A nanorobotic manipulation system was developed inside an ESEM. → A micro-puller was designed for single yeast cell adhesion force measurement. → Yeast cells were still alive after being observed and manipulated inside ESEM. → Yeast cell adhesion force to substrate is smaller at high humidity condition than at low humidity condition.

  1. Effect of ambient humidity on the strength of the adhesion force of single yeast cell inside environmental-SEM

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yajing, E-mail: shen@robo.mein.nagoya-u.ac.jp [Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603 (Japan); Nakajima, Masahiro [Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603 (Japan); Ridzuan Ahmad, Mohd [Department of Mechatronics and Robotics, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81310 (Malaysia); Kojima, Seiji; Homma, Michio [Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Fukuda, Toshio [Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2011-07-15

    A novel method for measuring an adhesion force of single yeast cell is proposed based on a nanorobotic manipulation system inside an environmental scanning electron microscope (ESEM). The effect of ambient humidity on a single yeast cell adhesion force was studied. Ambient humidity was controlled by adjusting the chamber pressure and temperature inside the ESEM. It has been demonstrated that a thicker water film was formed at a higher humidity condition. The adhesion force between an atomic force microscopy (AFM) cantilever and a tungsten probe which later on known as a substrate was evaluated at various humidity conditions. A micro-puller was fabricated from an AFM cantilever by use of focused ion beam (FIB) etching. The adhesion force of a single yeast cell (W303) to the substrate was measured using the micro-puller at the three humidity conditions: 100%, 70%, and 40%. The results showed that the adhesion force between the single yeast cell and the substrate is much smaller at higher humidity condition. The yeast cells were still alive after being observed and manipulated inside ESEM based on the result obtained from the re-culturing of the single yeast cell. The results from this work would help us to understand the ESEM system better and its potential benefit to the single cell analysis research. -- Research highlights: {yields} A nanorobotic manipulation system was developed inside an ESEM. {yields} A micro-puller was designed for single yeast cell adhesion force measurement. {yields} Yeast cells were still alive after being observed and manipulated inside ESEM. {yields} Yeast cell adhesion force to substrate is smaller at high humidity condition than at low humidity condition.

  2. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology.

    Science.gov (United States)

    Canetta, Elisabetta; Adya, Ashok K; Walker, Graeme M

    2006-02-01

    The detrimental effects of ethanol toxicity on the cell surface morphology of Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354) were investigated using an atomic force microscope (AFM). In combination with culture viability and mean cell volume measurements AFM studies allowed us to relate the cell surface morphological changes, observed on nanometer lateral resolution, with the cellular stress physiology. Exposing yeasts to increasing stressful concentrations of ethanol led to decreased cell viabilities and mean cell volumes. Together with the roughness and bearing volume analyses of the AFM images, the results provided novel insight into the relative ethanol tolerance of S. cerevisiae and Sc. pombe.

  3. Effects of the strain background and autolysis process on the composition and biophysical properties of the cell wall from two different industrial yeasts.

    Science.gov (United States)

    Schiavone, Marion; Sieczkowski, Nathalie; Castex, Mathieu; Dague, Etienne; Marie François, Jean

    2015-03-01

    The Saccharomyces cerevisiae cell surface is endowed with some relevant technological properties, notably antimicrobial and biosorption activities. For these purposes, yeasts are usually processed and packaged in an 'autolysed/dried' formula, which may have some impacts on cell surface properties. In this report, we showed using a combination of biochemical, biophysical and molecular methods that the composition of the cell wall of two wine yeast strains was not altered by the autolysis process. In contrast, this process altered the nanomechanical properties as shown by a 2- to 4-fold increased surface roughness and to a higher adhesion to the atomic force microscope tips of the autolysed cells as compared to live yeast cells. Besides, we found that the two strains harboured differences in biomechanical properties that could be due in part to higher levels of mannan in one of them, and to the fact that the surface of this mannan-enriched strain is decorated with highly adhesive patches forming nanodomains. The presence of these nanodomains could be correlated with the upregulation of flocculin encoding FLO11 as well as to higher expression of few other genes encoding cell wall mannoproteins in this mannan-enriched strain as compared to the other strain. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  4. Clonality, genetic diversity and support for the diversifying selection hypothesis in natural populations of a flower-living yeast.

    Science.gov (United States)

    Herrera, C M; Pozo, M I; Bazaga, P

    2011-11-01

    Vast amounts of effort have been devoted to investigate patterns of genetic diversity and structuring in plants and animals, but similar information is scarce for organisms of other kingdoms. The study of the genetic structure of natural populations of wild yeasts can provide insights into the ecological and genetic correlates of clonality, and into the generality of recent hypotheses postulating that microbial populations lack the potential for genetic divergence and allopatric speciation. Ninety-one isolates of the flower-living yeast Metschnikowia gruessii from southeastern Spain were DNA fingerprinted using amplified fragment length polymorphism (AFLP) markers. Genetic diversity and structuring was investigated with band-based methods and model- and nonmodel-based clustering. Linkage disequilibrium tests were used to assess reproduction mode. Microsite-dependent, diversifying selection was tested by comparing genetic characteristics of isolates from bumble bee vectors and different floral microsites. AFLP polymorphism (91%) and genotypic diversity were very high. Genetic diversity was spatially structured, as shown by amova (Φ(st)  = 0.155) and clustering. The null hypothesis of random mating was rejected, clonality seeming the prevailing reproductive mode in the populations studied. Genetic diversity of isolates declined from bumble bee mouthparts to floral microsites, and frequency of five AFLP markers varied significantly across floral microsites, thus supporting the hypothesis of diversifying selection on clonal lineages. Wild populations of clonal fungal microbes can exhibit levels of genetic diversity and spatial structuring that are not singularly different from those shown by sexually reproducing plants or animals. Microsite-dependent, divergent selection can maintain high local and regional genetic diversity in microbial populations despite extensive clonality. © 2011 Blackwell Publishing Ltd.

  5. A set of nutrient limitations trigger yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation.

    Directory of Open Access Journals (Sweden)

    Camille Duc

    Full Text Available Yeast cell death can occur during wine alcoholic fermentation. It is generally considered to result from ethanol stress that impacts membrane integrity. This cell death mainly occurs when grape musts processing reduces lipid availability, resulting in weaker membrane resistance to ethanol. However the mechanisms underlying cell death in these conditions remain unclear. We examined cell death occurrence considering yeast cells ability to elicit an appropriate response to a given nutrient limitation and thus survive starvation. We show here that a set of micronutrients (oleic acid, ergosterol, pantothenic acid and nicotinic acid in low, growth-restricting concentrations trigger cell death in alcoholic fermentation when nitrogen level is high. We provide evidence that nitrogen signaling is involved in cell death and that either SCH9 deletion or Tor inhibition prevent cell death in several types of micronutrient limitation. Under such limitations, yeast cells fail to acquire any stress resistance and are unable to store glycogen. Unexpectedly, transcriptome analyses did not reveal any major changes in stress genes expression, suggesting that post-transcriptional events critical for stress response were not triggered by micronutrient starvation. Our data point to the fact that yeast cell death results from yeast inability to trigger an appropriate stress response under some conditions of nutrient limitations most likely not encountered by yeast in the wild. Our conclusions provide a novel frame for considering both cell death and the management of nutrients during alcoholic fermentation.

  6. Tolerance of yeast biofilm cells towards systemic antifungals

    DEFF Research Database (Denmark)

    Bojsen, Rasmus Kenneth

    was the only tested drug with activity against both growth arrested biofilm and planktonic cells but was found to only kill ~95 % of the cells. By using a collection of barcode tagged deletion mutants, we were identified that defects in protein synthesis, intracellular transport, cell cycle and lipid...

  7. Yeast Extract Promotes Cell Growth and Induces Production of Polyvinyl Alcohol-Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Min Li

    2011-01-01

    Full Text Available Polyvinyl alcohol-degrading enzymes (PVAases have a great potential in bio-desizing processes for its low environmental impact and low energy consumption. In this study, the effect of yeast extract on PVAases production was investigated. A strategy of four-point yeast extract addition was developed and applied to maximize cell growth and PVAases production. As a result, the maximum dry cell weight achieved was 1.48 g/L and the corresponding PVAases activity was 2.99 U/mL, which are 46.5% and 176.8% higher than the control, respectively. Applying this strategy in a 7 L fermentor increased PVAases activity to 3.41 U/mL. Three amino acids (glycine, serine, and tyrosine in yeast extract play a central role in the production of PVAases. These results suggest that the new strategy of four-point yeast extract addition could benefit PVAases production.

  8. Prions in yeast

    OpenAIRE

    Bezdíčka, Martin

    2013-01-01

    The thesis describes yeast prions and their biological effects on yeast in general. It defines the basic characteristics of yeast prions, that distinguish prions from other proteins. The thesis introduces various possibilities of prion formation, and propagation as well as specific types of yeast prions, including various functions of most studied types of prions. The thesis also focuses on chaperones that affect the state of yeast prions in cells. Lastly, the thesis indicates similarities be...

  9. Contactless Investigations of Yeast Cell Cultivation in the 7 GHz and 240 GHz Ranges

    International Nuclear Information System (INIS)

    Wessel, J; Schmalz, K; Meliani, C; Gastrock, G; Cahill, B P

    2013-01-01

    Using a microfluidic system based on PTFE tubes, experimental results of contactless and label-free characterization techniques of yeast cell cultivation are presented. The PTFE tube has an inner diameter of 0.5 mm resulting in a sample volume of 2 μ1 for 1 cm sample length. Two approaches (at frequencies around 7 GHz and 240 GHz) are presented and compared in terms of sensitivity and applicability. These frequency bands are particularly interesting to gain information on the permittivity of yeast cells in Glucose solution. Measurements from 240 GHz to 300 GHz were conducted with a continuous wave spectrometer from Toptica. At 7 GHz band, measurements have been performed using a rat-race based characterizing system realized on a printed circuit board. The conducted experiments demonstrate that by selecting the phase as characterization parameter, the presented contactless and label-free techniques are suitable for cell cultivation monitoring in a PTFE pipe based microfluidic system.

  10. Regulatory mechanism of the flavoprotein Tah18-dependent nitric oxide synthesis and cell death in yeast.

    Science.gov (United States)

    Yoshikawa, Yuki; Nasuno, Ryo; Kawahara, Nobuhiro; Nishimura, Akira; Watanabe, Daisuke; Takagi, Hiroshi

    2016-07-01

    Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. The regulatory mechanism of NO generation in unicellular eukaryotic yeast cells is poorly understood due to the lack of mammalian and bacterial NO synthase (NOS) orthologues, even though yeast produces NO under oxidative stress conditions. Recently, we reported that the flavoprotein Tah18, which was previously shown to transfer electrons to the iron-sulfur cluster protein Dre2, is involved in NOS-like activity in the yeast Saccharomyces cerevisiae. On the other hand, Tah18 was reported to promote apoptotic cell death after exposure to hydrogen peroxide (H2O2). Here, we showed that NOS-like activity requiring Tah18 induced cell death upon treatment with H2O2. Our experimental results also indicate that Tah18-dependent NO production and cell death are suppressed by enhancement of the interaction between Tah18 and its molecular partner Dre2. Our findings indicate that the Tah18-Dre2 complex regulates cell death as a molecular switch via Tah18-dependent NOS-like activity in response to environmental changes. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Engineering tolerance to industrially relevant stress factors in yeast cell factories

    Science.gov (United States)

    Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R.

    2017-01-01

    Abstract The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. PMID:28586408

  12. Mitochondrion-mediated cell death: dissecting yeast apoptosis for a better understanding of neurodegeneration

    International Nuclear Information System (INIS)

    Braun, Ralf J.

    2012-01-01

    Mitochondrial damage and dysfunction are common hallmarks for neurodegenerative disorders, including Alzheimer, Parkinson, Huntington diseases, and the motor neuron disorder amyotrophic lateral sclerosis. Damaged mitochondria pivotally contribute to neurotoxicity and neuronal cell death in these disorders, e.g., due to their inability to provide the high energy requirements for neurons, their generation of reactive oxygen species (ROS), and their induction of mitochondrion-mediated cell death pathways. Therefore, in-depth analyses of the underlying molecular pathways, including cellular mechanisms controlling the maintenance of mitochondrial function, is a prerequisite for a better understanding of neurodegenerative disorders. The yeast Saccharomyces cerevisiae is an established model for deciphering mitochondrial quality control mechanisms and the distinct mitochondrial roles during apoptosis and programmed cell death. Cell death upon expression of various human neurotoxic proteins has been characterized in yeast, revealing neurotoxic protein-specific differences. This review summarizes how mitochondria are affected in these neurotoxic yeast models, and how they are involved in the execution and prevention of cell death. I will discuss to which extent this mimics the situation in other neurotoxic model systems, and how this may contribute to a better understanding of the mitochondrial roles in the human disorders.

  13. Engineering tolerance to industrially relevant stress factors in yeast cell factories.

    Science.gov (United States)

    Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R; Thevelein, Johan M

    2017-06-01

    The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. © FEMS 2017.

  14. Mitochondrion-mediated cell death: dissecting yeast apoptosis for a better understanding of neurodegeneration

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Ralf J., E-mail: ralf.braun@uni-bayreuth.de [Institut für Zellbiologie, Universität Bayreuth, Bayreuth (Germany)

    2012-11-28

    Mitochondrial damage and dysfunction are common hallmarks for neurodegenerative disorders, including Alzheimer, Parkinson, Huntington diseases, and the motor neuron disorder amyotrophic lateral sclerosis. Damaged mitochondria pivotally contribute to neurotoxicity and neuronal cell death in these disorders, e.g., due to their inability to provide the high energy requirements for neurons, their generation of reactive oxygen species (ROS), and their induction of mitochondrion-mediated cell death pathways. Therefore, in-depth analyses of the underlying molecular pathways, including cellular mechanisms controlling the maintenance of mitochondrial function, is a prerequisite for a better understanding of neurodegenerative disorders. The yeast Saccharomyces cerevisiae is an established model for deciphering mitochondrial quality control mechanisms and the distinct mitochondrial roles during apoptosis and programmed cell death. Cell death upon expression of various human neurotoxic proteins has been characterized in yeast, revealing neurotoxic protein-specific differences. This review summarizes how mitochondria are affected in these neurotoxic yeast models, and how they are involved in the execution and prevention of cell death. I will discuss to which extent this mimics the situation in other neurotoxic model systems, and how this may contribute to a better understanding of the mitochondrial roles in the human disorders.

  15. Secretion of non-cell-bound phytase by the yeast Pichia kudriavzevii TY13.

    Science.gov (United States)

    Hellström, A; Qvirist, L; Svanberg, U; Veide Vilg, J; Andlid, T

    2015-05-01

    Mineral deficiencies cause several health problems in the world, especially for populations consuming cereal-based diets rich in the anti-nutrient phytate. Our aim was to characterize the phytate-degrading capacity of the yeast Pichia kudriavzevii TY13 and its secretion of phytase. The phytase activity in cell-free supernatants from cultures with 100% intact cells was 35-190 mU ml(-1) depending on the media. The Km was 0.28 mmol l(-1) and the specific phytase activity 0.32 U mg(-1) total protein. The phytase activity and secretion of extracellular non-cell-bound phytase was affected by the medium phosphate concentrations. Further, addition of yeast extract had a clearly inducing effect, resulting in over 60% of the cultures total phytase activity as non-cell-bound. Our study reveals that it is possible to achieve high extracellular phytase activity from the yeast P. kudriavzevii TY13 by proper composition of the growth medium. TY13 could be a promising future starter culture for fermented foods with improved mineral bioavailability. Using strains that secrete phytase to the food matrix may significantly improve the phytate degradation by facilitating the enzyme-to-substrate interaction. The secreted non-cell-bound phytase activities by TY13 could further be advantageous in industrial production of phytase. © 2015 The Society for Applied Microbiology.

  16. Cell organisation, sulphur metabolism and ion transport-related genes are differentially expressed in Paracoccidioides brasiliensis mycelium and yeast cells

    Directory of Open Access Journals (Sweden)

    Passos Geraldo AS

    2006-08-01

    Full Text Available Abstract Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM, a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein, bgl (encoding for a 1,3-β-glucosidase in mycelium cells; and ags (an α-1,3-glucan synthase, cda (a chitin deacetylase and vrp (a verprolin in yeast cells; (ii ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken

  17. Influence the oxidant action of selenium in radiosensitivity induction and cell death in yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Porto, Barbara Abranches de Araujo

    2012-01-01

    Ionizing radiations are from both natural sources such as from anthropogenic sources. Recently, radiotherapy has emerged as one of the most common therapies against cancer. Co-60 irradiators (cobalt-60 linear accelerators) are used to treat of malignant tumors routinely in hospitals around the world. Exposure to ionizing radiation can induce changes in cellular macromolecules and affect its functions, because they cause radiolysis of the water molecule generating reactive oxygen species, which can cause damage to virtually all organelles and cell components known as oxidative damage that can culminate in oxidative stress. Oxidative stress is a situation in which the balance between oxidants and antioxidants is broken resulting in excessive production of reactive species, it is not accompanied by the increase in antioxidant capacity, making it impossible to neutralize them. Selenium is a micronutrient considered as antioxidant, antiinflammatory, which could prevent cancer. Selenium in biological system exists as seleno proteins. Nowadays, 25 human seleno proteins have been identified, including glutathione peroxidase, an antioxidant enzyme. Yeasts have the ability to incorporate various metals such as iron, cadmium, zinc and selenium, as well as all biological organisms. The yeast Saccharomyces cerevisiae, unlike mammalian cells is devoid of seleno proteins, being considered as a practical model for studies on the toxicity of selenium, without any interference from the metabolism of seleno proteins. Moreover, yeast cells proliferate through the fermentation, the microbial equivalent of aerobic glycolysis in mammals and the process is also used by tumors. Several reports show that the pro-oxidante effects and induced toxic selenium compounds occur at lower doses and in malignant cells compared with benign cells. Therefore selenium giving a great therapeutic potential in cancer treatment .Our objective was to determine whether selenium is capable to sensitize yeasts

  18. Magnetic resonance investigation of magnetic-labeled baker's yeast cells

    International Nuclear Information System (INIS)

    Godoy Morais, J.P.M.; Azevedo, R.B.; Silva, L.P.; Lacava, Z.G.M.; Bao, S.N.; Silva, O.; Pelegrini, F.; Gansau, C.; Buske, N.; Safarik, I.; Safarikova, M.; Morais, P.C.

    2004-01-01

    In this study, the interaction of DMSA-coated magnetite nanoparticles (5 and 10 nm core-size) with Saccharomyces cerevisae was investigated using magnetic resonance (MR) and transmission electron microscopy (TEM). The TEM micrographs revealed magnetite nanoparticles attached externally to the cell wall. The MR data support the strong interaction among the nanoparticles supported by the cells. A remarkable shift in the resonance field was used as signature of particle attachment to the cell wall

  19. Oral delivery of live yeast Debaryomyces hansenii modulates the main innate immune parameters and the expression of immune-relevant genes in the gilthead seabream (Sparus aurata L.).

    Science.gov (United States)

    Reyes-Becerril, Martha; Salinas, Irene; Cuesta, Alberto; Meseguer, José; Tovar-Ramirez, Dariel; Ascencio-Valle, Felipe; Esteban, Maria Angeles

    2008-12-01

    Microorganisms isolated from fish can be used as prophylactic tools for aquaculture in the form of probiotic preparations. The purpose of this study was to evaluate the effects of dietary administration of the live yeast Debaryomyces hansenii CBS 8339 on the gilthead seabream (Sparus aurata L.) innate immune responses. Seabream were fed control or D. hansenii-supplemented diets (10(6) colony forming units, CFU g(-1)) for 4 weeks. Humoral (seric alternative complement and peroxidase activities), and cellular (peroxidase, phagocytic, respiratory burst and cytotoxic activities) innate immune parameters and antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) were measured from serum, head-kidney leucocytes and liver, respectively, after 2 and 4 weeks of feeding. Expression levels of immune-associated genes, Hep, IgM, TCR-beta, NCCRP-1, MHC-II alpha, CSF-1R, C3, TNF-alpha and IL-1 beta, were also evaluated by real-time PCR in head-kidney, liver and intestine. Humoral immune parameters were not significantly affected by the dietary supplementation of yeast at any time of the experiment. On the other hand, D. hansenii administration significantly enhanced leucocyte peroxidase and respiratory burst activity at week 4. Phagocytic and cytotoxic activities had significantly increased by week 2 of feeding yeast but unchanged by week 4. A significant increase in liver SOD activity was observed at week 2 of feeding with the supplemented diet; however CAT activity was not affected by the dietary yeast supplement at any time of the experiment. Finally, the yeast supplemented diet down-regulated the expression of most seabream genes, except C3, in liver and intestine and up-regulated all of them in the head-kidney. These results strongly support the idea that live yeast Debaryomyces hansenii strain CBS 8339 can stimulate the innate immune parameters in seabream, especially at cellular level.

  20. Synchronization and Arrest of the Budding Yeast Cell Cycle Using Chemical and Genetic Methods.

    Science.gov (United States)

    Rosebrock, Adam P

    2017-01-03

    The cell cycle of budding yeast can be arrested at specific positions by different genetic and chemical methods. These arrests enable study of cell cycle phase-specific phenotypes that would be missed during examination of asynchronous cultures. Some methods for arrest are reversible, with kinetics that enable release of cells back into a synchronous cycling state. Benefits of chemical and genetic methods include scalability across a large range of culture sizes from a few milliliters to many liters, ease of execution, the absence of specific equipment requirements, and synchronization and release of the entire culture. Of note, cell growth and division are decoupled during arrest and block-release experiments. Cells will continue transcription, translation, and accumulation of protein while arrested. If allowed to reenter the cell cycle, cells will do so as a population of mixed, larger-than-normal cells. Despite this important caveat, many aspects of budding yeast physiology are accessible using these simple chemical and genetic tools. Described here are methods for the block and release of cells in G 1 phase and at the M/G 1 transition using α-factor mating pheromone and the temperature-sensitive cdc15-2 allele, respectively, in addition to methods for arresting the cell cycle in early S phase and at G 2 /M by using hydroxyurea and nocodazole, respectively. © 2017 Cold Spring Harbor Laboratory Press.

  1. Relationship between sensitivity to ultraviolet light and budding in yeast cells of different culture ages

    International Nuclear Information System (INIS)

    Atsuta, J.; Okajima, S.

    1976-01-01

    Subpopulations of yeast cells, consisting of cells of different sizes and different percentages of budding cells, were prepared by centrifugation through sucrose solutions with linear density gradients of cultures at different phases of the growth cycle. Ultraviolet survival of these cells was determined by colony counting, and the survival rate was compared with the cells' respiratory rates. Individual budding cells and interdivisional cells, and also mother cells and daughter cells derived from irradiated budding cells, were isolated by the micromanipulation technique. The number of divisions in each cell was measured during a 21-hr incubation period immediately after irradiation. In the population in the logarithmic phase consisting of homogeneous cells of middle size, no difference in uv sensitivity was observed between mother cells and daughter cells, irrespective of mutual adhesion. Budding cell resistance was observed in the population in the transitional phase; this was due to the lesser uv sensitivity of daughter cells in the fresh medium. In the stationary phase, daughter cells were rather more sensitive than mother cells or interdivisional cells, so there was little difference in uv sensitivity between budding cells and interdivisional cells

  2. Liquid holding recovery kinetics in yeast cells with regard to radiation quality

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Lee, Byoung Hun; Petin, Vladislav G.

    2004-01-01

    It is widely accepted that the RBE of ionizing radiation with a high linear energy transfer (LET) is dependent both on the increased probability of primary damage production (physical events) and the reduced ability of a cell for post-irradiation recovery (biological events). A relatively unexpected role of the specific repair pathways in the RBE of high-LET radiation was demonstrated for bacterial, yeast and mammalian cells. It seems to exist a common agreement that high-LET radiations produce more portion of damage that are considered to be irreversible compared with low-LET radiation such as photons. Cellular recovery and repair of radiation-induced DNA double-strand breaks (DSB) could be also dependent upon radiation quality. Studies concerning the rate of the recovery and repair from radiation damage produced with low- and high-LET radiations in cells of various origins on the survival and macromolecular level have also revealed that in general at a high ionization density, these processes may be reduced or even absent. When irradiated yeast cells are held in a liquid non-nutrient media at 30 .deg. C before planting on to a growth medium, their survival increases. This phenomena is known as liquid holding recovery (LHR). A quantitative approach describing the LHR kinetics of the yeast cells was described, which enables the estimation of the probability of the recovery per unit time and the fraction of the irreversible damage. The main goals of this study were (i) to answer the question whether or not high-LET radiation affects the recovery process itself or if it only produces a higher level of severe irreversible damage that cannot be repaired at all; (ii) to elucidate the role of irreversible damage and the probability of recovery in some rad mutants of the yeast Saccharomyces cerevisiae. In this study, the liquid-holing recovery will serve as an indicator of the cellular repair activity

  3. Non-homologous end joining dependency of {gamma}-irradiation-induced adaptive frameshift mutation formation in cell cycle-arrested yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Heidenreich, Erich [Institute of Cancer Research, Division of Molecular Genetics, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria)]. E-mail: erich.heidenreich@meduniwien.ac.at; Eisler, Herfried [Institute of Cancer Research, Division of Molecular Genetics, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria)

    2004-11-22

    There is a strong selective pressure favoring adaptive mutations which relieve proliferation-limiting adverse living conditions. Due to their importance for evolution and pathogenesis, we are interested in the mechanisms responsible for the formation of such adaptive, gain-of-fitness mutations in stationary-phase cells. During previous studies on the occurrence of spontaneous reversions of an auxotrophy-causing frameshift allele in the yeast Saccharomyces cerevisiae, we noticed that about 50% of the adaptive reversions depended on a functional non-homologous end joining (NHEJ) pathway of DNA double-strand break (DSB) repair. Here, we show that the occasional NHEJ component Pol4, which is the yeast ortholog of mammalian DNA polymerase lambda, is not required for adaptive mutagenesis. An artificially imposed excess of DSBs by {gamma}-irradiation resulted in a dramatic increase in the incidence of adaptive, cell cycle arrest-releasing frameshift reversions. By the use of DNA ligase IV-deficient strains we detected that the majority of the {gamma}-induced adaptive mutations were also dependent on a functional NHEJ pathway. This suggests that the same mutagenic NHEJ mechanism acts on spontaneously arising as well as on ionizing radiation-induced DSBs. Inaccuracy of the NHEJ repair pathway may extensively contribute to the incidence of frameshift mutations in resting (non-dividing) eukaryotic cells, and thus act as a driving force in tumor development.

  4. Non-homologous end joining dependency of γ-irradiation-induced adaptive frameshift mutation formation in cell cycle-arrested yeast cells

    International Nuclear Information System (INIS)

    Heidenreich, Erich; Eisler, Herfried

    2004-01-01

    There is a strong selective pressure favoring adaptive mutations which relieve proliferation-limiting adverse living conditions. Due to their importance for evolution and pathogenesis, we are interested in the mechanisms responsible for the formation of such adaptive, gain-of-fitness mutations in stationary-phase cells. During previous studies on the occurrence of spontaneous reversions of an auxotrophy-causing frameshift allele in the yeast Saccharomyces cerevisiae, we noticed that about 50% of the adaptive reversions depended on a functional non-homologous end joining (NHEJ) pathway of DNA double-strand break (DSB) repair. Here, we show that the occasional NHEJ component Pol4, which is the yeast ortholog of mammalian DNA polymerase lambda, is not required for adaptive mutagenesis. An artificially imposed excess of DSBs by γ-irradiation resulted in a dramatic increase in the incidence of adaptive, cell cycle arrest-releasing frameshift reversions. By the use of DNA ligase IV-deficient strains we detected that the majority of the γ-induced adaptive mutations were also dependent on a functional NHEJ pathway. This suggests that the same mutagenic NHEJ mechanism acts on spontaneously arising as well as on ionizing radiation-induced DSBs. Inaccuracy of the NHEJ repair pathway may extensively contribute to the incidence of frameshift mutations in resting (non-dividing) eukaryotic cells, and thus act as a driving force in tumor development

  5. Calorie Restriction-Mediated Replicative Lifespan Extension in Yeast Is Non-Cell Autonomous

    Science.gov (United States)

    Mei, Szu-Chieh; Brenner, Charles

    2015-01-01

    In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR) allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell. PMID:25633578

  6. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous.

    Directory of Open Access Journals (Sweden)

    Szu-Chieh Mei

    2015-01-01

    Full Text Available In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA, are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell.

  7. Extraction of brewer's yeasts using different methods of cell disruption for practical biodiesel production.

    Science.gov (United States)

    Řezanka, Tomáš; Matoulková, Dagmar; Kolouchová, Irena; Masák, Jan; Viden, Ivan; Sigler, Karel

    2015-05-01

    The methods of preparation of fatty acids from brewer's yeast and its use in production of biofuels and in different branches of industry are described. Isolation of fatty acids from cell lipids includes cell disintegration (e.g., with liquid nitrogen, KOH, NaOH, petroleum ether, nitrogenous basic compounds, etc.) and subsequent processing of extracted lipids, including analysis of fatty acid and computing of biodiesel properties such as viscosity, density, cloud point, and cetane number. Methyl esters obtained from brewer's waste yeast are well suited for the production of biodiesel. All 49 samples (7 breweries and 7 methods) meet the requirements for biodiesel quality in both the composition of fatty acids and the properties of the biofuel required by the US and EU standards.

  8. Morphological Changes of Yeast Cells due to Oxidative Stress by Mercury and Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Hyoun; Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The yeast Saccharomyces cerevisiae is one of the most important microorganisms employed in industry. Growth rate, mutation, and environmental conditions affect yeast size and shape distributions but, in general, the influence of spatial variations in large-scale bioreactors is not considered. Ionizing radiation induces DNA double strand breaks in the nucleus, In addition, it causes lipid peroxidation, ceramide generation, and protein oxidation in the membrane, cytoplasm, and nucleus. Metal ions are essential to life. However, some metals such as mercury are harmful, even when present at trace amounts. Toxicity of mercury arises mainly from its oxidizing properties. As a metal ion, it induces an oxidative stress or predisposes cells to an oxidative stress, with considerable damage to proteins, lipids and DNA. In this work, we investigated to effect of ionizing radiation (IR) and mercury chloride (II) on cell morphology.

  9. Photomimetic effect of serotonin on yeast cells irradiated by far-UV radiation

    International Nuclear Information System (INIS)

    Fraikin, G.Y.; Strakhovskaya, M.G.; Rubin, L.B.

    1982-01-01

    The effect of serotonin on the survival of far-UV irradiated cells of the yeast Candida guilliermondii was studied. Serotonin was found to have a photomimetic property. Preincubation of cells with serotonin results in protection against far-UV inactivation, whereas the post-radiation treatment with serotonin causes a potentiation of far-UV lethality. Both effects are similar to those produced by near-UV (334 nm) radiation. The observations provide support to the previously proposed idea that photosynthesized serotonin is the underlying cause of the two effects of near-UV radiation, photoprotection and potentiation of far-UV lethality. Experiments with an excision-deficient strain of the yeast Saccharomyces cerevisiae suggest that the effect of serotonin is by its binding to DNA. (author)

  10. Daughter-specific transcription factors regulate cell size control in budding yeast.

    Science.gov (United States)

    Di Talia, Stefano; Wang, Hongyin; Skotheim, Jan M; Rosebrock, Adam P; Futcher, Bruce; Cross, Frederick R

    2009-10-01

    In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle.

  11. Daughter-Specific Transcription Factors Regulate Cell Size Control in Budding Yeast

    Science.gov (United States)

    Di Talia, Stefano; Wang, Hongyin; Skotheim, Jan M.; Rosebrock, Adam P.; Futcher, Bruce; Cross, Frederick R.

    2009-01-01

    In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle. PMID:19841732

  12. Daughter-specific transcription factors regulate cell size control in budding yeast.

    Directory of Open Access Journals (Sweden)

    Stefano Di Talia

    2009-10-01

    Full Text Available In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle.

  13. Mitochondrial modification and respiratory deficiency in the yeast cell caused by cadmium poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Lindegren, C C; Lindegren, G

    1973-01-01

    Cells of Fleischmann bakers' yeast were grown in standard nutrient broth and in broth to which cobalt, or cadmium, or thallium, had been added. The cells were fixed by glutaraldehyde-permanganate and sectioned. Electron microscopy showed that (a) the endoplasmic reticulum was fixed well in cells grown in cobalt or cadmium, but the endoplasmic reticulum was not fixed in cells grown in normal or thallium broth; (b) the cristate mitochondria were normal in all cells except those grown in cadmium. No cristae were visible in the cristate mitochondria of cells grown in cadmium broth; (c) a large fraction of the cells recovered from cadmium broth were respiratory-deficient; (d) thallic oxide was present in the cristate mitochondria of cells recovered from thallium broth. 13 references, 3 figures.

  14. Kinase Activity Studied in Living Cells Using an Immunoassay

    Science.gov (United States)

    Bavec, Aljos?a

    2014-01-01

    This laboratory exercise demonstrates the use of an immunoassay for studying kinase enzyme activity in living cells. The advantage over the classical method, in which students have to isolate the enzyme from cell material and measure its activity in vitro, is that enzyme activity is modulated and measured in living cells, providing a more…

  15. Effect of inactive yeast cell wall on growth performance, survival rate and immune parameters in Pacific White Shrimp (Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Rutchanee Chotikachinda

    2008-10-01

    Full Text Available Effects of dietary inactive yeast cell wall on growth performance, survival rate, and immune parameters in pacific white shrimp (Litopenaeus vannamei was investigated. Three dosages of inactive yeast cell wall (0, 1, and 2 g kg-1 were tested in three replicate groups of juvenile shrimps with an average initial weight of 7.15±0.05 g for four weeks. There was no significant difference in final weight, survival rate, specific growth rate, feed conversion ratio, feed intake, protein efficiency ratio, and apparent net protein utilization of each treatments. However, different levels of inactive yeast cell wall showed an effect on certain immune parameters (p<0.05. Total hemocyte counts, granular hemocyte count, and bacterial clearance were better in shrimp fed diets supplemented with 1 and 2 g kg-1 inactive yeast cell wall as compared with thecontrol group.

  16. Cell inactivation studies on yeast cells under euoxic and hypoxic condition using electron beam from microtron accelerator

    International Nuclear Information System (INIS)

    Praveen Joseph; Santhosh Acharya; Ganesh Sanjeev; Narayana, Y.; Bhat, N.N.

    2011-01-01

    In the case of sparsely ionizing radiation such as electron, the dose rate and the pattern of energy deposition of the radiation are the important physical factors which can affect the amount of damage in living cells. In the present study, the differences in the cell survival efficiency and dose rate effect in diploid yeast strains Saccharomyces cerevisiae X2180 and Saccharomyces cerevisiae D7 under euoxic and hypoxic condition have been quantified. Irradiation was carried out using 8 MeV pulsed electron beam from Microtron accelerator. The dose per pulse and pulse width of the beam used was 0.6 Gy and 2.3 μs, respectively, which correspond to an instantaneous dose rate of 2.6 x 10 5 Gy s -1 . For survival studies doses were delivered at a rate of 50 pulses per second (an average dose rate of 1,800 Gy s -1 ). Fricke and alanine dosimeters were used to measure the dose delivered to the sample. A significant difference in the dose response has been observed under euoxic and hypoxic condition. Dose rate effect has been studied by changing the pulse repetition rate of the Microtron and the dose rate used was from 180 to 1800 Gy min -1 . A significant dose rate effect was observed under euoxic condition for Saccharomyces cerevisiae X2180 but the same was absent under hypoxic condition. The dose rate effect was absent for Saccharomyces cerevisiae D7 under both irradiation condition. The survival curves are found to be sigmoidal in shape under both condition but with a wider shoulder under hypoxic condition. The D 0 value and the Oxygen Enhancement Ratio (OER) at that point have been derived. (author)

  17. Genetic effects of decay of radionuclides, products of nuclear fission, in Saccharomyces cerevisiae yeast cells

    International Nuclear Information System (INIS)

    Korolev, V.G.; Gracheva, L.M.

    1988-01-01

    Decay of 89 Sr incorporated in yeast cells produces a pronounced inactivating effect. The transmutation mainly contributes (about 80%) to cell inactivation. Haploid cells are more sensitive to 89 Sr disintegration than diploid and tetraploid ones. A radiosensitive mutant XRS2, that is particularly sensitive to the transmutation effect of radionuclides, has proved to be sensitive to 89 Sr transmutation as well. At the same time, another radiosensitive mutant, rad 54, does not virtually differ from the wild-type strain by its sensitivity to 89 Sr decay

  18. Enhanced phytate dephosphorylation by using Candida melibiosica yeast-based biofuel cell.

    Science.gov (United States)

    Hubenova, Yolina; Georgiev, Danail; Mitov, Mario

    2014-10-01

    We report for the first time that Candida melibiosica expresses enhanced phytase activity when grown under biofuel cell polarization in a nutrient-poor medium, containing only fructose as a carbohydrate source. Phytase activity during the cultivation under polarization reached up to 25 U per g dry biomass, exceeding with 20 ± 3 % those of the control. A participation of the enzyme in the adaptation processes to the stress conditions is proposed. In addition, steady-state electrical outputs were achieved during biofuel cell operation at continuous polarization under constant load. The obtained results show that C. melibiosica yeast-based biofuel cell could be used for simultaneous electricity generation and phytate bioremediation.

  19. Effect of NaCl and KCl on irradiated diploid yeast cells

    International Nuclear Information System (INIS)

    Amirtaev, K.G.; Lobachevskij, P.N.; Lyu Gvan Son

    1984-01-01

    Irradiated dipload yeast Saccharomyces cerevisiae kept in NaCl and KCl solutions died more readily than nonirradiated cells: the death rate was a functaon of radiation Jose and temperature of exposure. It was suggested that the radiation-induced injury to mass cell structures was responsible for the death rate. It was shown that the postirradiataon recovery of cells from radiation damages proceeded in KCl solution two-three times slower than mn water, and it was inhibited completely in NaCl solution

  20. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions.

    Science.gov (United States)

    Hesketh, Andy; Vergnano, Marta; Wan, Chris; Oliver, Stephen G

    2017-07-25

    We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. IMPORTANCE During infections, pathogenic bacteria can release nucleotides into the cells of their eukaryotic hosts. These nucleotides are recognized as signals that contribute to the initiation of defensive immune responses that help the infected

  1. Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy.

    Science.gov (United States)

    Rappaz, Benjamin; Cano, Elena; Colomb, Tristan; Kühn, Jonas; Depeursinge, Christian; Simanis, Viesturs; Magistretti, Pierre J; Marquet, Pierre

    2009-01-01

    Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.

  2. Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11.

    Science.gov (United States)

    Hirayama, Satoru; Shimizu, Masashi; Tsuchiya, Noriko; Furukawa, Soichi; Watanabe, Daisuke; Shimoi, Hitoshi; Takagi, Hiroshi; Ogihara, Hirokazu; Morinaga, Yasushi

    2015-05-01

    We examined mixed-species biofilm formation between Lactobacillus plantarum ML11-11 and both foaming and non-foaming mutant strains of Saccharomyces cerevisiae sake yeasts. Wild-type strains showed significantly lower levels of biofilm formation compared with the non-foaming mutants. Awa1p, a protein involved in foam formation during sake brewing, is a glycosylphosphatidylinositol (GPI)-anchored protein and is associated with the cell wall of sake yeasts. The AWA1 gene of the non-foaming mutant strain Kyokai no. 701 (K701) has lost the C-terminal sequence that includes the GPI anchor signal. Mixed-species biofilm formation and co-aggregation of wild-type strain Kyokai no. 7 (K7) were significantly lower than K701 UT-1 (K701 ura3/ura3 trp1/trp1), while the levels of strain K701 UT-1 carrying the AWA1 on a plasmid were comparable to those of K7. The levels of biofilm formation and co-aggregation of the strain K701 UT-1 harboring AWA1 with a deleted GPI anchor signal were similar to those of K701 UT-1. These results clearly demonstrate that Awa1p present on the surface of sake yeast strain K7 inhibits adhesion between yeast cells and L. plantarum ML11-11, consequently impeding mixed-species biofilm formation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Relationship between Sublethal Injury and Inactivation of Yeast Cells by the Combination of Sorbic Acid and Pulsed Electric Fields▿

    OpenAIRE

    Somolinos, M.; García, D.; Condón, S.; Mañas, P.; Pagán, R.

    2007-01-01

    The objective of this study was to investigate the occurrence of sublethal injury after the pulsed-electric-field (PEF) treatment of two yeasts, Dekkera bruxellensis and Saccharomyces cerevisiae, as well as the relation of sublethal injury to the inactivating effect of the combination of PEF and sorbic acid. PEF caused sublethal injury in both yeasts: more than 90% of surviving D. bruxellensis cells and 99% of surviving S. cerevisiae cells were sublethally injured after 50 pulses at 12 kV/cm ...

  4. Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Anthony Arlia-Ciommo

    2014-05-01

    Full Text Available A body of evidence supports the view that the signaling pathways governing cellular aging – as well as mechanisms of their modulation by longevity-extending genetic, dietary and pharmacological interventions - are conserved across species. The scope of this review is to critically analyze recent advances in our understanding of cell-autonomous mechanisms of chronological aging in the budding yeast Saccharomyces cerevisiae. Based on our analysis, we propose a concept of a biomolecular network underlying the chronology of cellular aging in yeast. The concept posits that such network progresses through a series of lifespan checkpoints. At each of these checkpoints, the intracellular concentrations of some key intermediates and products of certain metabolic pathways - as well as the rates of coordinated flow of such metabolites within an intricate network of intercompartmental communications - are monitored by some checkpoint-specific ′′master regulator′′ proteins. The concept envisions that a synergistic action of these master regulator proteins at certain early-life and late-life checkpoints modulates the rates and efficiencies of progression of such processes as cell metabolism, growth, proliferation, stress resistance, macromolecular homeostasis, survival and death. The concept predicts that, by modulating these vital cellular processes throughout lifespan (i.e., prior to an arrest of cell growth and division, and following such arrest, the checkpoint-specific master regulator proteins orchestrate the development and maintenance of a pro- or anti-aging cellular pattern and, thus, define longevity of chronologically aging yeast.

  5. Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Arlia-Ciommo, Anthony; Leonov, Anna; Piano, Amanda; Svistkova, Veronika; Titorenko, Vladimir I

    2014-05-27

    A body of evidence supports the view that the signaling pathways governing cellular aging - as well as mechanisms of their modulation by longevity-extending genetic, dietary and pharmacological interventions - are conserved across species. The scope of this review is to critically analyze recent advances in our understanding of cell-autonomous mechanisms of chronological aging in the budding yeast Saccharomyces cerevisiae . Based on our analysis, we propose a concept of a biomolecular network underlying the chronology of cellular aging in yeast. The concept posits that such network progresses through a series of lifespan checkpoints. At each of these checkpoints, the intracellular concentrations of some key intermediates and products of certain metabolic pathways - as well as the rates of coordinated flow of such metabolites within an intricate network of intercompartmental communications - are monitored by some checkpoint-specific "master regulator" proteins. The concept envisions that a synergistic action of these master regulator proteins at certain early-life and late-life checkpoints modulates the rates and efficiencies of progression of such processes as cell metabolism, growth, proliferation, stress resistance, macromolecular homeostasis, survival and death. The concept predicts that, by modulating these vital cellular processes throughout lifespan (i.e., prior to an arrest of cell growth and division, and following such arrest), the checkpoint-specific master regulator proteins orchestrate the development and maintenance of a pro- or anti-aging cellular pattern and, thus, define longevity of chronologically aging yeast.

  6. A novel yeast cell-based screen identifies flavone as a tankyrase inhibitor

    International Nuclear Information System (INIS)

    Yashiroda, Yoko; Okamoto, Reika; Hatsugai, Kaori; Takemoto, Yasushi; Goshima, Naoki; Saito, Tamio; Hamamoto, Makiko; Sugimoto, Yoshikazu; Osada, Hiroyuki; Seimiya, Hiroyuki; Yoshida, Minoru

    2010-01-01

    The telomere-associated protein tankyrase 1 is a poly(ADP-ribose) polymerase and is considered to be a promising target for cancer therapy, especially for BRCA-associated cancers. However, an efficient assay system for inhibitor screening has not been established, mainly due to the difficulty of efficient preparation of the enzyme and its substrate. Here, we report a cell-based assay system for detecting inhibitory activity against tankyrase 1. We found that overexpression of the human tankyrase 1 gene causes a growth defect in the fission yeast Schizosaccharomyces pombe. Chemicals that restore the growth defect phenotype can be identified as potential tankyrase 1 inhibitors. We performed a high-throughput screen using this system, and identified flavone as a compound that restores the growth of yeast cells overexpressing tankyrase 1. Indeed, flavone inhibited poly(ADP-ribosyl)ation of proteins caused by overexpression of tankyrase 1 in yeast cells. This system allows rapid identification of inhibitory activity against tankyrase 1 and is amenable to high-throughput screening using robotics.

  7. Characteristics of an immobilized yeast cell system using very high gravity for the fermentation of ethanol.

    Science.gov (United States)

    Ji, Hairui; Yu, Jianliang; Zhang, Xu; Tan, Tianwei

    2012-09-01

    The characteristics of ethanol production by immobilized yeast cells were investigated for both repeated batch fermentation and continuous fermentation. With an initial sugar concentration of 280 g/L during the repeated batch fermentation, more than 98% of total sugar was consumed in 65 h with an average ethanol concentration and ethanol yield of 130.12 g/L and 0.477 g ethanol/g consumed sugar, respectively. The immobilized yeast cell system was reliable for at least 10 batches and for a period of 28 days without accompanying the regeneration of Saccharomyces cerevisiae inside the carriers. The multistage continuous fermentation was carried out in a five-stage column bioreactor with a total working volume of 3.75 L. The bioreactor was operated for 26 days at a dilution rate of 0.015 h(-1). The ethanol concentration of the effluent reached 130.77 g/L ethanol while an average 8.18 g/L residual sugar remained. Due to the high osmotic pressure and toxic ethanol, considerable yeast cells died without regeneration, especially in the last two stages, which led to the breakdown of the whole system of multistage continuous fermentation.

  8. Employing proteomic analysis to compare Paracoccidioides lutzii yeast and mycelium cell wall proteins.

    Science.gov (United States)

    Araújo, Danielle Silva; de Sousa Lima, Patrícia; Baeza, Lilian Cristiane; Parente, Ana Flávia Alves; Melo Bailão, Alexandre; Borges, Clayton Luiz; de Almeida Soares, Célia Maria

    2017-11-01

    Paracoccidioidomycosis is an important systemic mycosis caused by thermodimorphic fungi of the Paracoccidioides genus. During the infective process, the cell wall acts at the interface between the fungus and the host. In this way, the cell wall has a key role in growth, environment sensing and interaction, as well as morphogenesis of the fungus. Since the cell wall is absent in mammals, it may present molecules that are described as target sites for new antifungal drugs. Despite its importance, up to now few studies have been conducted employing proteomics in for the identification of cell wall proteins in Paracoccidioides spp. Here, a detailed proteomic approach, including cell wall-fractionation coupled to NanoUPLC-MS E , was used to study and compare the cell wall fractions from Paracoccidioides lutzii mycelia and yeast cells. The analyzed samples consisted of cell wall proteins extracted by hot SDS followed by extraction by mild alkali. In summary, 512 proteins constituting different cell wall fractions were identified, including 7 predicted GPI-dependent cell wall proteins that are potentially involved in cell wall metabolism. Adhesins previously described in Paracoccidioides spp. such as enolase, glyceraldehyde-3-phosphate dehydrogenase were identified. Comparing the proteins in mycelium and yeast cells, we detected some that are common to both fungal phases, such as Ecm33, and some specific proteins, as glucanase Crf1. All of those proteins were described in the metabolism of cell wall. Our study provides an important elucidation of cell wall composition of fractions in Paracoccidioides, opening a way to understand the fungus cell wall architecture. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cellular radiation effects and hyperthermia: Cytokinetic investigations with stationary phase yeast cells

    International Nuclear Information System (INIS)

    Fingerhut, R.; Otto, F.; Oldiges, H.; Kiefer, J.

    1980-01-01

    Wild type diploid yeast, Saccharomyces cerevisiae strain 211, was subjected to 250 kV X-rays or 50 0 C heat treatment for 30 min or to a combination of both. X-ray exposure took place either in air or in nitrogen. Cell number, percentage of budding cells and cell cycle progression was followed for up to 12 h post irradiation. The distribution of cell cycle stages was determined by flow cytofluorometry. All treatments cause a retardation of cell division rate. Hyperthermia leads mainly to a lengthening of G 1 , whereas X-rays arrest the cells reversibly in G 2 . The effect of the combined treatment appears to be merely additive. No selective action of hyperthermia on hypoxic cells was found. (orig.) [de

  10. Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast, Pichia anomala, for aflatoxin reduction.

    Science.gov (United States)

    Hua, Sui Sheng T; Hernlem, Bradley J; Yokoyama, Wallace; Sarreal, Siov Bouy L

    2015-05-01

    Pichia anomala (Wickerhamomyces anomalus) WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of aflatoxin in the food chain. Maintaining the viability of biocontrol agents in formulated products is a great challenge for commercial applications. Four media, NYG, NYGS, NYGT and NYGST are described which support good growth of yeast cells and were tested as storage formulations. Post growth supplement of 5 % trehalose to NYGST resulted in 83 % viable yeast cells after 12 months in cold storage. Intracellular sorbitol and trehalose concentrations were determined by HPLC analysis at the beginning of the storage and at the end of 12 month. Correlation of cell viability to both trehalose and sorbitol suggested a synergistic effect. Bonferroni (Dunn) t Test, Tukey's Studentized Range (HSD) Test and Duncan's Multiple Range Test, all showed that yeast cell viability in samples with both intracellular trehalose and sorbitol were significantly higher than those with either or none, at a 95 % confidence level. DiBAC4(5) and CFDA-AM were used as the membrane integrity fluorescent stains to create a two-color vital staining scheme with red and green fluorescence, respectively. Yeast cells stored in formulations NYG and NYGS with no detectable trehalose, displayed mostly red fluorescence. Yeast cells in NYGST+5T showed mostly green fluorescence.

  11. Role of the synthase domain of Ags1p in cell wall alpha-glucan biosynthesis in fission yeast

    NARCIS (Netherlands)

    Vos, Alina; Dekker, Nick; Distel, Ben; Leunissen, Jack A. M.; Hochstenbach, Frans

    2007-01-01

    The cell wall is important for maintenance of the structural integrity and morphology of fungal cells. Besides beta-glucan and chitin, alpha-glucan is a major polysaccharide in the cell wall of many fungi. In the fission yeast Schizosaccharomyces pombe, cell wall alpha-glucan is an essential

  12. Yeast-assisted synthesis of polypyrrole: Quantification and influence on the mechanical properties of the cell wall.

    Science.gov (United States)

    Andriukonis, Eivydas; Stirke, Arunas; Garbaras, Andrius; Mikoliunaite, Lina; Ramanaviciene, Almira; Remeikis, Vidmantas; Thornton, Barry; Ramanavicius, Arunas

    2018-04-01

    In this study, the metabolism of yeast cells (Saccharomyces cerevisiae) was utilized for the synthesis of the conducting polymer - polypyrrole (Ppy).Yeast cells were modified in situ by synthesized Ppy. The Ppy was formed in the cell wall by redox-cycling of [Fe(CN) 6 ] 3-/4- , performed by the yeast cells. Fluorescence microscopy, enzymatic digestions, atomic force microscopy and isotope ratio mass spectroscopy were applied to determine both the polymerization reaction itself and the polymer location in yeast cells. Ppy formation resulted in enhanced resistance to lytic enzymes, significant increase of elasticity and alteration of other mechanical cell wall properties evaluated by atomic force microscopy (AFM). The suggested method of polymer synthesis allows the introduction of polypyrrole structures within the cell wall, which is build up from polymers consisting of carbohydrates. This cell wall modification strategy could increase the usefulness of yeast as an alternative energy source in biofuel cells, and in cell based biosensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Nanometer scale thermometry in a living cell

    Science.gov (United States)

    Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D.

    2014-01-01

    Sensitive probing of temperature variations on nanometer scales represents an outstanding challenge in many areas of modern science and technology1. In particular, a thermometer capable of sub-degree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool for many areas of biological, physical and chemical research; possibilities range from the temperature-induced control of gene expression2–5 and tumor metabolism6 to the cell-selective treatment of disease7,8 and the study of heat dissipation in integrated circuits1. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the sub-cellular level2–5. Here, we demonstrate a new approach to nanoscale thermometry that utilizes coherent manipulation of the electronic spin associated with nitrogen-vacancy (NV) color centers in diamond. We show the ability to detect temperature variations down to 1.8 mK (sensitivity of 9mK/Hz) in an ultra-pure bulk diamond sample. Using NV centers in diamond nanocrystals (nanodiamonds, NDs), we directly measure the local thermal environment at length scales down to 200 nm. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the sub-cellular level, enabling unique potential applications in life sciences. PMID:23903748

  14. Effect of diet supplementation with live yeast Saccharomyces cerevisiae on growth performance, caecal ecosystem and health of growing rabbits

    Directory of Open Access Journals (Sweden)

    T. Belhassen

    2016-09-01

    Full Text Available The aim of this study was to determine the effect of the live yeast Saccharomyces cerevisiae on the growth performance, caecal ecosystem and overall health of growing rabbits. A control diet was formulated (crude protein: 15.9%; neutral detergent fibre: 31.6% and another diet obtained by supplementing the control diet with 1 g of Saccharomyces cerevisiae (6.5×109 colony-forming units per kg of diet. Ninety 35-d old rabbits were allotted into 3 groups: TT (rabbits offered the supplemented diet from 17 d of age onwards, CT (rabbits offered supplemented diet from 35 d and CC (rabbits fed non-supplemented diet. Body weight (BW and feed intake were measured weekly and mortality was controlled daily. At 35, 42 and 77 d of age, 6 rabbits from each group were slaughtered and digestive physiological traits, serum clinical chemistry parameters, fermentation traits, and the composition of caecal microbiota examined. At 42 and 56 d of age, 10 rabbits from each group were injected intraperitoneally with 100 μg/animal of ovalbumin and blood samples were collected for examination of plasma immunological parameters. Throughout the experiment (5-11 wk, weight gain and feed intake (37.8 and 112.6 g/d, on av. were not affected by yeast, except for weight gain in the first week after weaning, which was the highest in TT animals among the 3 groups (48.1 vs. 43.9 and 44.2 g/d for TT, CC and CT, respectively; P=0.012. This may be due to the increased trend in feed intake (P=0.072 in the TT group (96.4 g/d compared to the others. Mortality (5/90 was low and did not differ among the 3 groups. Treatments had no effect on slaughter traits at the 3 sampling dates (35, 42 and 77 d. Only the weight of the empty caecum (% BW was higher (P=0.02 in CC (2.2% and CT (2.3% than in TT group (1.8% at 77 d of age. Treatments did not overtly affect the caecal microbiota, although the number of total anaerobic bacteria and Bacteroides were lower (108 and 107/g caecal digesta

  15. The central domain of yeast transcription factor Rpn4 facilitates degradation of reporter protein in human cells.

    Science.gov (United States)

    Morozov, A V; Spasskaya, D S; Karpov, D S; Karpov, V L

    2014-10-16

    Despite high interest in the cellular degradation machinery and protein degradation signals (degrons), few degrons with universal activity along species have been identified. It has been shown that fusion of a target protein with a degradation signal from mammalian ornithine decarboxylase (ODC) induces fast proteasomal degradation of the chimera in both mammalian and yeast cells. However, no degrons from yeast-encoded proteins capable to function in mammalian cells were identified so far. Here, we demonstrate that the yeast transcription factor Rpn4 undergoes fast proteasomal degradation and its central domain can destabilize green fluorescent protein and Alpha-fetoprotein in human HEK 293T cells. Furthermore, we confirm the activity of this degron in yeast. Thus, the Rpn4 central domain is an effective interspecies degradation signal. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. How we live and why we die the secret lives of cells

    CERN Document Server

    Wolpert, Lewis

    2009-01-01

    Cells are the basis of all life in the universe. Our bodies are made up of billions of them: an incredibly complex society that governs everything, from movement to memory and imagination. When we age, it is because our cells slow down; when we get ill, it is because our cells mutate or stop working. In "How We Live and Why we Die", Wolpert provides a clear explanation of the science that underpins our lives. He explains how our bodies function and how we derived from a single cell - the embryo. He examines the science behind the topics that are much discussed but rarely understood - stem-cell research, cloning, DNA - and explains how all life evolved from just one cell. Lively and passionate, "How We Live and Why we Die" is an accessible guide to understanding the human body and, essentially, life itself.

  17. Live celloidosome structures based on the assembly of individual cells by colloid interactions.

    Science.gov (United States)

    Fakhrullin, Rawil F; Brandy, Marie-Laure; Cayre, Olivier J; Velev, Orlin D; Paunov, Vesselin N

    2010-10-14

    A new class of colloid structures, celloidosomes, has been developed which represent hollow microcapsules whose membranes consist of a single monolayer of living cells. Two routes for producing these structures were designed based on templating of: (i) air bubbles and (ii) anisotropic microcrystals of calcium carbonate with living cells, which allowed us to fabricate celloidosomes of spherical, rhombohedral and needle-like morphologies. Air microbubbles were templated by yeast cells coated with poly(allylamine hydrochloride) (PAH), then coated with carboxymethylcellulose and rehydrated resulting in the formation of spherical multicellular structures. Similarly, calcium carbonate microcrystals of anisotropic shapes were coated with several consecutive layers of oppositely charged polyelectrolytes to obtain a positive surface charge which was used to immobilise yeast cells coated with anionic polyelectrolyte of their surfaces. After dissolving of sacrificial cores, hollow multicellular structures were obtained. The viability of the cells in the produced structures was confirmed by using fluorescein diacetate. In order to optimize the separation of celloidosomes from free cells magnetic nanoparticles were immobilised onto the surface of templates prior to the cells deposition, which greatly facilitated the separation using a permanent magnet. Two alternative approaches were developed to form celloidosome structures using magnetically functionalised core-shell microparticles which resulted in the formation of celloidosomes with needle-like and cubic-like geometries which follows the original morphology of the calcium carbonate microcrystals. Our methods for fabrication of celloidosomes may found applications in the development of novel symbiotic bio-structures, artificial multicellular organisms and in tissue engineering. The unusual structure of celloidosomes resembles the primitive forms of multicellular species, like Volvox, and other algae and could be regarded as

  18. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    Science.gov (United States)

    Barik, Debashis; Ball, David A; Peccoud, Jean; Tyson, John J

    2016-12-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  19. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    Directory of Open Access Journals (Sweden)

    Debashis Barik

    2016-12-01

    Full Text Available The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  20. Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiae by cell-free nuclear extracts.

    Science.gov (United States)

    Yuan, Fenghua; Lai, Fangfang; Gu, Liya; Zhou, Wen; El Hokayem, Jimmy; Zhang, Yanbin

    2009-05-01

    Mismatch repair corrects biosynthetic errors generated during DNA replication, whose deficiency causes a mutator phenotype and directly underlies hereditary non-polyposis colorectal cancer and sporadic cancers. Because of remarkably high conservation of the mismatch repair machinery between the budding yeast (Saccharomyces cerevisiae) and humans, the study of mismatch repair in yeast has provided tremendous insights into the mechanisms of this repair pathway in humans. In addition, yeast cells possess an unbeatable advantage over human cells in terms of the easy genetic manipulation, the availability of whole genome deletion strains, and the relatively low cost for setting up the system. Although many components of eukaryotic mismatch repair have been identified, it remains unclear if additional factors, such as DNA helicase(s) and redundant nuclease(s) besides EXO1, participate in eukaryotic mismatch repair. To facilitate the discovery of novel mismatch repair factors, we developed a straightforward in vitro cell-free repair system. Here, we describe the practical protocols for preparation of yeast cell-free nuclear extracts and DNA mismatch substrates, and the in vitro mismatch repair assay. The validity of the cell-free system was confirmed by the mismatch repair deficient yeast strain (Deltamsh2) and the complementation assay with purified yeast MSH2-MSH6.

  1. Reconstructing the regulatory circuit of cell fate determination in yeast mating response.

    Science.gov (United States)

    Shao, Bin; Yuan, Haiyu; Zhang, Rongfei; Wang, Xuan; Zhang, Shuwen; Ouyang, Qi; Hao, Nan; Luo, Chunxiong

    2017-07-01

    Massive technological advances enabled high-throughput measurements of proteomic changes in biological processes. However, retrieving biological insights from large-scale protein dynamics data remains a challenging task. Here we used the mating differentiation in yeast Saccharomyces cerevisiae as a model and developed integrated experimental and computational approaches to analyze the proteomic dynamics during the process of cell fate determination. When exposed to a high dose of mating pheromone, the yeast cell undergoes growth arrest and forms a shmoo-like morphology; however, at intermediate doses, chemotropic elongated growth is initialized. To understand the gene regulatory networks that control this differentiation switch, we employed a high-throughput microfluidic imaging system that allows real-time and simultaneous measurements of cell growth and protein expression. Using kinetic modeling of protein dynamics, we classified the stimulus-dependent changes in protein abundance into two sources: global changes due to physiological alterations and gene-specific changes. A quantitative framework was proposed to decouple gene-specific regulatory modes from the growth-dependent global modulation of protein abundance. Based on the temporal patterns of gene-specific regulation, we established the network architectures underlying distinct cell fates using a reverse engineering method and uncovered the dose-dependent rewiring of gene regulatory network during mating differentiation. Furthermore, our results suggested a potential crosstalk between the pheromone response pathway and the target of rapamycin (TOR)-regulated ribosomal biogenesis pathway, which might underlie a cell differentiation switch in yeast mating response. In summary, our modeling approach addresses the distinct impacts of the global and gene-specific regulation on the control of protein dynamics and provides new insights into the mechanisms of cell fate determination. We anticipate that our

  2. A microfluidic system for studying ageing and dynamic single-cell responses in budding yeast.

    Directory of Open Access Journals (Sweden)

    Matthew M Crane

    Full Text Available Recognition of the importance of cell-to-cell variability in cellular decision-making and a growing interest in stochastic modeling of cellular processes has led to an increased demand for high density, reproducible, single-cell measurements in time-varying surroundings. We present ALCATRAS (A Long-term Culturing And TRApping System, a microfluidic device that can quantitatively monitor up to 1000 cells of budding yeast in a well-defined and controlled environment. Daughter cells are removed by fluid flow to avoid crowding allowing experiments to run for over 60 hours, and the extracellular media may be changed repeatedly and in seconds. We illustrate use of the device by measuring ageing through replicative life span curves, following the dynamics of the cell cycle, and examining history-dependent behaviour in the general stress response.

  3. On the effect of certain mutations on the radiosensitivity of haploid and diploid yeast cells

    International Nuclear Information System (INIS)

    Sokurova, E.N.; Korogodin, V.I.

    1978-01-01

    Mutation ade 1-6 in haploid cell Saccharomyces cerevisiae increases half as much against radioresistance of cells. Diploid cells lacking in adenine, homozygous by ade 1-6 mutation, are nearly twice as radiosensitive as prototrophic cells. Hence ade 1-6 mutation increases radioresistance of haploid cells and decreases that of diplois. These changes in radioresistance are not connected with variations in the extrapolation number of survival curve, the ability of cells to recover from radiation damages upon cultivation in an innutrient medium, and with the inactivation form ratio. Lack of adenine influences the radioresistance of diploid yeast irrespective of whether it is or it is not affected by homo- or heterozygosity by the locus of mating type

  4. Increase of ethanol productivity by cell-recycle fermentation of flocculating yeast.

    Science.gov (United States)

    Wang, F Z; Xie, T; Hui, M

    2011-01-01

    Using the recombinant flocculating Angel yeast F6, long-term repeated batch fermentation for ethanol production was performed and a high volumetric productivity resulted from half cells not washed and the optimum opportunity of residual glucose 20 g l(-1) of last medium. The obtained highest productivity was 2.07 g l-(1) h(-1), which was improved by 75.4% compared with that of 1.18 g l(-1) h(-1) in the first batch fermentation. The ethanol concentration reached 8.4% corresponding to the yield of 0.46 g g(-1). These results will contribute greatly to the industrial production of fuel ethanol using the commercial method with the flocculating yeast.

  5. Immobilization of yeast cells with ionic hydrogel carriers by adhesion-multiplication.

    Science.gov (United States)

    Zhaoxin, L; Fujimura, T

    2000-12-01

    The mixture of an ionic monomer, 2-acrylamido 2-methylpropanesulfonic acid (TBAS), and a series of poly(ethylene glycol) dimethacrylate (nG) monomers were copolymerized with 60Co gamma-rays, and the produced ionic hydrogel polymers were used for immobilization of yeast cells. The cells were adhered onto the surface of the hydrogel polymers and intruded into the interior of the polymers with growing. The immobilized yeast cells with these hydrogel polymers had higher ethanol productivity than that of free cells. The yield of ethanol with poly(TBAS-14G) carrier was the highest and increased by 3.5 times compared to the free cells. It was found that the ethanol yield increased with the increase of glycol number in poly(ethylene glycol) dimethacrylate. The state of the immobilized cells was observed with microscope, and it was also found that the difference in the ethanol productivity is mainly due to the difference in the internal structure and properties of polymer carrier, such as surface charge, hydrophilicity, and swelling ability of polymer carrier.

  6. Fission yeast cells undergo nuclear division in the absence of spindle microtubules.

    Directory of Open Access Journals (Sweden)

    Stefania Castagnetti

    2010-10-01

    Full Text Available Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.

  7. ODE, RDE and SDE models of cell cycle dynamics and clustering in yeast.

    Science.gov (United States)

    Boczko, Erik M; Gedeon, Tomas; Stowers, Chris C; Young, Todd R

    2010-07-01

    Biologists have long observed periodic-like oxygen consumption oscillations in yeast populations under certain conditions, and several unsatisfactory explanations for this phenomenon have been proposed. These ‘autonomous oscillations’ have often appeared with periods that are nearly integer divisors of the calculated doubling time of the culture. We hypothesize that these oscillations could be caused by a form of cell cycle synchronization that we call clustering. We develop some novel ordinary differential equation models of the cell cycle. For these models, and for random and stochastic perturbations, we give both rigorous proofs and simulations showing that both positive and negative growth rate feedback within the cell cycle are possible agents that can cause clustering of populations within the cell cycle. It occurs for a variety of models and for a broad selection of parameter values. These results suggest that the clustering phenomenon is robust and is likely to be observed in nature. Since there are necessarily an integer number of clusters, clustering would lead to periodic-like behaviour with periods that are nearly integer divisors of the period of the cell cycle. Related experiments have shown conclusively that cell cycle clustering occurs in some oscillating yeast cultures.

  8. Comparison of Yeast Cell Protein Solubilization Procedures for Two-dimensional Electrophoresis

    DEFF Research Database (Denmark)

    Harder, A; Wildgruber, R; Nawrocki, A

    1999-01-01

    Three different procedures for the solubilization of yeast (S. cerevisiae) cell proteins were compared on the basis of the obtained two-dimensional (2-D) polypeptide patterns. Major emphasis was laid on minimizing handling steps, protein modification or degradation, and quantitative loss of high...... with sodium dodecyl sulfate (SDS) buffer, consisting of 1% SDS and 100 mM tris(hydroxymethyl)aminomethane (Tris)-HCl, pH 7.0, followed by dilution with "standard" lysis buffer, and (iii) boiling the sample with SDS during cell lysis, followed by dilution with thiourea/urea lysis buffer (2 M thiourea/ 7 M urea...

  9. Functional living biointerfaces to direct cell-material interaction

    OpenAIRE

    Rodrigo Navarro, Aleixandre

    2016-01-01

    [EN] This thesis deals with the development of a living biointerface between synthetic substrates and living cells to engineer cell-material interactions for tissue engineering purposes. This living biointerface is made of Lactococcus lactis, a non-pathogenic lactic bacteria widely used as starter in the dairy industry and, recently, in the expression of heterologous proteins in applications such as oral vaccine delivery or membrane-bound expression of proteins. L. lactis has been engine...

  10. Cth2 Protein Mediates Early Adaptation of Yeast Cells to Oxidative Stress Conditions.

    Directory of Open Access Journals (Sweden)

    Laia Castells-Roca

    Full Text Available Cth2 is an mRNA-binding protein that participates in remodeling yeast cell metabolism in iron starvation conditions by promoting decay of the targeted molecules, in order to avoid excess iron consumption. This study shows that in the absence of Cth2 immediate upregulation of expression of several of the iron regulon genes (involved in high affinity iron uptake and intracellular iron redistribution upon oxidative stress by hydroperoxide is more intense than in wild type conditions where Cth2 is present. The oxidative stress provokes a temporary increase in the levels of Cth2 (itself a member of the iron regulon. In such conditions Cth2 molecules accumulate at P bodies-like structures when the constitutive mRNA decay machinery is compromised. In addition, a null Δcth2 mutant shows defects, in comparison to CTH2 wild type cells, in exit from α factor-induced arrest at the G1 stage of the cell cycle when hydroperoxide treatment is applied. The cell cycle defects are rescued in conditions that compromise uptake of external iron into the cytosol. The observations support a role of Cth2 in modulating expression of diverse iron regulon genes, excluding those specifically involved in the reductive branch of the high-affinity transport. This would result in immediate adaptation of the yeast cells to an oxidative stress, by controlling uptake of oxidant-promoting iron cations.

  11. Yeast for virus research

    Science.gov (United States)

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  12. Neutral space analysis for a Boolean network model of the fission yeast cell cycle network

    Directory of Open Access Journals (Sweden)

    Gonzalo A Ruz

    2014-01-01

    Full Text Available BACKGROUND: Interactions between genes and their products give rise to complex circuits known as gene regulatory networks (GRN that enable cells to process information and respond to external stimuli. Several important processes for life, depend of an accurate and context-specific regulation of gene expression, such as the cell cycle, which can be analyzed through its GRN, where deregulation can lead to cancer in animals or a directed regulation could be applied for biotechnological processes using yeast. An approach to study the robustness of GRN is through the neutral space. In this paper, we explore the neutral space of a Schizosaccharomyces pombe (fission yeast cell cycle network through an evolution strategy to generate a neutral graph, composed of Boolean regulatory networks that share the same state sequences of the fission yeast cell cycle. RESULTS: Through simulations it was found that in the generated neutral graph, the functional networks that are not in the wildtype connected component have in general a Hamming distance more than 3 with the wildtype, and more than 10 between the other disconnected functional networks. Significant differences were found between the functional networks in the connected component of the wildtype network and the rest of the network, not only at a topological level, but also at the state space level, where significant differences in the distribution of the basin of attraction for the G1 fixed point was found for deterministic updating schemes. CONCLUSIONS: In general, functional networks in the wildtype network connected component, can mutate up to no more than 3 times, then they reach a point of no return where the networks leave the connected component of the wildtype. The proposed method to construct a neutral graph is general and can be used to explore the neutral space of other biologically interesting networks, and also formulate new biological hypotheses studying the functional networks in the

  13. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Science.gov (United States)

    Makarova, Alena V; Grabow, Corinn; Gening, Leonid V; Tarantul, Vyacheslav Z; Tahirov, Tahir H; Bessho, Tadayoshi; Pavlov, Youri I

    2011-01-31

    Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+) ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA"). We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  14. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Directory of Open Access Journals (Sweden)

    Alena V Makarova

    2011-01-01

    Full Text Available Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+ ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA". We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  15. Recent advances in yeast cell-surface display technologies for waste biorefineries.

    Science.gov (United States)

    Liu, Zhuo; Ho, Shih-Hsin; Hasunuma, Tomohisa; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko

    2016-09-01

    Waste biorefinery aims to maximize the output of value-added products from various artificial/agricultural wastes by using integrated bioprocesses. To make waste biorefinery economically feasible, it is thus necessary to develop a low-cost, environment-friendly technique to perform simultaneous biodegradation and bioconversion of waste materials. Cell-surface display engineering is a novel, cost-effective technique that can auto-immobilize proteins on the cell exterior of microorganisms, and has been applied for use with waste biofinery. Through tethering different enzymes (e.g., cellulase, lipase, and protease) or metal-binding peptides on cell surfaces, various yeast strains can effectively produce biofuels and biochemicals from sugar/protein-rich waste materials, catalyze waste oils into biodiesels, or retrieve heavy metals from wastewater. This review critically summarizes recent applications of yeast cell-surface display on various types of waste biorefineries, highlighting its potential and future challenges with regard to commercializing this technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast.

    Science.gov (United States)

    Bermejo, Clara; Ewald, Jennifer C; Lanquar, Viviane; Jones, Alexander M; Frommer, Wolf B

    2011-08-15

    Over the past decade, we have learned that cellular processes, including signalling and metabolism, are highly compartmentalized, and that relevant changes in metabolic state can occur at sub-second timescales. Moreover, we have learned that individual cells in populations, or as part of a tissue, exist in different states. If we want to understand metabolic processes and signalling better, it will be necessary to measure biochemical and biophysical responses of individual cells with high temporal and spatial resolution. Fluorescence imaging has revolutionized all aspects of biology since it has the potential to provide information on the cellular and subcellular distribution of ions and metabolites with sub-second time resolution. In the present review we summarize recent progress in quantifying ions and metabolites in populations of yeast cells as well as in individual yeast cells with the help of quantitative fluorescent indicators, namely FRET metabolite sensors. We discuss the opportunities and potential pitfalls and the controls that help preclude misinterpretation. © The Authors Journal compilation © 2011 Biochemical Society

  17. A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell

    Science.gov (United States)

    Clay, Lori; Caudron, Fabrice; Denoth-Lippuner, Annina; Boettcher, Barbara; Buvelot Frei, Stéphanie; Snapp, Erik Lee; Barral, Yves

    2014-01-01

    In many cell types, lateral diffusion barriers compartmentalize the plasma membrane and, at least in budding yeast, the endoplasmic reticulum (ER). However, the molecular nature of these barriers, their mode of action and their cellular functions are unclear. Here, we show that misfolded proteins of the ER remain confined into the mother compartment of budding yeast cells. Confinement required the formation of a lateral diffusion barrier in the form of a distinct domain of the ER-membrane at the bud neck, in a septin-, Bud1 GTPase- and sphingolipid-dependent manner. The sphingolipids, but not Bud1, also contributed to barrier formation in the outer membrane of the dividing nucleus. Barrier-dependent confinement of ER stress into the mother cell promoted aging. Together, our data clarify the physical nature of lateral diffusion barriers in the ER and establish the role of such barriers in the asymmetric segregation of proteotoxic misfolded proteins during cell division and aging. DOI: http://dx.doi.org/10.7554/eLife.01883.001 PMID:24843009

  18. Arming Technology in Yeast-Novel Strategy for Whole-cell Biocatalyst and Protein Engineering.

    Science.gov (United States)

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2013-09-09

    Cell surface display of proteins/peptides, in contrast to the conventional intracellular expression, has many attractive features. This arming technology is especially effective when yeasts are used as a host, because eukaryotic modifications that are often required for functional use can be added to the surface-displayed proteins/peptides. A part of various cell wall or plasma membrane proteins can be genetically fused to the proteins/peptides of interest to be displayed. This technology, leading to the generation of so-called "arming technology", can be employed for basic and applied research purposes. In this article, we describe various strategies for the construction of arming yeasts, and outline the diverse applications of this technology to industrial processes such as biofuel and chemical productions, pollutant removal, and health-related processes, including oral vaccines. In addition, arming technology is suitable for protein engineering and directed evolution through high-throughput screening that is made possible by the feature that proteins/peptides displayed on cell surface can be directly analyzed using intact cells without concentration and purification. Actually, novel proteins/peptides with improved or developed functions have been created, and development of diagnostic/therapeutic antibodies are likely to benefit from this powerful approach.

  19. Fundamental mechanisms of telomerase action in yeasts and mammals: understanding telomeres and telomerase in cancer cells.

    Science.gov (United States)

    Armstrong, Christine A; Tomita, Kazunori

    2017-03-01

    Aberrant activation of telomerase occurs in 85-90% of all cancers and underpins the ability of cancer cells to bypass their proliferative limit, rendering them immortal. The activity of telomerase is tightly controlled at multiple levels, from transcriptional regulation of the telomerase components to holoenzyme biogenesis and recruitment to the telomere, and finally activation and processivity. However, studies using cancer cell lines and other model systems have begun to reveal features of telomeres and telomerase that are unique to cancer. This review summarizes our current knowledge on the mechanisms of telomerase recruitment and activation using insights from studies in mammals and budding and fission yeasts. Finally, we discuss the differences in telomere homeostasis between normal cells and cancer cells, which may provide a foundation for telomere/telomerase targeted cancer treatments. © 2017 The Authors.

  20. Selection of G1 Phase Yeast Cells for Synchronous Meiosis and Sporulation.

    Science.gov (United States)

    Stuart, David T

    2017-01-01

    Centrifugal elutriation is a procedure that allows the fractionation of cell populations based upon their size and shape. This allows cells in distinct cell cycle stages can be captured from an asynchronous population. The technique is particularly helpful when performing an experiment to monitor the progression of cells through the cell cycle or meiosis. Yeast sporulation like gametogenesis in other eukaryotes initiates from the G1 phase of the cell cycle. Conveniently, S. cerevisiae arrest in G1 phase when starved for nutrients and so withdrawal of nitrogen and glucose allows cells to abandon vegetative growth in G1 phase before initiating the sporulation program. This simple starvation protocol yields a partial synchronization that has been used extensively in studies of progression through meiosis and sporulation. By using centrifugal elutriation it is possible to isolate a homogeneous population of G1 phase cells and induce them to sporulate synchronously, which is beneficial for investigating progression through meiosis and sporulation. An additionally benefit of this protocol is that cell populations can be isolated based upon size and both large and small cell populations can be tested for progression through meiosis and sporulation. Here we present a protocol for purification of G1 phase diploid cells for examining synchronous progression through meiosis and sporulation.

  1. Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis

    Science.gov (United States)

    2018-01-01

    The shaping of individual cells requires a tight coordination of cell mechanics and growth. However, it is unclear how information about the mechanical state of the wall is relayed to the molecular processes building it, thereby enabling the coordination of cell wall expansion and assembly during morphogenesis. Combining theoretical and experimental approaches, we show that a mechanical feedback coordinating cell wall assembly and expansion is essential to sustain mating projection growth in budding yeast (Saccharomyces cerevisiae). Our theoretical results indicate that the mechanical feedback provided by the Cell Wall Integrity pathway, with cell wall stress sensors Wsc1 and Mid2 increasingly activating membrane-localized cell wall synthases Fks1/2 upon faster cell wall expansion, stabilizes mating projection growth without affecting cell shape. Experimental perturbation of the osmotic pressure and cell wall mechanics, as well as compromising the mechanical feedback through genetic deletion of the stress sensors, leads to cellular phenotypes that support the theoretical predictions. Our results indicate that while the existence of mechanical feedback is essential to stabilize mating projection growth, the shape and size of the cell are insensitive to the feedback. PMID:29346368

  2. Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast.

    Science.gov (United States)

    Kaplan, Tommy; Liu, Chih Long; Erkmann, Judith A; Holik, John; Grunstein, Michael; Kaufman, Paul D; Friedman, Nir; Rando, Oliver J

    2008-11-01

    Acetylation of histone H3 lysine 56 is a covalent modification best known as a mark of newly replicated chromatin, but it has also been linked to replication-independent histone replacement. Here, we measured H3K56ac levels at single-nucleosome resolution in asynchronously growing yeast cultures, as well as in yeast proceeding synchronously through the cell cycle. We developed a quantitative model of H3K56ac kinetics, which shows that H3K56ac is largely explained by the genomic replication timing and the turnover rate of each nucleosome, suggesting that cell cycle profiles of H3K56ac should reveal most first-time nucleosome incorporation events. However, since the deacetylases Hst3/4 prevent use of H3K56ac as a marker for histone deposition during M phase, we also directly measured M phase histone replacement rates. We report a global decrease in turnover rates during M phase and a further specific decrease in turnover at several early origins of replication, which switch from rapidly replaced in G1 phase to stably bound during M phase. Finally, by measuring H3 replacement in yeast deleted for the H3K56 acetyltransferase Rtt109 and its two co-chaperones Asf1 and Vps75, we find evidence that Rtt109 and Asf1 preferentially enhance histone replacement at rapidly replaced nucleosomes, whereas Vps75 appears to inhibit histone turnover at those loci. These results provide a broad perspective on histone replacement/incorporation throughout the cell cycle and suggest that H3K56 acetylation provides a positive-feedback loop by which replacement of a nucleosome enhances subsequent replacement at the same location.

  3. Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast.

    Directory of Open Access Journals (Sweden)

    Tommy Kaplan

    2008-11-01

    Full Text Available Acetylation of histone H3 lysine 56 is a covalent modification best known as a mark of newly replicated chromatin, but it has also been linked to replication-independent histone replacement. Here, we measured H3K56ac levels at single-nucleosome resolution in asynchronously growing yeast cultures, as well as in yeast proceeding synchronously through the cell cycle. We developed a quantitative model of H3K56ac kinetics, which shows that H3K56ac is largely explained by the genomic replication timing and the turnover rate of each nucleosome, suggesting that cell cycle profiles of H3K56ac should reveal most first-time nucleosome incorporation events. However, since the deacetylases Hst3/4 prevent use of H3K56ac as a marker for histone deposition during M phase, we also directly measured M phase histone replacement rates. We report a global decrease in turnover rates during M phase and a further specific decrease in turnover at several early origins of replication, which switch from rapidly replaced in G1 phase to stably bound during M phase. Finally, by measuring H3 replacement in yeast deleted for the H3K56 acetyltransferase Rtt109 and its two co-chaperones Asf1 and Vps75, we find evidence that Rtt109 and Asf1 preferentially enhance histone replacement at rapidly replaced nucleosomes, whereas Vps75 appears to inhibit histone turnover at those loci. These results provide a broad perspective on histone replacement/incorporation throughout the cell cycle and suggest that H3K56 acetylation provides a positive-feedback loop by which replacement of a nucleosome enhances subsequent replacement at the same location.

  4. Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Leão, Mariana; Gomes, Sara; Bessa, Cláudia; Soares, Joana; Raimundo, Liliana [REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto (Portugal); Monti, Paola; Fronza, Gilberto [Mutagenesis Unit, Istituto di Ricerca e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa (Italy); Pereira, Clara [REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto (Portugal); Saraiva, Lucília, E-mail: lucilia.saraiva@ff.up.pt [REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto (Portugal)

    2015-01-01

    In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either per se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions. - Highlights: • p53, p63 and p73 are individually studied in the yeast S. cerevisiae. • p53 family members induce ROS production, cell cycle arrest and autophagy in yeast. • p53 family members increase actin depolarization and expression levels in yeast. • MDM2 and MDMX inhibit the activity of p53 family members in yeast. • Yeast can be a useful tool to study the biology and drugability of p53, p63 and p73.

  5. Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules

    International Nuclear Information System (INIS)

    Leão, Mariana; Gomes, Sara; Bessa, Cláudia; Soares, Joana; Raimundo, Liliana; Monti, Paola; Fronza, Gilberto; Pereira, Clara; Saraiva, Lucília

    2015-01-01

    In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either per se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions. - Highlights: • p53, p63 and p73 are individually studied in the yeast S. cerevisiae. • p53 family members induce ROS production, cell cycle arrest and autophagy in yeast. • p53 family members increase actin depolarization and expression levels in yeast. • MDM2 and MDMX inhibit the activity of p53 family members in yeast. • Yeast can be a useful tool to study the biology and drugability of p53, p63 and p73

  6. Engineering Multifunctional Living Paints: Thin, Convectively-Assembled Biocomposite Coatings of Live Cells and Colloidal Latex Particles Deposited by Continuous Convective-Sedimentation Assembly

    Science.gov (United States)

    Jenkins, Jessica Shawn

    Advanced composite materials could be revolutionized by the development of methods to incorporate living cells into functional materials and devices. This could be accomplished by continuously and rapidly depositing thin ordered arrays of adhesive colloidal latex particles and live cells that maintain stability and preserve microbial reactivity. Convective assembly is one method of rapidly assembling colloidal particles into thin (advantages over thicker randomly ordered composites, including enhanced cell stability and increased reactivity through minimized diffusion resistance to nutrients and reduced light scattering. This method can be used to precisely deposit live bacteria, cyanobacteria, yeast, and algae into biocomposite coatings, forming reactive biosensors, photoabsorbers, or advanced biocatalysts. This dissertation developed new continuous deposition and coating characterization methods for fabricating and characterizing 90 hours) photohydrogen production under anoxygenic conditions. Nutrient reduction slows cell division, minimizing coating outgrowth, and promotes photohydrogen generation, improving coating reactivity. Scanning electron microscopy of microstructure revealed how coating reactivity can be controlled by the size and distribution of the nanopores in the biocomposite layers. Variations in colloid microsphere size and suspension composition do not affect coating reactivity, but both parameters alter coating microstructure. Porous paper coated with thin coatings of colloidal particles and cells to enable coatings to be used in a gas-phase without dehydration may offer higher volumetric productivity for hydrogen production. Future work should focus on optimization of cell density, light intensity, media cycling, and acetate concentration.

  7. A magnetic trap for living cells suspended in a paramagnetic buffer

    Science.gov (United States)

    Winkleman, Adam; Gudiksen, Katherine L.; Ryan, Declan; Whitesides, George M.; Greenfield, Derek; Prentiss, Mara

    2004-09-01

    This manuscript describes the fabrication and use of a three-dimensional magnetic trap for diamagnetic objects in an aqueous solution of paramagnetic ions; this trap uses permanent magnets. It demonstrates trapping of polystyrene spheres, and of various types of living cells: mouse fibroblast (NIH-3T3), yeast (Saccharomyces cerevisiae), and algae (Chlamydomonas reinhardtii). For a 40mM solution of gadolinium (III) diethylenetriaminepentaacetic acid (Gd .DTPA) in aqueous buffer, the smallest cell (particle) that could be trapped had a radius of ˜2.5μm. The trapped particle and location of the magnetic trap can be translated in three dimensions by independent manipulation of the permanent magnets. This letter a1so characterizes the biocompatibility of the trapping solution.

  8. Engineering the Substrate Specificity of the DhbE Adenylation Domain by Yeast Cell Surface Display

    OpenAIRE

    Zhang, Keya; Nelson, Kathryn M.; Bhuripanyo, Karan; Grimes, Kimberly D.; Zhao, Bo; Aldrich, Courtney C.; Yin, Jun

    2013-01-01

    The adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) activate aryl acids or amino acids to launch their transfer through the NRPS assembly line for the biosynthesis of many medicinally important natural products. In order to expand the substrate pool of NRPSs, we developed a method based on yeast cell surface display to engineer the substrate specificities of the A-domains. We acquired A-domain mutants of DhbE that have 11- and 6-fold increases in kcat/Km with nonnative sub...

  9. Yeast cell based feed additives: Studies on aflatoxin B1 and zearalenone

    OpenAIRE

    2011-01-01

    Abstract Thirty commercially available yeast cell wall products and two reference bentonites were tested for their ability to bind aflatoxin B1 (AFB1) and zearalenone (ZON) in buffer solutions at pH 3 and pH 6.5 as well as in real gastric juice. For most products, the binding efficacy of AFB1 correlated with the ash content which was between 2.6 and 89% and constituted the inorganic non-volatile components, like mineral clays, of the samples. Samples with smectite as main ash compo...

  10. Fabrication of silica hollow particles using yeast cells as a template

    Science.gov (United States)

    Liao, Shenglan; Lin, Liqin; Chen, Xiaofang; Liu, Jingru; Zhang, Biao

    2018-04-01

    Inorganic hollow particles have attracted great interest in recent years. In this study, silica micro spheres were produced. Yeast cells were used as a biological template. The silica shell was synthesized by the hydrolysis of tetraethoxysilane (TEOS) in water-alcohol mixtures as solvent using ammonia as a catalyst according to the Stoeber process. Various approaches including X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transformed infrared (FT-IR) spectroscopy were used to characterize the products. The results showed that the thermally treated samples were SiO2 hollow microspheres with a diameter varying between 1-5μm.

  11. Influence of intracellular adenosine-triphosphate concentration of yeast cells on survival following X-irradiation

    International Nuclear Information System (INIS)

    Reinhard, R.D.; Pohlit, W.

    1975-01-01

    The effect of D-glucose, 2-deoxy-D-glucose and starvation in buffer on the ATP-concentration of yeast cells has been studied. In both the wild-type and a respiratory-deficient mutant strain 2-deoxy-D-glucose decreases the value for ATP, while it is enhanced by glucose only in the mutant strain. Populations with different ATP-concentrations have been irradiated. The results suggest that ATP may be an essential factor in the system that determines the length of the shoulder of the dose effect curves. (orig.) [de

  12. The effects of 'cell age' upon the lethal effects of physical and chemical mutagens in the yeast, Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Parry, J.M.

    1976-01-01

    Yeast cultures progressing from the exponential to the stationary phase of growth showed changes in cell sensitivity to physical agents such as UV light, heat shock at 52 0 C and the chemical mutagens ethyl methane sulphonate, nitrous acid and mitomycin C. Exponential phase cells showed maximum resistance to heat shock and the three chemicals. The increased resistance of exponential phase cells to UV light was shown to be dependent upon the functional integrity of the RAD 50 gene. Treatment of growing yeast cultures with radioactively labelled ethyl methane sulphonate indicated the preferential uptake of radioactivity during the sensitive exponential stage of growth. The results indicated that the differential uptake of the chemical mutagens was responsible for at least a fraction of the variations in cell sensitivity observed in yeast cultures at different phases of growth. (orig.) [de

  13. Alpha-ketoglutarate enhances freeze-thaw tolerance and prevents carbohydrate-induced cell death of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Bayliak, Maria M; Hrynkiv, Olha V; Knyhynytska, Roksolana V; Lushchak, Volodymyr I

    2018-01-01

    Stress resistance and fermentative capability are important quality characteristics of baker's yeast. In the present study, we examined protective effects of exogenous alpha-ketoglutarate (AKG), an intermediate of the tricarboxylic acid cycle and amino acid metabolism, against freeze-thaw and carbohydrate-induced stresses in the yeast Saccharomyces cerevisiae. Growth on AKG-supplemented medium prevented a loss of viability and improved fermentative capacity of yeast cells after freeze-thaw treatment. The cells grown in the presence of AKG had higher levels of amino acids (e.g., proline), higher metabolic activity and total antioxidant capacity, and higher activities of catalase, NADP-dependent glutamate dehydrogenase and glutamine synthase compared to control ones. Both synthesis of amino acids and enhancement of antioxidant system capacity could be involved in AKG-improved freeze-thaw tolerance in S. cerevisiae. Cell viability dramatically decreased under incubation of stationary-phase yeast cells in 2% glucose or fructose solutions (in the absence of the other nutrients) as compared with incubation in distilled water or in 10 mM AKG solution. The decrease in cell viability was accompanied by acidification of the medium, and decrease in cellular respiration, aconitase activity, and levels of total protein and free amino acids. The supplementation with 10 mM AKG effectively prevented carbohydrate-induced yeast death. Protective mechanisms of AKG could be associated with the intensification of respiration and prevention of decreasing protein level as well as with direct antioxidant AKG action.

  14. Yeast surface displaying glucose oxidase as whole-cell biocatalyst: construction, characterization, and its electrochemical glucose sensing application.

    Science.gov (United States)

    Wang, Hongwei; Lang, Qiaolin; Li, Liang; Liang, Bo; Tang, Xiangjiang; Kong, Lingrang; Mascini, Marco; Liu, Aihua

    2013-06-18

    The display of glucose oxidase (GOx) on yeast cell surface using a-agglutinin as an anchor motif was successfully developed. Both the immunochemical analysis and enzymatic assay showed that active GOx was efficiently expressed and translocated on the cell surface. Compared with conventional GOx, the yeast cell surface that displayed GOx (GOx-yeast) demonstrated excellent enzyme properties, such as good stability within a wide pH range (pH 3.5-11.5), good thermostability (retaining over 94.8% enzyme activity at 52 °C and 84.2% enzyme activity at 56 °C), and high d-glucose specificity. In addition, direct electrochemistry was achieved at a GOx-yeast/multiwalled-carbon-nanotube modified electrode, suggesting that the host cell of yeast did not have any adverse effect on the electrocatalytic property of the recombinant GOx. Thus, a novel electrochemical glucose biosensor based on this GOx-yeast was developed. The as-prepared biosensor was linear with the concentration of d-glucose within the range of 0.1-14 mM and a low detection limit of 0.05 mM (signal-to-noise ratio of S/N = 3). Moreover, the as-prepared biosensor is stable, specific, reproducible, simple, and cost-effective, which can be applicable for real sample detection. The proposed strategy to construct robust GOx-yeast may be applied to explore other oxidase-displaying-system-based whole-cell biocatalysts, which can find broad potential application in biosensors, bioenergy, and industrial catalysis.

  15. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning

    KAUST Repository

    Feizi, Alborz

    2016-09-24

    Monitoring yeast cell viability and concentration is important in brewing, baking and biofuel production. However, existing methods of measuring viability and concentration are relatively bulky, tedious and expensive. Here we demonstrate a compact and cost-effective automatic yeast analysis platform (AYAP), which can rapidly measure cell concentration and viability. AYAP is based on digital in-line holography and on-chip microscopy and rapidly images a large field-of-view of 22.5 mm2. This lens-free microscope weighs 70 g and utilizes a partially-coherent illumination source and an opto-electronic image sensor chip. A touch-screen user interface based on a tablet-PC is developed to reconstruct the holographic shadows captured by the image sensor chip and use a support vector machine (SVM) model to automatically classify live and dead cells in a yeast sample stained with methylene blue. In order to quantify its accuracy, we varied the viability and concentration of the cells and compared AYAP\\'s performance with a fluorescence exclusion staining based gold-standard using regression analysis. The results agree very well with this gold-standard method and no significant difference was observed between the two methods within a concentration range of 1.4 × 105 to 1.4 × 106 cells per mL, providing a dynamic range suitable for various applications. This lensfree computational imaging technology that is coupled with machine learning algorithms would be useful for cost-effective and rapid quantification of cell viability and density even in field and resource-poor settings.

  16. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning.

    Science.gov (United States)

    Feizi, Alborz; Zhang, Yibo; Greenbaum, Alon; Guziak, Alex; Luong, Michelle; Chan, Raymond Yan Lok; Berg, Brandon; Ozkan, Haydar; Luo, Wei; Wu, Michael; Wu, Yichen; Ozcan, Aydogan

    2016-11-01

    Monitoring yeast cell viability and concentration is important in brewing, baking and biofuel production. However, existing methods of measuring viability and concentration are relatively bulky, tedious and expensive. Here we demonstrate a compact and cost-effective automatic yeast analysis platform (AYAP), which can rapidly measure cell concentration and viability. AYAP is based on digital in-line holography and on-chip microscopy and rapidly images a large field-of-view of 22.5 mm 2 . This lens-free microscope weighs 70 g and utilizes a partially-coherent illumination source and an opto-electronic image sensor chip. A touch-screen user interface based on a tablet-PC is developed to reconstruct the holographic shadows captured by the image sensor chip and use a support vector machine (SVM) model to automatically classify live and dead cells in a yeast sample stained with methylene blue. In order to quantify its accuracy, we varied the viability and concentration of the cells and compared AYAP's performance with a fluorescence exclusion staining based gold-standard using regression analysis. The results agree very well with this gold-standard method and no significant difference was observed between the two methods within a concentration range of 1.4 × 10 5 to 1.4 × 10 6 cells per mL, providing a dynamic range suitable for various applications. This lensfree computational imaging technology that is coupled with machine learning algorithms would be useful for cost-effective and rapid quantification of cell viability and density even in field and resource-poor settings.

  17. Synthesis of polypyrrole within the cell wall of yeast by redox-cycling of [Fe(CN)6](3-)/[Fe(CN)6](4-).

    Science.gov (United States)

    Ramanavicius, Arunas; Andriukonis, Eivydas; Stirke, Arunas; Mikoliunaite, Lina; Balevicius, Zigmas; Ramanaviciene, Almira

    2016-02-01

    Yeast cells are often used as a model system in various experiments. Moreover, due to their high metabolic activity, yeast cells have a potential to be applied as elements in the design of biofuel cells and biosensors. However a wider application of yeast cells in electrochemical systems is limited due to high electric resistance of their cell wall. In order to reduce this problem we have polymerized conducting polymer polypyrrole (Ppy) directly in the cell wall and/or within periplasmic membrane. In this research the formation of Ppy was induced by [Fe(CN)6](3-)ions, which were generated from K4[Fe(CN)6], which was initially added to polymerization solution. The redox process was catalyzed by oxido-reductases, which are present in the plasma membrane of yeast cells. The formation of Ppy was confirmed by spectrophotometry and atomic force microscopy. It was confirmed that the conducting polymer polypyrrole was formed within periplasmic space and/or within the cell wall of yeast cells, which were incubated in solution containing pyrrole, glucose and [Fe(CN)6](4-). After 24h drying at room temperature we have observed that Ppy-modified yeast cell walls retained their initial spherical form. In contrast to Ppy-modified cells, the walls of unmodified yeast have wrinkled after 24h drying. The viability of yeast cells in the presence of different pyrrole concentrations has been evaluated. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Utilization of brewery wastewater for culturing yeast cells for use in river water remediation.

    Science.gov (United States)

    Chang, Su-Yun; Sun, Jing-Mei; Song, Shu-Qiang; Sun, Bao-Sheng

    2012-01-01

    Successful in situ bio-augmentation of contaminated river water involves reducing the cost of the bio-agent. In this study, brewery wastewater was used to culture yeast cells for degrading the COD(Cr) from a contaminated river. The results showed that 15 g/L of yeast cells could be achieved after being cultured in the autoclaved brewery wastewater with 5 mL/L of saccharified starch and 9 g/L of corn steep liquor. The COD(Cr) removal efficiency was increased from 22% to 33% when the cells were cultured using the mentioned method. Based on the market price of materials used in this method, the cost of the medium for remediating 1 m3 of river water was 0.0076 US dollars. If the additional cost of field implementation is included, the total cost is less than 0.016 US dollars for treating 1 m3 of river water. The final cost was dependent on the size of remediation: the larger the scale, the lower the cost. By this method, the nutrient in the brewery wastewater was reused, the cost of brewery wastewater treatment was saved and the cost of the remediation using bio-augmentation was reduced. Hence, it is suggested that using brewery wastewater to culture a bio-agent for bio-augmentation is a cost-effective method.

  19. Raspberry wine fermentation with suspended and immobilized yeast cells of two strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Djordjević, Radovan; Gibson, Brian; Sandell, Mari; de Billerbeck, Gustavo M; Bugarski, Branko; Leskošek-Čukalović, Ida; Vunduk, Jovana; Nikićević, Ninoslav; Nedović, Viktor

    2015-01-01

    The objectives of this study were to assess the differences in fermentative behaviour of two different strains of Saccharomyces cerevisiae (EC1118 and RC212) and to determine the differences in composition and sensory properties of raspberry wines fermented with immobilized and suspended yeast cells of both strains at 15 °C. Analyses of aroma compounds, glycerol, acetic acid and ethanol, as well as the kinetics of fermentation and a sensory evaluation of the wines, were performed. All fermentations with immobilized yeast cells had a shorter lag phase and faster utilization of sugars and ethanol production than those fermented with suspended cells. Slower fermentation kinetics were observed in all the samples that were fermented with strain RC212 (suspended and immobilized) than in samples fermented with strain EC1118. Significantly higher amounts of acetic acid were detected in all samples fermented with strain RC212 than in those fermented with strain EC1118 (0.282 and 0.602 g/l, respectively). Slightly higher amounts of glycerol were observed in samples fermented with strain EC1118 than in those fermented with strain RC212. Copyright © 2014 John Wiley & Sons, Ltd.

  20. The indentation of pressurized elastic shells: from polymeric capsules to yeast cells

    KAUST Repository

    Vella, D.

    2011-08-10

    Pressurized elastic capsules arise at scales ranging from the 10 m diameter pressure vessels used to store propane at oil refineries to the microscopic polymeric capsules that may be used in drug delivery. Nature also makes extensive use of pressurized elastic capsules: plant cells, bacteria and fungi have stiff walls, which are subject to an internal turgor pressure. Here, we present theoretical, numerical and experimental investigations of the indentation of a linearly elastic shell subject to a constant internal pressure. We show that, unlike unpressurized shells, the relationship between force and displacement demonstrates two linear regimes. We determine analytical expressions for the effective stiffness in each of these regimes in terms of the material properties of the shell and the pressure difference. As a consequence, a single indentation experiment over a range of displacements may be used as a simple assay to determine both the internal pressure and elastic properties of capsules. Our results are relevant for determining the internal pressure in bacterial, fungal or plant cells. As an illustration of this, we apply our results to recent measurements of the stiffness of baker\\'s yeast and infer from these experiments that the internal osmotic pressure of yeast cells may be regulated in response to changes in the osmotic pressure of the external medium.

  1. Rapid and serial quantification of adhesion forces of yeast and Mammalian cells.

    Directory of Open Access Journals (Sweden)

    Eva Potthoff

    Full Text Available Cell adhesion to surfaces represents the basis for niche colonization and survival. Here we establish serial quantification of adhesion forces of different cell types using a single probe. The pace of single-cell force-spectroscopy was accelerated to up to 200 yeast and 20 mammalian cells per probe when replacing the conventional cell trapping cantilever chemistry of atomic force microscopy by underpressure immobilization with fluidic force microscopy (FluidFM. In consequence, statistically relevant data could be recorded in a rapid manner, the spectrum of examinable cells was enlarged, and the cell physiology preserved until approached for force spectroscopy. Adhesion forces of Candida albicans increased from below 4 up to 16 nN at 37°C on hydrophobic surfaces, whereas a Δhgc1-mutant showed forces consistently below 4 nN. Monitoring adhesion of mammalian cells revealed mean adhesion forces of 600 nN of HeLa cells on fibronectin and were one order of magnitude higher than those observed for HEK cells.

  2. Live cell imaging reveals at novel view of DNA

    International Nuclear Information System (INIS)

    Moritomi-Yano, Keiko; Yano, Ken-ichi

    2010-01-01

    Non-homologous end-joining (NHEJ) is the major repair pathway for DNA double-strand breaks (DSBs) that are the most severe form of DNA damages. Recently, live cell imaging techniques coupled with laser micro-irradiation were used to analyze the spatio-temporal behavior of the NHEJ core factors upon DSB induction in living cells. Based on the live cell imaging studies, we proposed a novel two-phase model for DSB sensing and protein assembly in the NHEJ pathway. This new model provides a novel view of the dynamic protein behavior on DSBs and broad implications for the molecular mechanism of NHEJ. (author)

  3. Detecting and Tracking Nonfluorescent Nanoparticles Probes in Live Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gufeng; Fang, Ning

    2012-01-17

    Precisely imaging and tracking dynamic biological processes in live cells are crucial for both fundamental research in life sciences and biomedical applications. Nonfluorescent nanoparticles are emerging as important optical probes in live-cell imaging because of their excellent photostability, large optical cross sections, and low cytotoxicity. Here, we provide a review of recent development in optical imaging of nonfluorescent nanoparticle probes and their applications in dynamic tracking and biosensing in live cells. A brief discussion on cytotoxicity of nanoparticle probes is also provided.

  4. Long term imaging of living brain cancer cells

    Science.gov (United States)

    Farias, Patricia M. A.; Galembeck, André; Milani, Raquel; Andrade, Arnaldo C. D. S.; Stingl, Andreas

    2018-02-01

    QDs synthesized in aqueous medium and functionalized with polyethylene glycol were used as fluorescent probes. They label and monitor living healthy and cancer brain glial cells in culture. Physical-chemical characterization was performed. Toxicological studies were performed by in vivo short and long-term inhalation in animal models. Healthy and cancer glial living cells were incubated in culture media with highly controlled QDs. Specific features of glial cancer cells were enhanced by QD labelling. Cytoplasmic labelling pattern was clearly distinct for healthy and cancer cells. Labelled cells kept their normal activity for same period as non-labelled control samples.

  5. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    Science.gov (United States)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. Differential analysis of the inactivation of yeast cells induced by irradiation with various ionization densities

    International Nuclear Information System (INIS)

    Grundler, W.

    1979-03-01

    A quantitative investigation is presented on the radiation-induced inactivation of yeast cells in the first generations as a function of dose, repair, and various ionization densities. The study has been made to solve two main questions, i.e.: How do these cells reproduce, and how do they look like at the end of the investigation. Finding the answer to these questions, it was hoped, would lead to a description of survival in the colony test by defining the final fate of the cells which represent the stationary end state. The experiments were to clarify to what extent the dose-response curve yields only relatively general information on radiation-induced damage, or what kind of damage is mainly and best described. This supplementary information will help to improve the interpretation of many experiments having been made with this strain. (orig./MG) [de

  7. Genetic effects of decay by electron capture of radionuclides in yeasts cell

    International Nuclear Information System (INIS)

    Gracheva, L.M.; Korolev, V.G.

    1984-01-01

    Regularities of genetic effect on the yeast cell Saccharomyces cerevisiae, incorporated radionuclides decaying according to the scheme of k-capture- 7 Be, 54 Mn, 85 Sr are studied. It is known that this type of decay models the ionization of internal electron shells of atoms which is most probable when a cell is affected by external ionizing radiation. It is shown that the decay of radionuclides connecting with a DNA molecule in a cell according to the scheme of D-capture brings about a strong lethal effect. The relative mutagenic efficiency is much lower than that for gamma-radiation and many radionuclides decaying according to the scheme of B-decay. In the mutation spectrum induced by these radionuclides the increase in the number of mutations of the reading frame shift type is observed

  8. Microarray studies on lager brewer's yeasts reveal cell status in the process of autolysis.

    Science.gov (United States)

    Xu, Weina; Wang, Jinjing; Li, Qi

    2014-08-01

    In this work, we performed DNA microarray studies on lager brewer's yeast Saccharomyces pastorianus to investigate changes in gene expression in the process of autolysis. The two strains we used were Qing2 and 5-2. Strain 5-2 is a mutant of Qing2 and autolyzes much more slowly than its parent strain. Four samples of these two strains during different autolysis stages (0% and 15%) were tested using DNA microarray containing > 10,000 yeast's genes. Analysis of genes with the same transcription pattern (up- or down-regulated in both strains) showed that the same 99 genes were up-regulated (transcription levels were increased), and the same 97 genes were down-regulated (transcription levels were decreased) by fivefold or more during autolysis. Genes involved in energy production/utilization, protein anabolism, and stress response were down-regulated. Genes related to cell wall organization and biogenesis, starvation response and DNA damage response were up-regulated. Analysis of genes with opposite transcription patterns (up-regulated in one strain and down-regulated in the other one) showed that 246 genes were up-regulated in 5-2 (autolyzes slowly) and down-regulated in Qing2 (autolyzes rapidly). Another 18 genes had opposite transcription levels, indicating that the strain which autolyzes slowly had better cell vitality despite the same autolysis stage. These findings might further promote the global understanding of autolysis in yeast. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Axial tomography in 3D live cell microscopy

    Science.gov (United States)

    Richter, Verena; Bruns, Sarah; Bruns, Thomas; Piper, Mathis; Weber, Petra; Wagner, Michael; Cremer, Christoph; Schneckenburger, Herbert

    2017-07-01

    A miniaturized setup for sample rotation on a microscope stage has been developed, combined with light sheet, confocal or structured illumination microscopy and applied to living cells as well as to small organisms. This setup permits axial tomography with improved visualization of single cells or small cell clusters as well as an enhanced effective 3D resolution upon sample rotation.

  10. Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shoubao [Huainan Normal Univ., Anhui (China). School of Life Science; Chen, Xiangsong; Wu, Jingyong; Wang, Pingchao [Chinese Academy of Sciences, Hefei (China). Key Lab. of Ion Beam Bio-engineering of Inst. of Plasma Physics

    2012-05-15

    The aim of the present study was to examine ethanol production from concentrated food waste hydrolysates using whole cells of S. cerevisiae immobilized on corn stalks. In order to improve cell immobilization efficiency, biological modification of the carrier was carried out by cellulase hydrolysis. The results show that proper modification of the carrier with cellulase hydrolysis was suitable for cell immobilization. The mechanism proposed, cellulase hydrolysis, not only increased the immobilized cell concentration, but also disrupted the sleek surface to become rough and porous, which enhanced ethanol production. In batch fermentation with an initial reducing sugar concentration of 202.64 {+-} 1.86 g/l, an optimal ethanol concentration of 87.91 {+-} 1.98 g/l was obtained using a modified corn stalk-immobilized cell system. The ethanol concentration produced by the immobilized cells was 6.9% higher than that produced by the free cells. Ethanol production in the 14th cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in an immobilized cell reactor, the maximum ethanol concentration of 84.85 g/l, and the highest ethanol yield of 0.43 g/g (of reducing sugar) were achieved at hydraulic retention time (HRT) of 3.10 h, whereas the maximum volumetric ethanol productivity of 43.54 g/l/h was observed at a HRT of 1.55 h. (orig.)

  11. Proteomics analysis for asymmetric inheritance of preexisting proteins between mother and daughter cells in budding yeast.

    Science.gov (United States)

    Okada, Mitsuhiro; Kusunoki, Shunta; Ishibashi, Yuko; Kito, Keiji

    2017-06-01

    In budding yeast, a mother cell can produce a finite number of daughter cells over its life. The accumulation of a variety of types of damaged components has an impact on the aging process. Asymmetrical inheritance during cell division causes these aberrant intracellular constituents to be retained in mother cells and prevents them from segregating to daughter cells. However, the understanding of asymmetrical inheritance of individual proteins that are damaged or old age, and their relevance to the aging process, has been limited. The aim of this study is to propose a proteomics strategy for asymmetrical inheritance of preexisting proteins between mother and daughter cells. During synchronous culture for one generation, newly synthesized proteins were labeled with stable isotope amino acids to discriminate preexisting proteins originally expressed in mother cells, followed by separation of mother and daughter cells using a conventional method based on biotin labeling. Isotope incorporation ratios for individual proteins were quantified using mass spectrometry. We successfully identified 21 proteins whose preexisting versions were asymmetrically inherited in mother cells, including plasma membrane transporter involved in the aging process and organelle-anchoring proteins related to the stress response to misfolded proteins. Thus, our approach would be useful for making catalog of asymmetrically inherited proteins. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  12. UV-dependent production of 25-hydroxyvitamin D2 in the recombinant yeast cells expressing human CYP2R1

    International Nuclear Information System (INIS)

    Yasuda, Kaori; Endo, Mariko; Ikushiro, Shinichi; Kamakura, Masaki; Ohta, Miho; Sakaki, Toshiyuki

    2013-01-01

    Highlights: •We produce 25-hydroxyvitamin D in the recombinant yeast expressing human CYP2R1. •Vitamin D2 is produced in yeast from endogenous ergosterol with UV irradiation. •We produce 25-hydroxyvitamin D2 in the recombinant yeast without added substrate. -- Abstract: CYP2R1 is known to be a physiologically important vitamin D 25-hydroxylase. We have successfully expressed human CYP2R1 in Saccharomyces cerevisiae to reveal its enzymatic properties. In this study, we examined production of 25-hydroxylated vitamin D using whole recombinant yeast cells that expressed CYP2R1. When vitamin D 3 or vitamin D 2 was added to the cell suspension of CYP2R1-expressing yeast cells in a buffer containing glucose and β-cyclodextrin, the vitamins were converted into their 25-hydroxylated products. Next, we irradiated the cell suspension with UVB and incubated at 37 °C. Surprisingly, the 25-hydroxy vitamin D 2 was produced without additional vitamin D 2 . Endogenous ergosterol was likely converted into vitamin D 2 by UV irradiation and thermal isomerization, and then the resulting vitamin D 2 was converted to 25-hydroxyvitamin D 2 by CYP2R1. This novel method for producing 25-hydroxyvitamin D 2 without a substrate could be useful for practical purposes

  13. Long-term tracking of budding yeast cells in brightfield microscopy: CellStar and the Evaluation Platform.

    Science.gov (United States)

    Versari, Cristian; Stoma, Szymon; Batmanov, Kirill; Llamosi, Artémis; Mroz, Filip; Kaczmarek, Adam; Deyell, Matt; Lhoussaine, Cédric; Hersen, Pascal; Batt, Gregory

    2017-02-01

    With the continuous expansion of single cell biology, the observation of the behaviour of individual cells over extended durations and with high accuracy has become a problem of central importance. Surprisingly, even for yeast cells that have relatively regular shapes, no solution has been proposed that reaches the high quality required for long-term experiments for segmentation and tracking (S&T) based on brightfield images. Here, we present CellStar , a tool chain designed to achieve good performance in long-term experiments. The key features are the use of a new variant of parametrized active rays for segmentation, a neighbourhood-preserving criterion for tracking, and the use of an iterative approach that incrementally improves S&T quality. A graphical user interface enables manual corrections of S&T errors and their use for the automated correction of other, related errors and for parameter learning. We created a benchmark dataset with manually analysed images and compared CellStar with six other tools, showing its high performance, notably in long-term tracking. As a community effort, we set up a website, the Yeast Image Toolkit, with the benchmark and the Evaluation Platform to gather this and additional information provided by others. © 2017 The Authors.

  14. A vibrating membrane bioreactor operated at supra- and sub-critical flux: Influence of extracellular polymeric substances from yeast cells

    DEFF Research Database (Denmark)

    Beier, Søren Prip; Jonsson, Gunnar Eigil

    2007-01-01

    A vibrating membrane bioreactor, in which the fouling problems are reduced by vibrating a hollow fiber membrane module, has been tested in constant flux microfiltration above (supra-critical) and below (sub-critical) an experimentally determined critical flux. Suspensions of bakers yeast cells were...... chosen as filtration medium (dry weight 4 g/l). The influence of extracellular polymeric substances (EPS) from the yeast cells is evaluated by UV absorbance measurements of the bulk supernatant during filtration. The critical flux seems to be an interval or a relative value rather than an absolute value....... Filtration just below the critical flux (sub-critical) seems to be a good compromise between acceptable flux level and acceptable increase of fouling resistance and trans-membrane pressure (TMP) in a given time period. EPS from the yeast cells causes the membrane module to foul and part of the fouling...

  15. Live Cell Imaging of Alphaherpes Virus Anterograde Transport and Spread

    Science.gov (United States)

    Taylor, Matthew P.; Kratchmarov, Radomir; Enquist, Lynn W.

    2013-01-01

    Advances in live cell fluorescence microscopy techniques, as well as the construction of recombinant viral strains that express fluorescent fusion proteins have enabled real-time visualization of transport and spread of alphaherpes virus infection of neurons. The utility of novel fluorescent fusion proteins to viral membrane, tegument, and capsids, in conjunction with live cell imaging, identified viral particle assemblies undergoing transport within axons. Similar tools have been successfully employed for analyses of cell-cell spread of viral particles to quantify the number and diversity of virions transmitted between cells. Importantly, the techniques of live cell imaging of anterograde transport and spread produce a wealth of information including particle transport velocities, distributions of particles, and temporal analyses of protein localization. Alongside classical viral genetic techniques, these methodologies have provided critical insights into important mechanistic questions. In this article we describe in detail the imaging methods that were developed to answer basic questions of alphaherpes virus transport and spread. PMID:23978901

  16. Live cell imaging of Arabidopsis root hairs

    NARCIS (Netherlands)

    Ketelaar, T.

    2014-01-01

    Root hairs are tubular extensions from the root surface that expand by tip growth. This highly focused type of cell expansion, combined with position of root hairs on the surface of the root, makes them ideal cells for microscopic observation. This chapter describes the method that is routinely used

  17. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota; Yamamoto, Kaori; Inoue, Yamato; Kishimoto, Yoshifumi; Ohara, Hiroya; Mukai, Yukio, E-mail: y_mukai@nagahama-i-bio.ac.jp

    2015-07-31

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. {sup 1}H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes. - Highlights: • Involvement of yeast TF genes essential for cell growth in lifespan was evaluated. • The essential TF genes, FHL1, RAP1, REB1, and MCM1, regulate replicative lifespan. • Heterozygous deletion of FHL1 changes cellular metabolism related to lifespan.

  18. High hydrostatic pressure leads to free radicals accumulation in yeast cells triggering oxidative stress.

    Science.gov (United States)

    Bravim, Fernanda; Mota, Mainã M; Fernandes, A Alberto R; Fernandes, Patricia M B

    2016-08-01

    Saccharomyces cerevisiae is a unicellular organism that during the fermentative process is exposed to a variable environment; hence, resistance to multiple stress conditions is a desirable trait. The stress caused by high hydrostatic pressure (HHP) in S. cerevisiae resembles the injuries generated by other industrial stresses. In this study, it was confirmed that gene expression pattern in response to HHP displays an oxidative stress response profile which is expanded upon hydrostatic pressure release. Actually, reactive oxygen species (ROS) concentration level increased in yeast cells exposed to HHP treatment and an incubation period at room pressure led to a decrease in intracellular ROS concentration. On the other hand, ethylic, thermic and osmotic stresses did not result in any ROS accumulation in yeast cells. Microarray analysis revealed an upregulation of genes related to methionine metabolism, appearing to be a specific cellular response to HHP, and not related to other stresses, such as heat and osmotic stresses. Next, we investigated whether enhanced oxidative stress tolerance leads to enhanced tolerance to HHP stress. Overexpression of STF2 is known to enhance tolerance to oxidative stress and we show that it also leads to enhanced tolerance to HHP stress. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. What Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeast.

    Directory of Open Access Journals (Sweden)

    Artémis Llamosi

    2016-02-01

    Full Text Available Significant cell-to-cell heterogeneity is ubiquitously observed in isogenic cell populations. Consequently, parameters of models of intracellular processes, usually fitted to population-averaged data, should rather be fitted to individual cells to obtain a population of models of similar but non-identical individuals. Here, we propose a quantitative modeling framework that attributes specific parameter values to single cells for a standard model of gene expression. We combine high quality single-cell measurements of the response of yeast cells to repeated hyperosmotic shocks and state-of-the-art statistical inference approaches for mixed-effects models to infer multidimensional parameter distributions describing the population, and then derive specific parameters for individual cells. The analysis of single-cell parameters shows that single-cell identity (e.g. gene expression dynamics, cell size, growth rate, mother-daughter relationships is, at least partially, captured by the parameter values of gene expression models (e.g. rates of transcription, translation and degradation. Our approach shows how to use the rich information contained into longitudinal single-cell data to infer parameters that can faithfully represent single-cell identity.

  20. Predominance of membrane damage in yeast cells in suspension with monochromatic 163-nm vacuum ultraviolet light

    International Nuclear Information System (INIS)

    Ito, T.; Ito, A.

    1980-01-01

    Effects of monochromatic 163-nm ultraviolet light on aqueous suspensions of yeast cells were studied under N 2 and O 2 bubbling conditions. This is a continuation of previous attempts at using a bromine resonance lamp immersed in cell suspension as a means of treating cells with water radicals (163-nm photons decompose water molecules into H atoms and OH' radicals). We found that inactivation occurred only under O 2 bubbling. Genetic changes were induced, but this was attributed to the effects of far-uv components which contaminate the emission. A characteristic feature of the vacuum uv inactivation was a decrease in survival when cells were held in liquid after irradiation. The presence of p-nitrosodimethylaniline (a known OH' scavenger) during irradiation prevented the O 2 -dependent enhancement of inactivation. Cells irradiated under N 2 bubbling showed no such enhancement. Thus, the fast access of oxygen is a necessary condition for fixing initial damage. Initial damage of this type seems to be amplified during subsequent incubation, causing further killing. Cells irradiated under N 2 bubbling were not, however, free of damage, since dye permeability across the cell membrane of irradiated samples increased markedly with both N 2 and O 2 as tested by photodynamic induction of genetic changes using normally unpenetrable dye as a sensitizer. Spectrophotometric evidence for the presence of toluidine blue in the irradiated cells are also presented

  1. Characterizing the interactions between prolyl isomerase pin1 and phosphatase inhibitor-2 in living cells with FRET and FCS

    Science.gov (United States)

    Sun, Yuansheng; Wang, Lifu; Jyothikumar, Vinod; Brautigan, David L.; Periasamy, Ammasi

    2012-03-01

    Phosphatase inhibitor-2 (I2) was discovered as a regulator of protein Ser/Thr phosphatase-1 and is conserved from yeast to human. Binding between purified recombinant I2 from different species and the prolyl isomerase Pin1 has been demonstrated with pull-down assays, size exclusion chromatography and nuclear magnetic resonance spectroscopy. Despite this, questions persist as to whether these proteins associate together in living cells. In this study, we prepared fluorescent protein (FP) fusions of I2 and Pin1 and employed both Förster Resonance Energy Transfer (FRET) and Fluorescence Correlation Spectroscopy (FCS) imaging techniques to characterize their interactions in living cells. In both intensity-based and time-resolved FRET studies, we observed FRET uniformly across whole cells co-expressing I2-Cerulean and Pin1-Venus that was significantly higher than in negative controls expressing Cerulean FP (without fusing to I2) as the FRET donor and Pin1-Venus, showing a specific interaction between I2-Cerulean and Pin1-Venus in living cells. We also observed the co-diffusion of I2-Cerulean and Pin1-mCherry in Fluorescence Cross Correlation Spectroscopy (FCCS) measurements. We further showed that I2 itself as well as I2-Pin1 formed complexes in living cells (predicted from in vitro studies) via a quantitative FRET assay, and demonstrated from FCS measurements that both I2 and Pin1 (fused to Cerulean) are highly mobile in living cells.

  2. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions

    Directory of Open Access Journals (Sweden)

    Andy Hesketh

    2017-07-01

    Full Text Available We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP, cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection.

  3. Studying anti-oxidative properties of inclusion complexes of α-lipoic acid with γ-cyclodextrin in single living fission yeast by confocal Raman microspectroscopy

    Science.gov (United States)

    Noothalapati, Hemanth; Ikarashi, Ryo; Iwasaki, Keita; Nishida, Tatsuro; Kaino, Tomohiro; Yoshikiyo, Keisuke; Terao, Keiji; Nakata, Daisuke; Ikuta, Naoko; Ando, Masahiro; Hamaguchi, Hiro-o.; Kawamukai, Makoto; Yamamoto, Tatsuyuki

    2018-05-01

    α-lipoic acid (ALA) is an essential cofactor for many enzyme complexes in aerobic metabolism, especially in mitochondria of eukaryotic cells where respiration takes place. It also has excellent anti-oxidative properties. The acid has two stereo-isomers, R- and S- lipoic acid (R-LA and S-LA), but only the R-LA has biological significance and is exclusively produced in our body. A mutant strain of fission yeast, Δdps1, cannot synthesize coenzyme Q10, which is essential during yeast respiration, leading to oxidative stress. Therefore, it shows growth delay in the minimal medium. We studied anti-oxidant properties of ALA in its free form and their inclusion complexes with γ-cyclodextrin using this mutant yeast model. Both free forms R- and S-LA as well as 1:1 inclusion complexes with γ-cyclodextrin recovered growth of Δdps1 depending on the concentration and form. However, it has no effect on the growth of wild type fission yeast strain at all. Raman microspectroscopy was employed to understand the anti-oxidant property at the molecular level. A sensitive Raman band at 1602 cm-1 was monitored with and without addition of ALAs. It was found that 0.5 mM and 1.0 mM concentrations of ALAs had similar effect in both free and inclusion forms. At 2.5 mM ALAs, free forms inhibited the growth while inclusion complexes helped in recovered. 5.0 mM ALA showed inhibitory effect irrespective of form. Our results suggest that the Raman band at 1602 cm-1 is a good measure of oxidative stress in fission yeast.

  4. The sandfly Lutzomyia longipalpis LL5 embryonic cell line has active Toll and Imd pathways and shows immune responses to bacteria, yeast and Leishmania.

    Science.gov (United States)

    Tinoco-Nunes, Bruno; Telleria, Erich Loza; da Silva-Neves, Monique; Marques, Christiane; Azevedo-Brito, Daisy Aline; Pitaluga, André Nóbrega; Traub-Csekö, Yara Maria

    2016-04-20

    Lutzomyia longipalpis is the main vector of visceral leishmaniasis in Latin America. Sandfly immune responses are poorly understood. In previous work we showed that these vector insects respond to bacterial infections by modulating a defensin gene expression and activate the Imd pathway in response to Leishmania infection. Aspects of innate immune pathways in insects (including mosquito vectors of human diseases) have been revealed by studying insect cell lines, and we have previously demonstrated antiviral responses in the L. longipalpis embryonic cell line LL5. The expression patterns of antimicrobial peptides (AMPs) and transcription factors were evaluated after silencing the repressors of the Toll pathway (cactus) and Imd pathway (caspar). AMPs and transcription factor expression patterns were also evaluated after challenge with heat-killed bacteria, heat-killed yeast, or live Leishmania. These studies showed that LL5 cells have active Toll and Imd pathways, since they displayed an increased expression of AMP genes following silencing of the repressors cactus and caspar, respectively. These pathways were also activated by challenges with bacteria, yeast and Leishmania infantum chagasi. We demonstrated that L. longipalpis LL5 embryonic cells respond to immune stimuli and are therefore a good model to study the immunological pathways of this important vector of leishmaniasis.

  5. Probing the bioelectrochemistry of living cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheran, Larisa-Emilia [Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario (Canada); Maple Biosciences Lt., 80 St. George Street, Toronto, Ontario (Canada); Cheung, Shilin; Wang, Xiaomang; Thompson, Michael [Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario (Canada)

    2008-10-01

    Recent times have seen a rapidly expanding interest in the study of both single cell behaviour and populations of cells. This paper presents a concise review of current techniques employed for the transduction and processing of cellular signals. Among these, electrochemical methodology in the form of transistor and impedance methods has figured prominently. Indirectly connected to this approach has been the optical, light addressable potentiometric technique. In our research we are developing vibrational methods which are capable of examining populations of neurons, smooth muscle and human red blood cells on a substrate in a label-free fashion. These are based on transverse acoustic wave methodology and Kelvin nanoprobe physics. With respect to the former, synchronous oscillations of frequency are detected for neurons which are altered by the introduction of certain drugs. The same technique can be used to monitor chemical perturbation of the structure of smooth muscle cells from rat aorta. The Kelvin nanoprobe possesses sub-micron resolution and has been successfully employed in the characterization of both isolated, single neuron and red blood cells. Alterations in cell behaviour are reflected in apparent changes in work function, which in turn is associated with changes in cellular potential and dielectric properties. (author)

  6. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome

    Directory of Open Access Journals (Sweden)

    Madan Bhawna

    2011-11-01

    Full Text Available Abstract Background The recalcitrant nature of cellulosic materials and the high cost of enzymes required for efficient hydrolysis are the major impeding steps to their practical usage for ethanol production. Ideally, a recombinant microorganism, possessing the capability to utilize cellulose for simultaneous growth and ethanol production, is of great interest. We have reported recently the use of a yeast consortium for the functional presentation of a mini-cellulosome structure onto the yeast surface by exploiting the specific interaction of different cohesin-dockerin pairs. In this study, we engineered a yeast consortium capable of displaying a functional mini-cellulosome for the simultaneous growth and ethanol production on phosphoric acid swollen cellulose (PASC. Results A yeast consortium composed of four different populations was engineered to display a functional mini-cellulosome containing an endoglucanase, an exoglucanase and a β-glucosidase. The resulting consortium was demonstrated to utilize PASC for growth and ethanol production. The final ethanol production of 1.25 g/L corresponded to 87% of the theoretical value and was 3-fold higher than a similar yeast consortium secreting only the three cellulases. Quantitative PCR was used to enumerate the dynamics of each individual yeast population for the two consortia. Results indicated that the slight difference in cell growth cannot explain the 3-fold increase in PASC hydrolysis and ethanol production. Instead, the substantial increase in ethanol production is consistent with the reported synergistic effect on cellulose hydrolysis using the displayed mini-cellulosome. Conclusions This report represents a significant step towards the goal of cellulosic ethanol production. This engineered yeast consortium displaying a functional mini-cellulosome demonstrated not only the ability to grow on the released sugars from PASC but also a 3-fold higher ethanol production than a similar yeast

  7. Tombusvirus-yeast interactions identify conserved cell-intrinsic viral restriction factors

    Directory of Open Access Journals (Sweden)

    Zsuzsanna eSasvari

    2014-08-01

    Full Text Available To combat viral infections, plants possess innate and adaptive immune pathways, such as RNA silencing, R gene and recessive gene-mediated resistance mechanisms. However, it is likely that additional cell-intrinsic restriction factors (CIRF are also involved in limiting plant virus replication. This review discusses novel CIRFs with antiviral functions, many of them RNA-binding proteins or affecting the RNA binding activities of viral replication proteins. The CIRFs against tombusviruses have been identified in yeast (Saccharomyces cerevisiae, which is developed as an advanced model organism. Grouping of the identified CIRFs based on their known cellular functions and subcellular localization in yeast reveals that TBSV replication is limited by a wide variety of host gene functions. Yeast proteins with the highest connectivity in the network map include the well-characterized Xrn1p 5’-3’ exoribonuclease, Act1p actin protein and Cse4p centromere protein. The protein network map also reveals an important interplay between the pro-viral Hsp70 cellular chaperone and the antiviral co-chaperones, and possibly key roles for the ribosomal or ribosome-associated factors. We discuss the antiviral functions of selected CIRFs, such as the RNA binding nucleolin, ribonucleases, WW-domain proteins, single- and multi-domain cyclophilins, TPR-domain co-chaperones and cellular ion pumps. These restriction factors frequently target the RNA-binding region in the viral replication proteins, thus interfering with the recruitment of the viral RNA for replication and the assembly of the membrane-bound viral replicase. Although many of the characterized CIRFs act directly against TBSV, we propose that the TPR-domain co-chaperones function as guardians of the cellular Hsp70 chaperone system, which is subverted efficiently by TBSV for viral replicase assembly in the absence of the TPR-domain co-chaperones.

  8. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785

    Science.gov (United States)

    2010-01-01

    Background The production of microbial lipids has attracted considerable interest during the past decade since they can be successfully used to produce biodiesel by catalyzed transesterification with short chain alcohols. Certain yeast species, including several psychrophilic isolates, are oleaginous and accumulate lipids from 20 to 70% of biomass under appropriate cultivation conditions. Among them, Rhodotorula glacialis is a psychrophilic basidiomycetous species capable to accumulate intracellular lipids. Results Rhodotorula glacialis DBVPG 4785 is an oleaginous psychrophilic yeast isolated from a glacial environment. Despite its origin, the strain abundantly grew and accumulated lipids between -3 to 20°C. The temperature did not influence the yield coefficients of both biomass and lipids production, but had positive effect on the growth rate and thus on volumetric productivity of lipid. In glucose-based media, cellular multiplication occurred first, while the lipogenic phase followed whenever the culture was limited by a nutrient other than glucose. The extent of the carbon excess had positive effects on triacylglycerols production, that was maximum with 120 g L-1 glucose, in terms of lipid concentration (19 g L-1), lipid/biomass (68%) and lipid/glucose yields (16%). Both glucose concentration and growth temperature influenced the composition of fatty acids, whose unsaturation degree decreased when the temperature or glucose excess increased. Conclusions This study is the first proposed biotechnological application for Rhodotorula glacialis species, whose oleaginous biomass accumulates high amounts of lipids within a wide range of temperatures through appropriate cultivation C:N ratio. Although R. glacialis DBVPG 4785 is a cold adapted yeast, lipid production occurs over a broad range of temperatures and it can be considered an interesting microorganism for the production of single cell oils. PMID:20863365

  9. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785

    Directory of Open Access Journals (Sweden)

    De Lucia Marzia

    2010-09-01

    Full Text Available Abstract Background The production of microbial lipids has attracted considerable interest during the past decade since they can be successfully used to produce biodiesel by catalyzed transesterification with short chain alcohols. Certain yeast species, including several psychrophilic isolates, are oleaginous and accumulate lipids from 20 to 70% of biomass under appropriate cultivation conditions. Among them, Rhodotorula glacialis is a psychrophilic basidiomycetous species capable to accumulate intracellular lipids. Results Rhodotorula glacialis DBVPG 4785 is an oleaginous psychrophilic yeast isolated from a glacial environment. Despite its origin, the strain abundantly grew and accumulated lipids between -3 to 20°C. The temperature did not influence the yield coefficients of both biomass and lipids production, but had positive effect on the growth rate and thus on volumetric productivity of lipid. In glucose-based media, cellular multiplication occurred first, while the lipogenic phase followed whenever the culture was limited by a nutrient other than glucose. The extent of the carbon excess had positive effects on triacylglycerols production, that was maximum with 120 g L-1 glucose, in terms of lipid concentration (19 g L-1, lipid/biomass (68% and lipid/glucose yields (16%. Both glucose concentration and growth temperature influenced the composition of fatty acids, whose unsaturation degree decreased when the temperature or glucose excess increased. Conclusions This study is the first proposed biotechnological application for Rhodotorula glacialis species, whose oleaginous biomass accumulates high amounts of lipids within a wide range of temperatures through appropriate cultivation C:N ratio. Although R. glacialis DBVPG 4785 is a cold adapted yeast, lipid production occurs over a broad range of temperatures and it can be considered an interesting microorganism for the production of single cell oils.

  10. Studies on Rapidly Frozen Suspensions of Yeast Cells by Differential Thermal Analysis and Conductometry

    Science.gov (United States)

    Mazur, Peter

    1963-01-01

    Few, if any, yeast cells survived rapid cooling to -196°C and subsequent slow warming. After rapid freezing, the suspensions absorbed latent heat of fusion between -15° and 0°C during warming, and the relation between the amount of heat absorbed and the concentration of cells was the same as that in equivalent KCl solutions, indicating that frozen suspensions behave thermally like frozen solutions. The amount of heat absorbed was such that more than 80 per cent of the intracellular solution had to be frozen. The conductometric behavior of frozen suspensions showed that cell solutes were still inside the cells and surrounded by an intact cell membrane at the time heat was being absorbed. Two models are consistent with these findings. The first assumes that intracellular freezing has taken place; the second that all freezable water has left the cells and frozen externally. The latter model is ruled out because rapidly cooled cells do not shrink by an amount equal to the volume of water that would have to be withdrawn to prevent internal freezing. PMID:13934216

  11. Cell cycle commitment in budding yeast emerges from the cooperation of multiple bistable switches

    Science.gov (United States)

    Zhang, Tongli; Schmierer, Bernhard; Novák, Béla

    2011-01-01

    The start-transition (START) in the G1 phase marks the point in the cell cycle at which a yeast cell initiates a new round of cell division. Once made, this decision is irreversible and the cell is committed to progressing through the entire cell cycle, irrespective of arrest signals such as pheromone. How commitment emerges from the underlying molecular interaction network is poorly understood. Here, we perform a dynamical systems analysis of an established cell cycle model, which has never been analysed from a commitment perspective. We show that the irreversibility of the START transition and subsequent commitment can be consistently explained in terms of the interplay of multiple bistable molecular switches. By applying an existing mathematical model to a novel problem and by expanding the model in a self-consistent manner, we achieve several goals: we bring together a large number of experimental findings into a coherent theoretical framework; we increase the scope and the applicability of the original model; we give a systems level explanation of how the START transition and the cell cycle commitment arise from the dynamical features of the underlying molecular interaction network; and we make clear, experimentally testable predictions. PMID:22645649

  12. An origin-deficient yeast artificial chromosome triggers a cell cycle checkpoint.

    Science.gov (United States)

    van Brabant, A J; Buchanan, C D; Charboneau, E; Fangman, W L; Brewer, B J

    2001-04-01

    Checkpoint controls coordinate entry into mitosis with the completion of DNA replication. Depletion of nucleotide precursors by treatment with the drug hydroxyurea triggers such a checkpoint response. However, it is not clear whether the signal for this hydroxyurea-induced checkpoint pathway is the presence of unreplicated DNA, or rather the persistence of single-stranded or damaged DNA. In a yeast artificial chromosome (YAC) we have engineered an approximately 170 kb region lacking efficient replication origins that allows us to explore the specific effects of unreplicated DNA on cell cycle progression. Replication of this YAC extends the length of S phase and causes cells to engage an S/M checkpoint. In the absence of Rad9 the YAC becomes unstable, undergoing deletions within the origin-free region.

  13. The yeast metacaspase is implicated in oxidative stress response in frataxin-deficient cells.

    Science.gov (United States)

    Lefevre, Sophie; Sliwa, Dominika; Auchère, Françoise; Brossas, Caroline; Ruckenstuhl, Christoph; Boggetto, Nicole; Lesuisse, Emmanuel; Madeo, Frank; Camadro, Jean-Michel; Santos, Renata

    2012-01-20

    Friedreich ataxia is the most common recessive neurodegenerative disease and is caused by reduced expression of mitochondrial frataxin. Frataxin depletion causes impairment in iron-sulfur cluster and heme biosynthesis, disruption of iron homeostasis and hypersensitivity to oxidants. Currently no pharmacological treatment blocks disease progression, although antioxidant therapies proved to benefit patients. We show that sensitivity of yeast frataxin-deficient cells to hydrogen peroxide is partially mediated by the metacaspase. Metacaspase deletion in frataxin-deficient cells results in recovery of antioxidant capacity and heme synthesis. In addition, our results suggest that metacaspase is associated with mitochondrial respiration, intracellular redox control and genomic stability. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Live cell imaging of in vitro human trophoblast syncytialization.

    Science.gov (United States)

    Wang, Rui; Dang, Yan-Li; Zheng, Ru; Li, Yue; Li, Weiwei; Lu, Xiaoyin; Wang, Li-Juan; Zhu, Cheng; Lin, Hai-Yan; Wang, Hongmei

    2014-06-01

    Human trophoblast syncytialization, a process of cell-cell fusion, is one of the most important yet least understood events during placental development. Investigating the fusion process in a placenta in vivo is very challenging given the complexity of this process. Application of primary cultured cytotrophoblast cells isolated from term placentas and BeWo cells derived from human choriocarcinoma formulates a biphasic strategy to achieve the mechanism of trophoblast cell fusion, as the former can spontaneously fuse to form the multinucleated syncytium and the latter is capable of fusing under the treatment of forskolin (FSK). Live-cell imaging is a powerful tool that is widely used to investigate many physiological or pathological processes in various animal models or humans; however, to our knowledge, the mechanism of trophoblast cell fusion has not been reported using a live- cell imaging manner. In this study, a live-cell imaging system was used to delineate the fusion process of primary term cytotrophoblast cells and BeWo cells. By using live staining with Hoechst 33342 or cytoplasmic dyes or by stably transfecting enhanced green fluorescent protein (EGFP) and DsRed2-Nuc reporter plasmids, we observed finger-like protrusions on the cell membranes of fusion partners before fusion and the exchange of cytoplasmic contents during fusion. In summary, this study provides the first video recording of the process of trophoblast syncytialization. Furthermore, the various live-cell imaging systems used in this study will help to yield molecular insights into the syncytialization process during placental development. © 2014 by the Society for the Study of Reproduction, Inc.

  15. Live Cell Characterization of DNA Aggregation Delivered through Lipofection.

    Science.gov (United States)

    Mieruszynski, Stephen; Briggs, Candida; Digman, Michelle A; Gratton, Enrico; Jones, Mark R

    2015-05-27

    DNA trafficking phenomena, such as information on where and to what extent DNA aggregation occurs, have yet to be fully characterised in the live cell. Here we characterise the aggregation of DNA when delivered through lipofection by applying the Number and Brightness (N&B) approach. The N&B analysis demonstrates extensive aggregation throughout the live cell with DNA clusters in the extremity of the cell and peri-nuclear areas. Once within the nucleus aggregation had decreased 3-fold. In addition, we show that increasing serum concentration of cell media results in greater cytoplasmic aggregation. Further, the effects of the DNA fragment size on aggregation was explored, where larger DNA constructs exhibited less aggregation. This study demonstrates the first quantification of DNA aggregation when delivered through lipofection in live cells. In addition, this study has presents a model for alternative uses of this imaging approach, which was originally developed to study protein oligomerization and aggregation.

  16. Analysis of live cell images: Methods, tools and opportunities.

    Science.gov (United States)

    Nketia, Thomas A; Sailem, Heba; Rohde, Gustavo; Machiraju, Raghu; Rittscher, Jens

    2017-02-15

    Advances in optical microscopy, biosensors and cell culturing technologies have transformed live cell imaging. Thanks to these advances live cell imaging plays an increasingly important role in basic biology research as well as at all stages of drug development. Image analysis methods are needed to extract quantitative information from these vast and complex data sets. The aim of this review is to provide an overview of available image analysis methods for live cell imaging, in particular required preprocessing image segmentation, cell tracking and data visualisation methods. The potential opportunities recent advances in machine learning, especially deep learning, and computer vision provide are being discussed. This review includes overview of the different available software packages and toolkits. Copyright © 2017. Published by Elsevier Inc.

  17. Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast.

    Directory of Open Access Journals (Sweden)

    Thiago M Pais

    2013-06-01

    Full Text Available The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance.

  18. S-Adenosyl-L-methionine protects the probiotic yeast, Saccharomyces boulardii, from acid-induced cell death.

    Science.gov (United States)

    Cascio, Vincent; Gittings, Daniel; Merloni, Kristen; Hurton, Matthew; Laprade, David; Austriaco, Nicanor

    2013-02-13

    Saccharomyces boulardii is a probiotic yeast routinely used to prevent and to treat gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. However, only 1-3% of the yeast administered orally is recovered alive in the feces suggesting that this yeast is unable to survive the acidic environment of the gastrointestinal tract. We provide evidence that suggests that S. boulardii undergoes programmed cell death (PCD) in acidic environments, which is accompanied by the generation of reactive oxygen species and the appearance of caspase-like activity. To better understand the mechanism of cell death at the molecular level, we generated microarray gene expression profiles of S. boulardii cells cultured in an acidic environment. Significantly, functional annotation revealed that the up-regulated genes were significantly over-represented in cell death pathways Finally, we show that S-adenosyl-L-methionine (AdoMet), a commercially available, FDA-approved dietary supplement, enhances the viability of S. boulardii in acidic environments, most likely by preventing programmed cell death. In toto, given the observation that many of the proven health benefits of S. boulardii are dependent on cell viability, our data suggests that taking S. boulardii and AdoMet together may be a more effective treatment for gastrointestinal disorders than taking the probiotic yeast alone.

  19. Preferential retrotransposition in aging yeast mother cells is correlated with increased genome instability.

    Science.gov (United States)

    Patterson, Melissa N; Scannapieco, Alison E; Au, Pak Ho; Dorsey, Savanna; Royer, Catherine A; Maxwell, Patrick H

    2015-10-01

    Retrotransposon expression or mobility is increased with age in multiple species and could promote genome instability or altered gene expression during aging. However, it is unclear whether activation of retrotransposons during aging is an indirect result of global changes in chromatin and gene regulation or a result of retrotransposon-specific mechanisms. Retromobility of a marked chromosomal Ty1 retrotransposon in Saccharomyces cerevisiae was elevated in mother cells relative to their daughter cells, as determined by magnetic cell sorting of mothers and daughters. Retromobility frequencies in aging mother cells were significantly higher than those predicted by cell age and the rate of mobility in young populations, beginning when mother cells were only several generations old. New Ty1 insertions in aging mothers were more strongly correlated with gross chromosome rearrangements than in young cells and were more often at non-preferred target sites. Mother cells were more likely to have high concentrations and bright foci of Ty1 Gag-GFP than their daughter cells. Levels of extrachromosomal Ty1 cDNA were also significantly higher in aged mother cell populations than their daughter cell populations. These observations are consistent with a retrotransposon-specific mechanism that causes retrotransposition to occur preferentially in yeast mother cells as they begin to age, as opposed to activation by phenotypic changes associated with very old age. These findings will likely be relevant for understanding retrotransposons and aging in many organisms, based on similarities in regulation and consequences of retrotransposition in diverse species. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. 4Pi-confocal microscopy of live cells

    Science.gov (United States)

    Bahlmann, Karsten; Jakobs, Stefan; Hell, Stefan W.

    2002-06-01

    By coherently adding the spherical wavefronts of two opposing lenses, two-photon excitation 4Pi-confocal fluorescence microscopy has achieved three-dimensional imaging with an axial resolution 3-7 times better than confocal microscopy. So far this improvement was possible only in glycerol-mounted, fixed cells. Here we report 4Pi-confocal microscopy of watery objects and its application to the imaging of live cells. Water immersion 4Pi-confocal microscopy of membrane stained live Escherichia coli bacteria attains a 4.3 fold better axial resolution as compared to the best water immersion confocal microscope. The resolution enhancement results into a vastly improved three-dimensional representation of the bacteria. The first images of live biological samples with an all-directional resolution in the 190-280 nm range are presented here, thus establishing a new resolution benchmark in live cell microscopy.

  1. Tolerant industrial yeast Saccharomyces cerevisiae posses a more robust cell wall integrity signaling pathway against 2-furaldehyde and 5-(hydroxymethyl)-2-furaldehyde

    Science.gov (United States)

    Cell wall integrity signaling pathway in Saccharomyces cerevisiae is a conserved function for detecting and responding to cell stress conditions but less understood for industrial yeast. We dissected gene expression dynamics for a tolerant industrial yeast strain NRRL Y-50049 in response to challeng...

  2. Live-cell Imaging of Pol II Promoter Activity to Monitor Gene expression with RNA IMAGEtag reporters

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ilchung [Ames Laboratory; Ray, Judhajeet [Ames Laboratory; Gupta, Vinayak [Iowa State University; Ilgu, Muslum [Ames Laboratory; Beasley, Jonathan [Iowa State University; Bendickson, Lee [Ames Laboratory; Mehanovic, Samir [Molecular Express; Kraus, George A. [Iowa State University; Nilsen-Hamilton, Marit [Ames Laboratory

    2014-04-20

    We describe a ribonucleic acid (RNA) reporter system for live-cell imaging of gene expression to detect changes in polymerase II activity on individual promoters in individual cells. The reporters use strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags) that can be expressed from a promoter of choice. For imaging, the cells are incubated with their ligands that are separately conjugated with one of the FRET pair, Cy3 and Cy5. The IMAGEtags were expressed in yeast from the GAL1, ADH1 or ACT1 promoters. Transcription from all three promoters was imaged in live cells and transcriptional increases from the GAL1 promoter were observed with time after adding galactose. Expression of the IMAGEtags did not affect cell proliferation or endogenous gene expression. Advantages of this method are that no foreign proteins are produced in the cells that could be toxic or otherwise influence the cellular response as they accumulate, the IMAGEtags are short lived and oxygen is not required to generate their signals. The IMAGEtag RNA reporter system provides a means of tracking changes in transcriptional activity in live cells and in real time.

  3. A newly identified essential complex, Dre2-Tah18, controls mitochondria integrity and cell death after oxidative stress in yeast.

    Directory of Open Access Journals (Sweden)

    Laurence Vernis

    Full Text Available A mutated allele of the essential gene TAH18 was previously identified in our laboratory in a genetic screen for new proteins interacting with the DNA polymerase delta in yeast [1]. The present work shows that Tah18 plays a role in response to oxidative stress. After exposure to lethal doses of H(2O(2, GFP-Tah18 relocalizes to the mitochondria and controls mitochondria integrity and cell death. Dre2, an essential Fe/S cluster protein and homologue of human anti-apoptotic Ciapin1, was identified as a molecular partner of Tah18 in the absence of stress. Moreover, Ciapin1 is able to replace yeast Dre2 in vivo and physically interacts with Tah18. Our results are in favour of an oxidative stress-induced cell death in yeast that involves mitochondria and is controlled by the newly identified Dre2-Tah18 complex.

  4. Yeast pro- and paraprobiotics have the capability to bind pathogenic bacteria associated with animal disease

    Science.gov (United States)

    Live yeast probiotics and yeast cell wall components (paraprobiotics) may serve as an alternative to the use of antibiotics in prevention and treatment of infections caused by pathogenic bacteria. Probiotics and paraprobiotics can bind directly to pathogens, which limits binding of the pathogens to ...

  5. High-frequency microrheology reveals cytoskeleton dynamics in living cells

    Science.gov (United States)

    Rigato, Annafrancesca; Miyagi, Atsushi; Scheuring, Simon; Rico, Felix

    2017-08-01

    Living cells are viscoelastic materials, dominated by an elastic response on timescales longer than a millisecond. On shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce. Here, we develop high-frequency microrheology experiments to probe the viscoelastic response of living cells from 1 Hz to 100 kHz. We report the viscoelasticity of different cell types under cytoskeletal drug treatments. On previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequencies, providing a unique mechanical fingerprint. Microrheology over a wide dynamic range--up to the frequency characterizing the molecular components--provides a mechanistic understanding of cell mechanics.

  6. Quantification of cytoskeletal deformation in living cells

    NARCIS (Netherlands)

    van Engeland, S.; Kuijpers, N.H.L.

    In order to get a better insight in the mechanisms causing tissue damage there is an interest from within the biology community to quantify cellular deformations upon external loading. The cytoskeleton plays an important role in the transmission of forces throughout the cell. This study aims to

  7. Living Well with Sickle Cell Disease

    Science.gov (United States)

    ... Healthy Habits People with sickle cell disease should drink 8 to 10 glasses of water every day and eat healthy food. Try not to get too hot, too cold, or too tired. Children can, and should, participate in ... tired, and drink plenty of water. Look for clinical studies New ...

  8. Vital Autofluorescence: Application to the Study of Plant Living Cells

    Directory of Open Access Journals (Sweden)

    Victoria V. Roshchina

    2012-01-01

    approach to study the autofluorescence of plant living cells—from cell diagnostics up to modelling the cell-cell contacts and cell interactions with fluorescent biologically active substances. It bases on the direct observations of secretions released from allelopathic and medicinal species and the cell-donor interactions with cell-acceptors as biosensors (unicellular plant generative and vegetative microspores. Special attention was paid to the interactions with pigmented and fluorescing components of the secretions released by the cells-donors from plant species. Colored components of secretions are considered as histochemical dyes for the analysis of cellular mechanisms at the cell-cell contacts and modelling of cell-cell interactions. The fluorescence of plant biosensors was also recommended for the testing of natural plant excretions as medical drugs.

  9. A Kinetic Modelling of Enzyme Inhibitions in the Central Metabolism of Yeast Cells

    Science.gov (United States)

    Kasbawati; Kalondeng, A.; Aris, N.; Erawaty, N.; Azis, M. I.

    2018-03-01

    Metabolic regulation plays an important role in the metabolic engineering of a cellular process. It is conducted to improve the productivity of a microbial process by identifying the important regulatory nodes of a metabolic pathway such as fermentation pathway. Regulation of enzymes involved in a particular pathway can be held to improve the productivity of the system. In the central metabolism of yeast cell, some enzymes are known as regulating enzymes that can be inhibited to increase the production of ethanol. In this research we study the kinetic modelling of the enzymes in the central pathway of yeast metabolism by taking into consideration the enzyme inhibition effects to the ethanol production. The existence of positive steady state solution and the stability of the system are also analysed to study the property and dynamical behaviour of the system. One stable steady state of the system is produced if some conditions are fulfilled. The conditions concern to the restriction of the maximum reactions of the enzymes in the pyruvate and acetaldehyde branch points. There exists a certain time of fermentation reaction at which a maximum and a minimum ethanol productions are attained after regulating the system. Optimal ethanol concentration is also produced for a certain initial concentration of inhibitor.

  10. Engineering the substrate specificity of the DhbE adenylation domain by yeast cell surface display.

    Science.gov (United States)

    Zhang, Keya; Nelson, Kathryn M; Bhuripanyo, Karan; Grimes, Kimberly D; Zhao, Bo; Aldrich, Courtney C; Yin, Jun

    2013-01-24

    The adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) activate aryl acids or amino acids to launch their transfer through the NRPS assembly line for the biosynthesis of many medicinally important natural products. In order to expand the substrate pool of NRPSs, we developed a method based on yeast cell surface display to engineer the substrate specificities of the A-domains. We acquired A-domain mutants of DhbE that have 11- and 6-fold increases in k(cat)/K(m) with nonnative substrates 3-hydroxybenzoic acid and 2-aminobenzoic acid, respectively and corresponding 3- and 33-fold decreases in k(cat)/K(m) values with the native substrate 2,3-dihydroxybenzoic acid, resulting in a dramatic switch in substrate specificity of up to 200-fold. Our study demonstrates that yeast display can be used as a high throughput selection platform to reprogram the "nonribosomal code" of A-domains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Gis1 and Rph1 regulate glycerol and acetate metabolism in glucose depleted yeast cells.

    Directory of Open Access Journals (Sweden)

    Jakub Orzechowski Westholm

    Full Text Available Aging in organisms as diverse as yeast, nematodes, and mammals is delayed by caloric restriction, an effect mediated by the nutrient sensing TOR, RAS/cAMP, and AKT/Sch9 pathways. The transcription factor Gis1 functions downstream of these pathways in extending the lifespan of nutrient restricted yeast cells, but the mechanisms involved are still poorly understood. We have used gene expression microarrays to study the targets of Gis1 and the related protein Rph1 in different growth phases. Our results show that Gis1 and Rph1 act both as repressors and activators, on overlapping sets of genes as well as on distinct targets. Interestingly, both the activities and the target specificities of Gis1 and Rph1 depend on the growth phase. Thus, both proteins are associated with repression during exponential growth, targeting genes with STRE or PDS motifs in their promoters. After the diauxic shift, both become involved in activation, with Gis1 acting primarily on genes with PDS motifs, and Rph1 on genes with STRE motifs. Significantly, Gis1 and Rph1 control a number of genes involved in acetate and glycerol formation, metabolites that have been implicated in aging. Furthermore, several genes involved in acetyl-CoA metabolism are downregulated by Gis1.

  12. Yeast Cells Exposed to Exogenous Palmitoleic Acid Either Adapt to Stress and Survive or Commit to Regulated Liponecrosis and Die

    Directory of Open Access Journals (Sweden)

    Karamat Mohammad

    2018-01-01

    Full Text Available A disturbed homeostasis of cellular lipids and the resulting lipotoxicity are considered to be key contributors to many human pathologies, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer. The yeast Saccharomyces cerevisiae has been successfully used for uncovering molecular mechanisms through which impaired lipid metabolism causes lipotoxicity and elicits different forms of regulated cell death. Here, we discuss mechanisms of the “liponecrotic” mode of regulated cell death in S. cerevisiae. This mode of regulated cell death can be initiated in response to a brief treatment of yeast with exogenous palmitoleic acid. Such treatment prompts the incorporation of exogenously added palmitoleic acid into phospholipids and neutral lipids. This orchestrates a global remodeling of lipid metabolism and transfer in the endoplasmic reticulum, mitochondria, lipid droplets, and the plasma membrane. Certain features of such remodeling play essential roles either in committing yeast to liponecrosis or in executing this mode of regulated cell death. We also outline four processes through which yeast cells actively resist liponecrosis by adapting to the cellular stress imposed by palmitoleic acid and maintaining viability. These prosurvival cellular processes are confined in the endoplasmic reticulum, lipid droplets, peroxisomes, autophagosomes, vacuoles, and the cytosol.

  13. Physiological And Blood Biochemical Responses To Dried Live Yeast Plus Vitamin E As A Dietary Supplement To Bovine Baladi Calves Under Hot Summer Conditions

    International Nuclear Information System (INIS)

    ABDALLA, E.B.; EL-MASRY, K.A.; TEAMA, F.E.; EMARA, S.S.

    2009-01-01

    The experiment was designed to study the effect of supplemented dried live yeast (DLY) + vitamin E to the diet of growing calves under hot summer conditions in Egypt. Six bovine Baladi calves with 115 kg initial body weight and 8-10 months old were used during two periods. In the first period, the calves were offered the concentrated basal diet only for one month and considered as a control period. In the second period, the calves were fed the same basal diet which supplemented with 15 g dried live yeast (Saccharomyces cerevisiae) + 600 IU vitamin E (alpha- tocopherol) per calf daily for one month and considered as a treated period. Body weight was recorded at the beginning and the end of each period, and daily gain was calculated for each animal. Blood samples were collected from each animal at the end of each period to determine some blood biochemical parameters and T 3 and T 4 concentrations as well as some immunological indices.The results showed that supplementation of DLY + 600 IU vitamin E to the diet of calves reduced significantly (P 3 and T 4 levels and improved feed efficiency and daily gain. It is concluded that supplementation of growing calves with 15 g DLY + 600 IU vitamin E / calf / day under Egyptian hot summer conditions reduced the effect of heat stress as shown by a decline in RT and modified most blood constituents and thyroid function which leads to an improvement in growing calves

  14. Connectivity in the yeast cell cycle transcription network: inferences from neural networks.

    Directory of Open Access Journals (Sweden)

    Christopher E Hart

    2006-12-01

    Full Text Available A current challenge is to develop computational approaches to infer gene network regulatory relationships based on multiple types of large-scale functional genomic data. We find that single-layer feed-forward artificial neural network (ANN models can effectively discover gene network structure by integrating global in vivo protein:DNA interaction data (ChIP/Array with genome-wide microarray RNA data. We test this on the yeast cell cycle transcription network, which is composed of several hundred genes with phase-specific RNA outputs. These ANNs were robust to noise in data and to a variety of perturbations. They reliably identified and ranked 10 of 12 known major cell cycle factors at the top of a set of 204, based on a sum-of-squared weights metric. Comparative analysis of motif occurrences among multiple yeast species independently confirmed relationships inferred from ANN weights analysis. ANN models can capitalize on properties of biological gene networks that other kinds of models do not. ANNs naturally take advantage of patterns of absence, as well as presence, of factor binding associated with specific expression output; they are easily subjected to in silico "mutation" to uncover biological redundancies; and they can use the full range of factor binding values. A prominent feature of cell cycle ANNs suggested an analogous property might exist in the biological network. This postulated that "network-local discrimination" occurs when regulatory connections (here between MBF and target genes are explicitly disfavored in one network module (G2, relative to others and to the class of genes outside the mitotic network. If correct, this predicts that MBF motifs will be significantly depleted from the discriminated class and that the discrimination will persist through evolution. Analysis of distantly related Schizosaccharomyces pombe confirmed this, suggesting that network-local discrimination is real and complements well-known enrichment of

  15. Assessing resolution in live cell structured illumination microscopy

    Science.gov (United States)

    Pospíšil, Jakub; Fliegel, Karel; Klíma, Miloš

    2017-12-01

    Structured Illumination Microscopy (SIM) is a powerful super-resolution technique, which is able to enhance the resolution of optical microscope beyond the Abbe diffraction limit. In the last decade, numerous SIM methods that achieve the resolution of 100 nm in the lateral dimension have been developed. The SIM setups with new high-speed cameras and illumination pattern generators allow rapid acquisition of the live specimen. Therefore, SIM is widely used for investigation of the live structures in molecular and live cell biology. Quantitative evaluation of resolution enhancement in a real sample is essential to describe the efficiency of super-resolution microscopy technique. However, measuring the resolution of a live cell sample is a challenging task. Based on our experimental findings, the widely used Fourier ring correlation (FRC) method does not seem to be well suited for measuring the resolution of SIM live cell video sequences. Therefore, the resolution assessing methods based on Fourier spectrum analysis are often used. We introduce a measure based on circular average power spectral density (PSDca) estimated from a single SIM image (one video frame). PSDca describes the distribution of the power of a signal with respect to its spatial frequency. Spatial resolution corresponds to the cut-off frequency in Fourier space. In order to estimate the cut-off frequency from a noisy signal, we use a spectral subtraction method for noise suppression. In the future, this resolution assessment approach might prove useful also for single-molecule localization microscopy (SMLM) live cell imaging.

  16. Application of cell-surface engineering for visualization of yeast in bread dough: development of a fluorescent bio-imaging technique in the mixing process of dough.

    Science.gov (United States)

    Maeda, Tatsuro; Shiraga, Seizaburo; Araki, Tetsuya; Ueda, Mitsuyoshi; Yamada, Masaharu; Takeya, Koji; Sagara, Yasuyuki

    2009-07-01

    Cell-surface engineering (Ueda et al., 2000) has been applied to develop a novel technique to visualize yeast in bread dough. Enhanced green fluorescent protein (EGFP) was bonded to the surface of yeast cells, and 0.5% EGFP yeasts were mixed into the dough samples at four different mixing stages. The samples were placed on a cryostat at -30 degrees C and sliced at 10 microm. The sliced samples were observed at an excitation wavelength of 480 nm and a fluorescent wavelength of 520 nm. The results indicated that the combination of the EGFP-displayed yeasts, rapid freezing, and cryo-sectioning made it possible to visualize 2-D distribution of yeast in bread dough to the extent that the EGFP yeasts could be clearly distinguished from the auto-fluorescent background of bread dough.

  17. Semi-automated quantification of living cells with internalized nanostructures

    KAUST Repository

    Margineanu, Michael B.

    2016-01-15

    Background Nanostructures fabricated by different methods have become increasingly important for various applications in biology and medicine, such as agents for medical imaging or cancer therapy. In order to understand their interaction with living cells and their internalization kinetics, several attempts have been made in tagging them. Although methods have been developed to measure the number of nanostructures internalized by the cells, there are only few approaches aimed to measure the number of cells that internalize the nanostructures, and they are usually limited to fixed-cell studies. Flow cytometry can be used for live-cell assays on large populations of cells, however it is a single time point measurement, and does not include any information about cell morphology. To date many of the observations made on internalization events are limited to few time points and cells. Results In this study, we present a method for quantifying cells with internalized magnetic nanowires (NWs). A machine learning-based computational framework, CellCognition, is adapted and used to classify cells with internalized and no internalized NWs, labeled with the fluorogenic pH-dependent dye pHrodo™ Red, and subsequently to determine the percentage of cells with internalized NWs at different time points. In a “proof-of-concept”, we performed a study on human colon carcinoma HCT 116 cells and human epithelial cervical cancer HeLa cells interacting with iron (Fe) and nickel (Ni) NWs. Conclusions This study reports a novel method for the quantification of cells that internalize a specific type of nanostructures. This approach is suitable for high-throughput and real-time data analysis and has the potential to be used to study the interaction of different types of nanostructures in live-cell assays.

  18. Yeast cell metabolism investigated by CO{_2} production and soft X-ray irradiation

    Science.gov (United States)

    Masini, A.; Batani, D.; Previdi, F.; Milani, M.; Pozzi, A.; Turcu, E.; Huntington, S.; Takeyasu, H.

    1999-01-01

    Results obtained using a new technique for studying cell metabolism are presented. The technique, consisting in CO2 production monitoring, has been applied to Saccharomyces cerevisiae yeast cells. Also the cells were irradiated using the soft X-ray laser-plasma source at Rutherford Appleton Laboratory with the aim of producing a damage of metabolic processes at the wall level, responsible for fermentation, without great interference with respiration, taking place in mitochondria, and DNA activity. The source was calibrated with PIN diodes and X-ray spectrometers and used Teflon stripes as target, emitting X-rays at about 0.9 keV, with a very low penetration in biological material. X-ray doses delivered to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. Immediately after irradiation, the damage to metabolic activity was measured again by monitoring CO2 production. Results showed a general reduction in gas production by irradiated samples, together with non-linear and non-monotone response to dose. There was also evidence of oscillations in cell metabolic activity and of X-ray induced changes in oscillation frequency.

  19. Effect of nagilactone E on cell morphology and glucan biosynthesis in budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Hayashi, Kengo; Yamaguchi, Yoshihiro; Ogita, Akira; Tanaka, Toshio; Kubo, Isao; Fujita, Ken-Ichi

    2018-05-14

    Nagilactones are norditerpene dilactones isolated from the root bark of Podocarpus nagi. Although nagilactone E has been reported to show antifungal activities, its activity is weaker than that of antifungals on the market. Nagilactone E enhances the antifungal activity of phenylpropanoids such as anethole and isosafrole against nonpathogenic Saccharomyces cerevisiae and pathogenic Candida albicans. However, the detailed mechanisms underlying the antifungal activity of nagilactone E itself have not yet been elucidated. Therefore, we investigated the antifungal mechanisms of nagilactone E using S. cerevisiae. Although nagilactone E induced lethality in vegetatively growing cells, it did not affect cell viability in non-growing cells. Nagilactone E-induced morphological changes in the cells, such as inhomogeneous thickness of the glucan layer and leakage of cytoplasm. Furthermore, a dose-dependent decrease in the amount of newly synthesized (1, 3)-β-glucan was detected in the membrane fractions of the yeast incubated with nagilactone E. These results suggest that nagilactone E exhibits an antifungal activity against S. cerevisiae by depending on cell wall fragility via the inhibition of (1, 3)-β-glucan biosynthesis. Additionally, we confirmed nagilactone E-induced morphological changes of a human pathogenic fungus Aspergillus fumigatus. Therefore, nagilactone E is a potential antifungal drug candidate with fewer adverse effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The effects of atomic force microscopy upon nominated living cells

    Energy Technology Data Exchange (ETDEWEB)

    O' Hagan, Barry Michael Gerard [School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, County Londonderry, BT52 1SA (United Kingdom)]. E-mail: bmg.ohagan@ulstser.ac.uk; Doyle, Peter [Unilever Research, Port Sunlight, The Wirral, Merseyside (United Kingdom); Allen, James M. [School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, County Londonderry, BT52 1SA (United Kingdom); Sutton, Kerry [School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, County Londonderry, BT52 1SA (United Kingdom); McKerr, George [School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, County Londonderry, BT52 1SA (United Kingdom)

    2004-12-15

    This work describes a system for precise re-location of cells within a monolayer after atomic force imaging. As we know little about probe interaction with soft biological surfaces any corroborative evidence is of great importance. For example, it is of paramount importance in living cell force microscopy that interrogated cells can be re-located and imaged by other corroborative technologies. Methodologies expressed here have shown that non-invasive force parameters can be established for specific cell types. Additionally, we show that the same sample can be transferred reliably to an SEM. Results here indicate that further work with live cells should initially establish appropriate prevailing force parameters and that cell damage should be checked for before and after an imaging experiment.

  1. The effects of atomic force microscopy upon nominated living cells

    International Nuclear Information System (INIS)

    O'Hagan, Barry Michael Gerard; Doyle, Peter; Allen, James M.; Sutton, Kerry; McKerr, George

    2004-01-01

    This work describes a system for precise re-location of cells within a monolayer after atomic force imaging. As we know little about probe interaction with soft biological surfaces any corroborative evidence is of great importance. For example, it is of paramount importance in living cell force microscopy that interrogated cells can be re-located and imaged by other corroborative technologies. Methodologies expressed here have shown that non-invasive force parameters can be established for specific cell types. Additionally, we show that the same sample can be transferred reliably to an SEM. Results here indicate that further work with live cells should initially establish appropriate prevailing force parameters and that cell damage should be checked for before and after an imaging experiment

  2. Accelerated heavy ions induced DNA double-strand breaks in yeast cells

    International Nuclear Information System (INIS)

    Akpa, T.C.

    1993-01-01

    Yeast cells of strain cerevisiae, were irradiated with monoenergetic heavy ions, X-rays and α particles and assayed for DNA double-strand breaks and cell survival. The method of neutral sucrose gradient velocity sedimentation was used for all heavy-ion experiments because it is a well established technique.The method of pulsed-field gel electrophoresis was used for X-rays, α particles and argon ions. Results show that within the range of LET of the particles used (300 - 10 5 KeV/μm) the induction cross-section for DNA double-strand break is constant between 300 and around 7000 KeV/μm and increases at higher LET values. The inactivation cross-section follow the same trend. The DSB-induction and inactivation cross-section was shown to be linearly related with a slope of (1.01±0.15)/109 gmol-i. The RBE for DSB -induced decreases with LET and tails off at high LET values also. These results when compared with results from literature shows that the trend of induction is first monotonic rise of rate of DSB-induction up to 100keV/μm, followed by a plateau and a further rise which is due to increased effect of energetic γ-rays formed as shown for survival studies and predicted is possible to separate the cell DNA contents into 13 to 15 chromosome bands. The relative decrease in DNA content of the first band as determined by ethidium bromide-UV fluorescence decreases exponentially. The cross-section for DSB-induction determined by this method are (9.8±0.01)dsb/10 12 gmol - 1 Gy - 1, for 80 kV X-rays in haploid 211 yeast strain; (0.04+0.003)dsb/109gmol - 1μm 2 for Am-radioisotope α particles in haploid cells, (0.184±0.034) dsb/10 9 gmol - 1μm 2 in diploid 211*B cells and (0.55±0.04) dsb/10 9 gmol - 1μm 2 for 7MeV Argon ion in the diploid cells. The values are comparable to those obtained with velocity sedimentation technique. However, the reason for the low value obtained for a particle induced DSB in haploid cells is not clear

  3. Antimutagenic, Antirecombinogenic, and Antitumor Effect of Amygdalin in a Yeast Cell-Based Test and Mammalian Cell Lines.

    Science.gov (United States)

    Todorova, Atanaska; Pesheva, Margarita; Iliev, Ivan; Bardarov, Krum; Todorova, Teodora

    2017-04-01

    Amygdalin is a major component of the seeds of Rosaceae family of plants such as apricots, peaches, cherry, nectarines, apples, plums, and so on, as well as almonds. It is used in alternative medicine for cancer prevention, alleviation of fever, cough suppression, and quenching thirst. The aim of the present study is to determine the mutagenic and recombinogenic effects of amygdalin in a test system Saccharomyces cerevisiae and to evaluate its potential antitumor effect in a yeast cell-based test and colon cancer cell lines. Results obtained show that concentrations 25, 50, and 100 μg/mL did not have any cytotoxic, mutagenic, and carcinogenic effect in yeast cell-based tests. Pretreatment with amygdalin at concentration 100 μg/mL leads to around twofold of the cell survival and decrease of reverse mutation frequency, induced by the alkylating agent methyl methanesulfonate. The frequency of gene conversion and mitotic crossing-over is around threefold lower. The anticarcinogenic potential of amygdalin at the same concentration is presented as around fourfold reduction of Ty1 retrotransposition induced by hexavalent chromium. In summary, data presented in this study provide evidence concerning the inability of amygdalin itself to provoke events related to the initial steps of tumorigenesis. In addition, the observed antimutagenic/antirecombinogenic effect could be activation of error-free and error-prone recombination events. Based on the high selectivity toward normal or tumor cell lines, it could be speculated that amygdalin has higher cytotoxic effect in cell lines with higher proliferative and metabolic activity, which are the majority of fast developing tumors.

  4. Yeast casein kinase 2 governs morphology, biofilm formation, cell wall integrity, and host cell damage of Candida albicans.

    Science.gov (United States)

    Jung, Sook-In; Rodriguez, Natalie; Irrizary, Jihyun; Liboro, Karl; Bogarin, Thania; Macias, Marlene; Eivers, Edward; Porter, Edith; Filler, Scott G; Park, Hyunsook

    2017-01-01

    The regulatory networks governing morphogenesis of a pleomorphic fungus, Candida albicans are extremely complex and remain to be completely elucidated. This study investigated the function of C. albicans yeast casein kinase 2 (CaYck2p). The yck2Δ/yck2Δ strain displayed constitutive pseudohyphae in both yeast and hyphal growth conditions, and formed enhanced biofilm under non-biofilm inducing condition. This finding was further supported by gene expression analysis of the yck2Δ/yck2Δ strain which showed significant upregulation of UME6, a key transcriptional regulator of hyphal transition and biofilm formation, and cell wall protein genes ALS3, HWP1, and SUN41, all of which are associated with morphogenesis and biofilm architecture. The yck2Δ/yck2Δ strain was hypersensitive to cell wall damaging agents and had increased compensatory chitin deposition in the cell wall accompanied by an upregulation of the expression of the chitin synthase genes, CHS2, CHS3, and CHS8. Absence of CaYck2p also affected fungal-host interaction; the yck2Δ/yck2Δ strain had significantly reduced ability to damage host cells. However, the yck2Δ/yck2Δ strain had wild-type susceptibility to cyclosporine and FK506, suggesting that CaYck2p functions independently from the Ca+/calcineurin pathway. Thus, in C. albicans, Yck2p is a multifunctional kinase that governs morphogenesis, biofilm formation, cell wall integrity, and host cell interactions.

  5. Effects of Ionizing Radiation and Glutathione Precursor on Antioxidant Enzyme and Cell Survival in Yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinkyu; Roh, Changhyun; Ryu, Taeho; Park, Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Michael A. [Oxiage Cosmeceutical Research Institute, Virginia (United States)

    2013-05-15

    Cells react to such an induced oxidative stress through scavenging the generated reactive oxygen species to reduce oxidative damage. Antioxidant enzymes such as glutathione peroxidase, catalase, and superoxide dismutase are immediately triggered for reactive oxygen species. N-acetyl-L-cysteine (NAC), a precursor of glutathione, is one of the antioxidants. The effect of NAC as an antioxidant and/or a cell rescue agent was investigated in the present study. Glutathione (GSH) is the most abundant intracellular thiol, which involves in antioxidant defense via direct interaction with ROS or via activities of detoxication enzymes like glutathione peroxidases (GPx). NAC flowed in the cell is converted to cysteine by deacetylation, that is supplied to the depleted GSH by oxidative stress. NAC prevents the depletion of GSH by radiation, increases the production of GSH, and improves enzymes activity such as GPx and alkaline phosphatase. Cell growth and survivorship and transcriptional level of glutathione gene are analyzed in two yeast strains exposed to combined treatment of NAC with gamma-rays. The effect of NAC on cell growth was measured during 72 hours. The cell growth was hampered by higher concentrations of NAC at stationary phase. NAC, however, didn't affect the cell division at the exponential phase. The survival of the cells decreased with radiation dose. The cell viability of the strain W303-1A was reduced significantly at the low dose (10 and 30 Gy). By comparison, the strain W303-1A was more sensitive to radiation with having a half lethal dose (LD{sub 50}) of about 20 Gy. The quantitative RT-PCR analysis showed that the transcriptional expression of antioxidant enzyme gene GPX1 increased after irradiation while the expression of the gene decreased by the combined treatment of NAC with 100 Gy radiation. The present study shows that NAC can directly scavenge ROS against oxidative stress in vivo. In conclusion, NAC can prevent radiation-induced oxidative

  6. Effects of Ionizing Radiation and Glutathione Precursor on Antioxidant Enzyme and Cell Survival in Yeast

    International Nuclear Information System (INIS)

    Kim, Jinkyu; Roh, Changhyun; Ryu, Taeho; Park, Jiyoung; Nili, Michael A.

    2013-01-01

    Cells react to such an induced oxidative stress through scavenging the generated reactive oxygen species to reduce oxidative damage. Antioxidant enzymes such as glutathione peroxidase, catalase, and superoxide dismutase are immediately triggered for reactive oxygen species. N-acetyl-L-cysteine (NAC), a precursor of glutathione, is one of the antioxidants. The effect of NAC as an antioxidant and/or a cell rescue agent was investigated in the present study. Glutathione (GSH) is the most abundant intracellular thiol, which involves in antioxidant defense via direct interaction with ROS or via activities of detoxication enzymes like glutathione peroxidases (GPx). NAC flowed in the cell is converted to cysteine by deacetylation, that is supplied to the depleted GSH by oxidative stress. NAC prevents the depletion of GSH by radiation, increases the production of GSH, and improves enzymes activity such as GPx and alkaline phosphatase. Cell growth and survivorship and transcriptional level of glutathione gene are analyzed in two yeast strains exposed to combined treatment of NAC with gamma-rays. The effect of NAC on cell growth was measured during 72 hours. The cell growth was hampered by higher concentrations of NAC at stationary phase. NAC, however, didn't affect the cell division at the exponential phase. The survival of the cells decreased with radiation dose. The cell viability of the strain W303-1A was reduced significantly at the low dose (10 and 30 Gy). By comparison, the strain W303-1A was more sensitive to radiation with having a half lethal dose (LD 50 ) of about 20 Gy. The quantitative RT-PCR analysis showed that the transcriptional expression of antioxidant enzyme gene GPX1 increased after irradiation while the expression of the gene decreased by the combined treatment of NAC with 100 Gy radiation. The present study shows that NAC can directly scavenge ROS against oxidative stress in vivo. In conclusion, NAC can prevent radiation-induced oxidative stress by

  7. Use of INAA to study the determination of Se, Th, Zn, Co and Fe levels of yeast cells

    International Nuclear Information System (INIS)

    Czauderna, M.; Turska, M.; Sitowska, B.

    1996-01-01

    Differences in the effects of seleno-cystine (CySe) 2 , glutathione (GSH), Se(IV) [as SeO 2 ] and Se(VI) [as (NH 4 ) 2 SeO 4 ] on Th(IV) [as Th(CO 3 ) 2 ] uptake by the cells, Saccharomyces cerevisiae, have been studied. The Th, Se, Zn, Co and Fe levels of the yeast cells were measured by instrumental neutron activation analysis. Results obtained show that the addition of Th alone to the culture medium resulting in the Th content of the cells and the Th level of the yeast slightly decreased during the incubation. The addition of Th in combination with GSH produced a higher decrease of the Th content in comparison with the single Th dosage. During the initial 48 h of the incubation the presence of Th and Se(VI) in the medium produced a decrease of the Th level of the cells in comparison with the addition of Th alone. (CySe) 2 or SeO 2 does not produce a regular change of the Th level of the cells. Th uptake by the yeast influenced the retention of Se in the cells. In fact, the Se levels of the cells were always significantly higher when the yeast was incubated in the medium containing Th and SeO 2 or Se(VI). The enhance in the Se level of the cells rises increasing concentrations of SeO 2 in the culture medium. Th decreased the Se content of the yeast when the cells were incubated in the medium containing (CySe) 2 and Th. GSH supply in combination with Th and SeO 2 produced a very significant enhancement of the Se abundance in the cells in comparison with the single addition of SeO 2 . Se-compounds and/or Th dosages affected the Zn, Co and Fe contents of the cells. The Fe level of the yeast is below the quantitative detection limit of Fe when the cells were incubated in the medium containing Th. (Author)

  8. Increased availability of NADH in metabolically engineered baker's yeast improves transaminase-oxidoreductase coupled asymmetric whole-cell bioconversion

    DEFF Research Database (Denmark)

    Knudsen, Jenny Dahl; Hägglöf, Cecilia; Weber, Nora

    2016-01-01

    yeast for transamination-reduction coupled asymmetric one-pot conversion was investigated. RESULTS: A series of active whole-cell biocatalysts were constructed by over-expressing the (S)-selective ω-transaminase (VAMT) from Capsicum chinense together with the NADH-dependent (S)-selective alcohol...

  9. Influence of non-adherent yeast cells on electrical characteristics of diamond-based field-effect transistors

    Czech Academy of Sciences Publication Activity Database

    Procházka, Václav; Cifra, Michal; Kulha, Pavel; Ižák, Tibor; Rezek, Bohuslav; Kromka, Alexander

    2017-01-01

    Roč. 395, Feb (2017), s. 214-219 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 ; RVO:67985882 Keywords : nanocrystalline diamond * yeast cells * field-effect transistor * transfer characteristics pH sensitivity Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 3.387, year: 2016

  10. Biological effectiveness of pulsed and continuous neutron radiation for cells of yeast Saccharomyces

    International Nuclear Information System (INIS)

    Tsyb, T.S.; Komarova, E.V.; Potetnya, V.I.; Obaturov, G.M.

    2001-01-01

    Data are presented on biological effectiveness of fast neutrons generated by BR-10 reactor (dose rate up to 3.8 Gy/s) in comparison with neutrons of pulsed BARS-6 reactor (dose rate ∼6x10 6 Gy/s) for yeast Saccharomyces vini cells of a wild type Menri 139-B and radiosensitive Saccharomyces cerevisiae (rad52/rad52; rad54/rad54) mutants which are defective over different systems of DNA reparation. Value of relative biological efficiency (RBE) of continuous radiation for wild stam is from 3.5 up to 2.5 when survival level being 75-10 %, and RBE of pulsed neutron radiation is in the limits of 2.0-1.7 at the same levels. For mutant stam the value of RBE (1.4-1.6) of neutrons is constant at all survival levels and does not depend on dose rate [ru

  11. Development of a yeast cell factory for production of aromatic products

    DEFF Research Database (Denmark)

    Rodriguez Prado, Edith Angelica; Kildegaard, Kanchana Rueksomtawin; Li, Mingji

    2014-01-01

    There is much interest in aromatic chemicals in the chemical industry as these can be used for production of dyes, anti-oxidants, nutraceuticals and food ingredients. Yeast is a widely used cell factory and it is particularly well suited for production of aromatic chemicals via complex biosynthetic...... routes involving P450 enzymes. In Saccharomyces cerevisiae the fluxes towards aromatic acids (L-tryptophan, L-tyrosine and L-phenylalanine) are strictly controlled on transcriptional and kinetic levels and therefore are difficult to manipulate. We engineered S. cerevisiae for increased production...... of aromatic compounds by eliminating degradation, up-regulating the key enzyme encoding genes, and removing feed-back inhibition in the pathway. In order to test the strain performance we overexpressed heterologous pathway for coumaric acid production. We obtained 4-fold higher concentrations of coumaric acid...

  12. Heuristic Sensitivity Analysis for Baker's Yeast Model Parameters

    OpenAIRE

    Leão, Celina P.; Soares, Filomena O.

    2004-01-01

    The baker's yeast, essentially composed by living cells of Saccharomyces cerevisiae, used in the bread making and beer industries as a microorganism, has an important industrial role. The simulation procedure represents then a necessary tool to understand clearly the baker's yeast fermentation process. The use of mathematical models based on mass balance equations requires the knowledge of the reaction kinetics, thermodynamics, and transport and physical properties. Models may be more or less...

  13. Therapeutic activity of a Saccharomyces cerevisiae-based probiotic and inactivated whole yeast on vaginal candidiasis.

    Science.gov (United States)

    Pericolini, Eva; Gabrielli, Elena; Ballet, Nathalie; Sabbatini, Samuele; Roselletti, Elena; Cayzeele Decherf, Amélie; Pélerin, Fanny; Luciano, Eugenio; Perito, Stefano; Jüsten, Peter; Vecchiarelli, Anna

    2017-01-02

    Vulvovaginal candidiasis is the most prevalent vaginal infection worldwide and Candida albicans is its major agent. Vulvovaginal candidiasis is characterized by disruption of the vaginal microbiota composition, as happens following large spectrum antibiotic usage. Recent studies support the effectiveness of oral and local probiotic treatment for prevention of recurrent vulvovaginal candidiasis. Saccharomyces cerevisiae is a safe yeast used as, or for, the production of ingredients for human nutrition and health. Here, we demonstrate that vaginal administration of probiotic Saccharomyces cerevisiae live yeast (GI) and, in part, inactivated whole yeast Saccharomyces cerevisiae (IY), used as post-challenge therapeutics, was able to positively influence the course of vaginal candidiasis by accelerating the clearance of the fungus. This effect was likely due to multiple interactions of Saccharomyces cerevisiae with Candida albicans. Both live and inactivated yeasts induced coaggregation of Candida and consequently inhibited its adherence to epithelial cells. However, only the probiotic yeast was able to suppress some major virulence factors of Candida albicans such as the ability to switch from yeast to mycelial form and the capacity to express several aspartyl proteases. The effectiveness of live yeast was higher than that of inactivated whole yeast suggesting that the synergy between mechanical effects and biological effects were dominant over purely mechanical effects. The protection of epithelial cells to Candida-induced damage was also observed. Overall, our data show for the first time that Saccharomyces cerevisiae-based ingredients, particularly the living cells, can exert beneficial therapeutic effects on a widespread vaginal mucosal infection.

  14. Analysis of Schizosaccharomyces pombe mediator reveals a set of essential subunits conserved between yeast and metazoan cells

    DEFF Research Database (Denmark)

    Spåhr, H; Samuelsen, C O; Baraznenok, V

    2001-01-01

    . cerevisiae share an essential protein module, which associates with nonessential speciesspecific subunits. In support of this view, sequence analysis of the conserved yeast Mediator components Med4 and Med8 reveals sequence homology to the metazoan Mediator components Trap36 and Arc32. Therefore, 8 of 10...... essential genes conserved between S. pombe and S. cerevisiae also have a metazoan homolog, indicating that an evolutionary conserved Mediator core is present in all eukaryotic cells. Our data suggest a closer functional relationship between yeast and metazoan Mediator than previously anticipated....

  15. A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells.

    Science.gov (United States)

    Tomaszewska, Ludwika; Rakicka, Magdalena; Rymowicz, Waldemar; Rywińska, Anita

    2014-09-01

    Citric acid and erythritol biosynthesis from pure and crude glycerol by three acetate-negative mutants of Yarrowia lipolytica yeast was investigated in batch cultures in a wide pH range (3.0-6.5). Citric acid biosynthesis was the most effective at pH 5.0-5.5 in the case of Wratislavia 1.31 and Wratislavia AWG7. With a decreasing pH value, the direction of biosynthesis changed into erythritol synthesis accompanied by low production of citric acid. Pathways of glycerol conversion into erythritol and citric acid were investigated in Wratislavia K1 cells. Enzymatic activity was compared in cultures run at pH 3.0 and 4.5, that is, under conditions promoting the production of erythritol and citric acid, respectively. The effect of pH value (3.0 and 4.5) and NaCl presence on the extracellular production and intracellular accumulation of citric acid and erythritol was compared as well. Low pH and NaCl resulted in diminished activity of glycerol kinase, whereas such conditions stimulated the activity of glycerol-3-phosphate dehydrogenase. The presence of NaCl strongly influenced enzymes activity - the effective erythritol production was correlated with a high activity of transketolase and erythrose reductase. Therefore, presented results confirmed that transketolase and erythrose reductase are involved in the overproduction of erythritol in the cells of Y. lipolytica yeast. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. The yeast cell fusion protein Prm1p requires covalent dimerization to promote membrane fusion.

    Directory of Open Access Journals (Sweden)

    Alex Engel

    2010-05-01

    Full Text Available Prm1p is a multipass membrane protein that promotes plasma membrane fusion during yeast mating. The mechanism by which Prm1p and other putative regulators of developmentally controlled cell-cell fusion events facilitate membrane fusion has remained largely elusive. Here, we report that Prm1p forms covalently linked homodimers. Covalent Prm1p dimer formation occurs via intermolecular disulfide bonds of two cysteines, Cys-120 and Cys-545. PRM1 mutants in which these cysteines have been substituted are fusion defective. These PRM1 mutants are normally expressed, retain homotypic interaction and can traffic to the fusion zone. Because prm1-C120S and prm1-C545S mutants can form covalent dimers when coexpressed with wild-type PRM1, an intermolecular C120-C545 disulfide linkage is inferred. Cys-120 is adjacent to a highly conserved hydrophobic domain. Mutation of a charged residue within this hydrophobic domain abrogates formation of covalent dimers, trafficking to the fusion zone, and fusion-promoting activity. The importance of intermolecular disulfide bonding informs models regarding the mechanism of Prm1-mediated cell-cell fusion.

  17. Toxicology of the aqueous extract from the flowers of Butea monosperma Lam. and it's metabolomics in yeast cells.

    Science.gov (United States)

    Khan, Washim; Gupta, Shreesh; Ahmad, Sayeed

    2017-10-01

    Due to lack of scientific evidence for the safety of Butea monosperma (Fabaceae), our study aimed to carry out its toxicological profile and to identify its metabolic pattern in yeast cell. The effect of aqueous extract of B. monosperma flower on glucose uptake in yeast cell was evaluated through optimizing pH, temperature, incubation time, substrate concentration and kinetic parameters. Further, the metabolic pattern of extract as such and in yeast cell were analyzed by gas chromatography-mass spectrometry. Mice were administered aqueous extract up to 6000 and 4000 mg/kg for acute oral and intraperitoneal toxicity, respectively, while up to 4500 mg/kg for sub-acute oral toxicity (30 days). Elongation in the lag and log phase was observed in yeast cells supplemented with extract as compared to control. A maximum of 184.9% glucose uptake was observed whereas kinetic parameters (K m and V max ) were 1.38 and 41.91 mol/s, respectively. Out of 75 metabolites found in the extract, 14 and 18 metabolites were utilized by yeast cell after 15 and 30 min of incubation, respectively. The LD 50 of extract administered through intraperitoneal route was estimated to be 3500 mg/kg. The extract did not elicit any significant difference (P ≥ 0.05) in weight gain, food consumption, water intake, hematological, biochemical parameters and histological changes as compared to the normal control. Results ascertained the safety of B. monosperma flower extract which can be explored as potential candidates for the development of anti-diabetic phytopharmaceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. PeakForce Tapping resolves individual microvilli on living cells.

    Science.gov (United States)

    Schillers, Hermann; Medalsy, Izhar; Hu, Shuiqing; Slade, Andrea L; Shaw, James E

    2016-02-01

    Microvilli are a common structure found on epithelial cells that increase the apical surface thus enhancing the transmembrane transport capacity and also serve as one of the cell's mechanosensors. These structures are composed of microfilaments and cytoplasm, covered by plasma membrane. Epithelial cell function is usually coupled to the density of microvilli and its individual size illustrated by diseases, in which microvilli degradation causes malabsorption and diarrhea. Atomic force microscopy (AFM) has been widely used to study the topography and morphology of living cells. Visualizing soft and flexible structures such as microvilli on the apical surface of a live cell has been very challenging because the native microvilli structures are displaced and deformed by the interaction with the probe. PeakForce Tapping® is an AFM imaging mode, which allows reducing tip-sample interactions in time (microseconds) and controlling force in the low pico-Newton range. Data acquisition of this mode was optimized by using a newly developed PeakForce QNM-Live Cell probe, having a short cantilever with a 17-µm-long tip that minimizes hydrodynamic effects between the cantilever and the sample surface. In this paper, we have demonstrated for the first time the visualization of the microvilli on living kidney cells with AFM using PeakForce Tapping. The structures observed display a force dependence representing either the whole microvilli or just the tips of the microvilli layer. Together, PeakForce Tapping allows force control in the low pico-Newton range and enables the visualization of very soft and flexible structures on living cells under physiological conditions. © 2015 The Authors Journal of Molecular Recognition Published by John Wiley & Sons Ltd.

  19. A Nonlinear Mixed Effects Approach for Modeling the Cell-To-Cell Variability of Mig1 Dynamics in Yeast.

    Directory of Open Access Journals (Sweden)

    Joachim Almquist

    Full Text Available The last decade has seen a rapid development of experimental techniques that allow data collection from individual cells. These techniques have enabled the discovery and characterization of variability within a population of genetically identical cells. Nonlinear mixed effects (NLME modeling is an established framework for studying variability between individuals in a population, frequently used in pharmacokinetics and pharmacodynamics, but its potential for studies of cell-to-cell variability in molecular cell biology is yet to be exploited. Here we take advantage of this novel application of NLME modeling to study cell-to-cell variability in the dynamic behavior of the yeast transcription repressor Mig1. In particular, we investigate a recently discovered phenomenon where Mig1 during a short and transient period exits the nucleus when cells experience a shift from high to intermediate levels of extracellular glucose. A phenomenological model based on ordinary differential equations describing the transient dynamics of nuclear Mig1 is introduced, and according to the NLME methodology the parameters of this model are in turn modeled by a multivariate probability distribution. Using time-lapse microscopy data from nearly 200 cells, we estimate this parameter distribution according to the approach of maximizing the population likelihood. Based on the estimated distribution, parameter values for individual cells are furthermore characterized and the resulting Mig1 dynamics are compared to the single cell times-series data. The proposed NLME framework is also compared to the intuitive but limited standard two-stage (STS approach. We demonstrate that the latter may overestimate variabilities by up to almost five fold. Finally, Monte Carlo simulations of the inferred population model are used to predict the distribution of key characteristics of the Mig1 transient response. We find that with decreasing levels of post-shift glucose, the transient

  20. Characterization of Fluorescent Proteins for Three- and Four-Color Live-Cell Imaging in S. cerevisiae.

    Science.gov (United States)

    Higuchi-Sanabria, Ryo; Garcia, Enrique J; Tomoiaga, Delia; Munteanu, Emilia L; Feinstein, Paul; Pon, Liza A

    2016-01-01

    Saccharomyces cerevisiae are widely used for imaging fluorescently tagged protein fusions. Fluorescent proteins can easily be inserted into yeast genes at their chromosomal locus, by homologous recombination, for expression of tagged proteins at endogenous levels. This is especially useful for incorporation of multiple fluorescent protein fusions into a single strain, which can be challenging in organisms where genetic manipulation is more complex. However, the availability of optimal fluorescent protein combinations for 3-color imaging is limited. Here, we have characterized a combination of fluorescent proteins, mTFP1/mCitrine/mCherry for multicolor live cell imaging in S. cerevisiae. This combination can be used with conventional blue dyes, such as DAPI, for potential four-color live cell imaging.

  1. 31P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase

    International Nuclear Information System (INIS)

    Brindle, K.; Braddock, P.; Fulton, S.

    1990-01-01

    Rabbit muscle creatine kinase has been introduced into the yeast Saccharomyces cerevisiae by transforming cells with a multicopy plasmid containing the coding sequence for the enzyme under the control of the yeast phosphoglycerate kinase promoter. The transformed cells showed creating kinase activities similar to those found in mammalian heart muscle. 31 P NMR measurements of the near-equilibrium concentrations of phosphocreatine and cellular pH together with measurements of the total extractable concentrations of phosphocreatine and creatine allowed calculation of the free ADP/ATP ratio in the cell. The calculated ratio of approximately 2 was considerably higher than the ratio of between 0.06 and 0.1 measured directly in cell extracts

  2. Ligase-deficient yeast cells exhibit defective DNA rejoining and enhanced gamma ray sensitivity

    International Nuclear Information System (INIS)

    Moore, C.W.

    1982-01-01

    Yeast cells deficient in DNA ligase were also deficient in their capacity to rejoin single-strand scissions in prelabeled nuclear DNA. After high-dose-rate gamma irradiation (10 and 25 krads), cdc9-9 mutant cells failed to rejoin single-strand scissions at the restrictive temperature of 37 0 C. In contrast, parental (CDC9) cells (incubated with mutant cells both during and after irradiation) exhibited rapid medium-independent DNA rejoining after 10 min of post-irradiation incubation and slower rates of rejoining after longer incubation. Parental cells were also more resistant than mutant cells to killing by gamma irradiation. Approximately 2.5 +- 0.07 and 5.7 +- 0.6 single-strand breaks per 10 8 daltons were detected in DNAs from either CDC9 or cdc9-9 cells converted to spheroplasts immediately after 10 and 25 krads of irradiation, respectively. At the permissive temperature of 23 0 C, the cdc9-9 cells contained 2 to 3 times the number of DNA single-strand breaks as parental cells after 10 min to 4 h of incubation after 10 krads of irradiation, and two- to eightfold more breaks after 10 min to 2.5 h of incubation after 25 krads of irradiation. Rejoining of single-strand scissions was faster in medium. After only 10 min in buffered growth medium after 10 krads of irradiation, the number of DNA single-strand breaks was reduced to 0.32 +- 0.3 (at 23 0 C) or 0.21 +- 0.05 (at 37 0 C) per 10 8 daltons in parental cells, but remained at 2.1 +- 0.06 (at 23 0 C) or 2.3 +- 0.07 (at 37 0 C) per 10 8 daltons in mutant cells. After 10 or 25 krads of irradiation plus 1 h of incubation in medium at 37 0 C, only DNA from CDC9 cells was rejoined to the size of DNA from unirradiated cells, whereas at 23 0 C, DNAs in both strains were completely rejoined

  3. Topology and Oligomerization of Mono- and Oligomeric Proteins Regulate Their Half-Lives in the Cell.

    Science.gov (United States)

    Mallik, Saurav; Kundu, Sudip

    2018-06-05

    To find additional structural constraints (besides disordered segments) that regulate protein half-life in the cell, we herein assess the influence of native topology of monomeric and sequestration of oligomeric proteins into multimeric complexes in yeast, human, and mouse. Native topology acts as a molecular marker of globular protein's mechanical resistance and consequently captures their half-life variations on genome scale. Sequestration into multimeric complexes elongates oligomeric protein half-life in the cell, presumably by burying ubiquitinoylation sites and disordered segments required for proteasomal recognition. The latter effect is stronger for proteins associated with multiple complexes and for those binding early during complex self-assembly, including proteins that oligomerize with large proportions of surface buried. After gene duplication, diversification of topology and sequestration into non-identical sets of complexes alter half-lives of paralogous proteins during the course of evolution. Thus, native topology and sequestration into multimeric complexes reflect designing principles of proteins to regulate their half-lives. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Direct and dynamic detection of HIV-1 in living cells.

    Directory of Open Access Journals (Sweden)

    Jonas Helma

    Full Text Available In basic and applied HIV research, reliable detection of viral components is crucial to monitor progression of infection. While it is routine to detect structural viral proteins in vitro for diagnostic purposes, it previously remained impossible to directly and dynamically visualize HIV in living cells without genetic modification of the virus. Here, we describe a novel fluorescent biosensor to dynamically trace HIV-1 morphogenesis in living cells. We generated a camelid single domain antibody that specifically binds the HIV-1 capsid protein (CA at subnanomolar affinity and fused it to fluorescent proteins. The resulting fluorescent chromobody specifically recognizes the CA-harbouring HIV-1 Gag precursor protein in living cells and is applicable in various advanced light microscopy systems. Confocal live cell microscopy and super-resolution microscopy allowed detection and dynamic tracing of individual virion assemblies at the plasma membrane. The analysis of subcellular binding kinetics showed cytoplasmic antigen recognition and incorporation into virion assembly sites. Finally, we demonstrate the use of this new reporter in automated image analysis, providing a robust tool for cell-based HIV research.

  5. Design of microdevices for long-term live cell imaging

    International Nuclear Information System (INIS)

    Chen, Huaying; Nordon, Robert E; Rosengarten, Gary; Li, Musen

    2012-01-01

    Advances in fluorescent live cell imaging provide high-content information that relates a cell's life events to its ancestors. An important requirement to track clonal growth and development is the retention of motile cells derived from an ancestor within the same microscopic field of view for days to weeks, while recording fluorescence images and controlling the mechanical and biochemical microenvironments that regulate cell growth and differentiation. The aim of this study was to design a microwell device for long-term, time-lapse imaging of motile cells with the specific requirements of (a) inoculating devices with an average of one cell per well and (b) retaining progeny of cells within a single microscopic field of view for extended growth periods. A two-layer PDMS microwell culture device consisting of a parallel-plate flow cell bonded on top of a microwell array was developed for cell capture and clonal culture. Cell deposition statistics were related to microwell geometry (plate separation and well depth) and the Reynolds number. Computational fluid dynamics was used to simulate flow in the microdevices as well as cell–fluid interactions. Analysis of the forces acting upon a cell was used to predict cell docking zones, which were confirmed by experimental observations. Cell–fluid dynamic interactions are important considerations for design of microdevices for long-term, live cell imaging. The analysis of force and torque balance provides a reasonable approximation for cell displacement forces. It is computationally less intensive compared to simulation of cell trajectories, and can be applied to a wide range of microdevice geometries to predict the cell docking behavior. (paper)

  6. [Development of a Fluorescence Probe for Live Cell Imaging].

    Science.gov (United States)

    Shibata, Aya

    2017-01-01

     Probes that detect specific biological materials are indispensable tools for deepening our understanding of various cellular phenomena. In live cell imaging, the probe must emit fluorescence only when a specific substance is detected. In this paper, we introduce a new probe we developed for live cell imaging. Glutathione S-transferase (GST) activity is higher in tumor cells than in normal cells and is involved in the development of resistance to various anticancer drugs. We previously reported the development of a general strategy for the synthesis of probes for detection of GST enzymes, including fluorogenic, bioluminogenic, and 19 F-NMR probes. Arylsulfonyl groups were used as caging groups during probe design. The fluorogenic probes were successfully used to quantitate very low levels of GST activity in cell extracts and were also successfully applied to the imaging of microsomal MGST1 activity in living cells. The bioluminogenic and 19 F-NMR probes were able to detect GST activity in Escherichia coli cells. Oligonucleotide-templated reactions are powerful tools for nucleic acid sensing. This strategy exploits the target strand as a template for two functionalized probes and provides a simple molecular mechanism for multiple turnover reactions. We developed a nucleophilic aromatic substitution reaction-triggered fluorescent probe. The probe completed its reaction within 30 s of initiation and amplified the fluorescence signal from 0.5 pM target oligonucleotide by 1500 fold under isothermal conditions. Additionally, we applied the oligonucleotide-templated reaction for molecular releasing and peptide detection.

  7. Function and Regulation of Yeast Ribonucleotide Reductase: Cell Cycle, Genotoxic Stress, and Iron Bioavailability

    Directory of Open Access Journals (Sweden)

    Nerea Sanvisens

    2013-04-01

    Full Text Available Ribonucleotide reductases (RNRs are essential enzymes that catalyze the reduction of ribonucleotides to desoxyribonucleotides, thereby providing the building blocks required for de novo DNA biosynthesis. The RNR function is tightly regulated because an unbalanced or excessive supply of deoxyribonucleoside triphosphates (dNTPs dramatically increases the mutation rates during DNA replication and repair that can lead to cell death or genetic anomalies. In this review, we focus on Saccharomyces cerevisiae class Ia RNR as a model to understand the different mechanisms controlling RNR function and regulation in eukaryotes. Many studies have contributed to our current understanding of RNR allosteric regulation and, more recently, to its link to RNR oligomerization. Cells have developed additional mechanisms that restrict RNR activity to particular periods when dNTPs are necessary, such as the S phase or upon genotoxic stress. These regulatory strategies include the transcriptional control of the RNR gene expression, inhibition of RNR catalytic activity, and the subcellular redistribution of RNR subunits. Despite class Ia RNRs requiring iron as an essential cofactor for catalysis, little is known about RNR function regulation depending on iron bioavailability. Recent studies into yeast have deciphered novel strategies for the delivery of iron to RNR and for its regulation in response to iron deficiency. Taken together, these studies open up new possibilities to explore in order to limit uncontrolled tumor cell proliferation via RNR.

  8. Industrial antifoam agents impair ethanol fermentation and induce stress responses in yeast cells.

    Science.gov (United States)

    Nielsen, Jens Christian; Senne de Oliveira Lino, Felipe; Rasmussen, Thomas Gundelund; Thykær, Jette; Workman, Christopher T; Basso, Thiago Olitta

    2017-11-01

    The Brazilian sugarcane industry constitutes one of the biggest and most efficient ethanol production processes in the world. Brazilian ethanol production utilizes a unique process, which includes cell recycling, acid wash, and non-aseptic conditions. Process characteristics, such as extensive CO 2 generation, poor quality of raw materials, and frequent contaminations, all lead to excessive foam formation during fermentations, which is treated with antifoam agents (AFA). In this study, we have investigated the impact of industrial AFA treatments on the physiology and transcriptome of the industrial ethanol strain Saccharomyces cerevisiae CAT-1. The investigated AFA included industrially used AFA acquired from Brazilian ethanol plants and commercially available AFA commonly used in the fermentation literature. In batch fermentations, it was shown that industrial AFA compromised growth rates and glucose uptake rates, while commercial AFA had no effect in concentrations relevant for defoaming purposes. Industrial AFA were further tested in laboratory scale simulations of the Brazilian ethanol production process and proved to decrease cell viability compared to the control, and the effects were intensified with increasing AFA concentrations and exposure time. Transcriptome analysis showed that AFA treatments induced additional stress responses in yeast cells compared to the control, shown by an up-regulation of stress-specific genes and a down-regulation of lipid biosynthesis, especially ergosterol. By documenting the detrimental effects associated with chemical AFA, we highlight the importance of developing innocuous systems for foam control in industrial fermentation processes.

  9. Performance study of sugar-yeast-ethanol bio-hybrid fuel cells

    Science.gov (United States)

    Jahnke, Justin P.; Mackie, David M.; Benyamin, Marcus; Ganguli, Rahul; Sumner, James J.

    2015-05-01

    Renewable alternatives to fossil hydrocarbons for energy generation are of general interest for a variety of political, economic, environmental, and practical reasons. In particular, energy from biomass has many advantages, including safety, sustainability, and the ability to be scavenged from native ecosystems or from waste streams. Microbial fuel cells (MFCs) can take advantage of microorganism metabolism to efficiently use sugar and other biomolecules as fuel, but are limited by low power densities. In contrast, direct alcohol fuel cells (DAFCs) take advantage of proton exchange membranes (PEMs) to generate electricity from alcohols at much higher power densities. Here, we investigate a novel bio-hybrid fuel cell design prepared using commercial off-the-shelf DAFCs. In the bio-hybrid fuel cells, biomass such as sugar is fermented by yeast to ethanol, which can be used to fuel a DAFC. A separation membrane between the fermentation and the DAFC is used to purify the fermentate while avoiding any parasitic power losses. However, shifting the DAFCs from pure alcohol-water solutions to filtered fermented media introduces complications related to how the starting materials, fermentation byproducts, and DAFC waste products affect both the fermentation and the long-term DAFC performance. This study examines the impact of separation membrane pore size, fermentation/fuel cell byproducts, alcohol and salt concentrations, and load resistance on fuel cell performance. Under optimized conditions, the performance obtained is comparable to that of a similar DAFC run with a pure alcohol-water mixture. Additionally, the modified DAFC can provide useable amounts of power for weeks.

  10. The Bioeffects Resulting from Prokaryotic Cells and Yeast Being Exposed to an 18 GHz Electromagnetic Field.

    Directory of Open Access Journals (Sweden)

    The Hong Phong Nguyen

    Full Text Available The mechanisms by which various biological effects are triggered by exposure to an electromagnetic field are not fully understood and have been the subject of debate. Here, the effects of exposing typical representatives of the major microbial taxa to an 18 GHz microwave electromagnetic field (EMFwere studied. It appeared that the EMF exposure induced cell permeabilisation in all of the bacteria and yeast studied, while the cells remained viable (94% throughout the exposure, independent of the differences in cell membrane fatty acid and phospholipid composition. The resulting cell permeabilisation was confirmed by detection of the uptake of propidium iodine and 23 nm fluorescent silica nanospheres using transmission electron microscopy (TEM and confocal laser scanning microscopy (CLSM. Upon EMF exposure, the bacterial cell membranes are believed to become permeable through quasi-endocytosis processes. The dosimetry analysis revealed that the EMF threshold level required to induce the uptake of the large (46 nm nanopsheres was between three and six EMF doses, with a specific absorption rate (SAR of 3 kW/kg and 5 kW/kg per exposure, respectively, depending on the bacterial taxa being studied. It is suggested that the taxonomic affiliation and lipid composition (e.g. the presence of phosphatidyl-glycerol and/or pentadecanoic fatty acid may affect the extent of uptake of the large nanospheres (46 nm. Multiple 18 GHz EMF exposures over a one-hour period induced periodic anomalous increases in the cell growth behavior of two Staphylococcus aureus strains, namely ATCC 25923 and CIP 65.8T.

  11. Modeling diauxic glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Sørensen, Preben Graae

    2010-01-01

    for investigations of central metabolism dynamics of yeast cells. We have previously proposed a model for the open system comprised of the primary fermentative reactions in yeast that quantitatively describes the oscillatory dynamics. However, this model fails to describe the transient behavior of metabolic......Glycolytic oscillations in a stirred suspension of starved yeast cells is an excellent model system for studying the dynamics of metabolic switching in living systems. In an open-flow system the oscillations can be maintained indefinitely at a constant operating point where they can....... Experimental and computational results strongly suggest that regulation of acetaldehyde explains the observed behavior. We have extended the original model with regulation of pyruvate decarboxylase, a reversible alcohol dehydrogenase, and drainage of pyruvate. Using the method of time rescaling in the extended...

  12. Quantitative measurement of brightness from living cells in the presence of photodepletion.

    Directory of Open Access Journals (Sweden)

    Kwang-Ho Hur

    Full Text Available The brightness of fluorescently labeled proteins provides an excellent marker for identifying protein interactions in living cells. Quantitative interpretation of brightness, however, hinges on a detailed understanding of the processes that affect the signal fluctuation of the fluorescent label. Here, we focus on the cumulative influence of photobleaching on brightness measurements in cells. Photobleaching within the finite volume of the cell leads to a depletion of the population of fluorescently labeled proteins with time. The process of photodepletion reduces the fluorescence signal which biases the analysis of brightness data. Our data show that even small reductions in the signal can introduce significant bias into the analysis of the data. We develop a model that quantifies the bias and introduce an analysis method that accurately determines brightness in the presence of photodepletion as verified by experiments with mammalian and yeast cells. In addition, photodepletion experiments with the fluorescent protein EGFP reveal the presence of a photoconversion process, which leads to a marked decrease in the brightness of the EGFP protein. We also identify conditions where the effect of EGFP's photoconversion on brightness experiments can be safely ignored.

  13. Live-cell thermometry with nitrogen vacancy centers in nanodiamonds

    Science.gov (United States)

    Jayakumar, Harishankar; Fedder, Helmut; Chen, Andrew; Yang, Liudi; Li, Chenghai; Wrachtrup, Joerg; Wang, Sihong; Meriles, Carlos

    The ability to measure temperature is typically affected by a tradeoff between sensitivity and spatial resolution. Good thermometers tend to be bulky systems and hence are ill-suited for thermal sensing with high spatial localization. Conversely, the signal resulting from nanoscale temperature probes is often impacted by noise to a level where the measurement precision becomes poor. Adding to the microscopist toolbox, the nitrogen vacancy (NV) center in diamond has recently emerged as a promising platform for high-sensitivity nanoscale thermometry. Of particular interest are applications in living cells because diamond nanocrystals are biocompatible and can be chemically functionalized to target specific organelles. Here we report progress on the ability to probe and compare temperature within and between living cells using nanodiamond-hosted NV thermometry. We focus our study on cancerous cells, where atypical metabolic pathways arguably lead to changes in the way a cell generates heat, and thus on its temperature profile.

  14. Information management for high content live cell imaging

    Directory of Open Access Journals (Sweden)

    White Michael RH

    2009-07-01

    Full Text Available Abstract Background High content live cell imaging experiments are able to track the cellular localisation of labelled proteins in multiple live cells over a time course. Experiments using high content live cell imaging will generate multiple large datasets that are often stored in an ad-hoc manner. This hinders identification of previously gathered data that may be relevant to current analyses. Whilst solutions exist for managing image data, they are primarily concerned with storage and retrieval of the images themselves and not the data derived from the images. There is therefore a requirement for an information management solution that facilitates the indexing of experimental metadata and results of high content live cell imaging experiments. Results We have designed and implemented a data model and information management solution for the data gathered through high content live cell imaging experiments. Many of the experiments to be stored measure the translocation of fluorescently labelled proteins from cytoplasm to nucleus in individual cells. The functionality of this database has been enhanced by the addition of an algorithm that automatically annotates results of these experiments with the timings of translocations and periods of any oscillatory translocations as they are uploaded to the repository. Testing has shown the algorithm to perform well with a variety of previously unseen data. Conclusion Our repository is a fully functional example of how high throughput imaging data may be effectively indexed and managed to address the requirements of end users. By implementing the automated analysis of experimental results, we have provided a clear impetus for individuals to ensure that their data forms part of that which is stored in the repository. Although focused on imaging, the solution provided is sufficiently generic to be applied to other functional proteomics and genomics experiments. The software is available from: fhttp://code.google.com/p/livecellim/

  15. The live cell irradiation and observation setup at SNAKE

    Energy Technology Data Exchange (ETDEWEB)

    Hable, V. [Angewandte Physik und Messtechnik LRT2, UniBw-Muenchen, 85577 Neubiberg (Germany)], E-mail: volker.hable@unibw.de; Greubel, C.; Bergmaier, A.; Reichart, P. [Angewandte Physik und Messtechnik LRT2, UniBw-Muenchen, 85577 Neubiberg (Germany); Hauptner, A.; Kruecken, R. [Physik Department E12, TU-Muenchen, 85748 Garching (Germany); Strickfaden, H.; Dietzel, S.; Cremer, T. [Department Biologie II, LMU-Muenchen, 82152 Martinsried (Germany); Drexler, G.A.; Friedl, A.A. [Strahlenbiologisches Institut, LMU-Muenchen, 80336 Muenchen (Germany); Dollinger, G. [Angewandte Physik und Messtechnik LRT2, UniBw-Muenchen, 85577 Neubiberg (Germany)

    2009-06-15

    We describe a new setup at the ion microprobe SNAKE (Superconducting Nanoscope for Applied nuclear (Kern-) physics Experiments) at the Munich 14 MV Tandem accelerator that facilitates both living cell irradiation with sub micrometer resolution and online optical imaging of the cells before and after irradiation by state of the art phase contrast and fluorescence microscopy. The cells are kept at standard cell growth conditions at 37 {sup o}C in cell culture medium. After irradiation it is possible to switch from single ion irradiation conditions to cell observation within 0.5 s. First experiments were performed targeting substructures of a cell nucleus that were tagged by TexasRed labeled nucleotides incorporated in the cellular DNA by 55 MeV single carbon ion irradiation. In addition we show first online sequences of short time kinetics of Mdc1 protein accumulation in the vicinity of double strand breaks after carbon ion irradiation.

  16. The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1 → S transition

    International Nuclear Information System (INIS)

    Aggarwal, Pooja; Padmanabhan, Bhavna; Bhat, Abhay; Sarvepalli, Kavitha; Sadhale, Parag P.; Nath, Utpal

    2011-01-01

    Highlights: → TCP4 is a class II TCP transcription factor, that represses cell division in Arabidopsis. → TCP4 expression in yeast retards cell division by blocking G1 → S transition. → Genome-wide expression studies and Western analysis reveals stabilization of cell cycle inhibitor Sic1, as possible mechanism. -- Abstract: The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, their exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1 → S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1 → S arrest is discussed.

  17. Live-cell imaging: new avenues to investigate retinal regeneration

    Directory of Open Access Journals (Sweden)

    Manuela Lahne

    2017-01-01

    Full Text Available Sensing and responding to our environment requires functional neurons that act in concert. Neuronal cell loss resulting from degenerative diseases cannot be replaced in humans, causing a functional impairment to integrate and/or respond to sensory cues. In contrast, zebrafish (Danio rerio possess an endogenous capacity to regenerate lost neurons. Here, we will focus on the processes that lead to neuronal regeneration in the zebrafish retina. Dying retinal neurons release a damage signal, tumor necrosis factor α, which induces the resident radial glia, the Müller glia, to reprogram and re-enter the cell cycle. The Müller glia divide asymmetrically to produce a Müller glia that exits the cell cycle and a neuronal progenitor cell. The arising neuronal progenitor cells undergo several rounds of cell divisions before they migrate to the site of damage to differentiate into the neuronal cell types that were lost. Molecular and immunohistochemical studies have predominantly provided insight into the mechanisms that regulate retinal regeneration. However, many processes during retinal regeneration are dynamic and require live-cell imaging to fully discern the underlying mechanisms. Recently, a multiphoton imaging approach of adult zebrafish retinal cultures was developed. We will discuss the use of live-cell imaging, the currently available tools and those that need to be developed to advance our knowledge on major open questions in the field of retinal regeneration.

  18. Imaging Proteolysis by Living Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mansoureh Sameni

    2000-01-01

    Full Text Available Malignant progression is accompanied by degradation of extracellular matrix proteins. Here we describe a novel confocal assay in which we can observe proteolysis by living human breast cancer cells (BT20 and BT549 through the use of quenchedfluorescent protein substrates. Degradation thus was imaged, by confocal optical sectioning, as an accumulation of fluorescent products. With the BT20 cells, fluorescence was localized to pericellular focal areas that coincide with pits in the underlying matrix. In contrast, fluorescence was localized to intracellular vesicles in the BT549 cells, vesicles that also label for lysosomal markers. Neither intracellular nor pericellular fluorescence was observed in the BT549 cells in the presence of cytochalasin B, suggesting that degradation occurred intracellularly and was dependent on endocytic uptake of substrate. In the presence of a cathepsin 13-selective cysteine protease inhibitor, intracellular fluorescence was decreased ~90% and pericellular fluorescence decreased 67% to 96%, depending on the protein substrate. Matrix metallo protease inhibitors reduced pericellular fluorescence ~50%, i.e., comparably to a serine and a broad spectrum cysteine protease inhibitor. Our results suggest that: 1 a proteolytic cascade participates in pericellular digestion of matrix proteins by living human breast cancer cells, and 2 the cysteine protease cathepsin B participates in both pericellular and intracellular digestion of matrix proteins by living human breast cancer cells.

  19. A nucleic acid dependent chemical photocatalysis in live human cells

    DEFF Research Database (Denmark)

    Arian, Dumitru; Cló, Emiliano; Gothelf, Kurt V

    2010-01-01

    Only two nucleic acid directed chemical reactions that are compatible with live cells have been reported to date. Neither of these processes generate toxic species from nontoxic starting materials. Reactions of the latter type could be applied as gene-specific drugs, for example, in the treatment...

  20. Energy, control and DNA structure in the living cell

    DEFF Research Database (Denmark)

    Wijker, J.E.; Jensen, Peter Ruhdal; Gomes, A. Vaz

    1995-01-01

    Maintenance (let alone growth) of the highly ordered living cell is only possible through the continuous input of free energy. Coupling of energetically downhill processes (such as catabolic reactions) to uphill processes is essential to provide this free energy and is catalyzed by enzymes either...

  1. Lives of a Cell: 40 Years Later, A Third Interpretation

    Centers for Disease Control (CDC) Podcasts

    2015-06-16

    Reginald Tucker reads an abridged version of the article Lives of a Cell: 40 Years Later, A Third Interpretation.  Created: 6/16/2015 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 6/18/2015.

  2. THE NISSL SUBSTANCE OF LIVING AND FIXED SPINAL GANGLION CELLS

    Science.gov (United States)

    Deitch, Arline D.; Moses, Montrose J.

    1957-01-01

    Living chick spinal ganglion neurons grown for 19 to 25 days in vitro were photographed with a color-translating ultraviolet microscope (UV-91) at 265, 287, and 310 mµ. This instrument was unique in permitting rapid accumulation of ultraviolet information with minimal damage to the cell. In the photographs taken at 265 mµ of the living neurons, discrete ultraviolet-absorbing cytoplasmic masses were observed which were found to be virtually unchanged in appearance after formalin fixation. These were identical with the Nissl bodies of the same cells seen after staining with basic dyes. The correlation of ultraviolet absorption, ribonuclease extraction, and staining experiments with acid and basic dyes confirmed the ribonucleoprotein nature of these Nissl bodies in the living and fixed cells. No change in distribution or concentration of ultraviolet-absorbing substance was observed in the first 12 ultraviolet photographs of a neuron, and it is concluded that the cells had not been subjected to significant ultraviolet damage during the period of photography. On the basis of these observations, as well as previous findings with phase contrast microscopy, it is concluded that Nissl bodies preexist in the living neuron as discrete aggregates containing high concentrations of nucleoprotein. PMID:13438929

  3. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar: Increased Abundance and Expression of a Calreticulin-Like Protein.

    Directory of Open Access Journals (Sweden)

    Giulia Micallef

    Full Text Available In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts.

  4. A Novel Family of Cell Wall-Related Proteins Regulated Differently during the Yeast Life Cycle

    Science.gov (United States)

    Rodríguez-Peña, José Manuel; Cid, Víctor J.; Arroyo, Javier; Nombela, César

    2000-01-01

    The Saccharomyces cerevisiae Ygr189c, Yel040w, and Ylr213c gene products show significant homologies among themselves and with various bacterial β-glucanases and eukaryotic endotransglycosidases. Deletion of the corresponding genes, either individually or in combination, did not produce a lethal phenotype. However, the removal of YGR189c and YEL040w, but not YLR213c, caused additive sensitivity to compounds that interfere with cell wall construction, such as Congo red and Calcofluor White, and overexpression of YEL040w led to resistance to these compounds. These genes were renamed CRH1 and CRH2, respectively, for Congo red hypersensitive. By site-directed mutagenesis we found that the putative glycosidase domain of CRH1 was critical for its function in complementing hypersensitivity to the inhibitors. The involvement of CRH1 and CRH2 in the development of cell wall architecture was clearly shown, since the alkali-soluble glucan fraction in the crh1Δ crh2Δ strain was almost twice the level in the wild-type. Interestingly, the three genes were subject to different patterns of transcriptional regulation. CRH1 and YLR213c (renamed CRR1, for CRH related) were found to be cell cycle regulated and also expressed under sporulation conditions, whereas CRH2 expression did not vary during the mitotic cycle. Crh1 and Crh2 are localized at the cell surface, particularly in chitin-rich areas. Consistent with the observed expression patterns, Crh1–green fluorescent protein was found at the incipient bud site, around the septum area in later stages of budding, and in ascospore envelopes. Crh2 was found to localize mainly at the bud neck throughout the whole budding cycle, in mating projections and zygotes, but not in ascospores. These data suggest that the members of this family of putative glycosidases might exert a common role in cell wall organization at different stages of the yeast life cycle. PMID:10757808

  5. Monitoring Intracellular pH Change with a Genetically Encoded and Ratiometric Luminescence Sensor in Yeast and Mammalian Cells.

    Science.gov (United States)

    Zhang, Yunfei; Robertson, J Brian; Xie, Qiguang; Johnson, Carl Hirschie

    2016-01-01

    "pHlash" is a novel bioluminescence-based pH sensor for measuring intracellular pH, which is developed based on Bioluminescence Resonance Energy Transfer (BRET). pHlash is a fusion protein between a mutant of Renilla luciferase (RLuc) and a Venus fluorophore. The spectral emission of purified pHlash protein exhibits pH dependence in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification. In this chapter, we describe an in vitro characterization of pHlash, and also in vivo assays including in yeast cells and in HeLa cells using pHlash as a cytoplasmic pH indicator.

  6. AFM review study on pox viruses and living cells.

    Science.gov (United States)

    Ohnesorge, F M; Hörber, J K; Häberle, W; Czerny, C P; Smith, D P; Binnig, G

    1997-10-01

    Single living cells were studied in growth medium by atomic force microscopy at a high--down to one image frame per second--imaging rate over time periods of many hours, stably producing hundreds of consecutive scans with a lateral resolution of approximately 30-40 nm. The cell was held by a micropipette mounted onto the scanner-piezo as shown in Häberle, W., J. K. H. Hörber, and G. Binnig. 1991. Force microscopy on living cells. J. Vac. Sci. Technol. B9:1210-0000. To initiate specific processes on the cell surface the cells had been infected with pox viruses as reported earlier and, most likely, the liberation of a progeny virion by the still-living cell was observed, hence confirming and supporting earlier results (Häberle, W., J. K. H. Hörber, F. Ohnesorge, D. P. E. Smith, and G. Binnig. 1992. In situ investigations of single living cells infected by viruses. Ultramicroscopy. 42-44:1161-0000; Hörber, J. K. H., W. Häberle, F. Ohnesorge, G. Binnig, H. G. Liebich, C. P. Czerny, H. Mahnel, and A. Mayr. 1992. Investigation of living cells in the nanometer regime with the atomic force microscope. Scanning Microscopy. 6:919-930). Furthermore, the pox viruses used were characterized separately by AFM in an aqueous environment down to the molecular level. Quasi-ordered structural details were resolved on a scale of a few nm where, however, image distortions and artifacts due to multiple tip effects are probably involved--just as in very high resolution (small dark spots in the light microscope, that we believed to be the regions in the cell plasma where viruses are assembled; this is known from the literature on electron microscopy on pox-infected cells and referred to there as "virus factories" (e.g., Moss, B. 1986. Replication of pox viruses. In Fundamental Virology, B. N. Fields and D. M. Knape, editors. Raven Press, New York. 637-655). Therefore, we assume that the cells stay alive during imaging, in our experience for approximately 30-45 h p.i.).

  7. Living with a diagnosis of non-small cell lung cancer: patients' lived experiences.

    LENUS (Irish Health Repository)

    McCarthy, Ita

    2012-01-31

    The aim of this study was to explore patients\\' experience of living with non-small cell lung cancer (NSCLC). Patients diagnosed with NSCLC know that their treatment is not with curative intent and can expect distressing symptoms. In this phenomenological study, six adults with a diagnosis of NSCLC were interviewed. Data was analysed guided by van Manen\\'s six-step process. Four main themes were interpreted: \\'Maintaining my life\\'; \\'The enemy within\\'; \\'Staying on the train\\

  8. Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels

    Science.gov (United States)

    Li, Xin; Yu, Vivian Yaci; Lin, Yuping; Chomvong, Kulika; Estrela, Raíssa; Park, Annsea; Liang, Julie M; Znameroski, Elizabeth A; Feehan, Joanna; Kim, Soo Rin; Jin, Yong-Su; Glass, N Louise; Cate, Jamie HD

    2015-01-01

    Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production. DOI: http://dx.doi.org/10.7554/eLife.05896.001 PMID:25647728

  9. Decoherence in yeast cell populations and its implications for genome-wide expression noise.

    Science.gov (United States)

    Briones, M R S; Bosco, F

    2009-01-20

    Gene expression "noise" is commonly defined as the stochastic variation of gene expression levels in different cells of the same population under identical growth conditions. Here, we tested whether this "noise" is amplified with time, as a consequence of decoherence in global gene expression profiles (genome-wide microarrays) of synchronized cells. The stochastic component of transcription causes fluctuations that tend to be amplified as time progresses, leading to a decay of correlations of expression profiles, in perfect analogy with elementary relaxation processes. Measuring decoherence, defined here as a decay in the auto-correlation function of yeast genome-wide expression profiles, we found a slowdown in the decay of correlations, opposite to what would be expected if, as in mixing systems, correlations decay exponentially as the equilibrium state is reached. Our results indicate that the populational variation in gene expression (noise) is a consequence of temporal decoherence, in which the slow decay of correlations is a signature of strong interdependence of the transcription dynamics of different genes.

  10. Self-adhesive microculture system for extended live cell imaging.

    Science.gov (United States)

    Skommer, J; McGuinness, D; Wlodkowic, D

    2011-06-01

    Gas permeable and biocompatible soft polymers are convenient for biological applications. Using the soft polymer poly(dimethylsiloxane) (PDMS), we established a straightforward technique for in-house production of self-adhesive and optical grade microculture devices. A gas permeable PDMS layer effectively protects against medium evaporation, changes in osmolarity, contamination and drug diffusion. These chip-based devices can be used effectively for long term mammalian cell culture and support a range of bioassays used in pharmacological profiling of anti-cancer drugs. Results obtained on a panel of hematopoietic and solid tumor cell lines during screening of investigative anti-cancer agents corresponded well to those obtained in a conventional cell culture on polystyrene plates. The cumulative correlation analysis of multiple cell lines and anti-cancer drugs showed no adverse effects on cell viability or cell growth retardation during microscale static cell culture. PDMS devices also can be custom modified for many bio-analytical purposes and are interfaced easily with both inverted and upright cell imaging platforms. Moreover, PDMS microculture devices are suitable for extended real time cell imaging. Data from the multicolor, real time analysis of apoptosis on human breast cancer MCF-7 cells provided further evidence that elimination of redundant centrifugation/washing achieved during microscale real time analysis facilitates preservation of fragile apoptotic cells and provides dynamic cellular information at high resolution. Because only small reaction volumes are required, such devices offer reduced use of consumables as well as simplified manipulations during all stages of live cell imaging.

  11. Raman spectroscopy for grading of live osteosarcoma cells.

    Science.gov (United States)

    Chiang, Yi-Hung; Wu, Stewart H; Kuo, Yi-Chun; Chen, How-Foo; Chiou, Arthur; Lee, Oscar K

    2015-04-18

    Osteosarcoma is the most common primary malignant bone tumor, and the grading of osteosarcoma cells relies on traditional histopathology and molecular biology methods, which require RNA extraction, protein isolation and immunohistological staining. All these methods require cell isolation, lysis or fixation, which is time-consuming and requires certain amount of tumor specimen. In this study, we report the use of Raman spectroscopy for grading of malignant osteosarcoma cells. We demonstrate that, based on the detection of differential production of mineral species, Raman spectroscopy can be used as a live cell analyzer to accurately assess the grades of osteosarcoma cells by evaluating their mineralization levels. Mineralization level was assessed by measuring amount of hydroxyapatite (HA), which is highly expressed in mature osteoblasts, but not in poorly differentiated osteosarcoma cell or mesenchymal stem cells, the putative cell-of-origin of osteosarcoma. We found that under Raman spectroscopy, the level of HA production was high in MG-63 cells, which are low-grade. Moreover, hydroxyapatite production was low in high-grade osteosarcoma cells such as 143B and SaOS2 cells (p Raman spectroscopy for the measurement of HA production by the protocol reported in this study may serve as a useful tool to rapidly and accurately assess the degree of malignancy in osteosarcoma cells in a label-free manner. Such application may shorten the period of pathological diagnosis and may benefit patients who are inflicted with osteosarcoma.

  12. Cell cycle-dependent transcription factors control the expression of yeast telomerase RNA.

    Science.gov (United States)

    Dionne, Isabelle; Larose, Stéphanie; Dandjinou, Alain T; Abou Elela, Sherif; Wellinger, Raymund J

    2013-07-01

    Telomerase is a specialized ribonucleoprotein that adds repeated DNA sequences to the ends of eukaryotic chromosomes to preserve genome integrity. Some secondary structure features of the telomerase RNA are very well conserved, and it serves as a central scaffold for the binding of associated proteins. The Saccharomyces cerevisiae telomerase RNA, TLC1, is found in very low copy number in the cell and is the limiting component of the known telomerase holoenzyme constituents. The reasons for this low abundance are unclear, but given that the RNA is very stable, transcriptional control mechanisms must be extremely important. Here we define the sequences forming the TLC1 promoter and identify the elements required for its low expression level, including enhancer and repressor elements. Within an enhancer element, we found consensus sites for Mbp1/Swi4 association, and chromatin immunoprecipitation (ChIP) assays confirmed the binding of Mbp1 and Swi4 to these sites of the TLC1 promoter. Furthermore, the enhancer element conferred cell cycle-dependent regulation to a reporter gene, and mutations in the Mbp1/Swi4 binding sites affected the levels of telomerase RNA and telomere length. Finally, ChIP experiments using a TLC1 RNA-binding protein as target showed cell cycle-dependent transcription of the TLC1 gene. These results indicate that the budding yeast TLC1 RNA is transcribed in a cell cycle-dependent fashion late in G1 and may be part of the S phase-regulated group of genes involved in DNA replication.

  13. Raman microscopy of individual living human embryonic stem cells

    DEFF Research Database (Denmark)

    Novikov, Sergey M.; Beermann, Jonas; Bozhevolnyi, Sergey I.

    2010-01-01

    We demonstrate the possibility of mapping the distribution of different biomolecules in living human embryonic stem cells grown on glass substrates, without the need for fluorescent markers. In our work we improve the quality of measurements by finding a buffer that gives low fluorescence, growing...... cells on glass substrates (whose Raman signals are relatively weak compared to that of the cells) and having the backside covered with gold to improve the image contrast under direct white light illumination. The experimental setup used for Raman microscopy is the commercially available confocal...

  14. Single-Cell Analysis of Growth in Budding Yeast and Bacteria Reveals a Common Size Regulation Strategy.

    Science.gov (United States)

    Soifer, Ilya; Robert, Lydia; Amir, Ariel

    2016-02-08

    To maintain a constant cell size, dividing cells have to coordinate cell-cycle events with cell growth. This coordination has long been supposed to rely on the existence of size thresholds determining cell-cycle progression [1]. In budding yeast, size is controlled at the G1/S transition [2]. In agreement with this hypothesis, the size at birth influences the time spent in G1: smaller cells have a longer G1 period [3]. Nevertheless, even though cells born smaller have a longer G1, the compensation is imperfect and they still bud at smaller cell sizes. In bacteria, several recent studies have shown that the incremental model of size control, in which size is controlled by addition of a constant volume (in contrast to a size threshold), is able to quantitatively explain the experimental data on four different bacterial species [4-7]. Here, we report on experimental results for the budding yeast Saccharomyces cerevisiae, finding, surprisingly, that cell size control in this organism is very well described by the incremental model, suggesting a common strategy for cell size control with bacteria. Additionally, we argue that for S. cerevisiae the "volume increment" is not added from birth to division, but rather between two budding events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Quantification of plant cell coupling with live-cell microscopy

    DEFF Research Database (Denmark)

    Liesche, Johannes; Schulz, Alexander

    2015-01-01

    by confocal microscopy, loaded tracer is activated by UV illumination in a target cell and its spread to neighboring cells monitored. When combined with high-speed acquisition by resonant scanning or spinning disc confocal microscopy, the high signal-to-noise ratio of photoactivation allows collection...

  16. On the existence of a negative pasteur effect in yeasts classified in the genus Brettanomyces Kufferath et van Laer

    NARCIS (Netherlands)

    Scheffers, W.A.; Wikén, T.; Verhaar, A.J.M.

    1961-01-01

    Even at a mere glance at the extensive literature on the influence of elementary molecular oxygen on the alcoholic fermentation in living yeast cells and various yeast preparations it is evident that so far most works have been concerned with the inhibiting effect produced by this gas on the rate

  17. Relationship between sublethal injury and inactivation of yeast cells by the combination of sorbic acid and pulsed electric fields.

    Science.gov (United States)

    Somolinos, M; García, D; Condón, S; Mañas, P; Pagán, R

    2007-06-01

    The objective of this study was to investigate the occurrence of sublethal injury after the pulsed-electric-field (PEF) treatment of two yeasts, Dekkera bruxellensis and Saccharomyces cerevisiae, as well as the relation of sublethal injury to the inactivating effect of the combination of PEF and sorbic acid. PEF caused sublethal injury in both yeasts: more than 90% of surviving D. bruxellensis cells and 99% of surviving S. cerevisiae cells were sublethally injured after 50 pulses at 12 kV/cm in buffer at pHs of both 7.0 and 4.0. The proportion of sublethally injured cells reached a maximum after 50 pulses at 12.0 kV/cm (S. cerevisiae) or 16.5 kV/cm (D. bruxellensis), and it kept constant or progressively decreased at greater electric field strengths and with longer PEF treatments. Sublethally PEF-injured cells showed sensitivity to the presence of sorbic acid at a concentration of 2,000 ppm. A synergistic inactivating effect of the combination of PEF and sorbic acid was observed. Survivors of the PEF treatment were progressively inactivated in the presence of 2,000 ppm of sorbic acid at pH 3.8, with the combined treatments achieving more than log10 5 cycles of dead cells under the conditions investigated. This study has demonstrated the occurrence of sublethal injury after exposure to PEF, so yeast inactivation by PEF is not an all-or-nothing event. The combination of PEF and sorbic acid has proven to be an effective method to achieve a higher level of yeast inactivation. This work contributes to the knowledge of the mechanism of microbial inactivation by PEF, and it may be useful for improving food preservation by PEF technology.

  18. Kex1 protease is involved in yeast cell death induced by defective N-glycosylation, acetic acid, and chronological aging.

    Science.gov (United States)

    Hauptmann, Peter; Lehle, Ludwig

    2008-07-04

    N-glycosylation in the endoplasmic reticulum is an essential protein modification and highly conserved in evolution from yeast to humans. The key step of this pathway is the transfer of the lipid-linked core oligosaccharide to the nascent polypeptide chain, catalyzed by the oligosaccharyltransferase complex. Temperature-sensitive oligosaccharyltransferase mutants of Saccharomyces cerevisiae at the restrictive temperature, such as wbp1-1, as well as wild-type cells in the presence of the N-glycosylation inhibitor tunicamycin display typical apoptotic phenotypes like nuclear condensation, DNA fragmentation, phosphatidylserine translocation, caspase-like activity, and reactive oxygen species accumulation. Since deletion of the yeast metacaspase YCA1 did not abrogate this death pathway, we postulated a different proteolytic process to be responsible. Here, we show that Kex1 protease is involved in the programmed cell death caused by defective N-glycosylation. Its disruption decreases caspase-like activity, production of reactive oxygen species, and fragmentation of mitochondria and, conversely, improves growth and survival of cells. Moreover, we demonstrate that Kex1 contributes also to the active cell death program induced by acetic acid stress or during chronological aging, suggesting that Kex1 plays a more general role in cellular suicide of yeast.

  19. Temperature-dependent imaging of living cells by AFM

    International Nuclear Information System (INIS)

    Espenel, Cedric; Giocondi, Marie-Cecile; Seantier, Bastien; Dosset, Patrice; Milhiet, Pierre-Emmanuel; Le Grimellec, Christian

    2008-01-01

    Characterization of lateral organization of plasma membranes is a prerequisite to the understanding of membrane structure-function relationships in living cells. Lipid-lipid and lipid-protein interactions are responsible for the existence of various membrane microdomains involved in cell signalization and in numerous pathologies. Developing approaches for characterizing microdomains associate identification tools like recognition imaging with high-resolution topographical imaging. Membrane properties are markedly dependent on temperature. However, mesoscopic scale topographical information of cell surface in a temperature range covering most of cell biology experimentation is still lacking. In this work we have examined the possibility of imaging the temperature-dependent behavior of eukaryotic cells by atomic force microscopy (AFM). Our results establish that the surface of living CV1 kidney cells can be imaged by AFM, between 5 and 37 deg. C, both in contact and tapping modes. These first temperature-dependent data show that large cell structures appeared essentially stable at a microscopic scale. On the other hand, as shown by contact mode AFM, the surface was highly dynamic at a mesoscopic scale, with marked changes in apparent topography, friction, and deflection signals. When keeping the scanning conditions constant, a progressive loss in the image contrast was however observed, using tapping mode, on decreasing the temperature

  20. Cell mass and cell cycle dynamics of an asynchronous budding yeast population

    DEFF Research Database (Denmark)

    Lencastre Fernandes, Rita; Carlquist, Magnus; Lundin, Luisa

    2013-01-01

    of model predictions for cell property distributions against experimental data is scarce. This study focuses on the experimental and mathematical description of the dynamics of cell size and cell cycle position distributions, of a population of Saccharomyces cerevisiae, in response to the substrate...

  1. Effect of Shock Waves Generated by Pulsed Electric Discharges in Water on Yeast Cells and Virus Particles

    Science.gov (United States)

    Girdyuk, A. E.; Gorshkov, A. N.; Egorov, V. V.; Kolikov, V. A.; Snetov, V. N.; Shneerson, G. A.

    2018-02-01

    The aim of this study is to determine the optimal parameters of the electric pulses and shock waves generated by them for the soft destruction of the virus and yeast envelopes with no changes in the structure of antigenic surface albumin and in the cell morphology in order to use them to produce antivirus vaccines and in biotechnology. The pulse electric discharges in water have been studied for different values of amplitude, pulse duration and the rate of the rise in the current. A mathematical model has been developed to estimate the optimal parameters of pulsed electric charges and shock waves for the complete destruction of the yeast cell envelopes and virus particles at a minimum of pulses.

  2. The Adder Phenomenon Emerges from Independent Control of Pre- and Post-Start Phases of the Budding Yeast Cell Cycle.

    Science.gov (United States)

    Chandler-Brown, Devon; Schmoller, Kurt M; Winetraub, Yonatan; Skotheim, Jan M

    2017-09-25

    Although it has long been clear that cells actively regulate their size, the molecular mechanisms underlying this regulation have remained poorly understood. In budding yeast, cell size primarily modulates the duration of the cell-division cycle by controlling the G1/S transition known as Start. We have recently shown that the rate of progression through Start increases with cell size, because cell growth dilutes the cell-cycle inhibitor Whi5 in G1. Recent phenomenological studies in yeast and bacteria have shown that these cells add an approximately constant volume during each complete cell cycle, independent of their size at birth. These results seem to be in conflict, as the phenomenological studies suggest that cells measure the amount they grow, rather than their size, and that size control acts over the whole cell cycle, rather than specifically in G1. Here, we propose an integrated model that unifies the adder phenomenology with the molecular mechanism of G1/S cell-size control. We use single-cell microscopy to parameterize a full cell-cycle model based on independent control of pre- and post-Start cell-cycle periods. We find that our model predicts the size-independent amount of cell growth during the full cell cycle. This suggests that the adder phenomenon is an emergent property of the independent regulation of pre- and post-Start cell-cycle periods rather than the consequence of an underlying molecular mechanism measuring a fixed amount of growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Immunogenic evaluation of Paracoccidioides brasiliensis radioattenuated yeast cells in murine model

    International Nuclear Information System (INIS)

    Martins, Estefania M.N.; Andrade, Antero S.R.; Fernandes, Viviane Cristina; Morais, Elis Araujo; Goes, Alfredo M.; Resende, Maria Aparecida de

    2011-01-01

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis (PCM), a chronic systemic disease prevalent in Latin American, which is characterized by the formation of granulomatous lesions. To date, there is no effective vaccine to PCM or to any systemic mycosis. In an attempt to induce an efficient response to such agent in an animal model, gamma radiation attenuated P. brasiliensis yeast cells (LevRad) were developed at the Radiobiology Laboratory from CDTN/CNEN. A gamma radiation dose was defined in which the pathogen loses its ability to multiply, while retaining its viability, metabolic activity and antigenic profile. The prophylactic potential of LevRad was assessed after its intravenous administration in male Balb/C mice, challenged 45 days after immunization with intratracheal administration of 3x105 cells of a highly virulent non-radiated P.brasiliensis isolate. At 30 and 90 days post challenge (dpc), lungs, spleen and liver were collected to analyse CFU (colony forming units) recovery, histology, cell proliferation, cytokine (IFN-gamma, IL-4, IL-10, TNF-alpha and TGF-beta) and iNOS production. The sera were used to evaluate the immunization efficacy, and to assess IgG isotypes (IgG1, IgG2a, IgG2b, IgG3) and total IgG levels. The present data show that there was no significant decrease in the CFU counts of the lungs of immunized animals 30 dpc. Nevertheless, no CFU or histopathological alterations were visualized at the organs of immunized animals at 90 dpc. During the same period, IgG2a, IgG2b, IFN-alpha and iNOS levels raised while IL-10, TNF-alpha, TGF-beta and IL-4 maintained low levels, suggesting the prevalence of Th1 response profile. Our results confirmed the protective (author)

  4. Correlation between the physicochemical properties of organic solvents and their biocompatibility toward epoxide hydrolase activity in whole-cells of a yeast, Rhodotorulasp

    CSIR Research Space (South Africa)

    Lotter, J

    2004-08-01

    Full Text Available in whole-cells of the yeast Rhodotorula sp. UOFS Y-0448 was investigated. No formal correlation between solvent biocompatibility and physicochemical properties was deductible, although the introduction of hydroxyl groups increased biocompatibility. 1...

  5. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Yuta; Katayama, Chisako [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan); Shinohara, Miki; Shinohara, Akira [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Maekawa, Shohei [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan); Miyamoto, Masaaki, E-mail: miya@kobe-u.ac.jp [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan); Center for Supports to Research and Education Activities, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan)

    2013-11-29

    Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our data strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions.

  6. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast

    International Nuclear Information System (INIS)

    Tsukamoto, Yuta; Katayama, Chisako; Shinohara, Miki; Shinohara, Akira; Maekawa, Shohei; Miyamoto, Masaaki

    2013-01-01

    Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our data strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions

  7. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells.

    Science.gov (United States)

    Herce, Henry D; Schumacher, Dominik; Schneider, Anselm F L; Ludwig, Anne K; Mann, Florian A; Fillies, Marion; Kasper, Marc-André; Reinke, Stefan; Krause, Eberhard; Leonhardt, Heinrich; Cardoso, M Cristina; Hackenberger, Christian P R

    2017-08-01

    Functional antibody delivery in living cells would enable the labelling and manipulation of intracellular antigens, which constitutes a long-thought goal in cell biology and medicine. Here we present a modular strategy to create functional cell-permeable nanobodies capable of targeted labelling and manipulation of intracellular antigens in living cells. The cell-permeable nanobodies are formed by the site-specific attachment of intracellularly stable (or cleavable) cyclic arginine-rich cell-penetrating peptides to camelid-derived single-chain VHH antibody fragments. We used this strategy for the non-endocytic delivery of two recombinant nanobodies into living cells, which enabled the relocalization of the polymerase clamp PCNA (proliferating cell nuclear antigen) and tumour suppressor p53 to the nucleolus, and thereby allowed the detection of protein-protein interactions that involve these two proteins in living cells. Furthermore, cell-permeable nanobodies permitted the co-transport of therapeutically relevant proteins, such as Mecp2, into the cells. This technology constitutes a major step in the labelling, delivery and targeted manipulation of intracellular antigens. Ultimately, this approach opens the door towards immunostaining in living cells and the expansion of immunotherapies to intracellular antigen targets.

  8. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells

    Science.gov (United States)

    Herce, Henry D.; Schumacher, Dominik; Schneider, Anselm F. L.; Ludwig, Anne K.; Mann, Florian A.; Fillies, Marion; Kasper, Marc-André; Reinke, Stefan; Krause, Eberhard; Leonhardt, Heinrich; Cardoso, M. Cristina; Hackenberger, Christian P. R.

    2017-08-01

    Functional antibody delivery in living cells would enable the labelling and manipulation of intracellular antigens, which constitutes a long-thought goal in cell biology and medicine. Here we present a modular strategy to create functional cell-permeable nanobodies capable of targeted labelling and manipulation of intracellular antigens in living cells. The cell-permeable nanobodies are formed by the site-specific attachment of intracellularly stable (or cleavable) cyclic arginine-rich cell-penetrating peptides to camelid-derived single-chain VHH antibody fragments. We used this strategy for the non-endocytic delivery of two recombinant nanobodies into living cells, which enabled the relocalization of the polymerase clamp PCNA (proliferating cell nuclear antigen) and tumour suppressor p53 to the nucleolus, and thereby allowed the detection of protein-protein interactions that involve these two proteins in living cells. Furthermore, cell-permeable nanobodies permitted the co-transport of therapeutically relevant proteins, such as Mecp2, into the cells. This technology constitutes a major step in the labelling, delivery and targeted manipulation of intracellular antigens. Ultimately, this approach opens the door towards immunostaining in living cells and the expansion of immunotherapies to intracellular antigen targets.

  9. METHOD FOR THE PRODUCTION OF HETEROLOGOUS POLYPEPTIDES IN TRANSFORMED YEAST CELLS

    DEFF Research Database (Denmark)

    2000-01-01

    The invention describes industrial fermentation of a $i(Saccharomyces) yeast species for production of a heterologous product encoded by a plasmid or DNA contained in said $i(Saccharomyces) yeast species with method utilizes the substrate more efficiently and without fermentative metabolism...... resulting in formation of ethanol and other unwanted primary products of fermentative activity whereby high yields of the heterologous product are obtained. The $i(Saccharomyces) yeast species is preferably a Crabtree negative $i(Saccharomyces species) in particular $i(Saccharomyces kluyveri)....

  10. Yeast Cells Lacking the CIT1-encoded Mitochondrial Citrate Synthase Are Hypersusceptible to Heat- or Aging-induced Apoptosis

    OpenAIRE

    Lee, Yong Joo; Hoe, Kwang Lae; Maeng, Pil Jae

    2007-01-01

    In Saccharomyces cerevisiae, the initial reaction of the tricarboxylic acid cycle is catalyzed by the mitochondrial citrate synthase Cit1. The function of Cit1 has previously been studied mainly in terms of acetate utilization and metabolon construction. Here, we report the relationship between the function of Cit1 and apoptosis. Yeast cells with cit1 deletion showed a temperature-sensitive growth phenotype, and they displayed a rapid loss in viability associated with typical apoptotic hallma...

  11. Direct Visualization of De novo Lipogenesis in Single Living Cells

    Science.gov (United States)

    Li, Junjie; Cheng, Ji-Xin

    2014-10-01

    Increased de novo lipogenesis is being increasingly recognized as a hallmark of cancer. Despite recent advances in fluorescence microscopy, autoradiography and mass spectrometry, direct observation of de novo lipogenesis in living systems remains to be challenging. Here, by coupling stimulated Raman scattering (SRS) microscopy with isotope labeled glucose, we were able to trace the dynamic metabolism of glucose in single living cells with high spatial-temporal resolution. As the first direct visualization, we observed that glucose was largely utilized for lipid synthesis in pancreatic cancer cells, which occurs at a much lower rate in immortalized normal pancreatic epithelial cells. By inhibition of glycolysis and fatty acid synthase (FAS), the key enzyme for fatty acid synthesis, we confirmed the deuterium labeled lipids in cancer cells were from de novo lipid synthesis. Interestingly, we also found that prostate cancer cells exhibit relatively lower level of de novo lipogenesis, but higher fatty acid uptake compared to pancreatic cancer cells. Together, our results demonstrate a valuable tool to study dynamic lipid metabolism in cancer and other disorders.

  12. Bacillus subtilis and yeast cell wall improve the intestinal health of broilers challenged by Clostridium perfringens.

    Science.gov (United States)

    Li, Z; Wang, W; Lv, Z; Liu, D; Guo, Y

    2017-12-01

    1. The objective was to investigate the effects of Bacillus subtilis, yeast cell wall (YCW) and their combination on intestinal health of broilers challenged by Clostridium perfringens over a 21-d period. 2. Using a 5 × 2 factorial arrangement of treatments, 800 1-d-old male Cobb 500 broilers were used to study the effects of feed additives (without additive or with zinc bacitracin, B. subtilis, YCW, and the combination of B. subtilis and YCW), pathogen challenge (without or with Clostridium perfringens challenge), and their interactive effects. 3. C. perfringens infection increased intestinal lesions scores, damaged intestinal histomorphology, increased serum endotoxin concentration, cytokine mRNA expression and intestinal population of C. perfringens and Escherichia coli and decreased ileal bifidobacteria numbers. The 4 additives decreased serum endotoxin. Zinc bacitracin tended to decrease cytokine mRNA expression and the intestinal number of C. perfringens and E. coli. B. subtilis, YCW and their combination increased cytokine mRNA expression. B. subtilis and YCW decreased the number of C. perfringens and E. coli in the ileum, and their combination decreased pathogens numbers in the ileum and caecum. 4. In conclusion, B. subtilis, YCW and their combination improved the intestinal health of NE-infected broilers, and could be potential alternatives to antibiotics.

  13. Secondary Metabolite Localization by Autofluorescence in Living Plant Cells

    Directory of Open Access Journals (Sweden)

    Pascale Talamond

    2015-03-01

    Full Text Available Autofluorescent molecules are abundant in plant cells and spectral images offer means for analyzing their spectra, yielding information on their accumulation and function. Based on their fluorescence characteristics, an imaging approach using multiphoton microscopy was designed to assess localization of the endogenous fluorophores in living plant cells. This method, which requires no previous treatment, provides an effective experimental tool for discriminating between multiple naturally-occurring fluorophores in living-tissues. Combined with advanced Linear Unmixing, the spectral analysis extends the possibilities and enables the simultaneous detection of fluorescent molecules reliably separating overlapping emission spectra. However, as with any technology, the possibility for artifactual results does exist. This methodological article presents an overview of the applications of tissular and intra-cellular localization of these intrinsic fluorophores in leaves and fruits (here for coffee and vanilla. This method will provide new opportunities for studying cellular environments and the behavior of endogenous fluorophores in the intracellular environment.

  14. Modulation of protein properties in living cells using nanobodies.

    Science.gov (United States)

    Kirchhofer, Axel; Helma, Jonas; Schmidthals, Katrin; Frauer, Carina; Cui, Sheng; Karcher, Annette; Pellis, Mireille; Muyldermans, Serge; Casas-Delucchi, Corella S; Cardoso, M Cristina; Leonhardt, Heinrich; Hopfner, Karl-Peter; Rothbauer, Ulrich

    2010-01-01

    Protein conformation is critically linked to function and often controlled by interactions with regulatory factors. Here we report the selection of camelid-derived single-domain antibodies (nanobodies) that modulate the conformation and spectral properties of the green fluorescent protein (GFP). One nanobody could reversibly reduce GFP fluorescence by a factor of 5, whereas its displacement by a second nanobody caused an increase by a factor of 10. Structural analysis of GFP-nanobody complexes revealed that the two nanobodies induce subtle opposing changes in the chromophore environment, leading to altered absorption properties. Unlike conventional antibodies, the small, stable nanobodies are functional in living cells. Nanobody-induced changes were detected by ratio imaging and used to monitor protein expression and subcellular localization as well as translocation events such as the tamoxifen-induced nuclear localization of estrogen receptor. This work demonstrates that protein conformations can be manipulated and studied with nanobodies in living cells.

  15. Probiotic Properties of Non-Saccharomyces Yeasts

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech

    to harmless luminal substances is a key feature of the intestinal immune system. In this context, dendritic cells (DCs) present in the tissues lining the human gut are central players involved in microbial sensing and shaping of appropriate adaptive immune responses. Probiotics are live microorganisms which...... when administered in adequate amounts confer a health benefit on the host. While the majority of probiotic microorganisms studied to date are lactic acid bacteria, research in yeasts with potentially beneficial influences on human health has mainly revolved around Saccharomyces boulardii. This yeast...... has shown a positive impact on disease outcome in clinical studies of inflammatory bowel disease, indicating an ability of S. boulardii to influence human immune responses underlying intestinal inflammation. Consequent to this focus on S. boulardii as the fundamental probiotic yeast, very little...

  16. Construction of a novel selection system for endoglucanases exhibiting carbohydrate-binding modules optimized for biomass using yeast cell-surface engineering.

    Science.gov (United States)

    Nakanishi, Akihito; Bae, Jungu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2012-10-23

    To permit direct cellulose degradation and ethanol fermentation, Saccharomyces cerevisiae BY4741 (Δsed1) codisplaying 3 cellulases (Trichoderma reesei endoglucanase II [EG], T. reesei cellobiohydrolase II [CBH], and Aspergillus aculeatus β-glucosidase I [BG]) was constructed by yeast cell-surface engineering. The EG used in this study consists of a family 1 carbohydrate-binding module (CBM) and a catalytic module. A comparison with family 1 CBMs revealed conserved amino acid residues and flexible amino acid residues. The flexible amino acid residues were at positions 18, 23, 26, and 27, through which the degrading activity for various cellulose structures in each biomass may have been optimized. To select the optimal combination of CBMs of EGs, a yeast mixture with comprehensively mutated CBM was constructed. The mixture consisted of yeasts codisplaying EG with mutated CBMs, in which 4 flexible residues were comprehensively mutated, CBH, and BG. The yeast mixture was inoculated in selection medium with newspaper as the sole carbon source. The surviving yeast consisted of RTSH yeast (the mutant sequence of CBM: N18R, S23T, S26S, and T27H) and wild-type yeast (CBM was the original) in a ratio of 1:46. The mixture (1 RTSH yeast and 46 wild-type yeasts) had a fermentation activity that was 1.5-fold higher than that of wild-type yeast alone in the early phase of saccharification and fermentation, which indicates that the yeast mixture with comprehensively mutated CBM could be used to select the optimal combination of CBMs suitable for the cellulose of each biomass.

  17. Autofluorescence-Free Live-Cell Imaging Using Terbium Nanoparticles.

    Science.gov (United States)

    Cardoso Dos Santos, M; Goetz, J; Bartenlian, H; Wong, K-L; Charbonnière, L J; Hildebrandt, N

    2018-04-18

    Fluorescent nanoparticles (NPs) have become irreplaceable tools for advanced cellular and subcellular imaging. While very bright NPs require excitation with UV or visible light, which can create strong autofluorescence of biological components, NIR-excitable NPs without autofluorescence issues exhibit much lower brightness. Here, we show the application of a new type of surface-photosensitized terbium NPs (Tb-NPs) for autofluorescence-free intracellular imaging in live HeLa cells. The combination of exceptionally high brightness, high photostability, and long photoluminecence (PL) lifetimes for highly efficient suppression of the short-lived autofluorescence allowed for time-gated PL imaging of intracellular vesicles over 72 h without toxicity and at extremely low Tb-NP concentrations down to 12 pM. Detection of highly resolved long-lifetime (ms) PL decay curves from small (∼10 μm 2 ) areas within single cells within a few seconds emphasized the unprecedented photophysical properties of Tb-NPs for live-cell imaging that extend well beyond currently available nanometric imaging agents.

  18. Collective Dynamics of Intracellular Water in Living Cells

    International Nuclear Information System (INIS)

    Orecchini, A; Sebastiani, F; Paciaroni, A; Petrillo, C; Sacchetti, F; Jasnin, M; Francesco, A De; Zaccai, G; Moulin, M; Haertlein, M

    2012-01-01

    Water dynamics plays a fundamental role for the fulfillment of biological functions in living organisms. Decades of hydrated protein powder studies have revealed the peculiar dynamical properties of hydration water with respect to pure water, due to close coupling interactions with the macromolecule. In such a framework, we have studied coherent collective dynamics in protein and DNA hydration water. State-of-the-art neutron instrumentation has allowed us to observe the propagation of coherent density fluctuations within the hydration shell of the biomolecules. The corresponding dispersion curves resulted to be only slightly affected by the coupling with the macromolecules. Nevertheless, the effects of the interaction appeared as a marked increase of the mode damping factors, which suggested a destructuring of the water hydrogen-bond network. Such results were interpreted as the signature of a 'glassy' dynamical character of macromolecule hydration water, in agreement with indications from measurements of the density of vibrational states. Extending the investigations to living organisms at physiological conditions, we present here an in-vivo study of collective dynamics of intracellular water in Escherichia coli cells. The cells and water were fully deuterated to minimise the incoherent neutron scattering background. The water dynamics observed in the living cells is discussed in terms of the dynamics of pure bulk water and that of hydration water measured in powder samples.

  19. Simulations of living cell origins using a cellular automata model.

    Science.gov (United States)

    Ishida, Takeshi

    2014-04-01

    Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.

  20. Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes.

    Science.gov (United States)

    Chen, Jiumei; Hessler, Jessica A; Putchakayala, Krishna; Panama, Brian K; Khan, Damian P; Hong, Seungpyo; Mullen, Douglas G; Dimaggio, Stassi C; Som, Abhigyan; Tew, Gregory N; Lopatin, Anatoli N; Baker, James R; Holl, Mark M Banaszak; Orr, Bradford G

    2009-08-13

    It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper, we show that noncytotoxic concentrations of cationic nanoparticles induce 30-2000 pA currents in 293A (human embryonic kidney) and KB (human epidermoid carcinoma) cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm(2) in total area. Other forms of nanoscale defects, including the nanoparticle porating agents adsorbing onto or intercalating into the lipid bilayer, are also consistent; although the size of the defect must increase to account for any reduction in ion conduction, as compared to a water channel. An individual defect forming event takes 1-100 ms, while membrane resealing may occur over tens of seconds. Patch-clamp data provide direct evidence for the formation of nanoscale defects in living cell membranes. The cationic polymer data are compared and contrasted with patch-clamp data obtained for an amphiphilic phenylene ethynylene antimicrobial oligomer (AMO-3), a small molecule that is proposed to make well-defined 3.4 nm holes in lipid bilayers. Here, we observe data that are consistent with AMO-3 making approximately 3 nm holes in living cell membranes.

  1. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle.

    Directory of Open Access Journals (Sweden)

    David L Gibbs

    2017-06-01

    Full Text Available The Influence Maximization Problem (IMP aims to discover the set of nodes with the greatest influence on network dynamics. The problem has previously been applied in epidemiology and social network analysis. Here, we demonstrate the application to cell cycle regulatory network analysis for Saccharomyces cerevisiae. Fundamentally, gene regulation is linked to the flow of information. Therefore, our implementation of the IMP was framed as an information theoretic problem using network diffusion. Utilizing more than 26,000 regulatory edges from YeastMine, gene expression dynamics were encoded as edge weights using time lagged transfer entropy, a method for quantifying information transfer between variables. By picking a set of source nodes, a diffusion process covers a portion of the network. The size of the network cover relates to the influence of the source nodes. The set of nodes that maximizes influence is the solution to the IMP. By solving the IMP over different numbers of source nodes, an influence ranking on genes was produced. The influence ranking was compared to other metrics of network centrality. Although the top genes from each centrality ranking contained well-known cell cycle regulators, there was little agreement and no clear winner. However, it was found that influential genes tend to directly regulate or sit upstream of genes ranked by other centrality measures. The influential nodes act as critical sources of information flow, potentially having a large impact on the state of the network. Biological events that affect influential nodes and thereby affect information flow could have a strong effect on network dynamics, potentially leading to disease. Code and data can be found at: https://github.com/gibbsdavidl/miergolf.

  2. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle

    Science.gov (United States)

    Shmulevich, Ilya

    2017-01-01

    The Influence Maximization Problem (IMP) aims to discover the set of nodes with the greatest influence on network dynamics. The problem has previously been applied in epidemiology and social network analysis. Here, we demonstrate the application to cell cycle regulatory network analysis for Saccharomyces cerevisiae. Fundamentally, gene regulation is linked to the flow of information. Therefore, our implementation of the IMP was framed as an information theoretic problem using network diffusion. Utilizing more than 26,000 regulatory edges from YeastMine, gene expression dynamics were encoded as edge weights using time lagged transfer entropy, a method for quantifying information transfer between variables. By picking a set of source nodes, a diffusion process covers a portion of the network. The size of the network cover relates to the influence of the source nodes. The set of nodes that maximizes influence is the solution to the IMP. By solving the IMP over different numbers of source nodes, an influence ranking on genes was produced. The influence ranking was compared to other metrics of network centrality. Although the top genes from each centrality ranking contained well-known cell cycle regulators, there was little agreement and no clear winner. However, it was found that influential genes tend to directly regulate or sit upstream of genes ranked by other centrality measures. The influential nodes act as critical sources of information flow, potentially having a large impact on the state of the network. Biological events that affect influential nodes and thereby affect information flow could have a strong effect on network dynamics, potentially leading to disease. Code and data can be found at: https://github.com/gibbsdavidl/miergolf. PMID:28628618

  3. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle.

    Science.gov (United States)

    Gibbs, David L; Shmulevich, Ilya

    2017-06-01

    The Influence Maximization Problem (IMP) aims to discover the set of nodes with the greatest influence on network dynamics. The problem has previously been applied in epidemiology and social network analysis. Here, we demonstrate the application to cell cycle regulatory network analysis for Saccharomyces cerevisiae. Fundamentally, gene regulation is linked to the flow of information. Therefore, our implementation of the IMP was framed as an information theoretic problem using network diffusion. Utilizing more than 26,000 regulatory edges from YeastMine, gene expression dynamics were encoded as edge weights using time lagged transfer entropy, a method for quantifying information transfer between variables. By picking a set of source nodes, a diffusion process covers a portion of the network. The size of the network cover relates to the influence of the source nodes. The set of nodes that maximizes influence is the solution to the IMP. By solving the IMP over different numbers of source nodes, an influence ranking on genes was produced. The influence ranking was compared to other metrics of network centrality. Although the top genes from each centrality ranking contained well-known cell cycle regulators, there was little agreement and no clear winner. However, it was found that influential genes tend to directly regulate or sit upstream of genes ranked by other centrality measures. The influential nodes act as critical sources of information flow, potentially having a large impact on the state of the network. Biological events that affect influential nodes and thereby affect information flow could have a strong effect on network dynamics, potentially leading to disease. Code and data can be found at: https://github.com/gibbsdavidl/miergolf.

  4. Cocompartmentation of proteins and K+ within the living cell

    International Nuclear Information System (INIS)

    Kellermayer, M.; Ludany, A.; Jobst, K.; Szucs, G.; Trombitas, K.; Hazlewood, C.F.

    1986-01-01

    Monolayer H-50 tissue culture cells were treated with Triton X-100 and Brij 58 nonionic detergents, and their electron microscopic morphology along with the release of the intracellular proteins [ 35 S]methionine-labelled and 42 K-labelled K + were studied. Although Triton X-100 was more effective, both detergents removed the lipoid membranes within 5 min. The mobilization and solubilization of the cytoplasmic and nuclear proteins occurred much faster with Triton X-100 than with Brij 58. In Triton X-100-treated cells, the loss of K + was complete within 2 min. The loss of K + from the Brij 58-treated cells was complete only after 10 min and the mobilization of K + showed sigmoid-type release kinetics. These results support the view that most of K + and diffusible proteins are not freely dissolved in the cellular water, but they are cocompartmentalized inside the living cell

  5. Digital photocontrol of the network of live excitable cells

    Science.gov (United States)

    Erofeev, I. S.; Magome, N.; Agladze, K. I.

    2011-11-01

    Recent development of tissue engineering techniques allows creating and maintaining almost indefinitely networks of excitable cells with desired architecture. We coupled the network of live excitable cardiac cells with a common computer by sensitizing them to light, projecting a light pattern on the layer of cells, and monitoring excitation with the aid of fluorescent probes (optical mapping). As a sensitizing substance we used azobenzene trimethylammonium bromide (AzoTAB). This substance undergoes cis-trans-photoisomerization and trans-isomer of AzoTAB inhibits excitation in the cardiac cells, while cis-isomer does not. AzoTAB-mediated sensitization allows, thus, reversible and dynamic control of the excitation waves through the entire cardiomyocyte network either uniformly, or in a preferred spatial pattern. Technically, it was achieved by coupling a common digital projector with a macroview microscope and using computer graphic software for creating the projected pattern of conducting pathways. This approach allows real time interactive photocontrol of the heart tissue.

  6. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    Science.gov (United States)

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  7. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    Science.gov (United States)

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  8. Evaluation of the Efficiency of Different Disruption Methods on Yeast Cell Wall Preparation for β-Glucan Isolation

    Directory of Open Access Journals (Sweden)

    Anna Bzducha-Wróbel

    2014-12-01

    Full Text Available Selected methods for yeast cell disruption were evaluated to establish their suitability for cell wall preparation in the process of β-glucan isolation. The effect of different disruption methods on contents of total saccharides, β-glucans and proteins in the produced cell walls preparations was analyzed. The degree of cell wall purification from intracellular components was established on the basis of the ratio of solubilised material. The investigated methods included: cell exposure to hot water (autoclaving, thermally-induced autolysis, homogenization in a bead mill, sonication and their combinations. Experimental systems were prepared in water (pH 5.0 and pH 7.0 and Tris-HCl buffer (pH 8.0. The Saccharomyces cerevisiae yeast cell wall preparations with the highest degree of cytosol component release and purification of β-glucans were produced by 30 min of cell homogenization with zirconium-glass beads (0.5 mm in diameter. This was confirmed by the highest ratio of solubilised material (approx. 64%–67%. The thus-produced preparations contained ca. 60% of total saccharides, 13%–14% of β(1,3/(1,6-glucans, and approx. 35% of crude proteins. Similar results were obtained after autolysis coupled with bead milling as well as with sonication, but the time required for these processes was more than 24 h. Homogenization in a bead mill could be valuable for general isolation procedures because allows one to eliminate the different autolytic activity of various yeast strains.

  9. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component Modeling Strategy for Protein Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Teeraphan Laomettachit

    Full Text Available To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a "standard component" modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with "standard components" can capture in quantitative detail many essential properties of cell cycle control in budding yeast.

  10. Raman Microspectroscopy of the Yeast Vacuoles

    Czech Academy of Sciences Publication Activity Database

    Bednárová, Lucie; Palacký, J.; Bauerová, Václava; Hrušková-Heidingsfeldová, Olga; Pichová, Iva; Mojzeš, P.

    2012-01-01

    Roč. 27, 5-6 (2012), s. 503-507 ISSN 0712-4813 R&D Projects: GA ČR GAP208/10/0376; GA ČR GA310/09/1945 Institutional research plan: CEZ:AV0Z40550506 Keywords : Raman microspectroscopy * living cell * yeast * vacuole * chemical composition * polyphospate * Candida albicans Subject RIV: CE - Biochemistry Impact factor: 0.530, year: 2012

  11. Beyond bread and beer: whole cell protein extracts from baker's yeast as a bulk source for 3D cell culture matrices.

    Science.gov (United States)

    Bodenberger, Nicholas; Kubiczek, Dennis; Paul, Patrick; Preising, Nico; Weber, Lukas; Bosch, Ramona; Hausmann, Rudolf; Gottschalk, Kay-Eberhard; Rosenau, Frank

    2017-03-01

    Here, we present a novel approach to form hydrogels from yeast whole cell protein. Countless hydrogels are available for sophisticated research, but their fabrication is often difficult to reproduce, with the gels being complicated to handle or simply too expensive. The yeast hydrogels presented here are polymerized using a four-armed, amine reactive crosslinker and show a high chemical and thermal resistance. The free water content was determined by measuring swelling ratios for different protein concentrations, and in a freeze-drying approach, pore sizes of up to 100 μm in the gel could be created without destabilizing the 3D network. Elasticity was proofed to be adjustable with the help of atomic force microscopy by merely changing the amount of used protein. Furthermore, the material was tested for possible cell culture applications; diffusion rates in the network are high enough for sufficient supply of human breast cancer cells and adenocarcinomic human alveolar basal epithelial cells with nutrition, and cells showed high viabilities when tested for compatibility with the material. Furthermore, hydrogels could be functionalized with RGD peptide and the optimal concentration for sufficient cell adhesion was determined to be 150 μM. Given that yeast protein is one of the cheapest and easiest available protein sources and that hydrogels are extremely easy to handle, the developed material has highly promising potential for both sophisticated cell culture techniques as well as for larger scale industrial applications.

  12. Effect of yeast storage temperature and flour composition on fermentative activities of baker's yeast

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2009-01-01

    Full Text Available Baker's yeast is a set of living cells of Saccharomyces cerevisiae. It contains around 70-72% of water, 42-45% of proteins, around 40% of carbohydrates, around 7.5% of lipids (based on dry matter, and vitamin B-complex. On the basis of yeast cell analysis it can be concluded that yeast is a complex biological system which changes in time. The intensity of the changes depends on temperature. Yeast sample was stored at 4°C i 24°C for 12 days. During storage at 4°C, the content of total carbohydrates decreased from 48.81% to 37.50% (dry matter, whereas carbohydrate loss ranged from 40.81% to 29.28% at 24°C. The content of trehalose was 12.33% in the yeast sample stored at 4°C and 0.24% at 24°C. Loss of fermentative activity was 81.76% in the sample stored at 24°C for 12 days. The composition of five samples of 1st category flour was investigated. It was found that flours containing more reducing sugars and maltose enable higher fermentation activities. The flours with higher ash content (in the range 0.5-0.94% had higher contents of phytic acid. Higher ash and phytic contents in flour increased the yeast fermentative efficiency. In bakery industry, a range of ingredients has been applied to improve the product's quality such as surface active substances (emulsifiers, enzymes, sugars and fats. In the paper, the effect of some ingredients added to dough (margarine, saccharose, sodium chloride and malted barley on the yeast fermentative activity was studied. The mentioned ingredients were added to dough at different doses: 0.5, 1.0, 1.5 and 2.0%, flour basis. It was found that the investigated ingredients affected the fermentative activity of yeast and improved the bread quality.

  13. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets.

    Science.gov (United States)

    Bayat, A R; Kairenius, P; Stefański, T; Leskinen, H; Comtet-Marre, S; Forano, E; Chaucheyras-Durand, F; Shingfield, K J

    2015-05-01

    The potential of dietary supplements of 2 live yeast strains (Saccharomyces cerevisiae) or camelina oil to lower ruminal methane (CH4) and carbon dioxide (CO2) production and the associated effects on animal performance, rumen fermentation, rumen microbial populations, nutrient metabolism, and milk fatty acid (FA) composition of cows fed grass silage-based diets were examined. Four Finnish Ayrshire cows (53±7 d in milk) fitted with rumen cannula were used in a 4×4 Latin square with four 42-d periods. Cows received a basal total mixed ration (control treatment) with a 50:50 forage-to-concentrate ratio [on a dry matter (DM) basis] containing grass silage, the same basal total mixed ration supplemented with 1 of 2 live yeasts, A or B, administered directly in the rumen at 10(10) cfu/d (treatments A and B), or supplements of 60g of camelina oil/kg of diet DM that replaced concentrate ingredients in the basal total mixed ration (treatment CO). Relative to the control, treatments A and B had no effects on DM intake, rumen fermentation, ruminal gas production, or apparent total-tract nutrient digestibility. In contrast, treatment CO lowered DM intake and ruminal CH4 and CO2 production, responses associated with numerical nonsignificant decreases in total-tract organic matter digestibility, but no alterations in rumen fermentation characteristics or changes in the total numbers of rumen bacteria, methanogens, protozoa, and fungi. Compared with the control, treatment CO decreased the yields of milk, milk fat, lactose, and protein. Relative to treatment B, treatment CO improved nitrogen utilization due to a lower crude protein intake. Treatment A had no influence on milk FA composition, whereas treatment B increased cis-9 10:1 and decreased 11-cyclohexyl 11:0 and 24:0 concentrations. Treatment CO decreased milk fat 8:0 to 16:0 and total saturated FA, and increased 18:0, 18:1, 18:2, conjugated linoleic acid, 18:3n-3, and trans FA concentrations. Decreases in ruminal CH4

  14. Rhodosporidium BANNO: Inactivation of yeast phase cells by ultraviolet light and N-methyl-N'-nitro-N-nitrosoguanidine

    International Nuclear Information System (INIS)

    Boettcher, F.; Samsonova, I.A.

    1977-01-01

    The inactivation of stationary phase cells by ultraviolet light (UV) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was examined in eight wild strains of Rhodotorula, six of which are the sporidial yeast phase of Rhodosporidium, a basidiomycetous fungus. It thas been found that (1) the UV-resistance of Rhodosporidium and Rhodotorula yeasts is higher and the MNNG-resistance lower than the resistance of Candida and Hansenula yeasts, (2) the shape of the survival curves is sigmoid in the case of UV and two-phase exponential in the case of MNNG, (3) the mutagen sensitivities but not the inactivation kinetics of the strains are different, (4) the UV- and MNNG-sensitivities for each of the strains are correlated, (5) the relatively high resistance to UV cannot be due to the carotenoid pigments of the cells, (6) mutations to UV-sensitivity can be induced with a high rate, (7) the sigmoidal character of the UV survival curves were reduced or transformed to an exponential shape by the UVS-mutations. (author)

  15. From mannan to bioethanol: cell surface co-display of β-mannanase and β-mannosidase on yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Ishii, Jun; Okazaki, Fumiyoshi; Djohan, Aprida